Observations on Evaluating Net Metering in Michigan

> Tom Beach, Principal Crossborder Energy Consultant to Vote Solar

October 18, 2017

Overview

- NEM in Michigan
- Basic concepts & key principles
- Cost/Benefit analyses of demand-side resources
- Cost-of-service Inflow/Outflow analyses
- Outcomes

NEM in Michigan: Public Acts 341 and 342

- Legislative direction to the Commission:
 - "...conduct a study on an appropriate tariff reflecting equitable cost of service for utility revenue requirements for customers who participate in a net metering program or distributed generation program."
- Conceptual tariff to be complete by April 2018
- Actual rates implemented in subsequent GRCs
- I0 years of grandfathering for existing DG customers

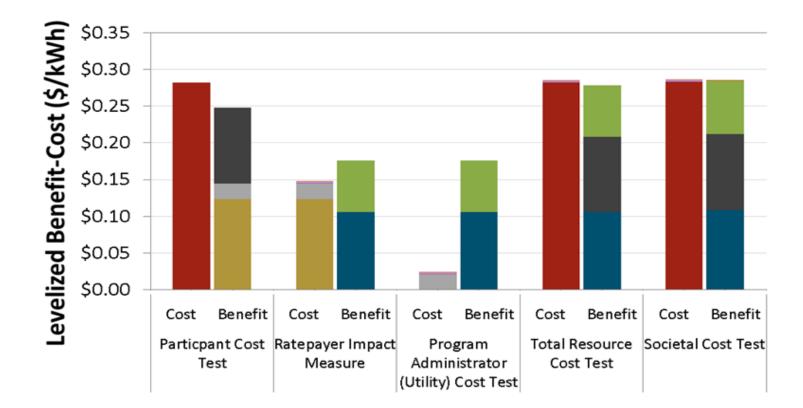
Basic Concepts: DG is a long-term resource. NEM is a billing arrangement for DG exports.

- Roots of NEM: customers who install renewable DG have certain rights under federal law (PURPA)
 - To interconnect with the grid
 - To offset their own load

- To receive an avoided cost price for exports to the grid
- Much of the output of net-metered PV systems never touches the grid.
 - Typically, for residential solar customers, from 40% to 60% of PV output serves the on-site load, before power is exported to the grid.
 - "Running the meter backward" is the essence of NEM.
 - Exports to the grid are credited at the retail rate.
 - Does the retail rate credit accurately capture the lower cost of service that results from the benefits (avoided costs) of adding DG?

Key Principles: Equity and Cost Causation

- DG facilities are long-term investments by customers in new clean energy infrastructure.
- As with any other new resource, the task is to capture the long-term impacts of DG on the utility's cost of service.
 - Benefits: future costs of service that the utility can avoid
 - Costs: increased costs for the system or for other ratepayers
- Consider a comprehensive list of benefits and costs.
 - In the long-run, few costs are fixed.
 - Recognize where DG is located: avoided T&D.
- DG exports are:
 - A service (generation) which the DG customer provides to the utility at the DG customer's meter.
 - Delivered by the utility to neighboring customers, who pay the utility for that delivery service.
- Costs to serve DG customers must consider their different load profile. They may be less expensive to serve.


We've been down this road before...

- ...with other demand-side resources that depend on customer adoption.
 - EE/DR have been incorporated as a standard resources in utility planning & regulation.
 - Cost/benefit tests per the Standard Practice Manual
 - Well-accepted, widely used for EE/DR, including in Michigan
 - Cost/benefit analyses of DG have been done for many states: AR, AZ, CA, CO, MS, NC, NV, NH, and VT
- Why reinvent the wheel?

Benefit (+) / Cost (-) Tests for Demand-side Programs, including DG

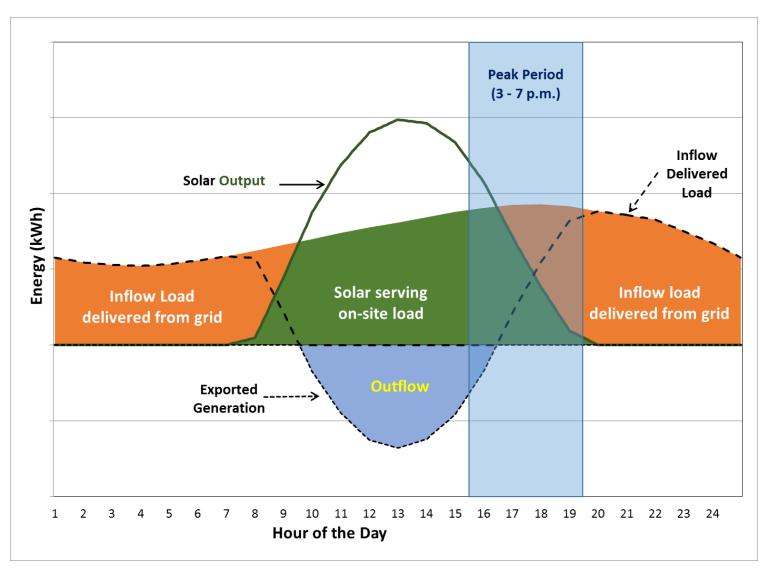
Category	Total Resource Cost (TRC)	Ratepayer Impact (RIM)	Program Administrator - Utility (PAC)	Participant (PCT)
Capital and O&M Costs of the DG Resource				
Utility Lost Revenues (same as Customer Bill Savings)				+
Utility Costs for Incentives and Program Administration				+
Avoided Costs Energy Generation Capacity T&D, including losses Risk / Hedging / Market Environmental RPS Societal	+	Ŧ	Ŧ	
Federal Tax Benefits	+			+

Example from Nevada NEM Study (released by PUCN in July 2014)

- Pre-Incentive Capital Cost
- Utility Avoided Costs
- Federal Incentives
- NEM Program Costs
- Integration Costs

- NEM Customer Bill Savings
- Utility Incentives
- RPS Value
- Criteria Pollutant (Social Cost)

Crossborder Energy


Limitations of a cost-of-service analysis of NEM

- COS is the basis for rates, one factor in analyzing NEM.
- Limited to a single test year of historical costs or a short-term forecast of costs based on the existing system.
- COS fails to reflect the long-term resource alternatives to DG.
 - COS allocators (4 CP / 12 CP / NCP) divide TY costs among customer classes.
 - The benefits of DG are counterfactual avoided costs i.e. costs <u>not</u> incurred.
 - COS does not capture the long-term marginal costs of new DG resources.
 - Avoided energy & capacity costs can be greater, or less, than embedded costs.
- COS does not include or quantify important benefits:
 - Reduced fuel price uncertainty
 - Market price mitigation
 - Avoided environmental compliance costs
 - Lower RPS costs
- Set technology-neutral, cost-based rates for all similar customers
 - A distinct rate for each new demand-side technology may be unworkable.

Customer Issues with Inflow/Outflow

- Requires AMI
- Complex for the customer compared to NEM
 - Inflow or outflow depends on:
 - Netting interval (monthly, hourly, 15-minute, instantaneous)
 - Hourly to instantaneous for APS residential: outflow share +7%
 - Size of customer vs. size of DG
 - Customer load profile vs. DG output profile
- If inflow and outflow rates are very different, customer can face perverse incentives.
 - Shift load to peak if inflow rate >> outflow rate.
 - In contrast, NEM preserves existing rate design signals.
- Less certainty for the DG customer if both inflow and outflow rates are regularly revised.

Schematic of Inflow/Outflow for Solar DG

States with Some Form of Inflow/Outflow

- AZ, CA, HI, NH, and NV
 - All have significant solar penetration.
 - All used standard NEM until DG was well-established.
 - Inflow and outflow rates are similar, except in HI.

State	Netting	Inflow Rate	Outflow Rate
AZ	Instantaneous	Retail TOU rate, plus small fixed Grid Access charge	Utility-scale solar costs plus T&D. Similar to retail now, -10% per year.
CA	Hourly (residential)	Retail TOU rate, with a \$10/month minimum bill.	Retail rate minus public purpose program costs (< 10% of rate)
NH	Monthly	Retail rate (flat or TOU)	Retail rate minus 75% of distribution costs (~3 c/kWh).
NV	Monthly	Retail rate (flat or TOU)	95% of retail, declines 7% for every 80 MW of new DG.

- HI is a special case, "a postcard from the future"
 - I 5% 20% of customers have solar
 - Self-supply only, working on a "smart export" rate

If a Test Year COS analysis is used...

- ... DG customers may be less expensive to serve.
 - Staff presentation of August 15, 2017 using DTE data:
 - DG production costs are 16% less than for an average residential customer.
 - DG customer incurs 66% of the average residential 4 CP capacity costs.
 - 5 Lakes Energy August 15, 2017 presentation with CE data:
 - DG solar results in a lower COS for residential customers.
- Experience in other states with COS studies of solar DG
 - AR: Ongoing. Compensation at COS inflow/outflow rates may exceed NEM.
 - AZ: Approved APS settlement established the same volumetric TOU rate for all residential customers, with and without DG, even though DG customers are a separate class in AZ.

If a Test Year COS analysis is used... [continued]

- Key issues:
 - Representative, granular load research data for solar customers
 - Consider COS differences for inflow service, pre- vs. post-solar
 - No double-dipping by the utility in recovering distribution costs
 - DG exports are a service which DG customers provide to the utility.
 - Title to DG exports transfers at the DG customer's meter.
 - Nearby customers compensate the utility for delivering DG exports to them.
 - Export compensation, including avoided upstream T&D costs
 - Valuation of long-term benefits not captured by COS
 - Long-term avoided costs beyond the test year
 - Reduced fuel price uncertainty
 - Market price mitigation
 - Avoided environmental compliance costs
 - Lower RPS costs

Outcomes

- Different rates for DG customers
 - Complex and contentious
 - Further complicated as rate design becomes more complex
 - Time-dependent rates
 - Grandfathered rates
 - May be lower than rates for comparable non-DG customers

Maintain NEM

- A simple, equitable balance understood by customers
- Allows work on more cost-based rates (e.g. TOU) as the market develops.
 - Enable other distributed energy technologies.
 - Storage will alter the equation.