EMERGING DISEASES

Disease is a part of natural systems, however emerging diseases can have significant impacts on wildlife populations, especially for species that are already rare. Often these diseases are relatively unknown and therefore basic research is needed to understand how they function and their potential impacts on wildlife. This part of the Wildlife Action Plan outlines current key diseases affecting Species of Greatest Conservation Need that are important to understand and address. Additional emerging diseases and focal species may be added to this mini-plan if the disease has the potential to significantly impact (>50% declines) wildlife populations in Michigan.
What is White-nose Syndrome?

Snake fungal disease is an infection found in free-ranging and captive snakes that is associated with the fungus *Ophidiomyces ophiodiicola*. The fungus is able to break down and use the keratin in skin tissue as a carbon source. Infected snakes exhibit skin lesions, cloudy eyes, irregular molting, and facial disfigurement (Allender et al. 2015; Tetzlaff et al. 2015). They also can have open wounds and crusty scabs, or sometimes more subtle signs such as swelling, thickened skin, or bumps under the skin. Preliminary research suggests that *O. ophiodiicola* may be present in many different ecosystems and it may become more problematic as temperatures increase (Allender et al. 2015). There are currently no effective treatments for snake fungal disease in the Eastern Massasauga (Allender et al. 2011). Snake fungal disease was first observed in 2006 affecting pitvipers in the eastern United States (Clark et al. 2011) and was confirmed in Eastern Massasauga in Illinois in 2008 (Allender et al. 2011). It was first confirmed in Michigan in 2013 when two Eastern Massasauga tested positive. In 2014, 100 snakes from three sites in Michigan were tested for the fungus; five individuals tested positive (Allender et al. 2014); samples were collected in 2015 and are now being processed. Snake fungal disease appears to be fatal in the Eastern Massasauga. At this time very little is known.

What is White-nose Syndrome?

White-nose syndrome is an emerging infectious disease of bats in North America caused by a nonnative invasive species of fungus called *Pseudogymnoascus destructans* (Blehart et al. 2009). The fungus most likely originated in Europe. It was first noticed in North America at a commercial tourist cave in eastern New York in 2006. Since then, the fungus has spread rapidly throughout the eastern United States and Canada. It first reached Michigan in the spring of 2014 (Kurta and Smith 2014). The fungus currently occurs in 25 states and 5 Canadian provinces (www.white-nose syndrome.org) and is likely to spread throughout the temperate areas of the continent (USFWS 2013).

Pseudogymnoascus destructans is a “cold-loving” fungus that grows on the hairless skin of hibernating bats, such as the wings and muzzle, which are maintained at a temperature below 10°C (50°F) for prolonged periods. The fungus produces multiple structural and physiological effects as it attacks the skin, but an unfailing result of infection is that a bat rouses from hibernation twice as often as normal (Reeder et al. 2012). The specific cause of these arousals is debatable, although it appears that the fungal attack on the skin leads to increased water loss and the bats are forced to become active to drink (Cryan et al. 2010; Willis et al. 2011). These incidents are energetically expensive and deplete the animal’s body fat at a rapid rate. If a bat totally consumes its stored energy by February or March (Reeder et al. 2012), when 1–3 feet of snow still cover the northern parts of the state and food is not available, it dies from starvation.

Between 2006 and 2012, more than 5.5 million bats perished from this disease (U.S. Fish and Wildlife Service 2012). After only 5 years of exposure to the fungus, populations of six species of bats hibernating in caves or mines in the Eastern U.S., declined by an aggregate 88% (Turner et al. 2011). Similar declines are now occurring in the Midwest.

Excerpted from Mammal Technical Advisory Committee 2014
The Eastern Massasauga is Michigan’s only rattlesnake, and is a shy docile snake that prefers to remain hidden. When threatened, they typically will sound their rattle and try to escape, preferring to avoid confrontations. Hedgecock (1992) found that the only thing that elicited a striking response from a Massasauga was being stepped on, and that was only 7% of the time. This snake offers little threat to reasonably careful people willing to leave them alone. Massasauga sites appear to be characterized by a combination of open and shaded areas for thermoregulation, hibernation areas with water table near the surface, and a juxtaposition of wetlands and upland areas (Lee and Legge 2000). Michigan is the last stronghold for this snake in the United States, which is listed as endangered in every other state and province where it occurs. This species has likely declined by 30% over the last 30 years. Massasauga populations appear to be somewhat stable in the southwestern and northern portions of their range in Michigan. According to the state’s Natural Heritage Database there are 127 potentially viable element occurrences in Michigan.
Tricolored Bat (Perimyotis subflavus)
Special Concern

Formerly known as the Eastern Pipistrelle, the Tricolored Bat was renamed after its distinctive hairs that are dark at the base and tip with yellow in the middle (MNFI 2007). Tricolored Bats hibernating in caves and mines in the eastern United States have undergone a 75% decline after five years of white-nose syndrome exposure (Mammal Technical Advisory Committee 2014). They are especially susceptible to white-nose syndrome due to the small number of individuals (fewer than 250 individuals documented in Michigan) and they roost in areas with the highest temperatures (Unger and Kurta 1998). Environment Canada has listed the Tricolored Bat as Endangered.

Indiana Bat (Myotis sodalis)
Federally and State Endangered

The Indiana Bat is a small, grayish brown bat with short, rounded ears. They hibernate in the caves of Kentucky, Indiana, and Missouri, but in the summer, Indiana Bats roost under loose bark of mature trees in Michigan. Indiana Bats have been found in 14 counties in Michigan and 25 general locations. Females form maternity colonies of between 20-30 adults during the summer and express high site fidelity from year to year (Mellos et al. 2014). Since the onset of white-nose syndrome, Indiana Bats have exhibited an annual median decline of 10.3%. In 2015, 99% of the range-wide population of Indiana Bat was hibernating in sites either confirmed or suspected of infections of white-nose syndrome (USFWS 2015b). Many of Michigan’s Indiana Bats hibernate in Indiana, Ohio, and Kentucky; and Indiana and Ohio have seen some of the largest hibernacula losses since 2013 (USFWS 2015b).

ECONOMIC IMPORTANCE OF BATS

Bats play a critical role in pest control. It has been estimated that a single colony of bats can eat nearly 1.3 million pest insects each year (Boyles et al. 2011). And with losses from White-nose Syndrome in the northeastern United States, it is estimated between 660 and 1,320 metric tons of insects are no longer being consumed each year (Boyles and Willis 2010). If Michigan sees similar losses, this could be a significant ecological service lost with a high price tag.
Little Brown Bat
\textit{(Myotis lucifugus)}
Little Brown Bats can vary in color from dark brown to cinnamon. They are considered the most common bat species of the northeast United States, but have undergone a 91% decline in the region after five years of white-nose syndrome exposure and are predicted to go extinct in the Northeast as early as 2026 (Frick et al. 2010). In Indiana and Ohio, populations have shown similar responses since the onset of white-nose syndrome, declining 80% and 98%, respectively. The U.S. Fish and Wildlife Service is currently evaluating the species for potential listing as Federally Endangered; Canada has already listed them as Endangered. There is a predicted decline of 40-98% (Langwig et al. 2014) of Little Brown Bats hibernating in Michigan.

Northern Long-eared Bat
\textit{(Myotis septentrionalis)}
\textbf{Federally Threatened}
Northern Long-eared Bats are medium to dark brown on the back with particularly long ears; they have a symmetrical, spear-like tragus (USFWS 2015a). In winter, they are less social than other \textit{Myotis} species and tend to hibernate alone or in very small groups within crevices (Kurta 2008). They form maternity colonies in trees in the summer (Kurta 2008). In 2015, the Northern Long-eared Bat was listed as Federally Threatened in the United States; they also have been listed as Endangered in Canada. Northern Long-eared Bats hibernating in caves and mines in the eastern U.S. have undergone a 98% decline after five years of White-nose Syndrome exposure. In the major hibernacula of Michigan, declines will likely range from 40-98% (Langwig et al. 2014) with the emergence of white-nose syndrome.

GOALS FOR BATS
- Prevent extirpation.
- Complete an approved bat Habitat Conservation Plan (HCP).
WHAT ARE THE CONSERVATION ACTIONS?

Key actions that need to be implemented over the next 10 years

Conservation ACTIONS for Snake Fungal Disease

Research and Monitoring
SFD1. Continue to investigate basic information about snake fungal disease, including its prevalence, how it is transmitted, and potential vectors.

SFD2. Examine snake habitat and population characteristics at sites where the disease occurs to determine if there are environmental factors affecting its prevalence and impacts.

SFD3. Investigate the snake community to determine prevalence and potential vectors from other species.

SFD4. Identify environmental, genetic, and health factors that may contribute to emergence or persistence of snake fungal disease.

SFD5. Continue to implement standard decontamination protocols, and update the protocols as new information becomes available.

Institutional Development
SFD6. Re-establish the Eastern Massasauga workgroup to facilitate regular information sharing and best practices.
Conservation ACTIONS for White-nose Syndrome

Land & Water Management
- WNS1. Protect and restore summer, swarming, and winter habitats at known sites. [NWNS; IB]
- WNS2. Continue to implement Michigan Department of Natural Resources White-nose Syndrome (WNS) Response Plan. [MWNS]
- WNS3. Contribute to implementation of the national plan for managing white-nose syndrome in bats. [NWNS]
- WNS4. If feasible white-nose syndrome treatment options become available, establish priorities for application to bats or hibernacula; monitor effectiveness of any treatments. [MWNS]

Species Management
- WNS5. Continue to implement Michigan Department of Natural Resources White-nose Syndrome (WNS) Response Plan. [MWNS]
- WNS6. Contribute to implementation of the national plan for managing white-nose syndrome in bats. [NWNS]
- WNS7. If feasible white-nose syndrome treatment options become available, establish priorities for application to bats or hibernacula; monitor effectiveness of any treatments. [MWNS]

Research & Monitoring
- WNS8. Contribute to implementation of the national plan for managing white-nose syndrome in bats. [NWNS]
- WNS9. If feasible white-nose syndrome treatment options become available, establish priorities for application to bats or hibernacula; monitor effectiveness of any treatments. [MWNS]

Raising Awareness
- WNS10. Develop citizen science programs to enhance information on bat distribution, abundance, and habitat use.
- WNS11. Determine how bats use habitats around hibernacula, especially during the swarming and spring staging periods. [IB]
- WNS12. Determine how bats move among hibernacula to better understand transmission of the disease.
- WNS13. Map migration pathways and summer breeding areas of bats from different hibernacula to aid management efforts.
- WNS14. Explore ways to minimize mortality during migration, especially at wind farms.
- WNS15. Identify and prioritize areas for inventory to gain knowledge on bat distribution, abundance, and habitat use during summer. Implement surveys and research on priority areas including natural bedrock communities that are currently under-surveyed.
- WNS16. Conduct research to determine if pesticides affect bat populations. [IB]
- WNS17. Continue to assess mortality of specific bat species at wind energy production sites.

Conservation Designation & Planning
- WNS18. Work with Minnesota and Wisconsin to develop and implement a bat Habitat Conservation Plan (HCP). [IB]
- WNS19. Continue to coordinate with key partners such as the Midwest Bat Working Group, county mine inspectors, mine and cave operators, and other states and provinces.
- WNS20. Contribute to implementation of the national plan for managing white-nose syndrome in bats. [NWNS]

Institutional Development
- WNS21. Continue to coordinate with key partners such as the Midwest Bat Working Group, county mine inspectors, mine and cave operators, and other states and provinces.
- WNS22. Contribute to implementation of the national plan for managing white-nose syndrome in bats. [NWNS]

This could include streamlining reporting requirements to facilitate and standardize data entry. [NWNS; IB]
How will we Monitor?

Assessing status and measuring progress

SNake FUNGAL DisEASE

- Develop long-term population monitoring at key sites to provide information on population impacts to Eastern Massasauga, including population demographics.
- Continue snake fungal disease monitoring using standardized swabbing protocol across Michigan.
- As new, more effective techniques for monitoring become available, implement standardized protocols.

WHITE-NOSE SYNDROME

- Continue and expand hibernacula surveys to discover new sites and to visit known sites at least biannually. [NWNS; MWNS; IB]
- Continue active and passive surveillance of white-nose syndrome. [MWNS]
- Develop and implement a collaborative monitoring program to evaluate bat distribution, abundance and habitat use during the summer period. This could include using citizen science efforts, acoustic surveys, and the development of targeted surveys for northern and tricolored bats. Ensure program links with other efforts (e.g., North American Bat Monitoring Program) while continuing to evaluate and resolve Michigan-specific survey issues and needs. [NAB; IB]
- Monitor bat mortality at wind turbines, and determine if mortality changes over time.
Howard does this plan link with other conservation plans?

There has been a multitude of relevant planning efforts across the state and country over the past ten years. Bracketed superscripts throughout the Wildlife Action Plan indicate where the conservation action, goal, or monitoring strategy aligns with those from another plan. For conservation plans with distinct objectives, the objective or strategy number is also included. This linking of plans is meant to facilitate the expansion of partnerships.

[IB] Indiana Bat (Myotis sodalis) Draft Recovery Plan: First Revision (USFWS 2007)

[MWNS] Michigan Department of Natural Resources and Environment White-Nose Syndrome (WNS) Response Plan (DNR 2010)

[NWNS] A National Plan for Assisting States, Federal Agencies, and Tribes in Managing White-Nose Syndrome in Bats (Coleman et al. 2011)

[NAB] A Plan for the North American Bat Monitoring Program (NABat) (Loeb et al. 2015)

Mammal Technical Advisory Committee. 2014. Proposal to List the Northern Long-eared Bat (Myotis septentrionalis), Little Brown Bat (Myotis lucifugus), and Eastern Pipsqueak (Myotis subulatus) as Threatened in Michigan, due to White-nose Syndrome. Unpublished report to Michigan Dept. of Natural Resources, Lansing, Michigan.

Photo Credits

Eastern Massasauga with SFD (pages 3, 7, 9) - Danielle Bradke
Little Brown Bat with WNS (pages 3, 8, 9) - USFWS, Marvin Mortary
Eastern Massasauga (page 4) - Jennifer Moore
Tricolored Bat - Allen Kurta
Indiana Bat - USFWS, Adam Mann
Little Brown Bat (page 6) - Allen Kurta
Northern Long-eared Bat – USFWS, Steve Taylor

Recommended Citation

FOR MORE INFORMATION/REFERENCES
ABOUT THE WILDLIFE ACTION PLAN

Today’s Priorities, Tomorrow’s Wildlife

Every state has a Wildlife Action Plan, which taken together create a national conservation strategy for safeguarding wildlife and their habitats for current and future generations. Each state’s action plan is uniquely designed to serve the needs of that state. These plans provide a framework for proactive conservation and management of fish and wildlife before they become imperiled, which is more straightforward, cost-efficient, and effective.

Michigan’s Wildlife Action Plan was developed by conservation partners across the state. It provides information about those species in greatest conservation need. The plan is organized by chapters or mini-plans. Each mini-plan outlines priorities for the next 10 years. The mini-plans detail priority habitats and focal species of greatest conservation need, status of species and habitats, critical threats, needed conservation actions, places for partnerships, monitoring needs, and goals. This is one of 15 mini-plans. For more information about how the plan was built and to read other mini-plans, please visit: www.michigan.gov/dnrwildlifeactionplan.