DECK CONDITION STATE

<table>
<thead>
<tr>
<th>Top Surface BSIR #58a</th>
<th>Bottom Surface BSIR #58b</th>
<th>REPAIR OPTIONS</th>
<th>POTENTIAL RESULT TO DECK BSIR</th>
<th>ANTIPOCATED FIX LIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Surface</td>
<td>Bottom Surface</td>
<td>Deficiencies %</td>
<td>Top</td>
<td>Bottom</td>
</tr>
<tr>
<td>≥ 5</td>
<td>N/A</td>
<td>N/A</td>
<td>Hold (c) / Seal Cracks</td>
<td>No Change</td>
</tr>
<tr>
<td>≤ 10%</td>
<td>≥ 6</td>
<td>≤ 2%</td>
<td>Epoxy Overlay (f)</td>
<td>8, 9</td>
</tr>
<tr>
<td>≤ 10%</td>
<td>≥ 4</td>
<td>≤ 25%</td>
<td>Deck Patch (e, j)</td>
<td>6, 7, 8</td>
</tr>
</tbody>
</table>

(a) Percent of deck surface area that is spalled, delaminated, or patched with temporary patch material. Top surface decision making based on concrete surface, not the condition of thin epoxy overlays or other wearing surfaces.
(b) Percent of deck underside area that is spalled, delaminated or map cracked.
(c) The “Hold” option implies that there is on-going maintenance to sustain current ratings.
(d) Seal cracks when cracks are easily visible and minimal map cracking. Apply healer sealer when crack density is too great to seal individually by hand. Sustains the current condition longer.
(e) Crack sealing must also be used to seal the perimeter of deck patches and joint replacements.
(f) Deck patching required prior to placement of epoxy overlay or waterproofing membrane.
(g) Hot Mix Asphalt cap without waterproofing membrane for ride quality improvement. Deck should be scheduled for replacement in the 5 year plan.
(h) If bridge crosses over traveled lanes and the deck contains slag aggregate, do deck replacement.
(i) When deck bottom surface is rated poor (or worse) and may have loose or delaminated concrete over traveled lanes, sidewalks or non-motorized paths, an in-depth inspection should be scheduled. Any loose or delaminated concrete should be scaled off and false decking should be placed over traveled lanes where there is potential for additional concrete to become loose.
(j) Some full depth repairs should be expected where top surface deficiencies align with bottom surface deficiencies.
This matrix is a tool for Bridge Engineers to use in the selection of deck repair options when the concrete bridge deck has uncoated “black” rebar. The condition of the deck is usually the driving force, or the key indicator, leading to a structure being considered for preventive maintenance, rehabilitation or replacement. However, there are times when other issues affecting the bridge may elicit the need for a project and this matrix does not address those situations. Some of these situations are super-structure deterioration, sub-structure deterioration, and functional issues such as under-clearance and/or bridge width. Sometimes it is desirable for an entire corridor to be brought up to a specific condition level as part of an overall strategy. So the user is cautioned to interpret the information from the matrix in the context of each specific case and use engineering judgment.

The matrix can be used from left to right or from right to left. If you have scoping inspection data with a deck delamination survey, select the row in the left column that matches the percent of surface defects. Then select the row in the second column that matches the percent of underside defects. To the right of this you will find a repair option and the associated changes to the NBI and the expected service life of that repair, or “Fix Life”.

If you are looking for a fix that will last for a given period of time, select a row from the right column that matches the length of service desired and scan to the left to find the repair option. Be advised that the condition of the bridge at the time of the rehabilitation affects the expected service life of the selected repair option. So if the structure is in worse condition than shown on the left side of the matrix, the repair will not last as long. Conversely, if the deck is in better condition than shown on the left, a longer service life could be expected.

This matrix has been constructed based on element deterioration data and the best knowledge of individuals from Construction Field Services, Maintenance, region bridge engineers, bridge design engineers, and FHWA with many years of experience working with bridges. When used in conjunction with the Bridge Safety Inspection Report (BSIR), element data, and detailed bridge project scoping report, the matrix can be an accurate guide in the majority of situations and will lead to a repair option that is economical and consistent with the Department’s goals.