Human Health Risk Assessment
Process Overview

Deb MacKenzie-Taylor, Ph.D.
Toxicology Specialist
Michigan Department of Environmental Quality
Waste and Hazardous Materials Division
mackenzd@michigan.gov 517-335-4715
What is a Human Health Risk Assessment (HHRA)?

• An estimate of the potential for health risk for a group of people
 ➢ Focused on protection
• For cleanups (corrective action):
 ➢ People contacting contamination and the possible negative health outcomes (e.g., cancer)
 ➢ Intended to be protective of people with the greatest contact and/or those most sensitive to the possible health effects
 ➢ May be overly protective for many people
What a HHRA is NOT

• Estimating risk is **NOT** the same as measuring health outcomes (i.e., disease).
 - **Is not** a health study
 - **Does not** identify specific individuals who are exposed to a chemical
 - **Does not** compare chemical levels in individuals or groups of people to health outcomes
 - **Does not** provide medical diagnoses
Typical Uses of HHRA for Cleanups

- **Michigan DEQ**
 - Develop generic cleanup criteria
 - Determine need for and develop site-specific cleanup criteria
- **U.S. EPA CERCLA/RCRA Programs**
 - Baseline HHRA to evaluate need for remediation/corrective action
 - Use for developing preliminary and final remediation/corrective action goals
Steps of an HHRA

- Identify concerns = **hazard identification**
 - What chemicals and what levels?
 - Where are they?
- Determine potential for contact with contamination = **exposure assessment**
- Potential for health effects from contamination = **toxicity assessment**
 - How much (dose)?
- Potential risk = **risk characterization**
 - Combine information on exposure and toxicity to determine risk
Identify Potential Concerns

• What are the potential contaminants?
 ➢ Evaluate chemicals used, manufactured, by-products and breakdown products for facility

• Where are they?
 ➢ Environmental media (soils, sediments, groundwater, surface water, fish, etc.)
 ➢ Location of contaminants (coordinates/depth)
 ➢ Contaminant concentrations
Dow’s Proposed HHRA Process

• Identify contaminants of potential concern (COPCs)

 ➢ Evaluation of list of chemicals of record manufactured/used/disposed by Midland Plant
 • Considered chemical/physical properties
 • Evaluated ability to measure
 • Did not have information on quantities
 • Ongoing process

 ➢ Collect concentration data in various media based on list

 ➢ Screen against MDEQ/U.S. EPA cleanup levels
Identifying COPCs

- Subset of Upper Tittabawassee River soils and sediment samples have been selected for extended chemical analyses
 - First set of data by end of May
- Dow’s consultants are evaluating the ability to measure potential contaminants in fish and wild game
Exposure Assessment

• Who has potential for exposure to contamination?
 ➢ Residents, fishermen, hunters, farmers, etc.

• What ways could they be exposed?
 ➢ Playing on contaminated soil, eating fish, eating game, eating farm products, etc.

• When/how often could they be exposed?
 ➢ Every day, once a week, etc.

• How much of the contaminant could get into people?
Dow’s Proposed HHRA Process

• Exposure assessment
 ➢ Evaluate many pathways (eating fish, eating game, soil contact, etc.), receptors (residents, farmers, fishermen, etc.) and land uses (residential, agricultural, recreational, etc.)
 ➢ Use U of M Dioxin Exposure Study Data as much as possible
 ➢ Collect additional concentration data (fish, game, etc.)
 ➢ Collect additional human activity data
Examples of Exposure Assessment Issues

• Population of concern
 ➢ Only those people with potential exposure (location or behavior based)
 ➢ Everyone in the area (population-based e.g., Midland/Saginaw County residents)

• Reasonable Maximum Exposure (RME)
 ➢ Example - people who eat a lot of contaminated fish, game, etc.
 ➢ RME vs. average exposure (may not eat any local fish)
Examples of Exposure Assessment Issues (Cont’d.)

• Determine relative importance of inputs into the exposure assessment = sensitivity analysis

• Additional data collection
 - Fish, game, possibly agricultural dust, etc.
 - Human activity survey

• Dietary exposure not related to local contamination

• Breast milk exposure to infants

• Percent of the contaminant contacted that is absorbed into the body = bioavailability
Toxicity Assessment

• What are the potential health effects?
 ➢ Human data
 ➢ Animal data
• Weight of evidence
• Dose evaluation
 ➢ Cancer
 ➢ Noncancer effects
 ➢ Human dose equivalent
Dow’s Proposed HHRA Process

• Toxicity assessment
 ➢ Develop cancer value – dioxins/furans
 ➢ Develop noncancer value – dioxins/furans
 ➢ Reevaluate toxic equivalency factors (TEFs) - dioxins/furans
 ➢ Use probabilistic techniques
Risk Characterization

• Standard risk assessments
 ➢ Generic cleanup criteria
 ➢ Site-specific cleanup criteria
 • Similar to generic process
 ➢ Baseline risk assessment
 • Multi-pathway and multi-contaminant risk assessment
Dow’s Proposed HHRA Process

• Risk characterization
 ➢ Develop site-specific direct contact criteria
 – dioxins/furans
 ➢ Screening level risk assessment
 • Eliminate pathways and contaminants that don’t contribute significantly to estimated risk
 ➢ Probabilistic risk assessment
 • Determine pathways with unacceptable risk
Dow’s Proposed HHRA Peer Review Process

• Independent Science Advisory Panel
 ➢ For select topics/issues of controversy
 ➢ Site-specific soil direct contact criteria
 ➢ Final probabilistic risk assessment
 ➢ Other site-specific criteria?
 ➢ Not a decision-making body – advisory
Summary and Questions

Thank You