OCFL Leachate

Pace Analytical Services, LLC 5560 Corporate Exchange Ct. SE Grand Rapids, MI 49512 (616)975-4500

June 11, 2020

Environmental Manager Ottawa County Landfill 15550 68th Avenue Coopersville, MI 49404

RE: Project: Ottawa County Farms Landfill Pace Project No.: 50258232

Dear Environmental Manager:

Enclosed are the analytical results for sample(s) received by the laboratory on May 27, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Grand Rapids
- Pace Analytical Services Indianapolis
- Pace Analytical Services New Orleans

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jemper J Rice

Jennifer Rice jennifer.rice@pacelabs.com (616)975-4500 Project Manager

Enclosures

cc: Trihyrdro Lab Data, TriHydro

Pace Analytical Services, LLC 5560 Corporate Exchange Ct. SE Grand Rapids, MI 49512 (616)975-4500

CERTIFICATIONS

Project: Ottawa County Farms Landfill

Pace Project No.: 50258232

Pace Analytical Services New Orleans

California Env. Lab Accreditation Program Branch: 11277CA Florida Department of Health (NELAC): E87595

Illinois Environmental Protection Agency: 0025721 Kansas Department of Health and Environment (NELAC): E-10266

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268 Illinois Accreditation #: 200074 Indiana Drinking Water Laboratory #: C-49-06 Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050

Pace Analytical Services Grand Rapids

5560 Corporate Exchange Ct SE, Grand Rapids, MI 49512 Minnesota/TNI Laboratory #026-999-161 Louisiana Dept. of Environmental Quality (NELAC/LELAP): 02006 Texas Commission on Env. Quality (NELAC): T104704405-09-TX U.S. Dept. of Agriculture Foreign Soil Import: P330-10-00119

Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 West Virginia Certification #: 330 Wisconsin Laboratory #: 999788130 USDA Soil Permit #: P330-19-00257

Michigan Drinking Water Laboratory #0034

SAMPLE SUMMARY

Project: Ottawa County Farms Landfill

Pace Project No.: 50258232

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50258232001	Leachate	Water	05/27/20 16:00	05/27/20 16:55
50258232002	Trip Blank	Water	05/27/20 00:00	05/27/20 16:55

SAMPLE ANALYTE COUNT

Project: Ottawa County Farms Landfill Pace Project No.: 50258232

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50258232001	Leachate		JLR1	3	PASI-GR
		EPA 6010	JPK	5	PASI-I
		EPA 5030B/8260	JPV	50	PASI-I
		EPA 1010	WDB	1	PASI-I
	SM 2320B	SCM	3	PASI-I	
		SM 2540C	SKK	1	PASI-I
		SM 2540D	SKK	1	PASI-I
		SW-846 7.3.4.2	LJL	1	PASI-N
		ASTM D516-90,02	TPD	1	PASI-I
		SM 4500-CI-E	GWA	1	PASI-I
		SM 4500-NH3 G	DAC1	1	PASI-I
		SM 5310C	GWA	1	PASI-I
		SW-846 7.3.3.2	MHM	1	PASI-N

PASI-GR = Pace Analytical Services - Grand Rapids

PASI-I = Pace Analytical Services - Indianapolis

PASI-N = Pace Analytical Services - New Orleans

ANALYTICAL RESULTS

Project: Ottawa County Farms Landfill

Pace Project No.: 50258232

Sample: Leachate	Lab ID: 50	258232001	Collected: 05/27/2	0 16:00	Received: 05	5/27/20 16:55 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Me	ethod:						
	Pace Analyti	cal Services - G	Grand Rapids					
Field pH	7.58	Std. Units		1		06/03/20 09:00		
Field Temperature	23.2	deg C		1		06/03/20 09:00		
Field Specific Conductance	11200	umhos/cm		1		06/03/20 09:00		
6010 MET ICP	Analytical Me	ethod: FPA 601	0 Preparation Meth	nod: FP	A 3010			
		cal Services - I						
Coloium				4	06/02/20 42:20	06/11/20 01:22	7440 70 0	
Calcium	90700	ug/L	1000	1		06/11/20 01:22		
Iron	7600	ug/L	50.0	1		06/11/20 01:22		
Magnesium	111000	ug/L	1000	1		06/11/20 01:22		
Potassium	450000	ug/L	10000	20		06/11/20 01:45		
Sodium	2330000	ug/L	20000	20	06/03/20 13:30	06/11/20 01:45	7440-23-5	
8260 MSV Low Level		ethod: EPA 503						
	Pace Analyti	cal Services - I	ndianapolis					
Acetone	955	ug/L	200	10		06/02/20 20:09	67-64-1	
Acrylonitrile	<50.0	ug/L	50.0	10		06/02/20 20:09	107-13-1	
Benzene	<10.0	ug/L	10.0	10		06/02/20 20:09	71-43-2	
Bromochloromethane	<10.0	ug/L	10.0	10		06/02/20 20:09	74-97-5	
Bromodichloromethane	<10.0	ug/L	10.0	10		06/02/20 20:09	75-27-4	
Bromoform	<10.0	ug/L	10.0	10		06/02/20 20:09	75-25-2	
Bromomethane	<50.0	ug/L	50.0	10		06/02/20 20:09	74-83-9	
2-Butanone (MEK)	1040	ug/L	50.0	10		06/02/20 20:09	78-93-3	
Carbon disulfide	<10.0	ug/L	10.0	10		06/02/20 20:09	75-15-0	
Carbon tetrachloride	<10.0	ug/L	10.0	10		06/02/20 20:09	56-23-5	
Chlorobenzene	<10.0	ug/L	10.0	10		06/02/20 20:09	108-90-7	
Chloroethane	<50.0	ug/L	50.0	10		06/02/20 20:09	75-00-3	
Chloroform	<10.0	ug/L	10.0	10		06/02/20 20:09	67-66-3	
Chloromethane	<50.0	ug/L	50.0	10		06/02/20 20:09	74-87-3	
1,2-Dibromo-3-chloropropane	<50.0	ug/L	50.0	10		06/02/20 20:09	96-12-8	
Dibromochloromethane	<10.0	ug/L	10.0	10		06/02/20 20:09		
1,2-Dibromoethane (EDB)	<10.0	ug/L	10.0	10		06/02/20 20:09		
Dibromomethane	<10.0	ug/L	10.0	10		06/02/20 20:09	74-95-3	
1,2-Dichlorobenzene	<10.0	ug/L	10.0	10		06/02/20 20:09	95-50-1	
1,4-Dichlorobenzene	<10.0	ug/L	10.0	10		06/02/20 20:09		
trans-1,4-Dichloro-2-butene	<50.0	ug/L	50.0	10		06/02/20 20:09		
1,1-Dichloroethane	<10.0	ug/L	10.0	10		06/02/20 20:09		
1,2-Dichloroethane	<10.0	ug/L	10.0	10		06/02/20 20:09		
1,1-Dichloroethene	<10.0	ug/L	10.0	10		06/02/20 20:09		
cis-1,2-Dichloroethene	<10.0	ug/L	10.0	10		06/02/20 20:09		
trans-1,2-Dichloroethene	<10.0	ug/L	10.0	10		06/02/20 20:09		
1,2-Dichloropropane	<10.0	ug/L	10.0	10		06/02/20 20:09		
cis-1,3-Dichloropropene	<10.0	ug/L	10.0	10		06/02/20 20:09		
trans-1,3-Dichloropropene	<10.0	ug/L	10.0	10		06/02/20 20:09		
Ethylbenzene	12.1	ug/L	10.0	10		06/02/20 20:09		
2-Hexanone	<50.0	ug/L	50.0	10		06/02/20 20:09	591-78-6	

ANALYTICAL RESULTS

Project: Ottawa County Farms Landfill

Pace Project No.: 50258232

Sample: Leachate	Lab ID: 502	58232001	Collected: 05/27/2	20 16:00	Received: 05	5/27/20 16:55 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical Meth	nod: EPA 50)30B/8260					
	Pace Analytica	I Services -	Indianapolis					
lodomethane	<10.0	ug/L	10.0	10		06/02/20 20:09	74-88-4	
Methylene Chloride	<50.0	ug/L	50.0	10		06/02/20 20:09	75-09-2	
4-Methyl-2-pentanone (MIBK)	<50.0	ug/L	50.0	10		06/02/20 20:09	108-10-1	
Styrene	<10.0	ug/L	10.0	10		06/02/20 20:09	100-42-5	
1,1,1,2-Tetrachloroethane	<10.0	ug/L	10.0	10		06/02/20 20:09	630-20-6	
1,1,2,2-Tetrachloroethane	<10.0	ug/L	10.0	10		06/02/20 20:09	79-34-5	
Tetrachloroethene	<10.0	ug/L	10.0	10		06/02/20 20:09		
Toluene	61.7	ug/L	10.0	10		06/02/20 20:09	108-88-3	
1,1,1-Trichloroethane	<10.0	ug/L	10.0	10		06/02/20 20:09		
1,1,2-Trichloroethane	<10.0	ug/L	10.0	10		06/02/20 20:09		
Trichloroethene	<10.0	ug/L	10.0	10		06/02/20 20:09		
Trichlorofluoromethane	<10.0	ug/L	10.0	10		06/02/20 20:09		
1,2,3-Trichloropropane	<10.0	ug/L	10.0	10		06/02/20 20:09		
Vinyl acetate	<50.0	ug/L	50.0	10		06/02/20 20:09		
Vinyl chloride	<10.0	ug/L	10.0	10		06/02/20 20:09		
Xylene (Total)	38.4	ug/L	20.0	10		06/02/20 20:09	1330-20-7	
Surrogates	92	%.	85-116	10		06/02/20 20:09	460.00.4	F1
4-Bromofluorobenzene (S) Dibromofluoromethane (S)	92 106	%.	75-120	10		06/02/20 20:09		ГІ
Toluene-d8 (S)	105	%.	83-111	10		06/02/20 20:09		
	105	70.	00 111	10		00/02/20 20:00	2007 20 0	
1010 Flashpoint, Closed Cup	Analytical Meth	nod: EPA 10)10					
	Pace Analytica	I Services -	Indianapolis					
Flashpoint	>200	deg F		1		06/03/20 21:56		
2320B Alkalinity	Analytical Meth	nod: SM 232	20B					
	Pace Analytica							
Alkalinity, Total as CaCO3	7940	mg/L	10.0	1		06/04/20 12:33		
Alkalinity, Bicarbonate (CaCO3)	7940	mg/L	10.0	1		06/04/20 12:33		
Alkalinity,Carbonate (CaCO3)	<10.0	mg/L	10.0	1		06/04/20 12:33		
2540C Total Dissolved Solids	Analytical Meth	•	40C					
	Pace Analytica	I Services -	Indianapolis					
Total Dissolved Solids	8400000	ug/L	200000	1		06/02/20 11:42		
2540D Total Suspended Solids	Analytical Meth Pace Analytica							
Total Suspended Solids	39000	ug/L	25000	1		05/29/20 17:04		
734S Reactive Sulfide	Analytical Meth Pace Analytica		6 7.3.4.2 Preparation New Orleans	n Metho	d: SW-846 7.3.4.	2		
Sulfide, Reactive	<50.0	mg/kg	50.0	1	06/02/20 09:47	06/02/20 13:39		

ANALYTICAL RESULTS

Project: Ottawa County Farms Landfill

Pace Project No.: 50258232

Sample: Leachate	Lab ID: 5025	8232001	Collected: 05/27	7/20 16:00) Received: (5/27/20 16:55	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
ASTM D516-9002 Sulfate Water	Analytical Meth	od: ASTM I	D516-90,02					
	Pace Analytical	Services -	Indianapolis					
Sulfate	<500000	ug/L	50000	0 50		06/03/20 15:22	2 14808-79-8	D3
4500 Chloride	Analytical Mether Pace Analytical							
Chloride	2090000	ug/L	5000	50		06/08/20 10:00	6 16887-00-6	
4500 Ammonia Water, Distilled	Analytical Meth		00-NH3 G Prepara Indianapolis	ition Meth	nod: SM 4500-NI	H3 B		
Nitrogen, Ammonia	1260000	ug/L	3000) 5	06/03/20 13:03	3 06/03/20 14:2 [,]	7664-41-7	P4
5310C TOC	Analytical Meth							
Total Organic Carbon	769000	ug/L	5000	0 100		06/10/20 21:22	2 7440-44-0	C4,P4
733C S Reactive Cyanide	Analytical Meth		6 7.3.3.2 Preparat New Orleans	ion Metho	od: SW-846 7.3.3	3.2		
Cyanide, Reactive	<25.0	mg/kg	25.0) 1	06/02/20 09:4	1 06/02/20 14:57	7	

Project:	Ottawa County Farms Landfill
Pace Project No ·	50258232

QC Batch: 56466	35		Analysis Method:			PA 6010						
QC Batch Method: EPA 3	3010		Analy	sis Descri	ption: 6	010 MET						
			Labor	atory:	Р	ace Analyt	ical Service	es - Indiana	apolis			
Associated Lab Samples:	502582320	01										
METHOD BLANK: 260503	51			Matrix: W	ater							
Associated Lab Samples:	502582320	01										
			Blan	k l	Reporting							
Parameter		Units	Resu	ılt	Limit	Anal	yzed	Qualifier	S			
Calcium		ug/L		<1000	1000	06/10/2	0 04:48					
Iron		ug/L		<50.0	50.0							
Magnesium		ug/L		<1000	1000							
Potassium		ug/L		<500	500							
Sodium		ug/L		<1000	1000	06/10/2	0 04:48					
LABORATORY CONTROL S	SAMPLE:	2605032	Spiko	LC	· c	LCS	% Re					
Parameter		Units	Spike Conc.	Res	-	% Rec	% Re		Qualifiers			
Calcium		ug/L	1000	 D	9660	9	7 8	80-120		_		
Iron		ug/L	1000	C	9130	9	1 8	80-120				
Magnesium		ug/L	1000		9200	93		80-120				
Potassium		ug/L	1000		9170	93		80-120				
Sodium		ug/L	1000	0	9130	9	1 8	80-120				
					2605034							
MATRIX SPIKE & MATRIX S	SPIKE DUPL	LICATE: 2605	J33		2000034							
MATRIX SPIKE & MATRIX S	SPIKE DUPL	LICATE: 2605	MS	MSD	2005034							
MATRIX SPIKE & MATRIX \$	SPIKE DUPL	JCATE: 2605		MSD Spike	2605034 MS	MSD	MS	MSD	% Rec		Max	
MATRIX SPIKE & MATRIX S Parameter	SPIKE DUPL Units		MS	-		MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Parameter	Units	50258201003	MS Spike	Spike	MS	-	-	-	Limits	RPD 7	RPD	
Parameter		50258201003 Result	MS Spike Conc.	Spike Conc.	MS Result	Result	% Rec	% Rec	Limits		RPD	
Parameter Calcium ron	Units ug/L	50258201003 Result 95400	MS Spike Conc.	Spike Conc. 10000	MS Result 104000	Result 111000	% Rec 83	% Rec 153	Limits 75-125 75-125	7	RPD 20	
	Units ug/L ug/L	50258201003 Result 95400 912	MS Spike Conc. 10000 10000	Spike Conc. 10000 10000	MS Result 104000 9810	Result 111000 10100	% Rec 83 89	% Rec 153 91	Limits 75-125 75-125 75-125 75-125	7	RPD 20 20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ottawa County Farms Landfill

QC Batch: 564951		Analysis Meth	nod: E	PA 5030B/8260	
QC Batch Method: EPA 5030B/826	0	Analysis Des		260 MSV Low Level	
	-	Laboratory:	•	ace Analytical Servi	
Associated Lab Samples: 50258232	2001	,		,	
IETHOD BLANK: 2605940		Matrix:	Water		
ssociated Lab Samples: 50258232	2001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
,1,2-Tetrachloroethane	ug/L	<1.0	1.0	06/02/20 13:39	
I,1-Trichloroethane	ug/L	<1.0	1.0	06/02/20 13:39	
1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	06/02/20 13:39	
,2-Trichloroethane	ug/L	<1.0	1.0	06/02/20 13:39	
Dichloroethane	ug/L	<1.0	1.0	06/02/20 13:39	
-Dichloroethene	ug/L	<1.0	1.0	06/02/20 13:39	
,3-Trichloropropane	ug/L	<1.0	1.0		
Dibromo-3-chloropropane	ug/L	<5.0	5.0		
Dibromoethane (EDB)	ug/L	<1.0	1.0	06/02/20 13:39	
Dichlorobenzene	ug/L	<1.0	1.0	06/02/20 13:39	
Dichloroethane	ug/L	<1.0	1.0	06/02/20 13:39	
Dichloropropane	ug/L	<1.0	1.0	06/02/20 13:39	
Dichlorobenzene	ug/L	<1.0	1.0	06/02/20 13:39	
anone (MEK)	ug/L	<5.0	5.0	06/02/20 13:39	
xanone	ug/L	<5.0	5.0	06/02/20 13:39	
thyl-2-pentanone (MIBK)	ug/L	<5.0	5.0		
one	ug/L	<20.0	20.0		
Ionitrile	ug/L	<5.0	5.0		
	ug/L	<1.0	1.0	06/02/20 13:39	
mochloromethane	ug/L	<1.0	1.0	06/02/20 13:39	
nodichloromethane	ug/L	<1.0	1.0	06/02/20 13:39	
moform	ug/L	<1.0	1.0	06/02/20 13:39	
momethane	ug/L	<5.0	5.0	06/02/20 13:39	
bon disulfide bon tetrachloride	ug/L	<1.0 <1.0	1.0	06/02/20 13:39 06/02/20 13:39	
probenzene	ug/L	<1.0 <1.0	1.0 1.0	06/02/20 13:39	
oroethane	ug/L	<1.0 <5.0	5.0		
oroform	ug/L	<5.0 <1.0	5.0 1.0	06/02/20 13:39	
	ug/L ug/L	<1.0 <5.0	5.0		
promethane 1,2-Dichloroethene	ug/L	<5.0	5.0 1.0	06/02/20 13:39	
,3-Dichloropropene	ug/L	<1.0	1.0	06/02/20 13:39	
omochloromethane	ug/L	<1.0	1.0	06/02/20 13:39	
romomethane	ug/L	<1.0	1.0		
/lbenzene	ug/L	<1.0	1.0	06/02/20 13:39	
methane	ug/L	<1.0	1.0	06/02/20 13:39	
hylene Chloride	ug/L	<5.0	5.0	06/02/20 13:39	
ene	ug/L	<1.0	1.0	06/02/20 13:39	
chloroethene	ug/L	<1.0	1.0		
				00/00/00 40 00	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1.0 06/02/20 13:39

1.0 06/02/20 13:39

<1.0

<1.0

ug/L

ug/L

REPORT OF LABORATORY ANALYSIS

trans-1,2-Dichloroethene

Toluene

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ottawa County Farms Landfill

Pace Project No.: 50258232

METHOD BLANK: 2605940 Matrix: Water Associated Lab Samples: 50258232001 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers trans-1,3-Dichloropropene ug/L <1.0 1.0 06/02/20 13:39 trans-1,4-Dichloro-2-butene ug/L <5.0 5.0 06/02/20 13:39 Trichloroethene 1.0 06/02/20 13:39 ug/L <1.0 Trichlorofluoromethane ug/L <1.0 1.0 06/02/20 13:39 Vinyl acetate ug/L 5.0 06/02/20 13:39 <5.0 Vinyl chloride ug/L <1.0 1.0 06/02/20 13:39 Xylene (Total) ug/L <2.0 2.0 06/02/20 13:39 4-Bromofluorobenzene (S) %. 93 85-116 06/02/20 13:39 Dibromofluoromethane (S) %. 106 75-120 06/02/20 13:39 Toluene-d8 (S) %. 102 83-111 06/02/20 13:39

LABORATORY CONTROL SAMPLE: 2605941

		Spike	LCS	LCS	% Rec	o
Parameter	Units	Conc	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	50.6	101	78-120	
1,1,1-Trichloroethane	ug/L	50	59.7	119	78-130	
1,1,2,2-Tetrachloroethane	ug/L	50	55.6	111	64-126	
1,1,2-Trichloroethane	ug/L	50	48.7	97	73-125	
1,1-Dichloroethane	ug/L	50	58.6	117	77-123	
1,1-Dichloroethene	ug/L	50	57.8	116	79-128	
1,2,3-Trichloropropane	ug/L	50	55.5	111	71-131	
1,2-Dibromo-3-chloropropane	ug/L	50	39.5	79	71-133	
1,2-Dibromoethane (EDB)	ug/L	50	48.0	96	76-122	
1,2-Dichlorobenzene	ug/L	50	45.7	91	79-113	
1,2-Dichloroethane	ug/L	50	51.6	103	66-127	
1,2-Dichloropropane	ug/L	50	51.0	102	75-127	
1,4-Dichlorobenzene	ug/L	50	51.9	104	77-117	
2-Butanone (MEK)	ug/L	250	219	88	61-138	
2-Hexanone	ug/L	250	244	98	58-138	
4-Methyl-2-pentanone (MIBK)	ug/L	250	257	103	60-131	
Acetone	ug/L	250	216	86	57-126	
Acrylonitrile	ug/L	200	183	91	65-127	
Benzene	ug/L	50	52.4	105	75-118	
Bromochloromethane	ug/L	50	45.4	91	66-126	
Bromodichloromethane	ug/L	50	50.1	100	75-120	
Bromoform	ug/L	50	47.9	96	61-119	
Bromomethane	ug/L	50	86.1	172	12-184	
Carbon disulfide	ug/L	50	59.3	119	71-123	
Carbon tetrachloride	ug/L	50	59.2	118	73-125	
Chlorobenzene	ug/L	50	52.5	105	80-115	
Chloroethane	ug/L	50	55.9	112	46-133	
Chloroform	ug/L	50	52.4	105	75-117	
Chloromethane	ug/L	50	51.4	103	33-124	
cis-1,2-Dichloroethene	ug/L	50	52.7	105	76-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ottawa County Farms Landfill

Pace Project No.: 50258232

LABORATORY CONTROL SAMPLE: 2605941

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,3-Dichloropropene	ug/L		53.4	107	73-130	
Dibromochloromethane	ug/L	50	49.1	98	69-124	
Dibromomethane	ug/L	50	50.8	102	76-124	
Ethylbenzene	ug/L	50	53.6	107	78-120	
Iodomethane	ug/L	100	88.7	89	10-184	
Methylene Chloride	ug/L	50	52.9	106	68-126	
Styrene	ug/L	50	49.2	98	80-121	
Tetrachloroethene	ug/L	50	55.0	110	70-123	
oluene	ug/L	50	53.3	107	72-114	
rans-1,2-Dichloroethene	ug/L	50	55.9	112	79-126	
rans-1,3-Dichloropropene	ug/L	50	49.9	100	68-122	
rans-1,4-Dichloro-2-butene	ug/L	200	223	111	34-130	
richloroethene	ug/L	50	53.3	107	78-120	
richlorofluoromethane	ug/L	50	64.7	129	57-156	
/inyl acetate	ug/L	200	192	96	50-116	
/inyl chloride	ug/L	50	53.0	106	55-122	
Kylene (Total)	ug/L	150	159	106	81-118	
I-Bromofluorobenzene (S)	%.			98	85-116	
Dibromofluoromethane (S)	%.			106	75-120	
Toluene-d8 (S)	%.			104	83-111	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Ottawa County Far	ns Landfill								
Pace Project No.:	50258232									
QC Batch:	565404		Analysis M	ethod:	SM 2320B					
QC Batch Method:	QC Batch Method: SM 2320B			escription:	2320B Alkalin	ity				
			Laboratory	:	Pace Analytic	al Service	es - India	anapolis		
Associated Lab San	nples: 502582320	01								
METHOD BLANK:	2607909		Matri	x: Water						
Associated Lab San	nples: 502582320	01								
			Blank	Reporting						
Paran	neter	Units	Result	Limit	Analyz	ed	Qualifi	iers		
Alkalinity, Total as C		mg/L	<10.0		0.0 06/04/20					
Alkalinity, Bicarbonat	. ,	mg/L	<10.0		0.0 06/04/20	-				
Alkalinity,Carbonate	(CaCO3)	mg/L	<10.0) 1	0.0 06/04/20	12:13				
LABORATORY COM	NTROL SAMPLE:	2607910								
			Spike	LCS	LCS	% Re	ес			
Paran	neter	Units	Conc.	Result	% Rec	Limit	ts	Qualifiers		
Alkalinity, Total as C	aCO3	mg/L	50	50.0	100	ç	90-110			
SAMPLE DUPLICA	TE: 2607911									
			50258752001	Dup			Max			
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers		
Alkalinity, Total as C	aCO3	mg/L	2420	24	.00	1		20		
Alkalinity, Bicarbonat	te (CaCO3)	mg/L	2420		.00	1		20		
Alkalinity,Carbonate	(CaCO3)	mg/L	NE) <1	0.0			20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ottaw	a County Farms Landfill						
Pace Project No.: 50258	232						
QC Batch: 5648	399	Analysis Me	ethod:	SM 2540C			
QC Batch Method: SM 2	2540C	Analysis De	escription: 2	2540C Total Di	ssolved Solids		
		Laboratory	: 1	Pace Analytica	l Services - Ind	ianapo	blis
Associated Lab Samples:	50258232001						
METHOD BLANK: 26057	05	Matrix	: Water				
Associated Lab Samples:	50258232001						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Dissolved Solids	ug/L	<10000	1000	0 06/02/20 1	1:41		_
LABORATORY CONTROL	SAMPLE: 2605706						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qu	alifiers
Total Dissolved Solids	ug/L	300000	283000	94	80-120		
SAMPLE DUPLICATE: 2	605707						
		50258170002			Max		
Parameter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solids	ug/L	566 mg/L	56800	0	0	10	
SAMPLE DUPLICATE: 2	605708						
		50258335005	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solids	ug/L	515 mg/L	- 50700	0	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Ottawa County Fa	arms Landfill						
Pace Project No.:	50258232							
QC Batch:	564450		Analysis Me	ethod:	SM 2540D			
QC Batch Method:	SM 2540D		Analysis De	escription: 2	2540D Total Su	uspended Solid	s	
			Laboratory:		Pace Analytica	I Services - Ind	ianapolis	
Associated Lab Sam	nples: 50258232	2001	-		-			
METHOD BLANK:	2604057		Matrix	c: Water				
Associated Lab Sam	nples: 50258232	2001						
			Blank	Reporting				
Param	neter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Suspended So	lids	ug/L	<2500	250	0 05/29/20 1	7:03		
LABORATORY CON	ITROL SAMPLE:	2604058						
			Spike	LCS	LCS	% Rec		
Param	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Suspended So	lids	ug/L	100000	90000	90	80-120		
SAMPLE DUPLICAT	TE: 2604060							
			50258277001	Dup		Max		
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Suspended So	lids	ug/L	33 mg/L	2900	0	13	10 R1	
SAMPLE DUPLICAT	TE: 2604265							
			50258277004	Dup		Max		
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Suspended So	lids	ug/L	34 mg/L	3150	0	6	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Ottawa	a County Fa	arms Landfill								
Pace Project No.:	50258	232									
QC Batch:	1874	60		Analysis Me	ethod	1: :	SW-846 7.3.4.2				
QC Batch Method:	SW-8	346 7.3.4.2		Analysis De	escrip	otion:	734S Reactive S	Sulfide			
				Laboratory:		1	Pace Analytical	Services - Ne	w Orle	eans	
Associated Lab Sar	nples:	50258232	2001				-				
METHOD BLANK:	86329	1		Matrix	c: So	lid					
Associated Lab Sar	nples:	50258232	2001								
				Blank	F	Reporting					
Parar	neter		Units	Result		Limit	Analyzed	Qual	lifiers		
Sulfide, Reactive			mg/kg)	50.	0 06/02/20 13	:39		_	
LABORATORY CO	NTROL	SAMPLE:	863292								
				Spike	LCS	S	LCS	% Rec			
Paran	neter		Units	Conc.	Res	ult	% Rec	Limits	Qı	alifiers	
Sulfide, Reactive			mg/kg	500		441	88	1-110			
MATRIX SPIKE SAI	MPLE:		863294			o "					
Dava			Units	5025823200 Result	1	Spike	MS	MS V Daa		% Rec	Qualifiana
Paran	neter		Units			Conc.	Result	% Rec		Limits	Qualifiers
Sulfide, Reactive			mg/kg	<5	0.0	500	441		84	1-110	
SAMPLE DUPLICA	TE: 86	3293									
				50258232001		Dup		Max			
Parar	neter		Units	Result		Result	RPD	RPD		Qualifiers	
Sulfide, Reactive			mg/kg	<50.0)	<50.	0		20		_

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: C	Ottawa County Fa	arms Landfill										
Pace Project No.: 5	0258232											
QC Batch:	565212		Analy	sis Metho	d:	ASTM D516	6-90,02					
QC Batch Method:	ASTM D516-90,	02	Anal	/sis Descri	ption:	ASTM D516	6-9002 Suli	fate Water				
			Labo	ratory:		Pace Analy	tical Servic	es - Indiana	apolis			
Associated Lab Samp	les: 50258232	2001										
METHOD BLANK: 2	607086			Matrix: W	ater							
Associated Lab Samp	les: 50258232	2001										
			Blai	nk	Reporting							
Parame	ter	Units	Res	ult	Limit	Anal	yzed	Qualifiers	S			
Sulfate		ug/L	<	:10000	1000	06/03/2	0 14:02					
LABORATORY CONT	ROL SAMPLE:	2607087										
			Spike	LC	S	LCS	% R					
Parame	ter	Units	Conc.	Res	sult	% Rec	Lim	its (Qualifiers	_		
Sulfate		ug/L	2000	00	21100	10	6	90-110				
MATRIX SPIKE & MA		PLICATE: 2607	088		260708	9						
			MS	MSD								
		50258281002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfate	ug/L	211 mg/L	500000	500000	711000	685000	100	95	90-110	4	20	
MATRIX SPIKE SAMP	LE:	2607090	50050	486001	Spiko	MS		MS	% Rec			
Parame	ter	Units		486001 sult	Spike Conc.	Result		MS 6 Rec	% Rec		Qualif	iers
											Quali	
Sulfate		ug/L		121 mg/L	200000	333	3000	106	90	-110		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Of	tawa County Fa	irms Landfill										
Pace Project No.: 50	258232											
QC Batch:	565858		Analy	ysis Method	d:	SM 4500-C	-E					
QC Batch Method:	SM 4500-CI-E		Analy	ysis Descrij	ption:	4500 Chlori	de					
			Labo	ratory:		Pace Analyt	ical Servic	es - Indiana	apolis			
Associated Lab Sample	es: 50258232	2001										
METHOD BLANK: 26	610345			Matrix: W	ater							
Associated Lab Sample	es: 50258232	2001										
			Blai	nk l	Reporting							
Paramete	er	Units	Res	ult	Limit	Anal	yzed	Qualifiers	5			
Chloride		ug/L		<1000	100	0 06/08/2	0 09:37					
LABORATORY CONTR	ROL SAMPLE:	2610346										
			Spike	LC	-	LCS	% R					
Paramete	er	Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
Chloride		ug/L	2000	00	20000	10	0 9	90-110				
MATRIX SPIKE & MAT	RIX SPIKE DUF	PLICATE: 2610	347		2610348	3						
			MS	MSD								
		50258166001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	ug/L	<10.0 mg/L	20000	20000	22300	22500	103	104	90-110	1	20	
MATRIX SPIKE SAMP	LE:	2610349										
			50258	231001	Spike	MS		MS	% Rec	;		
Paramete	er	Units	Re	sult	Conc.	Result	%	Rec	Limits		Qualif	iers
Chloride		ug/L		16600	20000	38	600	110	90	-110		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Ottawa County Fa	arms Landfill										
Pace Project No.:	50258232											
QC Batch:	565148		Anal	ysis Method	d: :	SM 4500-N	H3 G					
QC Batch Method:	SM 4500-NH3 B	3	Anal	ysis Descrij	ption:	4500 Ammo	onia, Distille	ed				
			Labo	oratory:		Pace Analy	tical Service	es - Indiana	polis			
Associated Lab Sam	ples: 50258232	2001										
METHOD BLANK:	2606677			Matrix: W	ater							
Associated Lab Sam	ples: 50258232	2001										
			Bla	nk l	Reporting							
Param	eter	Units	Res	ult	Limit	Anal	yzed	Qualifiers	3			
Nitrogen, Ammonia		ug/L		<100	10	0 06/03/2	0 14:19					
LABORATORY CON	TROL SAMPLE:	2606678			_		_					
Dever	-4	Units	Spike	LC	-	LCS	% Re		Qualifiers			
Param	eter		Conc.	Res		% Rec	Limi		Juaimers	_		
Nitrogen, Ammonia		ug/L	16	70	1790	10	8 9	90-110				
MATRIX SPIKE & M	ATRIX SPIKE DUI	PLICATE: 2606	679		2606680							
			MS	MSD								
		50258253001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrogen, Ammonia	ug/L	. 0.16 mg/L	1670	1670	1850	1910	101	105	90-110	3	20	
MATRIX SPIKE SAM	IPI F [.]	2606681										
			50258	3665001	Spike	MS		MS	% Rec			
Param	eter	Units	Re	esult	Conc.	Result	%	Rec	Limits		Quali	fiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Ottawa County Fa	arms Landfill										
Pace Project No .:	50258232											
QC Batch:	566201		Analy	ysis Method	d:	SM 5310C						
QC Batch Method:	SM 5310C		Anal	ysis Descrij	otion:	5310C Total	Organic C	arbon				
			Labo	ratory:		Pace Analyt			apolis			
Associated Lab San	nples: 50258232	2001										
METHOD BLANK:	2611521			Matrix: W	ater							
Associated Lab San	nples: 50258232	2001										
			Blai	nk l	Reporting							
Paran	neter	Units	Res	ult	Limit	Analy	/zed	Qualifiers	5			
Total Organic Carbo	n	ug/L		<500	50	0 06/10/2	0 11:02					
LABORATORY CON	NTROL SAMPLE:	2611522										
			Spike	LC	S	LCS	% R	ec				
Paran	neter	Units	Conc.	Res	ult	% Rec	Limi	ts (Qualifiers			
Total Organic Carbo	n	ug/L	1000	00	9540	9	5 9	90-110		_		
					0044504							
MATRIX SPIKE & M	IATRIX SPIKE DUI	PLICATE: 2611	523 MS	MSD	2611524	•						
		50257990008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Unit		Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Total Organic Carbo	n ug/L	. 1.6 mg/L	10000	10000	11100	11200	95	96	80-120	1	20	
		2611525										
MATRIX SPIKE SAM	VIPLE:	2011020										
				201015	Spike	MS		MS	% Rec		_	
MATRIX SPIKE SAM		Units		201015 esult	Spike Conc.	MS Result		MS Rec	% Rec Limits		Qualif	iers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Ottawa	a County Fa	arms Landfill								
Pace Project No.:	50258	232									
QC Batch:	1874	63		Analysis Me	thod:	S	W-846 7.3.3.2				
QC Batch Method:	SW-8	846 7.3.3.2		Analysis De	scription:	7	33C Reactive C	Syanide			
				Laboratory:		Р	ace Analytical	Services - Ne	w Orle	ans	
Associated Lab Sar	mples:	50258232	2001								
METHOD BLANK:	86329	7		Matrix	Solid						
Associated Lab Sar	mples:	50258232	2001								
				Blank	Repor	ting					
Parar	neter		Units	Result	Lim		Analyzed	Qual	fiers		
Cyanide, Reactive			mg/kg	<25.0		25.0	06/02/20 14:	57		-	
LABORATORY CO	NTROL	SAMPLE:	863298								
				Spike	LCS		LCS	% Rec			
Parar	neter		Units	Conc.	Result		% Rec	Limits	Qu	alifiers	
Cyanide, Reactive			mg/kg	50	<25.	0	21	1-110			
MATRIX SPIKE SA	MPLE:		863300								
				50258232001			MS	MS		% Rec	
Parar	neter		Units	Result	Cor	IC.	Result	% Rec		Limits	Qualifiers
Cyanide, Reactive			mg/kg	<25	5.0	50	<25.0		10	1-110	
SAMPLE DUPLICA	TE: 86	63299									
-				50258232001	Du			Max		o ""	
Parar	neter		Units	Result	Res	ult	RPD	RPD		Qualifiers	-
Cyanide, Reactive			mg/kg	<25.0		<25.0	1		20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Ottawa County Farms Landfill

Pace Project No.: 50258232

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- C4 Sample container did not meet EPA or method requirements.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- F1 The sample was analyzed at a dilution due to foaming of the sample in the purge vessel.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- P4 Sample field preservation does not meet EPA or method recommendations for this analysis.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Ottawa County Farms LandfillPace Project No.:50258232

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50258232001	Leachate				
50258232001	Leachate	EPA 3010	564665	EPA 6010	566290
50258232001	Leachate	EPA 5030B/8260	564951		
50258232001	Leachate	EPA 1010	565326		
50258232001	Leachate	SM 2320B	565404		
50258232001	Leachate	SM 2540C	564899		
50258232001	Leachate	SM 2540D	564450		
50258232001	Leachate	SW-846 7.3.4.2	187460	SW-846 7.3.4.2	187494
50258232001	Leachate	ASTM D516-90,02	565212		
50258232001	Leachate	SM 4500-CI-E	565858		
50258232001	Leachate	SM 4500-NH3 B	565148	SM 4500-NH3 G	565199
50258232001	Leachate	SM 5310C	566201		
50258232001	Leachate	SW-846 7.3.3.2	187463	SW-846 7.3.3.2	187545

	i dia	YEC	3S.COM	
	Ann	HIM	ACELA	
C	V	ace	UWW.D	
2	0	F	ĩ	
	1	1		

-CHAIN-

10#:50	I Req. WO# : 50	I Req. WO#	000		
10#:50	I Req. WO# : 50	I Req. WO# : 50			
#0	I Req. WO#	I Req. WO#	Ì	200	
< _	I Req.	I Req.	: #C	· # 0	
				~	nt II
/ Analytic: DOCUMENT. A	I An			LODY	ILEGAL
ODY / Analytics	ODY / An	-ODY		CUST	tody is a
IN-OF-CUSTODY / Analytica	CUSTODY / An	CUSTODY ody is a LEGAI		1-0F-(nain-of-Cust

Required Client Information: Required Project Information: Company: Republic Services - MI Report To: Kurt Appledom Address: 400 136th Avenue, Building 100 Copy To:	Invoice Information: Attention: Company Name:	50258232	
Republic Services - MI 400 136th Avenue, Building 100	Attention: Company Name:		
400 136th Avenue, Building 100	Company Name:		
Holland, MI 49424	Address:		Regulatory Agency
Email: kurtis_vanappledorn@golder.com Purchase Order #.	Pace Quote:		
Phone: (\$16)212-0537 Fax Project Name: Ottawa County Farms	eachate Pace Project Manager:	jennifer.rice@pacelabs.com,	State / Location
Requested Due Date: Project #	Pace Profile #: 8057		

TEMP in C Residual Chlorine (Y/N) C C Residual Chlorine (Y/N) C C C C C C C C C C C C C C C C C C C	SAMPLE ID One Character per box. (A.Z, 0-91, -) Sample Ids must be unique LEACMATE		-					H							ł		t	7	F	H	\vdash	F	Г			
	SAMPLE ID One Character per box. (A-Z, 0-91, -) Sample lds must be unique LEACMATE	and water	_	(104-	COLLE	CTED	r			Pre	serva	tives		N/A		_		Nº6		-1	·W				45	8:33
оссаните на советствание и простояние и про	One Character per box. (A-Z, 0-91, -) Sample Ids must be unique LEACMATE	MAI HIX CODE Drinking Water DVV Water WT Vvater WT Product P SoldSolid DL Oll OL			ART				-					test s	5001 he		dan	Hit free	OPILIACO	1411	Corb. A		(N/Y) enin			
LEACHARE LEACHA		Wipe WP AR AR AR AR Other OT Tissue 13				DATE			Unpreserved						8260- 61-			-Strtan Intel	Chavids				Residual Chlo		1	
Take of Same Law Branching And Control of Co				S	52	20		0	3	7	5				x	X	X	X	X	X		X				
La Pice and Contraction and Co								-				-		-		-		-	-		-					
Take 6 Control of the								-				-		-					-		-		T			
ITAMP II C								-				-		-		-		-	-			-				
TEAMP IN CONTRACT A ACCEPTED BY AFTANTON DATE THRE ADDITIONAL CONNERTS A ACCEPTED BY A ACCEPTED BY AFTANTON ACCEPTED BY A ACCEPTED BY A ACCEPTED BY AFTANTON DATE ACCEPTED BY A ACCEPTED BY A ACCE								-		-		-		-		-		-	-		+					
Temp in Control of the Control of th								-		-		-		-		-			-		+	-				
ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONA								-		-		-		-		-			-		+	-				
Contronue. Contrements Removaling the more than the more t								-		-	-	-		-		-	_		-		+	-				
ADDITIONAL COMMERTING ADDITIONAL COMPANIA ADDITIONAL COMMERTING ADDITIONAL COMPANIA ADDITIONAL								-		-		-		-		-		-	-		1	-				
TEMPIN COMMENTS RELACIONED ON E TIME ACCEPTED BY AFFILATION DATE ACCEPTED BY AFFILA	0									-		-		-		-			-		+	-				
ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITI								-		-		-				-			-		-	-				
ADDITIONAL COMMENTS RELINQUISHED BY I AFFILIATION DATE TIME ACCEPTED BY I AFFILIATION DATE SIGNAL COMMENTS ACCEPTED BY I AFFILIATION DATE SIGNAL COMPANY ACCEPTED BY I AFFILIATION DATE SIGNAL CO								-				_		-		-			_		-	_				
PRINT Name of SAMPLER: The Part of Par	ADDITIONAL COMMENTS		RELING	UISHED BY	AFFILIATIC	NC	DATE		TIME			ACC	EPTED	BYIA	FILIAT	NOI	-		DAT	ш	H	ME		SAN	PLE COND	ITIONS
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SIGNATURE of SAMPLER: DATE Signed:			Th.	3	TIE	H	trats	2	151		()	22	B		X				121	120	11	22	20			
SIGNATURE of SAMPLER: DATE Signed: TATA ESigned: TATA	Page 2				SAMPLE	ER NAME	AND SIGN	ATUR.		-1	3	T	-										21	uo p	-	s
	3 of 25				SIG	NATURE	of SAMPL	il il	1	Th	- 5	31	7-	5		ATES	bengi		5	F	RC		TEMP i		(N/X)	Cooler (Y/N)

Pace Analytical

Sample Conditions Upon Receipt Form (SCUR)

Date/Time: 5/27/30	Evaluated by	WO#:50258232				
Client: REPublic - L.E	achati	PM: JLR1		ate: 06/11,	/20	
Project Manager: TLR	Profile ID: \$057	CLIENT: G	R-RSC MI			
Rush TAT Requested: YES -	NO Due Date:				_	
Lab Notified of Rush or Short Ho	Ids: YES NO	Non Conforma	nce Form Re	quired: V	ES NO	
Samples Received Via: FedEx	UPS Client Pace	Courier Oth	er:		Comments:	
Custody Seals Present and Intac	t:	YES	NO	NA		
Received Sample Information Fo	rm(s): Drinking Waters Only	YES	NO	NA		
USDA Regulated Soils: (AL, AR, C, NC, OK, OR, SC, TN, TX, WA or Puerto	A, FL, GA, ID, LA, MS, NM, NY, o Rico)	YES	NO	√N/A		
Short Holds Present (< 72 Hours)		YES	NO			
Samples Received in Hold:		YES	NO			
Custody Signatures Present:		YES	NO	Contraction of the		
Collector Signature Present:		YES	NO			
Packing Material Used:		YES	NO			
Samples Collected Today and Or	n Ice:	YES	NO	N/A		
IR Gun #: 280 281		Digital The	rmometer #:	282	283	
Ice Type: WET Bagged / WET	Loose BLUE NONE	1. Cooler Te	emp Upon Rec	eipt:	1.5 °C	
Ice Location: TOP BOTTOM	MIDDLE DISPERSED	Tem	np should be 0	-6°C (Initial/C	corrected)	
Temp Blank Received:		VES	NO			
Containers Intact:		YES	NO			
Correct Containers:		YES	NO		SEE NCF	
Sufficient Volume:		YES	NO			
Sample pH Acceptable: All contain found to be in complaince with EPA Exceptions are VOA, coliform, LLHg, O septum cap or preserved with HCI	recommendation	YES	NO	N/A	SEENCF	
Residual Chlorine Absent: (SVOC/Pest 625, PCB 608, Total/Amer	pable/Available Cvanide)	YES	NO	N/A		
VOA Headspace Acceptable (<6n		YES	NO	N/A		
Trip Blank Received: HCI	MeOH TSP OTHER	YES	NO		Hold	
Comments:		2. Cooler Te	emp Upon Rec	eipt:	°C	
		3. Cooler Te	emp Upon Rec	eipt:	°C	
		4. Cooler Te	emp Upon Rec	eipt:	°C	
			and the spin of the state of the			

F
È
0
L
a
8
2
in
10
E
2
5
E
0
()
4
É
0
->
4
O
C
.5
Q
0
e e
LL
(1)
-
52
5
(T)
CD
0,

	Sample Intergrity Issues: Check issues below and add details where appropriate	*Insufficient sample volume received	* *Sample contains residual chlorine	Improper preservation	*Sample contains interferences (multi- phasic, solids, color, odor, etc)	Vial(s) received with improper headspace (>6mm)	Other: See notes below	Sample Notes		Jh = 7	Ch = 7	(?) 7 = 2 (?)	* Missing Pentainers	For Sulfide, Cyanide	4 700.	
CF)	Sample Int below and	Custody seal(s) damaged or missing on coolers, samples, or trip blanks	Cooler or sample container broken or compromised	me	*Temperature not within acceptance criteria (typically 0-6°C)	or partially	containers	でいたま	iner Quantity	31	5	30				
Form (N	neck issues	Custody seal(s) damaged or missir on coolers, samples, or trip blanks	ample conta ed	*Sample past holding time	*Temperature not withir criteria (typically 0-6°C)	*Sample arrived frozen or partially frozen	*Incorrect or improper containers received		Time Container Type	3P31	Ede	063				
rmance	ō	Custody se on coolers,	Cooler or sam compromised	*Sample pa	*Temperati criteria (typ	*Sample ar	*Incorrect of received	Sample Label	Date Ti							
Sample Receiving Non-Conformance Form (NCF)	Coc Integrity Issues: Check issues below and add details where appropriate	COC does not match samples received (missing, additional, etc.)	nple ID does not match abel	*COC collection date/time missing or does not match sample label	*Analyses/ analytes missing or clarification needed	*Required signatures are missing	*Residual Chlorine presence/ absence not indicated on COC	Sa	Sample ID	LEachate	1	~				
Sample	Check issu W	* COC doe	COC sample ID sample ID	*COC collection does not match	*Analyses/ anal clarification nee	*Require	*Residua absence		iiner Quantity							
	1/20			abast	:y: nust not	nission.	sceived	見たる。福	Time Container Type							ons:
232	Due Date: 06/11/20 MI	0		- LER	Deficienc	written perm	Form (SIF) re	coc	Date							nt Instructi
WO# : 50258232	PM: JLR1 Due Da CLIENT: GR-RSC MI	Date: 5/27/20	Evaluated by:	Client: REPUBLIC	*Drinking Water Deficiency: Samples may be invalid. Analysis must not	proceed without client written permission.	*No Sample Information Form (SIF) received with sample(s)		Sample ID							General Comments/ Client Instructions:

F-GR-C-008-rev.00,1Sep2019

Pg.

of

Page 25 of 25

Waste Analysis Plan

DRAFT UNDERGROUND INJECTION CONTROL (UIC) WASTE ANALYSIS PLAN Class I Deepwell

for Ottawa County Farms Landfill Ottawa County Landfill, Inc.

> Class I Deepwells EPA Permit #s TBD

Coopersville, Michigan

July, 2020

Prepared By: Petrotek Corporation 5935 South Zang Street, Suite 200 Littleton, Colorado 80127 Phone: (303) 290-9414 Fax: (303) 290-9580

TABLE OF CONTENTS

1.0	INTRODUCTION	
	1.A Background	
	1.B Sources	
	1.C Summary	
2.0	PROCEDURES	2-1
	2.A Volume Monitoring	2-1
	2.B Waste Characterization	
	2.C Sampling and Analysis	2-2
3.0	QUALITY ASSURANCE/QUALITY CONTROL	
	3.A General Sampling and Analytical Information	
	3.B Sampling Controls	
	3.C Analytical Controls	
	3.D Actions	
	3.E Re-Characterization	

1.0 INTRODUCTION

1.A Background

The purpose of this Waste Analysis Plan (WAP) is to characterize the non-hazardous landfill leachate waste water to be injected into the Ottawa County Landfill, Inc. injection wells to be located at the Ottawa County Farms Landfill (OCFL) in Ottawa County, Michigan. OCFL will be responsible for implementing this WAP. The injection wells are projected to be constructed in 2020 or 2021. Waste will be injected into the Mt. Simon Formation through Trempealeau Formations.

OCFL intends to operate the wells consistent with Title 40 of the Code of Federal Regulations (40 CFR), Section 146.13 that requires operators of Class I underground injection wells to monitor and analyze the fluids injected into the well "to yield representative data of their characteristics." This waste analysis plan also fulfills the specifications at 40 CFR 146.68 by presenting parameters for which the waste will be analyzed, methods that will be used to test for these parameters, and methods that will be used to obtain representative samples of the waste to be analyzed.

1.B Sources

The OCFL generates non-hazardous leachate. There is no SIC code for sanitary landfill leachate.

The waste waters produced at the landfill include water collected from leachate collection system, which originates from water infiltration through waste, as well as condensate from the gas collection system. Fluids generated during well maintenance or testing activities may also be reinjected into the well. The waste stream is primarily composed of inorganic, non-hazardous compounds such as chloride, and potassium, with a historic total dissolved solids TDS of up to approximately 10,000 ppm.

Waste water is first accumulated in each landfill cell, then piped to a leachate collection tanks. Although some settling may occur and OCFL may elect to filter waste water prior to injection in the future, no waste treatment for regulatory purposes is performed at the tanks.

Introduction

1.C Summary

The major components of the OCFLs waste characterization and underground injection control (UIC) monitoring program include:

- Volume Monitoring
- Sampling and Analysis
- Quality Assurance/Quality Control

These components are addressed in Sections 2 and 3, below.

The WAP may be reviewed and, if necessary, revised if conditions are identified that may significantly alter the chemical or physical properties of the waste. Revisions to the WAP may also be required if new permit conditions are added by the Agency for cause. Any future revisions to the WAP, upon approval, will become part of the administrative record and constitute a minor modification of the permit. Compatibility issues regarding the subsurface rock matrix and well construction materials are documented in the permit application and are not addressed in this WAP.

UIC Waste Analysis Plan July 2020

2.0 PROCEDURES

2.A Volume Monitoring

As discussed in the text of the Permit Application, flow and pressure recorders are to be used to continuously monitor injection pressure, annulus pressure, and flow rate; totalized cumulative volumes for the wells will be calculated from monitoring data. A summary of recorded data will be provided to the US EPA per applicable permit requirements. The remaining portions of this WAP address physical and chemical characterization of the waste.

2.B Waste Characterization

Waste analysis parameters were selected based on process knowledge, historical analysis, and analysis suggested by US EPA Region 5 guidance. These parameters include pH, TDS, TSS, specific gravity, and applicable organic toxicity characteristics. The pH is generally near neutral to basic (i.e., averaging 7.6 for analysis performed in 2015-2019, and ranging from 6.56 to 9.94). The total dissolved solids (TDS) concentration of the waste is also a useful indicator of fluid properties. Sodium and potassium are among the predominant cations and chloride is the predominant anion, with bicarbonate alkalinity also a major waste component. TDS average (2017-2019) ranges from approximately 5,700 to 10,000 mg/l. Because the native brine present in the injection zone contains relatively high TDS including high cation-anion concentration, injectate will have a lower TDS concentration that natural formation waters.

Testing for pH, specific gravity, and temperature will be performed weekly on days when waste is injected. Although only a limited number of chemical constituents are expected in injectate, a relatively comprehensive analysis will be performed on a quarterly basis. The leachate is non-hazardous and originates from a nonhazardous waste landfill, but a more comprehensive analysis will ensure the nonhazardous nature of injectate. Analysis excludes compounds such as pesticides or herbicides because historical process knowledge indicates that the wastewaters are not expected to contain measurable quantities of these compounds. Wastewater is not expected to be ignitable, reactive, or corrosive, but waste will be analyzed for flashpoint, reactive cyanide, and pH on a quarterly basis as a basic way to confirm the non-hazardous nature of the waste and to ensure any trends or changes are identified.

Table 2-1 of the following section lists the parameters and monitoring frequency used to characterize wastewater to be injected into the wells. Fluid to the injection wells will originate from the same tank, therefore tank sampling would be representative of injectate disposed in each well. The table also summarizes the

applicable analytical method and reporting units for each. Characterization parameters were selected based on historical leachate sampling and identified for characterization needed to satisfy regulatory requirements and applicable specifications listed in typical US EPA Region 5 non-hazardous UIC permits.

2.C Sampling and Analysis

Samples will be collected on a weekly or quarterly basis via grab sample from the waste injection flow line exiting the waste storage tank during calendar days or quarters when injection of waste takes place. The waste analysis to be conducted is designed to acquire representative samples of typical injectate. OCFL personnel, contractor personnel, or contracted analytical laboratory personnel will collect required on-site waste stream samples. Sampling procedures will be conducted at the direction of site representatives and in accordance with the certified or accredited analytical laboratory procedures, and will meet the minimum current standard US EPA procedures. As applicable, the grab sample will be sent to an independent contract laboratory for analysis. Sufficient mixing and residence time in the system will have occurred at this sampling point for the waste to be representative of the waste stream that is being injected. The sampler's name, sampling point, and date sampled will be documented using COC methods specified in Section 3.A.

Table 2-1 presents the parameters, analytical methods, reporting unit and sample frequency for each test parameter. Sampling and analytical methods will meet or exceed the standards cited below or as presented in US EPA "Methods for the Chemical Analysis of Water and Wastes" or "Standard Methods for the Examination of Water and Wastewater".

Landfill

UIC Waste Analysis Plan July 2020

TABLE 2-1 OTTAWA COUNTY FARMS LANDFILL CLASS I WASTE SAMPLING AND ANALYSIS SUMMARY

Test Parameter	Example Test Methods*	Reporting Units	Frequency
Ignitability (flash point)	SW846 1010, SW1010A		Quarterly
Alkalinity (carbonate/bicarbonate), total	EPA 310.1	Mg/L	Quarterly
Reactive Sulfide and Cyanide	SW846 9010b, 376.1		Quarterly
рН	USEPA 150.1	pH units	Weekly when wells are in operation
Specific Gravity	Hydrometer, ASTM 2710F, D5057		Weekly when wells are in operation
Temperature	Thermometer	۰F	Quarterly
TDS	USEPA 160.1	mg/L	Quarterly
тос	USEPA 415.1	mg/L	Quarterly
Select Characteristic Constituents			
Benzene (D018)	USEPA 8260B/624	mg/L	Quarterly
Carbon Tetrachloride (D019)	USEPA 8260B/8021B	mg/L	Quarterly
Chlorobenzene (D021),	USEPA 8260B/8021B	mg/L	Quarterly
Chloroform (D022),	USEPA 8260B/8021B	mg/L	Quarterly
1,4-Dichlorobenzene (D027)	USEPA 8260B/8021B	mg/L	Quarterly
1,2-Dichloroethane (D028)	USEPA 8260B/8021B	mg/L	Quarterly
Dichloroethylene (D029)	USEPA 8260B/8021B	mg/L	Quarterly
Methyl ethyl ketone (D035)	USEPA 8260B/8261	mg/L (ppm)	Quarterly
Tetrachloroethylene (D039)	USEPA 8260B/8021B	mg/L	Quarterly
Trichloroethylene (D040)	USEPA 8260B/8021B	mg/L	Quarterly
Vinyl Chloride (D043)	USEPA 8260B/8021B	mg/L	Quarterly
Additional Parameters			
Potassium	USEPA 200.8/6010	mg/L	Quarterly
Sodium	USEPA 200.8/6010B, 6020A, 3005A	mg/L	Quarterly

Test Parameter	Example Test Methods*	Reporting Units	Frequency
Chloride	USEPA 325.2/A4500, 300.0	mg/L	Quarterly
Total inorganic nitrogen	USEPA 350.2, 300.0	mg/L	Quarterly
Ammonia (as nitrogen)	USEPA 350.2,300.0	mg/L	Quarterly
Arsenic (D004)	USEPA 6000 series, 7080	mg/L (ppm)	Quarterly
Barium (D005)	USEPA 6000 series	mg/L (ppm)	Quarterly
Cadmium (D006)	USEPA 6000 series	mg/L (ppm)	Quarterly
Chromium (D007)	USEPA 6000 series	mg/L (ppm)	Quarterly
Lead (D008)	USEPA 6000 series	mg/L (ppm)	Quarterly
Mercury (D009)	USEPA 6000 Series	mg/L (ppm)	Quarterly
Selenium (D010)	USEPA 6000 Series	mg/L (ppm)	Quarterly
Silver (D011)	USEPA 6000 Series	mg/L (ppm)	Quarterly

Notes: * Test methods cited are examples; alternative methods with equal or better detection limits may be used

Results of select analyses collected to satisfy Landfill Operating License are presented in Section H of the US EPA UIC Permit Application and are summarized in Section B.9 of the EGLE 625 mineral well application. As shown in these Sections, analysis shows that only a relatively few organic and inorganic constituents are detected, and inorganic parameters are analyzed on an annual basis as required by the Landfill Operating License. In addition, the waste will be sampled and analyzed for other parameters required by this WAP as shown in Table 2-1, including but not limited to pH, specific gravity, and temperature. Therefore, based on process knowledge and historical analytical results, the WAP parameter list provides analysis for 1) US EPA recommended parameters; 2) select TC compounds to ensure non-hazardous compliance, and 3) compounds typically present in injectate at significant concentrations (e.g., chloride).

It is important to note that OCFL is required to perform ongoing leachate analysis as part of landfill operating permits and requirements. OCFL may collect and analyze samples of injectate as described in this WAP, and share resulting data with operations to satisfy landfill operating permit requirements.

Procedures

3.0 QUALITY ASSURANCE/QUALITY CONTROL

3.A General Sampling and Analytical Information

Sampling protocols outlined in this document are to be followed. OCFL is responsible for obtaining data necessary to comply with this WAP, and will ensure adherence to guidelines set forth in the referenced standards listed in Section 2.C or equivalents, as appropriate. Approved sample collection vessels and preservation techniques from 40 CFR 136.3 or equivalent will be followed as applicable and appropriate. These will include preservation in plastic or glass sample containers provided by the laboratory and storage in a sample refrigerator or cooler for shipment to the laboratory. OCFL reserves the option to choose alternate laboratories for testing provided equivalent QA/QC standards are met. The following applies to samples collected for laboratory analysis (i.e., quarterly analysis).

COC Form Content

Each sample taken will be accompanied by facility or contract laboratory Chain of Custody (COC) form that provides a record of sample handling starting with sample acquisition, documenting the process up to laboratory analysis. Samples taken are to be logged in the field using the COC, sealed, and delivered to the laboratory with a COC form. The COC form shall provide the following items collected by the sampler:

- 1. Sample ID including code or name, in addition to date and time;
- 2. Name of sample collector; (include sampling company name if not site personnel);
- 3. Sample collection method;
- 4. Sample collection date;
- 5. Sample collection point; and
- 6. Sample presentation technique, as applicable

Sample container label will also include a COC seal. Sample chain-of-custody will be followed at all times during the sampling and subsequent analysis. Chain-of-custody will be used to document the handling and control necessary to identify and trace a sample from collection through to final analytical results. Standard laboratory COC forms that document the times and dates of all personnel handling the sample, along with standard labels and container seals sufficient to distinguish between samples and prevent tampering, will be acceptable.

Reporting and Records Retention

Analytical reports and regulatory submittals regarding the nature and composition of injected fluids are to be maintained in the well files until authorization is obtained from

US EPA, in writing, to discard the records. All laboratory reports submitted to US EPA will include, at a minimum, the following:

- 1. Test description;
- 2. Analytical method for parameter detection;
- 3. Identification of analysis date and analyst;
- 4. Result and units; and
- 5. Analytical reporting limits.

The following sections present QA/QC parameters which will be followed to help to assure the adequacy of the sampling and analytical techniques for wellhead sampling and analysis described in this plan.

3.B Sampling Controls

1. Equipment Blanks

Fluid samples will be obtained directly from the sample accumulation container before being sealed in the sample container shipped to the laboratory. In this case, no equipment cleaning blanks will be required. If samples cannot be directly placed in the bottles intended for preservation and shipment, equipment blanks will be taken as deemed appropriate by OCFL.

2. Trip Blanks

If the laboratory analysis is ever suspect because it contains anomalous parameters, trip blanks will be collected to assess in-transit contamination. The trip blank will consist of sample containers filled and sealed at the laboratory with laboratory-provided deionized (DI) water that accompany the sample containers used throughout the sampling event. The sample containers shall be handled in the same manner as the samples. The trip blank(s) will be sent to the laboratory for analysis of, at a minimum, the same parameters specified in the sampling plan above. A minimum of one (1) trip blank per sampling event will be utilized, when deemed necessary. At the discretion of OCFL, trip blanks may be submitted with any sample to verify representativeness of the sampling program.

3. Sample Duplicates

On advance written request of US EPA, duplicate samples will be taken to further assess the QA/QC program of the laboratory conducting the analysis. Such samples will be drawn from the same site from which primary samples will be taken consecutively from the same sampling tap or sample location to

ensure representativeness. The duplicate will be labeled with a sample number that will not conflict with the other samples, but will not be discernable to the laboratory as a duplicate sample. Upon the request of US EPA or at the discretion of site representatives, one duplicate sample per selected sampling event will be taken and analyzed for the same parameters as the sampling event.

3.C Analytical Controls

1. Equipment Calibration

The selected analytical laboratories must maintain QA/QC records of the frequency and type of instrument calibration performed at the laboratory and in the field. Any calibration of thermometers, gauges, chromatographs, spectrometers and other analytical equipment will be conducted according to appropriate instrument manufacturer specifications and manufacturer recommended frequencies or as dictated by applicable laboratory QA/QC plans that have been developed by the laboratory. Valid calibration certificates for instruments used offsite by a certified lab will be maintained at that facility. Calibration data for onsite field testing or continuous monitoring will be maintained as part of the site well records.

2. Data Reduction

Transcription of the raw data into the reportable units is conducted by the laboratory in accordance with the selected laboratory Q/A plan. Data reduction utilized in the analysis and reporting process is presented in the reports to the US EPA for each sampling and analysis event. Data is recorded on hand written or computer work sheets that include identification data, sample data and all data required for calculations, or on computer print-outs accompanied by operator notes and summaries.

3. Data Verification

Data verification is conducted after each sampling event by assigned laboratory personnel and includes, at a minimum, review of chain-of-custody forms, equipment calibration records and data completeness. Spot checks of raw data versus reported data are performed to review math accuracy, significant numbers and reporting units. In addition, certified laboratory standard quality assurance/quality control requirements or checklists are utilized to verify individual test methods such as blanks, standards, and for comparisons of internal lab test duplicate results. Problems with any of these items will be indicated in the analytical report presented to the agency.

4. Internal Quality Control

Per the laboratory QA/QC program, certified quality control samples from appropriate commercial sources or the US EPA, may be run periodically with sample batches. Internal quality control are addressed by disclosure of the laboratory's use of blanks, blind standards, matrix spikes and matrix spike duplicates, preparation of reagents, and laboratory duplicate or replicate analyses.

3.D Actions

1. Corrective Actions

Corrective actions are implemented by laboratories if the analytical or sampling methods do not achieve plan objectives or data verification identifies inconsistencies in the results. Actions may entail re-sampling the waste stream and/or re-analyzing the fluid for a particular parameter, re-calibrating an analytical device, or other appropriate actions as dictated by the specific situation encountered. Action levels are typically taken in accordance with any applicable standards from USEPA "Methods for the Chemical Analysis of Water and Wastes" or "Standard Methods for the Examination of Water and Wastewater". OCFL representatives may, at their discretion, require resampling and retesting to confirm results that fall outside the historical range of expected analytical results, or outside equipment calibration curves.

2. Reports to US EPA Region 5

Reports of waste analysis to US EPA will contain a table summarizing the sampling date, units and analytical result for each of the parameters listed in table 2-1 of this document. Additionally, analytical results (i.e., data), including chain of custody forms, will be submitted to US EPA.

3.E Re-Characterization

OCFL shall review the results of quarterly leachate analysis to ensure that injectate is sufficiently characterized. At the discretion of OCFL or at the written request of US EPA, re-characterization efforts may be conducted should a significant change occur in the injectate composition based on quarterly analyses, or if necessitated or required by process changes or new regulations.

The waste stream will be re-characterized as deemed necessary by OCFL if analyses shows a significant change in parameter concentration, particularly toxicity characteristic compound composition that might affect the non-hazardous nature of the waste. In this instance, sampling may be performed more frequently to obtain more

representative analysis of waste composition, to ensure that the overall composition of injectate is still non-hazardous. Any future revisions to the WAP, upon approval, will become part of the administrative record and constitute a minor modification of the permit upon submittal by OCFL.

