

Social Determinants of Infectious Disease

Allison E. Aiello, PhD, MS

John G. Searle Assistant Professor of Public Health Assistant Professor of Epidemiology Department of Epidemiology Center for Social Epidemiology and Population Health University of Michigan-School of Public Health aielloa@umich.edu

- What is social epidemiology?
- Social patterning of infection – Examples

Implications for prevention

Social Epidemiology

Emerged during the chronic disease era

- Term traced back to a 1950 article by Alfred Yankauer
 - The relationship of fetal and infant mortality to residential segregation: an inquiry into social epidemiology- American Sociological Review
- Term increased in the literature after 1969

Social Determinants

• Social Epidemiology

 Focus on social conditions that promote or harm health rather than on specific <u>outcomes</u>

 Requires researchers to move from proximate to distal factors

Social Epidemiology Became a Study of Chronic Diseases

"field of inquiry that regards the role of social and psychological factors in the etiology of chronic diseases"

- Reynaud M. Rev Epidemiol Sante Publique. 1987;35:3-19

" a term which has recently come into favor to describe research concerned with social factors in the etiology of chronic disease"

- McQueen DV. Soc Sci Med. 1982;16:353-67

The "Gradient" in chronic disease

• Wealthier, more educated people live longer, healthier lives (on average)

 Access to care and traditional behavioral factors do not entirely explain the gradient

Every meter in height of the grave, adjusted for year of death:

1.93 years (95%Cl1.06-2.80) later age at death for men

•2.92 years (95%Cl 1.76-4.08) later age at death for women

Davey Smith G, Carroll D, Rankin S, Rowan D. Socioeconomic differentials in mortality: evidence from Glasgow graveyards. BMJ 1992;305:1554-1557.

Years of Education and Mortality

Age-adjusted Relative Risk of Mortality from Cox Models, National Longitudinal Mortality Study (NLMS), ~8 years follow-up time (males)

Socioeconomic and psychosocial gradients

- Cardiovascular disease
- Dementia and cognitive impairment
- Physical functioning
- Some cancers

Potential Pathway: Stress?

Lower socioeconomic position (SEP) associated with greater exposure to stressors such as:

- perceived financial strain
- job insecurity
- low job control
- negative life events
- unsafe residential environments
- discriminatory experiences

Figure from D.N. Khansar et al. (1990) Immunol. Today 11:170

What is the evidence for a relationship between social factors and infection in the US?

Today

 Social, political, behavioral and environmental factors are widely accepted as forces shaping emergence and reemergence of pathogens

Proportion of AIDS Cases among Adults and Adolescents, by Race/Ethnicity and Year of Diagnosis 1985–2003—United States

Note. Adjusted for reporting delays.

SOURCE: World Development Indicators (World Bank)

Childhood Socioeconomics and Colds

 Ownership from ages 1-9 was a more important marker than adolescence
 Critical period hypothesis?

Figure from: Cohen et al. (2004) Childhood socioeconomic status and host resistance to infectious illness in adulthood. *Psychosomatic Med* 66:553-8

Hepatitis B Virus (HBV)

Hepatocellular carcinoma, Chronic hepatitis

}

Helicobacter pylori

Peptic Ulcer Disease, Gastric Iymphoma

Cytomegalovirus (CMV) Post-transplant accelerated atherosclerosis

Human Papilloma Virus (HPV)

Varicella zoster

ter

Cervical Carcinoma

>

>

>

Shingles, neuropathy

Streptococcus pyogenes

Rheumatic heart disease

Implicated Pathogens

Crohn's disease

HTLV-1, EBV Chronic Fatigue Syndrome

>

EBV

Cytomegalovirus (CMV), Herpes Simplex Virus (HSV), *Chlamydia pneumoniae*, *Helicobacter pylori*, periodontal bacteria, hepatitis A virus (HAV)

>

Cardiovascular disease

Schizophrenia, Dementia

Toxoplasma gondii, HSV-2, CMV, prenatal exposure to viruses/influenza

Toxoplasma gondii

Social Patterning of H. pylori

Graphic modified from: Levenstein, S. *BMJ* 1998;316:538-541, Lochhead, P. et al. *Best Practice* & *Research Clinical Gastroenterology*. Volume 21, Issue 2, April 2007, Pages 281-297 McQuillan GM, et al.Am J Public Health. 2004 Nov;94(11):1952-8.

Social Patterning of *H. pylori:* importance of childhood

Figure from: Malaty, HM & Graham, DY. 1994. Gut. 35;742-745

Prevalence of HPV among US Women (N=1,921) ages 14-59

Data from: Kahn, JA et al. (2007) Obstetrics and Gynecology. 110(1):87-95

Age Adjusted Prevalence of Infection by Education, NHANES

Zajacova, Dowd and Aiello (2009) Socioeconomic and race/ethnic patterns in persistent infection burden among US adults.

CMV immune response by Age and Education, NHANES

Less Than High School
 More than High School

High School Diploma

*Adjusted for race/ethnicity, income, and sex. Censored regression of education in years: slope=-0.05 (0.02) p <0.01

Dowd, J.B and A.E. Aiello (2009) Socioeconomic differentials in immune response. Epidemiology

CMV immune response by Age and Income, NHANES

-Bottom Quartile --- 2nd Quartile --- Top Quartile

*Adjusted for race/ethnicity, education, and sex. Censored regression of log family income: slope=-0.25 (0.07), p <0.01

Dowd, J.B and A.E. Aiello (2009) Socioeconomic differentials in immune response. Epidemiology

Figure From: Epstein, SE. (2002) The multiple mechanism by which infection may contribute to atherosclerosis development and course. *Circulation Research*. 90:204

Pathogen Burden by Race and Education, NHANES

Disparities in A H1N1

- Race/ethnic disparities in infection

 Boston Public Health
- Race/ethnic disparities in meditreatment

 Chicago and Boston

• Prevention measures? Vaccines, antivirals, NPIs?

Dynamics of infection

 My disease status affects your disease status

 Not independent units

Reproductive number

Reproductive number R₀

"Are zero" or "are-naught"
 From general population theory

 R₀ = expected number of secondary infectious cases that one infectious host will produce during his or her infectious period in a large population that is completely susceptible

Reproductive number R₀ Formula

Number of contacts X per unit time

С

Probability of transmission per contact

р

Mean X duration of infectiousness

d

Public Health Standpoint and R₀

- For an epidemic to occur in a susceptible population $R_0 > 1$
- If R₀ < 1 an average case will not reproduce itself
- Caveat: since it is an average it is possible to have an R₀ < 1 with a case that causes more than one infective case.
 - A sustaining outbreak is very unlikely

CMV in ages 12-49 in US

Variable	Reproductive Ratio	Average Age at Infection
Entire US	1.7	28.6
Male	1.7	28.0
Female	1.6	29.1
NH Black	4.1	16.3
Mexican American	3.7	17.5
NH White	1.6	29.3
Income Low	2.7	21.9
Income Mid	1.9	26.7
Income High	1.6	28.9

* Primary CMV infections per 100 seronegative persons per year Table from: Colugnati FA, Staras SA, Dollard SC, Cannon MJ. BMC Infect.Dis. 2007. 7:71.

Immunization and R₀

- Immunization can be used to reduce the number of susceptible individuals
- What fraction do we need to vaccinate so that we produce enough immune whereby infective people are no longer able on average to infect one other person?

Immunization and R0

- Assume R0 = 2 for CMV in US population
 - Fraction (f) that needs to be immunized before the age of first infection is
 - f = 1- (1/ R0)
 - 1- (1/2)= 50%
- A higher R0 requires immunization of a higher fraction to eliminate transmission
 - Implications for SEP and race/ethnic groups

Conclusions

Strong SEP differentials in many infections in the US

 Affect wages, schooling, education attainment, occupational attainment

 Disparities affect disease dynamics leading to persistence in disparites over time and space in susceptible groups

Graphic: Want to help stop the spread of H1N1 influenza? Yes, you can! Courtesy of Ben Heine

Conclusions Cont.

• Some evidence to suggest a role for psychosocial factors in immune response

- Targeting interventions at social and biological level
 - Vaccinations?
 - Reducing poverty, improving living standards, nutrition, and lowering stress

Social and environmental patterning

"If two susceptible subjects are exposed to equal doses of the same germ, and one develops infection while the other does not, the factor governing the development of the infection clearly lies outside the germ."

> Stewart, GT. Limitations of the germ theory. *Lancet.* 1968 May 18;1(7551):1077-81

Thank You and Acknowledgements

• Jennifer Dowd, PhD, Hunter College

• Erin Rees-Clayton, PhD, U of M

• Rebecca Coulborn, MPH, U of M

• Aiello Research Group