Spasticity Management in Stroke

Bridging the Gaps....

Jennifer Doble, PT, MD
Associate in Physical Medicine and Rehabilitation
Special Tree Rehabilitation Systems
Medtronic Neurological
dooblej@trinity-health.org
Spasticity (Lance, 1980)

- Motor disorder
- Velocity dependent increase in tonic stretch reflexes
- Hyperexcitability of the stretch reflex
- Exaggerated tendon jerks
- One component of the upper motor neuron syndrome
- Altered activity patterns of motor units occurring in response to sensory and central command signals which lead to co-contractions, mass movements, and abnormal postural control (Wiesendanger, 1991)
Proposed Theory

- Imbalance between excitatory and inhibitory impulses to the alpha motor neuron
- Due to lack of descending inhibitory input to the alpha motor neuron
Pathophysiology of Spasticity
Possible Advantages of Spasticity

- Maintains muscle bulk
- Helps support circulatory function
 - May prevent formation of deep vein thrombosis
- May assist in activities of daily living
- May assist with postural control
Adverse Consequences

- Interferes with mobility, exercise, joint range of motion
- More often interferes with ADLs
- Cause pain and sleep disturbances
- Make patient care more difficult
- Can interfere with speech – spastic dysarthria
-and swallow – spastic dysphagia
Dynamic Muscle Tone

- Observation of Movement Patterns
 - Equinus gait
 - Scissor gait
 - Upper extremity flexion/adduction
 - Mass movement postures

- Observation
 - Try observing with and without orthoses or ambulation aids
 - Video taping can be very helpful
Spasm Frequency Scale

<table>
<thead>
<tr>
<th>Score</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No spasms</td>
</tr>
<tr>
<td>1</td>
<td>No spontaneous spasm (except with vigorous stimulation)</td>
</tr>
<tr>
<td>2</td>
<td>Occasional spontaneous spasm and easily-induced spasms</td>
</tr>
<tr>
<td>3</td>
<td>More than 1 but less than 10 spontaneous spasms per hour</td>
</tr>
<tr>
<td>4</td>
<td>More than 10 spontaneous spasms per hour</td>
</tr>
</tbody>
</table>

(Penn, 1989)
Modified Ashworth Scale (MAS)

<table>
<thead>
<tr>
<th>Score</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No increase in tone</td>
</tr>
<tr>
<td>1</td>
<td>Slight increase in tone (catch and release at end of ROM)</td>
</tr>
<tr>
<td>1+</td>
<td>Slight increase in tone, manifested by a catch, followed by minimal resistance throughout remainder (less than half of the ROM)</td>
</tr>
<tr>
<td>2</td>
<td>Marked increase in tone through most of ROM, but affected part(s) easily moved</td>
</tr>
<tr>
<td>3</td>
<td>Considerable increase in tone; passive movement difficult</td>
</tr>
<tr>
<td>4</td>
<td>Affected part(s) rigid in flexion or extension</td>
</tr>
</tbody>
</table>

(Bohannon & Smith, 1987)
Treatment Options for Patients with Spasticity

- Intrathecal Baclofen (ITB™) Therapy
- Oral Medications
- Rehabilitation Therapy
- Injection Therapy
- Orthopedic Surgery
- Neurosurgery
Rule out . . .

- Pain
- Infection - UTI, Pneumonia, osteomyelitis
- Constipation
- Reflux
- Decubitus ulcers
- Stress
- Anxiety
- Changes in underlying disease state (e.g., MS exacerbation, recurrent CVA)
Rehabilitation Therapy

- Stretching
- Casting
- Orthoses
- Positioning
- Weight bearing
- Rotary movements
- Electric Stim

- Cryotherapy
- Hydrotherapy
- EMG biofeedback
- Electrical stimulation
- Vibration of the antagonist
Oral Medications

Most common:

- Baclofen (Lioresal®)
- Diazepam (Valium®)
- Tizanidine (Zanaflex®)
- Dantrolene sodium (Dantrium®)
<table>
<thead>
<tr>
<th>Drug</th>
<th>Site of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baclofen</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>Diazepam</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>Tizanidine</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>Dantrolene sodium</td>
<td>Peripheral: muscle</td>
</tr>
</tbody>
</table>
Injection Therapy

- Anesthetic / Diagnostic Nerve Blocks
 - Procaine
 - Lidocaine

- Neurolytic Nerve Blocks
 - Ethanol
 - Phenol

- Botulinum Toxin
Botulinum Toxin

- *Clostridium botulinum* injected into the muscle
- Interferes with release of acetylcholine at the neuromuscular junction
- No systemic effect
- May be administered without anesthesia
- EMG guidance for small muscles
- Results typically last 3-5 months
Injections

Advantages
- Not permanent
- Reduces focal spasticity, improves function, decreases pain
- Effects are localized - not systemic

Disadvantages
- Not permanent - may need to repeat injections
- Ethanol and Phenol: require greater skill to inject, increased risk of paresthesias, dysesthesias
- Botulinum toxin: more expensive than other injections, may develop antibodies
Neurosurgical Treatments

- Neurectomy
- Myelotomy
- Anterior Rhizotomy
- Selective Dorsal Rhizotomy
- Cordectomy
- Thalamotomy

(Simpson, 1995)
Orthopedic Surgery

- Soft-tissue operations
 - lengthenings
 - releases
 - tendon transfers
- Bony operations
 - osteotomies
 - fusions
Intrathecal Baclofen (ITB™) Therapy
Intrathecal Delivery of Baclofen

- Acts as GABA_b – receptor agonist
 - GABA (gamma-aminobutyric acid) is an inhibitory CNS neurotransmitter
 - Two receptor types (GABA_a and GABA_b)
- Mechanism of action is probably presynaptic inhibition
 - Inhibits release of calcium into presynaptic terminals
 - Thereby impedes release of excitatory neurotransmitters
- Baclofen is delivered directly into CSF in intrathecal space
Site of Action of Intrathecal Baclofen

Animal F GABA_b specific binding
Pharmacokinetics of Baclofen

- Intrathecal
 - 600 mcg/day dose: 1.24 mcg/mL IT lumbar concentration
 - Lumbar to cervical concentration is 4:1 with lumbar catheter tip placement
 - Therapeutic dose is 1/100 of oral

- Oral
 - 60 mg dose: 0.024 mcg/mL IT lumbar concentration
 - Half-life 3-4 hours

(Knutsson et al, 1974; Kroin & Penn, 1991)
SynchroMed® Infusion System
Components

Pump
- infuses drug at programmed rate

Catheter
- delivers drug to the intrathecal (subarachnoid) space of the spinal cord

Programmer
- allows for precise dosing
- easily adjustable dosing
Indications for ITB

- Positive response to the screening test
- Patients with spasticity of spinal origin:
 - unresponsive to oral antispasmodics
 - and/or experience unacceptable side effects

Patients with spasticity of cerebral origin must be one year post brain injury to be considered for ITB Therapy
Patient Selection Goals

- Low level patients
- Improve positioning
- Facilitate hygiene
- Improve orthotic fit
- Decrease caregiver burden
- Pain control due to nighttime spasms

Patient Selection Goals

- High level patients
 - Improve mobility
 - Prevent long term consequences of poor biomechanics
 - Increased speed and safety of gait
 - Improved quality of gait

- Improve ADLs
 - Dressing
 - Independence in hygiene
 - Decrease time to perform tasks
Anticoagulation is not a contraindication
 - Set up protocol to stop AC or switch to LMW heparinoids
History of seizures does not rule out ITB Therapy
Minimal surgical risk
No weakness in normal side
 - Will only unmask weakness of affected side
Age and time from stroke are not contraindications
Use 75mcg to 100mcg to see improvement in UE spasticity
Screening Test Flow Chart

Bolus: 50 mcg

+ → +
- → -

24 hrs after Bolus: 75 mcg

+ → +
- → -

24 hrs after Bolus: 100 mcg

+ → +
- → -

Not a Candidate

+ = Positive Response “Implant”
- = Negative Response “No Implant”
Assessment During the Screening
Test: Adverse Effects

- Drowsiness
- Lightheadedness
- Dizziness
- Somnolence
- Respiratory depression
- Seizures
- Rostral progression of hypotonia
- Loss of consciousness (can progress to coma)
Examination During the Screening Test

- Typically assess at 2 and 4 hours post bolus
- Ashworth or Modified Ashworth Scales (AS or MAS) – PT/OT measure
- Passive/Active Range of Motion -PT/OT measure
- Observe movement patterns - Video
- Spasm Scale
- Pain Scale
Modified Ashworth Scale (MAS)

<table>
<thead>
<tr>
<th>Score</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No increase in tone</td>
</tr>
<tr>
<td>1</td>
<td>Slight increase in tone (catch and release at end of ROM)</td>
</tr>
<tr>
<td>1+</td>
<td>Slight increase in tone, manifested by a catch, followed by minimal resistance throughout remainder (less than half of the ROM)</td>
</tr>
<tr>
<td>2</td>
<td>Marked increase in tone through most of ROM, but affected part(s) easily moved</td>
</tr>
<tr>
<td>3</td>
<td>Considerable increase in tone; passive movement difficult</td>
</tr>
<tr>
<td>4</td>
<td>Affected part(s) rigid in flexion or extension</td>
</tr>
</tbody>
</table>

(Bohannon & Smith, 1987)
Assessing the Screening Results

- Looking for decrease in muscle tone
- Looking for decrease in pain
- Looking for improvement in ROM
- Excessive loss of tone is not a contraindication for ITB Therapy
- Are the deviations due combination of: weakness, spasticity, biomechanical factors, motor planning?
ITB therapy does not...

- Does not help apraxia
- Does not cure aphasia
- Does not make the impaired side ‘normal’
- Does not take away the CVA
- Does not cure neurogenic bladder/bowel issues
Pump Implant
Pump Implant

- Abdominal incision
 - make a pocket for the pump no deeper than 2.5 cm
 or 1 inch
Pump/Catheter Placement

- UE spasticity
 - C5 to T4
 - Bolus dosing
- LE spasticity
 - T10
 - Simple continuous or bolus dosing
- Do not suddenly stop oral baclofen when pump is placed
Titration Period

After First 24-Hour Period

- Increase dose slowly
- Increase only once every 24 hours until desired clinical effect achieved
 - Adults with spasticity of spinal origin
 - 10-40% increments
 - Adults with spasticity of cerebral origin
 - 5-20% increments
- Pediatrics
 - 5-20% increments
Stroke Ambulatory patient (Francisco and Boake)

- 10 patients
- Average time of implant: 28.6 months
 - Follow up interval: 8.9 months
- Customary walking speed (50ft)
 - Improved from 36.6 to 52 cm/s (p<0.05)
- Normal muscle strength preserved in unaffected limbs

Therapist Role Post-Implant

- Determine appropriate therapy venue
- Propose treatment plan
- Provide input regarding dosing
- Strengthening
- Neuromuscular retraining
- ‘Unlearning’ bad habitssynergy patterns
Potential Risks of ITB Therapy

- Common side effects: (bolus)
 - Hypotonia
 - Somnolence
 - Nausea/vomiting
 - Headache
 - Dizziness
 - Paresthesias

- Catheter and procedural complications may occur

- Overdose (rare)

- Withdrawal
Baclofen Overdose

- **Symptoms**
 - Drowsiness
 - Lightheadedness
 - Dizziness
 - Somnolence
 - Respiratory depression
 - Seizures
 - Rostral progression of hypotonia
 - Loss of consciousness (possible progression to coma)

- **Take patient to emergency department!**
Baclofen Withdrawal

- **Symptoms**
 - Increased spasticity
 - Itching without rash
 - Tingling, paresthesias, skin "crawling"
 - Hyperthermia
 - Headache
 - Hypotension
 - Seizures
 - Hallucinations
 - Altered mental status
 - Autonomic dysreflexia

- A medical emergency!
ITB Therapy

- **Advantages**
 - Reversible
 - Non-invasive dose adjustments
 - Fewer side effects than oral drugs
 - Improves function (quality of function), comfort and care
 - Decreases risk of contractures and skin breakdown
 - Allows development of strength and coordination

- **Disadvantages**
 - Complications: infection, catheter problems, overdose, baclofen withdrawal
 - Refills – approximately every 3 months
 - Cost
Reassess for other interventions

- Botulinum toxin, Myobloc
- Motor point blocks
- Orthopedic interventions
- Decrease oral meds
CVA Patient

- 56yo male with left CVA – spastic R hemiplegia
- Ambulatory with SBQC, pain in arm, leg
 - “Thalamic pain syndrome” – Pain score 9/10
- Dependent for dressing and bathing
- MAS RUE 4, RLE 3-4
- Poor sleep
- Frequent falls
ITB Trial dose 50mcg

- Pain score 0
- UE MAS 2 with active shoulder abduction and elbow extension
- LE MAS 1-2
- Ambulated with cane – much improved hip/knee and ankle motion, better balance, able to move LUE during gait, improved speed
Conclusions

- ITB therapy is well tolerated and controlled spasticity in stroke patients
- No evidence of increased disability or weakness associated with early treatment
- Effective for ambulatory and non-ambulatory patients
- Increased spastic hypertonia is associated with worsening disability
- Revision of catheter to cervical – thoracic location is associated with improved control of UE tone
- Bolus dosing paradigm appears to be more effective than continuous dosing
Who’s on the “team”?

- Patient and family
- Physicians
 - physiatrist or neurologist
 - neurosurgeon
 - orthopedic surgeon
- Case Manager
- Nurse / Nurse Practitioner
- Physical therapist
- Occupational therapist
- Speech/Language Pathologist
- Dietician
- Psychologist
- Social Worker