MDRD EQUATION

In adults, the best equation for estimating glomerular filtration rate (GFR) from serum creatinine is the MDRD equation.1,2

\[\text{GFR (ml/min/1.73m}^2\text{)} = 186 \times (P_{cr})^{1.154} \times (\text{Age})^{-0.203} \times (0.742 \text{ if female}) \times (1.210 \text{ if African American}) \]

The equation requires 4 variables:

\begin{itemize}
 \item Serum creatinine
 \item Age
 \item Sex
 \item African American or not
\end{itemize}

Since a patient's race is often not available to clinical laboratories, a good alternative is to report estimated GFR values for both African Americans and non-African Americans (see Sample Reports below). Note that the equation does not require weight because the result is reported normalized to 1.73m2 body surface area, which is an accepted average adult surface area. If your printing system does not allow for superscripts, we recommend reporting ml/min/1.73 square meters.

REPORTING VALUES

We presently recommend reporting values above 60 ml/min/1.73m2 merely as “above 60 ml/min/1.73m2” not as an exact number such as 92 ml/min/1.73m2. For values below 60 ml/min/1.73m2, the report should give the numerical estimate such as “32 ml/min/1.73m2” (see Sample Reports below).

There are 3 reasons for this recommendation:

1. The equation has been most extensively evaluated in people with some degree of renal insufficiency.
2. Inter-laboratory differences in calibration of the creatinine assay have their greatest impact in the near normal range and therefore lead to greater inaccuracies.3
3. Quantification of GFR below 60 ml/min/1.73m2 has more clinical implications than above that level.

SAMPLE REPORTS

Sample report for a 55-year old man
Creatinine = 1.1 mg/dl
Glomerular filtration rate (GFR) estimate greater than 60 ml/min/1.73m2

Average GFR for 50-59 years old = 93 ml/min/1.73m2
Chronic Kidney Disease less than 60 ml/min/1.73m2
Kidney failure less than 15 ml/min/1.73m2

Sample report for 63-year old woman
Creatinine = 1.8 mg/dl
Glomerular filtration rate (GFR) estimate = 30 ml/min/1.73m2 if non-African American
Glomerular filtration rate (GFR) estimate = 37 ml/min/1.73m2 if African American

Average GFR for 60-69 years old = 85 ml/min/1.73m2
Chronic Kidney Disease less than 60 ml/min/1.73m2
Kidney failure less than 15 ml/min/1.73m2
Sample report for 62-year old man
Creatinine = 1.4 mg/dl
Glomerular filtration rate (GFR) estimate = 55 ml/min/1.73m² if non-African American
Glomerular filtration rate (GFR) estimate greater than 60 ml/min/1.73m² if African American

Average GFR for 60-69 years old = 85 ml/min/1.73m²
Chronic Kidney Disease less than 60 ml/min/1.73m²
Kidney failure less than 15 ml/min/1.73m²

REFERENCE TABLE FOR POPULATION MEAN GFRs FROM NHANES III⁴

<table>
<thead>
<tr>
<th>AGE (years)</th>
<th>AVERAGE GFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>116 ml/min/1.73m²</td>
</tr>
<tr>
<td>30-39</td>
<td>107 ml/min/1.73m²</td>
</tr>
<tr>
<td>40-49</td>
<td>99 ml/min/1.73m²</td>
</tr>
<tr>
<td>50-59</td>
<td>93 ml/min/1.73m²</td>
</tr>
<tr>
<td>60-69</td>
<td>85 ml/min/1.73m²</td>
</tr>
<tr>
<td>70+</td>
<td>75 ml/min/1.73m²</td>
</tr>
</tbody>
</table>

THE FUTURE
This approach provides the best means currently available of providing more accurate interpretation of the serum creatinine as renal function (GFR) and even appears better than 24-hour urine collections. However, efforts are underway to validate the equation in more diverse populations including Hispanics, people with diabetes, and people with normal renal function.

The inter-laboratory variation in the creatinine assay’s calibration is being addressed by a Laboratory Working Group of the NKDEP (www.nkdep.nih.gov).⁵ The Laboratory Working Group is developing a program to standardize and improve serum creatinine measurements that will allow for accurate estimations of GFR in the range greater than 60 ml/min/1.73m² and in children by all clinical laboratories.

CONTACT INFORMATION
For assistance, please contact Tom Hostetter at 301-594-8864 or Elisa Gladstone at 301-435-8116 with the National Kidney Disease Education Program.

REFERENCES