International Survey of Best Practices in Connected and Automated Vehicle Technologies

2013 UPDATE

September, 2013

This document is a product of the Center for Automotive Research under a State Planning and Research Grant administered by the Michigan Department of Transportation.
TABLE OF CONTENTS

Executive Summary .. 6
Conclusions and Recommendations .. 6
Common Funding Options .. 6
Other Important Factors for Successful Programs .. 6

I. Introduction

Previous Work .. 7
2013 Update ... 7
What Is New? .. 7
New Projects .. 8
Updated Projects ... 8
Automated Vehicle Projects ... 8
Onwards ... 9

II. Connected Vehicle Efforts in North America

U.S. National-Level Projects .. 10
Connected Vehicle Safety Pilot ... 11
PrePass for Commercial Vehicles ... 13
Automated Vehicle Activities .. 13

California

Caltrans and PATH Activities .. 14
Safe and Efficient Travel through Innovation and Partnerships in the 21st Century (SAFE TRIP-21) ... 16
Mobile Millennium ... 16
Private Sector Connected Vehicle Activities ... 17
California Automated Vehicle Activities .. 17

Arizona

Arizona E-VII Program ... 17
Maricopa County Activities .. 17

Colorado

National Center for Atmospheric Research (NCAR) Activities .. 18
Denver Test Bed ... 19

Florida

Florida’s Turnpike Enterprise (FTE) Activities .. 19
ITS World Congress Roadside Unit Deployment .. 20

Minnesota

Minnesota Department of Transportation (MnDOT) Activities .. 21
MnPass Program ... 21
IntelliDrive™ for Safety, Mobility, and User Fees (ISMUF) .. 21
Federal Funding for Projects ... 22
Cooperative Intersection Collision Avoidance System (CICAS) ... 22

Montana

Western Transportation Institute (WTI) Activities .. 22

New York

New York World Congress VII Test Bed ... 23
Commercial Vehicle Infrastructure Integration (CVII) .. 23

Tennessee

Oak Ridge National Laboratory (ORNL) Activities .. 23
III. Connected Vehicle Efforts in Asia and Oceania

Japan
- History of ITS in Japan
- ITS Spot Service
- Driving Safety Support Systems (DSSS), Advanced Safety Vehicle (ASV), and Smartway
- Start ITS from Kanagawa, Yokohama (SKY) Project
- Carwings Project
- Unmanned Vehicle Technology Testing

China
- Star Wings Project
- New Traffic Information System Model Project
- Real-Time Information
- Connected Taxi Applications
- Automated Vehicle Activities

Singapore
- Real-Time Information

South Korea
- National ITS 21 Plan
- Ubiquitous City (U-City)

Taiwan
- Automotive Research and Testing Center (ARTC) Activities
- Industrial Technology Research Institute (ITRI) Activities

Australia
- Securing 5.9 GHz Bandwidth for ITS
- Intelligent Speed Adaptation Trial
- Cohda Wireless Activities
- Intelligent Access Program (IAP)

New Zealand
- National ITS Architecture

IV. Connected Vehicle Efforts in Europe and the Middle East

Europe-Wide Projects
- European Road Transport Telematics Implementation Co-ordination Organization (ERTICO-ITS Europe)
- Cooperative ITS Corridor (Rotterdam - Frankfurt/Main - Vienna)
- Driving Implementation and Evaluation of C2X Communication Technology (DRIVE C2X)
- Harmonized eCall European Pilot (HeERO)
- Cooperative Vehicle Infrastructure Systems (CVIS)
- Field Operational Test Network (FOT-Net)
- Co-Operative Systems for Sustainable Mobility and Energy Efficiency (COSMO)
<table>
<thead>
<tr>
<th>International Survey of Best Practices in Connected and Automated Vehicle Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Communications Technology (ICT) for Electro-Mobility .. 46</td>
</tr>
<tr>
<td>Co-Cities .. 47</td>
</tr>
<tr>
<td>European Field Operational Test on Safe, Intelligent and Sustainable Road Operation (FOTsis) 47</td>
</tr>
<tr>
<td>PROgraMme for a European Traffic of Highest Efficiency and Unprecedented Safety (PROMETHEUS) .. 47</td>
</tr>
<tr>
<td>CityMobil ... 47</td>
</tr>
<tr>
<td>Germany ... 48</td>
</tr>
<tr>
<td>Safe and Intelligent Mobility Test Germany (simTD) .. 48</td>
</tr>
<tr>
<td>Dynamic Information and Applications for assured Mobility with Adaptive Networks and Telecommunications infrastructure (DIAMANT) .. 49</td>
</tr>
<tr>
<td>Adaptive and Cooperative Technologies for Intelligent Traffic (AKTIV) .. 49</td>
</tr>
<tr>
<td>Wireless Wolfsburg .. 50</td>
</tr>
<tr>
<td>Highly Automated Vehicles for Intelligent Transport (HAVEit) .. 50</td>
</tr>
<tr>
<td>The Cooperative Sensor Systems and Cooperative Perception Systems for Preventive Road Safety (Ko-FAS) ... 50</td>
</tr>
<tr>
<td>Development and Analysis of Electronically Coupled Truck Platoons (KONVOI) 51</td>
</tr>
<tr>
<td>Belgium ... 51</td>
</tr>
<tr>
<td>ITS Test Beds .. 51</td>
</tr>
<tr>
<td>Next Generation Intelligent Transport Systems (NextGenITS) .. 51</td>
</tr>
<tr>
<td>Cooperative Mobility Systems and Services for Energy Efficiency (eCoMove) 52</td>
</tr>
<tr>
<td>France ... 52</td>
</tr>
<tr>
<td>Système COopératif Routier Expérimental Français (SCORE@F) .. 52</td>
</tr>
<tr>
<td>CyberCars ... 53</td>
</tr>
<tr>
<td>Secure Vehicular Communication (Sevecom) ... 53</td>
</tr>
<tr>
<td>Automatisation Basse Vitesse (ABV) .. 54</td>
</tr>
<tr>
<td>Italy .. 54</td>
</tr>
<tr>
<td>Intelligent Co-Operative System in Cars for Road Safety (I-WAY) ... 54</td>
</tr>
<tr>
<td>Test Site Italy .. 54</td>
</tr>
<tr>
<td>Smart Vehicles on Smart Roads (SAFESPOT) .. 54</td>
</tr>
<tr>
<td>Field Operational Test Support Action (FESTA) ... 55</td>
</tr>
<tr>
<td>VisLab Intercontinental Autonomous Challenge .. 55</td>
</tr>
<tr>
<td>Netherlands ... 55</td>
</tr>
<tr>
<td>Dutch Integrated Testsite for Cooperative Mobility (DITCM) ... 55</td>
</tr>
<tr>
<td>Connected Cruise Control (CCC) .. 56</td>
</tr>
<tr>
<td>Strategic Platform for Intelligent Traffic Systems (SPITS) .. 56</td>
</tr>
<tr>
<td>Open Platform for Intelligent Mobility (OPIM) .. 57</td>
</tr>
<tr>
<td>Sensor City .. 57</td>
</tr>
<tr>
<td>Preparing Secure Vehicle-to-X Communication Systems (PRESERVE) .. 58</td>
</tr>
<tr>
<td>Grand Cooperative Driving Challenge .. 58</td>
</tr>
<tr>
<td>Spain ... 58</td>
</tr>
<tr>
<td>SIStemas COoperativos Galicia (SISCOGA) .. 58</td>
</tr>
<tr>
<td>Sweden ... 59</td>
</tr>
<tr>
<td>SAFER Vehicle and Traffic Safety Centre .. 59</td>
</tr>
<tr>
<td>SAFER (DRIVE C2X Gothenburg Site) .. 59</td>
</tr>
<tr>
<td>Test Site Sweden (TSS) ... 60</td>
</tr>
<tr>
<td>BasFOT .. 61</td>
</tr>
<tr>
<td>Sweden-Michigan Naturalistic Field Operational Tests (SeMiFOT) ... 61</td>
</tr>
<tr>
<td>Safe Road Trains for the Environment (SARTRE) .. 62</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

The Michigan Department of Transportation (MDOT) is a national leader in connected and automated vehicle (CAV) technology and is interested in lessons learned from efforts in other states and countries that are related to connected vehicles, automated vehicles, and related Intelligent Transportation Systems (ITS). By examining how CAV technology is addressed and operated elsewhere in the world, MDOT seeks to identify and implement best practices that will allow it to further strengthen its own CAV program. To help fill this knowledge gap, MDOT requested that the Center for Automotive Research (CAR) conduct an international survey of best practices and report the findings of this research to MDOT.

To accomplish this task, CAR staff conducted electronic searches for information and published material describing CAV activities throughout the world. The gathered information was then analyzed for common and contrasting themes, drivers of success, types of technology tested or deployed, and so on to develop lessons learned for MDOT.

To catalog the international assets in CAV technologies and achieve a better understanding of what is currently occurring with regard to testing and deployment of these systems, CAR created a database of projects and papers related to CAVs. The database was originally compiled in 2010 and has been updated repeatedly since then. It includes details on the organizations conducting research or deploying assets, the type(s) of technology used, nature of the work, applications, and descriptions of work. Over time, some projects have been completed, put on hold, or discontinued, while new ones have launched or old ones expanded. With this in mind, the database continues to be updated to ensure that it remains current. At the time of publication of this report (September 2013), the database contained 85 entries for Asia, 159 for Europe, 149 for North America, and seven for Oceania.

This report is largely an update and expansion of previous work on domestic and international CAV programs that CAR has previously conducted for MDOT. This updated report includes new information about projects and other efforts that were already underway in earlier versions of the report, as well as information about additional programs that were not covered in previous CAR reports.

This report is intended to provide MDOT with the information needed to inform Michigan CAV decision-makers and to assist MDOT in its efforts to continue to be the national leader in CAVs.

CONCLUSIONS AND RECOMMENDATIONS

Despite the regional differences in CAV programs, many overarching themes have merged that are useful to consider with respect to technology deployment. CAR research and analysis has identified funding strategies that have been used to support CAV programs, important factors that can affect the success of deployment, and an overall trend in convergence of connected and automated vehicle technologies. The funding strategies and other important success factors are listed below; a full description of each point can be found in the Conclusions and Recommendations section of this report.

COMMON FUNDING OPTIONS
- Require matching funds in budget allocations
- Pursue funding at a national level
- Use tolls to fund programs

OTHER IMPORTANT FACTORS FOR SUCCESSFUL PROGRAMS
- Form coalitions
- Create industry competition
- Develop programmatic themes and bold goals
- Generate expertise
- Regulate technology to make a strong business case
- Standardize global/regional architectures
I. INTRODUCTION

The Michigan Department of Transportation (MDOT) is a national leader among public agencies in the development and deployment of connected and automated (CAV) vehicle technology. MDOT, however, understands that a national deployment of CAVs requires coordination among states, and vehicle owners in particular will expect to be able to use their CAV technology beyond their home location. As a result, MDOT requested that the Center for Automotive Research (CAR) investigate connected vehicle and CAV-related activities underway outside Michigan, especially international examples of CAV work, for the purpose of understanding and describing overall best practices in CAVs.

PREVIOUS WORK

In response to a request to document national best practices, CAR had conducted electronic searches of ongoing connected vehicle and connected vehicle-related activities outside Michigan, phone interviews with connected vehicle experts outside Michigan, and met personally with informants through attendance at the January 2008 meeting of the Transportation Research Board and a brief trip to the Bay Area in California, where much of the U.S. activity outside Michigan is concentrated. These efforts resulted in contacts with numerous organizations (Wallace and Sathe Brugeman 2008). In 2011 and 2012, CAR conducted updates to the previous study (Wallace et al. 2011 and Wallace et al. 2012). Additional programs in the United States were described and broader documentation of international best practices was undertaken.

To investigate and analyze the extent of connected vehicle technology assets, deployments, research projects, and the like internationally and achieve a better understanding of what testing and deployment is currently occurring, CAR created a database of projects and papers related to connected vehicles. This database included details on the organizations conducting research, the type of technology used, the nature of the work, applications, and descriptions of work.

2013 UPDATE

This report is an update and expansion of all previous CAR work on international connected vehicle best practices that has been done for MDOT. This report contains descriptions of numerous selected projects across the United States and across the world. These descriptions cover both completed and ongoing projects.

The major departure from previous updates is the inclusion of automated vehicle technologies. Previous versions had included some automated technologies which had a large connected vehicle component, such as the Safe Road Trains for the Environment (SARTRE) project in Europe or the Autonomous Intersection Management work at University of Texas at Austin. This report’s expanded scope includes those projects, but also covers several other automated vehicle initiatives which may or may not involve a connected vehicle component.

The accompanying database has been updated since it was originally created both to account for its expanded scope and to ensure it remains current. Over the past year, some previously covered projects have been completed, put on hold, or discontinued while new ones have been created or expanded.

At the time of this report’s publication, the database has hundreds of entries. Of those entries, there were 85 for Asia, 159 for Europe, 149 for North America, and seven for Oceania. Figure 1 on the following page shows the geographical distribution of projects throughout the world.

This report contains two appendices: Appendix A contains explanations for all abbreviations used in this report. Appendix B contains country-by-country (and state-by-state) count of connected vehicle projects in the database.

WHAT IS NEW?

This study includes all of the coverage provided by the previous report; however, it also contains several new projects not covered in the previous version as well as updates to several projects.
which were covered previously.

NEW PROJECTS

There are several new projects covered in this report. In North America, the major new addition is the Virginia Connected Test Bed which officially launched in June 2013. Within Asia new connected vehicle projects were added related to real time traffic data and connected taxi applications in China. In Europe there are several new or expanded projects; these include: Co-Cities; Cooperative ITS Corridor (Rotterdam-Frankfurt/Main-Vienna); Cooperative Mobility Pilot on Safety and Sustainability Services for Deployment (Compass4D); Cooperative Sensor Systems and Cooperative Perception Systems for Preventive Road Safety (Ko-FAS); European Field Operational Test on Safe, Intelligent and Sustainable Road Operation (FOTsis); Europe-Wide Platform for Connected Mobility Services (MOBiNET); Harmonized eCall European Pilot phase two (HeERO2); Preparing Secure Vehicle-to-X Communication Systems (PRESERVE); Sensor City; and Testfeld Telematik.

UPDATED PROJECTS

Several projects have been updated for this version. The major North American project added in the previous update, the Connected Vehicle Safety Pilot, is nearly completed, though the project was recently extended for another six months to allow for additional tests of communications technology on motorcycles and vehicle-to-infrastructure (V2I) applications. Similarly, in Europe, Germany’s simTD came to a close in the summer of 2013; other DRIVE C2X sub-projects have also been completed and updated. The Co-Operative Systems for Sustainable Mobility and Energy Efficiency (COSMO) project was also completed in 2013.

AUTOMATED VEHICLE PROJECTS

In addition to SARTRE and the work at the University of Texas at Austin, several automated vehicle projects have been added. The report describes U.S. military efforts, company efforts (automakers, suppliers, and technology firms), and university efforts at the University of California Berkeley. Within Asia there is a section on Unmanned Vehicle Technology Testing in Japan. In addition, the Tianjin Eco-City in China has begun field-testing automated vehicles from General Motors. Several European efforts were added as well, including Automatisation Basse Vitesse.
(ABV), CityMobil, Development and Analysis of Electronically Coupled Truck Platoons (KON-VOI), and Highly Automated Vehicles for Intelligent Transport (HAVEit).

ONWARDS

The remainder of this report presents CAR’s findings and analysis of these findings to provide MDOT with insights into best practices. CAR’s intent is to provide information needed to inform Michigan CAV decision-makers and to assist MDOT in its efforts to continue to be the national leader in connected vehicles among the states. The report is organized largely by continent and country, with cross-cutting lessons provided in the Conclusions and Recommendations section.
II. CONNECTED VEHICLE EFFORTS IN NORTH AMERICA

In North America, the majority of connected vehicle research is conducted in the United States. A significant portion of this work has been done at the state level by state agencies and universities. The states of Michigan and California have been responsible for much of this work, but other states, such as Florida, Minnesota, Montana, New York, Texas, and Virginia, also have active research and development programs.

The approach in the United States is not totally decentralized, however, as the U.S. Department of Transportation (USDOT) has taken an active role in connected vehicle research and has providing significant funding for much of the work that has been done across the country.

The recent focus of USDOT connected vehicle research related to a National Highway Traffic Safety Administration (NHTSA) regulatory decision on connected vehicle technology. That decision, on whether to regulate connected vehicle technology in new passenger vehicles is scheduled for 2013. A similar decision for heavy-duty commercial vehicles is planned for 2014.

Figure 2 shows the geographical distribution of projects throughout North America. Some projects are spread across several states; for mapping purposes, such projects are assigned to the state of their lead coordinator.
U.S. NATIONAL-LEVEL PROJECTS

CONNECTED VEHICLE SAFETY PILOT

Safety Pilot Driver Clinics

Most demonstrations of connected vehicle and ITS applications have focused on proving and presenting technical capabilities to those in the transportation community. Until recently, most connected vehicle testing has been done using trained drivers and experimenters. There has been little testing that has used inexperienced drivers who were not familiar with connected vehicles before test drives. These tests have been limited to closed test populations and self-selected groups (Hill and Garrett 2011).

From August 2011 through January 2012, the Crash Avoidance Metrics Partnership (CAMP) held driver acceptance clinics with naïve drivers that were unfamiliar with connected vehicle technologies. The clinics were held in six different locations across the country:

- Michigan International Speedway: Brooklyn, MI (August 2011)
- Brainerd International Raceway: Brainerd, MN (September 2011)
- Walt Disney World Speedway: Orlando, FL (October 2011)
- VTTI Smart Road: Blacksburg, VA (November 2011)
- Texas Motor Speedway: Fort Worth, TX (December 2011)
- Alameda Naval Air Station: Alameda, CA (January 2012)

Each clinic involved four days of testing, 112 drivers, and 24 vehicles equipped with connected vehicle technology. Each driver was accompanied by a tester who monitored the drivers throughout the clinic. Care was taken to get a diverse range of driver characteristics such that drivers were evenly divided between genders and spread evenly across different age categories (Ahmed-Zaid 2012). In addition, the clinics targeted different regional populations such as environmentally conscious drivers in California and pickup and sports utility vehicle drivers in Texas (Kuchinskas 2012). A total of 688 drivers participated in the clinics and shared opinions on the usefulness and effectiveness the technology (Toyota 2012).

In testing, the vehicles would broadcast information (including brake status, Global Positioning System (GPS) location, rate of acceleration, speed, and steering-wheel angle) ten times each second (Kuchinskas 2012). Each of the eight participating automakers had different systems to provide safety information to drivers; these systems used sounds, lights, displays, and seat vibrations to alert drivers of various threats. Drivers tested several scenarios that involved applications of connected vehicle technology including emergency electronic brake lights, forward collision warning, blind spot warning/lane change warning, do not pass warning, intersection movement assist, and left turn assist (Ahmed-Zaid 2012). After driving through several scenarios, drivers would pull over and interviewed to find out which features seemed useful (Kuchinskas 2012).

After the driver clinic trials, each location hosted a small focus group involving 16 of the drivers that participated in the clinic. The two main points made by the participants were (Ahmed-Zaid 2012):

- When it comes to accident prevention, there is nothing better than defensive driving. Overreliance on technology is bad.
- All vehicles on the road must be equipped with connected vehicle technology for the system to work. Retrofits for older vehicles will be important.

Safety Pilot Model Deployment

After the completion of the driver acceptance clinics, the project began its second phase, a year-long (recently extended to 18 months) model deployment field test in the northwestern part of Ann Arbor, Michigan. The University of Michigan Transportation Research Institute (UMTRI) is conducting the $14.9 million test, which officially began on August 21, 2012 (Fancher 2012). The Ann Arbor tests involve 2,836 vehicles equipped with vehicle-to-vehicle (V2V) communications devices using 5.9 Gigahertz (GHz) Dedicated Short Range Communications (DSRC). DSRC
gives the ability to transmit data at a rate of ten times per second (Fancher 2012). The test vehicles, which include cars, trucks, commercial vehicles, and transit vehicles, will transmit information such as location, direction, speed, and other vehicle data (Ahmed-Zaid 2012).

The 16 CAMP vehicles with integrated systems that were used in the driver acceptance testing are being reused for the safety pilot deployment. Another 48 light-duty vehicles with integrated systems were provided as were three Freightliner heavy-duty trucks, making a total of 67 vehicles with integrated systems for the deployment. The vehicles with integrated systems were provided by eight automakers, including Ford, General Motors, Honda, Hyundai-Kia, Mercedes-Benz, Nissan, Toyota, and Volkswagen (Ahmed-Zaid 2012).

An additional 300 light-duty vehicles, 16 heavy-duty trucks, and 3 transit vehicles were outfitted with retrofit and aftermarket devices, which send and receive data and are able to issue warnings to drivers (Bezzina 2012). All vehicles with integrated systems and 100 of the vehicles with aftermarket devices were also outfitted with a data acquisition system (DAS), which will collect data on driver performance and response to warnings (Fancher 2012). The remaining 2,450 vehicles (2,200 light-duty vehicles, 50 heavy-duty trucks, 100 transit vehicles, and 100 medium-duty vehicles) were outfitted with a vehicle awareness device (VAD), which only send data to other vehicles and are not be able to generate warnings.

The layout of the infrastructure for the deployment can be seen in Figure 3. The roadside infrastructure for the deployment covers 73 lane-miles of roadway with equipment installed at 25 sites with additional equipment installed at an intersection for radar-based pedestrian detection (Bezzina 2012 and Bezzina 2013). In the map, traffic light

![Figure 3: Layout of Ann Arbor Safety Model Deployment Roadside Infrastructure](image)

Source: Bezzina 2012
symbols designate areas where roadside equipment is co-located with traffic signals; orange symbols indicate signal phase and timing (SPAT) enabled traffic signals and blue symbols indicate roadside equipment without SPAT capabilities. Orange dot symbols indicate equipment co-located with a freeway ITS installation and the blue dot symbol indicates a prototype solar/cellular equipment installation.

As of August 2012, UMTRI already had 3,500 local volunteers, hundreds more than are needed for the testing (Priddle 2012). The first 500 vehicles were put on the road in early August 2012 and within a few months after the project began, the entire fleet was in operation (Priddle 2012). This deployment is significant because it involves the long-term observation of so many vehicles in real-world driving conditions. Most of the previous connected vehicle studies had collected data over shorter periods of time, involved fewer vehicles, and used staged scenarios rather than observing normal driving conditions (Fancher 2012). The study will analyze the system’s effectiveness at reducing crashes and its results will be used to inform regulatory agency decisions concerning connected vehicle technology (Fancher 2012). By the end of the project, UMTRI expects to have collected 200 terabytes (TB) of data (Bezzina 2013). This data is being delivered to an independent evaluator to support U.S. DOT efforts.

The project was originally scheduled to last for one year, but it recently received a six-month extension for additional tests of communications technology on motorcycles and vehicle-to-infrastructure (V2I) applications (Shepardson 2013a). NHTSA has stated that the study’s extension will not affect the agency’s timetable for issuing a notice of regulatory intent (NRI).

PrePass for Commercial Vehicles

PrePass is a system that can automatically identify, cross-reference, and clear commercial vehicles, allowing them to bypass weigh stations. Participating commercial vehicles can be prescreened at designated weigh station facilities and are equipped with transponders that enable V2I communications. These prescreened vehicles can then bypass the other weigh stations while traveling along highways, eliminating the need to pull over for additional inspections, thus saving time, fuel, and labor costs. The program also benefits states and other drivers by reducing congestion and enabling inspection staff to focus their efforts on carriers that demand the most attention (PrePass 2012).

Automated Vehicle Activities

From the mid-1990s to the early-2000s, the United States established itself as a leader in automated vehicle systems through its Cooperative Vehicle-Highway Automation Systems (CVHAS) initiative. CVHAS was is a federal pooled-fund program whose main purpose was to partner with public and private sector organizations to research, develop, evaluate and deploy connected and automated solutions to improve mobility, safety, environmental performance, and fuel economy in the transportation sector.

More recent automated vehicle initiatives have been driven primarily by the military and the automotive industry, though the U.S. Department of Transportation continues to support automated vehicle research through the Federal Highway Administration (FHWA) Exploratory Advanced Research (EAR) program.

Many companies within the United States are developing and testing automated vehicle technologies. Google is testing fully-automated vehicles on public roads in Nevada and California, and has logged hundreds of thousands of miles in its automated vehicles. Traditional automakers such as General Motors, Toyota, and Volkswagen are also developing advanced automated functionality as well. Additionally, high-tech firms such as Bosch, Continental, Delphi, TRW, and others are developing advanced technologies both in cooperation with, and independent from, the automakers.

By the end of 2012, three states (Nevada, Florida, and California) and the District of Columbia had passed laws addressing the use of fully automated vehicles on public roads. Several other states throughout the country have considered similar
legislation, including Michigan. In May, the National Highway Traffic Safety Administration released guidelines for states issuing licenses for testing fully automated vehicles on public roads. Current Michigan law allows many automakers and Tier-1 suppliers to operate prototype automated vehicles with manufacturer license plates on public roads, and some have already been involved in such testing. New legislation could further clarify rules and broaden eligibility to include more automotive suppliers as well as upfitters (e.g., Google). The Michigan Senate Transportation Committee approved a bill in March 2013, but it has yet to pass the House. A revised version of the bill may be considered in the Michigan legislature as early as September 2013 (Shepardson 2013b).

Throughout the mid-2000s, the Defense Advanced Research Projects Agency (DARPA) held a series of “Grand Challenge” events to encourage the development of automated vehicles. The DARPA Grand Challenge was the first long-distance automated vehicle competition in the world. The first Grand Challenge was held in March 2004. None of the competing vehicles were able to complete the challenge’s 150-mile long route. The event was followed up with a second challenge in October 2005. Five vehicles successfully completed the 2005 Grand Challenge route. In November 2007, DARPA held its third event, the Urban Challenge, which required all vehicles to obey traffic regulations and negotiate with other traffic. The event took place at the former George Air Force Base in California (DARPA 2013). The challenges help develop expertise in automated vehicle systems and helped advance automated vehicle efforts in the United States and abroad. Google went on to hire some of the researchers who participated in the DARPA challenges for its own automated vehicle initiative.

Various truck automation projects are also being researched in the United States. For instance, the U.S. Army’s Autonomous Mobility Applique System (AMAS) project uses low-cost sensors and control systems on military vehicles to enable driver assistance features or automated operation.

AMAS technology has been used in the Convoy Active Safety Technology (CAST) program to produce automated vehicles that are able to travel in a platoon lead by a manned vehicle. Automated truck projects are also being carried out by University of California Berkeley-PATH and the Federal Highway Administration (Poorsartep 2013).

CALIFORNIA

CALTRANS AND PATH ACTIVITIES

The State of California is the locus of numerous connected vehicle activities, and the California efforts are rooted in a close working relationship between the California Department of Transportation (Caltrans) and the California Partners for Advanced Transit and Highways (PATH), part of the University of California - Berkeley’s Institute of Transportation Studies. These two organizations are leading the way on a variety of efforts, with aid from several private-sector entities, including a handful of automotive research facilities located in Silicon Valley. This section elaborates on the roles being played by various organizations involved with connected and automated vehicles in California. Information in this California section is based primarily on in-person discussions with Greg Larsen (Caltrans), Jim Misener (Booz Allen Hamilton, formerly PATH), Chuhee Lee (VW NA), and Alex Busch (BMW).

A significant portion of the connected vehicle work done in California is part of the efforts of Caltrans and PATH. Caltrans manages California’s freeways, provides inter-city rail services, and permits airports and heliports. Its mission is to improve mobility across California, and its goals include improving safety, mobility, delivery, stewardship, and service (CA.GOV 2010). As the state department of transportation, Caltrans is the lead state agency responsible for connected vehicle efforts in California.

PATH is a multi-disciplinary program that includes employees and students from universities throughout California working on projects in conjunction with industry, government agencies, and non-profit institutions. The program emphasizes long-term, high-impact solutions, within the three
program areas of safety, traffic operations, and modal applications and receives funding from Caltrans, the U.S. Department of Transportation, state and local governments, and private sources (ITS Berkeley 2010).

Caltrans and PATH have a tight working relationship and are engaged in many joint efforts to expedite deployment of connected vehicle assets in the state. These have included establishing a wireless test area in Richmond, California, that supports V2I communications and application development and testing. Originally, the intelligent intersection used Wi-Fi for in-vehicle warnings and to facilitate communication between vehicles and between vehicles and the intersection. Later an IEEE 1609 capable Multiband Configurable Networking Unit (MCNU) was installed. Figure 4 contains an overview of the field station. Caltrans also has some test sites in San Jose and Palo Alto.

In 2004, Caltrans and PATH worked with other universities and agencies to design a DSRC development in the San Francisco Bay Area. Partners included the Metropolitan Transportation Commission, Telvent Farradyne, Daimler Chrysler, Volkswagen of America, and Navteq. Currently, however, funding resources for further work with connected vehicle in California have been halted. While options to obtain federal funding are being considered, additional stakeholder support will be needed to resume connected vehicle work in California (PB 2010).

Another joint Caltrans and PATH project was a field test with Nokia featuring 100 vehicles that served as cellular-based traffic probes. Their field test took place February 8, 2008 and is described in more detail in the Safe and Efficient Travel through Innovation and Partnerships in the 21st Century (SAFE TRIP-21) section of this report. Local automotive facilities, such as the Volkswagen North America research lab, also participated in this test.

Currently, PATH is conducting an ongoing project at its Richmond Field Station to investigate the potential benefits of broadcasting SPAT data.

Figure 4: Richmond Field Station Intelligent Intersection Location, Layout, and Traffic Controller
Source: PATH 2008
The work utilizes the Intelligent Intersection facility (Dickey et al. 2010), which is highlighted in Figure 4. In October of 2009, Caltrans, along with partners BMW and Siemens, demonstrated connected vehicle technology that used DSRC and SPAT information to detect vehicles and save fuel (Larsen 2010). The demonstration took place during the American Association of State Highway and Transportation Officials (AASHTO) meeting in Palm Desert, California, and showed fuel savings of up to 15 percent (Siemens 2010). Furthermore, in 2009, the USDOT awarded $8.5 million to Caltrans to expand its Pioneer Site Demonstration and Evaluation Project along the San Diego I-15 corridor. This project is furthering development of several mobility applications, including provisioning of multi-modal travel times and real-time incident information, among others (PATH 2010).

The USDOT also awarded $1.57 million to Caltrans in partnership with the Western Transportation Institute for the Coordinated Speed Management in Work Zones project. This project is designed to provide highway patrol officers with information on excessive vehicle speed and a picture of the license plate. Nearby workers can be provided with vibrating pagers to alert them when a vehicle is speeding (PATH 2010).

Looking forward, Caltrans envisions eventual deployment of connected vehicle infrastructure at every signalized intersection and every ten miles on state highways. Caltrans believes this will be privately funded, with incentives provided to attract private investment. It also recognizes that it will face some challenges in some of the extreme topographical and climatic regions of California (e.g., high mountains, extreme winter snow, deserts), especially where these exist in remote areas that lack good communication backhaul options.

Caltrans and PATH are also active at the national level, participating in ITS America, Transportation Research Board (TRB) committees, Vehicle Infrastructure Integration Consortium (VII-C) Steering Committee, and other organizations that affect the national connected vehicle effort. Eventually, Caltrans and PATH activities became recognized as part of the connected vehicle proof-of-concept tests being undertaken by the VII-C. PATH’s approach for expediting connected vehicle deployment has been published, at least in part (Dong et al. 2006).

SAFE AND EFFICIENT TRAVEL THROUGH INNOVATION AND PARTNERSHIPS IN THE 21ST CENTURY (SAFE TRIP-21)

In the first half of 2008, Caltrans applied for and was awarded a USDOT grant under the auspices of SAFE TRIP-21, a connected vehicle program managed by the Volpe Center. This program was intended to build upon lessons from previous ITS proof-of-concept tests to improve safety, mobility, energy independence, and environmental stewardship. It involved testing and integrating applications into field test environments, and it also was used to develop and provide demonstrations for the 2008 ITS World Congress testing environments in New York. California was initially awarded $2.9 million from USDOT for a field test site, with the possibility of receiving additional funding if available. The total cost of the field test, which was planned in 2008 and implemented in 2009, was $12.4 million (Sengupta 2010).

In 2009, the SafeTrip-21 Initiative was awarded a research grant for an additional $943,000 from the USDOT. The partners receiving the grant included Caltrans and PATH, as well as Navteq and ParkingCarma. Using this grant, the partners developed and tested a traveler information tool. The tool combines information on real-time traffic, train and bus, and parking space availability information to enable travelers to plan more efficient trips. The tool makes use of data collected along the US-101 corridor between San Francisco and San Jose (PATH 2010).

MOBILE MILLENNIUM

Through its contacts at Navteq and the Connected Vehicle Trade Association (CVTA), CAR understands that the Caltrans project most likely builds upon previous work that Nokia and Caltrans conducted together. Specifically, in February of 2008, they performed a test for which they gave 100 university students a Nokia phone equipped
with GPS and traffic-monitoring software developed by the team. The students drove a 10-mile stretch of freeway, while the phones sent data on speed and location back to Nokia’s research facilities (Mobile Millennium 2011). The original test, known as Mobile Century was followed up by Mobile Millennium, an 18-month project that was announced in November 2008. As part of SAFE TRIP-21, Caltrans will expand this fleet considerably with more test probes and possibly other connected vehicle aftermarket mobility applications. To date, the details of Caltrans’s proposal have not yet been made public.

PRIVATE SECTOR CONNECTED VEHICLE ACTIVITIES

In addition to public-sector and university activities, California is also involved with private-sector connected vehicle activities. The state is home to several automotive electronics research units belonging to the major automotive manufacturers. This includes facilities operated by BMW, Daimler, and Volkswagen North America. While much smaller than, for example, the Chrysler Tech Center, these facilities are heavily focused on vehicle electronics and applications being developed by these automakers for the U.S. market. BMW, for example, is very interested in using wireless pipelines to connect BMW drivers for safety, mobility, and commercial applications.

CALIFORNIA AUTOMATED VEHICLE ACTIVITIES

The University of California PATH program has been involved in many automated vehicle projects beginning in the 1990s. In August 1997, PATH demonstrated an eight-vehicle platoon. The vehicles were separated by a distance of 6.5 meters while driving at highway speeds (PATH 1997). Current projects PATH is working on that are related to automated vehicle systems include cooperative adaptive cruise control (CACC), automated truck platooning, and vehicle-assist and automation applications for full-size public transit buses (Meade 2012).

ARIZONA

ARIZONA E-VII PROGRAM

Arizona has researched connected vehicle applications and strategies to support incident management and enhanced traffic control. The name of the project supporting this research was called Arizona E-VII Program, which consisted of two projects under Arizona DOT: SPR-653, Arizona VII Initiative: Proof of Concept/Operational Testing and SPR-678, Dynamic Routing for Incident Management. Prototype applications for the program included traffic signal preemption and priority, ramp meter preemption, and mobile incident warning. The project started in early 2008 and a site demonstration occurred in late 2008 (Gettman 2009). All testing and evaluation was completed by 2011, and the project was completed by the end of the year (ADOT 2011). Figure 5 shows photographs of the ramp meter priority (left) and signal preemption (right) field demonstrations.

The project was divided into two phases. Phase I developed and tested potential incident management applications. Phase II involved the testing of applications in a pilot deployment, evaluating functionality of hardware and software, human factors, and viability applications for incident management.

The University of Arizona (UA) and Arizona State University (ASU) were involved, with UA developing technology and software as well as field demonstration scenarios, and ASU evaluating the program’s outcomes. UA was responsible for writing the research report with support from ASU (Arizona DOT 2008).

MARICOPA COUNTY ACTIVITIES

The Next Generation of Smart Traffic Signals project is an EAR program project that was started by the FHWA in 2007 and has been conducted by Arizona State University in Phoenix. The traffic signal system being researched in this project is called Real-Time Hierarchical Optimized Distributed Effective System Next Generation (RHODESNG). Though smart traffic signals have been used by some countries for decades, they are
relatively rare in the U.S. due to their associated high infrastructure costs. These systems, however, have considerable value in that they are able to reduce travel time, delays, and stops as compared to the more common fixed-length, time-of-day traffic signals. The system is designed to continuously adapt operations based on changing conditions using data from vehicles, infrastructure sensors, and transmitters. It uses self-adaptive algorithms that integrate the position, speed, and queue data, accurately perform high-speed computations, make predictions, and continuously adjust critical parameters.

Continued development of the RHODESNG system was focused on integrating connected vehicle technology components. Because these technologies are in a constant state of change and development as innovations are introduced and tested, incorporating them into the RHODESNG system is a major challenge. With better information from a vehicle itself, including location, destination, speed, and acceleration, smart signal control systems could more effectively allocate signal phasing times to handle changing traffic demands. A field test of RHODESNG with connected vehicle capabilities took place at the Maricopa Proving Grounds (FHWA 2012).

Maricopa County’s state-of-the-art field lab is known as the SMARTDrive Multi-modal Intelligent Traffic Signal System prototype. It consists of six traffic lights along a 2.3 mile stretch of Daisy Mountain Drive in Anthem, Arizona. The earliest application tested was an emergency vehicle prioritization system. The test bed has been equipped with DSRC devices, integrated Wi-Fi and Bluetooth connections, closed-circuit television (CCTV) cameras, traffic detection software, data collection software, fiber optic systems, and communication connections to the Maricopa County Department of Transportation Traffic Management Center (Maricopa County 2012).

The Maricopa County test bed was selected, along with a Caltrans test site, to serve as a national test sites for the USDOT and Cooperative Transportation Systems Pooled Fund Studyped Multi-Modal Intelligent Traffic Signal System project. The Daisy Mountain Fire District and Valley Metro buses have agreed to participate in live SMARTDrive field testing in order to simulate real traffic conditions (Maricopa County 2012). The project was completed in September 2009 (TRID 2013).

COLORADO

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH (NCAR) ACTIVITIES

The National Center for Atmospheric Research (NCAR) in Boulder, Colorado has been conducting research on how connected vehicles can be used to document real-time weather conditions (NCAR 2011). The goal of this research and development effort is to gain a better understanding of how to effectively utilize weather-related data retrieved from connected vehicles. The projects at NCAR are applied research and involve acquire-
ing, analyzing, and processing data from vehicles and using it to improve knowledge of current road conditions as well as forecasts of future road conditions. With improved knowledge of road conditions, warnings can be issued to drivers about hazardous conditions.

A major connected vehicle project at NCAR is the *Weather Data Translator* (WDT). The WDT is a demonstration system that can receive and analyze probe data from vehicles driving through connected vehicle test beds (Petty and Chapman 2008). The information created by the WDT can be used by the *Clarus Initiative* (an integrated surface transportation weather observing, forecasting, and data management system) or other applications (FHWA 2011). An example case of the WDT is shown in Figure 6.

DENVER TEST BED

Another example of connected vehicle work in Colorado is the Denver Test Bed, also known as the Denver E-470 test. The purpose of this test was to demonstrate multi-lane free flow (MLFF) and open road tolling (ORT) high performance tolling and enforcement. The system being used is based on Kapsch TrafficCom’s 5.9 GHz DSRC technology. It was installed on three southbound lanes next to an existing toll collection system on the E-470 highway (Kapsch 2008). The installation includes 5.9 GHz DSRC roadside infrastructure and in-vehicle units as well as lane cameras with illumination units, overview cameras with external infrared (IR)-flashes and the laser units. Applications tested included toll tags and detectors, vehicle detection and classification, and automatic license plate recognition solutions. The testing was completed using a fleet of 27 vehicles and lasted for a few weeks (Mixon Hill 2009b). An independent research and development laboratory evaluated the system and concluded that 100 percent of the over 10,500 samples that were identified using a GPS data logger were also identified using the DSRC toll tags (Kapsch 2008).

FLORIDA

FLORIDA’S TURNPIKE ENTERPRISE (FTE) ACTIVITIES

Florida’s Turnpike Enterprise (FTE) presents an instructive model for one approach for operating public assets as a business. Florida’s Turnpike is responsible for all operations on every Florida Department of Transportation (FDOT) owned and operated toll road and bridge. FTE is a part of FDOT, but it operates with a uniquely-defined charter. Created in 2002, the Enterprise aims to use private-sector business methods to operate in the public good. In transitioning to this new ch
ter, FTE engaged in intense training sessions to help employees understand and accept the new mentality of operation. FTE’s business model, which places more emphasis on paying customers, is feasible given that turnpikes actually have paying customers in the form of motorists paying to use the toll facilities. Florida’s Turnpike Enterprise operations are 100 percent self-financed from toll revenues.

Florida’s Turnpike installed a fiber optic backbone on its 600 miles of roadway. Additionally, FTE has installed cameras placed every mile and vehicle sensors every half mile. The video cameras help with accident detection, as well as with data augmentation through FTE’s routine visual scans. The sensors use radio-frequency identification (RFID) technology and detect vehicle motion and traffic density using radar. These data are then sent to Traffic Management Centers (TMCs), which use the data both for congestion mitigation and safety applications (Suarez 2008).

Florida’s Turnpike has several interesting initiatives aimed at reducing drive times, traffic congestion, and improving safety. The initiatives include Highway Advisory Radio (HAR), Citizen Band (CB) transmission systems, tolling maintenance, the SunPass prepaid tolls program, and the Rapid Incident Scene Clearance (RISC) program.

Sensor data contribute to the HAR program. The data are sent to TMCs which then transmit the data to informational signs along the road. These signs contain radio frequency information for the driver to tune into and change driving patterns as appropriate. This quickly allows the driver to receive the most updated traffic information (Suarez 2008).

The CB program is intended to assist truck and commercial drivers who frequently rely on CB radios. In practice, this program operates quite similar to how the HAR program operates: sensors send data to TMCs, and the TMCs then transmit information over CB radio frequency. The CB program also includes information about weather-related incidents, and FTE uses video cameras for fog and smoke (from wild fires) detection (Suarez 2008).

To ensure that toll station malfunctions do not cause major delays for drivers, Florida’s Turnpike uses a grid system that tracks all the toll stations on a map. Additionally, the grid is able to track toll maintenance vehicles so that the TMC knows where each maintenance person is at any given time. When a toll station is not working properly, the grid indicates the problem, as well as shows where the nearest maintenance person is to fix the problem. This allows for speedy correction of toll collection problems (Suarez 2008).

The SunPass program participants pre-pay their toll fees and receive a discount for doing so. When they sign up for this service, they attach a transponder to the windshield of their vehicle. This transponder sends radio signals to sensors mounted on the SunPass toll lanes, which then automatically deduct the proper toll amount from the prepaid account (SunPass 2011).

The RISC program is designed to enable emergency responders to arrive at a scene quickly and begin to clear away any crashes and associated debris. This helps to ensure that the road is once again fully operational as soon as possible (Suarez 2008).

ITS WORLD CONGRESS ROADSIDE UNIT DEPLOYMENT

Florida is becoming a leader in ITS technologies and as a result, the state hosted both the Transpo2010 Conference (Mobile Synergetics 2010) and the combined 2011 World Congress in Intelligent Transport Systems and Annual Meeting of ITS America (Florida DOT 2010). Transpo2010 was held in Ponte Vedra Beach, Florida and previewed many of the emerging technologies that would later be showcased at the ITS World Congress which was held in Orlando. Roadside infrastructure was deployed for the demonstrations that took place at the ITS World Congress in the fall. Five units were installed along John Young Parkway, 11 units were installed along I-4, and 11 units were installed along International Drive/Universal Boulevard. The installations can be seen in Figure 7.
MINNESOTA DEPARTMENT OF TRANSPORTATION (MnDOT) ACTIVITIES

The Minnesota Department of Transportation (MnDOT) has made significant headway in developing and deploying ITS systems. MnDOT’s Office of Traffic, Safety and Operations manages most of the Department’s ITS activities. This office is located within the central MnDOT office, but works with satellite offices in the eight regional MnDOT districts, as necessary. It also works with the University of Minnesota’s ITS Institute, which has numerous programs dedicated to ITS research.

The office used to rely heavily on earmarks, matched with state funds, to finance its ITS program and achieve its goals, but it has received no new earmarks since 2004. Currently, the office is using state and federal construction funds to accomplish its mission, and it has obtained federal support for specific programs, as described in detail below (Starr 2008).

MNPASS PROGRAM

MnDOT developed an innovative program for using market mechanisms to allow access to faster travel lanes, without turning entire roadways into toll roads. This program, called MnPass, is designed to charge a fee for faster travel (less congested lanes), without the need to designate the entire road as a toll road. In the Twin Cities metro area, MnPass is implemented on 18 miles of high occupancy vehicle (HOV) lanes intended to reduce congestion by encouraging carpooling. However, single-occupancy vehicles also may use some of these lanes, called high occupancy toll (HOT) lanes, provided that they pay a toll to do so. Drivers wishing to use the program obtain and place a transponder in their vehicle. As a vehicle enters the HOT lane, an electronic sign indicates the price to drive in that lane at that point in time, and the appropriate fee is debited from the driver’s pre-paid account. The charges vary depending on how relatively busy or free the HOV lane is, and this represents an interesting attempt to harness the power of marginal cost pricing into the freeway management system (MnDOT 2011a).

INTELLIDRIVE® FOR SAFETY, MOBILITY, AND USER FEES (ISMUF)

MnDOT’s IntelliDrive® for Safety, Mobility, and User Fee Project: Driver Performance and Distraction Evaluation (ISMUF) project began after the Minnesota legislature authorized $5 million for the project in 2007. Phase I of the project pro-
duced a preliminary concept of operations, a set of stakeholder requirements, and a scope of work for Phase II. Phase II began in 2010, and involved a technology demonstration in a real-world setting (Battelle 2013). The project was completed and a final report was submitted in February 2013. The project used DSRC enabled aftermarket on-board equipment and roadside equipment. Specifically, the applications that were explored in the project included mileage based user fees, in-vehicle signing, curve and intersection collision warnings, and enhanced traveler information using probe vehicles. This project’s goal was to evaluate the effectiveness of in-vehicle signing safety and mileage based user fee applications of VII (MnDOT 2012).

FEDERAL FUNDING FOR PROJECTS

Federal Projects are also an important part of connected vehicle programs in Minnesota. MnDOT receives directed federal funding for several initiatives that contribute to its overall efforts in ITS and connected vehicle-related areas. Indeed, the state has been quite successful (at least up until 2004) in securing such funding beyond its normal annual allocation for US DOT, and these funds have helped extend the state’s ITS capabilities. Since 2004, the state has had success with some competitive programs, including the Urban Partnerships program. Federal funding, obtained through earmarks or other means, have led to ITS and connected vehicle projects.

COOPERATIVE INTERSECTION COLLISION AVOIDANCE SYSTEM (CICAS)

MnDOT, working in collaboration with the University of Minnesota’s ITS Institute, obtained funding from USDOT RITA under the Cooperative Intersection Collision Avoidance System (CICAS) program. Michigan has also been home to CICAS activities, notably those performed by CAMP, a consortium of automotive companies. This program focused on installing signage at rural intersections to alert drivers as to whether or not the gaps in traffic are large enough to enable vehicles to safely cross the intersection (Starr 2008). This project built on a previous program called Intersection Decision Support that was completed by the ITS Institute.

Field-testing of CICAS Stop Sign Assist (CICAS-SSA) began in 2010. Initial testing was staged near Cannon Falls, Minnesota (US-52 and County State Aid Highway 9) and Spooner, Wisconsin (US-53 and Wisconsin Highway 77). In June 2011, two additional tests began near the Minnesota cities of Marshall (Minnesota Highway 23 and County State Aid Highway 7) and Milaca (US-169 and County State Aid Highway 11). Testing is scheduled to occur at these intersections over the course of three years (ITS Institute 2012).

Initial results indicated that the technology seems to cause confusion with motorists and does not lead to a change in behavior. Researchers tested in-vehicle signage to determine if such warnings would be more effective. The field tests used seven local drivers. The in-vehicle signage system was able to provide timely warning messages and proved viable and reliable. It is not certain whether such a system is better at preventing collisions, however (Pierce and Smith 2012).

MONTANA

WESTERN TRANSPORTATION INSTITUTE (WTI) ACTIVITIES

The Western Transportation Institute (WTI) was founded in 1994 by Montana State University (MSU), the Montana Department of Transportation, and the California Department of Transportation. WTI’s main facility is located next to the MSU campus, where it is a department in MSU’s College of Engineering. In 1998, WTI was designated as one of the USDOT RITA National University Transportation Centers (UTC), with the recognition renewed in 2005. In addition, WTI is the nation’s largest UTC focused on rural transportation. While the focus of WTI is rural transportation issues, the institute also works on projects addressing urban environments and sustainability (WTI 2011).

There are eight research groups within WTI: Safety & Operations, Winter Maintenance & Effects, Road Ecology, Infrastructure Maintenance
& Materials, Systems Engineering Development & Integration, Mobility & Public Transportation, Logistics & Freight Management, and Transportation Planning & Economics. In its work, WTI often partners with MSU faculty, other universities, transportation agencies, and private sector partners. Besides its research labs on MSU’s campus, WTI has other offices in Alberta, Washington, and Montana.

All of the connected vehicle projects that were documented in Montana were connected to WTI, either as the sole research institution for the project or as a research partner. These projects have generally been scoped as rural projects, or have obvious applications for rural areas. The national connected vehicle (formerly VII or IntelliDrive) initiative, mobile ad hoc networks, dissemination of traveler information, ant colony optimization (an artificial intelligence algorithm that mimics the behavior of ants searching for food, used in this case for selecting the optimal placement of communications infrastructure), and animal-vehicle crashes (mitigation and road kill documentation) were among the topics covered in WTI projects (WTI 2011).

New York

NEW YORK WORLD CONGRESS VII TEST BED

The New York World Congress VII Test Bed was created for the 2008 World Congress in New York City. There were 23 5.9 GHz locations placed along I-495. Eight of these are integrated with traffic signals. The connected vehicle applications that were used during the 2008 World Congress included travel time information, DMS messages, emissions calculations, intersection safety, transit priority, multimodal information, connected vehicle probe data, work zone safety warning, warning sign enhancement, curve warning, commercial vehicle routing information, and vehicle restrictions. On top of the DSRC roadside units that were already in place, an additional 13 DSRC units were deployed along NYS Thruway I-87; installation occurred in 2011. By April 2011, two DSRC units were installed along I-90 at Schodack commercial vehicle integrated screening site (IntellidriveUSA 2010a).

COMMERCIAL VEHICLE INFRASTRUCTURE INTEGRATION (CVII)

The Commercial Vehicle Infrastructure Integration (CVII) program was created to demonstrate connected vehicle applications for commercial vehicles in the New York City region. The CVII program developed, tested, and demonstrated commercial vehicle based data communication with 5.9 GHz DSRC roadside and on-board equipment and software. Test corridors include 13 miles along the I-87 Spring Valley Corridor and 42 miles along the I-495 Long Island Expressway. The project received $1.5 million in funding from the I-95 Corridor Coalition for 2007 and 2008 with an additional $400,000 available for 2009 and 2010 (I-95 Corridor Coalition 2013). The team doing the work was led by Volvo Technology of America, and partners include Kapsch, Booz Allen, Cambridge Systematics, Southwest Research Institute, and Fitzgerald & Halliday. Phase 1 of the program began in May 2009 and finished in May 2011. The final report for Phase 1 was submitted in December 2011. Phase 2 would include testing heavy-duty to light-duty vehicle driver safety warnings and grade crossing driver warnings. A Phase 3 was also proposed and would focus on real time routing with driver warnings (I-95 Corridor Coalition 2013). There is no indication that there has been further activity on this project since the end of 2011.

Tennessee

OAK RIDGE NATIONAL LABORATORY (ORNL) ACTIVITIES

Oak Ridge National Laboratory (ORNL) in Tennessee is involved in transportation-related activities largely through the National Transportation Research Center (NTRC), which is staffed by both ORNL and University of Tennessee researchers. NTRC studies a wide array of transportation system concerns, including fuels and emissions, geographic information systems, heavy-vehicle safety, electronics, logistics, materials, structures, and systems analysis. NTRC also is home to the National Transportation Research Center, Inc. (NTRCI), a nonprofit organization
that houses a federally funded UTC and the Heavy Vehicle Research Center. In addition to the two partners involved in NTRC, NTRCI also includes Battelle Memorial Labs and the economic development wing of Knox County as partners.

Given its connections with both NTRC and NTRCI, ORNL has a particular interest in connected vehicle technologies for heavy trucks (commercial vehicles). The NTRCI UTC funds primarily truck-related research projects at a level of about $750,000 per year, and it has an interest in connected vehicle technology as an approach for enhancing truck safety. Connected vehicles, however, are not the sole, or even primary, focus of research within this UTC. Given its rural surroundings (not counting Knoxville proper), ORNL is also concerned with rural transportation issues, including concerns about difficulties in rural DSRC deployment. Thus, it has looked at cellular technology for traffic probe data collection as an alternative DSRC or other system dependent on roadside infrastructure (Knee et al. 2003).

While DSRC may not be the focus of ORNL’s connected vehicle work, ORNL researchers associated with the NTRC have obtained and tested a number of Technocom DSRC units on heavy trucks. This activity has resulted in some basic familiarity with how DSRC works and in a small number of applications field tested.

VIRGINIA

VIRGINIA CONNECTED TEST BED

In early June 2013, the Virginia Connected Test Bed was officially launched. The test bed is operated a public-private partnership, the Connected Vehicle-Infrastructure University Transportation Center, which is led by the Virginia Tech Transportation Institute (VTI). The project has a $14 million budget, which is funded through a four-year, $6 million federal grant by the U.S. Department of Transportation; a $4 million cost share from the Virginia Department of Transportation, and $2 million from VTTI, with additional funding coming from the other partners.

The test bed involves a total of more than 50 RSEs, including 43 connected intersections, in Merrifield, Virginia, along Interstate 66 and state Highways 29 and 50. The test fleet is composed of 12 vehicles, including six cars, four motorcycles, a bus, and a semi-truck. These vehicles collect information such as acceleration, braking, curve handling, and emissions (CVI-UTC 2013).

VIRGINIA TECH TRANSPORTATION INSTITUTE ACTIVITIES

The Virginia Tech Transportation Institute (VTTI) is a research organization whose primary goal is to develop the tools and technologies to solve transportation safety and mobility issues. VTTI includes several different centers within its realm, and each has a specific focus within the transportation sector. As lessons on best practices in VII and VII-related areas, two of these centers are relevant:

Virginia Smart Road

The *Virginia Smart Road* is a full-scale closed...
test-bed research facility that is managed by VTTI but owned and maintained by Virginia Department of Transportation (VDOT). The Smart Road is a 2.2 mile two-lane road that will eventually be made part of the public transportation system surrounding Blacksburg, Virginia (VTTI 2011a). The Smart Road offers many different simulations and services for interested parties to test their equipment. Examples of these services include (VTTI 2011a):

- Weather-making capabilities: Researchers can make rain, snow, wind, and ice
- Variable lighting test-bed: Can reproduce 95 percent of all lighting situations a driver may encounter on U.S. roads
- Pavement markings
- On-site data acquisition system
- Road weather information systems
- Differential GPS system
- Road access and surveillance
- Signalized intersection: A reconfigurable intersection that consists of two high-speed and two low-speed approaches. It is also equipped with customized controllers, vehicle presence sensors, and wireless communications.

In addition to the services listed above, the Smart Road features four hundred electronic sensors buried in the pavement that can determine the weight and speed of vehicles, as well as the stress on the pavement. The road is equipped with an advanced communication system including a wireless local area network (LAN) that works with a fiber optic backbone. The network interfaces with several on-site data acquisition systems and road feature controls, and also has the ability to transfer data between the vehicle, research building, and infrastructure within the road (VTTI 2011a). The Smart Road has many applications for companies and organizations interested in testing and evaluating various items.

Center for Vehicle-Infrastructure Safety and the Center for Advanced Automotive Research

The focus of the Center for Vehicle-Infrastructure Safety at VTTI was cooperative safety systems,
intersection collision avoidance, roadway delineation, and roadway and vehicle lighting (VTTI 2011b). Two different research groups, the Cooperative Safety Systems (CSS) group and the Lighting and Infrastructure Technology (LIT) group, helped the center achieve its goal of providing solutions to real-world issues. The CSS group focused on algorithms, warning methods, and driver behavior associated with cooperative safety systems at traffic signal and stop-controlled intersections (VTTI 2011b). The LIT group investigated how different lighting techniques and applications affect driver safety. It also studied road-user safety in adverse weather conditions. Work included the CICAS for Violations (CICAS-V) program, which aimed to reduce and prevent vehicle crashes at intersections by providing warnings to violating drivers (VTTI 2011b). This work has resulted in a number of papers related to intersection violation warning systems and intersection decision support systems (Neale et al. 2006 and Neale et al. 2007).

In recent years, connected vehicle research has been conducted by the Connected Vehicle Systems group within the Center for Advanced Automotive Research at VTTI. In addition to CICAS-V work, the center has completed work relating to speed limit and curve warning advisories as well as connected vehicle interface requirements. Ongoing work includes support for the USDOT Safety Pilot Model Deployment and Driver Clinics, human factors research for connected vehicle applications, and research into connected motorcycle crash warning interfaces and system performance (VTTI 2013).

Automated Vehicle Systems

University of Virginia Center for Transportation Studies Activities

The University of Virginia is also actively involved in researching connected vehicle technologies through their Center for Transportation Studies. Among the research are several connected vehicle projects.

One project that concluded in 2007 was Real-Time Accident Management across Multiple Agencies Using Ad-Hoc Wireless Networks. The project proposes a system of ad-hoc wireless networks which will create real-time accident information sharing between the vehicles involved in an accident, rescue squads, a crash evaluation system, the Virginia Department of Transportation, hospitals, police, and other parties. The system is initiated when a vehicle crashes, automatically triggering the emission of accelerometer data wirelessly to the remote vehicle crash model facility. There, vehicle models interpret the data and determine the severity of the accident and likely injuries, sending the data to VDOT, rescue squads, and hospitals, which then use the information to determine an appropriate response. This information can be used not only to improve response time for first responders, but can also be used by VDOT to manage traffic (through variable message signs, signal timing, reversible lanes, etc.), reducing congestion and further improving accident response time (Kripalani and Scherer 2007).

Another project conducted by the Center for Transportation Studies that was completed in 2009 was the Research Foundation to Support Cooperative Infrastructure/Vehicle Surface Transportation Control/Management. This project’s key objectives were to develop an integrated modeling environment that allows existing component models to emulate a cooperative infrastructure/vehicle control/management system, create and explore cooperative control strategies, and evaluate tradeoffs relating to transportation system performance measures (Smith 2009).

A recently finished project, Advanced Freeway Merge Assistance: Harnessing the Potential of
IntelliDrive, attempted to develop a connected vehicle simulation environment that is capable of replicating vehicular movements, incorporating wireless communications (Wireless Access in Vehicular Environments (WAVE)/DSRC standards) and simulate message sets (Society of Automotive Engineers (SAE) J2735 standard) (Smith and Park 2011). Additional simulations could be conducted in further research. Success in simulation testing could result in prototype testing on a closed course. Course testing would be used to identify technical questions, assess human factors, and support technology transfer (FHWA 2011). The study began in October 2009 and ended in June 2012. The project was funded by the FHWA EAR program with a budget of $500,000 (Ferlis 2012).

Several projects at the University of Virginia have been part of the Cooperative Transportation Systems Pooled Fund Study. The study was created by a group of transportation agencies. Besides Virginia DOT, the participating agencies are FHWA, and the departments of transportation in California, Florida, Michigan, New York, Texas, and Washington. Virginia DOT is the lead agency, with the University of Virginia Center for Transportation Studies serving as technical leadership provider (Center for Transportation Studies 2013). The current pooled study projects include Multi-Modal Intelligent Traffic Signal System: Development of Concept of Operations, System Requirements, System Design and a Test Plan, Traffic Management Centers in a Connected Vehicle Environment, and 5.9 GHz Dedicated Short Range Communication Vehicle Based Road and Weather Condition Application. Previously completed projects under the Cooperative Transportation Systems Pooled Fund Study include Aftermarket On-Board Equipment for Cooperative Transportation Systems: Enabling Accelerated Installation of Aftermarket On-Board Equipment for Cooperative Transportation Systems, Certification Program for Cooperative Transportation Systems: Preparing to Develop a Standards Compliance and Interoperability Certification Program for Cooperative Transportation Systems Hardware and Software, IntelliDrive Traffic Signal Control Algorithms, Investigation of Pavement Maintenance Support Applications of IntelliDrive, and Investigating the Potential Benefits of Broadcasted Signal Phase and Timing Data under IntelliDrive (Center for Transportation Studies 2013).

Canada

ITS for Rapid Bus Service

While the majority of connected vehicle work in North America has been done in the United States, Canada is also working on its own research. The Intelligent Transportation Systems in 98 B-Line Rapid Bus Service: Advanced Technology at Work project improves bus efficiency. The 98 B-Line is 16 kilometers long with as many as 24 buses in operation at the same time. Buses stop every 5 to 6 minutes in peak periods and every 15 minutes in the evening. Among the measures taken to increase transit efficiency, traffic signals have been installed that give priority to B-Line buses when they are behind schedule. Most of the signalized intersections (87 percent) along the 98 B-Line can give priority to buses by minimizing the need to stop or the duration of red signals. An on-board computer sends a signal using bus-mounted transponders to request priority from roadside traffic signal controllers (Kitasaka 2011).

The ITS system for the buses uses automatic vehicle location and schedule adherence monitoring which is enabled by a differential global positioning system and the on-board computer that has schedule information and can process GPS data. Bus operators can view their real-time schedule adherence on a mobile data terminal. The terminal also supports two-way messaging between buses and the control center. The system allows transit controllers to identify and respond to traffic conditions and operational needs by communicating with drivers.

Real-time information on bus arrivals is displayed on buses and at stations through dynamic message signs and speakers that announce the station being approached. The station information is determined using information from the GPS unit. Dynamic message signs installed at stations, such as the one shown in Figure 9, display arrival
times for the next B-Line buses approaching the station, based on real-time vehicle positions and speeds. Such applications are becoming common for bus systems. For instance in Ireland, Dublin’s *Automatic Vehicle Location System* and in Michigan, the University of Michigan’s *Magic Bus* provide real-time bus location data and estimated arrival times to passengers (NTA 2011 and University of Michigan 2011).

COMMERICAL VEHICLE BORDER WAIT TIME PROJECT

Transport Canada invested in a smarter border by conducting a major border wait time project in Ontario called the Commercial Vehicle Border Wait Time Project. The project was a collaboration of Transport Canada and trucking associations. The goal of the project was to estimate commercial border crossing times by gathering data from trucks at five border crossing locations along the Ontario border. Monitoring began in 2006 and continued through 2010.

At the Ontario border crossings, Bluetooth readers were deployed. These readers could read and record digital signals from a distance of ten meters. The data that they acquired was then sent over the Internet. The readers can get signal information from all Bluetooth-enabled cell phones, hands-free headsets, and car in-dash units, which continuously emit a signal when turned on. This means that every Bluetooth device that passed a reader created a data entry with a time stamp and unique identifier specific to that device. The series of deployed Bluetooth readers were used to measure queue and crossing times for border traffic (Sabean and Jones 2008).

By the end of the project, nearly 650,000 observations had been collected from GPS data logs and Bluetooth devices – more than 330,000 of these records were from commercial vehicles at Ontario’s four major border crossings, and more than 310,000 observations came from passenger

![Figure 9: Real-time Passenger Information Display at Bus Terminals](Source: Kitasaka 2011)
vehicles crossing through the Detroit-Windsor Tunnel (Shallow 2011). These observations can be used to improve traffic management and border efficiency (Shallow 2008).
III. CONNECTED VEHICLE EFFORTS IN ASIA AND OCEANIA

In Asia and Oceania, the majority of connected vehicle research and infrastructure deployment is conducted in Japan. A significant portion of the work has been done at the national level. Once nationally funded infrastructure has been deployed, industry partners have tested and released technologies that can interact with the infrastructure. Companies that have gained experience in connected vehicle technologies (mostly in Japan, but also in Taiwan and Australia) have applied their knowledge to aiding research and deployment efforts in other countries as well.

Figure 10 shows the geographical distribution of projects throughout Asia and Oceania.

JAPAN

HISTORY OF ITS IN JAPAN

Japan has a long history of ITS and connected vehicle technology. Early research and development on Japanese ITS systems included work on the Comprehensive Automobile Traffic Control System (CACS) which began in 1973, the Road Automobile Communication System (RACS) which began in 1984, the Advanced Mobile Traf-

Vehicle Information and Communication System (VICS)

These projects led to the development of the Vehicle Information and Communication System (VICS). Three government agencies (Ministry of Construction, National Police Agency, and the former Ministry of Post and Telecommunications) began collaborating on VICS in 1990, and in 1991, began working with industry. In 1996, VICS service began. VICS delivers traffic and travel information such as traffic congestion data, data on availability of service and parking areas, and information on road construction and traffic collisions to drivers. It can be transmitted using: infrared, microwaves (on industrial, scientific and medical (ISM) radio band, 2.4 GHz), or FM. VICS can be displayed as simple text data, simple diagrams, or maps on navigation units (VICS 2011).

ITS Japan

The Vehicle, Road and Traffic Intelligence Society (VERTIS) was formed in 1994 and brought together government entities, university experts, industry, and associations. In 1996, the overall framework for ITS in Japan was created. VERTIS became ITS Japan in 2001 and also in that year, the IT Strategic Headquarters was formed as part of the government of Japan’s Cabinet (Cabinet Secretariat 2011). The purpose of this headquarters is to help Japan keep pace with the telecommunication technology and to promote advanced information and telecommunications networks.

Electronic Tolling

Electronic toll collection (ETC) service in Japan began in 2001. The toll service uses a 5.8 GHz antenna to manage transactions. As of 2011, 90 percent of all toll transactions were conducted using ETC. On board equipment originally cost around US$400 when the service began, but as of 2008, the cost was around US$150. Some models of Japanese cars come with the on-board unit (OBU) for ETC already installed. Over 40 million toll transponders are in use in Japan (up from 24 million in 2008) and there are around 5.6 million toll transactions per day. Japan uses one standard electronic toll system for the whole country so one transponder and payment card can be used on any toll network in the country (Ogata 2008). In addition, almost all Japanese highways are toll roads, making this system rather ubiquitous (Fukushima 2011a).

Japan’s ITS Plan

In January of 2006, the IT Strategic Headquarters developed a document entitled the New IT Reform Strategy, which outlines the overall IT plan. This plan discusses collaboration between the public and private sectors to “realize advanced ITS that can integrate pedestrians, roads, and vehicles and lead Japan into the world’s safest road traffic society.” The goals of this plan are to reduce traffic fatalities and serious injuries by deploying Driving Safety Support Systems (DSSS) and to reduce the time between when an accident occurs and when the person is admitted to a medical facility.

ITS Spot Service

In March 2011, Japan began a nationwide ITS Spot Service. ITS Spots are roadside units that can transmit and receive messages. So far 1,670 Spot units have been installed across the country, and more than 50,000 OBUs have been sold (Suzuki 2013). These Spots can be used to inform drivers of road obstacles, weather events, or other hazardous conditions. Figure 11 depicts the Spot Service infrastructure unit (1) and in-vehicle unit (2).

The three basic services provided by ITS Spots include dynamic route guidance, safety driving support (warnings), and electronic toll collection. The Spots also collect probe vehicle data, and by early 2013, nearly three million vehicle kilometers traveled worth of probe data was being collected per month (Suzuki 2013).

In one case where this technology has been deployed near a curve on a major expressway running through Tokyo, accidents have been reduced by 60 percent. Another example of the usefulness of Spot Service occurred after the earthquake that hit Japan in March 2011. Using data from the
Spot Service, ITS Japan was able to obtain information on which roads were closed, which was then used to assist in rescue operations. Warning information was also broadcast from ITS Spots immediately following the earthquake (Japan 2012).

Driving Safety Support Systems (DSSS), Advanced Safety Vehicle (ASV), and Smartway

The DSSS system is a typical connected vehicle system in which vehicles obtain information from roadside units (RSUs), other vehicles, or pedestrians, and those devices can also pass information back to the vehicle enabling a driver to respond to traffic conditions. The V2I system is based on the same IR light beacon RSUs used for VICS (European Commission 2009 and Fukushima 2011a).

Within the National Police Agency of Japan, the Universal Traffic Management Society of Japan (UTMS) is working on the DSSS project. The project has allowed automakers, including Honda, Toyota, Nissan, Mitsubishi, and Mazda, to use public roadways to test inter-vehicle and road-to-vehicle communications. As part of deployment, the National Police Agency of Japan planned to install RSUs at around 1,000 dangerous intersections across Japan but in mid-2009, a regime change led to police infrastructure budget cuts, shelving many of the RSU plans. Some intersections in Tokyo and Kanagawa were still approved, however, and automotive manufacturers have been lobbying to get funding for RSUs back (Fukushima 2011a).

Honda began its DSSS testing with two vehicles, a Forza scooter and an Odyssey, to verify inter-vehicle and road-to-vehicle communication func-
tions (ASV-4), DSSS functions, and to collect and present data to contribute to evaluating system effectiveness. Overall, Honda is hoping to prevent rear-end collisions, collisions involving a vehicle turning into oncoming traffic, and collisions from vehicles passing each other. After completing these initial tests, Honda participated in joint government and private-sector large scale verification testing from March 24 to March 28, 2008 in Utsunomiya City, Tochigi Prefecture, Japan (Honda 2008). More recently, Honda demonstrated its DSSS and ASV equipped vehicles, including an Odyssey minivan, Forza motorcycle, and IT Mopali 4 electric cart. These demonstrations occurred while Honda participated in ITS-Safety 2010, a large-scale verification testing project for DSSS, ASV, and Smartway. ITS-Safety 2010 ran from December 2008 to March 2009 and had the goal of achieving practical application of vehicle-infrastructure cooperative systems by March 2011 (Toyota 2009).

Toyota has also participated in DSSS tests on public roads. It used 100 vehicles equipped with drive recorders to determine whether communication devices on traffic signals and stop signs affect traffic accident rates at high-risk intersections. To test this, Toyota used infrared beacons placed at five intersections that communicate with on-board navigation display systems in the participating vehicles. These tests began in December of 2006 and were completed in June of 2007 (Toyota 2006). Toyota participated in additional tests in early 2009 which were part of the ITS-Safety 2010 intelligent transport systems testing program (Toyota 2009). They involved 200 participants, half of which were Toyota employees, and half of which were members selected from the general public. Toyota demonstrated ITS technologies that it developed at a public event hosted by the Universal Traffic Management Society of Japan in April of 2009.

In January of 2009, Nissan announced that it would participate in the ITS-Safety 2010 tests. Nissan’s advanced vehicle-to-infrastructure communications system was among the items to be tested at the event. The system had been undergoing testing within the company since 2006 with the participation of 2,000 people (Nissan 2009). Mazda was also a demonstration participant, showing the Mazda MPV and Mazda Atenza and had been involved in validation trials for ITS technologies on public roads since 2006 (Mazda 2009). Other ITS-Safety 2010 demonstration participants included Mitsubishi, NEC Corporation, Panasonic, Yamaha, Kawasaki, and Suzuki (Nippon News 2009).

The Smartway 2007 project was designed to create a road system that could exchange information among cars, drivers, pedestrians, and users using DSRC (Harris 2010). It was originally a field test of various road warning applications, such as merge assist, curve warning, congestion warning, and weather information. In the original test, sensors were placed in vehicles which received input from the applications on the road. In 2008, there were additional field tests, with the intent of leaving the infrastructure in place as was the case with the 2007 test. In 2009, these test beds were expanded and made available to the public (IntelliDriveUSA 2010b). By 2010, around 1,600 ITS Spot units were installed with most located on expressways. For instance, on the Tokyo Metropolitan Expressway, 32 Spot units were installed in 2009 and another 166 units were installed in 2010. The plan is to install a unit every 10 to 15 kilometers, and every four kilometers on urban expressways (Harris 2010). As of November 2010, five manufacturers had released systems that interact with ITS Spot units, including Toyota, Pioneer, Mitsubishi Electric Co., Panasonic, and Mitsubishi Heavy Industries (Adams 2010). Since then, several other automakers (e.g., Audi, Citroen, Mazda, Mercedes-Benz, Mitsubishi Motors, Nissan, Peugeot, Suzuki, and Volkswagen) and navigation system manufacturers (e.g., Alpine and Clarion) have released systems (Suzuki 2013).

Though the three systems tested at the ITS-Safety 2010 Industry-Wide Tests were all connected vehicle systems, they are uniquely different. DSSS uses V2I communications with vehicle sensors and optical beacons sending information from infrastructure to drivers, warning them of potentially dangerous situations. Features of DSSS in-
 include alerts for traffic signals and stop signs; rear-end, crossing, and turning collision avoidance; and information on other vehicles turning and changing lanes. The ASV system uses both 5.8 GHz DSRC and 700 MHz communications for V2V communications to warn drivers of potential collisions with other drivers (Fukushima 2011a). Features of ASV include rear-end, crossing, and turning collision avoidance and information on nearby emergency vehicles. Smartway uses 5.8 GHz DSRC V2I communication to gather information about congestion or road obstacles and relays that information to other vehicles, helping them avoid congested areas. Smartway features include information on obstacles and conditions ahead, merge assist, and location information via electronic signs (Nissan 2009). Figures 12, 13, and 14 diagrammatically display the function of DSS, Smartway, and ASV respectively.

START ITS FROM KANAGAWA, YOKOHAMA (SKY) PROJECT

The Start ITS from Kanagawa, Yokohama (SKY) project was another Japanese initiative. Project goals were to ease traffic congestion and reduce accidents. The project began in October 2004 in Yokohama, Japan and focused on collecting real world vehicle data from other users. Nissan, Panasonic, NTT Docomo, and Clarion worked with various units of the Japanese government on this project. Testing occurred from 2006 through 2009 and public service for intersection collision avoidance was made available in July 2011 (Fukushima 2011b). A similar Nissan effort is underway called Carwings, which connects mobile phones and navigation systems to promote fuel-efficient driving and ease congestion. Like the SKY project, Carwings obtains information from other users to plot energy efficient driving routes (Nissan 2011a).

CARWINGS PROJECT

In 2008, Japan gave the annual Energy Conservation Prize to Nissan’s Carwings, an on-board computer navigation system. On top of simply navigating, the system tracks fuel efficiency and provides suggestions on how to improve fuel efficiency. The service was also provided in the United States for owners of the Nissan Leaf. In the United States, the system tracks energy usage information and displays daily, monthly, and annual reports, which include distances traveled and energy consumption (Yoney 2010). Besides just tracking information, however, Carwings sends and receives data through a built-in general packet radio service (GPRS) radio. Using information

![Figure 12: Components of the Driving Safety Support Systems](Source: Nissan 2009)
received through the communications device, it tracks the driver’s efficiency ranking compared to other Leaf drivers globally and regionally (Austin 2011). The U.S. version of Carwings does not yet have the same ability to leverage a readily available nationwide database of real-time traffic conditions as it has in Japan. This database is operated by the Japanese Transportation Ministry and the police, and an equivalent does not exist currently in the United States.

UNMANNED VEHICLE TECHNOLOGY TESTING

The New Energy and Industrial Technology Development Organization (NEDO) in Japan is testing platoons of trucks that use radar, LiDAR (a laser-based ranging system), cameras, and 5.8GHz wireless communications to remain in formation (Kariatsumari 2013). The lead vehicle is driven by a professional driver, but the following vehicles can be unmanned. Project partners in the project include Mitsubishi Electric, NEC, Oki Electric Industry, Denso, Hino Motors, the University of Tokyo, and Nihon University (Owano 2013).

The project began in 2008 with a budget of ¥4.4 billion. In September 2010, NEDO ran road tests of platoons at 80 kilometers per hour with a following distance of 15 meters between vehicles. Recent tests in 2013 have used platoons at the same speed, but with a following distance of only 4 meters between vehicles. Shorter following distance reduces air resistance and improves fuel economy of the vehicles. NEDO is working to produce a practical version of the system by 2020. Similar platooning tests have been run in Europe under the KONVOI and SARTRE projects.

CHINA

STAR WINGS PROJECT

Beijing Transportation Information Center and Nissan developed Star Wings, a navigation system that is designed to reduce congestion and decrease travel times. Using probe data collected from 10,000 taxis, the system aggregates real-time traffic information that is then transmitted to vehicles to plan the fastest route and avoid congested areas (DueMotori 2007). Research suggests it can reduce travel time by 16 to 20 percent (Nissan 2008). Star Wings service first became available in Beijing in 2008, just months before the Olympic Games were held.

NEW TRAFFIC INFORMATION SYSTEM MODEL PROJECT

More recently Nissan and the China have part-
nered to pilot a route guidance system through their work on *New Traffic Information System Model Project*, which was launched in the Wangjing district of Beijing City in January 2012. The project involves the use of 12,000 user-equipped portable navigation devices and 600 Nissan vehicles equipped with devices to record detailed driving data. This technology is expected to reduce traffic congestion and greenhouse gas emissions (Nissan 2011b).

REAL-TIME INFORMATION

In January 2013, INRIX, a global leader in traffic information and driver services, announced that it would partner with CenNavi, a leading traffic information provider in China, to deliver improved real-time and predictive traffic information in 28 cities across China (INRIX 2013). Information will be made available in vehicles, on smartphones, and through broadcast news reports. The information will also be used in intelligent transportation systems where it will be used to manage traffic congestion.

CONNECTED TAXI APPLICATIONS

There are several cab-calling applications for mobile devices that are available in Beijing. As of March 2013, the popular application, “Didi Taxi,” is in use by more than 600,000 users and 12,000 drivers, nearly one fifth of Beijing's approximately 66,000 taxis. The application launched just five months earlier in September 2012 with just 200 test cabs and a few hundred users (Lu 2013). The application records the user’s current location and destination, then it sends this information to taxi drivers who can respond to the request. The application allows users to bid an extra amount above the metered fare for the taxi, a feature that can be used during high traffic periods to more quickly secure a taxi.

AUTOMATED VEHICLE ACTIVITIES

In 2010 the General Motors Electric Networked-Vehicle (EN-V) concept was displayed at the Shanghai Expo (Economist 2010). The vehicle

![Figure 14: Diagram of Advanced Safety Vehicle System](source: Nissan 2009)
was jointly designed by General Motors and Shanghai Automotive Industry Corporation (SAIC). The EN-V is capable of being driven normally or using an automated driving mode, in which the vehicle uses sensors and computing power to direct itself to the desired destination. The EN-V can also park itself and be summoned from its parking space using a mobile device.

In April 2011 General Motors agreed to integrate EN-Vs into the Tianjin Eco-City, and in June 2012, the company delivered its first vehicle (GM Media 2012). The Tianjin Eco-City is the first of several cities worldwide where the EN-V will be field-tested.

SINGAPORE

REAL-TIME INFORMATION

In 1998, Singapore installed an electronic congestion pricing system. Ten years later, Singapore launched a parking guidance system. By 2010, the country had 5,000 probe vehicles to generate and disseminate real-time traffic information. The information generated by the probes is sent to Singapore’s highly sophisticated and integrated backend, the i-Transport System, which uses both historic and real-time traffic data (Ezell 2010).

In addition to probe data, the i-Transport System is connected to the Expressway Monitoring Advisory System (EMAS), Green Link Determining System (GLIDE), Parking Guidance System (PGS) and the TrafficScan (LTA 2013). The collected data from these systems is primarily used for traffic monitoring and incident management as well as traffic analysis and planning. Singapore also makes the real-time data available to industry. The available data includes webcam images, textual traffic information (e.g., incidents, traffic speeds, estimated travel times, and construction locations), and parking availability in major parking lots (LTA 2013).

Throughout Singapore, adaptive computerized traffic signals have been deployed. In addition, at most bus stops, there are traffic information data terminals that show real-time bus status (Ezell 2010).

SOUTH KOREA

NATIONAL ITS 21 PLAN

Through its National ITS 21 Plan, South Korea will invest $3.2 billion in ITS deployment from 2008 to 2020. The country’s ITS infrastructure was built by establishing four initial ITS Model Cities, which used adaptive traffic signal control, real-time traffic information, public transportation management, and automated speed violation enforcement. There are now 29 cities with ITS technologies deployed. When these systems were initially deployed, it was found that average vehicle speed increased by 20 percent and delay time at major intersections decreased by nearly 40 percent (Ezell 2010).

As of the beginning of 2010, over 9,000 buses and 300 bus stops had been outfitted with operation management systems and traffic information data terminals. Public transit systems have now instituted an electronic payment system that uses cards or a mobile phone application to conduct transactions. Installation of these e-pay systems on mass transit was completed by the end of 2011. Electronic toll collection is available for half of all highway roads and will continue to expand to cover 70 percent of highways by the end of 2013 (Ezell 2010).

UBIQUITOUS CITY (U-CITY)

South Korea has embraced the concept of the “Ubiquitous City” (U-City) as part of their national urban development policy. The government finalized the first Comprehensive U-City Plan (2009-2013) to outline and support this policy. The core of the U-City vision is the integration of information and communication technologies with the urban landscape to create a system where information is available anywhere and city management is efficient and informed. As part of the U-City vision, transportation systems are connected (Korea Herald 2010). The vision for U-Transportation in U-Cities includes a traffic information service, public transportation information service, real-time traffic control, U-parking applications, and traffic information on roads connecting suburbs (Bang 2011).
The first U-City to be completed was Hwaseong-Dongtan which was finished in September 2008. The Ministry of Land, Transport and Maritime Affairs reports that a total of 36 local governments in existing cities including Seoul, Busan and Jeju and new cities including Incheon-Songdo and Paju-Woonjeong are developing U-City projects (Korea Herald 2010). The largest U-City will be Incheon-Songdo, which currently has more than 25,000 residents. Construction on the project is scheduled to be completed by 2016 (Arndt 2013).

TAIWAN

AUTOMOTIVE RESEARCH AND TESTING CENTER (ARTC) ACTIVITIES

Taiwan is home to several organizations that are advancing vehicle and technology research, most notably the Automotive Research and Testing Center (ARTC), founded in 1990 by the Taiwanese Ministry of Economic Affairs with the joint efforts of the Ministry of Transportation and the Communication, Environmental Protection Administration (ARTC 2011a). ARTC is particularly focused on helping Taiwanese automotive-related companies test products so that they can successfully launch them on the market. The center offers testing laboratories, test equipment, and a proving ground and provides a collaborative environment for the industrial, academic, and research communities (ARTC 2011a).

The ARTC has several connected vehicle-related initiatives, primarily revolving around safety. ARTC is researching lane-departure warnings, forward collision warnings, parking assist systems, blind spot information systems, and vehicle safety and security systems, among others (ARTC 2011b). Both the lane-departure and forward collision warning technologies involve a camera mounted behind the rear-view mirror that can detect lane markings or the vehicle ahead and alert the driver accordingly (ARTC 2011b). The parking assist system can, in real time, calculate the reverse trajectory using a signal from the steering angle sensor, which displays the image on a monitor in the vehicle (ARTC 2011b). This sensor provides the driver assistance with both backward and parallel parking.

ARTC offers several state-of-the-art laboratories. One in particular is the electro-magnetic compatibility (EMC) lab. The lab won certification of the American Association for Laboratory Accreditation/Automotive EMC Laboratory Accreditation Program and validation from General Motors, Ford, and Chrysler (CENS 2008). Therefore, the Center is able to certify companies’ products for compatibility, and this line of business has been very successful for the Center. ARTC also offers a proving ground which has nine test tracks, including test hills; a curvy and bumpy “Belgium Road” track constructed with granite blocks; a coast-down test track; a noise, vibration, and harshness surface test track; a brake performance test track; a pass-by noise test track; a general durability test track; a high-speed circuit; and a general performance test track (CENS 2008).

INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE (ITRI) ACTIVITIES

Another organization that is researching cutting edge connected vehicle technology is the Industrial Technology Research Institute (ITRI) of Taiwan. ITRI has developed a WAVE/DSRC Communication Unit (IWCU) which provides V2V and V2I communication capabilities enabling ITS applications. In October 2010, ITRI won a bid from CAMP for its IWCU technology to support the Vehicle-to-Vehicle Interoperability project, a connected vehicle project in the U.S. which is part of NHTSA’s Vehicle-to-Vehicle Safety Application Research plan. The Ministry of Economic Affairs has strongly supported telematics research projects in Taiwan beginning in 2008, and winning the bid is seen as a result of this support (ITRI 2010).

AUSTRALIA

SECURING 5.9 GHZ BANDWIDTH FOR ITS

Since 2008, Austroads, an organization composed of six state and two territory road transport and traffic authorities has conducted a series of studies making the case for securing 5.9 GHz bandwidth for ITS applications, developing management arrangements for applications using the
spectrum, and identifying pilot applications once the DSRC bandwidth has been secured (Austroads 2009). As of the publication of the 2012 Policy Framework for Intelligent Transportation Systems in Australia, the 5.9 GHz band has yet to be allocated for cooperative vehicle safety and mobility applications, though Australia is expected to allocate the 5.9 GHz band (Australia 2012).

In 2009, the Australian Communications Media Authority (ACMA) outlined proposals to secure the 5.9 GHz band of the spectrum for ITS (ACMA 2010). Australia currently has several services allocated to the 5.9 GHz band, including fixed satellite services and mobile services to support the introduction of ITS technologies.

INTELLIGENT SPEED ADAPTATION TRIAL

In 2009, the New South Wales Centre for Road Safety conducted an Intelligent Speed Adaptation Trial. Over 100 vehicles were connected to a centralized computer system which supplied drivers with information about changes to speed zones. These test vehicles provided more than 2 million individual speed compliance records. Initial results from the trial showed that using the technology decreased the proportion of time drivers spent traveling over the speed limit. These findings were presented at the 2009 Intelligent Speed Adaptation Conference in Sydney (Wall et al. 2009).

COHDA WIRELESS ACTIVITIES

Cohda Wireless is a technology company that was spun-off from the University of South Australia in 2004 (Leung 2012) and has developed a signal processing technology that improves transmission quality of the 802.11p radios used in connected vehicles (Stone 2009). The technology increases receiver sensitivity, transmission range, data speed, connection reliability, providing a robust, low-latency radio connection that could potentially be used for safety applications. Cohda’s technology also allows signals to be bounced around corners, improving data reception, especially in urban environments (Cohda 2012).

The technology has so far been tested in over 17,000 kilometers of on-road trials which have involved the transmission of more than 200GB of data (Cohda 2012). Cohda technology has been used for connected vehicle testing in six different countries (Australia, Austria, Germany, Italy, Sweden, and the United States) as part of large deployments such as Germany’s simTD in Frankfurt, Germany and the Safety Pilot Model Deployment in Ann Arbor, Michigan (TTT 2009a and Cohda 2012).

A large scale, three-month test of Cohda Wireless technology was approved in 2011. The test involved V2V and V2I technology and was run by South Australia’s Motor Accident Commission, the Department for Transport, Energy, and Infrastructure; and the University of South Australia’s Institute for Telecommunications Research. The initial tests included a fleet of ten vehicles collecting data in normal driving conditions with data being uploaded via roadside equipment (RSE) at the Norwood Traffic Management Center (TTT 2011).

INTELLIGENT ACCESS PROGRAM (IAP)

In 2006, Australia’s national government passed legislation providing the legal foundation for the Intelligent Access Program (IAP). The IAP provides improved access to the Australian road network for heavy-duty commercial vehicles. The program uses a combination of satellite tracking and wireless communications technology to monitor heavy vehicles on the road network. The program can notify the government agencies if a vehicle deviates from approved routes or times.

Hardware installed for IAP includes an in-vehicle unit and a self-declaration input device. The in-vehicle unit automatically monitors and stores information, such as: date, time, vehicle position, vehicle speed, potential malfunctions, and attempts at tampering, which it can relay to government agencies. The self-declaration input device allows the vehicle operator to input information and explain behavior that may appear to be non-compliant to the Department of Planning, Transport and Infrastructure (TCA 2012).

NEW ZEALAND

NATIONAL ITS ARCHITECTURE

The New Zealand Transport Agency produced a
research report in March 2010 that proposed a framework for a national ITS architecture. This report reviewed international ITS models and research in the United States, Canada, Europe, and Australia and proposed a framework for developing an ITS architecture for New Zealand which included some connected vehicle technologies such as the use of DSRC and connected vehicles as probes for dynamic route guidance (James et al. 2010).

At the ITS New Zealand Summit 2012, several speakers discussed new safety applications in New Zealand. These included the national traffic management system, live traffic information services, and IP-based communications services (McCombs 2012).

In June of 2013, the Ministry of Transportation began working with the company AraFlow Limited to run a trial involving real-time traffic information collection and dissemination along State Highway 2 between Auckland and Tauranga. The project will run until April 2014 and will use Bluetooth traffic sensors to collect anonymous data from passing vehicles, including average speeds, journey times, traffic incidents, and congestion. The collected information will be transmitted to drivers of commercial vehicles using dedicated roadside transmitters and in-cab units (Ministry of Transport 2013).
IV. CONNECTED VEHICLE EFFORTS IN EUROPE AND THE MIDDLE EAST

Many of the large connected vehicle research projects in Europe are at least partially funded by the European Commission, national governments, and industry partners. These projects are often characterized by the large consortia involved in conducting the work, which often include representatives from automakers, suppliers, universities, municipalities, and other government agencies.

Figure 15 shows the geographical distribution of projects throughout Europe/Middle East. Many projects in Europe are spread across several countries; for mapping purposes, such projects are assigned to the country of their lead coordinator.

<table>
<thead>
<tr>
<th>EUROPE-WIDE PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPEAN ROAD TRANSPORT TELEMATICS IMPLEMENTATION CO-ORDINATION ORGANIZATION (ERTICO-ITS EUROPE)</td>
</tr>
</tbody>
</table>

The European Road Transport Telematics Implementation Co-ordination Organization (ERTICO) is Europe’s premier ITS organization (akin to ITS America in the U.S.). It brings together several European countries, automotive companies, suppliers, and other organizations and fosters research in various ITS-related activities. The organization has several activities in the safety, security, efficiency, and environment realms.

In the safety realm, ERTICO is firmly committed...
to the tremendous effect that ITS-related technology can have on reducing the number of motor vehicle accidents. ERTICO estimates the cost of motor vehicle crashes in Europe to be €200 billion per year and thus views crashes as a significant cost to society (Commission of the European Communities 2006). In the realm of security, priority areas include border control, the fight against terrorism, and civilian emergency and critical infrastructure protection. In addition Europe is certainly not immune to the issue of congestion and all the problems it causes. As a result of these numerous issues, ERTICO is involved in several different types of ITS-related initiatives. ERTICO’s website provides a full listing of these initiatives (ERTICO 2012). ERTICO divides its projects between the topics of cooperative mobility, eco-mobility, safe mobility, and info-mobility.

Current and recently completed cooperative mobility projects include:

- **Sustainability and Efficiency of City Logistics** (CITYLOG) (January 2010-December 2012), which was focused on increasing the efficiency of deliveries using adaptive and integrated mission management and innovative vehicle solutions.

- **The Communications for eSafety 2** (COMeSafety2) project (January 2011-December 2013) involves coordinating activities related to the deployment of cooperative ITS on European roads. The focus of these projects includes standardization issues; best practices from European, Japanese, and US field operational tests (FOTs); a cooperative multimodal ITS architecture concept; and needs analysis among others.

- **The Instant Mobility** project (April 2011-March 2013) centered on providing Internet access for transport and mobility.

- **Support Action for a Transport ICT European large scale action** (SATIE) (September 2011-August 2014) is intended to serve a consulting role to the European Commission with regards to planning large-scale actions.

- **The Europe-Wide Platform for Connected Mobility Services** (MOBiNET) service platform (November 2012-June 2016) is an €11 million project involving 34 partners. Its goal is to simplify the Europe-wide deployment of connected transport services and create an “Internet of Mobility” and promote openness, harmonization, interoperability, and quality.

- **The Cooperative Mobility Pilot on Safety and Sustainability Services for Deployment** (Compass4D) project (January 2013-December 2015) focuses on improving safety, energy efficiency, and congestion. The project includes the cities of Bordeaux, Copenhagen, Helmond, Newcastle, Thessaloniki, Verona and Vigo. The project will work to deploy required infrastructure in addition to developing business models, cost-benefit analysis, and exploitation plans.

COOPERATIVE ITS CORRIDOR (ROTTERDAM - FRANKFURT/MAIN - VIENNA)

In June 2013, the ministries of transport from the Netherlands, Germany, and Austria signed a memorandum of understanding to equip a corridor from Rotterdam through Frankfurt-Main to Vienna with RSUs required to provide cooperative services to vehicles traveling the route. The services will offered beginning in 2015 and will include road warnings and probe vehicle data. The equipment deployed will utilize DSRC (i.e., 802.11p, 5.9 GHz) and cellular networks (e.g., 3G or 4G). The route will be the first deployment of a cooperative intelligent transport system between multiple countries. The deployment will require cooperation between the relevant ministries in each country, highway operators, and the vehicle manufacturers (BMVBS 2013).

DRIVING IMPLEMENTATION AND EVALUATION OF C2X COMMUNICATION TECHNOLOGY (DRIVE C2X)

The **PREparation for DRIVing implementation and Evaluation of C2X communication technology** (PRE-DRIVE C2X) project was an FOT that used European COMeSafety architecture to create a V2X communication system. The project developed specifications for the system and created a functional prototype that could be used in future FOTs. A major goal of PRE-DRIVE C2X was to develop a simulation model to estimate the benefits of a cooperative system in terms of safety, efficiency, and environment. This model includes
the tools and methods needed to perform functional verification and testing of cooperative systems in both the laboratory and on the road. The project ran from 2008 to 2010. The budget was €8.4 million and the project received funding of €5.0 million from the European Commission Information Society and Media as part of the 7th Framework Programme. The project was also supported by the European Council for Automotive R&D (EUCAR) (PRE-DRIVE C2X 2011).

The goal of the follow-up project to PRE-DRIVE C2X, DRIVing implementation and Evaluation of C2X communication technology (DRIVE C2X), was to create a Europe-wide testing environment for C2X technologies. The project was designed to raise public awareness on connected vehicle technologies, inform standardization organizations, and initiate new public-private ventures. It was envisioned that these activities would create a better environment for the commercialization of connected vehicles in Europe (DRIVE C2X 2012).

DRIVE C2X, which ran from 2011 to 2013, had 31 partners and 15 support partners. The final event was hosted in Gothenburg, Sweden on June 13-14, 2013 (DRIVE C2X 2013). The total budget for DRIVE C2X was €18.8 million, with €12.4 million coming from the European Commission. The DRIVE C2X test deployment included seven test sites in Finland, France, Germany, Italy, Netherlands, Spain and Sweden (DRIVE C2X 2012). Projects under C2X included:

- Dutch Integrated Testsite Cooperative Mobility (DITCM) (Helmond, Netherlands)
- Safe and Intelligent Mobility Test Germany (simTD) (Frankfurt/Main, Germany)
- System Coopératif Routier Expérimental Français (SCORE@F) (Yvelines, France)
- Cooperative Test Site Finland (Coop TS Finland) (Tampere, Finland)
- Vehicle and Traffic Safety Center (SAFER) (Gothenburg, Sweden)
- SIStemas COoperativos Galicia (SISCOGA) (Galicia, Spain)
- Test Site Italy (Brenner Motorway, Italy)

The lead coordinator on the project was Daimler and partners included ten other automakers, eight suppliers, 16 research institutions, and 11 other organizations (EICT 2011 and DRIVE C2X 2012). The functions that were tested are related to traffic flow, traffic management, local danger alert, driving assistance, internet access and local information services, and test site-specific functions that were defined independently by each test site (Flament 2011).

The test sites can be seen in a map in Figure 16. Detailed information on individual projects can be found in the country sections on subsequent pages.

HARMONIZED eCall European Pilot (HeERO)

The objective of the Harmonized eCall European Pilot (HeERO) is to prepare the infrastructure necessary for a European in-vehicle emergency communication service that will harmonize the disparate national services and ensure cross-border interoperability. The pilot participants will then share their experiences and best practices with other countries and help expand the program (HeERO 2012). This service uses “112,” the single European emergency number.

In the event of a serious automobile accident, the system will automatically notify emergency services. The system will transmit location information on the accident, as well as allow voice contact between operators and crash victims.

Several countries are working together to develop this emergency call service. The HeERO consortium consists of nine countries:

- Croatia
- Czech Republic
- Finland
- Germany
- Greece
- Netherlands
- Italy
- Romania
- Sweden

These countries are carrying out the work needed to start up the system that will soon be used across the European Union as well as in the coun-

INTERNATIONAL SURVEY OF BEST PRACTICES IN CONNECTED AND AUTOMATED VEHICLE TECHNOLOGIES

MICHIGAN DEPARTMENT OF TRANSPORTATION & THE CENTER FOR AUTOMOTIVE RESEARCH
tries of Iceland, Norway and Switzerland (HeERO 2012).

Ideally, the HeERO technology will cost around €100 per vehicle once it is implemented in all new vehicles. Part of the rationale for standardizing the technology across all of Europe is to take advantage of economies of scale and reduce cost. In addition to being used for emergency calls, the in-vehicle devices could be used for commercial uses such as usage-based insurance, electronic tolling, and stolen vehicle tracking (HeERO 2012).

The project started in January 2011 and will continue through December 2013. The project’s total budget is €10 million, €5 million of which is being provided by the European Commission under the Information and Communication Technologies Policy Support Program (ICT PSP) (HeERO 2012).

The project has been extended to HeERO2, which will run from 2013 to 2015. The project has an overall budget of €6.1 million, €3 million of which has been provided by the European Commission. The project’s goals will be to prepare and carry-out pre-deployment pilots as well as encourage wider adoption (HeERO 2013).

COOPERATIVE VEHICLE INFRASTRUCTURE SYSTEMS (CVIS)

The Cooperative Vehicle Infrastructure Systems (CVIS) project was an ERTICO program with 61 partners and was coordinated in Belgium. The goals of CVIS were to design, develop, and test vehicle communication technologies. CVIS used a hybrid of M5, infrared light, 2G/3G, and DSRC for communication, and Global Navigation Satellite System (GNSS) for positioning (Eriksen et al 2006). It was demonstrated that CVIS could increase road safety and efficiency while decreasing the environmental impact of road transport. Deliverables from CVIS included a standardized networking terminal for V2V and V2I communications, techniques for improving dynamic maps, new systems for vehicle and roadside equipment, development of cooperative applications, and a

![Figure 16: DRIVE C2X Projects throughout Europe](source: DRIVE C2X 2012)
International Survey of Best Practices in Connected and Automated Vehicle Technologies

toolkit addressing key non-technical challenges to deployment. The CVIS activities took place at seven different test sites, one each in France, Germany, Netherlands-Belgium, Italy, Sweden, United Kingdom, and Norway. The types of tests that took place at each test location are shown in Table 1. Local road authorities and operators, system integrators, suppliers, vehicle manufacturers, and service providers participated at each test site (CVIS 2012). The project was launched in February 2006 and was completed in mid-2010. The project budget was €41 million, with roughly half contributed by the European Union.

FIELD OPERATIONAL TEST NETWORK (FOT-NET)

The aim of the *Field Operational Test Network (FOT-Net)* project is to gather European and international researchers with FOT experience together to present results of FOTs and promote the *Field Operational Test Support Action (FESTA)* methodology as a common approach for FOTs. FOTs are large-scale testing programs for the assessment of the efficiency, quality, robustness and acceptance of information and communication technologies (e.g. navigation, traffic information, advanced driver assistance, and cooperative systems). FOT-Net is jointly funded by the European Commission DG Information Society and Media under the Seventh Framework Programme. The FOT-NET website contains a plethora of information on FOTs that have occurred or are planned in Europe, North America, and Asia (FOT-NET 2011).

CO-OPERATIVE SYSTEMS FOR SUSTAINABLE MOBILITY AND ENERGY EFFICIENCY (COSMO)

Co-Operative Systems for Sustainable Mobility and Energy Efficiency (COSMO) was a 32 month pilot project which began in November 2010 and ran through mid-2013. The project’s goal was to demonstrate the benefits of cooperative traffic management applications. Three pilot sites are being used for this demonstration: Salerno, Italy; Vienna, Austria; and Gothenburg, Sweden. These sites are implementing cooperative technologies developed in the recent European projects such as Co-Operative Systems for Intelligent Road Safety (COOPERS), CVIS, and Smart Vehicles on Smart Roads (SAFESPOT). Partners included Mizar Automazione, SWARCO FUTURIT Verkehrssignalsysteme GmbH, ASFINAG Service GmbH, Kapsch TrafficCom, Geo Solutions, ERTICO–ITS Europe, Société pour le Développement de l'Innovation dans les Transports,

<table>
<thead>
<tr>
<th>Application Sub-Project</th>
<th>France</th>
<th>Germany</th>
<th>Italy</th>
<th>Netherlands-Belgium</th>
<th>Sweden</th>
<th>United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooperative Network Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooperative Area Routing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooperative Local Traffic Control</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Dynamic Bus Lanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Interurban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced Driver Awareness</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cooperative Traveller's Assistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Freight and Fleet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dangerous Goods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Booking and Monitoring of Parking Zones</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Vehicle Access Control for Sensitive Zones</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Locus of Testing of the CVIS System

Source: CVIS 2012
The budget for the project was €3.8 million, €1.9 million of which comes from the European Commission (COSMO 2012). On May 15-16, 2013, COSMO held its final event where it presented on the results and outcomes of the project (ERTICO 2013). COSMO also ran a demonstration in mid-June during the final event for the DRIVE C2X project (COSMO 2013).

INFORMATION COMMUNICATIONS TECHNOLOGY (ICT) FOR ELECTRO-MOBILITY

Four European electro-mobility pilot projects were launched together on February 8, 2012. The projects each use ICT to enhance driving experiences for electric vehicle users.

SmartCEM

The Smart Connected Electro Mobility (smartCEM) project is designed to demonstrate how ICT solutions can make commuting in electric vehicles more practical and overcome shortcomings associated with them (smartCEM 2012). SmartCEM services being tested include:

- Navigation
- Efficient driving
- Trip management
- Charging station management
- Vehicle sharing managements

The Barcelona, Spain pilot is focused on electric motorcycles and scooters. The major mobility application being tested is an advanced open sharing service for vehicles. The pilot involves 45 motorcycles and 234 charging locations. The Gipuzkoa-San Sebastian, Spain pilot tests a hybrid bus application and a car sharing application. Testing will involve one hybrid bus, 30 electric cars, and 33 charging points. The Newcastle, United Kingdom pilot will test an eco-driving interface for 44 electric cars which can be charged at 1,300 charging points that will be available (though just over 200 charging points currently exist). The Turin, Italy pilot is focused on a sharing service for electric delivery vans. The test will involve ten delivery vans, five minivans, and two charging points (smartCEM 2012).

ICT 4 EVEU

The project Information and Communication Technologies for Electric Vehicles European Union (ICT 4 EVEU) project uses communications technologies to:

- Monitor use status of charging points
- Monitor status of vehicles
- Remotely reserve charging points
- Integrate payment methods for users
- Create a network of charging points

While specific technology is not specified on the website, it is made clear that the system being tested will make use of V2I communication technology. The pilots will take place at Bristol, United Kingdom; Pamplona and Vitoria, Spain; and Ljubljana and Maribor, Slovenia (ICT 4 EVU 2012).

MOBI.Europe

Mobility services offered under Integrated and Interoperable ICT Applications for Electro-Mobility in Europe (MOBI.Europe) include remote information on parking availability, remote parking reservations, and enhanced car sharing. The pilots will take place in Ireland, the Netherlands, Portugal, and Spain and will involve 1,200 electric vehicles and 1,850 charging points (MOBI.Europe 2012). The project will use Wi-Fi and 3G communications technologies.

MOLECULES

Services being tested under the Mobility based on eLE ctric Connected vehicles in Urban and inter-urban smart, cLean, EnvironmentS (MOLE CULES) pilot project include:

- Personal trip planning
- Electric Vehicle sharing/pooling
- Personal recharging advisor
- Personal carbon footprint advisor
- Electro-mobility billing support
- Incentives to electro-mobility
- Network strategies

The three pilot sites for MOLECULES are Barcelona, Spain; Berlin, Germany; and Grand Paris,
France. The project began in early 2012 and will run through December 2014. The budget for the project is €4.3 million (MOLECULES 2012).

CO-CITIES

The Co-Cities project started in January 2011 and is scheduled to run until December 2013. It is coordinated by AustriaTech and involves 13 other partners, including Brimatech Services, Fluidtime Data Services, Softeco Sismat, Regione Toscana, MemEx, Telematix Software, the Regional Organiser of Prague Integrated Transport, TomTom, POLIS, Atos, Asociación Cluster del Transporte y la Logistica de Euskadi, Telematix Software, the Regional Organiser of Prague Integrated Transport, TomTom, and the Reading Borough Council (Co-Cities 2013).

Pilots will be conducted in the cities of Bilbao, Spain; Florence, Italy; Munich, Germany; Prague, Czech Republic; Reading, United Kingdom; and Vienna, Austria. Each pilot will offer cooperative mobility services (e.g., dynamic navigation, intermodal routing, and real-time traffic advice) and refine the system based off of user feedback.

EUROPEAN FIELD OPERATIONAL TEST ON SAFE, INTELLIGENT AND SUSTAINABLE ROAD OPERATION (FOTsis)

The European Field Operational Test on Safe, Intelligent and Sustainable Road Operation (FOTsis) is a Europe-wide project that is running from April 2011 through September 2014. It has 24 partners, including Aalto University Foundation, ACB Systems, Association Europeenne des concessionnaires d'autoroutes et d'ouvrages a peage, Center for research and technology Hellas, Centro de innovación de infraestructuras inteligentes, European Union Road Federation, Federation International de l'automobile, France Telecom, Geoville, GMV Sistemas, GMVIS Skysoft, Ilmatieteen Laitos, Indra, Iridium, Marestrada, Nea Odos, OHL Concesiones, Optimus, Planestrada, Sice, Terna Energy, Transver, Universidad de Murcia, and Universidad Politécnica de Madrid.

The project is a large-scale field test of the road infrastructure management systems needed for the operation of several close-to-market cooperative communications technologies. These include:

- Emergency Management
- Safety Incident Management
- Intelligent Congestion Control
- Dynamic Route Planning
- Special Vehicle Tracking
- Advanced Enforcement
- Infrastructure Safety Assessment

The tests will involve four pilot communities in Spain, Portugal, Germany, and Greece. The budget for the project is €13.8 million with €7.8 million being provided by the European Commission (FOTsis 2013).

PROGRAMME FOR A EUROPEAN TRAFFIC OF HIGHEST EFFICIENCY AND UNPRECEDENTED SAFETY (PROMETHEUS)

Europe’s largest automated vehicle project, the PROgramme for a European Traffic of Highest Efficiency and Unprecedented Safety (PROMETHEUS) ran from 1987 to 1995. The project cost nearly €750 million and involved eleven countries, including United Kingdom, Sweden, Norway, the Netherlands, Italy, France, Finland, Germany, Switzerland, Belgium, Austria (EU-REKA 2013). The PROMETHEUS program was headed by many automakers (including BMW, Fiat, Ford, Jaguar, MAN, Matra, Peugeot, Porsche, Renault, Rolls Royce, Saab, Volkswagen, Volvo, Daimler Benz, Opel, Saab Scania, and Volvo) from across Europe. Other participants were drawn from automotive suppliers, the electronics industry, universities and research institutes, traffic engineering firms, and public agencies. The objectives of the program were to reduce road accidents and to improve traffic efficiency. By the end of the project in the mid-1990s, prototype automated vehicles had been developed and tested on Parisian highways and the German Autobahn. The PROMETHEUS program paved the way for subsequent initiatives such as Italy’s ARGO project (1996-2000) and more recent automated vehicle work (ARGO 2013).

CITYMOBIL

The CityMobil project began in May 2006, and
the final event was held in Brussels in December 2011. The project budget was €40 million, with €11 million provided by the European Commission. The project had 29 partner organizations (CityMobil 2013).

The project emphasized public transit applications of automated vehicles rather than automobile or trucking applications. CityMobil included implementation of advanced transport systems in three cities: Heathrow, United Kingdom; Rome, Italy; and Castellón, Spain. A conference was held in the City of La Rochelle which involved a presentations and demonstrations.

Vehicle systems demonstrated as part of the project included low-speed, driverless “CyberCars” that provide taxi-like services (Rome and La Rochelle); vision-guided bus technology (Castellón); automated personal rapid transit that requires a dedicated infrastructure (Heathrow Airport); and dual mode vehicles (normal vehicles with automated driving capabilities).

Germany

SAFE AND INTELLIGENT MOBILITY TEST GERMANY (SIMTD)

As part of Drive C2X, the German state of Hesse and the city of Frankfurt worked with several automakers, Tier 1 suppliers, and communication companies on a four-year test involving vehicles and road side units with wireless communication capabilities. The project involved the testing of car-to-x communication, which includes V2V and V2I communication.

The project, which started in 2008 and was planned to run for four years, is called Safe and Intelligent Mobility Test Germany (SIMTD). The project had a €53 million budget, €30 million of which was paid by the German government (TN 2012). In addition to the €53 million, the project was further supported with infrastructure investment from German government agencies and the state of Hessen. The technology used in the project is based on the wireless local area network (WLAN) standard 802.11p and 802.11b/g (DRIVE C2X 2012). Other communications technologies are also integrated into the system, such as Universal Mobile Telecommunications System (UMTS) and GPRS.

The project was headed up by Daimler and other private-sector partners included Audi, BMW, Bosch, Continental, Deutsche Telekom, Ford, Opel, and Volkswagen. Automaker partners provided equipped vehicles for the testing. For example, Ford provided 20 S-Max models (TN 2012). Research partners included Fraunhofer-Gesellschaft, German Research Center for Artificial Intelligence, Technical University of Berlin, Munich University of Technology, Saarland University of Applied Sciences, and University of Würzburg. Public-sector partners included the Federal Ministry of Transport, Building, and Urban Affairs, the Federal Ministry of Education and Research, the Federal Ministry of Economics and Technology, the Hessen State Office for Road and Transport, and the City of Frankfurt (SIMTD 2013).

The vision for SIMTD was to create a system that could enhance road safety, improve traffic efficiency, and integrate value-added services. Applications tested under the project included (TN 2012):

- Electronic brake light
- Obstacle warning system
- Traffic sign assistance
- Public traffic management
- In-car internet access

The project field test occurred from July to December 2012. Testing occurred on urban roads and rural highways using 120 test vehicles, which included cars and motorcycles (SIMTD 2013). The test field was located in the Frankfurt-Rhine-Main area and included 104 RSUs, 69 of which are linked with traffic lights and another 21 positioned at intersections. The testing area included 96 kilometers of highway, 53 kilometers of rural road, and 24 kilometers of urban road. An additional closed testing site was located at Ray Barracks in Friedberg. That site plan for the closed site included three RSUs, one of which was linked to a traffic light (DRIVE C2X 2012).

In total, the project used 500 test drivers who logged more than 41,000 testing hours over
1,650,000 kilometers. The collected test data required more than 30 TB of storage (simTD 2013). After processing and analyzing the data, researchers concluded that the simTD system can improve knowledge of traffic conditions, lead to faster detection of traffic-related events, and improve transportation system safety.

In addition, the simTD project results indicate that penetration rates of 20 percent have significant positive effects on the overall traffic condition. Drivers of equipped vehicles are able to more quickly adapt their speed, distance, and driving behavior to traffic conditions (simTD 2013).

In October 2012, simTD team members presented project results at the ITS World Congress in Vienna, Austria. At the event, there was a motorcycle equipped with the simTD system. Attendees could experience a virtual ride on the motorcycle, which included a viewing screen that displayed the vehicle route and demonstrated various functions, including intersection and cross traffic assistant, road work information, and emergency vehicle warnings (simTD 2013).

The final event for simTD was held on June 20th, 2013. Team members presented on the system and architecture and gave an overview of project results. The exhibition also included a demonstration that allowed participants to take a ride in a vehicle from the test fleet (simTD 2013). As part of finalizing the project, a German-language fact sheet was uploaded to the simTD website; the fact sheet can be viewed here.

DYNAMIC INFORMATION AND APPLICATIONS FOR ASSURED MOBILITY WITH ADAPTIVE NETWORKS AND TELEMATICS INFRASTRUCTURE (DIAMANT)

Also in Hessen, the Hessian State Office of Road and Traffic Affairs (HLSV) conducted Dynamische Informationen und Anwendungen zur Mobilitätsicherung mit Adaptiven Netzwerken und Telematikanwendungen or Dynamic Information and Applications for assured Mobility with Adaptive Networks and Telematics infrastructure (DIAMANT). Project partners included Adam Opel GmbH, Continental AG, Dambach-Werke GmbH, and the state of Hessen. The project has a five-year runtime (2008 to 2013), and total costs of €5.2 million. There is no external funding; each of the project partners bear their own costs. The vehicles used for testing are supplied by Adam Opel GmbH, the on-board units are from Continental AG, the roadside communication points are manufactured by Dambach-Werke GmbH, and the HLSV manages the road. Together this consortium attempted to promote C2X safety and efficiency applications in hopes of bringing them rapidly onto the market. Between them, the partners have the ability and expertise to conduct connected vehicle field tests (Hessen 2009). Applications tested under this program will provide information and warnings for drivers as well as allow for traffic management. The one-year test period was completed in 2011, and was followed by a period of data analysis (Opel 2011).

ADAPTIVE AND COOPERATIVE TECHNOLOGIES FOR INTELLIGENT TRAFFIC (AKTIV)

The German Adaptive and Cooperative Technologies for Intelligent Traffic (AKTIV) initiative, backed by a consortium of 29 partners, developed an assistance system under its Cooperative Cars (CoCar) project. The goal of the initiative is to prevent accidents using intelligent traffic management systems and mobile communications technologies for connected vehicles. The project was funded in part by the Federal Ministry of Economics and Technology. The Hessen test bed was used to evaluate applications such as traffic modeling and in-vehicle signing (Hessen 2009). Among the technologies used in AKTIV were cameras, radar, and laser sensors (Abuelsamid 2010). The AKTIV Communication Unit, developed as part of the project, complies with the IEEE 802.11p wireless standard for 5.9 GHz. The device is also available for WLAN standards IEEE 802.11a-g for 5.8 and 2.4 GHz (AKTIV 2011). AKTIV also used cellular mobile communication technologies, including Universal Mobile Telecommunications System (UMTS), High-Speed Packet Access (HSPA), and 3GPP Long Term Evolution (LTE), for communications tests (ETH 2009).The four-year project was com-
completed in 2010 (AKTIV 2013).

Wireless Wolfsburg

The *Wireless Wolfsburg* project was a concept that would provide internet connectivity to vehicles in the city. The network went live in 2008. At that time, the concept consisted of 66 wireless access points in part of the city, with each one costing approximately €2,000. At that point, the plan was to eventually install 400 access points across the city. In addition, the project was considering expanding to include other cities. The network was created to serve the Volkswagen Research Group in testing new vehicle information applications and to provide vehicle passengers with access to local information about events, cultural attractions, points of interests, weather, and traffic conditions (TTT 2008). Currently, the official website is up and running and has a map of access areas. For more information, visit the [Wireless Wolfsburg website](http://wireless-wolfsburg.de) (Wireless Wolfsburg 2012). Figure 17 displays the WLAN coverage area for *Wireless Wolfsburg*.

Highly Automated Vehicles for Intelligent Transport (HAVEit)

The *Highly Automated Vehicles for Intelligent Transport* (HAVEit) project concentrated on partially automated vehicles explored how drivers interact with vehicles with different levels of automation. The project ran from February 2008 to June 2011. The final event was held at the Volvo test track in Sweden. It had a total budget of €27.5 million, €17 million of which was provided by the European Commission. The project had 17 partner organizations and was led by the automotive supplier Continental. The primary automaker partners were Volkswagen and Volvo Technology. The technology developed under HAVEit was validated and demonstrated using six prototype vehicles (HAVEit 2013).

The Cooperative Sensor Systems and Cooperative Perception Systems for Preventive Road Safety (Ko-FAS)

The Cooperative Sensor Systems and Cooperative Perception Systems for Preventive Road Safety (Ko-FAS) research initiative involves three different projects: Cooperative Transponders (Ko-TAG), Cooperative Perception (Ko-PER), and Cooperative Components (Ko-KOMP). The overall goal of the initiative is to improve road safety by developing new technology, components, and systems related to cooperative sensor and per-
ception systems. The Ko-TAG project is largely focused on vehicle communications aspects, including V2V safety applications for vehicles in road traffic and a V2X pedestrian protection application. The Ko-PER project is focused on collecting data from distributed sensor networks and subsequently merging them (i.e., data fusion). Sensors are both mobile (vehicle-based) and stationary (RSE-based). The Ko-KOMP project is involved with the assessment of the effectiveness and value of different cooperative sensor technology approaches. These assessments involve both real-world trials and in virtual simulations.

Ko-FAS was launched on September 18, 2009 and the final event will be held in September 19, 2013. The project is sponsored by the German Federal Ministry of Economics and Technology and has a budget of €25.5 million. Project partners include BMW, Continental, Daimler, Delphi, Fraunhofer Institute for Integrated Circuits, Fraunhofer institute for Communications, University of Applied Sciences in Aschaffenburg, Karlsruhe Institute of Technology, Interdisciplinary Center for Traffic Sciences, SICK AG, Steinbeis Innovation Center Embedded Design and Networking, Technical University of Munich, University of Passau, and University of Ulm (Ko-FAS 2013).

DEVELOPMENT AND ANALYSIS OF ELECTRONICALLY COUPLED TRUCK PLATOONS (KONVOI)

The KONVOI (a German acronym for Development and Analysis of Electronically Coupled Truck Platoons) project was focused on the use of Advanced Driver Assistance Systems (ADAS) to form truck platoons of up to four vehicles on public roads that could improve traffic flow, fuel consumption, and environmental performance of heavy-duty highway vehicles. This project had a €5.5 million budget, with €4 million provided by the German Federal Ministry of Economics and Technology (Shladover 2012). The research team included RWTH Aachen University institutes, automotive industry partners, freight forwarding companies, a trade school, and public agencies.

The KONVOI system was composed of a LiDAR unit, radar sensors, and GPS. The system also made use of WLAN and 3G communications technologies. Using these inputs, the vehicles behind the lead vehicle in the platoon could be automatically driven using adaptive cruise control and automatic guidance applications (Jeschke et al. 2013).

The KONVOI project ran from May 2005 to May 2009. Over the course of the project, platoons of two to four vehicles logged more than 3,000 kilometers in public traffic (Deutschle et al. 2010). There is no direct follow-up project, however the SARTRE project based in Sweden has also focused on platoons led by commercial trucks that are supported by connected and automated vehicle technologies.

BELGIUM

ITS Test Beds

The *ITS Test Beds* project was created to design an ITS framework that promotes sharing among various ITS projects. The test environment was envisioned as a basis for large FOTs. The prototype software designed by *ITS Test Beds* allows test sites to centrally store test data and information so that work done by one test site can be accessed and re-used by another one (Vermassen 2010). The environment was designed to be flexible by allowing interested parties to "plug in" their applications and components to run field tests. The resulting test environment can be used to observe performance and validate compliance of applications with European and national standards. The project is conducted by members of national ITS organizations, European research organizations, and industrial partners such as NXP Semiconductors, Technolution, TC-Matix, and Q-Free (ITS Test Beds 2011). The project started on the February 2009 and ran through September 2011 (CORDIS 2013). The project had a €3.4 million budget, €2.3 million of which was paid by the European Union.

Next Generation Intelligent Transport Systems (NextGenITS)

The *Next Generation Intelligent Transport Systems* (NextGenITS) project brought together
some of the most prominent stakeholders in Belgium’s ICT sector. The goal of the project was to create an environment where the private sector, research institutes, and governments can cooperatively come together to develop and demonstrate various intelligent transportation technologies. Partners included Alcatel-Lucent Bell, VRT-medialab, Be-Mobile, Tele Atlas, Touring, NXP Semiconductors, Group4Securicor, ITS Belgium, Mobistar, Nimera, Belgacom Group/Proximus, and Flemisch Traffic Center. Under NextGenITS, there were several subprojects for the applications to be tested including e-call, traffic information, intelligent speed adaptation, road charging, and cooperative vehicle systems. The cooperative systems subproject involved determining a suitable communication platform for V2V and V2I applications. The focus of this subproject was the Communications, Air-interface, Long and Medium range (CALM) platform (IBBT 2011). The NextGenITS closing event was held in March 2010.

COOPERATIVE MOBILITY SYSTEMS AND SERVICES FOR ENERGY EFFICIENCY (eCoMove)

The environmental initiative, Cooperative Mobility Systems and Services for Energy Efficiency (eCoMove), was a European Commission sponsored connected vehicle project. Its vision was the application of V2V and V2I communications technology to provide driving support and traffic management to reduce vehicular energy waste and emissions (eCoMove 2012).

Applications tested under eCoMove included:

- Pre-trip planning
- Dynamic driver coaching
- Traffic information
- Smart navigation assistance
- Traffic signal optimization
- Traffic management tools

The project has more than 30 partners including automakers BMW, Fiat, Ford, and Volvo. It began in April 2010 and ran through May 2013. The project’s total budget was €22.5 million, €13.7 million of which was provided by the European Commission (eCoMove 2013).

FRANCE

SYSTÈME COOPÉRATIF ROUTIER EXPÉRIMENTAL FRANÇAIS (SCORE@F)

Similar to Germany’s simTD, France has conducted its own field operational test for cooperative systems, known as System Coopératif Routier Expérimental Français (SCORE@F). This project was conducted in collaboration with the DRIVE C2X project. The project is led by Renault and contains 12 industry partners, seven laboratories, and a local community (SCORE@F 2013). The project used 30 equipped vehicles for testing. The applications studied include road safety, traffic efficiency management, and comfort uses (e.g. co-operative navigation and Internet access). The goals for the SCORE@F project are to quantify benefits of the system, identify stakeholders, validate or evolve standards and applications, develop qualification tests to ensure interoperability, and calculate deployment costs. Among others, use cases include co-operative awareness, longitudinal risk warning, intersection collision risk warning, traffic light violation warning, green light optimal speed advisory, and electric vehicle (EV) charging, automotive sharing, and intermodality transport point location determination. Data collection has been done in accordance with FESTA methodology (Segarra 2011).

The project used simulation, test track facilities, open highways, and suburban and urban roadways (SCORE@F 2013). The project tests are being conducted at Mov’eo-Lab, Union Technique de l’Automobile du motocycle et du Cycle, and Cofiroute SA-A10 Highway (COMeSafety 2010). The project was launched in September 2010 (COMeSafety 2010). Development for the project took place from March 2011 to March 2012, followed by the evaluation phase which was completed in 2013. The final event for SCORE@F will be held on September 24th, 2013 (SCORE@F 2013).

The technology used for the project is based on 802.11p and 2G/3G technologies (INRIA 2012). The total budget for the project was €5.6 million,
with €2.7 million coming from public sources and €2.9 million coming from private sources (SCORE@F 2013). A SCORE@F vehicle and roadside unit can be seen in Figure 18.

CyberCars

CyberCars-2 was the follow-up to the *CyberCars* and *CyberMove* projects. All three projects included components relating to V2V and V2I communications. In particular, the *CyberCars-2* addressed V2V communications between vehicles running at close range (platooning) and V2I communications at intersections (merging, crossing). *CyberCars-2* is based on a cooperative cybernetic transport system architecture that is compatible with Car2Car Communication Consortium and CALM standards. The project’s vision was based on the idea that eventually urban vehicles will be fully automated. For testing, the project used existing vehicles that were available at the French National Institute for Research in Computer Science and Control (INRIA). The communication technologies and control algorithms installed in those eight vehicles were upgraded for the project. In addition, other Cybercars available in Spain, China, and Australia were used for the project. The project included the construction of a small-scale system which was prototyped based on a fleet of Cybercars. Road testing occurred in La Rochelle, France. The project began in January 2006. Runs at the test track occurred in September 2008. The final report for the project was submitted in February 2009 (CyberCars2 2009). The project resulted in the development of dual-mode vehicle prototypes capable of autonomous and co-operative driving, a communication architecture that was implemented in testing, algorithms for various maneuvers, a management center to support communications, and a simulation for evaluating the impact of larger deployments.

Secure Vehicular Communication (Sevecom)

Secure Vehicular Communication (Sevecom) was an EU-funded project that ran from 2006 to 2009. The focus of the Sevecom was to provide define and implement security requirements for vehicular communications. Sevecom addresses security of vehicle communication networks, including both V2V and V2I data security. The project defined security architecture of networks and proposed a roadmap for integrating security functions. The Sevecom baseline architecture is not based on a fixed platform; it was created to be flexible so it could adapt to future changes in ap-

![Figure 18: SCORE@F Vehicle and Solar Roadside Infrastructure on Display at ATEXPO 2012 in Versailles, France](source: SCORE@F 2012)
Applications or technologies. This flexibility in design was required because protocols, system architectures, and security mechanisms are continuously changing (Kargl et al. 2008). There were three major aspects that were emphasized in the project: threats, (bogus information, denial of service, or identity cheating), requirements (authentication, availability, and privacy), and operational properties (network scale, privacy, cost, and trust). Sevecom presented a demo at a at the 2009 ITS World Congress (Sevecom 2011).

AUTOMATISATION BASSE VITESSE (ABV)

The project, Automatisation Basse Vitesse (ABV), was focused on automation for low-speed vehicles. The project had a €5.5 million budget and was financed by the French National Agency for Research (€2.2 million). It was also supported by the French automotive cluster Mov’eo and a consortium of ten partners including INRETS, Continental, IBISC, IEF, Induct, INRIA, LAMIH, Viametris, UHA – MIPS, and Véolia Environnement Recherche & Innovation. The project’s goal was to use automation to improve fuel economy for vehicles driving in congested traffic on urban and suburban freeways. The project produced two prototypes, simulation tools, and an impact study. The project began in October 2009 and was scheduled to finish in October 2012 (ABV 2013).

ITALY

INTELLIGENT CO-OPERATIVE SYSTEM IN CARS FOR ROAD SAFETY (I-WAY)

In Italy, too, safety has been the motivation for connected vehicle-related activities. One of these projects is Intelligent Co-Operative System in Cars for Road Safety (I-WAY), which had the goal of enhancing driver perception of the road, thereby improving safety. The project encompassed both V2V and V2I communications and lasted from February 2006 to January 2009. It integrated in-vehicle subsystems with the external transport system with the goal of greater safety. I-WAY’s driving platform monitors and recognizes the road environment and the driver’s state in real time using data obtained from three sources: a vehicle sensing system, data from road infrastructure, and data from neighboring cars. The I-WAY platform combined two independent sub-systems, the in-vehicle subsystem and the external transport subsystem. The in-vehicle subsystem includes modules for vehicle sensing, data acquisition, mobile interfaces of the vehicle, situation assessment, and communication. The external transport system includes the roadside equipment and the road management system. Funded under the Sixth Framework Programme, the total cost for the project was €4.59 million, €2.6 million of which was paid for by the European Commission (European Commission 2011a).

TEST SITE ITALY

Located in northern Italy, the Brennero test site is a 49 kilometer stretch along the Autostrada del Brennero (A22). The site is operated by Fiat and the motorway operator Autostrada del Brennero SpA. The stretch is a two-lane tollway with room for a provisional third lane on the shoulder. A shorter nine kilometer subsection of the stretch has higher equipment density for tests involving V2I communication. The speed limit along the test site is 130 kilometers per hour (DRIVE C2X 2012).

Applications tested include (DRIVE C2X 2012):

- Traffic warnings
- Construction warnings
- Car breakdown assistance
- Slow vehicle warnings
- Traffic sign assistance
- Point of interest notification

The test fleet includes ten equipped vehicles. Network coverage along the site includes UMTS/3G, GPRS, and 802.11p. Equipment along the stretch includes five roadside units, variable message signs, TVCC cameras, traffic loops, Ethernet connectivity (traffic control center and roadside units), and on-site processing modules (DRIVE C2X 2012). All of the Brennero testing has been done on the public road; however, closed testing areas are proximate to the A22 stretch.

SMART VEHICLES ON SMART ROADS
Smart Vehicles on Smart Roads (SAFESPOT), another connected vehicle project that was conducted in Italy. It was co-financed by the EU's Sixth Framework Programme for Research and Technological Development. The project brought together more than 50 partners including original equipment manufacturers (OEMs), operators, and research organizations from across Europe. The SAFESPOT project was one of the European flagship projects for cooperative mobility. It aimed to prevent crashes by using a safety margin assistant that detects an appropriate following distance between cars. As with I-WAY, SAFESPOT employed both V2V and V2I communication to enhance the vehicle’s field of view. The SAFESPOT architecture complies with the European ITS architecture which allocates the 30 MHz frequency band in the 5.9 GHz range to connected vehicle safety applications (Brakemeier et al. 2009). The project tested applications and scenarios through work done at six different test sites, each in a different country that had infrastructure equipped with SAFESPOT systems. Four of these test sites were shared with the CVIS project. All six sites are displayed in Figure 19. The Cooperative Mobility Showcase 2010, which took place in Amsterdam on 23-26 March 2010, was one of the world’s largest demonstrations of connected vehicle technologies and applications. SAFESPOT demonstrated there and had a very strong presence (SAFESPOT 2011).

Field Operational Test Support Action (FESTA)

Italy also hosted the Field Operational Test Support Action (FESTA), which was a comprehensive research program assessing the impacts of information and communication technology systems on driver behavior, covering both individual safety benefits and broader socio-economic benefits. While the work on FESTA finished in April 2008, it laid the foundation for many other European FOTs. The objectives for FESTA included generating expertise and experience to promote the creation of a best practice handbook for the design and implementation of FOTs, providing additional guidance on how FOTs should be undertaken and reported, and involving major stakeholders to create a common vision. The project was coordinated by Centro Ricerche Fiat and consisted of a broad consortium of partners including A.D.C. Automotive Distance Control Systems GmbH, BMW Forschung und Technik GmbH, Bundesanstalt fuer Strassenwesen, Chalmers University of Technology, Daimler-Chrysler AG, Delphi France, ERTICO – ITS Europe, Gie Recherches et Etudes, PSA Renault, Infoblu S.p.A., Institut National de Recherche sur les Transports et leur Sécurité, Loughborough University, Orange France, Robert Bosch GmbH, Statens Väg-och Transportforskningsinstitut, Netherlands Organization for Applied Research (TNO), Universitaet zu Koeln, University of Leeds, Valtion Teknillinen, Volvo Car Corporation, and Volvo Technology Corporation (ERTICO 2012).

VisLab Intercontinental Autonomous Challenge

The VisLab Intercontinental Autonomous Challenge is similar to events like the DARPA Grand Challenge. It involved a fleet of four automated vehicles traveling with little to no human intervention from Parma, Italy to Shanghai, China. The nearly 16,000 kilometer journey began on July 20, 2010 and ended on October 28, 2010. The idea for this challenge originated in 2007, but work on the project did not begin until January 2009. Funding for the project was provided by the European Research Council and VisLab (VisLab 2013).

Netherlands

Dutch Integrated Testsite for Cooperative Mobility (DITCM)

The DRIVE C2X project being conducted in the Netherlands is known as the Dutch Integrated Testsite for Cooperative Mobility (DITCM). The DITCM is a stretch of highway containing several intersections. It has full coverage from both 802.11p and cameras. The Netherlands site is used as the “master” test site where all applications under DRIVE C2X have been tested before being deployed at the other six sites (DRIVE
The test site is composed of 4.2 kilometers of highway and 1.8 kilometers of urban roadway, along which 20 vehicles with installed on-board units conduct tests. The stretch contains two traffic lights, four viaducts, an entrance, and exit, and a bus entrance. There are 48 poles for equipment installation, which currently includes 11 communications units (802.11p), 47 fixed cameras, and nine dome cameras. Network coverage includes UMTS/3G, 802.11p, and dGPS (DRIVE C2X 2012).

CONNECTED CRUISE CONTROL (CCC)

The €4 million *Connected Cruise Control* (CCC) project will result in a built-in solution to provide driving advice regarding speed, headway, and lane so drivers can anticipate and prevent congestion (HTAS 2012). The technology integrates in-vehicle and roadside systems to improve traffic flow. Plans are to initially introduce it as a non-madic aftermarket device in order to increase penetration rate and make the technology attractive for inclusion in OEM vehicle systems. The project began in December 2009 (University of Twente 2012). The final event for the project was held in March 2013 (TUDelft 2013). Testing and evaluation was occurred during 2012 and product development began in 2012 and ran through 2013. The partnership is headed up by TU Delft and includes Navteq, NXP Semiconductors, TNO, Universiteit Twente, SAM, Technolution, and Clifford (HTAS 2012).

STRATEGIC PLATFORM FOR INTELLIGENT TRAFFIC SYSTEMS (SPITS)

The goal of the *Strategic Platform for Intelligent Traffic Systems* (SPITS) project was to build the next generation of on-board technology for connected vehicles and to make it open and easily configurable for OEM specific requirements. The units created were upgradeable, allowing for improvements during the lifetime of an automobile,

![Figure 19: SAFESPOT Test Site Locations](Source: SAFESPOT 2011)
and decreasing the amount of time required for the adoption of new technologies. The project also focused on creating the next generation of roadside units and back office equipment (CVIS 2012). Project partners included Logica, NXP Semiconductors, Catena, GreenCat, Peek Traffic, Nspyre, Fourtress, TNO, and TomTom, as well as several universities throughout the Netherlands (SPITS 2012). Experimental testing for SPITS was conducted on the A270 highway in the Netherlands between Helmond and Eindhoven. A total of 48 video cameras were mounted along a 5-km stretch of the A270. Those cameras provide overlapping coverage of all vehicle movements along that stretch. The project was funded by the Dutch Ministry of Economic Affairs and 13 partners. The project officially ended in May 2011 (SPITS 2012).

The SPITS A270 test site was also used for field tests of Advisory Acceleration Control (AAC) and Shock Wave Mitigation with Mixed Equipped and Unequipped Vehicles. The AAC test occurred in February 2010 and involved 48 vehicles equipped with communications technology and a display capable of advising drivers to accelerate, decelerate, or maintain their current speed. The advisory speeds were determined using real-time traffic data provided by the cameras monitoring the road. The goal of the test was to determine if communications technology could dampen traffic shock waves on the highway. The test was designed such that one lane contained the equipped vehicles, and another lane contained another 48 unequipped vehicles. The lead vehicles in both lanes drove with speed variations intended to create shock waves. The results demonstrated that the AAC system was able to smooth traffic flow, but withouth requiring that vehicles be equipped with expensive adaptive cruise control systems.

The second field test, Shock Wave Mitigation with Mixed Equipped and Unequipped Vehicles, occurred in 2011. As with the AAC tests, advisory speeds were generated from real-time camera-based traffic data. The test involved 70 vehicles. Of those vehicles, eight were equipped with cooperative adaptive cruise control technology and twelve had the AAC driver advisory displays. Even with mixed vehicles on the same road, the equipped vehicles were able to help reduce shockwaves. Vehicles with cooperative adaptive cruise control were somewhat more effective at mitigating shockwaves than vehicles with just the driver display (Shladover 2012).

OPEN PLATFORM FOR INTELLIGENT MOBILITY (OPIM)

The follow up to SPITS is the Open Platform for Intelligent Mobility (OPIM) project, which is working to define an open platform for ITS systems across Europe. Among the program’s goals are to keep the system affordable and flexible so it can be applied to the full range of transport vehicles, including cars, coaches, light trucks, and heavy goods vehicles. OPIM builds on lessons learned by the SPITS Project as well as programs and projects in which partners have participated - including CVIS, COOPERS, SAFESPOT, PRE-DRIVE C2X, ITS Test Beds, AUTOMATICS (France), AKTIV (Germany), simTD (Germany), NextGenITS (Belgium/Flanders). The project is designed to become the realistic start of ITS on a broad scale (HTAS 2012).

SENSOR CITY

SENSOR City is a pilot for sensor-based mobility services in and around the city of Assen in the Netherlands (Sensor City 2013). The project makes use of data recorded by infrastructure as well as in-vehicle devices to support mobility applications.

The project involves 15 partners, including TNO, Goudappel Coffeng, Quest Traffic Consultancy, DySI, NXP, ParkingWare, Elevation Concepts, Reisinformatiegroep, Peek Traffic, Mobuy, Magicview, Univé, TomTom, City of Assen, Province of Drenthe.

The SENSOR City project began in January 2010 and will run through the end of 2013. The pilot itself took place in 2012 and the beginning of 2013. It involved 1,000 test users with in-car systems and 500 users with smartphone applications (partial overlap).
PREPARING SECURE VEHICLE-TO-X COMMUNICATION SYSTEMS (PRESERVE)

The Preparing Secure Vehicle-to-X Communication Systems (PRESERVE) project will run from January 2011 through December 2014. It has 6 partners, including escrypt, Fraunhofer Institute for Secure Information Technology, Kungliga Tekniska Högskolan, Renault, Trialog, and University of Twente. The project’s advisory board includes Audi, BMW, Daimler, Denso, Infineon, and Volkswagen. CAMP Consortium and simTD are supporting members of the project.

The project is focused on the security and privacy of connected vehicle systems and will involve addressing critical issues like performance, scalability, and deployability of connected vehicle security systems. PRESERVE will make use of field testing to investigate a number of important scalability and feasibility issues. The budget for the project is €5.4 million with €3.9 million being provided by the European Commission (PRESERVE 2013).

GRAND COOPERATIVE DRIVING CHALLENGE

Inspired by the DARPA Grand Challenges in the United States, the Grand Cooperative Driving Challenge in the Netherlands required competing teams to develop a vehicle equipped with the most effective CACC system. The event was organized by TNO and the Dutch High Tech Automotive Systems (HTAS) innovation program and was held in May 2011. The competition attracted nine international teams. It was structured to focus on the application of automated vehicle following in normal traffic, which distinguished the challenge from platooning projects, which tend to be more structured and uniform (Ploeg et al. 2012).

SPAIN

SISTEMAS COOPERATIVOS GALICIA (SISCOGA)

The Sistemas Cooperativos Galicia (SISCOGA) project participated in DRIVE C2X with its test site in northwestern Spain. The test site runs along two highway corridors (A-52 and A-55) and is around 60 kilometers long. This road network is displayed on a map in Figure 20. Centro Tecnológico de Automoción de Galicia (CTAG) and Dirección General de Tráfico (DGT)—the Spanish Ministry of Traffic—have created and operate the site (DRIVE C2X 2012).

Applications tested included (DRIVE C2X 2012):

- Construction warnings
- Car breakdown assistance
- Traffic warnings
- Post-crash warnings
- Emergency brake warnings
- Cooperative merging assistance
- Weather warnings
- Traffic sign assistance
- Speed limit notification
- Traffic information and recommended itinerary
- Floating Car data

The speed limit along the test corridors is generally 120 kilometers per hour, but in places the speed limit decreases due to features such as curves or visibility limitations. The test area contains 15 roadside units (5.9 GHz, 802.11p), with another 30 planned for deployment. In addition, there are 19 variable message signs, seven meteorological stations, 21 camera units, and inductive wiring spots located along the corridors. Network technology includes GPRS, UMTS, and 802.11p. The test area currently contains only highways, but current plans involve extending the test site to include urban areas (DRIVE C2X 2012). Some of the equipment used in testing is displayed in Figure 21

Initially, there were seven vehicles (three prototypes and four personal vehicles) used to conduct tests, but the plan was to eventually expand the fleet to include 20 vehicles used to conduct tests, with the majority being personal vehicles (DRIVE C2X 2012). Those 20 vehicles were equipped with 5.9 GHz on-board communication units, GPS, specific human-machine interface (HMI), and controller area network (CAN) logging. The test also included 80 vehicles equipped with just GPS and UMTS units. SISCOGA was a follow-up project to C2ECom, which was also led by CTAG (Sánchez Fernández 2010). The project
ran from September 2009 until September 2011. The testing occurred from August 2010 and continued until July 2011 (FOT-NET 2013).

SAFER VEHICLE AND TRAFFIC SAFETY CENTRE

The SAFER Vehicle and Traffic Safety Centre at Chalmers University is “a joint research unit where 24 partners from the Swedish automotive industry, academia and authorities cooperate to make a center of excellence within the field of vehicle and traffic safety” (Chalmers 2012). Research at SAFER covers a broad range of fields relating to traffic safety and includes connected vehicle technologies (Chalmers 2010a).

SAFER (DRIVE C2X GOTEBURG SITE)

The large-scale test site in Gothenburg is located in south of Sweden. The city is the nexus of three major highways. In addition to the open road track, the project also uses closed testing facilities. SAFER has operated the test site since 2008.

The open road portion of the testing area consists of more than 100 kilometers of highway, 100 kilometers of urban roadway, and more than 50 kilometers rural roadway. These stretches have more than 100 traffic light controlled intersections.

The closed testing facilities include Stora Holm and the City Race Track. Stora Holm is a Volvo test track that is used for testing safety critical applications and other applications involving non-traffic regulation compliant performance. The City Race Track opened in October 2009 and has

Figure 20: Map of SISCOGA Test Area
Source: Sánchez Fernández 2010
hosted numerous demonstrations of cooperative systems (DRIVE C2X 2012).

Functions tested at the Gothenburg site include (DRIVE C2X 2012):

- Traffic warnings
- Construction warnings
- Car breakdown assistance
- Traffic sign assistance
- Optimal speed advisory for traffic lights,
- Floating car data

The test site contains seven roadside units as well as three traffic light controllers using 802.11p and VMSs on the main highway. On-board units have been provided by Delphi, and equipment from EuroFOT includes touch screens, naturalistic loggers and cameras. Network technologies used include UMTS, 3G, GPRS, and 802.11p. The Gothenburg test fleet includes 20 cars (DRIVE C2X 2012).

In June 2013, the last major demonstration event for the project was held. In addition to the demonstrations themselves, the event involved several workshops (DRIVE C2X 2013).

TEST SITE SWEDEN (TSS)

Another major project carried out at SAFER was Test Site Sweden (TSS) which ended in 2008. TSS was a joint project between Autoliv, Chalmers, Volvo Car Corporation and AB Volvo. The project was very important for building-up competence in and establishing tools for conducting FOTs. Driving data was collected using two vehicles that were driven by 100 different drivers over the course of six months. The two test vehicles were provided by Volvo and included a car...
(Volvo S80) and a truck (Volvo FH12). These vehicles and the equipment that was installed in them can be seen in Figures 22 and 23. The project was very useful in positioning Sweden to take a strong role in proposal phases for a number of important European projects including FESTA, Sweden-Michigan Naturalistic Field Operational Tests (SeMiFOT), and EuroFOT as well as future FOT related projects (SAFER 2008).

BASFOT

Another FOT that SAFER is involved in is Sweden’s BasFOT. The BasFOT activities began in 2007 (FOT-NET 2010). The original BasFOT project has already been completed, but there were plans for a follow-up project. While there is limited information available on BasFOT2, it is currently setting up the platform for the SAFER Field Operational Test/Naturalistic Driving Study long term by working out issues with data acquisition, storage/database, analysis tools, data processing and quality, and procedures such as data sharing, manual annotation, etc. (Bärgman 2010). Phase 1, the original BasFOT project, which involved building-up competence in conducting a FOT occurred in the 2009 through 2010 period. The project is currently in its second phase which involves continuing to build competency, as well as working on strategy and platform management. Phase 2 also includes secondary analysis and doctor of philosophy (PhD) projects (Victor 2010). There is potential for a phase three.

SWEDEN-MICHIGAN NATURALISTIC FIELD OPERATIONAL TESTS (SEMiFOT)

In 2007, MDOT, the Michigan Economic Development Corporation (MEDC), the Swedish Governmental Agency for Innovation Systems, and the Swedish Road Administration (Vägverket) signed a cooperative VII research agreement (MDOT 2007). The agreement is meant to foster cooperative, international research efforts be-
between these organizations. Such efforts are underway, especially in the area of road weather information systems (RWIS).

The work with MDOT led to the Sweden-Michigan Naturalistic Field Operational Tests (SeMiFOT and SeMiFOT2). SeMiFOT was intended to be a pilot project for a larger FOT, but resulted in several large scale FOTs including EuroFOT and TeleFOT. Projects that have benefited from the work done on SeMiFOT include FES- TTA, EuroFOT, FOT-NET, BasFOT, TeleFOT, and DREAMi. Testing involved seven Volvo cars, three SAAB cars, two Volvo trucks, and two Scania trucks. Over the course of testing, there were nearly 8,000 trips totaling over 170,000 km and lasting nearly 3,000 hours over the course of six months. There were 39 different drivers. Equipment that was installed on vehicles included eye trackers, CAN-gateways, cameras, IR illumination, accelerometers, Ethernet devices, GPS devices, wireless communications devices (GPRS/3G), and hard drives. The follow-up project, SeMiFOT2 began in January 2010 (Chalmers 2010b).

SAFE ROAD TRAINS FOR THE ENVIRONMENT (SARTRE)

The Safe Road Trains for the Environment (SARTRE) project is led by Volvo and Ricardo. Other members include Idiada (Spain), Robotiker (Spain), the Institut für Kraftfahrwesen Aachen (Germany), and the SP Technical Research Institute of Sweden (Sweden). The project’s budget is €6.4 million with around 60 percent of the funding being provided by the European Commission (McKeegan 2012). The main goal of the project is to develop and test vehicles that can autonomously drive in long convoys or road trains. A visualization of the concept can be seen in Figure 24. The project began in September 2009 and was scheduled to be completed by the end of August 2012 (SARTRE 2012). The first demonstrations were conducted at the Volvo Proving Ground near Gothenburg in Sweden in 2010 (SARTRE 2011 and McKeegan 2012).

In May 2012, a demonstration on public roads occurred outside Barcelona, Spain. The public roads demonstration featured a Volvo XC60, a Volvo V60, a Volvo S60 and a truck following a lead vehicle at 85 kilometers per hour with tested distances between vehicles ranging between five and 15 meters. Testing involved having the vehicles drive 200 kilometers in a single day. During testing, the follower vehicles were able to accelerate, brake, and turn in a manner that was synchronized with the lead vehicle, maintaining a consistent following distance despite these maneuvers (McKeegan 2012).

The test vehicles have cameras, radar, laser sensors, navigation systems, and transmitter/receiver units installed that will allow them to take measurements and communicate with each other. Because the system is V2V only, no infrastructure testing is involved (TTT 2009a and McKeegan 2012). The system itself has been designed such that it does not require expensive additions to vehicles—the only difference between SARTRE cars and those in today’s showrooms is the wireless network equipment installed in the vehicles. In addition, the system is designed such that existing vehicles can be retrofitted with the technology.

SAFETY IN SWEDEN

As with Europe in general, as demonstrated by ERTICO, Sweden has taken a strong policy stand on automotive safety. Most notably, in 1997, Sweden initiated a governmental program called Vision Zero that is intended to eliminate traffic-related deaths and incapacitating crashes (Whitelegg and Haq 2006). This program is managed by the Swedish Road Administration. While the program recognizes that it is impossible to prevent all crashes from occurring, it focuses on protecting the vehicle passengers as much as possible. Essentially, Vision Zero places a greater responsibility for road safety on those who design road networks and build vehicles as opposed to placing most of the responsibility on the driver. Specific approaches include installing central safety barriers to reduce the number of head-on collisions, building more roundabouts, and lowering speed limits in urban areas (Whitelegg and Haq 2006). Approaches under consideration include redesigning intersections and removing rigid roadside
objects like trees and large rocks. Sweden also integrates advanced automotive electronics into its Vision Zero plan. One example of this integration is Sweden’s Slippery Road Information System (SRIS). Led by Vägverket, in cooperation with Volvo and Saab, this program places sensors in the vehicles that detect slippery spots on the road. These sensors then send information back to traffic management centers, which therefore can better manage plowing snow, salting roads, and alerting drivers of icy spots. In addition, SRIS compares the vehicle-based sensor data with information obtained from RWIS, such as air and surface temperatures, humidity, and barometric pressure, to validate the vehicle sensor data (Vägverket Document 2007). During the winter of 2007-2008, the SRIS partners conducted tests using 100 vehicles, and these tests clearly demonstrated that SRIS is cost effective and increases safety on the roads (SRA 2008). The SRIS project is expected to help Sweden meet its Vision Zero objectives.

Another advanced automotive electronics development arising from Sweden is Volvo’s optional collision avoidance package, as well as its blind spot detection and front and back parking assistance applications (Volvo 2011). Several other promising safety technologies are under development, such as built-in alcohol sensors, night vision systems, and adaptive cruise control, to ensure that drivers maintain a safe distance from vehicles ahead. While these examples largely represent autonomous, as opposed to cooperative, technologies, the latter also are under development in Sweden.

While Sweden already had a very low number of traffic fatalities compared to other countries be-
before Vision Zero went into effect, the program appears to have worked well. Between 1997 and 2007, the first ten years of Vision Zero, the number traffic fatalities decreased by more than 20 percent, from 541 to 431 (Wiles 2007). While literally reaching zero fatalities remains a distant goal, Sweden is making important strides toward this ultimate goal.

AUSTRIA

CO-OPERATIVE SYSTEMS FOR INTELLIGENT ROAD SAFETY (COOPERS)

Headed up by AustriaTech in Austria, the Co-operative Systems for Intelligent Road Safety (COOPERS) project used existing equipment and infrastructure as a foundation when developing standardized wireless bidirectional infrastructure-vehicle technology (Schalk 2011). The project included 39 partners and ran from 2006 to 2010. The project included several demonstration sites across Europe including stretches of roadway in Austria, Belgium, France, Germany, Italy, and Netherlands. These sites are marked on the map in Figure 25. COOPERS service messages were generated out of existing data sources and no additional sensor installations were needed. The Traffic Information Platform (PVIS) for COOPERS was a common platform for easier access to all the traffic information sources and systems, such as traffic messages, travel times, weather data, and variable message sign states (Meckel 2008).

TESTFELD TELEMATIK

The Testfeld Telematik project began in March 2011 and will run through August 2013. The area covered by the project is near Vienna and in-

![Figure 25: Locations of COOPERS Test Sites](source: COOPERS 2011)
includes highways A4, A23, and S1. During a one-year test period, approximately 3,000 Vienna-area drivers will be involved in testing cooperative, connected vehicle services. The project has 14 project partners and has been funded by Klima- und Energiefond (KLiEn), the Austrian Climate and Energy Fund (Testfeld Telematik 2013).

Testfeld Telematik uses a variety of technologies and equipment, including navigation devices, smartphone applications, on-board equipment, and the COOPERS operating platform. The project will test a large number of cooperative services, including:

- In-vehicle traffic signs
- Real-time traffic data
- Warnings (e.g., events, road condition, congestion, road work, and weather)
- Real-time routing
- Travel dates and times, status messages and routing updates
- Flight delay status
- Location and for parking facilities with public transport recommendations

FINLAND

COOPERATIVE TEST SITE FINLAND (COOP TS FINLAND)

The Finnish test site includes an eight kilometer open road stretch from Tampere to Hervanta as well as a closed test area. The open road section contains three roadside ITS units (802.11p) and one moveable roadside unit (3G/802.11p). The route also contains a motorway junction, which will be used to monitor ramp issues (Laitinen 2012). The layout of the open road test site can be seen in Figure 26.

The closed test facility is Nokian Tyres Proving Ground in Ivalo, Finland. The facility can simulate almost any driving situation. The track includes an 1,800 meter long lap, a 400 meter long straight, five intersections, and a reduced-visibility turn. The track tests make use of the moveable roadside unit for V2I tests (Laitinen 2012) as well as two fully instrumented VTT ve-

![Figure 26: Open Road Test Site for Coop TS Finland (Tampere to Hervanta)](image)

Source: Laitinen 2012
The tests use 3 DRIVE compliant vehicles with another 40 vehicles outfitted with 3G connectivity (DRIVE C2X 2013). Applications being tested include (Laitinen 2012):

- Road weather warnings
- Construction warnings
- Traffic sign assistance
- Car breakdown assistance
- Slow vehicle warnings
- Emergency vehicle warnings

On September 20, 2012 an ITS seminar was held in Tampere. The seminar included demonstrations and a presentation of the test site (DRIVE C2X 2013).

FIELD OPERATIONAL TESTS OF AFTERMARKET AND NOMADIC DEVICES IN VEHICLES (TELEFOT)

The Field Operational Tests of Aftermarket and Nomadic Devices in Vehicles (TeleFOT) project was funded by the Seventh Framework Programme and the European Commission DG Information Society and Media focused on developing information and communication technologies for cooperative systems. The project began in June 2008 and lasted for 48 months. The purpose of the project was to test driver support functions with large fleets of test drivers in real-world driving conditions. The project focused on aftermarket and nomadic devices. TeleFOT involved approximately 3,000 drivers in TeleFOT-equipped vehicles and spanned Finland, Sweden, Germany, United Kingdom, France, Greece, Italy, and Spain (TeleFOT 2013). While the tests were conducted in three test regions (Finland/Sweden, Germany/France/UK, and Greece/Italy/Spain), the project was coordinated out of the VTT Technical Research Centre of Finland. The final event was held in late November 2012 (TeleFOT 2013).

SEMANTIC DRIVEN COOPERATIVE VEHICLE INFRASTRUCTURE SYSTEMS FOR ADVANCED ESAFETY APPLICATIONS (COVER)

Another project that was conducted in Finland was Semantic Driven Cooperative Vehicle Infrastructure Systems for Advanced eSafety Applications (COVER). The central focus of COVER was V2I applications such as intelligent speed adaptation (static, temporary, and dynamic speed limits) and cooperative early information. The project ran from March 2006 to February 2009. COVER conducted two field trials. One was carried out on roads (E18 Corridor) in Finland and focused on truck drivers. The other was carried out on a road segment (Turin-Florence) in Italy, and focused on non-professional drivers (Ellmén 2006).

NORWAY

SMART FREIGHT TRANSPORT IN URBAN AREAS (SMARTFREIGHT)

The Smart Freight Transport in Urban Areas (SMARTFREIGHT) project aimed to improve urban freight transport efficiency, environmental impact, and safety through use of distribution networks. The project researched the integration of urban traffic management systems with freight management and onboard systems. SMARTFREIGHT could lead to improved freight operations by providing access to real travel time and traffic status information through use of onboard units, sensors, smart tags, and wireless. In addition, those technologies enable monitoring of goods transport, loading, and unloading. The program evaluated technical solutions, through real and simulated test applications. Participants included Asociacion para el Desarrollo de la Logistica (Spain), Dublin Transportation Office (Ireland), Statens Vegvesen Vegdirektoratet (Norway), Comune di Bologna (Italy), Polis - Promotion of Operational Links with Integrated Services aisbl (Belgium), University of Southampton (United Kingdom), Q-free ASA (Norway), Chalmers Tekniska Hoegskola Aktiebolag (Sweden), and Etra Investigacion y Desarrolo, S.A (Spain). Work on SMARTFREIGHT began in January 2008, and the end date for the project was set at June 2010 (European Commission 2011b).
UNITED KINGDOM

AUTOMATED VEHICLE ACTIVITIES

The University of Oxford and Nissan have partnered to create and test automated vehicles (BBC 2013). The prototype being used is an adapted Nissan Leaf. Previous testing has occurred on a closed test track at Oxford Science Park, but by the end of 2013, the Oxford researchers will be testing their vehicle on lightly-used rural and suburban roads. The tests will require that a driver be present, but the vehicle will be capable of driving independently, without any direction from the driver.

The United Kingdom Department for Transport highlighted the automated vehicle research at Oxford in a recent report (Department of Transport 2013). The same report highlighted connected vehicle technology, noting that in the future, “vehicles will communicate not only with the road infrastructure, but increasingly with each other,” and that cooperative approaches, such as platooning, could be important for heavy vehicles.

ISRAEL

COOPERATIVE COMMUNICATION SYSTEM TO REALIZE ENHANCED SAFETY AND EFFICIENCY IN EUROPEAN ROAD TRANSPORT (COM2REACT)

Cooperative Communication System to Realize Enhanced Safety and Efficiency in European Road Transport (COM2REACT) is establishing a system using V2V and V2I communication over 2.4 GHz Wi-Fi (802.11b IEEE WLAN standard). This system improves the quality and reliability of information acquired by moving vehicles. An important part of the system is its virtual traffic control sub center (VSC), which controls a moving group of vehicles in close proximity. The VSC creates a network out of vehicles near each other that creates information about local traffic and safety situations. Using V2I communication, the VSC transmits this information to a regional control center which sends back instructions to distribute to the vehicles. This project builds upon the Realize Enhanced Safety and Efficiency in European Road Transport (REACT) project which involved sensor-equipped vehicles and a regional control center. In addition to the work that was done for the REACT project, COM2REACT developed VSC and integrated it with REACT to obtain a more complex, but more effective system. COM2REACT is a partnership of 13 organizations, including an automaker, road authority, and several high tech enterprises (C2R 2011). COM2REACT conducted testing in 2007 and 2008, but little to no information could be gathered on the project’s current activities or any follow-up projects.

AUTOMATED VEHICLE ACTIVITIES

The Israeli company Mobileye currently produces some of the camera-based technology used in advanced safety systems currently on the market (both for automakers systems and for the aftermarket). By 2014, the company plans to release semi-automated vehicle technology, and by 2016, it expects to release fully automated vehicle technology (Rohde 2013).

For several years, Israel has been using automated border-patrol vehicles (Main 2013). The first vehicle was introduced in 2008 and was produced by G-NIUS Unmanned Ground Systems (UGS) LTD, and Israeli company. The vehicle is designed to perform programmed patrols as well as react to unscheduled events (G-NIUS 2013).
V. CONCLUSIONS AND RECOMMENDATIONS

Various regions throughout the world are exploring CAV technologies, and there have been several different approaches to developing these technologies. Research, demonstration, and deployment projects, in particular those in the United States, Europe, and Japan, have demonstrated the potential of CAVs to improve transportation systems. In the United States, the focus is primarily on safety research. While some states currently have roadside infrastructure deployed, this is largely for research and demonstration purposes. Europe has a similar research-based approach, emphasizing safety and efficiency. In Europe, however, projects have been significantly more top-down and have involved large coalitions of countries, industry partners, and universities. Japan already has deployed a connected vehicle system that uses mobile phone technology, DSRC, and infrared and already has a significant user base due to its ubiquitous electronic tolling system.

Despite the regional difference in CAV programs, there have been many overarching themes that could be useful to consider with respect to technology deployment. The following subsections discuss potential funding strategies that have been used to support CAV programs, important factors that can affect the success of deployment, and the convergence of connected and automated vehicle technologies.

FUNDING STRATEGIES

CAR’s review of CAV and related activities both domestically and abroad has revealed at least three distinct, but successful, strategies for funding such activities. These include making large budget allocations that require matching funds from private or public sources, securing a large source of funding from the state, national, or supranational agency through competitive grants or earmarks, and tying the collection of tolls to CAV projects.

COMM IT BUDGET ALLOCATIONS REQUI RING MATCHING FUNDS

This method of leveraging initial funds to attract additional investment from other private and public sources is extremely common at the national level and is not limited to the United States. For example, several of the European projects that received funding through the European Commission also had to obtain funding from other sources. Projects such as PRE-DRIVE C2X, I-WAY, and SMARTFREIGHT were funded in this manner. This approach is not limited to national governments; domestically, California has committed significant state funding to connected vehicle efforts and is actively pursuing private-sector funding, through incentive programs, to supplement these dollars. It also has strong participation from California-based automotive facilities in its programs, as well as participation from other private-sector entities, such as Nokia.

PURSUE FUNDING AT THE NATIONAL LEVEL

Beyond the first approach listed, California is also active in pursuing federal dollars, as witnessed by its Urban Partnership grant application, its share of USDOT RITA funding, and its SAFE TRIP-21 award. An even more salient example of this approach can be found in Minnesota’s efforts to secure funding. Minnesota has both sought and won federal dollars well beyond its normal share of Highway Trust Fund dollars, allowing the state to deploy technologies and other resources beyond what its formula-based share of the federal gas tax would have allowed. In Germany, the state of Hessen has leveraged past experience and actively pursued projects, receiving funding from the Federal Ministry of Economics and Technology to host several CAV projects, including AKTIV, simTD, Ko-FAS, and KONVOI.

TOLLS TO FUND PROGRAMS

Though most of the ITS technologies used in tolling are not technically CAV applications, Florida is a prime example of a state using toll revenues to increase its pool of available funds for deploying innovative solutions. Minnesota also has an active electronic tolling program that supports the market pricing of its high occupancy toll lanes. Transponders placed in vehicles enable automatic
fee deduction from an account. The system uses marginal cost pricing by varying fees depending on how busy the HOV lane is. Colorado’s tests using DSRC in tolling represent a great progress towards integrating electronic tolling with connected vehicle technologies. In Japan, electronic tolling was an early application of the nation’s ITS program. Also in Asia, South Korea is working to make electronic toll collection available on its highways and is instituting e-pay on public transit. By integrating tolling into ITS systems, transportation managers have another potential source of revenue for new projects. Similarly, automated vehicle deployments can be designed to function as taxi or personal rapid transit services with fees paid by users.

The widespread use of these three approaches (matching funds, national grants or earmarks, and toll or fee-based systems) reinforces the need for adequate and additional funding streams to allow a state or country to lead in the area of CAV and ITS technologies.

Importantly Factors

In CAR’s review of CAV and related activities, several important factors arose regarding the research, development, and deployment of these technologies.

Forming Coalitions

Compared to projects in the United States, successful projects in Europe tended to be backed by larger coalitions. European projects tended to have significant participation from transportation agencies, communities, universities, research institutions, and private industry. These public-private partnerships have been instrumental to successful tests and deployment, often driven by a common goal of enhanced vehicle safety. On the other hand, partnerships for Asian projects were smaller and often similar to the size of American project partnerships, but tended to involve national government agencies and manufacturers whereas American partnerships more frequently focused on universities and state agencies. These differences may reflect differences in funding mechanisms, governance, or stage in research and development for CAV programs across regions.

Creating Industry Competition

An approach used by Japan, one of the most advanced countries in ITS and CAV deployment, is to set standards and create infrastructure test deployments and invite manufacturers to participate in field tests. This was done for the DSSS, ASV, and Smartway projects. By using such a method, Japan has driven its manufacturers to create and test systems meeting the criteria of these three projects. Several vehicle manufacturers including Toyota, Honda, Nissan, Mazda, Mitsubishi, NEC Corporation, Panasonic, Yamaha, Kawasaki, and Suzuki participated in tests for DSSS and ASV and by the end of 2010, systems compatible with Smartway infrastructure had been developed by Toyota, Pioneer, Mitsubishi Electric Co., Panasonic, and Mitsubishi Heavy Industries.

Developing Programmatic Themes and Bold Goals

Internationally, having a strong programmatic theme was particularly useful in moving projects and deployments forward. In Europe, the major theme centered around safety and in particular on using technology to make the vehicle-roadway environment an active participant in assisting drivers. Projects focused largely on decreasing crash risks and reducing the negative consequences of crashes that do occur. In Asia, themes were just as important: South Korea’s concept of the “Ubiquitous City” has generated enthusiasm from several cities who want to implement communications technologies. Like Europe, Japan has focused on safety as a central theme. In its ITS Introduction Guide, the Ministry of Land, Infrastructure and Transport Japan credits a tragic bus accident as the impetus to improve road safety systems that lead to its ITS program. The international examples have also demonstrated the usefulness of bold goals in motivating achievements, such as Sweden’s Vision Zero.

Generating Expertise

Working on CAV projects has been a boon to several private companies, research institutions, countries, states, and transportation management...
agencies. This survey of international efforts has stressed the global nature of vehicle electronics, including the advantages of standardization to make it easier for automotive OEMs to offer the same communication technologies globally and the potential competition among suppliers worldwide.

The example of the Industrial Technology Research Institute of Taiwan providing WAVE/DSRC communication units to support a connected vehicle project in the U.S. demonstrates the global nature of automotive research and development. Similarly Cohda Wireless of Australia has developed technology that has been involved in on-road trials around the world in projects such as DRIVE C2X in Europe and, the Connected Vehicle Safety Pilot in the United States. Michigan companies wishing to play a role in CAV technologies will need to keep this global lesson in mind and could stand to benefit from capturing larger markets if they take leadership roles and foster international partnerships. Ford, through its Urban Mobility Initiative, has shown signs of grasping this concept; GM, too, through its European and Asian operations, is active overseas in CAV-related initiatives.

Developing expertise as a way to create future opportunities is also applicable to national and state agencies. For example, the Test Site Sweden project was very useful in building up competence in Field Operational Tests and positioned Sweden to take a strong role in proposal phases for a number of important European projects including FESTA, SeMiFOT, and EuroFOT as well as other FOT related projects. Domestically, leading states have used past successes to demonstrate their ability to carry out work in competitive bids for federal projects.

REGULATING TECHNOLOGY TO MAKE A STRONG BUSINESS CASE

Successful deployment of CAV technologies requires a strong business case. Some applications such as infotainment, internet, and navigation systems will likely be covered by industry actors responding to consumer demand. Due to the costs of deployment, technological constraints, and the number of equipped vehicles required for safety applications, however, leadership from national and state governments is crucial to the deployment of connected vehicle safety technology. Regulation has an important role; without legal requirements requiring integration of safety units into vehicles, adoption of DSRC based safety applications will be severely stunted or simply may not occur. Government agencies have the ability and obligation to establish the argument for connected vehicle mandates to ensure adequate coverage necessary to realize safety benefits. Regulation also plays an important role in the adoption of automated features in vehicles. Already, NHTSA has regulated several automated vehicle technologies and is considering regulation of additional safety systems. In addition, several U.S. states have taken steps toward regulating the use of fully automated vehicles on public roads in order to facilitate testing activities from private firms. National level regulations may be required to ensure the safety and facilitate mainstream adoption of fully automated vehicles in coming years. For now, though NHTSA has only issued guidelines for states considering regulations to permit fully automated vehicles on public roads (NHTSA 2013).

STANDARDIZING GLOBAL/REGIONAL ARCHITECTURES

Global standards and architectures for connected vehicle technologies would strengthen the case for connected vehicle deployment. By using common equipment, the production volumes of in-vehicle and roadside units can be increased, helping to bring down unit costs. If not at the global level, then at least at the continental level, it makes sense to standardize equipment and architectures so that vehicle technologies can cross borders without losing the benefits of a connected vehicle system and automakers can use a single system in vehicles rather than using different systems for vehicles being purchased in different markets.

DSRC varies from 5.85 to 5.925 GHz in the United States to 5.875 to 5.925 GHz in Europe and 5.775 to 5.845 GHz in Japan (PIARC-FISITA 2012). While various regions of the world have
slightly different standards, there has been significant work to harmonize standards. The European Commission, for instance, has funded several projects to create harmonized systems throughout Europe. Australia’s strongest argument for securing 5.9 GHz bandwidth for ITS applications was that it would allow an Australian connected vehicle system to be consistent with those in other countries. To some extent, this logic may have already proved to be sound as the Connected Vehicle Safety Pilot in Michigan in the U.S. includes DSRC equipment vendors based in Australia (Cohda Wireless) and Taiwan (ITRI). The United States and Europe signed a joint declaration in 2009 pledging to use global standards when possible (RITA 2009). A similar agreement was signed between the United States and Japan in 2010 (RITA 2010).

Convergence of Connected and Automated Vehicle Technologies

Several projects documented in this report involve both connected and automated vehicle technologies. For instance, the SARTRE, KONVOI, CyberCars, Grand Cooperative Driving Challenge, EN-V, and NEDO Unmanned Vehicle Technology Testing projects all use a combination of communications and vehicle-based sensor inputs. Most automated vehicle initiatives, such as Google’s self-driving car project, involve some form of on-board connectivity (3G) to facilitate updates.

Vehicles that use both connected and automated technologies have the potential to deliver better safety, mobility, and self-driving capability than can vehicles using either technological approach alone (Silberg and Wallace 2012). Adding communications technology to vehicles equipped with sensor-based ADAS systems can improve performance, while decreasing cost. For instance, adding DSRC to a vehicle system could eliminate the need for some more expensive sensors. On the other hand, convergence could also reduce the required investment in infrastructure for connected vehicle systems. Furthermore, data fusion, which involves combining data from various inputs to produce useful information, enables greater access to both redundant and complementary information, enabling more robust and comprehensive safety systems (Darms et al. 2010).
REFERENCES

Safety-2010/G0000psoT435ZxdQ/P0000lEZ0mlvTzgM).

APPENDIX A. ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABV</td>
<td>Automatisation Basse Vitesse</td>
</tr>
<tr>
<td>AAC</td>
<td>Advisory Acceleration Control</td>
</tr>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>ACMA</td>
<td>Australian Communications Media Authority</td>
</tr>
<tr>
<td>ADAS</td>
<td>Advanced Driver Assistance Systems</td>
</tr>
<tr>
<td>AKTIV</td>
<td>Adaptive and Cooperative Technologies for Intelligent Traffic</td>
</tr>
<tr>
<td>AMAS</td>
<td>Autonomous Mobility Applique System</td>
</tr>
<tr>
<td>AMTICS</td>
<td>Advanced Mobile Traffic Information and Communication System</td>
</tr>
<tr>
<td>ARTC</td>
<td>Automotive Research and Testing Center (Taiwan)</td>
</tr>
<tr>
<td>ASU</td>
<td>Arizona State University</td>
</tr>
<tr>
<td>ASV</td>
<td>Advanced Safety Vehicle</td>
</tr>
<tr>
<td>BRT</td>
<td>Bus Rapid Transit</td>
</tr>
<tr>
<td>C2X</td>
<td>Car to anything (e.g. vehicle, infrastructure, cellular phone, handheld device, etc.)</td>
</tr>
<tr>
<td>CACC</td>
<td>Cooperative Adaptive Cruise Control</td>
</tr>
<tr>
<td>CACS</td>
<td>Comprehensive Automobile Traffic Control System</td>
</tr>
<tr>
<td>CALM</td>
<td>Communications, Air-interface, Long and Medium range (wireless communication protocol)</td>
</tr>
<tr>
<td>Caltrans</td>
<td>California Department of Transportation</td>
</tr>
<tr>
<td>CAMP</td>
<td>Crash Avoidance Metrics Partnership</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
</tr>
<tr>
<td>CAR</td>
<td>Center for Automotive Research</td>
</tr>
<tr>
<td>CAST</td>
<td>Convoy Active Safety Technology</td>
</tr>
<tr>
<td>CB</td>
<td>Citizen Band</td>
</tr>
<tr>
<td>CCC</td>
<td>Connected Cruise Control</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed Circuit Television</td>
</tr>
<tr>
<td>CICAS</td>
<td>Cooperative Intersection Collision Avoidance System</td>
</tr>
<tr>
<td>CICAS-SSA</td>
<td>Cooperative Intersection Collision Avoidance System Stop Sign Assist</td>
</tr>
<tr>
<td>CICAS-V</td>
<td>Cooperative Intersection Collision Avoidance System for Violations</td>
</tr>
<tr>
<td>CITYLOG</td>
<td>Sustainability and Efficiency of City Logistics</td>
</tr>
<tr>
<td>CoCar</td>
<td>Cooperative Cars</td>
</tr>
<tr>
<td>COMM2REACT</td>
<td>Cooperative Communication System to Realize Enhanced Safety and Efficiency in European Road Transport</td>
</tr>
<tr>
<td>Compass4D</td>
<td>Cooperative Mobility Pilot on Safety and Sustainability Services for Deployment</td>
</tr>
<tr>
<td>COOPERES</td>
<td>Co-operative Systems for Intelligent Road Safety</td>
</tr>
<tr>
<td>COSMO</td>
<td>Co-Operative Systems for Sustainable Mobility and Energy Efficiency</td>
</tr>
<tr>
<td>COVER</td>
<td>Semantic Driven Cooperative Vehicle Infrastructure Systems for Advanced eSafety Applications</td>
</tr>
<tr>
<td>CSS</td>
<td>Cooperative Safety Systems</td>
</tr>
<tr>
<td>CTAG</td>
<td>Centro Tecnológico de Automoción de Galicia</td>
</tr>
<tr>
<td>CVI-UTC</td>
<td>Connected Vehicle/Infrastructure University Transportation Center</td>
</tr>
<tr>
<td>CVII</td>
<td>Commercial Vehicle Infrastructure Integration</td>
</tr>
<tr>
<td>CVIS</td>
<td>Cooperative Vehicle Infrastructure Systems</td>
</tr>
<tr>
<td>CVTA</td>
<td>Connected Vehicle Trade Association</td>
</tr>
<tr>
<td>DARPA</td>
<td>Defense Advanced Research Projects Agency</td>
</tr>
<tr>
<td>DAS</td>
<td>Data Acquisition Systems</td>
</tr>
<tr>
<td>DGT</td>
<td>Dirección General de Tráfico</td>
</tr>
<tr>
<td>DIAMANT</td>
<td>Dynamische Informationen und Anwendungen zur Mobilitätsicherung mit Adaptiven Netzwerken und Telematikanwendungen or Dynamic Information and Applications for assured Mobility with Adaptive Networks and Telematics infrastructure</td>
</tr>
<tr>
<td>DITCM</td>
<td>Dutch Integrated Testsite for Cooperative Mobility</td>
</tr>
<tr>
<td>DMS</td>
<td>Dynamic Message Signs</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>DRIVE C2X</td>
<td>DRIVing implementation and Evaluation of C2X communication technology</td>
</tr>
<tr>
<td>DSRC</td>
<td>Dedicated Short Range Communication</td>
</tr>
<tr>
<td>DSSS</td>
<td>Driving Support Safety Systems</td>
</tr>
<tr>
<td>EAR</td>
<td>Exploratory Advanced Research</td>
</tr>
<tr>
<td>eCoMove</td>
<td>Cooperative Mobility Systems and Services for Energy Efficiency</td>
</tr>
<tr>
<td>EMC</td>
<td>Electro-magnetic Compatibility</td>
</tr>
<tr>
<td>EN-V</td>
<td>Electric Networked-Vehicle</td>
</tr>
<tr>
<td>ERTICO</td>
<td>European Road Transport Telematics Implementation Co-ordination Organization</td>
</tr>
<tr>
<td>ETC</td>
<td>Electronic Toll Collection</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>EV</td>
<td>Electronic Vehicle</td>
</tr>
<tr>
<td>FDOT</td>
<td>Florida Department of Transportation</td>
</tr>
<tr>
<td>FESTA</td>
<td>Field Operational Test Support Action</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FIRST</td>
<td>Freeway Incident Response Safety Team</td>
</tr>
<tr>
<td>FOT</td>
<td>Field Operational Test</td>
</tr>
<tr>
<td>FOT-Net</td>
<td>Field Operational Test Network</td>
</tr>
<tr>
<td>FOTsis</td>
<td>European Field Operational Test on Safe, Intelligent and Sustainable Road Operation</td>
</tr>
<tr>
<td>FTE</td>
<td>Florida Turnpike Enterprise</td>
</tr>
<tr>
<td>GHz</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System or Global Position Satellite</td>
</tr>
<tr>
<td>HAR</td>
<td>Highway Advisory Radio</td>
</tr>
<tr>
<td>HeERO</td>
<td>Harmonized eCall European Pilot</td>
</tr>
<tr>
<td>HLSV</td>
<td>Hessian State Office of Road and Traffic Affairs</td>
</tr>
<tr>
<td>HMI</td>
<td>Human-Machine Interface</td>
</tr>
<tr>
<td>HOT</td>
<td>High Occupancy Toll (traffic lane)</td>
</tr>
<tr>
<td>HOV</td>
<td>High Occupancy Vehicle (traffic lane)</td>
</tr>
<tr>
<td>HSPA</td>
<td>High-Speed Packet Access</td>
</tr>
<tr>
<td>HTAS</td>
<td>High Tech Automotive Systems (Dutch innovation program)</td>
</tr>
<tr>
<td>IAP</td>
<td>Intelligent Access Program</td>
</tr>
<tr>
<td>ICM</td>
<td>Integrated Corridor Management</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technologies</td>
</tr>
<tr>
<td>ICT PSP</td>
<td>Information and Communication Technologies Policy Support Program</td>
</tr>
<tr>
<td>INRIA</td>
<td>French National Institute for Research in Computer Science and Control</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>ISM</td>
<td>Industrial, Scientific, and Medical (radio band, 2.4 GHz)</td>
</tr>
<tr>
<td>ISMUF</td>
<td>IntelliDrive℠ for Safety, Mobility, and User Fee Project</td>
</tr>
<tr>
<td>ITRI</td>
<td>Industrial Technology Research Institute of Taiwan</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transportation Systems</td>
</tr>
<tr>
<td>I-WAY</td>
<td>Intelligent Co-Operative System in Cars for Road Safety</td>
</tr>
<tr>
<td>IWCU</td>
<td>ITRI WAVE/DSRC Communication Unit</td>
</tr>
<tr>
<td>KLliEn</td>
<td>Klima- und Energiefond (Austrian Climate and Energy Fund)</td>
</tr>
<tr>
<td>KONVOI</td>
<td>Development and Analysis of Electronically Coupled Truck Platoons</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LIT</td>
<td>Lighting and Infrastructure Technology</td>
</tr>
<tr>
<td>LTE</td>
<td>3GPP Long Term Evolution</td>
</tr>
<tr>
<td>M5</td>
<td>CALM microwave medium at 5 GHz</td>
</tr>
<tr>
<td>MCNU</td>
<td>Multiband Configurable Networking Unit</td>
</tr>
<tr>
<td>MDOT</td>
<td>Michigan Department of Transportation</td>
</tr>
<tr>
<td>MEDC</td>
<td>Michigan Economic Development Corporation</td>
</tr>
<tr>
<td>MLFF</td>
<td>Multi Lane Free Flow</td>
</tr>
<tr>
<td>MnDOT</td>
<td>Minnesota Department of Transportation</td>
</tr>
<tr>
<td>MOBI.Europe</td>
<td>Integrated and Interoperable ICT Applications for Electro-Mobility in Europe</td>
</tr>
<tr>
<td>MOBiNET</td>
<td>Europe-Wide Platform for Connected Mobility Services</td>
</tr>
<tr>
<td>MOLECULES</td>
<td>Mobility based on eLEctric Connected vehicles in urban and interurban smart, cLean, EnvironmentS</td>
</tr>
<tr>
<td>MSU</td>
<td>Montana State University</td>
</tr>
<tr>
<td>MTC</td>
<td>Metropolitan Transportation Commission</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NDS</td>
<td>Naturalistic Driving Studies</td>
</tr>
<tr>
<td>NEDO</td>
<td>New Energy and Industrial Technology Development Organization</td>
</tr>
<tr>
<td>NextGenITS</td>
<td>Next Generation Intelligent Transportation Systems</td>
</tr>
<tr>
<td>NHTSA</td>
<td>National Highway Transportation Safety Administration</td>
</tr>
<tr>
<td>NRI</td>
<td>Notice of Regulatory Intent</td>
</tr>
<tr>
<td>NTRC</td>
<td>National Transportation Research Center</td>
</tr>
<tr>
<td>NTRC1</td>
<td>National Transportation Research Center, Inc.</td>
</tr>
<tr>
<td>OBE</td>
<td>On Board Equipment</td>
</tr>
<tr>
<td>OBU</td>
<td>On Board Unit</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>OPIM</td>
<td>Open Platform for Intelligent Mobility</td>
</tr>
<tr>
<td>ORNL</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>ORT</td>
<td>Open Road Tolling</td>
</tr>
<tr>
<td>PATH</td>
<td>Partnership for Advanced Transit and Highways</td>
</tr>
<tr>
<td>PhD</td>
<td>Doctor of Philosophy</td>
</tr>
<tr>
<td>PRE-DRIVE</td>
<td>PREparation for DRIVing implementation and Evaluation of C2X communication technology</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>PVIS</td>
<td>Traffic Information Platform (For COOPERS Project)</td>
</tr>
<tr>
<td>RACS</td>
<td>Road Automobile Communication System</td>
</tr>
<tr>
<td>REACT</td>
<td>Realize Enhanced Safety and Efficiency in European Road Transport</td>
</tr>
<tr>
<td>RFDI</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>RHODES<sup>NG</sup></td>
<td>Real-Time Hierarchical Optimized Distributed Effective System Next Generation</td>
</tr>
<tr>
<td>RISC</td>
<td>Rapid Incident Scene Clearance</td>
</tr>
<tr>
<td>RITA</td>
<td>Research and Innovative Technology Administration</td>
</tr>
<tr>
<td>RSE</td>
<td>Road-side Equipment</td>
</tr>
<tr>
<td>RSU</td>
<td>Road-side Unit</td>
</tr>
<tr>
<td>RTMC</td>
<td>Regional Transportation Management Center</td>
</tr>
<tr>
<td>RWIS</td>
<td>Road Weather Information System</td>
</tr>
<tr>
<td>SAE J2735</td>
<td>Society of Automotive Engineers standard for DSRC message sets</td>
</tr>
<tr>
<td>SAFE TRIP-21</td>
<td>Safe and Efficient Travel through Innovation and Partnerships in the 21st Century, a USDOT program managed by the Volpe Center</td>
</tr>
<tr>
<td>SAFESPOT</td>
<td>Smart Vehicles on Smart Roads</td>
</tr>
<tr>
<td>SAFETEA-LU</td>
<td>Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users</td>
</tr>
<tr>
<td>SAIC</td>
<td>Shanghai Automotive Industry Corporation</td>
</tr>
<tr>
<td>SARTRE</td>
<td>Safe Road Trains for the Environment</td>
</tr>
<tr>
<td>SCORE@F</td>
<td>System Coopératif Routier Expérimental Français</td>
</tr>
<tr>
<td>SeMiFOT</td>
<td>Sweden-Michigan Naturalistic Field Operational Test</td>
</tr>
<tr>
<td>Sevecom</td>
<td>Secure Vehicular Communication sim<sup>TD</sup> - Safe and Intelligent Mobility Test Germany</td>
</tr>
<tr>
<td>SISCOGA</td>
<td>Sistemas Cooperativos Galicia</td>
</tr>
<tr>
<td>SKY</td>
<td>Start ITS from Kanagawa, Yokohama</td>
</tr>
<tr>
<td>smartCEM</td>
<td>Smart Connected Electro Mobility</td>
</tr>
<tr>
<td>SMARTFREIGHT</td>
<td>Smart Freight Transport in Urban Areas</td>
</tr>
<tr>
<td>SPAT</td>
<td>Signal Phase and Timing</td>
</tr>
<tr>
<td>SPITS</td>
<td>Strategic Platform for Intelligent Traffic Systems</td>
</tr>
<tr>
<td>SRIS</td>
<td>Slippery Road Information System [in Sweden]</td>
</tr>
<tr>
<td>TeleFOT</td>
<td>Field Operational Tests of Aftermarket and No-madic Devices in Vehicles</td>
</tr>
<tr>
<td>TMC</td>
<td>Traffic Management Center or Transportation Management Center</td>
</tr>
<tr>
<td>TNO</td>
<td>Netherlands Organization for Applied Research</td>
</tr>
<tr>
<td>TOCC</td>
<td>Transportation and Operations Communication Center</td>
</tr>
<tr>
<td>TRB</td>
<td>Transportation Research Board [of the National Academies of Science and Engineering]</td>
</tr>
<tr>
<td>TSS</td>
<td>Test Site Sweden</td>
</tr>
<tr>
<td>U-City</td>
<td>Ubiquitous City</td>
</tr>
<tr>
<td>UA</td>
<td>University of Arizona</td>
</tr>
<tr>
<td>UMTRI</td>
<td>University of Michigan Transportation Research Institute</td>
</tr>
<tr>
<td>UMTHS</td>
<td>Universal Traffic Management Society</td>
</tr>
<tr>
<td>USDOT</td>
<td>United States Department of Transportation</td>
</tr>
<tr>
<td>UTC</td>
<td>University Transportation Center</td>
</tr>
<tr>
<td>UTMS</td>
<td>Universal Traffic Management Society</td>
</tr>
<tr>
<td>V2D</td>
<td>Vehicle to Device Communications</td>
</tr>
<tr>
<td>V2I</td>
<td>Vehicle-to-Infrastructure</td>
</tr>
<tr>
<td>V2V</td>
<td>Vehicle-to-Vehicle</td>
</tr>
<tr>
<td>VAD</td>
<td>Vehicle Awareness Device</td>
</tr>
<tr>
<td>VDOT</td>
<td>Virginia Department of Transportation</td>
</tr>
<tr>
<td>VERTIS</td>
<td>Vehicle, Road and Traffic Intelligence Society</td>
</tr>
<tr>
<td>VICS</td>
<td>Vehicle Information and Communication System</td>
</tr>
<tr>
<td>VII</td>
<td>Vehicle-Infrastructure Integration</td>
</tr>
<tr>
<td>VII-C</td>
<td>Vehicle-Infrastructure Integration Consortium</td>
</tr>
<tr>
<td>VSC</td>
<td>Virtual Traffic Control Sub-Center</td>
</tr>
<tr>
<td>VTTI</td>
<td>Virginia Tech Transportation Institute</td>
</tr>
<tr>
<td>WAVE</td>
<td>Wireless Access in Vehicular Environment</td>
</tr>
<tr>
<td>WDT</td>
<td>Weather Data Translator</td>
</tr>
<tr>
<td>WiMAX</td>
<td>Worldwide Interoperability for Microwave Access, a telecommunications technology providing wireless data, voice and video over long distances</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
<tr>
<td>WTI</td>
<td>Western Transportation Institute</td>
</tr>
</tbody>
</table>
APPENDIX B. GEOGRAPHICAL SUMMARY OF PROJECTS

<table>
<thead>
<tr>
<th>Continent</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>85</td>
</tr>
<tr>
<td>Europe</td>
<td>159</td>
</tr>
<tr>
<td>North America</td>
<td>149</td>
</tr>
<tr>
<td>Oceania</td>
<td>7</td>
</tr>
<tr>
<td>Grand Total</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>9</td>
</tr>
<tr>
<td>India</td>
<td>1</td>
</tr>
<tr>
<td>Israel</td>
<td>6</td>
</tr>
<tr>
<td>Japan</td>
<td>44</td>
</tr>
<tr>
<td>Singapore</td>
<td>1</td>
</tr>
<tr>
<td>South Korea</td>
<td>17</td>
</tr>
<tr>
<td>Taiwan</td>
<td>6</td>
</tr>
<tr>
<td>Turkey</td>
<td>1</td>
</tr>
<tr>
<td>Austria</td>
<td>2</td>
</tr>
<tr>
<td>Belgium</td>
<td>10</td>
</tr>
<tr>
<td>Finland</td>
<td>2</td>
</tr>
<tr>
<td>France</td>
<td>14</td>
</tr>
<tr>
<td>Germany</td>
<td>43</td>
</tr>
<tr>
<td>Greece</td>
<td>2</td>
</tr>
<tr>
<td>Italy</td>
<td>12</td>
</tr>
<tr>
<td>Netherlands</td>
<td>21</td>
</tr>
<tr>
<td>Norway</td>
<td>2</td>
</tr>
<tr>
<td>Portugal</td>
<td>1</td>
</tr>
<tr>
<td>Romania</td>
<td>1</td>
</tr>
<tr>
<td>Spain</td>
<td>6</td>
</tr>
<tr>
<td>Sweden</td>
<td>15</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>9</td>
</tr>
<tr>
<td>Europe-Wide</td>
<td>19</td>
</tr>
<tr>
<td>Canada</td>
<td>5</td>
</tr>
<tr>
<td>USA</td>
<td>144</td>
</tr>
<tr>
<td>Australia</td>
<td>6</td>
</tr>
<tr>
<td>New Zealand</td>
<td>1</td>
</tr>
<tr>
<td>Grand Total</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>3</td>
</tr>
<tr>
<td>California</td>
<td>28</td>
</tr>
<tr>
<td>Colorado</td>
<td>2</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>4</td>
</tr>
<tr>
<td>Florida</td>
<td>6</td>
</tr>
<tr>
<td>Georgia</td>
<td>1</td>
</tr>
<tr>
<td>Idaho</td>
<td>1</td>
</tr>
<tr>
<td>Illinois</td>
<td>2</td>
</tr>
<tr>
<td>Indiana</td>
<td>1</td>
</tr>
<tr>
<td>Maryland</td>
<td>3</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>2</td>
</tr>
<tr>
<td>Michigan</td>
<td>30</td>
</tr>
<tr>
<td>Minnesota</td>
<td>7</td>
</tr>
<tr>
<td>Missouri</td>
<td>1</td>
</tr>
<tr>
<td>Montana</td>
<td>10</td>
</tr>
<tr>
<td>Nevada</td>
<td>1</td>
</tr>
<tr>
<td>New Jersey</td>
<td>2</td>
</tr>
<tr>
<td>New York</td>
<td>6</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1</td>
</tr>
<tr>
<td>Ohio</td>
<td>1</td>
</tr>
<tr>
<td>South Carolina</td>
<td>1</td>
</tr>
<tr>
<td>Texas</td>
<td>5</td>
</tr>
<tr>
<td>Virginia</td>
<td>8</td>
</tr>
<tr>
<td>US-Wide</td>
<td>18</td>
</tr>
<tr>
<td>Grand Total</td>
<td>144</td>
</tr>
</tbody>
</table>