Building Urban Travel Demand Forecast Models in Michigan

Bradley Sharlow, Transportation Planner
Robert Maffeo, Transportation Planner
Michigan Department of Transportation – Statewide and Urban Travel Analysis Section
Wednesday, October 21, 2009
Outline of Presentation

What is a Travel Demand Forecast Model and Why are they Developed?

Purposes and Applications of the TDFM

Building a TDFM – 4-Step Process

Forecasting

Examples of TDFM Applications

MI Travel Counts - UMIP
What is a Travel Demand Forecasting Model?

A series of mathematical equations which are used to simulate observed traffic conditions.

Forecasting is the process of using a validated/calibrated model to predict travel into the future applying growth factors and data projections based on possible/anticipated changes in the study area.
Why Does MDOT Build Travel Demand Models?

Federal regulations require:

- **MPOs**: Urbanized Areas with populations over 50,000 are required to have a LRTP and an objective method to evaluate the federal aid road system.

- **TMAs**: Urbanized Areas with populations over 200,000 are required to have a model and staff knowledge on modeling.
Michigan TDF Model Area Boundaries
Purposes of Model

- **Forecasts**
 - How changes in Socio-Economic data (SE-data) effect traffic flows
 - Predict future traffic congestion
 - Test solutions

- **System wide analysis**
 - How changes in the network effect traffic flows
Purposes of Model

Air Quality Analysis

- 25 counties have non-attainment status

- Inputs to Air Quality Models:
 - Vehicle Miles Traveled (VMT)
 - Vehicle Hours Traveled (VHT)
 - Congested Speeds
Other Applications of TDFM

- Project Selection – Capacity Related
- Deficiency Analysis (Level of Service)
- Operational Analysis (Detours, Construction)
- Alternative Testing
- Congestion Management
Model Updates

The model inputs are developed, reviewed and approved by the MPO committee as part of their LRTP process.

Urban models are updated for each LRTP:
- Air quality non-attainment areas every 4 years
- Air quality attainment areas every 5 years
Building a TDFM

Model Inputs
1. Developing Road Network
2. Developing Traffic Analysis Zones (TAZs)
3. Gathering Socio-Economic Data

4 – Step Modeling Process
1. Trip Generation
2. Trip Distribution
3. Mode Choice/Split
4. Traffic Assignment
Development of Road Network

Creating Base Year Road Network

- Michigan Geographic Framework
 - Website: http://www.michigan.gov/cgi

 - Scaled, repositioned, length
 - Grade separation variables
 - National Functional Classification (NFC)
 - Road Name (with direction and type)
 - Physical Reference with beginning and ending mile point
 - County/Jurisdictional Boundaries
 - Federal Aid Roads (Version 5 and higher)
Framework “all roads” file
Framework w/ Model Road Network
Centroids

- Centroids represent the zones in model.
- Centroid connectors are special links which connect the centroids to the model network.
 - Represent the local roads
- Building centroid connectors
 - No intersections (or corners of zones)
 - No connectors crossing physical barriers (rivers)
 - Connect to road network where a local road exists
Purposes of Road Network Data

- Estimate capacity and model speeds of the roadway (see handout)
 - Road type, link type, NFC, through lanes, parking, lane width, percent commercial, area type, trunkline, etc.
 - Capacities for Level of service D
 - Capacities are measured either by a lookup table or a capacity calculator.
 - Free-flow and Posted Speeds are used as a starting point for determining final model speeds
Example of Road Segment

LENGTH = .2 miles
DIR_CD = 2
LINK_TYPE_CD = 3
TRAF_OP_CD = 3
THRU_LANES = 2
AREA_TYPE = 1
LANE WIDTH = 11
PARKING = 2
TRUNKLINE = Y
PER_COMM = 5%
POSTED SPEED = 25
FREE_FLOW SPEED = 28.28
TRAVEL TIME = .424
Capacity Look-Up Table

<table>
<thead>
<tr>
<th>Area Type</th>
<th>Facility Type</th>
<th>Number of Lanes</th>
<th>Capacity Code</th>
<th>Capacity per lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD</td>
<td>FREEWAY</td>
<td>1</td>
<td>111</td>
<td>17900</td>
</tr>
<tr>
<td>CBD</td>
<td>FREEWAY</td>
<td>2</td>
<td>112</td>
<td>17900</td>
</tr>
<tr>
<td>CBD</td>
<td>FREEWAY</td>
<td>3</td>
<td>113</td>
<td>17900</td>
</tr>
<tr>
<td>CBD</td>
<td>FREEWAY</td>
<td>4</td>
<td>114</td>
<td>17900</td>
</tr>
<tr>
<td>CBD FRINGE</td>
<td>FREEWAY</td>
<td>1</td>
<td>211</td>
<td>17900</td>
</tr>
<tr>
<td>CBD FRINGE</td>
<td>FREEWAY</td>
<td>2</td>
<td>212</td>
<td>17900</td>
</tr>
<tr>
<td>CBD FRINGE</td>
<td>FREEWAY</td>
<td>3</td>
<td>213</td>
<td>17900</td>
</tr>
<tr>
<td>CBD FRINGE</td>
<td>FREEWAY</td>
<td>4</td>
<td>214</td>
<td>17900</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>FREEWAY</td>
<td>1</td>
<td>311</td>
<td>18700</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>FREEWAY</td>
<td>2</td>
<td>312</td>
<td>18700</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>FREEWAY</td>
<td>3</td>
<td>313</td>
<td>18700</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>FREEWAY</td>
<td>4</td>
<td>314</td>
<td>18700</td>
</tr>
<tr>
<td>OUTLYING BIZ DISTRICT</td>
<td>FREEWAY</td>
<td>1</td>
<td>411</td>
<td>18700</td>
</tr>
<tr>
<td>OUTLYING BIZ DISTRICT</td>
<td>FREEWAY</td>
<td>2</td>
<td>412</td>
<td>18700</td>
</tr>
<tr>
<td>OUTLYING BIZ DISTRICT</td>
<td>FREEWAY</td>
<td>3</td>
<td>413</td>
<td>18700</td>
</tr>
<tr>
<td>OUTLYING BIZ DISTRICT</td>
<td>FREEWAY</td>
<td>4</td>
<td>414</td>
<td>18700</td>
</tr>
<tr>
<td>RURAL</td>
<td>FREEWAY</td>
<td>1</td>
<td>511</td>
<td>18250</td>
</tr>
<tr>
<td>RURAL</td>
<td>FREEWAY</td>
<td>2</td>
<td>512</td>
<td>18250</td>
</tr>
<tr>
<td>RURAL</td>
<td>FREEWAY</td>
<td>3</td>
<td>513</td>
<td>18250</td>
</tr>
<tr>
<td>RURAL</td>
<td>FREEWAY</td>
<td>4</td>
<td>514</td>
<td>18250</td>
</tr>
<tr>
<td>CBD</td>
<td>DIVIDED ARTERIAL</td>
<td>1</td>
<td>121</td>
<td>7500</td>
</tr>
<tr>
<td>CBD</td>
<td>DIVIDED ARTERIAL</td>
<td>2</td>
<td>122</td>
<td>7500</td>
</tr>
<tr>
<td>CBD</td>
<td>DIVIDED ARTERIAL</td>
<td>3</td>
<td>123</td>
<td>7500</td>
</tr>
<tr>
<td>CBD</td>
<td>DIVIDED ARTERIAL</td>
<td>4</td>
<td>124</td>
<td>7700</td>
</tr>
</tbody>
</table>
Road Network Process

- **Skim network matrix**
 - Determines the travel time to get from each location to another within the network.

- **Connectivity of network**
 - Check to ensure that all links are connected at appropriate locations
 - Grade separation/crossing checks

- **Turn Penalties and/or Prohibitions**
Road Network Paths

Reasonable Paths

- Use Shortest Path tools
 - Shortest Path
 - K Shortest Path

Why

- Connectivity
- Travel Times
- Illogical travel patterns
Road Network Process

- Validate model volumes with Traffic Counts

 Traffic Counts for base year need to be coded
 - Modified raw counts
 - Average annual daily traffic (AADT)

- Where counts come from (sources)
 - MDOT
 - Local County Road Commissions
 - Local Cities and Planning Agencies
TAZ Network

Traffic Analysis Zones (TAZs)
- Small geographic subdivisions of the study area
- Developed according to Census Blocks with similar land use and zoning characteristics

Size and Boundary Delineation
- Size is based on model application
- Boundaries: road network, physical features, political jurisdictions and census geography
TAZ Network

- Census Geography
 - Socio-economic Data

Transportation and Land Use (Direct Link)
 - Can’t plan one without addressing the other
Model Inputs - TAZs

Area Type: (see handout)

1. Central Business District
2. Urban
3. Suburban
4. Fringe
5. Rural
The traffic analysis zones contain population, household and employment information. Centroids are points representing:

- Aggregated population, HH and employment
- All local residents and businesses within a zone
SE Data Methods

Population and Households (Trip Productions)

- 2000 Census Blocks containing
 - Population (in households vs. group quarters)
 - # of Households (Occupied vs. Vacant dwelling units)
 - Persons/HH (persons in HH/Occupied DUs)

- 2000 Census Block Groups containing
 - Average Income/HH
 - Auto Availability: # of HH with 0,1,2,3+ Autos
SE Data Methods

Employment Types (Trip Attractions)
- Retail Employment
- Service Employment
- Other (Non-Service, Non-Retail) Employment

Employment Databases
- MESA (2005)
- Claritas (2008)
- Hoovers (2008)
Four-Step TDFM Process

- **Trip Generation**
 - Who is making the trip and why are they making the trip (what purpose)?

- **Trip Distribution**
 - Where are they going?

- **Mode Choice/Mode Split**
 - How are they getting there (by car, walk, bus)?

- **Traffic Assignment**
 - What route are they taking to get there?
Trip Generation

- Socio-Economic data by TAZ to generate productions and attractions

- Based on NCHRP 365 or Modified 365
 - Population range 50-199k, 200-500k, 500k+
 - Based on auto per household or income
 - External – internal, internal – external
 - Special generators
Production Variables

Cross Classification Method
- Total Households
- Autos per household
- Household size

Other factors to consider
- Household Income
- Area Type of the zone
- HH make-up
 - Presence of Children, Retirees, etc.
Cross Classification Table

Based on Average Autos and Average HH Size

<table>
<thead>
<tr>
<th>[Autos/HH]</th>
<th>[Persons/HH]</th>
<th>R_P_HBW</th>
<th>R_P_HBO</th>
<th>R_P_NHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.999</td>
<td>1.999</td>
<td>0.520</td>
<td>1.460</td>
<td>0.620</td>
</tr>
<tr>
<td>0.999</td>
<td>2.999</td>
<td>1.100</td>
<td>2.540</td>
<td>1.150</td>
</tr>
<tr>
<td>0.999</td>
<td>3.999</td>
<td>1.630</td>
<td>4.000</td>
<td>1.780</td>
</tr>
<tr>
<td>0.999</td>
<td>99.999</td>
<td>2.130</td>
<td>6.610</td>
<td>2.460</td>
</tr>
<tr>
<td>1.999</td>
<td>1.999</td>
<td>0.800</td>
<td>2.240</td>
<td>0.960</td>
</tr>
<tr>
<td>1.999</td>
<td>2.999</td>
<td>1.540</td>
<td>3.550</td>
<td>1.610</td>
</tr>
<tr>
<td>1.999</td>
<td>3.999</td>
<td>2.020</td>
<td>4.970</td>
<td>2.210</td>
</tr>
<tr>
<td>1.999</td>
<td>99.999</td>
<td>2.600</td>
<td>8.080</td>
<td>3.010</td>
</tr>
<tr>
<td>2.999</td>
<td>1.999</td>
<td>0.800</td>
<td>2.240</td>
<td>0.960</td>
</tr>
<tr>
<td>2.999</td>
<td>2.999</td>
<td>1.860</td>
<td>4.290</td>
<td>1.940</td>
</tr>
<tr>
<td>2.999</td>
<td>3.999</td>
<td>2.330</td>
<td>5.720</td>
<td>2.540</td>
</tr>
<tr>
<td>2.999</td>
<td>99.999</td>
<td>3.170</td>
<td>9.850</td>
<td>3.670</td>
</tr>
<tr>
<td>99.999</td>
<td>1.999</td>
<td>0.800</td>
<td>2.240</td>
<td>0.960</td>
</tr>
<tr>
<td>99.999</td>
<td>2.999</td>
<td>1.930</td>
<td>4.450</td>
<td>2.020</td>
</tr>
<tr>
<td>99.999</td>
<td>3.999</td>
<td>2.620</td>
<td>6.430</td>
<td>2.860</td>
</tr>
<tr>
<td>99.999</td>
<td>99.999</td>
<td>3.420</td>
<td>10.620</td>
<td>3.960</td>
</tr>
<tr>
<td>0.999</td>
<td>4.999</td>
<td>1.660</td>
<td>5.610</td>
<td>1.930</td>
</tr>
<tr>
<td>1.999</td>
<td>4.999</td>
<td>2.070</td>
<td>7.020</td>
<td>2.420</td>
</tr>
<tr>
<td>2.999</td>
<td>4.999</td>
<td>2.390</td>
<td>8.110</td>
<td>2.790</td>
</tr>
<tr>
<td>99.999</td>
<td>4.999</td>
<td>2.720</td>
<td>9.210</td>
<td>3.170</td>
</tr>
</tbody>
</table>
Cross Classification Table

Based on Area Type & Autos Per HH and Persons Per HH

<table>
<thead>
<tr>
<th>AUTOS per HH</th>
<th>PERSONS per HH</th>
<th>Area TYPE</th>
<th>R_P_HBW</th>
<th>R_P_HBO</th>
<th>R_P_NHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.624</td>
<td>1.752</td>
<td>0.744</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1.320</td>
<td>3.048</td>
<td>1.379</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1.955</td>
<td>4.800</td>
<td>2.136</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1.992</td>
<td>6.733</td>
<td>2.315</td>
</tr>
<tr>
<td>0</td>
<td>4+</td>
<td>1</td>
<td>2.555</td>
<td>7.931</td>
<td>2.952</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.960</td>
<td>2.688</td>
<td>1.152</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1.848</td>
<td>4.259</td>
<td>1.931</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2.424</td>
<td>5.963</td>
<td>2.651</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2.483</td>
<td>8.424</td>
<td>2.904</td>
</tr>
<tr>
<td>1</td>
<td>4+</td>
<td>1</td>
<td>3.120</td>
<td>9.696</td>
<td>3.611</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.960</td>
<td>2.688</td>
<td>1.152</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2.232</td>
<td>5.147</td>
<td>2.328</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2.797</td>
<td>6.864</td>
<td>3.048</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2.867</td>
<td>9.731</td>
<td>3.347</td>
</tr>
<tr>
<td>2</td>
<td>4+</td>
<td>1</td>
<td>3.803</td>
<td>11.819</td>
<td>4.403</td>
</tr>
<tr>
<td>2+</td>
<td>1</td>
<td>1</td>
<td>0.960</td>
<td>2.688</td>
<td>1.152</td>
</tr>
<tr>
<td>2+</td>
<td>2</td>
<td>1</td>
<td>2.315</td>
<td>5.339</td>
<td>2.424</td>
</tr>
<tr>
<td>2+</td>
<td>3</td>
<td>1</td>
<td>3.144</td>
<td>7.715</td>
<td>3.432</td>
</tr>
<tr>
<td>2+</td>
<td>4</td>
<td>1</td>
<td>3.264</td>
<td>11.053</td>
<td>3.803</td>
</tr>
<tr>
<td>2+</td>
<td>4+</td>
<td>1</td>
<td>4.104</td>
<td>12.744</td>
<td>4.752</td>
</tr>
</tbody>
</table>
Trip Purposes

- Home
- Work
- Home Based Work
- Non-Home Based
- Retail Mall
- Home Based Other
Current Purposes

- Home-Based Work (HBW)
- Home-Based Other (HBO)
- Non-Home-Based (NHB)

Additional Purposes being considered

- Home-Based Retail (HBR) – shopping
- Home-Based School/University (HBSU)
- Non-Home Based Work (NHBW)
- Non-Home Based Other (NHBO)
Attraction Variables

- Linear regression equations by trip purpose
 - Total households
 - Retail employment
 - Service employment
 - Other (non retail or service) employment
 - Area type
Balancing of Trip Table: Productions and Attractions

- HBW and HBO purposes are set to productions
- NHB trips are set to attractions
- I-E/E-I trips are factored by trip purpose
 - HBW = 0.20, HBO = 0.57, NHB = 0.23
- Trips balanced
- Final product: Productions & attractions by purpose for each TAZ
Calibration and Reasonableness Checks – Trip Generation

- Review SE data for mistakes and anomalies
- Average person trips per household
- Percentage of overall trips by purpose
- Average Person Trips per Vehicle
 - 3.5 to 4.0
- Production/Attraction Ratio
 - 0.90 to 1.10
Calibration and Reasonableness Checks – Trip Generation

<table>
<thead>
<tr>
<th>Avg. Person Trips Per HH</th>
<th>NCHRP 365</th>
<th>MI Travel Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBW</td>
<td>9.2</td>
<td>8.89</td>
</tr>
<tr>
<td>HBO</td>
<td>57%</td>
<td></td>
</tr>
<tr>
<td>NHB</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>% Trips by Purpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBW</td>
<td>20%</td>
<td>HBW 18%</td>
</tr>
<tr>
<td>HBO</td>
<td>57%</td>
<td>HBO 53%</td>
</tr>
<tr>
<td>NHB</td>
<td>23%</td>
<td>NHB 29%</td>
</tr>
</tbody>
</table>
Trip Distribution

Trip Distribution: where are people going?

- Uses trip ends from trip generation and the network skim matrix to link trip ends to TAZs

Gravity Model
- Based on Newton’s 3rd law of Gravity
- Interaction Level between two TAZs
 - Directly related to the TAZ size (measured by number of trips)
 - Inversely related to distance (travel time)
Gravity Model

- 10 Homes
- 15 Homes
- 300 Employees
- 75 Homes
- 400 Homes
- 15 Employees
Trip Distribution: Friction Factors

- Measure of one’s perception of distance.
- NCHRP 365: Length of Average Trip by Purpose
- Express effect of spatial separation or accessibility on travel patterns
- Function of Impedance of travel from P to A, measured in terms of travel time and cost
Trip Distribution: Friction Factors

![Graph showing friction factors over travel time]

- HBW
- HBO
- NHB
Trip Distribution: Friction Factors

<table>
<thead>
<tr>
<th>Label</th>
<th>Time</th>
<th>Purpose</th>
<th>HBW</th>
<th>HBO</th>
<th>NHB</th>
<th>Cordon</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF</td>
<td>1</td>
<td>1</td>
<td>25214</td>
<td>126632</td>
<td>198293</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>2</td>
<td>1</td>
<td>21990</td>
<td>47295</td>
<td>71303</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>3</td>
<td>1</td>
<td>19291</td>
<td>25562</td>
<td>37607</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>4</td>
<td>1</td>
<td>16963</td>
<td>16072</td>
<td>23203</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>5</td>
<td>1</td>
<td>14936</td>
<td>10979</td>
<td>15601</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>6</td>
<td>1</td>
<td>13161</td>
<td>7904</td>
<td>11075</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>7</td>
<td>1</td>
<td>11605</td>
<td>5900</td>
<td>8163</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>8</td>
<td>1</td>
<td>10236</td>
<td>4522</td>
<td>6184</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>9</td>
<td>1</td>
<td>9032</td>
<td>3537</td>
<td>4784</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>10</td>
<td>1</td>
<td>7972</td>
<td>2811</td>
<td>3763</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>11</td>
<td>1</td>
<td>7037</td>
<td>2263</td>
<td>2999</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>12</td>
<td>1</td>
<td>6213</td>
<td>1841</td>
<td>2417</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>13</td>
<td>1</td>
<td>5486</td>
<td>1511</td>
<td>1966</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>14</td>
<td>1</td>
<td>4845</td>
<td>1250</td>
<td>1612</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>15</td>
<td>1</td>
<td>4280</td>
<td>1041</td>
<td>1331</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>16</td>
<td>1</td>
<td>3780</td>
<td>872</td>
<td>1105</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>17</td>
<td>1</td>
<td>3339</td>
<td>734</td>
<td>923</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>18</td>
<td>1</td>
<td>2950</td>
<td>620</td>
<td>774</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>19</td>
<td>1</td>
<td>2607</td>
<td>527</td>
<td>652</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>20</td>
<td>1</td>
<td>2303</td>
<td>449</td>
<td>551</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>21</td>
<td>1</td>
<td>2035</td>
<td>383</td>
<td>467</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>22</td>
<td>1</td>
<td>1798</td>
<td>329</td>
<td>397</td>
<td>--</td>
</tr>
<tr>
<td>GF</td>
<td>23</td>
<td>1</td>
<td>1589</td>
<td>282</td>
<td>339</td>
<td>--</td>
</tr>
</tbody>
</table>
Trip Distribution - Outputs

Output:

- Zone-to-Zone Person Trip Matrices
- Measured in terms of number of Productions and Attractions traveling to and from each zone.
Calibration and Reasonableness Checks – Trip Distribution

- Trip Length Frequency Distribution
- Validation Check: HBW Average Trip Length
 - 15-20 minutes
 - Compare with CTPP Journey-To-Work
- HBO and NHB Average Trip Length
 - 75-85% of HBW trip length
- Percent of Intrazonal Trips
 - Typically less than 5%
External to External Trips

- Traffic counts
- Percent of through trips
 - Statewide Model, professional judgments or Origin-Destination studies
 - Create number of through trips
- Create EE matrix for base year and future years
 - Growth factor method (TransCAD)
 - Check matrix sums
- Check matrix for reasonableness
Mode Choice / Split

Mode Choice
- TMAs are developing mode split logit models
- Small MPOs – Transit (not significant factor)

Auto Occupancy
- Trip Distribution = Person Trips
- Auto Occupancy factors are applied by trip purpose
- Person Trips → Vehicle Trips (HBW, HBO, NHB)
- NCHRP 365 values (sometimes modified due to heavy reliance on automobiles in MI)
Auto Occupancy Rates

<table>
<thead>
<tr>
<th>NCHRP 365</th>
<th>Kalamazoo and Jackson</th>
<th>MI Travel Counts Small MPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBW</td>
<td>1.11</td>
<td>1.1</td>
</tr>
<tr>
<td>HBO</td>
<td>1.67</td>
<td>1.3</td>
</tr>
<tr>
<td>NHB</td>
<td>1.66</td>
<td>1.37</td>
</tr>
</tbody>
</table>
Mode Choice / Split

Auto Occupancy

Productions and Attractions

Balance Matrix

Origins and Destinations
(Final Output Matrix)
Time of Day/Peak Periods

- **Peak Period Model**
 - AM Peak - 6am-9am
 - Mid-day Peak = 9am-3pm
 - PM Peak - 3pm-6pm
 - Off Peak - all other hours

- Apply factors prior to assignment
 - Percentage of trips
Traffic Assignment

- **Inputs:**
 - Final Total O&D Distribution Matrix by Vehicle Trips
 - Road Network using
 - Travel Time
 - 1-Way Capacity
Traffic Assignment

Methods

- **All or Nothing** – assigns all trips to shortest path (capacity is not a factor)
 - Statewide Model uses All or Nothing

- **User Equilibrium**
 - Uses capacity, and delay functions to address congestion impacts to travel time and route choice
 - Assigns all trips to shortest path until traffic volumes approach the capacity, and then distribute the remainder along alternative routes
 - Goes through a series of iterations until it reaches a level of convergence (.01 or .001)
Delay Function – BPR Curve

- An equation that tells the model how to adjust the speed of a link depending on the V/C ratio
 \[
 C_{\text{time}} = F_{\text{time}}(1 + a(v/c)b)
 \]
- Can be adjusted globally and on an individual link basis
BPR Curve

TRAVEL SPEEDS

<table>
<thead>
<tr>
<th>FACILITY</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 mph</td>
<td>0.88</td>
<td>9.8</td>
</tr>
<tr>
<td>Freeways</td>
<td>0.83</td>
<td>5.5</td>
</tr>
<tr>
<td>50 mph</td>
<td>0.56</td>
<td>3.6</td>
</tr>
<tr>
<td>70 mph</td>
<td>1.00</td>
<td>5.4</td>
</tr>
<tr>
<td>Multilane</td>
<td>0.83</td>
<td>2.7</td>
</tr>
<tr>
<td>50 mph</td>
<td>0.71</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Calibration and Reasonableness Checks – Traffic Assignment

Check Vehicle Miles Traveled (VMT)

- VMT per household
 - 30 to 40 miles per day for small urban
 - \(\frac{\text{Total volume} \times \text{miles}}{\text{Total Households}} \)

- VMT per person
 - 10 to 16 miles per day for small urban
 - \(\frac{\text{Total volume} \times \text{miles}}{\text{Total Persons}} \)
MDOT Validation Standards

- **Area wide VMT**: +/- 5% (Assignment/count)
- **AREA TYPE**: +/- 10%
 - CBD, Urban, Suburban, Fringe, Rural
- **Screenline**: +/- 5%
- **Cutline**: +/- 10%
Validation Standards

<table>
<thead>
<tr>
<th>LINK TYPE</th>
<th>MDOT Standards</th>
<th>FHWA Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>+/- 6%</td>
<td>+/- 7%</td>
</tr>
<tr>
<td>Ramps</td>
<td>NO STANDARD</td>
<td>NO STANDARD</td>
</tr>
<tr>
<td>Trunkline</td>
<td>+/- 6%</td>
<td>NO STANDARD</td>
</tr>
<tr>
<td>Major Arterial</td>
<td>+/- 7%</td>
<td>+/- 10%</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>+/- 10%</td>
<td>+/- 20%</td>
</tr>
<tr>
<td>Collector</td>
<td>+/- 20%</td>
<td>+/- 25%</td>
</tr>
</tbody>
</table>
VOLUME GROUP Validation Standards

Individual link targets (percent deviation of assignment/count volumes on a link-by-link basis)

<table>
<thead>
<tr>
<th>Volume Group</th>
<th>MDOT Standards</th>
<th>FHWA Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1,000</td>
<td>+/- 200%</td>
<td>+/- 60%</td>
</tr>
<tr>
<td>1,000 to 2,500</td>
<td>+/- 100%</td>
<td>+/- 47%</td>
</tr>
<tr>
<td>2,500 to 5,000</td>
<td>+/- 50%</td>
<td>+/- 36%</td>
</tr>
<tr>
<td>5,000 to 10,000</td>
<td>+/- 25%</td>
<td>+/- 29%</td>
</tr>
<tr>
<td>10,000 to 25,000</td>
<td>+/- 20%</td>
<td>+/- 25%</td>
</tr>
<tr>
<td>25,000 – 50,000</td>
<td>+/- 15%</td>
<td>+/- 22%</td>
</tr>
<tr>
<td>> 50,000</td>
<td>+/- 10%</td>
<td>+/- 21%</td>
</tr>
</tbody>
</table>
Calibration and Validation

To find out more about calibration & validation check the following:

"Model Validation and Reasonableness Checking Manual" June 2001- TMIP (Travel Model Improvement Program)

http://tmip.fhwa.dot.gov/clearinghouse/docs/mvrcm/
Forecasting

The model can assist in planning out projects in the short- and long-term future.

Population, Household, and Employment data are projected out to future years based on various forecasting models (REMI, Woods and Poole, etc.)

The forecasted data is then placed onto a build or no-build network to establish deficiencies in the future.
Examples of Model Applications

- New US-31 Freeway Alternative in Berrien County near Benton Harbor, MI
- I-475 freeway closure and lane reductions work zone analysis in Flint, MI
Example 1: US-31 Berrien County

Situation: Proposed completion between Napier Avenue and I-94

Task: Study travel characteristics in 2035 with and without the freeway

Analysis: Study both the local impacts (using the TwinCATS Urban Model) and the regional/statewide impacts (using Statewide Model)
Example 1: US-31 Berrien County
Example 1: US-31 Berrien County
Example 1: US-31 Berrien County
Example 1: US-31 Freeway – Urban Model Results
Example 1: US-31 Freeway – Statewide Model Results
Example 2: I-475 in southern Genesee County

Situation: Proposed Closure of Freeway in 2010 for reconstruction

Task: Study impacts to network and study likely detour routes.

Analysis: Develop diversion map depicting what routes that vehicles will be diverted to during time of construction (see map on wall)
Example 2: I-475 in Genesee County
Example 2: I-475 in Genesee County
Household Travel Survey Data

- The seven sampling areas
 1. SEMCOG (S.E. Michigan & Detroit)
 2. TMA areas (200,000+ population)
 3. Small Urban Model areas (50,000 – 200,000 population)
 4. Small Cities (5,000-50,000 population)
 5. Rural Upper Peninsula
 6. Rural Northern Lower Peninsula
 7. Rural Southern Lower Peninsula

- Randomly selecting households within the seven sampling areas
Urban Model Improvement Program (UMIP)

- Contract to improve models.
- Develop localized model factors for four-step model
- Develop a single model framework for all SUMAs
- Develop a model development and application guide
- Evaluate current and State-of-the-Practice modeling techniques
Revise calibration and validation standards for MI models.

Add additional components to existing models
 - Peak Period/Time-of-day
 - Truck
 - Mode Choice/Transit
What Were We Not Clear About?

Questions?