Cerebral Palsy

Eileen Donovan, MD
Pediatric Physical Medicine and Rehabilitation
Definition

- Disorder of the development of posture and movement, causing activity limitations that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain.

- It is the most common motor disability of childhood.
Definition

- 3 major criteria
 - A neuromotor control deficit that alters movement or posture
 - A non-progressive brain lesion
 - Brain injury either before birth or in the first year(s) of life
What it is NOT

- Progressive
- Genetic/Hereditary
- Traumatic
Cerebral Palsy

- Although the brain lesion is not progressive, the musculoskeletal pathology is certainly progressive
Musculoskeletal progression in CP

<table>
<thead>
<tr>
<th>Static (Brain lesion)</th>
<th>Progressive (Musculoskeletal deformity)</th>
<th>Spasticity and weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Spastic muscles don’t grow as fast as bones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed contracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bony torsion (twist)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joint instability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dislocation or degenerative changes</td>
</tr>
</tbody>
</table>

Graham HK, Eur J Neurol, 2001
Progressive musculoskeletal deformities
Incidence

- 2-3 per 1000 live births
- 700,000 children and adults with CP in USA
- Relatively constant despite medical advancements in maternal, perinatal and NICU care
- Possibly due to improving survival rates in very premature infants
Risk factors for CP

- In the majority of cases in full term infants, the etiology is unknown
Risk factors for CP

- Prematurity – <37 wks
 - Risk increases with increasing prematurity
- 34 weeks – 3 important developments for survival
 - Lungs are developed
 - Suck reflex has developed
 - Germinal matrix of the brain is mature; blood vessels less likely to “leak”
- CSHCS doesn’t use gestational age for eligibility
Risk factors for CP

- Low birth weight (< 2500 gm) or very low birth weight (<1500 gm)
 - Incident in premature and LBW infants is 40-150/1000 live births
 - 1/3 of children with CP had a birth weight <2500 grams
 - Incidence is 30 times higher if birth weight <1500 grams
- Children <999 gm (approx 2 lbs) are eligible for CSHCS
Risk factors for CP

- Intraventricular hemorrhage
 - 90% of premies, 20% of full term infants with CP
- Intrauterine stroke
Ventricular system of the brain

- 4 interconnected cavities in the brain where cerebrospinal fluid is produced
- Connected to central canal of spinal cord
- Tracts that control movement of the LE lie closest to the edge of the ventricle
- The bigger the bleed, the greater the brain damage
Ventricular system of the brain
Intraventricular hemorrhages

- Grade I – A small amount of blood; stays in the ventricle
- Grade II – A larger amount of blood; intraventricular; normal ventricle size
- Usually have no neurological sequella
Intraventricular hemorrhages

- Grade III – Even larger amount of blood; intraventricular; ventricular dilation
- Grade IV – Blood spills outside of the ventricle and into the actual brain tissue
- Usually have neurological sequella, and this qualifies a child for CSHCS
Periventricular leukomalacia
Risk factors for CP

- Intrauterine infections/chorioamnionitis
 - TORCH
- Hyperbilirubinemia
 - Kernicterus – associated with dystonic CP and neurosensory hearing loss
- Multiple gestation
- “Vanishing twin” phenomenon
- Twin-to-twin transfusion
Risk factors for CP

- Hypoxia?
 - <10% of children with CP have history of anoxia/hypoxia
 - Documented anoxia/hypoxia is a risk factor
 - Acidosis, bradycardia
 - Neonatal encephalopathy
 - Hypoxic ischemic encephalopathy (HIE) on MRI
 - Eligible for CSHCS
 - Respiratory difficulties, abnormal tone, seizures
Anoxic brain damage

- Some parts of the brain are more susceptible to anoxia
 - Basal ganglia (dystonic cerebral palsy)
 - Auditory nuclei (neurosensorry hearing loss)
CP can be associated with:

- Cognitive impairment (50%)
- Seizures (50%)
- Learning disabilities
- Visual problems
 - Strabismus (75%), ROP, cortical blindness (HIE), hemianopsia (HP)
- Incontinence
CP can be associated with:

- Speech delays / hearing problems
 - Sensorineural deafness in hypoxia, TORCH, kernicteris, bacterial meningitis
- GERD / Constipation / Failure to thrive
 - Aspiration pneumonia
- Orthopedic complications
 - Dislocated hips, scoliosis, joint contracture
 - Decreased bone density
Functional Problems

- Gross motor/Mobility
- Learning
- Fine motor
- Feeding
Classification of CP

- Type of movement disorder
- Anatomic distribution
Type of movement disorder

- Spastic – 70-85%
- Dyskinetic (dystonic, athetoid) – 5-10%
- Ataxic – 5%
- Mixed – 10%
- Hypotonic – 3%
- Often overlapping/not clear cut
Hypotonic/Ataxic

- Rare, therefore all children should receive a thorough diagnostic work-up for other neurological conditions
Spasticity

- Increased tone/resistance to movement
- Assessed by
 - Deep tendon reflexes
 - Passive mobilization
 - Movement through the full ROM should take less than one second
Anatomic distribution of CP

- Quadriplegia (32%)
- Diplegia (24%)
- Hemiplegia (30%)
Spastic Quadriplegia

- All 4 extremities spastic; hypotonic trunk
- Grade IV IVH
- Majority with cognitive impairment
- Seizures in >50%
- High risk of aspiration pneumonia
- Highest risk for orthopedic complications (scoliosis, hip dislocation)
- 50% achieve minimal ambulatory skills with an assistive device
Spastic Diplegia

- Lower extremities more spastic than upper extremities
- Grade III IVH
- 25-33% have seizures or cognitive impairment
- 80-90% are ambulatory with or without AD
Spastic Hemiplegia

- One side affected, upper extremity more than lower extremity
- Right HP:Left HP = 2:1
- Full-term, intrauterine strokes involving MCA
- 50-70% have seizures
- 25% are cognitively impaired
- Leg length discrepancy
- Almost 100% ambulate, but late (not until 18-24 mo)
- Sensory deficits common
Common Presentations of CP

- Delayed development of motor milestones
- Early handedness
- Persistence of primitive reflexes
- Presence of pathologic reflexes
- Failure to develop protective extension responses

Russman BS, et al, Spasticity 2002
Diagnosis

- History, physical exam
- No laboratory tests are diagnostic
- EEG may be indicated
- Head imaging may be helpful
 - Ultrasound, MRI
 - >80% of kids with CP have abnormal findings
- BAERs if indicated
Examination

- Early hypotonia (especially trunkal)
- Spasticity in extremities, develops over time
- Brisk DTRs
- Clonus
- Upgoing plantar reflexes (Babinski)
- Synergistic movement patterns
- Joint contractures
Orthopedic problems

- Scoliosis
- Hip subluxation/dislocation
- Knee flexion contractures
- Patella alta
- Foot deformities
Scoliosis

- Neuromuscular
- Risk increases with severity
 - 70% in quads
- Curves over 40 degrees tend to progress
- Complicated by skin breakdown, joint contractures, pelvic tilt
Hip subluxation
Hip dislocation
Risks for hip dislocation

- Scissoring pattern – adduction, often with hip flexion
 - Hip abduction < 35 degrees
 - Hip flexion contractures > 20 degrees are risk factors

- Persistent coxa valga
- Excessive femoral anteversion
- Shallow acetabulum
Risks for hip dislocation

- **Diagnosis**
 - Quadriplegia – 80%
 - Dystonia – 40%
 - Diplegia – 20%
 - Hemiplegia – 1%

- **Ambulatory Status**
 - Non-ambulatory – 70-90%
 - Ambulatory – 0-40%

 - Graham, AACPDM presentation, 2006
Knee problems

- Knee flexion contractures
- Patella alta
 - Abnormally high patella
 - In CP, caused by prolonged positioning in flexion or by overactive quadriceps in crouch gait
 - In adolescence, can be painful
Patella alta
Foot Deformities in Child with Cerebral Palsy

- Pronation
- Supination
Pronation in CP

- From Dormans
Supination Deformity in CP

- From Dormans
Why don’t all kids with CP qualify for CSHCS?

- Chronic
- Sub-specialist-PM&R, Neuro, Ortho
- Severity-(here’s the stopper!)
 - Therapy is not considered an indicator of severity
 - So we are looking for the need for interventions like equipment, spasticity medication, Botox injections, alcohol blocks, serial casting, surgery, etc
Treatment options

- Therapy/Orthotics/Equipment
- Oral medications
- Chemodenervation
 - Botulinum toxin/Phenol blocks
- Neurosurgery
 - ITB
 - SDR
- Orthopedic surgery

- Least invasive
- Most invasive
Therapy (very simplified!!)

- Occupational therapy
 - Fine motor skills, Activities of Daily Living
 - Equipment

- Physical therapy
 - Gross motor skills
 - Equipment

- Speech therapy
 - Language, communication
 - Augmentative communication devices
Serial casting for joint contractures

- A series of casts is applied weekly to gradually stretch the muscle
- Might use Botox before
- Bracing or splinting afterward
- Preferable to a muscle lengthening surgery
Bracing (Orthotics)
Knee braces
SWASH Orthosis

- Standing, Walking and Sitting Hip Orthosis
- Controls dynamic hip scissoring
Other Equipment

- Bathseats/shower seats
- Strollers
- Wheelchairs
- Standers
- Walking assistive device
- Safe hospital beds
- Augmentative Communication devices
Bath seats
Strollers/Wheelchairs
Standers

- Standing helps develop the hip joint
- Prevents contractures
- Improves bone density
- Standing 1 hour/day reduces hip dislocation by 60%
- Serve a different purpose than walkers
Walkers
Safe Hospital Beds

- It’s easy to see how a child could get entrapped in a standard hospital bed
- The FDA identified 7 zones of entrapment
- Safer bed technology was developed
Safe Hospital Beds

- Beds by George
- Sleep Safe
- Pedicraft
Treatment of Scoliosis

- Bracing
- Surgery
Bracing/positioning for scoliosis
Treating spasticity

- If spasticity interferes with
 - Functioning
 - Positioning
 - Comfort
 - Care

- If spasticity is not useful (ie: transfers)
- If treatment is expected to provide improvement
Treating spasticity

- Positioning
- Oral medication
- Chemodenervation
- Surgery
Orthotics/Positioning

- Bracing / Splinting
 - Positioning – biomechanical alignment is key!
 - Consider skin tolerance and wearing time
Effects of Biomechanical Alignment on Spasticity

From Cusick
Oral medications

- Treat systemic spasticity, but have systemic side effects
- Most common side effect is drowsiness
Oral medications

- Benzodiazepines (Valium, Klonopin)
- Baclofen (Lioresal)
- Dantrolene sodium (Dantrium)
- Tizanidine (Zanaflex)
- Clonidine (Catapres)
Chemodenervation

- Injectable therapy which results in local muscle weakening
- Temporary and titratable

- Botulinum toxin
- Phenol or ethyl alcohol
Botulinum toxin

- Temporarily weakens a muscle (3 months)
- Creates a “window of opportunity”
 - Adjunct to serial casting, intense therapy
- Don’t need to use anesthesia (vs alcohol blocks)
 - Topical anesthetic
Phenol/Ethyl Alcohol Injections

- Motor nerve block or motor point block
 - Can only be used on motor nerves (not sensory)
 - Obturator and musculocutaneous nerves
- Causes axonal protein denaturation
- Results usually last 6-12 months
- Done under anesthesia
Surgical Treatments

- Intrathecal Baclofen Pump
- Selective Dorsal Rhizotomy
- Orthopedic surgeries
Intrathecal baclofen pump
Intrathecal Baclofen Pump

- Implantable, programmable pump, controlled by telemetry
- Baclofen – dosing significantly less than oral dose, so “no” side effects
- Medication stable in pump up to 6 months
- Lots of flexibility in dosing
- Reduces risk of hip dislocation
Selective Dorsal Rhizotomy

- EMG guided sectioning of afferent nerve rootlets from L2-S2
- Interruption of reflex arc
- Often “unmasks” underlying weakness
- Not flexible dosing
- Not done (locally) as much as ITB pump
Orthopedic Surgery

- Lengthening Procedures (Muscular)
 - Tendo-achilles lengthening
 - Hip adductor lengthening
 - Hamstring lengthening
 - Selective Percutaneous Myofascial Lengthening (Percs); New Jersey
Orthopedic Surgery

- Rotational surgeries (Bony)
 - Varus Derotation Osteotomy (VDRO)
 - Tibia / fibula osteotomy
Contact me with questions

- edonovanlopez@gmail.com
- 313-268-7377