

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICA

MATE

CONSTRUCTION MANAGEMENT

AREAS 11 and 12 RESPONSE ACTIVITY PLAN North Kent Study Area

June 18, 2020, Revised December 11, 2020 File No. 16.0062961.40

PREPARED FOR:

Wolverine World Wide, Inc. Rockford, Michigan

Rose & Westra, a Division of GZA GeoEnvironmental, Inc.

601 Fifth Street NW | Suite 102 | Grand Rapids, MI 49504 616.956.6123

30 Offices Nationwide www.gza.com

Copyright© 2020 GZA GeoEnvironmental, Inc.

June 18, 2020, Revised December 11, 2020 Areas 11 and 12 Response Activity Plan Kent County, Michigan File No. 16.0062961.40 TOC i

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1
2.0	CONC	EPTUAL SITE MODEL	1
	2.01	HOUSE STREET DISPOSAL SITE AND OTHER POTENTIAL SOURCE AREAS	. 2
	2.02	TOPOGRAPHY	. 2
	2.03	HYDROLOGY	3
	2.04	GEOLOGY	3
	2.05	HYDROGEOLOGY	5
	2.06	PFAS DISTRIBUTION IN GROUNDWATER	. 6
	2.07	EXPOSURE PATHWAYS – APPLICABLE PART 201 CLEANUP CRITERIA AND CD ACTION LEVELS	. 7
	2.08	DATA GAPS	8
3.0	PROP	OSED STATEMENT OF WORK	8
4.0		TIGATION METHODOLOGY	
5.0	SAMP	LING AND ANALYTICAL PROCEDURES	9
	5.01	SAMPLING LOCATIONS	10
	5.02	SAMPLE COLLECTION AND LABELING	10
	5.03	SAMPLE SHIPPING	10
	5.04	ANALYTICAL METHOD AND PARAMETERS	
6.0		QUALITY ASSURANCE AND CONTROL	
7.0		TIGATION DERIVED WASTE	
8.0		CIPATED SCHEDULE	
9.0		RENCES	
3.0	KLFLF	LIVELS	12
TABLES			
TABLE	1	AREAS 11 AND 12 PARCEL LIST AND WELL INFORMATION	
TABLE	2	SUMMARY OF DRINKING WATER ANALYTICAL DATA - PFAS	
TABLE	3	MONITORING WELL INSTALLATION INFORMATION	
TABLE		MONITORING WELL STATIC WATER LEVELS	
TABLE	5	SUMMARY OF PFOA, PFOS, AND COMBINED PFOA + PFOS DATA IN GROUNDWATER, 2019 HSD QUARTERLY MONITORING WELL SAMPLING	5
TABLE	6	SUMMARY OF GROUNDWATER SAMPLE ANALYSIS – PFAS (HSDS, 2019)	

June 18, 2020, Revised December 11, 2020

Areas 11 and 12 Response Activity Plan

Kent County, Michigan
File No. 16.0062961.40

TOC ii

APPENDED FIGURES

FIGURE 1	NKSA GROUNDWATER INVESTIGATION AREAS AND AREAS 11 AND 12
FIGURE 2	GROUNDWATER ELEVATION AND ESTIMATED FLOW DIRECTION - SHALLOW
FIGURE 3	GROUNDWATER CONTOURS AND ESTIMATED FLOW DIRECTION - DEEP
FIGURE 4	HSDS MONITORING WELLS AND RESIDENTIAL WELLS
FIGURE 5	AREAS 11 AND 12 CROSS SECTIONS
FIGURE 6	CROSS SECTION A-A'
FIGURE 7	CROSS SECTION B-B'
FIGURE 8	CROSS SECTION C-C'
FIGURE 9	ISOCONCENTRATION MAP OF TOTAL PFAS IN GROUNDWATER
FIGURE 10	ISOCONCENTRATION MAP OF PFOA + PFOS IN GROUNDWATER
FIGURE 11	PROPOSED MONITORING WELL INSTALLATIONS – AREAS 11 AND 12

APPENDICES

APPENDIX A 2019 GROUNDWATER SAMPLING SUPPLEMENTAL MEMORANDUM

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
TOC iii

ACRONYMS

CD Consent Decree

CFS Cubic Feet per Second
COVID-19 Coronavirus Disease 2019
CSM Conceptual Site Model

DoD United States Department of Defense

DWC Part 201 Generic Groundwater Cleanup Criteria Protective of Drinking Water for Residential Land

Uses

EGLE Michigan Department of Environmental, Great Lakes and Energy

EPA United States Environmental Protection Agency

GIS Geographic Information Systems
GSI Groundwater-Surface Water Interface

HSDS House Street Disposal Site
HUC Hydrologic Unit Code

ID Identification

MDEQ Michigan Department of Environmental Quality

MDOT Michigan Department of Transportation

MGDL Michigan GIS Data Library

MS/MSD Matrix Spike/Matrix Spike Duplicate

NE Northeast

ng/L Nanogram per Liter

NKLF North Kent County Landfill
NKSA North Kent Study Area
PDF Portable Document Format

PFAS Per- and Polyfluoroalkyl Substances

PFBS Perfluorobutane Sulfonic Acid

PFHxA Perfluorohexanoic Acid

PFHxS Perfluorohexane Sulfonic Acid

PFNA Perfluorononanoic Acid
PFOA Perfluorooctanoic Acid
PFOS Perfluorooctane Sulfonate

QAPP Quality Assurance Project Plan [Former Wolverine Tannery, House Street Disposal Area, and

Wolven/Jewell Area, Per- and Polyfluoroalkyl Substances Investigation Program]

QA/QC Quality Assurance/Quality Control

QSM Quality Systems Manual

R&W/GZA Rose & Westra, a Division of GZA GeoEnvironmental, Inc.

RAP Response Activity Plan
SAP Sampling and Analysis Plan
SOP Standard Operating Procedures

SOW Schedule of Work µg/L Micrograms per Liter

USGS United States Geological Survey

VAP Vertical Aquifer Profiling
Wolverine Wolverine World Wide, Inc.

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 1 of 13

1.0 INTRODUCTION

On behalf of Wolverine, R&W/GZA prepared this RAP for the Areas 11 and 12 investigation in the NKSA. The objective of this RAP is to comply with the CD by refining the current understanding of the conceptual site model and better defining the vertical and horizontal extent of PFAS at Areas 11 and 12. The following objective is stated in Section 7.9(b)(i)(A) and (B) of the CD: "(A) Define the vertical and horizontal extent of PFAS Compounds contamination as required by Part 201; and (B) confirm and monitor the location and stability of the PFAS Compounds plume(s) once the plume(s) are defined."

Areas 11 and 12 are located southeast of the HSDS. They are south and southeast of the primary PFAS plume, north of the Grand River, and east of the Rogue River (**Figure 1**). Ten of the residential water wells in Area 11 had PFOA + PFOS concentrations greater than 10 ng/L. In Area 12 most residential water wells did not have detectable PFOA + PFOS. Of those with detected PFOA + PFOS, only one exceeded 10 ng/L.

This RAP is prepared pursuant to CD No. 1:18-cv-00039-JTN-SJB, effective February 19, 2020. Specifically, this scope of work is established in Sections 7.4, 7.9(b), and Appendix P of the CD. This RAP is organized into the following sections:

- Introduction
- CSM
- Proposed Statement of Work
- Investigation Methodologies
- Sampling and Analysis Methods and Procedures
- Data Quality Objectives
- Data Quality Control and Assurance
- Project Schedule for Field Sampling and Analysis
- Project Schedule for Data Evaluation and Report Submittals

2.0 CONCEPTUAL SITE MODEL

The CSM (as defined in Section 4.4 of the CD) was based on interpretation of the HSDS on-site investigation data, regional geology and hydrogeology, residential water well sampling data in the NKSA, and groundwater investigations performed associated with the former HSDS (i.e., within the House Street Study Area; i.e., portion of NKSA investigated as it pertains to the HSDS). The CSM is focused on the groundwater flow from the source area to Areas 11 and 12, PFAS distribution in groundwater, and the fate and transport of PFAS in groundwater. For the purpose of this RAP, the current understanding of the CSM as related to the human receptors in Areas 11 and 12 was discussed and potential data gaps identified. See **Figure 1** for a layout of the NKSA and the PFAS Investigation Areas. No permanent groundwater monitoring wells have yet been installed in Areas 11 and 12. See **Table 1** for a list of residential water wells and addresses in Areas 11 and 12 and their associated PFAS analytical results. The following sections provide discussions of source areas, hydrology, geology, hydrogeology, PFAS distribution in groundwater, groundwater flow, and PFAS transport.

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 2 of 13

2.01 HOUSE STREET DISPOSAL SITE AND OTHER POTENTIAL SOURCE AREAS

The HSDS, located at 1855 House Street NE, Plainfield Township, Kent County, Michigan encompasses approximately 76 acres (**Figure 1**). The HSDS is currently undeveloped and according to available information, no buildings were previously present. An electric utility right-of-way and associated high-voltage transmission lines cross the northern portion of the HSDS, and an access road from House Street runs south to north across the HSDS.

The properties surrounding the HSDS are primarily undeveloped or residential. Properties to the northwest are undeveloped extending to Clear Bottom Lake and Freska Lake. Properties to the west, southwest, and northeast are primarily residential. House Street NE abuts the HSDS to the south and southeast. Portions of the eastern HSDS boundary are formed by Herrington Avenue NE. Land owned by MDOT is present south and southeast of the HSDS (US-131 right-of-way), and additional residential properties are located westward along House Street.

PFAS were in Scotchgard[™], a waterproofing material manufactured by 3M Company, that was applied to some leather goods manufactured at the former Wolverine tannery site in Rockford, Michigan, over a period of time. It has been determined that the tanning byproducts in which Scotchgard[™] was used contained PFOS and PFOA and their precursors, which are part of a larger group of PFAS.

The HSDS was a State of Michigan licensed and regulated disposal facility from the mid-1960s through 1978. Until 1970, the HSDS received leather tanning byproducts over a period of time. EGLE Remediation and Redevelopment Division files indicated that HSDS's waste disposal license expired in 1978, but it appears no waste was disposed by Wolverine at HSDS after 1970. Prior to Wolverine acquiring the HSDS in 1964 and Michigan's first disposal area licensing statute (PA 87 of 1965), Wolverine and other entities disposed of materials on the HSDS (perhaps as early as the 1940s). Further investigation would be necessary to confirm the exact dates of disposal and the entities responsible for disposal.

Based on past investigation data at Wolverine's tannery Site (R&W/GZA, 2019), the byproducts also contained other substances which were addressed in the USEPA TCRA removal action. However, the data indicates PFOS and PFOA (the only PFAS compounds with Part 201 cleanup criteria) appear to be materially migrating from the HSDS.

Although the presence of other sources does not impact the obligations of the parties under the CD, there are other possible sources of PFAS at residential properties such as those in Area 6, including septic systems, rain deposition, and the use of domestic products that contain PFAS (Schaider et al, 2016; EGLE, 2019a; ITRC, 2020).

2.02 TOPOGRAPHY

As shown in **Figure 1**, the terrain is generally hilly in the region. The ground surface elevation at HSDS ranges from 740 feet to 800 feet. The HSDS is flanked by higher ground to the northeast and southwest, but ground surface generally dips to the northwest toward Clear Bottom Lake and Freska Lake, and to the southeast toward the Rogue River. Ground surface elevations for the area east of the HSDS range from 800 to more than 900 feet; ground surface elevations for the west to southwest of the HSDS range from 800 to 820 feet, with lower terrains to the northwest and southeast. Ground surface elevations in Areas 11 and 12 range from approximately 620 feet near the Grand River to more than 710 feet on the grounds of the Blythefield Country Club. Ground surface generally dips south and southeast toward the Rogue and Grand Rivers.

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 3 of 13

2.03 HYDROLOGY

The NKSA is situated within the Rogue River Basin (Basin No. 14F), which is part of the Lower Grand River watershed (HUC 04050006). Based on the Michigan's Major Watersheds – Sub-basins GIS data (EGLE, 2019b) downloaded from MGDL, the HSDS and Areas 11 and 12 study areas are situated within the Rogue River Basin (Basin No. 14F), which is part of the Lower Grand River watershed (HUC 04050006). The Rogue River Basin consists of 12 sub-basins Area 11 is in Rogue River sub-basin HUC 04050006040120 and Grand River sub-basin HUC 04050006050030. Area 12 Rogue River sub-basin HUC 04050006040120. The HSDS is situated on the water divide of two sub-basins: HUC 04050006040080 and HUC 04050006040120. These three sub-basins drain to the Rogue River, which discharges to the Grand River. The HSDS is also near sub-basin HUC 04050006050050, which is part of the Grand River basin.

The 2016 National Oceanic and Atmospheric Administration climate data report¹ for Grand Rapids, Michigan, indicates that the mean annual precipitation for the 80-year record period is approximately 36 inches. Based on the state-wide GIS data for the estimated annual groundwater recharge (Michigan State University, 2005), the estimated precipitation at the NKSA ranged from 9 to 15 inches.

From 1989 to 2016, the average annual streamflow rate at USGS Gaging Station No. 04118500 in Rockford, Michigan, is approximately 260 cfs, and the average baseflow rate approximately 210 cfs. The gaging station measures the flow for the sub-basin, HUC 04050006040110, and all the upstream sub-basins, representing a drainage area of approximately 234 square miles, according to the USGS record.

2.04 GEOLOGY

Overburden in Kent County is a thick sequence of Pleistocene glacial deposits. The thickness of glacial deposits ranges from 11 to 800 feet in Kent County; however, the majority of glacial deposits range from 200 to 400 feet in thickness (Western Michigan University, 1981; Farrand, 1982). The glacial deposits in the County include till, outwash and lacustrine deposits. Till occurs in end moraines and ground moraines (till plains), interspersed on the surface throughout the County (Stramel, Wisler, & Laird, 1954). For the area near the City of Rockford and Plainfield Township, the Michigan Glacial Land systems (Michigan State University, 2015) indicates that proglacial outwash plain is present along the Rogue River, and end moraines are present either side of the Rogue River extending to the "wide" near the Grand River. End moraines of medium-textured till are present at the NKSA and its vicinity. The ground moraine (till plain) and end moraine belong to the unstratified group of deposits, composed of fine- to coarse-grained material, including silt, sand, gravel, and boulders.

Based upon bedrock maps for the area (MDEQ, 1987), the bedrock beneath the NKSA includes the Michigan basin series. Based on GIS data from EGLE (MDEQ, 1987), Jurassic "red beds" are present in most of the site area and its vicinity, with small areas of Saginaw formation outcrops. The Jurassic "red beds" are often poorly consolidated or unconsolidated and consist primarily of clay, mudstone, siltstone, sandstone, shale, and gypsum. The "red beds" are of low permeability and are considered a confining unit. However, locally in the county, the "red beds" have been documented to supply small quantities of water (Apple & Reeves, 2007). Beneath the "red beds," bedrock in the region consists of the Mississippian-aged sandstone (Marshall formation), shale (Michigan formation), and the Bayport limestone as well as the Pennsylvanian-aged Saginaw formation. The regional dip is northeasterly toward the center of the Michigan basin.

¹ https://www.ncdc.noaa.gov/cdo-web/search

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 4 of 13

Based on the Hydrogeologic Atlas of Michigan (Western Michigan University, 1981), the top of bedrock elevation ranges from 500 to 550 feet near the City of Rockford. The top of bedrock elevations at the HSDS area were estimated to range from 540 to 580 feet (R&W/GZA, 2018).

NKSA Geology

This summary of the geology in the NKSA is based on borehole data collected during the subsurface exploration and groundwater monitoring well installation described in **Appendix A** and the residential water well construction information and lithology data downloaded from the online Wellogic System.² The Wellogic System made available individual well logs in PDF, GIS shapefiles of county-wide well locations and construction information, and database files of lithology data for some of the wells. R&W/GZA has attempted to verify the well locations by comparing the well addresses to the Kent County Parcel GIS shapefiles and found that some of the well locations in the Wellogic GIS shapefiles are incorrect. To rectify, the Kent County parcel center coordinates are used for the residential well locations if the well addresses are verified with the Kent County Parcel GIS shapefiles. The majority of the well addresses in the Wellogic System GIS shapefiles were verified, and the parcel center locations were used as their coordinates. For some well locations, the addresses of which were not verifiable, the locations in the Wellogic System GIS files were kept and qualified with a note. In addition, lithology data for some of the wells in the Wellogic System GIS shapefiles were not available; therefore, R&W/GZA downloaded the PDF well logs and compiled the available lithology data into the well lithology database.

Monitoring wells near Areas 11 and 12 and the residential water wells with lithology data within these Areas are shown in **Figure 4.** Geologic cross-sections, A-A', B-B', and C-C' show the lithology in Areas 11 and 12. See **Figures 5** through **8** for the geological cross-sections and their locations within Areas 11 and 12.

Areas 11 and 12

Cross-section A-A' (**Figure 6**) begins east of the Rogue River along the western portion of Area 11 and is approximately parallel to the Rogue River channel. The lithology of A-A' is predominantly coarse-grained soil, with the fine-grained soil below the water table in layers ranging from 5 to 10 feet thick alternating with coarse-grained soil.

Cross-section B-B' (**Figure 7**) is perpendicular to A-A' and is approximately perpendicular to the Rogue River channel west of Area 11. The lithology of B-B' is generally coarse-grained soil with layers of finer-grained soils in the central portion of the alignment. Coarse grained soils dominate the lithology near the Rogue River and in the uplands near Keswick Drive. The maximum thickness of fine-grained soils was approximately 15 feet.

Cross-section C-C' (**Figure 8**) is constructed northeasterly to southwesterly bisecting Area 12 and continuing southwest toward the Rogue River. The lithology in cross-section C-C' is similar to B-B' except for the southwest portion where fine-grained materials are prevalent at and near the water table. Fine-grained soil was encountered in approximately half of the boreholes in this section to a maximum thickness of approximately 25 feet.

In general, coarse-grained soil is predominant in most of the soil borings and water well logs in Areas 11 and 12 and the HSDS Study Area. The presence and thickness of clay and silt deposits varies horizontally and vertically without stratified correlation between borings. The lithologies shown on the cross-sections are characteristics of glacial outwash, and end moraines, to a lesser extent, as documented in regional geology. Based on our review

² https://secure1.state.mi.us/wellogic/Login.aspx?ReturnUrl=%2fwellogic%2fdefault.aspx

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 5 of 13

of well log lithologies, the overburden thickness in Areas 11 and 12 ranges from approximately 30 to 140 feet, and the top of bedrock elevations ranged from approximately 530 to 590 feet.

2.05 HYDROGEOLOGY

NKSA House Street Study Area Groundwater Flow

Static water levels were collected from the monitoring wells and the staff gauges throughout the HSDS Study Area (i.e., portion of NKSA investigated as it pertains to the HSDS). Groundwater and surface water elevations were calculated from the surveyed elevations of the top of casing for the monitoring wells or reference points for the staff gauges. In addition, surface water elevations recorded at USGS Gaging Station No. 04118500 were also downloaded and converted to the same datum as the monitoring well survey. See **Table 3** for the well installation information in the NKSA and **Table 4** for a summary of the static groundwater water level measurements. Note these tables include information for NKSA as a whole, while only a portion of the data is relevant to Areas 11 and 12.

In addition to the R&W/GZA-installed groundwater monitoring wells, EGLE also collected static water level data from the monitoring wells installed by EGLE during the November 2019 monitoring event and requested NKLF collect and provide static water level data in November 2019. In combination, the November 2019 static water level data provided the most complete set of static water levels and elevations for the NKSA even though no monitoring wells are within Areas 11 and 12 themselves.

For the locations where multiple wells were installed at different intervals, R&W/GZA grouped the wells into the shallow zone and deep zone by borehole lithologies, screen intervals, and static water elevations. See **Table 3** for the well grouping designations.

Based on the November 2019 data set, groundwater elevation contours were interpolated from the static water level data. See **Figure 2** for the groundwater elevation contours in the shallow zone and **Figure 3** for the deep zone.

As shown on **Figures 2** and **3**, groundwater in both the deep and shallow zones of the NKSA flows to the Rogue River. The HSDS is situated at or near a groundwater divide. Groundwater predominantly flows from the HSDS to the southeast to the Rogue River, but a portion of the flow is to the northwest. Because of groundwater discharge to Freska Lake and Clear Bottom Lake, the hydraulic gradient to the southwest appears to be flat as compared to the southeast. For the areas east of the Rogue River, groundwater flows to the west or southwest to the Rogue River. Near the Rogue River mouth to the Grand River, or the "wide" area where proglacial outwash is present, the hydraulic gradient is generally flat as compared to the other areas within NKLF.

Areas 11 and 12 Groundwater Flow

As shown in **Figures 2** and **3**, groundwater in Area 11 flows to the southwest toward the Rogue River in the western portion of the area and to the south toward the Grand River in the eastern portion of the area. Groundwater in Area 12 flows to the west and southwest toward the Rogue River. The deeper groundwater contours show an overall, similar flow pattern, except for the part of Area 11 located immediately north of the Rogue River mouth to the Grand River, where the Rogue River elevation is likely higher than the groundwater elevation, and surface water "short-cuts" the meander. The groundwater contours and flow evaluation indicate that groundwater from the HSDS area primarily flows to the southeast and discharges to the Rogue River, and groundwater east of the Rogue River flows to the west or southwest and discharges to the Rogue River. As discussed in **Section 2.03**, the Rogue River is a gaining stream. The groundwater contours and flow evaluation indicate it receives groundwater

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 6 of 13

from either side of the river. Based on R&W/GZA's interpretation of the data, with the Rogue River being a receiving water, it is unlikely that groundwater from the HSDS area under-flows the Rogue River at material concentrations, migrating to Areas 11 and 12. Additionally, based on the groundwater flow direction evaluation, the PFAS detection in Areas 11 and 12 is believed to originate from areas northeast of Areas 11 and 12. However, the current groundwater contours were based on the surface water elevations in the Rogue River and groundwater elevations from a limited number of the monitoring wells east of the Rogue River. Additional monitoring wells in Areas 11 and 12 can provide data to refine or confirm this evaluation. Site-specific hydraulic conductivity values are not available, as such Areas 11 and 12 specific groundwater seepage velocity is not estimated.

2.06 PFAS DISTRIBUTION IN GROUNDWATER

Distribution of PFAS in the House Street Study Area

Groundwater and residential well sampling completed since 2017 has identified one primary PFAS plume within the HSDS Study Area ("House Street Primary Plume"). Groundwater samples collected from the monitoring wells across the House Street Study Area in 2019 identified PFOA and PFOS as the primary PFAS compounds (approximately 11 percent and 60 percent of the total PFAS in monitoring well samples respectively). Note total PFAS analyte lists have varied between 14 and 23 (i.e., the EPA Method 537.1 14-analyte list and the 23 analytes included in the isotope dilution methodology under the most recent DoD QSM revision in effect at the time of sampling). However, given that the percent of the total PFAS mass that is comprised of PFOA + PFOS is relatively high, the slight variations in the total PFAS due to the varied number of analytes is negligible. Specifically, the analytes included on the 23 list that are not on the 14 list (i.e., nine different compounds) comprise approximately 8 percent of the total PFAS in the monitoring well samples. For consistency in the mapping, the total PFAS presented on Figure 9 are calculated from the sum of the 12 PFAS compounds that are common between EPA Method 537.1 and the isotope dilution, DoD QSM methodology. However, the total PFAS values used throughout the remainder of this RAP and associated documents are reported as full totals of either the 14 or 23 analytes.

Table 5, below, summarizes the detections, maximum concentration, and frequency of detection in groundwater samples collected in the House Street Study Area for PFOA and PFOS analytes. Analytical data for the residential wells in Areas 11 and 12 are provided on **Table 2**, and PFAS analytical results for the samples collected from the House Street Study Area in 2019 are provided in **Table 6**. **Figures 9** and **10** depict total PFAS (12 compounds as previously discussed) and PFOA + PFOS in the House Street Study Area near Areas 11 and 12, respectively.

Table 5: Summary of PFOA, PFOS, and Combined PFOA + PFOS Data in Groundwater, 2019 HSDS Quarterly Monitoring Well Sampling

Compound	Total Samples	Number of Detections	Number of Exceedances	Maximum Conc. (µg/L)	Threshold Value (µg/L)	Basis for Value ¹
PFOA	256	126	78	11	0.008	DWC
PFOS	256	79	38	100	0.016	DWC
Combined PFOA + PFOS	256	129	91	111	0.010	CD Value ²

- 1. Discussion of criterion applicability is included in Section 2.08.
- 2. CD value is not a state-wide criterion, but a performance objective from the CD.

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 7 of 13

PFAS analytical data from the groundwater monitoring wells and residential water well samples collected until December 2019 were combined and used for the interpolation of isoconcentration maps for total PFAS (**Figure 9**), and PFOA + PFOS (**Figure 10**). Where data from multiple sampling depths or sampling events are available at one location, the maximum concentrations were used during interpolation. It is important to note that the isoconcentration maps were geostatistically interpolated from spatially distributed point data, therefore they may overestimate the concentrations or extents in areas where data points were relatively sparse. As implied by the method, the isoconcentration maps are estimations only and are not intended to represent measured or true conditions.

The total PFAS isoconcentration map (**Figure 9**) suggests the primary PFAS plume migrated from the HSDS toward the Rogue River, primarily in the southeast direction, along the plume centerline. The PFOA + PFOS isoconcentration map (**Figure 10**) indicates a similar distribution to the total PFAS isoconcentration map, but their extents and the concentration ranges are less than that of total PFAS because the total PFAS isoconcentration map included other compounds, such as PFBS, PFHxA, PFHxS, and PFNA. As shown in **Figures 9** and **10**, the HSDS primary PFAS plume (consisting of primarily PFOA and PFOS) is located west of the Rogue River. As discussed in **Section 2.05**, the Rogue River acts as the discharge point for both sides of the river, and it is unlikely groundwater from the HSDS area under-flows past the Rogue River and migrates to Areas 11 and 12.

Distribution of PFAS in Areas 11 and 12

Within Area 11 and 12, most of the Area 11 residential water wells had PFOA + PFOS concentrations greater than 10 ng/L. Area 12 residential water wells generally did not have detectable PFOA + PFOS, with only one exceeding 10 ng/L. No residential well samples collected in Areas 11 and 12 have exceeded 70 ng/L. The groundwater data delineating the extent of the PFOS + PFOA within Areas 11 and 12 is limited to residential wells with generalized lithology. As discussed above, the Rogue River acts as a discharge point for either side of the river, and underflow from the HSDS plume to the east of the Rogue River is unlikely. Therefore, the detected PFOA + PFOS concentrations in Areas 11 and 12 were attributed to potential sources northeast or east of Areas 11 and 12, not from the primary HSDS plume. Considering the limited number of groundwater monitoring wells in Areas 11 and 12, additional monitoring wells can provide data to refine this evaluation. See **Section 2.08** and **Section 3.0** for proposed monitoring wells in Areas 11 and 12.

3-Dimensional Representation of PFAS in Areas 11 and 12

Due to the lack of monitoring well clusters screened at multiple depths in Areas 11 and 12, a 3-dimensional representation of PFAS is not practicable at this time. The possibility of 3-dimensional representation will be evaluated once the data proposed in **Section 3.0** are collected.

2.07 <u>EXPOSURE PATHWAYS – APPLICABLE PART 201 CLEANUP CRITERIA AND CD ACTION LEVELS</u>

The residents in Areas 11 and 12 who use groundwater for drinking water are potential receptors of PFOA + PFOS exposure via groundwater ingestion. Therefore, based on EGLE's Part 201 administrative rules, the applicable Part 201 groundwater cleanup criterion for Areas 11 and 12 is the Part 201 Generic Groundwater Cleanup Criteria Protective of Drinking Water for Residential Land Uses (DWC), which is protective of human health from being exposed to groundwater via ingestion.

For PFAS compounds, Michigan only has Part 201 cleanup criteria for PFOS and PFOA. Section 7.1 of the CD requires preventing exposure to PFOA + PFOS concentration in excess of 10 ng/L as one of the performance objectives.

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 8 of 13

Compound	Threshold Value (μg/L)	Basis for Value		
PFOA	12	GSI		
PFOS	0.012	GSI		
PFOA	0.008	DWC		
PFOS	0.016	DWC		
Combined PFOA + PFOS	0.010	CD Value		

The GSI pathway for PFAS and PFOA + PFOS is addressed in a separate RAP submitted to EGLE in September 2020 (R&W/GZA, 2020).

Based on the Part 201 cleanup criteria and the CD requirement, the project action levels for PFOA + PFOS concentrations are set to be 10 ng/L combined, 8 ppt for PFOA, and 16 ppt for PFOS. The project objectives are to monitor possible migration of PFAS/PFOA + PFOS to Areas 11 and 12 and evaluate if Areas 11 and 12 receptors are potentially exposed to PFOA + PFOS above 10 ng/L, 8 ppt for PFOA, and 16 ppt for PFOS via groundwater ingestion. The following objective is stated in Section 7.9(b)(i)(A) and (B) of the CD: "(A) Define the vertical and horizontal extent of PFAS Compounds contamination as required by Part 201; and (B) confirm and monitor the location and stability of the PFAS Compounds plume(s) once the plume(s) are defined."

2.08 DATA GAPS

Based on the current understanding of the CSM and the above discussions, the following data gaps are identified:

- Groundwater elevation and groundwater flow directions within Areas 11 and 12; and,
- Potential for PFAS-impacted groundwater in the shallow and deep zones migrating to Areas 11 and 12.

R&W/GZA has identified the following areas within Areas 11 and 12 where additional data is needed to further characterize the plume and meet the project objectives and address the data gaps:

- Southeast of the HSDS primary plume, east side of the Rogue River;
- East of Area 12;
- Northeast of Area 11; and,
- Immediately north of Area 11.

3.0 PROPOSED STATEMENT OF WORK

The following provides a summary of the proposed investigation, based on the identified data gaps. The proposed sampling locations are shown on **Figure 11**. Actual monitoring well locations may vary slightly from the proposed locations of **Figure 11** during installation. While the target locations for the well clusters are shown, limitations for access on private properties, site conditions, and utilities may require moving monitoring well locations.

 One VAP/monitoring well location (AREA11-RI-1) is proposed hydraulically upgradient of the area where PFOA + PFOS were detected at a concentration greater 70 ng/L east of the Rogue River, to evaluate potential upgradient source of PFOA + PFOS.

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 9 of 13

- One VAP/monitoring well location (HS-PMW-RI-110) is proposed to evaluate and monitor potential migration
 of PFAS from the hydraulically upgradient area to the filter area between HS-PMW-RI-110 and the
 Rogue River, where the parcels are not planned to receive municipal water.
- Two VAP/monitoring well locations (HS-PMW-RI-111 and HS-PMW-RI-112) are proposed near the area east
 of the river where PFOA + PFOS were detected at a concentration greater 70 ng/L, to evaluate potential
 migration of PFAS from this area to the filter area south and southwest, where the parcels are not planned to
 receive municipal water.
- Three VAP/monitoring well locations (AREA12-RI-1, AREA12-RI-2, and AREA12-RI-3) are proposed to evaluate groundwater flow in this area and monitor potential PFAS migration to the filter area south of these proposed locations.

The combination of groundwater monitoring, institutional controls (groundwater use ordinance), and filters (as required) are designed to protect Areas 11 and 12 residents from unacceptable exposure to PFOA + PFOS in drinking water. In addition to groundwater monitoring proposed in this RAP, additional residential well resampling is proposed (see separate residential well sampling RAP submitted May 2020). If a residential well exceeds 10 ng/L PFOA + PFOS (or applicable criteria), the CD mandates Wolverine provide a drinking water filter and requires the Plainfield and Algoma Townships groundwater use ordinance to require use and maintenance of these filters.

4.0 INVESTIGATION METHODOLOGY

Relevant tasks completed under this RAP will be completed in accordance with the most recent revision of the QAPP prepared for Wolverine by R&W/GZA.

The proposed well cluster locations will be drilled using either hollow-stem auger or rotosonic methods in accordance with SOPs A03 through A06 of the QAPP. When possible, the initial boring at each location will be drilled to the top of bedrock or upon refusal. The borehole terminal depth will also be evaluated based on the depths of adjacent water wells and the presence of confining strata.

As the original borings are drilled at each location, VAP samples will be collected for PFAS analysis from water-bearing and permeable formation(s) at an interval of 10 feet. VAP will be completed in accordance with SOP A25, Vertical Aquifer Profiling included in the QAPP. The turn-around time for laboratory samples will be approximately three weeks.

Well installation depths are not predetermined. Based on the profiling data, encountered geology, and nearby drinking water well elevations, R&W/GZA will determine the depth(s) of wells installed at each nest location. The monitoring wells will be developed in accordance with SOP A13, Well Development in the QAPP. Upon completion, the wells will also be surveyed by a licensed surveyor.

5.0 SAMPLING AND ANALYTICAL PROCEDURES

This section provides a generalized SAP for the Areas 11 and 12 monitoring well sampling. Specific information regarding sampling procedures and analytical methods is provided in the site-specific QAPP.

Wells will be sampled as follows:

- Initial sampling post installation/development; and
- Annual sampling until substantial completion of the Areas 11 and 12 well network.

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 10 of 13

Once the Areas 11 and 12 well network is substantially complete, all newly installed wells will be sampled quarterly for one year. (Substantial Completion will be agreed upon by R&W/GZA and EGLE.) Following the full year of quarterly sampling of the well network, R&W/GZA, in consultation with EGLE, will evaluate the data and determine appropriate next steps.

5.01 SAMPLING LOCATIONS

As discussed in Section 3.0, the following monitoring wells will be sampled:

Grouping/Area	Well Nomenclature
Hydraulically upgradient of the area where PFOA + PFOS were detected at a concentration greater 70 ng/L east of the Rogue River, to evaluate potential upgradient source of PFOA + PFOS	AREA11-RI-1
Evaluate and monitor potential migration of PFAS from the hydraulically upgradient area to the filter area between HS PMW-RI-110 and the Rogue River	HS-PMW-RI-110
Near the area east of the river where PFOA + PFOS were detected at a concentration greater 70 ng/L, to evaluate potential migration of PFAS from this area to the filter area south and southwest	HS-PMW-RI-111 and HS-PMW-RI-112
Evaluate groundwater flow in Area 12 and monitor potential PFAS migration to the filter area south of these proposed locations	AREA12-RI-1, AREA12-RI-2, and AREA12-RI-3

5.02 SAMPLE COLLECTION AND LABELING

Samples will be collected for PFAS analysis following the methods summarized in **Section 4.0** and detailed in the sampling SOPs for Groundwater Monitoring Wells (SOP A16; Low Flow Sampling). Detailed field and laboratory requirements are provided in the site-specific QAPP.

Sample identification will consist of nomenclatures that include the unique location identification (see reference table above). If applicable, sample identification for each sample will be repeated for each sampling event with consistent spelling.

To prevent misidentification of samples, legible labels will be affixed to each sample container. The labels will be sufficiently durable to remain legible even when wet. At a minimum, the labels will contain the following information:

- Location ID;
- · Name or initials of collector; and
- Date and time of collection.

5.03 SAMPLE SHIPPING

Sample bottles will be placed into the cooler and packed with double-bagged wet ice immediately following collection. Packing material will be used as necessary. A temperature blank will be placed in the cooler prior to shipment. The cooler shall be addressed to the appropriate laboratory and dispatched as soon as practical to ensure timely arrival.

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 11 of 13

5.04 ANALYTICAL METHOD AND PARAMETERS

PFAS will be analyzed using DoD QSM 5.3 guidelines for PFAS by isotope dilution methodology. The analyte list will include the 28 PFAS compounds specified by EGLE, and reporting limits are provided in Table A.7.7 of the project-specific QAPP.

6.0 DATA QUALITY ASSURANCE AND CONTROL

The following field quality control samples will be collected at a rate of one per 20 samples in accordance with the project-specific QAPP: Field blanks, field duplicates, and MS/MSDs.

- Field blanks will be collected by pouring laboratory-supplied, certified PFAS-free water into a sample container
 at the point of sample collection. The purpose of field blanks is to assess potential contamination at the
 sample point.
- Field duplicates will be collected by filling one additional sample container with water from the sample point.
 The purpose of field duplicates is to assess variability in sample composition. Field duplicates are not intended to be blind duplicates.
- MS/MSD will be collected by filling two additional sets of sample bottles with water from the sample point.
 MS/MSD analyses are conducted by the analytical laboratory after samples have been collected and
 submitted. Analysis of known concentrations of analytes spiked in the MS/MSD samples indicate if matrix
 interference effects are occurring.
- QA/QC samples will be collected using the methods described in Section 5.0 and the SOPs in the site-specific
 QAPP. Samples will be labeled described in Section 5.0. The location of QA/QC samples will be entered into
 the Monitoring Checklist. QA/QC samples will be analyzed using the same analytical methods used for the
 primary sample.

7.0 INVESTIGATION DERIVED WASTE

Soil cuttings will be containerized and transported to the HSDS property for staging/storage until off-site treatment/disposal or other approved handling can be arranged. The monitoring well development and purge water will be managed as follows:

- For locations where PFAS concentrations are below Part 201 GRCC, the water can be discharged to the ground surface in accordance with EGLE interoffice communication regarding purge-water disposal from well sampling and development (EGLE, 1999).
- For locations where PFAS concentrations are unknown or known to exceed Part 201 GRCC, the water will be
 disposed of appropriately in accordance with the EGLE interoffice communication regarding purge water
 disposal from well sampling and development (EGLE, 1999), and not discharged to the ground surface.

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 12 of 13

8.0 ANTICIPATED SCHEDULE

The schedule for monitoring well installation will depend greatly on R&W/GZA's ability to procure access to the desired or proximate alternate locations and the potential impact of COVID-19. The following table outlines R&W/GZA's current estimates of the steps and approximate timeframes for the tasks in this RAP (upon EGLE approval).

Task	Estimated Timeframe per Location
Access	1 to 3 months
Initial Drilling	2 to 3 weeks
VAP analysis	3 weeks
Monitoring Wells Installation	1 to 2 weeks
Development Wait Time	2 weeks
First Groundwater Sampling	1 week
First Laboratory Analysis	3 weeks

Assuming one month per location, R&W/GZA estimates this SOW will require seven months to complete drilling, VAP, and monitoring well installation. This will be completed in conjunction with the other RAPs submitted under the CD. R&W/GZA will coordinate with EGLE to prioritize drilling locations if access is obtained for multiple locations throughout the RAPs simultaneously. Because access will likely be obtained piecemeal, the actual well installation schedule will likely exceed six months.

Following the full year of quarterly sampling of the well network, R&W/GZA will evaluate the data in consultation with EGLE and determine appropriate next steps.

9.0 REFERENCES

Apple, Beth A. and Howard W. Reeves. 2007. Summary of Hydrogeologic Conditions by County for the State of Michigan. https://pubs.usgs.gov/of/2007/1236/pdf/OFR2007-1236.pdf.

Brusseau, Mark L. Assessing the Potential Contributions of Additional Retention Processes to PFAS Retardation in the Subsurface. Science of The Total Environment, Volumes 613-614, 1 February 2018, pages 176-185. Downloaded on June 3, 2020 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5693257/

Farrand, W.R. 1982. *Quaternary Geology of Michigan*. http://www.michigan.gov/documents/deq/1982_Quaternary_Geology_Map_301467_7.pdf.

Interstate Technology Regulatory Council. 2020. 5 Environmental Fate and Transport Processes. https://pfas-1.itrcweb.org/5-environmental-fate-and-transport-processes/#5_3.

Michigan Department of Environment, Great Lakes, and Energy, 2019a. 120th Avenue PFAS Study Area. Downloaded on June 2, 2020 from https://www.miottawa.org/pfas/pdfs/MDEQ_MDHHS_120th%20Avenue%20PFAS%20presentation_020820 19.pdf.

Michigan Department of Environment, Great Lakes, and Energy. 2019b. *Michigan's Major Watersheds – Subbasins*. Retrieved June 2, 2020 from http://gis-michigan.opendata.arcgis.com/datasets/midnr::majorwatersheds-subbasins.

June 18, 2020, Revised December 11, 2020
Areas 11 and 12 Response Activity Plan
Kent County, Michigan
File No. 16.0062961.40
Page 13 of 13

- Michigan Department of Environmental Quality. 1987. *Bedrock Geology Map of Michigan*. 1:500,000 scale. https://www.michigan.gov/documents/deq/1987_Bedrock_Geology_Map_301466_7.pdf.
- Michigan Department of Environmental Quality, Water Bureau, United States Geological Survey Michigan Water Science Center, and Michigan State University Institute of Water Research, RS&GIS, and Biosystems and Agricultural Engineering. 2005. Wellogic Statewide Wells Groundwater Inventory and Mapping Project (Michigan State University, 2005a).
- Michigan Department of Environmental Quality. 1999. Interoffice Communication, Operation Memo Gen-10, Re: Purge Water Disposal from Well Sampling and Development. https://www.michigan.gov/documents/deq/deq-whm-hwp-Op-Memo-Gen-10-Rev1_235127_7.pdf
- Michigan State University. 2015. Groundwater Inventory and Mapping Project. Michigan Glacial Landsystems.
- Michigan State University. 2005, June 30. Groundwater Inventory and Mapping Project. Estimate of Annual Groundwater Recharge. (Michigan State University, 2005b)
- R&W/GZA. 2018. Conceptual Site Model Update and Status Report, Former House Street Disposal Area, Wolverine World Wide, Inc., Rockford, Michigan.
- R&W/GZA. 2019. Implementation of 2018 Work Plan Summary Report, Former Wolverine World Wide Tannery Facility. Submitted to USEPA January 11, 2019.
- R&W/GZA, 2020, Groundwater-Surface Water Interface (GIS) Response Action Plan, North Kent Study Area, September 23, 2020.
- Schaider, Laural A., Janet M. Ackerman, Ruthann A. Rudel. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer: Science of The Total Environment, Volume 547, 15 March 2016, pages 470-481. Downloaded on June 2, 2020 from https://www.sciencedirect.com/science/article/pii/S0048969715312353.
- Stramel, G.J., C.O. Wisler, and L.B. Laird. 1954. *Water Resources of the Grand Rapids Area, Michigan.* https://pubs.usgs.gov/circ/1954/0323/report.pdf.
- Western Michigan University. (1981). Hydrogeologic Atlas of Michigan: U.S. Environmental Protection Agency Underground Injection Control Program. Kalamazoo, Michigan, United States of America.

TABLES

Area	PPN	Address	Note	Well Screen Elevation (feet)
Area 11	411022279006	5754 AUSTERLITZ AVE NE	VACANT	NA
Area 11	411022280015	5764 AUSTERLITZ AVE NE	VACANT	NA
Area 11	411022426002	3104 INDIAN DR NE	SAMPLED BY R&W/GZA	577-564
Area 11	411022426019	3112 INDIAN DR NE	TOWNSHIP PROPERTY - NO WELLS	NA
Area 11	411022426017	3128 INDIAN DR NE	VACANT	NA
Area 11	411022426018	3132 INDIAN DR NE	VACANT	NA
Area 11	411022426006	3136 INDIAN DR NE	VACANT	NA
Area 11	411022426020	3140 INDIAN DR NE	VACANT	NA
Area 11	411022426009	3150 INDIAN DR NE	VACANT	NA
Area 11	411023302001	3240 INDIAN DR NE	VACANT	NA
Area 11	411023303013	3246 INDIAN DR NE	SAMPLED BY R&W/GZA	NA
Area 11	411023303009	3252 INDIAN DR NE	SAMPLED BY R&W/GZA	NA
Area 11	411023301001	3277 INDIAN DR NE	SAMPLED BY OTHERS	570-560
Area 11	411022277004	5653 MALL AVE NE	SAMPLED BY R&W/GZA	NA
Area 11	411022277003	5659 MALL AVE NE	VACANT	NA
Area 11	411022277002	5663 MALL AVE NE	SAMPLED BY R&W/GZA	577-567
Area 11	411022279005	5748 MALL AVE NE	SAMPLED BY R&W/GZA	NA
Area 11	411022278007	5750 MALL AVE NE	SAMPLED BY R&W/GZA	580-570
Area 11	411022280014	5762 MALL AVE NE	VACANT	NA
Area 11	411022278003	3190 RAND ST NE	VACANT	NA
Area 11	411022278008	3149 RIPLEY ST NE	VACANT	NA
Area 11	411022279001	3150 RIPLEY ST NE	SAMPLED BY R&W/GZA	594-584
Area 11	411022279003	3160 RIPLEY ST NE	SAMPLED BY R&W/GZA	589-581
Area 11	411022278006	3179 RIPLEY ST NE	SAMPLED BY R&W/GZA	576-571
Area 11	411022279004	3180 RIPLEY ST NE	SAMPLED BY R&W/GZA	586-578
Area 11	411022278005	3189 RIPLEY ST NE	VACANT	NA
Area 11	411022426010	3158 RIVER POINT DR NE	VACANT	NA
Area 11	411022426011	3162 RIVER POINT DR NE	VACANT	NA
Area 11	411022426012	3168 RIVER POINT DR NE	VACANT	NA
Area 11	411022426013	3172 RIVER POINT DR NE	VACANT	NA
Area 11	411022426014	3180 RIVER POINT DR NE	VACANT	NA
Area 11	411022426015	3184 RIVER POINT DR NE	VACANT	NA
Area 11	411022426016	3192 RIVER POINT DR NE	VACANT	NA
Area 11	411023303001	3198 RIVER POINT DR NE	VACANT	NA
Area 11	411023303015	3204 RIVER POINT DR NE	VACANT	NA
Area 11	411023303014	3208 RIVER POINT DR NE	VACANT	NA
Area 11	411023303010	3212 RIVER POINT DR NE	VACANT	NA
Area 11	411023303011	3216 RIVER POINT DR NE	VACANT	NA
Area 11	411023303005	3222 RIVER POINT DR NE	VACANT	NA
Area 11	411023303006	3228 RIVER POINT DR NE	VACANT	NA
Area 11	411022280006	6443 WEST RIVER DR NE	VACANT	NA
Area 11	411022426001	6450 WEST RIVER DR NE	VACANT	NA

Area	PPN	Address	Note	Well Screen Elevation (feet)
Area 11	411022280016	6461 WEST RIVER DR NE	VACANT	NA
Area 11	411022280008	6479 WEST RIVER DR NE	VACANT	NA
Area 11	411022280013	6485 WEST RIVER DR NE	SAMPLED BY R&W/GZA	586-581
Area 11	411023326006	6618 WEST RIVER DR NE	VACANT	NA
Area 11	411023326001	6622 WEST RIVER DR NE	SAMPLED BY R&W/GZA MUNICIPAL WATER	NA
Area 11	411023326005	6644 WEST RIVER DR NE	VACANT	NA
Area 11	411023326002	6656 WEST RIVER DR NE	VACANT	NA
Area 11	411023326003	6668 WEST RIVER DR NE	VACANT	NA
Area 11	411023326004	6680 WEST RIVER DR NE	VACANT	NA
Area 12	411015230004	2950 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015230005	2952 GOLD DUST ST NE	VACANT	NA
Area 12	411015230003	2956 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015230002	2966 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015230001	2986 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285001	3006 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285002	3022 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285003	3036 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285004	3050 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285005	3066 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285006	3074 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285007	3096 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285008	3104 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285009	3118 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285010	3130 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285011	3144 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015285012	3160 GOLD DUST ST NE	MUNICIPAL WATER	NA
Area 12	411015176002	6290 PACKER DR NE	VACANT	NA
Area 12	411015290001	6420 PACKER DR NE	VACANT	NA
Area 12	411015427002	3031 RAPIDFALL CT NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427011	3036 RAPIDFALL CT NE	SAMPLED BY R&W/GZA	609-604
Area 12	411015427003	3041 RAPIDFALL CT NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427010	3050 RAPIDFALL CT NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427004	3055 RAPIDFALL CT NE	SAMPLED BY R&W/GZA	588-583
Area 12	411015427005	3065 RAPIDFALL CT NE	SAMPLED BY R&W/GZA	605-600
rea 12	411015427009	3066 RAPIDFALL CT NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427008	3080 RAPIDFALL CT NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427006	3083 RAPIDFALL CT NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427007	3086 RAPIDFALL CT NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427018	6250 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427017	6254 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428009	6259 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	617-612

Area	PPN	Address	Note	Well Screen Elevation (feet)
Area 12	411015427016	6262 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	584-580
Area 12	411015428008	6267 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427015	6270 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428007	6275 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	615-611
Area 12	411015427014	6280 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428006	6283 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428001	6287 RAPIDFALL DR NE	VACANT	NA
Area 12	411015428026	6289 RAPIDFALL DR NE	VACANT	NA
Area 12	411015428005	6291 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	585-580
Area 12	411015427013	6298 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428004	6299 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427012	6312 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428003	6315 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	581-576
Area 12	411015428002	6327 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	566-561
Area 12	411015427001	6332 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	617-612
Area 12	411015428025	6335 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	598-593
Area 12	411015427021	6350 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428024	6351 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428023	6363 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427020	6368 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	600-595
Area 12	411015428022	6375 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	600-595
Area 12	411015428021	6391 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428020	6405 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428019	6415 RAPIDFALL DR NE	SAMPLED BY R&W/GZA	598-592
Area 12	411015428032	3075 ROGUE RIVER RD NE	MUNICIPAL WATER	NA
Area 12	411015429009	3191 ROGUE RIVER RD NE	SAMPLED BY R&W/GZA FUTURE MUNICIPAL WATER (AREA 16)	613-609
Area 12	411015428016	6145 WOODWATER DR NE	MUNICIPAL WATER	NA
rea 12	411015429008	6146 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015429007	6160 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428015	6163 WOODWATER DR NE	SAMPLED BY R&W/GZA	585-581
Area 12	411015429006	6176 WOODWATER DR NE	SAMPLED BY R&W/GZA	596-590
Area 12	411015428014	6177 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015429005	6192 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
rea 12	411015428013	6195 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
rea 12	411015429004	6208 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
rea 12	411015428012	6211 WOODWATER DR NE	SAMPLED BY R&W/GZA	590-587
Area 12	411015429003	6226 WOODWATER DR NE	SAMPLED BY R&W/GZA	590-586
Area 12	411015428011	6229 WOODWATER DR NE	SAMPLED BY R&W/GZA	603-599
Area 12	411015429002	6240 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015428010	6241 WOODWATER DR NE	SAMPLED BY R&W/GZA	590-585
Area 12	411015429001	6258 WOODWATER DR NE	SAMPLED BY R&W/GZA	590-586

Area	PPN	Address	Note	Well Screen Elevation (feet)
Area 12	411015426030	6266 WOODWATER DR NE	SAMPLED BY R&W/GZA	591-581
Area 12	411015427034	6273 WOODWATER DR NE	SAMPLED BY R&W/GZA	594-589
Area 12	411015426029	6274 WOODWATER DR NE	SAMPLED BY R&W/GZA	593-587
Area 12	411015426028	6282 WOODWATER DR NE	SAMPLED BY R&W/GZA	628-618
Area 12	411015427033	6285 WOODWATER DR NE	SAMPLED BY R&W/GZA	606-600
Area 12	411015426027	6290 WOODWATER DR NE	SAMPLED BY R&W/GZA	598-593
Area 12	411015427032	6293 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015426026	6298 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427031	6301 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015426025	6306 WOODWATER DR NE	SAMPLED BY R&W/GZA	607-602
Area 12	411015427030	6311 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015426024	6314 WOODWATER DR NE	SAMPLED BY R&W/GZA	617-612
Area 12	411015426023	6322 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427029	6325 WOODWATER DR NE	SAMPLED BY R&W/GZA	610-605
Area 12	411015426022	6330 WOODWATER DR NE	SAMPLED BY R&W/GZA	613-608
Area 12	411015426021	6338 WOODWATER DR NE	SAMPLED BY R&W/GZA	609-603
Area 12	411015427028	6341 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015426020	6346 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427027	6351 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015426019	6354 WOODWATER DR NE	SAMPLED BY R&W/GZA	613-607
Area 12	411015427026	6359 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015426018	6362 WOODWATER DR NE	SAMPLED BY R&W/GZA	616-611
Area 12	411015427025	6367 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015426017	6370 WOODWATER DR NE	SAMPLED BY R&W/GZA	617-611
Area 12	411015427024	6375 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015426016	6378 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015427023	6383 WOODWATER DR NE	SAMPLED BY R&W/GZA	615-610
Area 12	411015426015	6386 WOODWATER DR NE	SAMPLED BY R&W/GZA	620-614
Area 12	411015427022	6391 WOODWATER DR NE	SAMPLED BY R&W/GZA	605-600
Area 12	411015426014	6394 WOODWATER DR NE	SAMPLED BY R&W/GZA	610-604
Area 12	411015427019	6399 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA
Area 12	411015426013	6402 WOODWATER DR NE	SAMPLED BY R&W/GZA	NA

Notes:

- Well screen elevations provided in feet above mean sea level, North American Vertical Datum of 1988 (NAVD 88). Well
 screen elevations were calculated using well information provided by the State of Michigan's Wellogic database and
 ground surface elevations of the center of the PPN generated from LiDAR data provided by Kent County. Elevations are
 rounded to the nearest foot.
- 2. "NA" indicates not available.

Area				Area 11	Area 11	Area 11	Area 11	Area 11	Area 11	Area 11	Area 11	Area 11	Area 11	Area 11	Area 11	Area 11	Area 11	Area 12	Area 12
PPN				411023301001	411022426002	411023303013	411023303009	411022277004	411022277002	411022279005	411022279001	411022279003	411022278006	411022279004	411022280013	411022278007	411023326001	411015428011	411015426026
Address	Part 201 Generic Residential			3277 INDIAN DR NE	3104 INDIAN DR NE	3246 INDIAN DR NE	3252 INDIAN DR NE	5653 MALL AVE NE	5663 MALL AVE NE	5748 MALL AVE NE	3150 RIPLEY ST NE	3160 RIPLEY ST NE	3179 RIPLEY ST NE	3180 RIPLEY ST NE	6485 WEST RIVER DR NE	5750 MALL AVE NE	6622 WEST RIVER DR NE	6229 WOODWATER DR NE	6298 WOODWATER DR NE
Sample Name	Groundwater Cleanup Criteria –	MCL ³	CD Value ⁴	WIRR1712111230 JLB	3104 Indian Dr NE	3246 Indian Dr NE	3252 Indian Dr NE	5653 Mall AveNE	5663 Mall Ave NE	5748 Mall Ave NE	3150 Ripley NE	3160 Ripley NE	3179 Ripley NE	3180 Ripley NE	6485 West River Dr NE	5750 Mall Ave NE	6622 West River DrNE	6229 Woodwater Dr NE - S	6298 Woodwater Dr NE - S
Matrix	Drinking Water ²			Ground Water (Irrigation Well)	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water
Laboratory ID			III Y	1701971-07	K1800298-012	K1800298-002	K1800298-001	K1800298-013	K1800298-014	K1800298-015	K1800298-016	K1800298-017	K1800298-019	K1800298-018	K1800298-005	K1800341-010	TE12015-001	K1713822-004	K1713822-002
Sample Date				12/11/2017	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/10/2018	05/11/2018	12/21/2017	12/21/2017
Parameter (µg/L)																7			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NA	NA -	<0.00239	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044		<0.0041	<0.0043
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NA	NA	<0.00239	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044	-	<0.0041	<0.0043
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NA	NA		<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044		<0.0041	<0.0043
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	NCL	NA	NA			-			-			-		3	5	-	<0.0035	2	2
N-Ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE)	NCL	NA	NA		<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044		<0.0041	<0.0043
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NA	NA	1	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	< 0.0043	<0.0044	-	<0.0041	<0.0043
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	NCL	NA	NA		-	- ×		-		×	*	-		1-	~	-	< 0.0035		-
N-Methyl perfluorooctane sulfonamidoethanol (N-MeFOSE)	NCL	NA	NA	1 2020	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044	0.20	<0.0041	<0.0043
Perfluorobutane sulfonic acid (PFBS)	NCL	0.42	NA	0.00392	0.0072	0.0051	<0.0043	0.017	0.016	0.023	0.012	0.0092	0.0097	0.01	0.0046	0.013	0.0075	<0.0041	0.012
Perfluorodecane sulfonic acid (PFDS)	NCL	NA	NA	<0.00239	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044		<0.0041	<0.0043
Perfluorooctadecanoic acid (PFODA)	NCL	NA	NA	<0.00718	-0	3		- De		-		-			8) Se			+ +
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NA	NA	0.00147 J	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044		<0.0041	<0.0043
Perfluorooctane sulfonamide (FOSA)	NCL	NA	NA	<0.00239	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044	-	<0.0041	<0.0043
Perfluorohexane sulfonic acid (PFHxS)	NCL	0.051	NA	0.0041	0.0092	0.0068	0.011	0.0073	0.0086	0.0074	0.0079	0.0089	0.0044	0.01	< 0.0043	0.0054	0.0039	<0.0041	<0.0043
Perfluorobutanoic acid (PFBA)	NCL	NA	NA	0.00188 J	<0.0082	<0.0083	<0.0086	<0.0085	<0.0085	<0.0086	<0.0085	< 0.0085	<0.0085	<0.0085	<0.0087	<0.0088		<0.0082	< 0.0087
Perfluorodecanoic acid (PFDA)	NCL	NA	NA	<0.00239	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	< 0.0043	<0.0044	<0.0035	<0.0041	<0.0043
Perfluorododecanoic acid (PFDoDA)	NCL	NA	NA	<0.00239	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	< 0.0043	<0.0044	<0.0035	<0.0041	<0.0043
Perfluoroheptanoic acid (PFHpA)	NCL	NA	NA	0.00087 J	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044	<0.0035	<0.0041	<0.0043
Perfluorohexanoic acid (PFHxA)	NCL	400	NA	0.00389	<0.0041	0.0046	<0.0043	0.0058	0.0054	0.0047	0.0045	<0.0042	<0.0042	<0.0042	<0.0043	< 0.0044	< 0.0035	<0.0041	0.0084
Perfluorononanoic acid (PFNA)	NCL	0.006	NA	<0.00239	<0.0041	< 0.0042	< 0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	< 0.0044	< 0.0035	<0.0041	< 0.0043
Perfluorooctanoic acid (PFOA)	0.008	0.008	NA	0.00141 J	0.0057	0.0079	0.007	0.0088	0.0095	0.0096	0.011	0.0079	0.0019	0.0085	<0.0017	0.006	0.0042	< 0.0016	0.0064
Perfluorooctane sulfonic acid (PFOS)	0.016	0.016	NA	0.00355 J	0.0097	0.011	0.0092	0.022	0.016	0.015	0.024	0.022	<0.0042	0.02	< 0.0043	0.016	0.0055	<0.0041	0.0052
PFOA + PFOS (Calculated)	NCL	NA	0.01	0.005	0.015	0.019	0.016	0.031	0.026	0.025	0.035	0.03	0.0019	0.029	ND	0.022	0.0097	ND	0.012
Perfluoropentanoic acid (PFPeA)	NCL	NA	NA	0.00173 J	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	< 0.0042	< 0.0042	< 0.0043	< 0.0044	-	<0.0041	0.0081
Perfluorotetradecanoic acid (PFTeDA)	NCL	NA	NA	<0.00239	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044	<0.0035	<0.0041	< 0.0043
Perfluorotridecanoic acid (PFTrDA)	NCL	NA	NA	<0.00239	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044	< 0.0035	<0.0041	<0.0043
Perfluoroundecanoic acid (PFUnDA)	NCL	NA	NA	<0.00239	<0.0041	<0.0042	<0.0043	<0.0042	<0.0042	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0044	< 0.0035	<0.0041	<0.0043
Perfluorohexadecanoic acid (PFHxDA)	NCL	NA	NA	<0.00239	-	× 1		4			×	T			-		4	1	
Total PFAS (Calculated)	NCL	NA	NA	0.023	0.032	0.035	0.027	0.061	0.056	0.06	0.059	0.048	0.016	0.049	0.0046	0.04	0.021	ND	0.04

Area				Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12
PPN				411015426020	411015429008	411015429007	411015429004	411015429003	411015426030	411015426029	411015426027	411015426025	411015428015	411015428013	411015428012	411015428010	411015426022	411015426020	411015426019
Address	Part 201 Generic			6346 WOODWATER DR	6146 WOODWATER DR	6160 WOODWATER DR	6208 WOODWATER DR NE	6226 WOODWATER DR	6266 WOODWATER DR	6274 WOODWATER DR	6290 WOODWATER DR NE	6306	6163 WOODWATER DR	6195 WOODWATER DR	6211	6241 WOODWATER DR	6330 WOODWATER DR	6346	6354 R WOODWATER D
Lo contractor of	Residential Groundwater	MCL ³	CD Value ⁴	6346 Woodwater	6146 Woodwater	6160 Woodwater	6208 Woodwater	6226 Woodwater	6266 Woodwater		6290 Woodwater	6306 Woodwater	6163 Woodwater	6195 Woodwater	6211 Woodwater	6241 Woodwater	6330 Woodwater	6346 Woodwater	6354 Woodwate
Sample Name	Cleanup Criteria –	MICE	CD value	Dr NE - S	S	S	S	S	S	S	S	S	Dr NE - S	Dr NE - S	Dr NE - S	Dr NE - S	Dr NE - S	Dr NE - S	Dr NE - S
Matrix	Drinking Water ²			Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Wate
Laboratory ID				K1713822-003	K1800112-002	K1800112-003	K1800112-004	K1800112-005	K1800112-007	K1800112-008	K1800112-009	K1800112-010	K1800111-002	K1800111-003	K1800111-004	K1800111-006	K1800111-007	К1800111-008	K1800111-010
Sample Date				12/21/2017	01/02/2018	01/02/2018	01/02/2018	01/02/2018	01/02/2018	01/02/2018	01/02/2018	01/02/2018	01/03/2018	01/03/2018	01/03/2018	01/03/2018	01/03/2018	01/03/2018	01/03/2018
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	< 0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	0.065	0.0049	<0.0042
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NA	NA	< 0.0043	<0.0042	<0.0042	<0.0042	<0.0041	< 0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	NCL	NA	NA		-	8 - 1	-	-	-	-		-	-	3				-	2
N-Ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	NCL	NA	NA		<u> </u>	- 1		-		~	-	-	-	1	× .	-		120	
N-Methyl perfluorooctane sulfonamidoethanol (N-MeFOSE)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	< 0.0041	<0.0042	<0.0042	<0.0042
Perfluorobutane sulfonic acid (PFBS)	NCL	0.42	NA	0.012	0.0075	0.015	0.013	0.006	<0.0043	<0.0042	0.0043	0.0046	0.0067	0.0058	<0.0043	<0.0041	0.006	<0.0042	0.0084
Perfluorodecane sulfonic acid (PFDS)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	< 0.0043	<0.0041	<0.0042	<0.0042	<0.0042
Perfluorooctadecanoic acid (PFODA)	NCL	NA	NA	-		3-						-	-		38	- Se - 1		30	- 5
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
Perfluorooctane sulfonamide (FOSA)	NCL	NA	NA	< 0.0043	< 0.0042	<0.0042	<0.0042	<0.0041	< 0.0043	<0.0042	<0.0042	<0.0042	<0.0042	< 0.0042	<0.0043	< 0.0041	< 0.0042	<0.0042	<0.0042
Perfluorohexane sulfonic acid (PFHxS)	NCL	0.051	NA	<0.0043	0.0062	0.0046	0.0048	0.0048	0.006	0.0044	<0.0042	<0.0042	<0.0042	<0.0042	0.0083	0.0052	<0.0042	<0.0042	0.0043
Perfluorobutanoic acid (PFBA)	NCL	NA	NA	<0.0086	<0.0083	<0.0083	<0.0085	<0.0082	<0.0086	<0.0083	<0.0083	<0.0085	<0.0083	<0.0085	<0.0086	<0.0082	<0.0085	< 0.0083	<0.0083
Perfluorodecanoic acid (PFDA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	< 0.0043	<0.0041	<0.0042	<0.0042	<0.0042
Perfluorododecanoic acid (PFDoDA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
Perfluoroheptanoic acid (PFHpA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
Perfluorohexanoic acid (PFHxA)	NCL	400	NA	<0.0043	<0.0042	0.0054	0.0048	0.0051	0.0052	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	0.0043	<0.0042	<0.0042
Perfluorononanoic acid (PFNA)	NCL	0.006	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	< 0.0041	<0.0042	<0.0042	< 0.0042
Perfluorooctanoic acid (PFOA)	0.008	0.008	NA	0.0023	0.0031	0.0034	0.0022	<0.0016	<0.0017	<0.0017	0.003	<0.0017	<0.0017	<0.0017	< 0.0017	<0.0016	0.005	< 0.0017	0.0029
Perfluorooctane sulfonic acid (PFOS)	0.016	0.016	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
PFOA + PFOS (Calculated)	NCL	NA	0.01	0.0023	0.0031	0.0034	0.0022	ND	ND	ND	0.003	ND	ND	ND	ND	ND	0.005	ND	0.0029
Perfluoropentanoic acid (PFPeA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
Perfluorotetradecanoic acid (PFTeDA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
Perfluorotridecanoic acid (PFTrDA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	< 0.0043	<0.0041	<0.0042	<0.0042	<0.0042
Perfluoroundecanoic acid (PFUnDA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0041	<0.0043	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0041	<0.0042	<0.0042	<0.0042
Perfluorohexadecanoic acid (PFHxDA)	NCL	NA	NA	E R				40		1 18 11	3 3	H. R. L.		-			- 9	1-1	
Total PFAS (Calculated)	NCL	NA	NA	0.014	0.017	0.028	0.025	0.016	0.011	0.0044	0.0073	0.0046	0.0067	0.0058	0.0083	0.0052	0.08	0.0049	0.016

Area				Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12
PPN				411015426018	411015426017	411015427010	411015427018	411015427017	411015427016	411015427014	411015427013	411015427012	411015428002	411015427001	411015428025	411015428024	411015428023	411015427020	411015428022
Address	Part 201 Generic Residential			6362 WOODWATER DR NE	6370 WOODWATER DR NE	3050 RAPIDFALL CT NE	6250 RAPIDFALL DR NE	6254 RAPIDFALL DR NE	6262 RAPIDFALL DR NE	6280 RAPIDFALL DR NE	6298 RAPIDFALL DR NE	6312 RAPIDFALL DR NE	6327 RAPIDFALL DR NE	6332 RAPIDFALL DR NE	6335 RAPIDFALL DR NE	6351 RAPIDFALL DR NE	6363 RAPIDFALL DR NE	6368 RAPIDFALL DR NE	6375 RAPIDFAL DR NE
Sample Name	Groundwater Cleanup Criteria –	MCL ³	CD Value ⁴	6362 Woodwater Dr NE - S	6370 Woodwater Dr NE - S	3050 Rapidfall Ct S	6250 Rapidfall - 5	6254 Rapidfall - S	6262 Rapidfall - S	6280 Rapidfall - S	6298 Rapidfall - S	6312 Rapidfall - S	6327 Rapidfall - S	6332 Rapidfall - S	6335 Rapidfall - 5	6351 Rapidfall - S	6363 Rapidfall - 5	6368 Rapidfall - S	S 6375 Rapidfall -
Matrix	Drinking Water ²			Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Wate
Laboratory ID				K1800111-009	K1800111-011	K1800185-026	K1800185-011	K1800185-012	K1800185-013	K1800185-014	K1800185-018	K1800185-016	K1800185-015	K1800185-020	K1800185-021	K1800185-022	K1800185-023	K1800185-024	K1800185-025
Sample Date				01/03/2018	01/03/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018	01/04/2018
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	< 0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	< 0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	NCL	NA	NA			4		-	-		8	-	-	3		-	-	-	-
N-Ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	NCL	NA	NA	1 7 1 1 1	-	-		-		~	-	-				-	~		-
N-Methyl perfluorooctane sulfonamidoethanol (N-MeFOSE)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	< 0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
Perfluorobutane sulfonic acid (PFBS)	NCL	0.42	NA	0.0096	0.008	0.008	<0.0041	0.0069	<0.0042	<0.0042	0.0075	0.0079	<0.0043	<0.0041	<0.0041	0.0062	0.0083	0.0097	0.0067
Perfluorodecane sulfonic acid (PFDS)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	< 0.0041	<0.0042	<0.0042	<0.0041
Perfluorooctadecanoic acid (PFODA)	NCL	NA	NA	-		-) -			65			-	5-	- Se - 1		-	- 8
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
Perfluorooctane sulfonamide (FOSA)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
Perfluorohexane sulfonic acid (PFHxS)	NCL	0.051	NA	0.0063	0.0041	0.011	<0.0041	<0.0041	<0.0042	<0.0042	0.012	0.0053	<0.0043	0.0056	<0.0041	<0.0041	0.0045	0.0054	0.0081
Perfluorobutanoic acid (PFBA)	NCL	NA	NA	<0.0085	<0.0082	<0.0083	<0.0081	<0.0081	<0.0085	<0.0083	<0.0082	<0.0081	<0.0086	<0.0081	<0.0082	<0.0082	<0.0083	<0.0085	<0.0082
Perfluorodecanoic acid (PFDA)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
Perfluorododecanoic acid (PFDoDA)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
Perfluoroheptanoic acid (PFHpA)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
Perfluorohexanoic acid (PFHxA)	NCL	400	NA	<0.0042	<0.0041	<0.0042	0.0097	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	0.0052	0.0047
Perfluorononanoic acid (PFNA)	NCL	0.006	NA	<0.0042	< 0.0041	< 0.0042	< 0.0041	< 0.0041	<0.0042	<0.0042	<0.0041	< 0.0041	<0.0043	< 0.0041	<0.0041	< 0.0041	<0.0042	< 0.0042	< 0.0041
Perfluorooctanoic acid (PFOA)	0.008	0.008	NA	0.0028	0.0035	0.0023	0.0051	0.0017	<0.0017	<0.0017	<0.0016	0.0053	<0.0017	0.0017	<0.0016	0.0042	0.003	0.0031	0.0034
Perfluorooctane sulfonic acid (PFOS)	0.016	0.016	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
PFOA + PFOS (Calculated)	NCL	NA	0.01	0.0028	0.0035	0.0023	0.0051	0.0017	ND	ND	ND	0.0053	ND	0.0017	ND	0.0042	0.003	0.0031	0.0034
Perfluoropentanoic acid (PFPeA)	NCL	NA	NA	< 0.0042	<0.0041	<0.0042	0.0052	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
Perfluorotetradecanoic acid (PFTeDA)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
Perfluorotridecanoic acid (PFTrDA)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
Perfluoroundecanoic acid (PFUnDA)	NCL	NA	NA	<0.0042	<0.0041	<0.0042	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041	<0.0041	<0.0043	<0.0041	<0.0041	<0.0041	<0.0042	<0.0042	<0.0041
Perfluorohexadecanoic acid (PFHxDA)	NCL	NA	NA		-		-	-			8 -	R 1	-			- 1	-1	-	
Total PFAS (Calculated)	NCL	NA	NA	0.019	0.016	0.021	0.02	0.0086	ND	ND	0.02	0.019	ND	0.0073	ND	0.01	0.016	0.023	0.023

Area				Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12
PPN				411015429006	411015426013	411015427011	411015427004	411015427007	411015428021	411015428020	411015428019	411015427034	411015427032	411015427031	411015426014	411015427005	411015427021	411015427023	411015427022
Address	Part 201 Generic Residential	-52	-	6176 WOODWATER DR NE	NE	3036 RAPIDFALL CT NE	3055 RAPIDFALL CT NE	3086 RAPIDFALL CT NE	6391 RAPIDFALL DR NE	6405 RAPIDFALL DR NE	6415 RAPIDFALL DR NE	NE	6293 WOODWATER DR NE	NE	NE	3065 RAPIDFALL CT NE	6350 RAPIDFALL DR NE	NE	6391 R WOODWATER DR NE
Sample Name	Groundwater Cleanup Criteria –	MCL ³	CD Value ⁴	6176 Woodwater S	6402 Woodwater Dr	3036 Rapidfall Ct S	3055 Rapidfall Ct	3086 Rapidfall Ct S	6391 Rapidfall - S	6405 Rapidfall - S	6415 Rapidfall - S	6273 Woodwater Dr NE	6293 Woodwater Dr NE	6301 Woodwater Dr NE	6394 Wood Water Sue	3065 Rapidfall Ct NE	6350 Rapidfall Dr NE	6383 Woodwater Dr NE	6391 Woodwater Dr NE
Matrix	Drinking Water ²			Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water
Laboratory ID				K1800185-019	K1800187-002	K1800185-002	K1800185-001	K1800185-008	K1800185-010	K1800185-007	K1800185-006	K1800183-001	K1800183-003	K1800183-002	K1800183-009	K1800242-002	K1800242-001	K1800242-003	K1800242-005
Sample Date				01/04/2018	01/04/2018	01/05/2018	01/05/2018	01/05/2018	01/05/2018	01/05/2018	01/05/2018	01/05/2018	01/05/2018	01/05/2018	01/05/2018	01/06/2018	01/06/2018	01/06/2018	01/06/2018
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	NCL	NA	NA		-			7	-			-		-		-	-	-	
N-Ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	NCL	NA	NA	-	-	-		-	11001	×	~	-			×	-		140	-
N-Methyl perfluorooctane sulfonamidoethanol (N-MeFOSE)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluorobutane sulfonic acid (PFBS)	NCL	0.42	NA	0.0051	0.0073	<0.0041	<0.0041	<0.0041	0.0093	0.01	0.0043	0.0045	0.0063	<0.0042	<0.0043	0.0059	0.0062	0.0067	0.0071
Perfluorodecane sulfonic acid (PFDS)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluorooctadecanoic acid (PFODA)	NCL	NA	NA	+		3 -		- Ne	9.	-	- es-	-		-	- 3	-		90	
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluorooctane sulfonamide (FOSA)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluorohexane sulfonic acid (PFHxS)	NCL	0.051	NA	<0.0041	0.0064	<0.0041	<0.0041	<0.0041	0.0046	0.0076	0.0048	<0.0042	0.0057	<0.0042	<0.0043	0.014	<0.0042	<0.0042	<0.0044
Perfluorobutanoic acid (PFBA)	NCL	NA	NA	<0.0081	<0.0085	<0.0082	<0.0081	<0.0081	<0.0081	<0.0081	<0.0081	<0.0083	<0.0086	<0.0083	<0.0086	<0.0095	<0.0083	<0.0083	<0.0088
Perfluorodecanoic acid (PFDA)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	< 0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluorododecanoic acid (PFDoDA)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluoroheptanoic acid (PFHpA)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluorohexanoic acid (PFHxA)	NCL	400	NA	<0.0041	<0.0071	<0.0041	<0.0041	<0.0041	<0.0041	0.0059	0.0053	0.0088	0.0053	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0055
Perfluorononanoic acid (PFNA)	NCL	0.006	NA	<0.0041	<0.0042	< 0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluorooctanoic acid (PFOA)	0.008	0.008	NA	<0.0016	0.0037	<0.0016	< 0.0016	<0.0016	0.0039	0.0044	0.0022	0.0033	0.0033	<0.0017	< 0.0017	< 0.0019	0.0021	0.0019	0.003
Perfluorooctane sulfonic acid (PFOS)	0.016	0.016	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
PFOA + PFOS (Calculated)	NCL	NA	0.01	ND	0.0037	ND	ND	ND	0.0039	0.0044	0.0022	0.0033	0.0033	ND	ND	ND	0.0021	0.0019	0.003
Perfluoropentanoic acid (PFPeA)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	0.0049	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluorotetradecanoic acid (PFTeDA)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluorotridecanoic acid (PFTrDA)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluoroundecanoic acid (PFUnDA)	NCL	NA	NA	<0.0041	<0.0042	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0042	<0.0043	<0.0042	<0.0043	<0.0048	<0.0042	<0.0042	<0.0044
Perfluorohexadecanoic acid (PFHxDA)	NCL	NA	NA		-			-		- × -	8		-	-	×		+		
Total PFAS (Calculated)	NCL	NA	NA	0.0051	0.017	ND	ND	ND	0.018	0.028	0.017	0.022	0.021	ND	ND	0.02	0.0083	0.0086	0.01

Area				Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12
PPN	10			411015427006	411015428009	411015428008	411015428014	411015426024	411015426021	411015427024	411015426016	411015426015	411015428005	411015428004	411015428004	411015428003	411015427030	411015427028	411015427026
Address	Part 201 Generic Residential			3083 RAPIDFALL CT NE	6259 RAPIDFALL DR NE	6267 RAPIDFALL DR NE	6177 WOODWATER DR NE	6314 WOODWATER DR NE	6338 WOODWATER DR NE	6375 WOODWATER DR NE	6378 WOODWATER DR NE	6386 WOODWATER DR NE	6291 RAPIDFALL DR NE	6299 RAPIDFALL DR NE	6299 RAPIDFALL DR NE	6315 RAPIDFALL DR NE	6311 WOODWATER DR NE	6341 WOODWATER DR	6359 R WOODWATER DR NE
Sample Name	Groundwater Cleanup Criteria –	MCL ³	CD Value ⁴	3083 Rapidfall Ct	6259 Rapidfall Dr	6267 Rapidfall Dr	6177 Woodwater Dr	6314 Woodwater Dr	6338 Woodwater Dr	6375 Woodwater Dr	6378 Woodwater Dr NE	6386 Woodwater Dr NE	6291 Rapidfall Dr	6297 Rapidfall Dr	6299 Rapidfall Dr	6315 Rapidfall Di	6311 Woodwater	6341 Woodwater	6359 Woodwater
Matrix	Drinking Water ²		1111131	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water
Laboratory ID				K1800236-004	K1800241-005	K1800236-006	K1800236-002	K1800236-003	K1800236-005	K1800241-001	K1800238-002	K1800238-007	K1800296-014	K1800296-017	K1800296-016	K1800296-015	K1800296-010	K1800296-012	K1800296-011
Sample Date				01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/08/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018	01/09/2018
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	< 0.0043	<0.0045	<0.0043	<0.0043	<0.0043	<0.0042
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	<0.0043	<0.0043	< 0.0043	<0.0042
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	< 0.0043	< 0.0043	< 0.0043	<0.0042
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	NCL	NA	NA		-	3	-	-		-	2	-	-	5			-	-	
N-Ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	<0.0043	<0.0043	<0.0043	<0.0042
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	<0.0043	<0.0043	<0.0043	<0.0042
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	NCL	NA	NA		,		-	-		~					~		-	15-20	
N-Methyl perfluorooctane sulfonamidoethanol (N-MeFOSE)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	< 0.0043	<0.0043	<0.0043	<0.0042
Perfluorobutane sulfonic acid (PFBS)	NCL	0.42	NA	0.005	<0.0042	0.0052	0.012	0.0044	<0.0043	<0.0043	0.0082	0.008	<0.0041	0.0058	0.0058	<0.0043	0.0089	0.005	<0.0042
Perfluorodecane sulfonic acid (PFDS)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	<0.0043	< 0.0043	<0.0043	<0.0042
Perfluorooctadecanoic acid (PFODA)	NCL	NA	NA	-	80	3 -		- 36 -		-		-		-	8-	3-			
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	<0.0043	< 0.0043	< 0.0043	<0.0042
Perfluorooctane sulfonamide (FOSA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	<0.0043	<0.0043	< 0.0043	<0.0042
Perfluorohexane sulfonic acid (PFHxS)	NCL	0.051	NA	0.0051	0.0054	0.0084	0.008	<0.0043	<0.0043	<0.0043	0.0062	0.0047	<0.0041	<0.0043	<0.0045	<0.0043	<0.0043	0.01	0.0045
Perfluorobutanoic acid (PFBA)	NCL	NA	NA	<0.0086	<0.0083	<0.0083	<0.0083	<0.0086	<0.0087	<0.0087	<0.0086	<0.0083	<0.0082	<0.0086	<0.009	<0.0086	<0.0086	<0.0086	<0.0083
Perfluorodecanoic acid (PFDA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	< 0.0043	<0.0042	<0.0041	<0.0043	<0.0045	< 0.0043	< 0.0043	<0.0043	<0.0042
Perfluorododecanoic acid (PFDoDA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	<0.0043	<0.0043	<0.0043	<0.0042
Perfluoroheptanoic acid (PFHpA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	<0.0043	<0.0043	<0.0043	<0.0042
Perfluorohexanoic acid (PFHxA)	NCL	400	NA	< 0.0043	<0.0042	0.011	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	< 0.0043	<0.0045	< 0.0043	<0.0043	<0.0043	<0.0042
Perfluorononanoic acid (PFNA)	NCL	0.006	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	< 0.0043	<0.0043	<0.0042	<0.0041	< 0.0043	<0.0045	< 0.0043	<0.0043	< 0.0043	<0.0042
Perfluorooctanoic acid (PFOA)	0.008	0.008	NA	0.0098	0.0052	0.0048	<0.0017	<0.0017	<0.0017	<0.0017	0.0037	0.0028	<0.0016	<0.0017	<0.0018	<0.0017	0.0036	<0.0017	<0.0017
Perfluorooctane sulfonic acid (PFOS)	0.016	0.016	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	< 0.0043	<0.0045	< 0.0043	<0.0043	<0.0043	<0.0042
PFOA + PFOS (Calculated)	NCL	NA	0.01	0.0098	0.0052	0.0048	ND	ND	ND	ND	0.0037	0.0028	ND	ND	ND	ND	0.0036	ND	ND
Perfluoropentanoic acid (PFPeA)	NCL	NA	NA	<0.0043	<0.0042	0.0062	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	< 0.0043	< 0.0043	<0.0043	<0.0042
Perfluorotetradecanoic acid (PFTeDA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	<0.0043	<0.0043	<0.0043	<0.0042
Perfluorotridecanoic acid (PFTrDA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	<0.0043	<0.0043	<0.0043	<0.0042
Perfluoroundecanoic acid (PFUnDA)	NCL	NA	NA	<0.0043	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0043	<0.0043	<0.0042	<0.0041	<0.0043	<0.0045	< 0.0043	< 0.0043	<0.0043	<0.0042
Perfluorohexadecanoic acid (PFHxDA)	NCL	NA	NA	DE REE	4			~		- × L	8 =			-	- 8	- 1		40.00	
Total PFAS (Calculated)	NCL	NA	NA	0.02	0.011	0.036	0.02	0.0044	ND	ND	0.018	0.016	ND	0.0058	0.0058	ND	0.013	0.015	0.0045

Area				Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12	Area 12
PPN				411015427025	411015427008	411015427015	411015429005	411015429002	411015427033	411015428007	411015429001	411015427029	411015427019	411015427003	411015428006	411015426023	411015427027	411015427002	411015427009
Address	Part 201 Generic Residential			6367 WOODWATER DR NE	3080 RAPIDFALL CT NE	6270 RAPIDFALL DR NE	6192 WOODWATER DR NE	6240 WOODWATER DE NE	6285 WOODWATER DR	6275 RAPIDFALL DR NE	6258 WOODWATER DR NE	6325 WOODWATER DR	6399 WOODWATER DR NE	3041 RAPIDFALL CT NE	6283 RAPIDFALL DR NE	6322 WOODWATER DE NE	6351 WOODWATER DR NE	3031 RAPIDFALL CT NE	3066 RAPIDFAL
Sample Name	Groundwater Cleanup Criteria –	MCL ³	CD Value ⁴	6367 Woodwater Dr NE	3080 Rapidfall Ct	6270 Rapidfall Dr	6192 Woodwater	6240 Woodwater	6285 Woodwater	6275 Rapidsfall Dr	6258 Woodwater	6325 Woodwater	6399 Woodwater	3041 Rapidfall Ct	6283 Rapidfall Ct NE	6322 Woodwater Dr NE	6351 Woodwater	3031 Rapidfall	3066 Rapidfall C 3/5
Matrix	Drinking Water ²			Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water	Drinking Water
Laboratory ID				K1800298-004	K1800339-002	K1800339-001	K1800339-017	K1800339-003	K1800339-004	K1800406-006	K1800406-007	K1800406-003	K1800406-004	K1800432-008	K1800433-006	K1800619-001	K1800622-002	K1800622-012	K1802091-001
Sample Date				01/09/2018	01/10/2018	01/10/2018	01/10/2018	01/10/2018	01/10/2018	01/11/2018	01/11/2018	01/11/2018	01/11/2018	01/12/2018	01/12/2018	01/13/2018	01/15/2018	01/18/2018	03/05/2018
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	< 0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	<0.0043	<0.0042	<0.0048
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	< 0.0043	<0.0042	<0.0044	<0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	NCL	NA	NA					-				-					-		
N-Ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	<0.0043	<0.0042	<0.0048
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	NCL	NA	NA		-			-		~	-	1 - 5 -	1-		~			-	
N-Methyl perfluorooctane sulfonamidoethanol (N-MeFOSE)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
Perfluorobutane sulfonic acid (PFBS)	NCL	0.42	NA	0.0054	0.0045	<0.0042	0.0073	0.0052	0.0084	0.019	<0.0042	0.011	0.0095	0.0077	<0.0044	0.0057	0.0043	0.0062	<0.0048
Perfluorodecane sulfonic acid (PFDS)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	<0.0043	<0.0042	<0.0048
Perfluorooctadecanoic acid (PFODA)	NCL	NA	NA	-	-0	3		- Se-						-	- 8	3-			- 4:
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	< 0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
Perfluorooctane sulfonamide (FOSA)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	< 0.0043	<0.0042	<0.0044	<0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
Perfluorohexane sulfonic acid (PFHxS)	NCL	0.051	NA	<0.0042	0.0047	<0.0042	<0.0042	0.0052	0.005	0.0075	0.0054	0.014	<0.0042	<0.0044	<0.0044	<0.0042	<0.0043	<0.0042	0.0084
Perfluorobutanoic acid (PFBA)	NCL	NA	NA	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0086	0.0089	<0.0083	<0.0086	<0.0083	<0.0088	<0.0088	<0.0083	<0.0086	<0.0083	< 0.0096
Perfluorodecanoic acid (PFDA)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	< 0.0043	<0.0042	< 0.0043	<0.0042	<0.0044	< 0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
Perfluorododecanoic acid (PFDoDA)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	<0.0043	<0.0042	<0.0048
Perfluoroheptanoic acid (PFHpA)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	< 0.0043	<0.0042	<0.0044	<0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
Perfluorohexanoic acid (PFHxA)	NCL	400	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	0.0057	0.026	<0.0042	0.0056	0.007	<0.0044	<0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
Perfluorononanoic acid (PFNA)	NCL	0.006	NA	<0.0042	<0.0042	< 0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	< 0.0043	<0.0042	<0.0044	<0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
Perfluorooctanoic acid (PFOA)	0.008	0.008	NA	<0.0017	<0.0017	<0.0017	<0.0017	<0.0017	0.003	0.0044	<0.0017	0.0051	0.0041	<0.0018	<0.0018	<0.0017	<0.0017	<0.0017	< 0.0019
Perfluorooctane sulfonic acid (PFOS)	0.016	0.016	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	<0.0043	<0.0042	<0.0048
PFOA + PFOS (Calculated)	NCL	NA	0.01	ND	ND	ND	ND	ND	0.003	0.0044	ND	0.0051	0.0041	ND	ND	ND	ND	ND	ND
Perfluoropentanoic acid (PFPeA)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	0.016	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	<0.0043	<0.0042	<0.0048
Perfluorotetradecanoic acid (PFTeDA)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	<0.0043	<0.0042	<0.0048
Perfluorotridecanoic acid (PFTrDA)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	<0.0043	<0.0042	<0.0048
Perfluoroundecanoic acid (PFUnDA)	NCL	NA	NA	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0043	<0.0043	<0.0042	<0.0043	<0.0042	<0.0044	<0.0044	<0.0042	< 0.0043	<0.0042	<0.0048
Perfluorohexadecanoic acid (PFHxDA)	NCL	NA	NA	-	4	- ×	~	-			8 -		-				-	-	
Total PFAS (Calculated)	NCL	NA	NA	0.0054	0.0092	ND	0.0073	0.01	0.022	0.082	0.0054	0.036	0.021	0.0077	ND	0.0057	0.0043	0.0062	0.0084

Area				Area 12	Muni Water Area
PPN				411015426028	411015429009
Address	Part 201 Generic Residential			6282 WOODWATER DR NE	3191 ROGUE RIVER RD NE
Sample Name	Groundwater Cleanup Criteria –	MC ₁	CD Value ⁴	6282 Woodwater	3191 Rogue River Dr - S
Matrix	Drinking Water ²			Drinking Water	Drinking Water
Laboratory ID				TE10011-003	K1800112-001
Sample Date				05/09/2018	01/02/2018
Parameter (µg/L)					
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NA.	NA		<0.0041
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NA	NA	0	<0.0041
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NA	NA	1 8	<0.0041
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	NCL	NA	NA	<0.0039	
N-Ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE)	NCL	NA	NA		<0.0041
N-Methyl perfluorooctane sulfonamîde (MeFOSA)	NCL	NA	NA	- 8	<0.0041
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	NCL	NA	NA	<0.0039	-0
N-Methyl perfluorooctane sulfonamidoethanol (N-MeFOSE)	NCL	NA	NA	200	<0.0041
Perfluorobutane sulfonic acid (PFBS)	NCL	0.42	NA	< 0.0039	0.0061
Perfluorodecane sulfonic acid (PFDS)	NCL	NA	NA		<0.0041
Perfluorooctadecanoic acid (PFODA)	NCL	NA	NA	124	-
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NA	NA		<0.0041
Perfluorooctane sulfonamide (FOSA)	NCL	NA	NA	-	<0.0041
Perfluorohexane sulfonic acid (PFHxS)	NCL	0.051	NA	<0.0039	0.0095
Perfluorobutanoic acid (PFBA)	NCL	NA	NA		<0.0081
Perfluorodecanoic acid (PFDA)	NCL	NA	NA	<0.0039	<0.0041
Perfluorododecanoic acid (PFDoDA)	NCL	NA	NA	<0.0039	<0.0041
Perfluoroheptanoic acid (PFHpA)	NCL	NA	NA	<0.0039	<0.0041
Perfluorohexanoic acid (PFHxA)	NCL	400	NA	<0.0039	0.0054
Perfluorononanoic acid (PFNA)	NCL	0.006	NA	<0.0039	<0.0041
Perfluorooctanoic acid (PFOA)	0.008	0.008	NA	<0.0039	0.0047
Perfluorooctane sulfonic acid (PFOS)	0.016	0.016	NA	<0.0039	<0.0041
PFOA + PFOS (Calculated)	NCL	NA	0.01	ND	0.0047
Perfluoropentanoic acid (PFPeA)	NCL	NA	NA		<0.0041
Perfluorotetradecanoic acid (PFTeDA)	NCL	NA	NA	<0.0039	<0.0041
Perfluorotridecanoic acid (PFTrDA)	NCL	NA	NA	<0.0039	<0.0041
Perfluoroundecanoic acid (PFUnDA)	NCL	NA	NA	<0.0039	<0.0041
Perfluorohexadecanoic acid (PFHxDA)	NCL	NA.	NA		-
Total PFAS (Calculated)	NCL	NA	NA	ND	0.026

Areas 11/12

Plainfield Township, Kent County, MI

NOTES:

- 1. Concentration and criteria units are micrograms per Liter (µg/L) or parts per billion (ppb). Calculated criteria and concentrations are rounded to two significant digits. "ND" indicates the parameters used in the calculation were not detected
- Michigan Part 201 Groundwater Cleanup Criteria are based on "Table 1, Groundwater: Residențial and Nonresidențial Part 201 Generic Cleanup Criteria and Screening Levels/Part 213 Tier I Risk Based Screening Levels,"
 Michigan Administrative Code, Cleanup Criteria Requirements for Response Activity, Rules 299.44 and 299.49, effective December 30, 2013; last updated August 3, 2020.

Abbreviations Include:

"NCL" indicates no criterion listed in EGLE Table 1.

3. Maxium Contaminant Levels (MCLs) were published by EGLE, effective August 3, 2020.

Abbreviations Include:

"NA" indicates no MCL listed.

- 4. "CD Value" refers to the PFOA+PFOS value of 0.01 μg/L in the Consent Decree.
- 5. Bold, italic number with thick line border or italic parameter name indicates that parameter was detected above the Michigan Part 201 Groundwater Cleanup Criteria, MCLs, or CD Value listed.
- 6. Abbreviations include:
 - "< RL" indicates the parameter was analyzed for but not detected above the method detection limit; RL = Reporting Limit.
 - "DUP" indicates a duplicate sample.
 - "-" indicates the paramater was not analyzed.
 - "I" indicates the parameter was detected at a concentration greater than the limit of quantitation (LOQ) but less than the detection limit (DL) and the result is estimated.

TABLE 3 MONITORING WELL INSTALLATION INFORMATION Areas 11/12 Algoma and Plainfield Townships, Kent County, MI

Site Location	Well Ownership/ Data Provider	Well Field ID	Top of Casing Elevation	Ground Surface Elevation	Top of Screen Depth	Bottom of Screen Depth	Casing Diameter (in)	Casing Type	Aquifer Zone	Protective Casing Type
House Street	EGLE	HS-DEQ-MW1D	(ft) 799.43	(ft) 799.7	(ft bgs)	(ft bgs) 123.82	ND	ND	D	ND
House Street	EGLE	HS-DEQ-MW1I	799.83	800.2	ND	77.58	ND	ND	S	ND
House Street	EGLE	HS-DEQ-MW1S	799.42	799.7	ND	56.56	ND	ND	S	ND
House Street	EGLE	HS-DEQ-MW3D	857.29	857.9	ND ND	177.41	ND	ND	D	ND
House Street	EGLE	HS-DEQ-MW3S	857.40	857.9	ND ND	106.45	ND ND	ND	S	ND
	EGLE		733.80	734.4	ND ND		ND ND	ND	D	ND ND
House Street	1	HS-DEQ-MW4-102	734.23	734.7		102.8				
House Street	EGLE	HS-DEQ-MW4-16			ND	16.04	ND	ND	5	ND
House Street	EGLE	HS-DEQ-MW4-53	734.33	734.7	ND	53.85	ND	ND	D	ND
House Street	EGLE	HS-DEQ-MW4-80	734.33	734.7	ND	80.09	ND	ND	D	ND
House Street	EGLE	HS-DEQ-MW4-85	733.61	734.4	ND	85.79	ND	ND	D	ND
House Street	EGLE	HS-DEQ-MW4-90	733.99	734.4	ND	89.68	ND	ND	D	ND
House Street	EGLE	HS-DEQ-MW4-97	733.71	734.4	ND	98.81	ND	ND	D	ND
House Street	EGLE	HS-DEQ-MW5D	812.95	813.5	ND	130.16	ND	ND	S	ND
House Street	EGLE	HS-DEQ-MW5S	813.12	813.5	ND	47.28	ND	ND	S	ND
House Street	EGLE	HS-DEQ-MW6D	795.59	796.4	ND	176.36	ND	ND	D	ND
House Street	EGLE	HS-DEQ-MW6S	796.09	796.4	ND	45.71	ND	ND	S	ND
House Street	EGLE	HS-DEQ-MW7-102	775.04	775.4	ND	102.11	ND	ND	S	ND
House Street	EGLE	HS-DEQ-MW7-33	775.15	775.4	ND	33.33	ND	ND	S	ND
House Street	EGLE	HS-DEQ-MW7-87	775.02	775.4	ND	87.71	ND	ND	5	ND
House Street	EGLE	HS-DEQ-MW7-94	775.16	775.4	ND	94.32	ND	ND	5	ND
House Street	EGLE	HS-DEQ-MW8D	677.86	678.2	ND	33.37	ND	ND	S	ND
House Street	EGLE	HS-DEQ-MW8S	677.87	678.2	ND	28.28	ND	ND	S	ND
House Street	R&W/GZA	HS-MW-10D	780.94	778.1	188.2	193.2	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-10M	780.64	777.7	126.4	131.4	2	PVC	S	Stickup
House Street	R&W/GZA	HS-MW-10S	780.06	777.2	48.3	58.3	2	PVC	S	Stickup
		HS-MW-11D	744.75	742.1	153.6	158.6	2	PVC	D	
House Street	R&W/GZA									Sticku
House Street	R&W/GZA	HS-MW-11M	744.96	742.3	96.4	101.4	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-11S	744.78	742.1	21.2	31.2	2	PVC	S	Sticku
House Street	R&W/GZA	HS-MW-12A	716.50	716.8	15.4	20.4	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-12B	716.36	716.8	51.5	56.5	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-12C	716.17	716.9	127.7	132.7	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-12D	716.48	717.0	158.7	163.7	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-12E	716.29	716.8	187.5	192.5	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-13A	ND	ND	79.0	84.0	2	PVC	ND	ND
House Street	R&W/GZA	HS-MW-13B	ND	ND	149.0	154.0	2	PVC	ND	ND
House Street	R&W/GZA	HS-MW-13C	ND	ND	199.5	114.5	2	PVC	ND	ND
House Street	R&W/GZA	HS-MW-14D	673.20	670.7	109.0	114.0	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-14M	673.53	671.0	68.1	73.1	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-14S	673.64	671.2	13.0	23.0	2	PVC	S	Stickup
House Street	R&W/GZA	HS-MW-15D	642.86	639.7	108.6	118.6	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-15M	640.98	638.0	44.8	49.8	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-15S	640.71	637.5	6.9	16.9	2	PVC	S	Stickup
House Street	R&W/GZA	HS-MW-17D	784.64	782.3	222.1	227.1	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-17M	784.17	781.9	167.3	172.3	2	PVC	D	Sticku
House Street						110.8	2	PVC	S	
	R&W/GZA	HS-MW-175	784.77	782.0	105.8				-	Sticku
House Street	R&W/GZA	HS-MW-18D	684.73	682.0	140.6	145.6	2	PVC	D	Sticku
House Street	R&W/GZA	HS-MW-18S	683.93	682.0	12.8	22.8	2	PVC	S	Sticku
House Street	R&W/GZA	HS-MW-19D	680.79	677.7	85.9	95.9	2	PVC	D	Sticku
House Street	R&W/GZA	HS-MW-195	680.83	677.8	58.4	61.4	2	PVC	S	Sticku
House Street	R&W/GZA	HS-MW-1D	790.73	788.7	172.3	176.9	2	PVC	D	Sticku
House Street	R&W/GZA	HS-MW-1S	791.01	788.8	67.4	72.1	2	PVC	S	Sticku
House Street	R&W/GZA	HS-MW-20D	706.64	703.9	126.1	131.1	2	PVC	D	Sticku
House Street	R&W/GZA	HS-MW-20M	706.90	704.2	101.5	106.5	2	PVC	S	Sticku
House Street	R&W/GZA	HS-MW-20S	706.72	703.9	61.1	66.1	2	PVC	S	Sticku
House Street	R&W/GZA	HS-MW-21D	648.38	645.7	76.2	86.2	2	PVC	D	Sticku
House Street	R&W/GZA	HS-MW-21M	648.85	645.9	59.0	64.0	2	PVC	D	Sticku
House Street	R&W/GZA	HS-MW-21S	648.67	645.8	9.8	19.8	2	PVC	S	Sticku
House Street	R&W/GZA	HS-MW-23A	791.23	791.7	72.1	77.1	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-23B	791.21	791.5	137.9	142.8	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-23C	791.09	791.4	210.2	215.0	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-23D	791.47	792.0	238.9	243.9	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-24A	776.01	776.3	55.6	60.4	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-24B	775.72	776.2	225.2	230.0	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-25D	650.61	651.1	65.7	70.7	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-25S	650.83	651.2	51.1	56.1	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-26D	651.75	652.1	79.6	84.6	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-26M	651.31	651.7	61.7	66.7	2	PVC	D	Flush
	A 10 10 10 10 10 10 10 10 10 10 10 10 10	HE NAME SEE	651.88	652.0	25.8	30.8	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-26S	031.00	032.0	20.0	50.0		1.00	-	Huan
House Street House Street	R&W/GZA R&W/GZA	HS-MW-27A	668.44	668.7	21.6	26.2	2	PVC	S	
										Flush

TABLE 3 MONITORING WELL INSTALLATION INFORMATION Areas 11/12 Algoma and Plainfield Townships, Kent County, MI

Site Location	Well Ownership/ Data Provider	Well Field ID	Top of Casing Elevation (ft)	Ground Surface Elevation (ft)	Top of Screen Depth (ft bgs)	Bottom of Screen Depth (ft bgs)	Casing Diameter (in)	Casing Type	Aquifer Zone	Protective Casing Type
House Street	R&W/GZA	HS-MW-27D	(π) 668.54	668.9	52.4	56.4	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-27E	668.56	668.9	58.5	62.5	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-28A	665.88	666.2	39.1	43.7	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-28B	666.14	666.4	43.3	47.9	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-28C	666.16	666.5	49.2	53.8	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-28D	665.89	666.3	62.2	66.8	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-28E	665.61	666.0	82.7	87.3	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-29A	633.13	630.3	3.5	13.5	2	PVC	S	Stickup
House Street	R&W/GZA	HS-MW-29B	633.89	630.5	16.8	21.8	2	PVC	S	Stickup
House Street	R&W/GZA	HS-MW-29C	633.60	630.4	27.2	32.2	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-29D	633.19	630.7	37.1	42.1	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-2S	799.66	797.6	77.9	82.5	2	PVC	5	Stickup
House Street	R&W/GZA	HS-MW-30A	672.78	673.0	46.9	51.5	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-30B	673.09	673.4	51.5	56.1	2	PVC	5	Flush
House Street	R&W/GZA	HS-MW-30C	672.90	673.1	77.4	82.0	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-30D	673.37	673.6	112.7	117.3	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-30E	672.32	672.9	123.2	127.7	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-31A	639.30	639.5	17.1	21.6	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-31B	639.27	639.3	26.0	30.5	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-31C	639.27	639.4	41.3	45.8	2	PVC	S	Flush
House Street	R&W/GZA	HS-MW-31D	638.96	639.1	48.8	53.4	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-31E	638.95	639.2	64.1	68.7	2	PVC	D	Flush
House Street	R&W/GZA	HS-MW-32A	727.36	724.8	60.9	65.5	2	PVC	S	Stickup
House Street	R&W/GZA	HS-MW-32B	727.85	725.1	79.1	83.7	2	PVC	D D	Stickup
House Street	R&W/GZA R&W/GZA	HS-MW-32C	727.72	725.1	108.8	113.4	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-32D	727.55	725.0	142.3	146.9	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-3P	790.15	787.7	19.3	24.3	2	PVC	P	Stickup
		HS-MW-3S	790.69	788.1	70.1	75.0	2	PVC	S	Stickup
House Street	R&W/GZA R&W/GZA	HS-MW-4S	784.88		70.2	74.8	2	PVC	S	Stickup
House Street				782.3						
House Street	R&W/GZA	HS-MW-5D	781.99	779.3 779.1	190.5	200.5	2	PVC	D P	Stickup
House Street	R&W/GZA	HS-MW-5P	781.55		17.7	22.4				Stickup
House Street	R&W/GZA	HS-MW-5S	781.79	779.2	60.3	65.0	2	PVC	S	Stickup
House Street	R&W/GZA	HS-MW-6D	773.44	771.0	157.5	162.5	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-6S	773.34	770.7	58.2	62.9	2	PVC	S	Stickup
House Street	R&W/GZA	HS-MW-7S	791.09	788.9	69.9	74.5	2	PVC	S	Stickup
House Street	R&W/GZA	HS-MW-8	745.09	742.2	30.0	35.0	2	PVC	S	Stickup
House Street	R&W/GZA	HS-MW-9D	820.88	818.2	204.3	209.3	2	PVC	D	Stickup
House Street	R&W/GZA	HS-MW-9M	820.66	817.9	126.8	131.8	2	PVC	5	Stickup
House Street	R&W/GZA	HS-MW-9S	820.20	817.8	26.2	31.2	2	PVC	Р	Stickup
North Kent Landfill	NKL	NKLF-MW-35	900.23	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-48	901.64	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-53	893.99	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-54	912.79	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-55	893.11	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-56	867.88	866.4	ND	43.97	ND	ND	5	ND
North Kent Landfill	NKL	NKLF-MW-57	894.35	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-60	844.35	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-61	841.14	839.8	ND	28.47	ND	ND	5	ND
North Kent Landfill	NKL	NKLF-MW-63	840.81	839.1	ND	102.41	ND	ND	D	ND
North Kent Landfill	NKL	NKLF-MW-65	835.27	834.2	ND	21.87	ND	ND	5	ND
North Kent Landfill	NKL	NKLF-MW-66	874.57	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-67	902.72	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-68	900.98	899.2	ND	92.79	ND	ND	5	ND
North Kent Landfill	NKL	NKLF-MW-69	893.04	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-70	897.8	895.6	ND	63.33	ND	ND	5	ND
North Kent Landfill	NKL	NKLF-MW-71	894.71	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-72	882.18	879.5	ND	26.98	ND	ND	S	ND
North Kent Landfill	NKL	NKLF-MW-73	900.19	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-74	880.34	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-75	881.23	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-76	849.47	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-77	837.14	834.2	ND	22.8	ND	ND	5	ND
North Kent Landfill	NKL	NKLF-MW-78	883.89	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-80	888.05	887.4	ND	42.44	ND	ND	5	ND
North Kent Landfill	NKL	NKLF-MW-81	834.71	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-MW-82	896.26	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	NKLF-TW-02	900.95	ND	ND	ND	ND	ND	ND	ND
		NKLF-TW-04	858.20	ND	ND	ND	ND	ND	ND	ND
North Kent Landfill	NKL	IAIVEL - IAA-O-A								
North Kent Landfill North Kent Landfill	NKL NKL	NKLF-TW-05	838.64	ND	ND	ND	ND	ND	ND	ND
							5.55	ND ND		

TABLE 3 MONITORING WELL INSTALLATION INFORMATION Areas 11/12

Algoma and Plainfield Townships, Kent County, MI

Site Location	Well Ownership/ Data Provider	Well Field ID	Top of Casing Elevation (ft)	Ground Surface Elevation (ft)	Top of Screen Depth (ft bgs)	Bottom of Screen Depth (ft bgs)	Casing Diameter (in)	Casing Type	Aquifer Zone	Protective Casing Type
Wolven	EGLE	WV-DEQ-MW10-177	764.934	763.865	ND	177.63	ND	ND	D	ND
Wolven	EGLE	WV-DEQ-MW10-55	764.909	763.376	ND	55.21	ND	ND	5	ND
Wolven	EGLE	WV-DEQ-MW10-84	764.442	763.376	ND	84.14	ND	ND	D	ND
Wolven	EGLE	WV-DEQ-MW10-95	764.931	763.376	ND	95.25	ND	ND	D	ND
Wolven	EGLE	WV-DEQ-MW11-130	859.121	855.95	ND	130.22	ND	ND	D	ND
Wolven	EGLE	WV-DEQ-MW11-137	859.212	855.763	ND	136.65	ND	ND	D	ND
Wolven	EGLE	WV-DEQ-MW11-145	859.14	855.95	ND	145.71	ND	ND	D	ND
Wolven	EGLE	WV-DEQ-MW11-57	858.794	855.95	ND	56.99	ND	ND	5	ND
Wolven	EGLE	WV-DEQ-MW11-95	859.129	855.763	ND	95.47	ND	ND	S	ND
Wolven	EGLE	WV-DEQ-MW2D	877.53	877.80	ND	168.72	ND	ND	D	ND
Wolven	EGLE	WV-DEQ-MW2S	877.57	877.80	ND	58.04	ND	ND	S	ND
Wolven	EGLE	WV-DEQ-MW9-114	712.079	712.402	ND	114.07	ND	ND	D	ND
Wolven	EGLE	WV-DEQ-MW9-131	712.031	712.402	ND	130.97	ND	ND	D	ND
Wolven	EGLE	WV-DEQ-MW9-57	712.128	712.562	ND	56.85	ND	ND	ND	ND
Wolven	EGLE	WV-DEQ-MW9-73	712.096	712.562	ND	73.34	ND	ND	D	ND
Wolven	EGLE	WV-DEQ-MW9-94	711.979	712.562	ND	94.09	ND	ND	D	ND
Wolven	R&W/GZA	WV-MW-1	859.24	859.2	137.8	142.8	2	PVC	D	Stickup
Wolven	R&W/GZA	WV-MW-10D	751.00	748.6	165	170	2	PVC	D	Stickup
Wolven	R&W/GZA	WV-MW-10M	751.19	748.7	69.9	74.9	2	PVC	S	Stickup
Wolven	R&W/GZA	WV-MW-10S	751.26	748.4	7.0	12.0	2	PVC	S	Stickup
Wolven	R&W/GZA	WV-MW-11D	735.96	733.0	158.9	163.9	2	PVC	D	Stickup
Wolven	R&W/GZA	WV-MW-11S	735.89	732.8	29.4	34.4	2	PVC	S	Stickup
Wolven	R&W/GZA	WV-MW-12D	771.12	771.4	179.2	184.2	2	PVC	D	Flush
Wolven	R&W/GZA	WV-MW-12M	770.75	771.3	146.6	151.6	2	PVC	D	Flush
Wolven	R&W/GZA	WV-MW-12S	771.06	771.3	75.8	80.8	2	PVC	S	Flush
Wolven	R&W/GZA	WV-MW-13D	823.91	821.3	58.8	63.8	2	PVC	D	Stickup
Wolven	R&W/GZA	WV-MW-13M	823.75	821.6	18.1	23.1	2	PVC	S	Stickup
Wolven	R&W/GZA	WV-MW-13S	823.68	821.3	1.7	6.7	2	PVC	S	Stickup
Wolven	R&W/GZA	WV-MW-14D	872.05	872.3	142.3	147.3	2	PVC	D	Flush
Wolven	R&W/GZA	WV-MW-14S	872.18	872.5	8.9	13.9	2	PVC	S	Flush
Wolven	R&W/GZA	WV-MW-15A	721.25	721.5	9.0	14	2	PVC	P	Flush
Wolven	R&W/GZA	WV-MW-15B	721.07	721.4	33.1	38.1	2	PVC	S	Flush
Wolven	R&W/GZA	WV-MW-15C	720.84	721.3	43.7	48.5	2	PVC	S	Flush
Wolven	R&W/GZA	WV-MW-15D	721.09	721.3	135.1	137.8	2	PVC	D	Flush
Wolven	R&W/GZA	WV-MW-16D	823.45	820.9	91.7	96.7	2	PVC	D	Stickup
Wolven	R&W/GZA	WV-MW-16S	823.42	820.9	17.5	22.5	2	PVC	S	Stickup
Wolven	R&W/GZA	WV-MW-2D	791.36	790.5	30.2	35.2	2	PVC	D	Stickup
Wolven	R&W/GZA	WV-MW-2S	793.39	790.6	20.2	25.2	2	PVC	S	Stickup
Wolven	R&W/GZA	WV-MW-3D	823.28	820.7	57.5	62.5	2	PVC	D	Stickup
Wolven	R&W/GZA	WV-MW-3S	823.31	820.6	5.1	10.1	2	PVC	S	Stickup
Wolven	R&W/GZA	WV-MW-4	854.99	852.5	130.2	135.2	2	PVC	D	Stickup
Wolven	R&W/GZA	WV-MW-5D	865.07	862.0	68.7	73.7	2	PVC	D	Stickup
Wolven	R&W/GZA	WV-MW-5S	865.01	862.1	61.5	66.5	2	PVC	S	Stickup
Wolven	R&W/GZA	WV-MW-6D	786.51	784.1	99.1	104.1	2	PVC	D	Stickup
				-						
Wolven	R&W/GZA	WV-MW-6S WV-MW-7D	786.62	784.6 727.8	13.3 89.5	18.3	2	PVC	S	Stickup Flush
Wolven	R&W/GZA		727.36	1		94.5	2		S	
Wolven	R&W/GZA	WV-MW-7M	728.19	728.5	49.9	54.9	2	PVC	S	Flush
Wolven	R&W/GZA	WV-MW-7S	727.61	728.0	16.1	21.1	2	PVC	S	Flush
Wolven	R&W/GZA	WV-MW-8D	845.81	846.0	117.2	122.2	2	PVC	D	Flush
Wolven	R&W/GZA	WV-MW-8M	845.74	845.9	60.0	65.0	2	PVC	S	Flush
Wolven	R&W/GZA	WV-MW-8S	845.55	846.0	30.0	35.0	2	PVC	S	Flush

Abbreviations

ND = No data provided/ available

ft = feet

bgs = below ground surface

in = inches

NKL = Kent County North Kent Landfill

EGLE = Michigan Department of Environment, Great Lakes, and Energy

R&W/GZA = Rose & Westra, a Division of GZA

P = perched zone

S = shallow zone

D = deep zone

Notes

- 1) Elevations are provided in North American Vertical Datum of 1988 (NAVD 88).
- 2) North Kent Landfill elevations converted from NGVD29 to NAVD88 by R&W/GZA by subtracting 0.43 feet from provided elevation.

TABLE 4 MONITORING WELL STATIC WATER LEVELS Areas 11/12 Algoma and Plainfield Townships, Kent County, MI

Site Location	Well Field ID	November 4, 2019 Static Water Level Elevation (ft
House Street	HS-DEQ-MW1D	739.09
House Street	HS-DEQ-MW1I	748.63
House Street	HS-DEQ-MW1S	749.96
House Street	HS-DEQ-MW3D	748.76
House Street	HS-DEQ-MW3S	839.76
House Street	HS-DEQ-MW4-102	687.91
House Street	HS-DEQ-MW4-16	729.17
House Street	HS-DEQ-MW4-53	688.26
House Street	HS-DEQ-MW4-80	688.11
House Street	HS-DEQ-MW4-85	688.07
House Street	HS-DEQ-MW4-90	688.00
House Street	HS-DEQ-MW4-97	687.77
House Street	HS-DEQ-MW5D	740.83
House Street	HS-DEQ-MW5S	Dry
House Street	HS-DEQ-MW6D	650.30
House Street	HS-DEQ-MW6S	Dry
House Street	HS-DEQ-MW7-102	751.35
House Street	HS-DEQ-MW7-33	751.20
House Street	HS-DEQ-MW7-87	751.33
House Street	HS-DEQ-MW7-94	751.36
House Street	HS-DEQ-MW8D	652.76
House Street	HS-DEQ-MW8S	653.68
House Street	HS-MW-10D	734.19
House Street	HS-MW-10M	726.19
House Street	HS-MW-10S	726.18
House Street	HS-MW-11D	719.37
House Street	HS-MW-11M	719.35
House Street	HS-MW-11S	720.13
House Street	HS-MW-12A	ND
House Street	HS-MW-12B	ND
House Street	HS-MW-12C	ND
House Street	HS-MW-12D	ND
House Street	HS-MW-12E	ND
House Street	HS-MW-13A	ND
House Street	HS-MW-13B	ND
House Street	HS-MW-13C	ND
House Street	HS-MW-14D	660.09
House Street	HS-MW-14M	661.24
House Street	HS-MW-14S	656.70
House Street	HS-MW-15D	635.56
House Street	HS-MW-15M	634.13
House Street	HS-MW-15S	630.84
House Street	HS-MW-17D	689.38
House Street	HS-MW-17M	689.45
House Street	HS-MW-17S	703.64
House Street	HS-MW-18D	663.55
House Street	HS-MW-18S	670.37
House Street	HS-MW-19D	649.16
House Street	HS-MW-19S	651.59
House Street	HS-MW-1D	727.41
House Street	HS-MW-1S	728.00
House Street	HS-MW-20D	648.97
House Street	HS-MW-20M	649.07
House Street	HS-MW-20S	649.12
House Street	HS-MW-21D	638.75
House Street	HS-MW-21M	637.58
House Street	HS-MW-21S	637.79
House Street	HS-MW-23A	723.53
House Street	HS-MW-23B	723.47
House Street	HS-MW-23C	723.48
House Street	HS-MW-23D	723.45
House Street	HS-MW-24A	723.25
House Street	HS-MW-24B	723.21
House Street	HS-MW-25D	627.83
House Street	HS-MW-25S	627.93
House Street	HS-MW-26D	640.12
House Street	HS-MW-26M	639,96
House Street	HS-MW-26S	636.05
House Street	HS-MW-27A	644.51
House Street	HS-MW-27B	644.58

TABLE 4 MONITORING WELL STATIC WATER LEVELS Areas 11/12 Algoma and Plainfield Townships, Kent County, MI

Site Location	Well Field ID	November 4, 2019 Static Water Level Elevation (f
House Street	HS-MW-27D	645.74
House Street	HS-MW-27E	645.61
House Street	HS-MW-28A	629.35
House Street	HS-MW-28B	629.37
House Street	HS-MW-28C	629.30
House Street House Street	HS-MW-28D HS-MW-28E	630.25 630.35
House Street	HS-MW-29A	ND
House Street	HS-MW-29B	ND ND
House Street	HS-MW-29C	ND
House Street	HS-MW-29D	ND
House Street	HS-MW-2S	725.55
House Street	HS-MW-30A	631.99
House Street	HS-MW-30B	632.00
House Street	HS-MW-30C	632.35
House Street	HS-MW-30D	632.53
House Street	HS-MW-30E	632.54
House Street	HS-MW-31A	624.83
House Street	HS-MW-31B	625.05
House Street	HS-MW-31C	624.83
House Street	HS-MW-31D	624.69
House Street	HS-MW-31E	624.77
House Street	HS-MW-32A	720.65
House Street House Street	HS-MW-32B HS-MW-32C	720.67 720.90
House Street	HS-MW-32D	720.75
House Street	HS-MW-3P	763.67
House Street	HS-MW-3S	724.86
House Street	HS-MW-4S	724.49
House Street	HS-MW-5D	724.82
House Street	HS-MW-5P	758.61
House Street	HS-MW-5S	724.82
House Street	HS-MW-6D	725.47
House Street	HS-MW-6S	725.44
House Street	HS-MW-7S	726.43
House Street	HS-MW-8	724.19
House Street	HS-MW-9D	744.72
House Street	HS-MW-9M	744.56
House Street	HS-MW-9S	793.72
North Kent Landfill	NKLF-MW-35	867,33
North Kent Landfill North Kent Landfill	NKLF-MW-48 NKLF-MW-53	870.29 872.08
North Kent Landfill	NKLF-MW-54	877.50
North Kent Landfill	NKLF-MW-55	867.98
North Kent Landfill	NKLF-MW-56	845.56
North Kent Landfill	NKLF-MW-57	862.99
North Kent Landfill	NKLF-MW-60	834.09
North Kent Landfill	NKLF-MW-61	834.67
North Kent Landfill	NKLF-MW-63	752.97
North Kent Landfill	NKLF-MW-65	834.86
North Kent Landfill	NKLF-MW-66	871.83
North Kent Landfill	NKLF-MW-67	863.70
North Kent Landfill	NKLF-MW-68	867.15
North Kent Landfill	NKLF-MW-69	855.72
North Kent Landfill	NKLF-MW-70	848.12
North Kent Landfill	NKLF-MW-71	862.76
North Kent Landfill	NKLF-MW-72	856.81
North Kent Landfill	NKLF-MW-73	895.07
North Kent Landfill	NKLF-MW-74	871.50
North Kent Landfill	NKLF-MW-75	870.84
North Kent Landfill	NKLF-MW-76	848.24
North Kent Landfill	NKLF-MW-77	832.26 836.08
North Kent Landfill	NKLF-MW-78	
North Kent Landfill North Kent Landfill	NKLF-MW-80 NKLF-MW-81	867.52 831.74
North Kent Landfill	NKLF-MW-81	863.27
North Kent Landfill	NKLF-TW-02	863.72
North Kent Landfill	NKLF-TW-02 NKLF-TW-04	846.15
North Kent Landfill	NKLF-TW-05	835.50
North Kent Landfill	NKLF-TW-06	854.24
A STATE OF THE STA	WV-DEQ-MW10-121	719.14

TABLE 4 MONITORING WELL STATIC WATER LEVELS Areas 11/12 Algoma and Plainfield Townships, Kent County, MI

Site Location	Well Field ID	November 4, 2019 Static Water Level Elevation (ft
Wolven	WV-DEQ-MW10-177	721.88
Wolven	WV-DEQ-MW10-55	723.29
Wolven	WV-DEQ-MW10-84	720.09
Wolven	WV-DEQ-MW10-95	715.81
Wolven	WV-DEQ-MW11-130	757.03
Wolven	WV-DEQ-MW11-137	757.20
Wolven	WV-DEQ-MW11-145	756.95
Wolven	WV-DEQ-MW11-57	815.57
Wolven	WV-DEQ-MW11-95	810.62
Wolven	WV-DEQ-MW2D	753.80
Wolven	WV-DEQ-MW2S	826.21
Wolven	WV-DEQ-MW9-114	711.27
Wolven	WV-DEQ-MW9-131	711.27
Wolven	WV-DEQ-MW9-57	703.29
Wolven	WV-DEQ-MW9-73	711.32
Wolven	WV-DEQ-MW9-94	711.39
Wolven	WV-MW-1	751.30
Wolven	WV-MW-10D	749.49
Wolven	WV-MW-10M	747.82
Wolven	WV-MW-10S	742.24
Wolven	WV-MW-103	Artesian Conditions
Wolven	WV-MW-11S	726.20
Wolven Wolven	WV-MW-12D WV-MW-12M	716.97
21711711		716.94
Wolven	WV-MW-12S	721.81
Wolven	WV-MW-13D	803.32
Wolven	WV-MW-13M	820.92
Wolven	WV-MW-13S	820.91
Wolven	WV-MW-14D	731.14
Wolven	WV-MW-14S	861.25
Wolven	WV-MW-15A	ND
Wolven	WV-MW-15B	ND
Wolven	WV-MW-15C	ND
Wolven	WV-MW-15D	ND
Wolven	WV-MW-16D	761.52
Wolven	WV-MW-16S	815.71
Wolven	WV-MW-2D	785.38
Wolven	WV-MW-2S	790.29
Wolven	WV-MW-3D	802.01
Wolven	WV-MW-3S	819.14
Wolven	WV-MW-4	753.96
Wolven	WV-MW-5D	802.39
Wolven	WV-MW-5S	802.11
Wolven	WV-MW-6D	765.11
Wolven	WV-MW-6S	781.51
Wolven	WV-MW-7D	715.73
Wolven	WV-MW-7M	715.73
Wolven	WV-MW-7S	715.71
Wolven	WV-MW-8D	754.38
Wolven	WV-MW-8M	823.77
Wolven	WV-MW-8S	823.75
Wolven	WV-MW-9	824.90
	Dam Seawall	
Rogue River		680.71
Rogue River	E Bridge Street Bridge	680.34
Rogue River	Rogue River Road Bridge	618.90
Rogue River	Jericho Ave Bridge	672.24
Rogue River Rogue River	USGS04118500 Rogue River at Rum Creek	630.419 692.84

Abbreviations

ND = No data provided/available

ft = feet

- 1) Elevations are provided in North American Vertical Datum of 1988 (NAVD 88).
 2) Water level static measurements were completed on November 4, 2019 by R&W/GZA, AECOM (for EGLE),
- and North Kent Landfill.

 3) North Kent Landfill elevations converted from NGVD29 to NAVD88 by R&W/GZA by subtracting 0.43 feet from provided elevation.

Sample Location	a nema ne	2 322 2 3	Part 201 Generic		EGLE Residential	1	HS-MW-1D	HS-MW-1D	HS-MW-1D	HS-MW-1D	HS-MW-15	H5-MW-15	HS-MW-1S	HS-MW-1S	HS-MW-2S	HS-MW-25	HS-MW-2S	HS-MW-25	H5-MW-35
Sample Name	Part 201 Generic Residential	C11 - 111 -	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-MW-1D	HS-GW-MW1D	HS-GW-MW1D	HS-GW-MW-1D	HS-MW-15	HS-GW-MW1S	HS-GW-MW15	HS-GW-MW-1S	HS-MW-2	HS-GW-MW2	HS-GW-MW2	HS-GW-MW-25	HS-MW-35
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	172,3-176,9	172.3-176.9	172.3-176.9	172,3-176,9	67.4-72.1	67.4-72.1	67.4-72.1	67.4-72.1	77.9-82.5	77.9-82.5	77.9-82.5	77,9-82,5	70,1-75
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UC16019-001	UE30036-007	UI28005-011	UL05055-005	UC16019-002	UE30036-008	UI28005-010	UL05055-003	UC16019-003	UE30036-015	UI28005-012	UL05055-009	UC16019-005
Sample Date	Water	rester atterioce	Indoor Air Inhalation ²		Level - Groundwater		03/11/2019	05/29/2019	09/27/2019	12/02/2019	03/11/2019	05/29/2019	09/27/2019	12/02/2019	03/11/2019	05/30/2019	09/27/2019	12/03/2019	03/13/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	<0,0036	< 0.0034	< 0.0034	< 0.0035	<0.0038	< 0.0035	< 0.0035	< 0.0035	< 0.0036	<0,0036	< 0.0037	< 0.0035
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	<0.0038	< 0.0035	< 0.0035	< 0.0035	< 0.0036	<0.0035	< 0.0037	< 0.0035
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	< 0.0038	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0037	< 0.0035
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCI.	NCL	NA.	NCL	NCL	< 0.0071	< 0.0072	<0.0058	< 0.0069	< 0.007	<0.0076	< 0.007	< 0.0071	< 0.0071	< 0.0072	< 0.0071	<0.0075	< 0.007
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0.0056	0,0057	0.005	0.0054	0,0057	0.0059	0.0051	0.0054	0.079	0.099	0.089	0.04	0,38
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0036	< 0.0034	<0.0034	< 0.0035	< 0.0038	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0036	<0.0037	< 0.0035
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	<0.0038	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0036	< 0.0037	0.034
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0071	<0.0072	<0.0068	< 0.0069	<0,007	<0.0076	<0.007	< 0.0071	<0.0071	<0.0072	<0.0071	< 0.0075	< 0.007
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NEL	NA.	NCL	NCL	<0,0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	<0.0038	< 0.0035	<0.0035	<0,0035	< 0.0036	< 0.0036	< 0.0037	< 0.0035
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	<0.0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	0.0038	< 0.0035	<0.0035	0.097	0.11	0.094	0.028	0.68
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0035	< 0.0036	< 0.0034	0.0035	0.04	0.034	0.026	0.022	0.046	0.055	0.03	0.022	1.5
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA	NCL	NCL	< 0.0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	<0.0038	< 0.0035	< 0.0035	0.0095	0.011	0.01	0.0063	0.093
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0,0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	<0,0038	< 0.0035	< 0.0035	<0.0035	< 0.0036	< 0.0036	< 0.0037	< 0.0035
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	<0.0038	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0036	< 0.0037	< 0.0035
Perfluoroheptanoic acid (PFHpA)	NCI.	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	<0.0038	< 0.0035	< 0.0035	0.023	0.022	0.018	0.0065	0.14
Perfluorohexanoic acid (PFHxA)	NCI.	NCI	NCL.	NA	NCL	NCL	< 0.0035	< 0.0036	< 0.0034	<0.0034	0.0053	0.0051	< 0.0035	< 0.0035	0.053	0.072	0.05	0.03	0.35
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0035	< 0.0036	< 0.0034	<0.0034	<0.0035	<0.0038	< 0.0035	<0.0035	<0,0035	< 0.0036	<0.0036	< 0.0037	< 0.0035
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA.	NCL	NCL	0.0091	0.0098	0,0087	0.01	0.0095	0.013	0.0064	0.0072	0.0088	0.019	0.006	0.0044	0.69
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	0.0042	0.0044	0.0034	0.0038	0.0046	0.012	< 0.0035	0.006	< 0.0035	< 0.0036	< 0.0036	<0.0037	0.032
PFOA + PFOS (Calculated)	NCI.	NCI.	NCL.	0.01	NCL	NCL	0.013	0.014	0.012	0.014	0.014	0.025	0.0064	0.013	0.0088	0.019	0.006	0.0044	0.72
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0036	<0.0034	< 0.0034	< 0.0035	<0.0038	< 0.0035	<0.0035	0.012	0.015	0.014	0.0076	0.11
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	<0.0038	< 0.0035	< 0.0035	< 0.0035	< 0.0036	<0.0036	<0.0037	< 0.0035
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	<0.0036	< 0.0034	<0.0034	< 0.0035	<0.0038	<0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0036	<0.0037	< 0.0035
Perfluoroundecanoic acid (PFUnDA)	NCI.	NCL	NCL-	NA	NCL	NCL	< 0.0035	< 0.0036	< 0.0034	< 0.0034	< 0.0035	<0.0038	< 0.0035	< 0.0035	< 0.0035	< 0.0036	<0.0036	< 0.0037	< 0.0035
Total PFAS (Calculated)	NCI	NCI	NC)	NA	NCI	NC1	0.019	0.02	0.017	0.023	0.065	0.074	0.038	0.041	0.33	0.4	0.31	0.14	

Sample Location	Vocation of	2. 422 2. 2. 12	Part 201 Generic		EGLE Residential		HS-MW-3S	HS-MW-35	H5-MW-35	HS-MW-3S	HS-MW-45	HS-MW-45	HS-MW-4S	HS-MW-4S	HS-MW-5D	HS-MW-5D	HS-MW-5D	HS-MW-5D	HS-MW-5D
Sample Name	Part 201 Generic Residential	C11 - C11 - C1 - C1 - C1 - C1 - C1 - C1	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-MW-35 DUP	HS-GW-MW3S	HS-GW-MW3S	HS-GW-MW-35	HS-MW-4	HS-GW-MW4	HS-GW-MW4S	HS-GW-MW-4S	HS-MW-5D	HS-GW-MW5D	HS-GW-MW5D	HS-GW-MW-5D	HS-GW-MW-5 DUP
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	70.1-75	70,1-75	70.1-75	70.1-75	70.2-74.8	70.2-74.8	70.2-74.8	70.2-74.8	190,5-200,5	190.5-200.5	190.5-200.5	190,5-200,5	190.5-200.5
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UC16019-006	UE30036-016	UI26001-008	UL05055-011	UC16019-015	UE30036-014	UI26001-009	UL05055-020	UC16019-013	UE30036-005	UI26001-007	UL05055-018	UL05055-019
Sample Date	Water	reoter atterioce	Indoor Air Inhalation ²		Level - Groundwater		03/13/2019	05/30/2019	09/24/2019	12/03/2019	03/15/2019	05/30/2019	09/24/2019	12/04/2019	03/14/2019	05/28/2019	09/24/2019	12/04/2019	12/04/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	<0,0035	< 0.0035	<0.0036	< 0.0035	<0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0034	<0.0036	< 0.0035	< 0.0036
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0034	<0.0035	<0.0035	< 0.0036
N-Ethyl perfluorooctane sulfonamide (EtFQSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCI.	NCL	NA.	NCL	NCL	< 0.007	< 0.0071	< 0.0069	< 0.0071	< 0.007	< 0.0069	< 0.007	< 0.0074	< 0.0071	< 0.0069	< 0.0073	< 0.007	<0.0072
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0.39	0.5	0.4	0.57	0.058	0,055	0.033	0.1	<0,0035	< 0.0034	< 0.0036	0.005	0,0068
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0035	<0.0036	< 0.0035	< 0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
Perfluoroheptane suffonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	0.04	0.065	0.056	0.05	0.56	0.46	0.27	0.74	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.007	<0.0071	< 0.0069	<0.0071	<0.007	<0.0069	< 0.007	< 0.0074	<0.0071	< 0.0069	<0.0073	<0.007	< 0.0072
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NEL	NA.	NCL	NCL	<0,0035	< 0.0035	< 0.0035	< 0.0035	<0.0035	<0,0035	< 0.0035	< 0.0037	<0.0035	< 0.0034	<0,0036	< 0.0035	< 0.0036
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	0.6	0.92	0.71	0.75	0.18	0.19	0.14	0.38	<0.0035	< 0.0034	<0.0036	0.0053	0.0077
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	1.3	2,1	1.7	1.6	3	2.9	2.1	4.6	< 0.0035	< 0.0034	0.0058	0.013	0.02
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA	NCL	NCI.	0.09	0.13	0.1	0.14	0.095	0.071	0.047	0.23	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0035	<0,0036	< 0.0035	<0.0035	< 0.0035	<0.0037	<0,0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0034	<0.0036	< 0.0035	< 0.0036
Perfluoroheptanoic acid (PFHpA)	NCL	NCI.	NCL	NA.	NCL	NCL	0.15	0.34	0.2	0.24	0.19	0.19	0,15	0.45	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
Perfluorohexanoic acid (PFHxA)	NCL	NCI	NCL	NA	NCL	NCL	0.33	0.41	0.36	0.51	0.22	0.2	0.12	0.48	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0035	<0.0036	< 0.0035	<0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
Perfluorooctonoic acid (PFOA)	0.008	17	(D	NA.	NCL	NCL	0.63	0.89	0,83	0.73	1.5	1.4	0.82	2.1	< 0.0018	0.0028	0.0035	0.008	0.013
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	0.032	0.057	0.024	0.023	4.5	3.2	1.1	2.3	0.0053	0.011	0.0083	0.01	0.015
PFOA + PFOS (Calculated)	NCI.	NCI.	NCL	0.01	NCL	NCL	0.66	0.95	0.85	0.75	6	4.6	1.9	4.4	0.0053	0.014	0.012	0.018	0.028
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA	NCL	NCL	0.11	0.14	0.13	0.16	0.094	0.075	0.048	0.21	<0.0035	< 0.0034	<0.0036	< 0.0035	< 0.0036
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0035	< 0.0036	<0.0035	< 0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	<0.0035	< 0.0035	<0.0036	< 0.0035	< 0.0035	<0.0035	< 0.0037	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
Perfluoroundecanoic acid (PFUnDA)	NCL	NCI.	NCL-	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0035	< 0.0036	<0.0035	< 0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036
Total PFAS (Calculated)	NO	NCI	NC)	NA	NCI	NC)	3.7	5.6	45	4.8	10	8.7	4.8	12	0.0053	0.014	0.018	0.041	0.063

Sample Location	The second second	1. Treat of 100	Part 201 Generic		EGLE Residential		HS-MW-55	HS-MW-55	HS-MW-5S	HS-MW-5S	HS-MW-6D	HS-MW-6D	HS-MW-6D	HS-MW-6D	HS-MW-6S	HS-MW-6S	HS-MW-65	HS-MW-65	HS-MW-7S
Sample Name	Part 201 Generic Residential	Part 201 Generic Groundwater Cleanup	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-MW-5S	HS-GW-MW5S	HS-GW-MW5S	HS-GW-MW-5S	HS-MW-6D	HS-GW-MW6D	HS-GW-MW6D	HS-GW-MW-6D	HS-MW-65	HS-GW-MW6S	HS-GW-MW6S	HS-GW-MW-65	HS-MW-75
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup	Criteria –	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	60.3-65	60,3-65	60.3-65	60.3-65	157.5-162.5	157.5-162.5	157,5-162,5	157.5-162.5	58,2-62.9	58.2-62.9	58.2-62.9	58,2-62.9	69.9-74.5
Laboratory Sample ID(s)	Criteria – Drinking Water ²	Groundwater Surface Water Interface ²	Volatilization to		Action Screening	Management Levels ⁵	UC16019-012	UE30036-004	UI26001-006	UL05055-021	UC21029-008	UE30036-009	UI28005-004	UL05055-028	UC21029-007	UE30036-010	UI28005-005	UL05055-027	UC23028-001
Sample Date	water	veater atterrace	Indoor Air Inhalation ²		Level - Groundwater		03/14/2019	05/28/2019	09/24/2019	12/04/2019	03/20/2019	05/29/2019	09/26/2019	12/05/2019	03/20/2019	05/29/2019	09/26/2019	12/05/2019	03/21/2019
Parameter (μg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	<0.078	< 0.07	< 0.07	< 0.071	< 0.0035	<0.0036	< 0.0036	< 0.0036	<0,0036	< 0.0035	<0,0036	< 0.0036	< 0.0035
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL.	<0.078	< 0.07	< 0.07	< 0.071	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	<0.0036	< 0.0036	< 0.0035
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.078	< 0.07	< 0.07	<0.071	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0035
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCL	NA.	NCL	NCL.	< 0.16	< 0.14	< 0.14	<0.14	< 0.007	< 0.0071	< 0.0072	< 0.0071	< 0.0073	< 0.0069	<0.0072	<0.0072	< 0.0071
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	1.9	1,6	1.4	1.4	< 0.0035	<0,0036	<0.0036	< 0.0036	0,047	0,0052	0.034	0.0046	0,0051
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.078	< 0.07	<0.07	< 0.071	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	<0.0036	< 0.0036	< 0.0035
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	1.7	3.5	2.2	3.4	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0036	<0.0036	< 0.0035
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	<0.16	<0.14	< 0.14	< 0.14	<0.007	< 0.0071	< 0.0072	< 0.0071	< 0.0073	<0.0069	<0.0072	< 0.0072	< 0.0071
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA	NCL	NCL	<0.078	< 0.07	< 0.07	< 0.071	< 0.0035	< 0.0036	< 0.0036	< 0.0036	<0,0036	< 0.0035	<0,0036	< 0.0036	< 0.0035
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	3.1	3.1	2.8	3,5	< 0.0035	< 0.0036	< 0.0036	<0.0036	0.061	0.011	0.036	< 0.0036	< 0.0035
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	7.5	11	9,9	15	< 0.0035	< 0.0036	< 0.0036	< 0.0036	0.085	0.039	0.074	0.013	0.011
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA.	NCL	NCL.	0.56	0.52	0.47	0.43	< 0.0035	< 0.0036	< 0.0036	< 0.0036	0.0046	< 0.0035	0.0036	<0.0036	< 0.0035
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.078	< 0.07	< 0.07	<0.071	< 0.0035	<0,0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0036	<0.0036	< 0.0035
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.078	< 0.07	< 0.07	< 0.071	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	<0.0036	< 0.0036	< 0.0035
Perfluoroheptanoic acid (PFHpA)	NCL	NCI.	NCL	NA.	NCL	NCL	1.6	1.8	1.4	2.4	< 0.0035	< 0.0036	< 0.0036	< 0.0036	0.015	0.0043	0.012	< 0.0036	< 0.0035
Perfluorofiexanoic acid (PFfIxA)	NCL	NCI	NCL	NA	NCL	NCL	1.5	1.6	1.3	1.3	< 0.0035	< 0.0036	< 0.0036	< 0.0036	0.031	0.0053	0.021	<0.0036	< 0.0035
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.078	<0.07	<0.07	< 0.071	< 0.0035	< 0.0036	< 0.0036	< 0.0036	<0,0036	< 0.0035	<0.0036	<0.0036	< 0.0035
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA	NCL	NCL	8.5	11	8.2	.11	< 0.0018	<0.0018	< 0.0018	<0.0018	0.044	0.028	0,043	0.012	0.0029
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	42	100	59	71	< 0.0035	<0.0036	< 0.0036	< 0.0036	0.0087	0.0059	0.005	0.0046	< 0.0035
PFOA + PFOS (Calculated)	NCL	NCI.	NCL	0.01	NCL	NCL	51	110	67	82	ND	ND	ND	ND	0.053	0.034	0.048	0.017	0,0029
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA.	NCL	NCL	0.65	0,61	0.54	0.51	< 0.0035	< 0.0036	< 0.0036	< 0.0036	0.0078	< 0.0035	0.006	< 0.0036	< 0.0035
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.078	<0.07	<0.07	< 0.071	< 0.0035	< 0.0036	< 0.0036	< 0.0036	<0.0036	< 0.0035	<0.0036	< 0.0036	< 0.0035
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	<0.078	<0.07	<0.07	<0.071	<0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	<0.0035	< 0.0036	<0.0036	< 0.0035
Perfluoroundecanoic acid (PFUnDA)	NCL	NCI.	NCL-	NA.	NCL	NCL	< 0.078	<0.07	< 0.07	< 0.071	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0036	<0.0036	< 0.0035
Total PFAS (Calculated)	NCL	NCL	NCL	NA	NCL	NCL	69	130	87	110	ND	ND	ND	ND.	0.3	0.099	0.23	0.034	0.019

Sample Location	Toward or	1.0 × 5 × 10 × 1	Part 201 Generic		EGLE Residential		HS-MW-75	HS-MW-75	H5-MW-7S	HS-MW-75	HS-MW-8	HS-MW-8	H5-MW-8	HS-MW-8	HS-MW-9D	HS-MW-9D	HS-MW-9D	HS-MW-9D	HS-MW-9D
Sample Name	Part 201 Generic Residential	COLUMN TO SERVICE STREET	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-MW-75 DUP	HS-GW-MW7S	HS-GW-MW7S	HS-GW-MW-75	HS-MW-8	HS-GW-MW8	HS-GW-MW8	HS-GW-MW-8	HS-MW-9D	HS-GW-MW9D	HS-GW-MW9D DUP	HS-GW-MW9D	HS-GW-MW-9
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria –	Criteria – Groundwater	CD Value ⁴	Indoor Air Interim	Removal	69,9-74,5	69.9-74.5	69.9-74.5	69.9-74.5	30-35	30-35	30-35	30-35	204.3-209,3	204.3-209.3	204.3-209.3	204,3-209,3	204.3-209.3
Laboratory Sample ID(s)	Water ²	Groundwater Surface Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UC23028-002	UE30036-017	UI26001-004	UL05055-022	UC23028-003	UE30036-006	UI26001-010	UL05055-031	UC21029-006	UE24001-014	UE24001-015	UI26001-014	UL12091-004
Sample Date	water	vester utterrace	Indoor Air Inhalation ²		Level - Groundwater		03/21/2019	05/30/2019	09/23/2019	12/04/2019	03/21/2019	05/29/2019	09/24/2019	12/06/2019	03/19/2019	05/22/2019	05/22/2019	09/25/2019	12/09/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	<0,0035	< 0.0034	< 0.0035	< 0.0036	<0.0035	< 0.0039	<0.0038	< 0.0035	< 0.0036	< 0.0036	< 0.0034	<0.0038
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0035	< 0.0035	< 0.0034	< 0.0035	< 0.0036	< 0.0035	< 0.0039	< 0.0038	<0.0035	< 0.0036	< 0.0036	< 0.0034	<0.0038
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	< 0.0035	<0.0036	< 0.0035	< 0.0039	< 0.0038	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCL	NA.	NCL	:NCL	< 0.007	< 0.0069	< 0.0057	<0,007	< 0.0072	<0,0071	< 0.0078	<0.0075	< 0.007	<0.0072	< 0.0071	<0.0068	< 0.0076
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0.0053	0.006	0.0046	0.0055	0.026	0,028	0.075	0.086	< 0,0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	<0.0035	< 0.0036	< 0.0035	< 0.0039	< 0.0038	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	< 0.0035	0.078	0.033	0.09	0.12	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.007	< 0.0069	< 0.0067	< 0.007	<0.0072	<0.0071	< 0.0078	< 0.0075	<0.007	<0.0072	<0.0071	< 0.0068	< 0.0076
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA	NCL	NCL	<0,0035	< 0.0035	< 0.0034	< 0.0035	< 0.0036	<0.0035	< 0.0039	<0.0038	< 0.0035	< 0.0036	<0.0036	< 0.0034	< 0.0038
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	< 0.0035	0.044	0.035	0,13	0.11	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	0.0099	0.0089	0.0089	0.01	0.15	0.085	0.39	0.32	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL.	NA.	NCL	:NCL	< 0.0035	< 0.0035	< 0.0034	< 0.0035	0.0066	0.0066	0.012	0.017	< 0.0035	< 0.0036	< 0.0036	< 0.0034	<0.0038
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA	NCL	NCL	<0,0035	< 0.0035	< 0.0034	< 0,0035	< 0.0036	<0,0035	< 0.0039	<0.0038	<0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	< 0.0035	< 0.0036	< 0.0035	< 0.0039	< 0.0038	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
Perfluoroheptanoic acid (PFFIpA)	NCI.	NCI.	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	< 0.0035	0.037	0.044	0,06	0.074	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
Perfluorohexanoic acid (PFHxA)	NCI.	NCI.	NCI.	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	< 0.0035	0.016	0.024	0.028	0.031	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	< 0.0035	<0.0036	<0.0035	< 0.0039	<0.0038	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0038
Perfluorooctonoic acid (PFDA)	0.008	12	(D	NA	NCL	NCL	0,003	0.0035	0.0029	0.003	0.38	0.35	1.3	0.7	< 0.0017	<0.0018	< 0.0018	< 0.0017	< 0.0019
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	<0,0035	0.0037	0.0047	0.0091	0.14	0.051	0.099	0.12	< 0.0035	< 0.0036	< 0.0036	< 0.0034	<0.0038
PFOA + PFOS (Calculated)	NCI.	NCI.	NCL.	0.01	NCL	:NCL	0.003	0.0072	0,0076	0.012	0.52	0.4	1.4	0.82	ND	ND	ND	ND	ND.
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	< 0.0035	0,0055	0.0067	0.01	0.011	<0.0035	<0.0036	<0.0036	< 0.0034	<0.0038
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	<0.0035	< 0.0034	< 0.0035	< 0.0036	<0.0035	< 0.0039	< 0.0038	< 0.0035	<0.0036	<0.0036	< 0.0034	<0.0038
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	<0.0035	< 0.0036	<0.0035	<0.0039	< 0.0038	< 0.0035	< 0.0036	< 0.0036	< 0.0034	<0.0038
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NC).	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0034	< 0.0035	< 0.0036	<0.0035	< 0.0039	< 0.0038	< 0.0035	< 0.0036	<0.0036	< 0.0034	< 0.0038
Total PEAS (Calculated)	NCI	N/T	NC)	MA	MCI	NC)	0.018	0.022	0.021	0.028	0.88	0.66	7.2	16	ND	ND	ND	ND	ND

Sample Location	No. of the last	1.0 x 3 x 10 x	Part 201 Generic		EGLE Residential		HS-MW-9M	HS-MW-9M	HS-MW-9M	HS-MW-9M	HS-MW-95	HS-MW-9S	HS-MW-9S	HS-MW-9S	HS-MW-9S	HS-MW-10D	HS-MW-10D	HS-MW-10D	HS-MW-10D
Sample Name	Part 201 Generic Residential	C. L. C. S. L. C. S. C. S. C. C. C. L.	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-MW-9M	HS-GW-MW9M	HS-GW-MW9M	HS-GW-MW-9M	HS-MW-95	HS-GW-MW9S	HS-GW-MW95	HS-GW-MW-95	HS-GW-MW-9S DUP	HS-MW-10D	HS-GW-MW10D	HS-GW-MW10D	HS-GW-MW-1
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	126,8-131,8	126.8-131.8	126.8-131.8	126,8-131,8	26.2-31.2	26,2-31,2	26.2-31.2	26.2-31.2	26,2-31,2	188.2-193.2	188.2-193.2	188,2-193,2	188.2-193.2
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UC21029-005	UE24001-013	UI26001-020	UL12091-003	UC21029-004	UE24001-012	UI26001-016	UL12091-013	UL12091-014	UC21029-003	UE24001-003	UI26001-015	UL05055-006
Sample Date	water	reater atternace	Indoor Air Inhalation ²		Level - Groundwater	1	03/19/2019	05/22/2019	09/25/2019	12/09/2019	03/19/2019	05/22/2019	09/25/2019	12/11/2019	12/11/2019	03/18/2019	05/20/2019	09/25/2019	12/02/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	<0,0036	<0,0035	< 0.0036	< 0.0036	< 0.0036	<0,0035	< 0.0037	<0.0038	<0,0037	< 0.0038	<0,0035	< 0.0036	< 0.0035
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0035	0.0039	< 0.0038	<0.0037	< 0.0038	< 0.0035	< 0.0036	< 0.0035
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0038	< 0.0037	<0.0038	<0.0035	< 0.0036	< 0.0035
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCL	NA	NCL	NCL	< 0.0071	< 0.0069	< 0.0071	< 0.0071	< 0.0073	<0.007	< 0.0074	< 0.0077	< 0.0074	< 0.0075	<0.007	<0.0072	< 0.007
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	<0,0036	< 0.0035	< 0.0036	<0.0036	< 0.0036	<0,0035	<0.0037	< 0.0038	<0.0037	< 0.0038	<0.0035	< 0.0036	< 0.0035
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	<0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0038	< 0.0037	< 0.0038	< 0.0035	< 0.0036	< 0.0035
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0038	< 0.0037	< 0.0038	<0.0035	<0.0036	< 0.0035
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0071	<0.0069	< 0.0071	< 0.0071	< 0.0073	< 0.007	< 0.0074	<0.0077	<0.0074	<0.0075	< 0.007	< 0.0072	< 0.007
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	<0.0038	< 0.0037	< 0.0038	<0,0035	< 0.0036	< 0.0035
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	<0.0035	<0.0036	< 0.0036	< 0.0036	<0.0035	< 0.0037	<0.0038	< 0.0037	< 0.0038	<0.0035	< 0.0036	< 0.0035
Perfluorohexane sulfonic acid (PFHxS)	NCL.	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	<0.0035	< 0.0037	< 0.0038	<0.0037	< 0.0038	<0.0035	< 0.0036	< 0.0035
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL.	NA.	NCL	'NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	<0.0035	< 0.0037	0.0049	0.0049	<0.0038	<0.0035	< 0.0036	<0.0035
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA	NCL	NCL	<0,0036	< 0.0035	< 0.0036	< 0,0036	< 0.0036	<0,0035	< 0.0037	< 0.0038	<0.0037	< 0.0038	<0.0035	<0.0036	< 0.0035
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0038	< 0.0037	< 0.0038	<0.0035	< 0.0036	< 0.0035
Perfluoroheptanoic acid (PFHpA)	NCL.	NCI.	NCL.	NA.	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	<0.0035	< 0.0037	< 0.0038	< 0.0037	< 0.0038	<0.0035	< 0.0036	< 0.0035
Perfluorohexanoic acid (PFHxA)	NCL	NCI	NCI.	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	<0.0035	< 0.0037	< 0.0038	< 0.0037	< 0.0038	< 0.0035	<0.0036	< 0.0035
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	<0,0035	< 0.0037	<0.0038	< 0.0037	< 0.0038	<0.0035	< 0.0036	< 0.0035
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA.	NCL	NCL	<0.0018	< 0.0017	< 0.0018	< 0.0018	< 0.0018	<0,0017	< 0.0018	0.0048	0.0049	< 0.0019	<0.0017	< 0.0018	< 0.0018
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	<0.0036	<0,0035	< 0.0036	< 0.0036	< 0.0036	0.0049	< 0.0037	0.0076	0.0081	< 0.0038	< 0.0035	< 0.0036	< 0.0035
PFOA + PFOS (Calculated)	NCL	NCI.	NCL.	0.01	NCL	NCL.	ND.	ND	ND	ND	ND	0.0049	ND.	0.012	0.013	ND	ND	ND.	ND
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0035	<0.0036	< 0.0036	< 0.0036	<0.0035	< 0.0037	<0.0038	< 0.0037	<0.0038	<0.0035	< 0.0036	< 0.0035
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	<0.0035	< 0.0037	< 0.0038	< 0.0037	<0.0038	<0.0035	< 0.0036	< 0.0035
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	<0.0036	< 0.0035	< 0.0036	<0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0038	< 0.0037	<0.0038	<0.0035	<0.0036	< 0.0035
Perfluoroundecanoic acid (PFUnDA)	NCL.	NCL	NCL.	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0038	<0.0037	<0.0038	<0.0035	<0.0036	< 0.0035
Total PEAS (Calculated)	NCI	NCL	NC)	NA	MCI	NC)	ND	ND	ND	ND	ND	0.0009	0.0039	0.017	0.018	ND	ND	ND	ND

Sample Location	The state of the s	1.0 x 3 - 10 x	Part 201 Generic		EGLE Residential		HS-MW-10M	HS-MW-10M	HS-MW-10M	HS-MW-10M	HS-MW-10M	HS-MW-10S	HS-MW-10S	HS-MW-10S	HS-MW-105	HS-MW-11D	HS-MW-11D	HS-MW-11D	HS-MW-11D
Sample Name	Part 201 Generic Residential		Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-MW-10M	HS-GW-MW10M	HS-GW-MW10M	HS-GW-MW10M DUP	HS-GW-MW-10M	HS-MW-105	HS-GW-MW10S	HS-GW-MW10S	HS-GW-MW-105	HS-MW-11D	HS-GW-MW11D	HS-GW-MW11D	HS-GW-MW-111
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	126.4-131.4	126.4-131.4	126.4-131.4	126.4-131.4	126.4-131.4	48,3-58,3	48,3-58.3	48.3-58.3	48,3-58,3	153,6-158,6	153.6-158.6	153,6-158,6	153.6-158.6
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UC21029-002	UE24001-002	UI26001-017	UI26001-018	UL05055-010	UC21029-001	UE24001-001	UI26001-019	UL05055-001	UC16019-011	UE24001-016	UI28005-003	UL05055-013
Sample Date	Water	Project affect face	Indoor Air Inhalation		Level - Groundwater		03/18/2019	05/20/2019	09/25/2019	09/25/2019	12/03/2019	03/18/2019	05/20/2019	09/25/2019	12/02/2019	03/14/2019	05/22/2019	09/26/2019	12/03/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0035	<0,0035	< 0.0036	< 0.0035	< 0.0036	<0,0035	<0.0039	< 0.0036	<0.0035	< 0.0038	<0,0037	< 0.0036	<0.0038
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0039	< 0.0036	<0.0035	<0.0038	< 0.0037	< 0.0036	< 0.0038
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0039	< 0.0036	<0.0035	<0.0038	< 0.0037	< 0.0036	< 0.0038
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCI.	NCL	NA.	NCL	NCL	< 0.007	< 0.007	<0.0072	< 0.0071	< 0.0071	< 0.007	< 0.0078	< 0.0072	< 0.0071	< 0.0076	<0.0075	<0.0073	< 0.0075
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0.0085	0,0063	0,0075	0.0079	0,0089	<0,0035	0.004	< 0.0036	0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0038
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	< 0.0035	<0.0039	< 0.0036	< 0.0035	< 0.0038	< 0.0037	< 0.0036	< 0.0038
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	0.0047	0.0049	< 0.0036	0.0037	<0.0038	< 0.0037	< 0.0036	<0.0038
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.007	<0.007	< 0.0072	< 0.0071	<0.0071	< 0.007	< 0.0078	< 0.0072	<0.0071	< 0.0076	<0.0075	< 0.0073	< 0.0075
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	<0,0035	< 0.0039	< 0.0036	<0,0035	<0.0038	<0,0037	< 0.0036	< 0.0038
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	<0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0039	<0.0036	<0.0035	<0.0038	< 0.0037	< 0.0036	<0.0038
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCF	NA	NCL	NCL	0.0048	0.0036	0.0039	0.0039	0.0039	0.006	0.0084	0.014	0.013	<0.0038	<0.0037	< 0.0036	<0.0038
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	<0.0035	< 0.0039	< 0.0036	< 0.0035	<0.0038	< 0.0037	< 0.0036	<0.0038
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0035	< 0.0035	< 0.0036	< 0,0035	< 0.0036	<0,0035	< 0.0039	<0.0036	<0,0035	< 0.0038	< 0.0037	<0.0036	<0.0038
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0039	< 0.0036	< 0.0035	<0.0038	<0.0037	< 0.0036	< 0.0038
Perfluoroheptanoic acid (PFFIpA)	NCI.	NCL	NCL.	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0039	< 0.0036	< 0.0035	<0.0038	< 0.0037	< 0.0036	< 0.0038
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCI.	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0039	< 0.0036	< 0.0035	<0.0038	< 0.0037	< 0.0036	< 0.0038
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0035	< 0.0035	< 0.0036	< 0.0035	<0.0036	<0.0035	< 0.0039	< 0.0036	<0,0035	< 0.0038	<0.0037	< 0.0036	< 0.0038
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA	NCL	NCL	0.0084	0.0072	0.0096	0.0094	0.01	0.012	0.015	0.018	0.021	< 0.0019	<0.0019	< 0.0018	< 0.0019
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	0.013	0.012	0.012	0.011	0.013	0.04	0.036	0.024	0.024	<0.0038	< 0.0037	< 0.0036	<0.0038
PFOA + PFOS (Calculated)	NCL	NCI.	NCL	0.01	NCL	:NCL	0.021	0.019	0.022	0.02	0.023	0.052	0.051	0.042	0.045	ND	ND	ND	ND
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0039	< 0.0036	< 0.0035	<0.0038	<0.0037	< 0.0036	<0.0038
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	< 0.0035	<0.0039	< 0.0036	< 0.0035	<0.0038	<0.0037	< 0.0036	<0.0038
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	< 0.0035	<0.0039	< 0.0036	< 0.0035	<0.0038	<0.0037	< 0.0036	< 0.0038
Perfluoroundecanoic acid (PFUnDA)	NCI.	NCL	NCI.	NA	NCL	NCL	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0039	< 0.0036	< 0.0035	<0.0038	< 0.0037	<0.0036	< 0.0038
Total PFAS (Calculated)	NCL	NCL	NCL	NA	NCL	NCL	0.035	0.029	0.033	0.032	0.036	0.063	0.068	0.056	0.065	ND	ND	ND	ND

Sample Location	The second second	A 122 E 124	Part 201 Generic		EGLE Residential		HS-MW-11M	HS-MW-11M	HS-MW-11M	HS-MW-11M	HS-MW-11S	HS-MW-115	HS-MW-115	HS-MW-11S	HS-MW-12A	HS-MW-12B	HS-MW-12C	HS-MW-12D	HS-MW-12E
Sample Name	Part 201 Generic Residential	Part 201 Generic Groundwater Cleanup	CONTRACTOR CONTRACTOR		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-MW-11M	H5-GW-MW11M	HS-GW-MW11M	HS-GW-MW-11M	HS-MW-115	HS-GW-MW11S	HS-GW-MW11S	H5-GW-MW-115	HS-GW-MW-12A	H5-GW-MW-12B	H5-GW-MW-12C	H5-GW-MW-12D	HS-GW-MW-12
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	96.4-101.4	96,4-101.4	96.4-101.4	96.4-101.4	21.2-31.2	21,2-31,2	21,2-31,2	21.2-31.2	15,4-20,4	51,5-56,5	127.7-132.7	158.7-163.7	187.5-192.5
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UC16019-010	UE24001-018	UI28005-002	UL05055-012	UC16019-009	UE24001-017	UI28005-001	UL05055-014	UK29008-021	UK29008-012	UK29008-011	UK29008-010	UK29008-013
Sample Date	water	veoter atterioce	Indoor Air Inhalation ²		Level - Groundwater		03/14/2019	05/22/2019	09/26/2019	12/03/2019	03/14/2019	05/22/2019	09/26/2019	12/03/2019	11/27/2019	11/25/2019	11/25/2019	11/25/2019	11/25/2019
Parameter (μg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0036	<0,0036	< 0.0037	< 0.0036	< 0.0036	<0.0038	<0.0038	< 0.0036	< 0,0036	< 0.0037	<0,0038	< 0.0034	< 0.0035
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	<0.0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0038	< 0.0038	< 0.0036	< 0.0036	< 0.0037	< 0.0038	< 0.0034	< 0.0035
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0038	< 0.0038	< 0.0036	< 0.0036	< 0.0037	< 0.0038	< 0.0034	< 0.0035
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCI.	NCL	NA	NCL	NCL	< 0.0072	< 0.0072	< 0.0074	<0.0073	< 0.0072	<0.0075	< 0.0077	< 0.0071	< 0.0072	< 0.0073	<0.0076	<0.0068	< 0.007
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0,014	0.013	0.046	0.05	< 0.0036	<0,0038	< 0.0038	< 0.0036	< 0,0036	< 0.0037	0.13	0.14	< 0.0035
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0036	< 0.0037	<0.0036	< 0.0036	< 0.0038	< 0.0038	< 0.0036	< 0.0036	< 0.0037	<0.0038	< 0.0034	< 0.0035
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	<0.0038	< 0.0038	< 0.0036	< 0.0036	< 0.0037	< 0.0038	< 0.0034	< 0.0035
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0072	<0.0072	< 0.0074	< 0.0073	<0.0072	<0.0075	< 0.0077	< 0.0071	< 0.0072	< 0.0073	<0.0076	< 0.0068	< 0.007
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	<0.0038	< 0.0038	< 0.0036	<0,0036	< 0.0037	<0,0038	< 0.0034	< 0.0035
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	<0.0036	< 0.0036	<0.0037	0.016	< 0.0036	<0.0038	< 0.0038	<0.0036	< 0.0036	< 0.0037	0.13	0.12	< 0.0035
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0036	< 0.0036	< 0.0037	0.0045	< 0.0036	< 0.0038	< 0.0038	< 0.0036	< 0.0036	0.0054	0.12	0.091	< 0.0035
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA.	NCL	:NCL	< 0.0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	<0.0038	< 0.0038	< 0.0036	< 0.0036	< 0.0037	0.036	0.037	< 0.0035
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0036	< 0.0036	< 0.0037	<0,0036	< 0.0036	<0,0038	< 0.0038	< 0.0036	<0,0036	< 0.0037	< 0.0038	<0.0034	< 0.0035
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	<0.0038	< 0.0038	< 0.0036	< 0.0036	< 0.0037	<0.0038	< 0.0034	< 0.0035
Perfluoroheptanoic acid (PFHpA)	NCL	NCI.	NCL	NA.	NCL	NCL	< 0.0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	<0.0038	< 0.0038	< 0.0036	< 0.0036	< 0.0037	0.07	0.072	< 0.0035
Perfluorohexanoic acid (PFHxA)	NCL	NCI.	NC).	NA .	NCL	NCL	< 0.0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	<0.0038	< 0.0038	< 0.0036	< 0.0036	< 0.0037	0.076	0.09	< 0.0035
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0036	< 0.0036	< 0.0037	< 0.0036	<0.0036	<0.0038	< 0.0038	< 0.0036	<0,0036	< 0.0037	<0.0038	< 0.0034	< 0.0035
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA	NCL	NCL	< 0.0018	< 0.0018	< 0.0018	< 0.0018	0.0024	0.0028	< 0.0019	0.0041	0.0089	0,0023	0,19	0.17	< 0.0017
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA.	NCL	NCL	<0,0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	<0.0038	< 0.0038	< 0.0036	0.0063	< 0.0037	<0.0038	<0.0034	< 0.0035
PFOA + PFO5 (Calculated)	NCI.	NCI:	NCL	0.01	NCL	:NCL	ND.	ND	ND	ND	0.0024	0.0028	ND.	0.0041	0.015	0.0023	0.19	0.17	ND.
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	<0.0038	< 0.0038	< 0.0036	0.0039	<0.0037	0.039	0.038	< 0.0035
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0036	< 0.0037	< 0.0036	< 0.0036	<0.0038	<0.0038	< 0.0036	<0.0036	< 0.0037	<0.0038	< 0.0034	< 0.0035
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0036	<0.0037	<0.0036	< 0.0036	< 0.0038	<0.0038	<0.0036	< 0.0036	< 0.0037	<0.0038	< 0.0034	< 0.0035
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL-	NA.	NCL	NCL	< 0.0036	<0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0038	< 0.0038	< 0.0036	< 0.0036	< 0.0037	< 0.0038	< 0.0034	< 0.0035
Total PFAS (Calculated)	NCL	NCL	NCL	NA	NCL	NCL	0.014	0.013	0.046	0.071	0.0024	0.0028	ND	0.0041	0.019	0.0077	0.79	0.76	ND

Sample Location			Part 201 Generic		EGLE Residential	1	HS-MW-14D	HS-MW-14D	HS-MW-14D	HS-MW-14D	HS-MW-14D	H5-MW-14M	HS-MW-14M	HS-MW-14M	HS-MW-14M	HS-MW-145	HS-MW-14S	HS-MW-14S	HS-MW-145
Sample Name	Part 201 Generic Residential	COLUMN TO SERVICE STREET	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-MW-14D	HS-MW-14D DUP	HS-GW-MW14D	HS-GW-MW14D	HS-GW-MW-14D	HS-MW-14M	HS-GW-MW14M	HS-GW-MW14M	HS-GW-MW-14M	HS-MW-145	HS-GW-MW14S	HS-GW-MW14S	HS-GW-MW-1
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ⁴	Indoor Air Interim	Removal	109-114	109-114	109-114	109-114	109-114	68.1-73.1	68,1-73,1	68.1-73.1	68,1-73,1	13-23	13-23	13-23	13-23
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UB27031-003	UB27031-004	UE18016-008	UI12010-007	UK29008-016	UB27031-001	UE18016-009	UI12010-009	UK29008-015	UB27031-002	UE18016-010	U112010-008	UK29008-01-
Sample Date	Water	reater atternace	Indoor Air Inhalation ²		Level - Groundwater		02/26/2019	02/26/2019	05/17/2019	09/10/2019	11/25/2019	02/26/2019	05/17/2019	09/10/2019	11/25/2019	02/26/2019	05/17/2019	09/10/2019	11/25/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	<0,0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	<0.0038	<0.0034	< 0.0036	<0,0036	<0.0036	< 0.0034
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	<0.0037	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0038	< 0.0034	< 0.0036	<0.0036	< 0.0036	< 0.0034
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	<0.0038	< 0.0034	< 0.0036	< 0.0036	< 0.0036	< 0.0034
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCI.	NCL	NA	NCL	NCL.	< 0.0075	< 0.0073	< 0.0074	< 0.0074	< 0.007	< 0.0071	< 0.0073	< 0.0075	<0.0069	< 0.0071	<0.0072	<0.0072	< 0.0069
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	<0,0037	< 0.0036	< 0.0037	<0,0037	<0.0035	< 0.0036	<0.0036	<0.0038	<0,0034	< 0.0036	< 0.0036	<0.0036	< 0.0034
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0038	< 0.0034	< 0.0036	< 0.0036	< 0.0036	< 0.0034
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	<0.0038	< 0.0034	< 0.0036	<0.0036	<0.0036	< 0.0034
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0075	<0.0073	< 0.0074	< 0.0074	<0,007	<0.0071	< 0.0073	< 0.0075	<0,0069	< 0.0071	<0.0072	< 0.0072	<0.0069
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA	NCL	NCL	<0,0037	< 0.0036	< 0.0037	< 0.0037	<0.0035	<0.0036	< 0.0036	<0.0038	<0,0034	< 0.0036	<0,0036	< 0.0036	< 0.0034
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	<0.0037	< 0.0036	< 0.0037	< 0.0037	<0.0035	<0.0036	< 0.0036	<0.0038	<0.0034	< 0.0036	<0.0036	< 0.0036	< 0.0034
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0037	< 0.0036	< 0.0037	< 0.0037	< 0.0035	<0.0036	< 0.0036	< 0.0038	<0.0034	< 0.0036	<0.0035	< 0.0036	< 0.0034
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL.	NA.	NCL	NCL	<0.0037	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0038	< 0.0034	< 0.0036	0.005	<0.0036	< 0.0034
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0037	< 0.0036	< 0.0037	<0,0037	< 0.0035	<0,0036	< 0.0036	<0.0038	< 0.0034	< 0.0036	<0.0036	<0.0036	< 0.0034
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0038	< 0.0034	< 0.0036	<0.0036	< 0.0036	< 0.0034
Perfluoroheptanoic acid (PFHpA)	NCI.	NCI.	NCL	NA	NCL	NCL	< 0.0037	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0038	< 0.0034	< 0.0036	< 0.0036	< 0.0036	< 0.0034
Perfluorohexanoic acid (PFHxA)	NCI.	NCI.	NCI.	NA	NCL	NCL	< 0.0037	< 0.0036	< 0.0037	< 0.0037	<0.0035	< 0.0036	< 0.0036	<0.0038	< 0.0034	< 0.0036	0.0065	< 0.0036	< 0.0034
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	<0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	<0.0038	<0.0034	< 0.0036	<0.0036	< 0.0036	< 0.0034
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA	NCL	NCL	< 0.0019	<0.0018	< 0.0019	< 0.0019	<0.0017	<0.0018	< 0.0018	< 0.0019	< 0.0017	<0.0018	0.0047	0.0023	< 0.0017
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	<0.0037	<0,0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0038	< 0.0034	< 0.0036	< 0.0036	0.0036	< 0.0034
PFOA + PFOS (Calculated)	NCI.	NCI.	NCL.	0.01	NCL	NCL	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	0.0047	0.0059	ND.
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA:	NCL	NCL	< 0.0037	< 0.0036	< 0.0037	< 0.0037	<0.0035	<0.0036	< 0.0036	<0.0038	< 0.0034	<0.0036	0.0054	< 0.0036	< 0.0034
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	<0.0036	< 0.0037	< 0.0037	<0.0035	<0.0036	< 0.0036	<0.0038	< 0.0034	< 0.0036	<0.0036	< 0.0036	< 0.0034
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	<0.0036	< 0.0037	<0.0037	<0.0035	< 0.0036	<0.0036	<0.0038	< 0.0034	< 0.0036	< 0.0036	< 0.0036	< 0.0034
Perfluoroundecanoic acid (PFUnDA)	NCI.	NCI	NCL-	NA	NCL	NCL	< 0.0037	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0038	< 0.0034	< 0.0036	< 0.0036	<0.0036	< 0.0034
Total PFAS (Calculated)	NO	NCI	NC)	NA	NCI	NC)	ND	ND	ND	ND	ND	ND.	ND	ND.	ND.	ND	0.022	0.0059	ND

Sample Location	a period to	W 1520 E 1520	Part 201 Generic		EGLE Residential		HS-MW-15D	HS-MW-15D	HS-MW-15D	HS-MW-15D	HS-MW-15M	HS-MW-15M	HS-MW-15M	HS-MW-15M	HS-MW-155	HS-MW-15S	HS-MW-15S	HS-MW-15S	HS-MW-170
Sample Name	Part 201 Generic Residential	COLUMN TO SERVICE STREET	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-MW-15D	HS-GW-MW15D	HS-GW-MW15D	HS-GW-MW-15D	HS-MW-15M	HS-GW-MW15M	HS-GW-MW15M	HS-GW-MW-15M	HS-MW-155	HS-GW-MW15S	HS-GW-MW155	HS-GW-MW-15S	HS-MW-171
Well Screen Interval (Feet below ground surface)	Groundwater Cleanuj Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	108,6-118,6	108.6-118.6	108.6-118.6	108.6-118.6	44.8-49.8	44.8-49.8	44.8-49.8	44.8-49.8	6.9-16.9	6,9-16,9	6.9-16.9	6.9-16.9	222.1-227.1
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UB28086-006	UE18016-005	UI21016-005	UK19008-012	UB28086-005	UE18016-006	UI21016-004	UK21036-009	UB28086-004	UE18016-007	UI21016-003	UK21036-010	UC09042-00
Sample Date	Water	reater atternace	Indoor Air Inhalation ²		Level - Groundwater		02/27/2019	05/16/2019	09/19/2019	11/20/2019	02/27/2019	05/16/2019	09/19/2019	11/19/2019	02/27/2019	05/16/2019	09/19/2019	11/19/2019	03/07/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0,0037	<0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	<0.0036	<0.0038	< 0.0034	< 0.0035
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	<0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	< 0.0036	< 0.0038	< 0.0034	< 0.0035
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	< 0.0036	< 0.0038	< 0.0034	< 0.0035
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCL	NA.	NCL	NCL.	<0.0075	< 0.0073	< 0.0073	< 0.0069	< 0.0074	<0.0076	< 0.0075	< 0.0073	< 0.0074	< 0.0073	< 0.0077	< 0.0069	< 0.007
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	0.0073	0,0058	0.0068	0.0073	0,43
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0036	<0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	< 0.0036	< 0.0038	< 0.0034	< 0.0035
Perfluoroheptane sulfonic acid (PFHpS)	NCI.	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	<0.0036	< 0.0038	< 0.0034	0.022
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0075	< 0.0073	< 0.0073	< 0.0069	< 0.0074	<0.0076	< 0.0075	< 0.0073	< 0.0074	<0.0073	<0.0077	< 0.0069	<0.007
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	<0.0037	< 0.0036	< 0.0038	< 0.0034	< 0.0035
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	<0.0036	< 0.0034	< 0.0037	<0.0038	< 0.0037	<0.0036	<0.0037	< 0.0036	< 0.0038	< 0.0034	0.56
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0037	< 0.0037	< 0.0036	< 0.0034	<0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	< 0.0036	< 0.0038	0.004	0.96
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL.	NA.	NCL	NCL	<0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	<0.0038	< 0.0037	< 0.0036	<0.0037	< 0.0036	< 0.0038	< 0.0034	0.11
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0037	< 0.0037	< 0.0036	< 0,0034	< 0.0037	<0,0038	< 0.0037	< 0.0036	<0,0037	< 0.0036	< 0.0038	< 0.0034	< 0.0035
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	< 0.0036	< 0.0038	< 0.0034	< 0.0035
Perfluoroheptanoic acid (PFHpA)	NCL	NCI.	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	<0.0036	< 0.0038	< 0.0034	0.3
Perfluorohexanoic acid (PFHxA)	NCI.	NCI.	NCI.	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	< 0.0036	< 0.0038	< 0.0034	0.27
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	<0.0036	< 0.0038	< 0.0034	< 0.0035
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA.	NCL	NCL	< 0.0019	<0.0018	< 0.0018	< 0.0017	< 0.0018	< 0.0019	< 0.0019	<0.0018	<0.0018	< 0.0018	< 0.0019	0.0018	1
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA.	NCL	NCL	<0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	< 0.0036	< 0.0038	< 0.0034	0.06
PFOA + PFOS (Calculated)	NCI.	NCI.	NCL.	0.01	NCL	NCL	ND.	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	0.0018	1.1
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	<0.0038	< 0.0037	<0.0036	< 0.0037	<0.0036	<0.0038	< 0.0034	0.12
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0037	<0.0038	< 0.0037	< 0.0036	< 0.0037	<0.0036	<0.0038	< 0.0034	< 0.0035
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0036	<0.0034	< 0.0037	< 0.0038	<0.0037	< 0.0036	< 0.0037	< 0.0036	<0.0038	< 0.0034	< 0.0035
Perfluoroundecanoic acid (PFUnDA)	NCI.	NCL	NCL-	NA	NCL	NCL	< 0.0037	<0.0037	< 0.0036	< 0.0034	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0037	< 0.0036	<0.0038	< 0.0034	< 0.0035
Total PFAS (Calculated)	NO	NCI	NC)	NA	NCI	NC)	ND	ND	ND	ND	ND	ND	ND	ND.	0.0073	0.0058	0.0068	0.013	3.8

Sample Location	- N. C.	5.000 p. 60	Part 201 Generic		EGLE Residential		HS-MW-17D	HS-MW-17D	HS-MW-17D	HS-MW-17M	HS-MW-17M	H5-MW-17M	H5-MW-17M	HS-MW-175	HS-MW-175	HS-MW-175	HS-MW-175	HS-MW-18D	HS-MW-18D
Sample Name	Part 201 Generic Residential		Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	H5-GW-MW17D	HS-GW-MW17D	HS-GW-MW-17D	H5-MW-17M	H5-GW-MW17M	HS-GW-MW17M	HS-GW-MW-17M	HS-MW-175	HS-GW-MW17S	HS-GW-MW175	H5-GW-MW-175	HS-MW-18D	HS-GW-MW18
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	222,1-227,1	222.1-227.1	222.1-227.1	167.3-172.3	167.3-172.3	167,3-172.3	167.3-172,3	105.8-110.8	105.8-110,8	105.8-110.8	105.8-110.8	140,6-145,6	140.6-145.6
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UE25011-001	UI19006-002	UL12091-010	UC09042-005	UE25011-003	UI12010-016	UL12091-012	UC09042-003	UE25011-002	UI12010-014	UL12091-007	UC02020-006	UE24001-004
Sample Date	Water	reater atternace	Indoor Air Inhalation		Level - Groundwater		05/23/2019	09/16/2019	12/10/2019	03/07/2019	05/23/2019	09/11/2019	12/11/2019	03/06/2019	05/23/2019	09/11/2019	12/10/2019	03/01/2019	05/21/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	<0.004	< 0.0037	< 0.0037	< 0.0036	<0,0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	<0.0038	< 0.0037	< 0.0037
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0035	<0.004	< 0.0037	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	<0.0038	< 0.0037	< 0.0037
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.004	< 0.0037	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	<0.0038	< 0.0037	< 0.0037
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCt.	NA	NCL	NCL	< 0.007	<0.007900001	< 0.0074	< 0.0074	< 0.0071	<0.0066	< 0.0068	< 0.0071	< 0.0069	< 0.0067	<0.0075	< 0.0073	< 0.0074
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0.41	0.47	0.42	0.004	0,0039	0.0036	0.0038	0.014	0.02	0.014	0.018	0.029	0.031
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.004	< 0.0037	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	<0.0038	< 0.0037	<0.0037
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	0.024	0.028	0.029	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	<0.0038	< 0.0037	< 0.0037
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.007	<0.007900001	< 0.0074	< 0.0074	<0.0071	<0.0066	<0.0068	< 0.0071	<0,0069	< 0.0067	<0.0075	< 0.0073	< 0.0074
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	<0,004	< 0.0037	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	<0,0035	< 0.0033	<0,0038	< 0.0037	< 0.0037
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	0,5	0.57	0.49	< 0.0037	< 0.0036	<0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	<0.0038	0.015	0.014
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NC).	1	1.1	1	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	<0.0035	< 0.0033	<0.0038	0.0074	0.0082
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA.	NCL	NCI.	0.11	0.12	0.12	< 0.0037	< 0.0036	< 0.0033	< 0.0034	0.0041	0.0058	0.0034	0.0042	0.018	0.02
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0,0035	< 0,004	< 0.0037	< 0.0037	< 0.0036	<0,0033	< 0.0034	< 0.0035	< 0,0035	< 0.0033	< 0.0038	< 0.0037	< 0.0037
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.004	< 0.0037	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	<0.0038	< 0.0037	< 0.0037
Perfluoroheptanoic acid (PFHpA)	NCI.	NCI.	NCL.	NA	NCL	NCL	0.3	0.33	0.31	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	< 0.0038	0.011	0.011
Perfluorohexanoic acid (PFHxA)	NCI.	NCL	NCI.	NA	NCI.	NCL	0.31	0.27	0.28	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	0.0054	0.022	0.024
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.004	< 0.0037	< 0.0037	<0.0036	<0,0033	< 0.0034	< 0.0035	<0,0035	< 0.0033	<0.0038	< 0.0037	< 0.0037
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA.	NCL	NCL	1.2	1.2	1.1	< 0.0019	< 0.0018	<0,0017	<0.0017	< 0.0018	< 0.0017	< 0.0017	<0.0019	0.014	0.015
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	0.058	0.072	0.076	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	<0.0038	<0.0037	< 0.0037
PFOA + PFOS (Calculated)	NCL	NCI:	NCL	0.01	NCL	NCL.	1.3	1,3	1.2	ND	ND	ND	ND.	ND	ND	ND	ND	0.014	0.015
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA.	NCL	NCL	0.13	0.13	0.14	< 0.0037	< 0.0036	< 0.0033	<0.0034	< 0.0035	0.0044	0.0048	0.0073	0.015	0.017
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA	NCL	NCL	<0.0035	< 0.004	< 0.0037	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	< 0.0038	< 0.0037	< 0.0037
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	<0.0035	< 0.004	< 0.0037	< 0.0037	< 0.0036	< 0.0033	<0.0034	< 0.0035	< 0.0035	< 0.0033	< 0.0038	< 0.0037	< 0.0037
Pertluoroundecanoic acid (PFUnDA)	NCL	NCL.	NCL-	NA	NCL	NCL	< 0.0035	<0.004	< 0.0037	< 0.0037	< 0.0036	< 0.0033	< 0.0034	< 0.0035	< 0.0035	< 0.0033	<0.0038	< 0.0037	< 0.0037
Total PFAS (Calculated)	NCI	NCL	NCI	NA	NCI	NCI.	4	4.3		0.004	0.0039	0.0036	0.0038	0.018	0.03	0.022	0.035	0.13	0.14

Sample Location	No. of the last	3.0 x 3 x 6 x 8	Part 201 Generic		EGLE Residential		HS-MW-18D	HS-MW-18D	HS-MW-185	H5-MW-185	HS-MW-185	HS-MW-185	HS-MW-19D	H5-MW-19D	H5-MW-19D	HS-MW-19D	HS-MW-19S	HS-MW-19S	HS-MW-19S
Sample Name	Part 201 Generic Residential	Part 201 Generic Groundwater Cleanup	C. CONSTITUTE CONTRACTOR		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW18D	HS-GW-MW-18D	HS-MW-185	HS-GW-MW18S	HS-GW-MW18S	HS-GW-MW-18S	HS-MW-19D	HS-GW-MW19D	HS-GW-MW19D	HS-GW-MW-19D	HS-MW-195	HS-GW-MW19S	HS-GW-MW199
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	140,6-145,6	140.6-145.6	12.8-22.8	12,8-22,8	12.8-22.8	12.8-22.8	85,9-95,9	85.9-95.9	85.9-95.9	85.9-95.9	58.4-61.4	58,4-61,4	58.4-61.4
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UI12010-006	UK19008-015	UC02020-007	UE24001-005	UI12010-010	UK21036-020	UC02020-005	UE24001-007	UI26001-003	UL12091-019	UC02020-004	UE24001-006	UI26001-002
Sample Date	- Water	Protes after foce	Indoor Air Inhalation ²		Level - Groundwater		09/10/2019	11/20/2019	03/01/2019	05/21/2019	09/10/2019	11/21/2019	02/28/2019	05/21/2019	09/23/2019	12/12/2019	02/28/2019	05/21/2019	09/23/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0034	<0.0037	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	<0.0038
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	< 0.0038
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	<0.0038
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCL	NA.	NCL	NCL	<0.0068	< 0.0075	< 0.0074	<0.0073	< 0.0068	<0,007	<0:007	< 0.007	< 0.0069	<0.0072	<0.0081	<0.0069	<0.0077
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0,025	0.029	0.0037	< 0.0036	< 0.0034	<0,0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	<0.004	< 0.0034	< 0.0038
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA-	NCL	NCL	< 0.0034	< 0.0037	< 0.0037	<0.0036	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	<0.0038
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	<0.0038
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0068	<0.0075	< 0.0074	< 0.0073	< 0.0068	< 0.007	<0,007	<0.007	<0.0069	<0.0072	<0,0081	< 0.0069	< 0.0077
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0035	<0.0035	<0,0034	< 0.0036	< 0.004	< 0.0034	< 0.0038
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA	NCL	NCL	0.012	0.014	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	<0.0038
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL	0.0062	0.0072	< 0.0037	< 0.0036	< 0.0034	0.0043	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	<0.0038
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA.	NCL	NCL	0.018	0.02	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	<0.0038
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0034	< 0.0037	< 0.0037	< 0,0036	< 0.0034	<0,0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	<0.0034	<0.0038
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	< 0.0038
Perfluoroheptanoic acid (PFHpA)	NCI.	NCI.	NCL	NA.	NCL	NCL	0.01	0.011	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	< 0.0038
Perfluorohexanoic acid (PFHxA)	NCL	NCI	NCL	NA	NCL	NCL	0.021	0.022	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0035	<0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	<0.0038
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0034	<0.0037	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0035	< 0.0035	<0.0034	< 0.0036	< 0.004	< 0.0034	< 0.0038
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA.	NCL	NCL	0.015	0.015	< 0.0019	< 0.0018	< 0.0017	<0.0017	< 0.0018	< 0.0018	< 0.0017	< 0.0018	<0.002	< 0.0017	< 0.0019
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	<0.0034	< 0,0037	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0035	< 0.0035	< 0.0034	<0.0036	< 0.004	< 0.0034	<0.0038
PFOA + PFOS (Calculated)	NCL.	NCI.	NCL	0.01	NCL	NCL	0.015	0.015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND.
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA.	NCL	NCL	0.016	0.016	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0035	< 0.0035	< 0.0034	<0,0036	< 0.004	< 0.0034	<0.0038
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0035	< 0.0035	< 0.0034	<0.0036	< 0.004	< 0.0034	<0.0038
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0037	<0.0036	< 0.0034	<0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	< 0.004	< 0.0034	<0.0038
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL-	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0034	< 0.0036	<0.004	< 0.0034	<0.0038
Total PFAS (Calculated)	NCL	NCL	NCL	NA.	NCL	NCL	0.12	0.13	0.0037	ND	ND	0.0043	ND	ND	ND.	ND	ND	ND	ND

Sample Location	- N. C. (1977) 1- 207	1.000 - 10	Part 201 Generic		EGLE Residential		HS-MW-195	HS-MW-20D	HS-MW-20D	HS-MW-20D	HS-MW-20D	H5-MW-20M	HS-MW-20M	HS-MW-20M	HS-MW-20M	HS-MW-20M	HS-MW-20S	HS-MW-20S	HS-MW-20S
Sample Name	Part 201 Generic Residential	Part 201 Generic Groundwater Cleanup	CONTRACTOR OF THE PROPERTY OF		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW-19S	HS-MW-20D	HS-GW-MW20D	HS-GW-MW20D	HS-GW-MW-20D	HS-MW-20M	HS-GW-MW20M	HS-GW-MW20M	HS-GW-MW20M DUP	HS-GW-MW-20M	MW-205	HS-GW-MW20S	HS-GW-MW20
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	58,4-61,4	126.1-131.1	126.1-131.1	126.1-131.1	126.1-131.1	101.5-106.5	101,5-106,5	101.5-106.5	101,5-106,5	101.5-106.5	61.1-66.1	61,1-66,1	61.1-66.1
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UL12091-016	UC09042-002	UE30036-003	UI19006-022	UK29008-019	UC09042-001	UE30036-002	UI19006-020	UI19006-021	UK29008-002	UC06036-001	UE30036-001	UI19006-019
Sample Date	Water	reater atternace	Indoor Air Inhalation ²		Level - Groundwater		12/11/2019	03/06/2019	05/28/2019	09/18/2019	11/27/2019	03/06/2019	05/28/2019	09/18/2019	09/18/2019	11/26/2019	03/04/2019	05/28/2019	09/18/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	<0,0035	< 0.0036	< 0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0035	<0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	<0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCI.	NCL	NA	NCL	NCL	< 0.0072	< 0.0071	< 0.0073	< 0.007	< 0.0069	< 0.0074	< 0.0069	< 0.0069	< 0.007	< 0.0071	< 0.0071	< 0.0074	< 0.0071
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	<0,0036	0.16	0,17	0.17	0.15	0,071	0.068	0.069	0,07	0.06	0.015	0.016	0.018
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	<0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0035	0.0095	0.0088	0.008	0.0084	0.0077	< 0.0036	< 0.0037	< 0.0035
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	<0.0072	<0.0071	< 0.0073	<0.007	<0.0069	<0.0074	< 0.0069	<0.0069	<0.007	<0.0071	<0.0071	< 0.0074	<0.0071
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0036	< 0.0035	< 0.0036	< 0.0035	< 0.0035	<0.0037	< 0.0035	< 0.0035	<0,0035	< 0.0035	<0,0036	< 0.0037	< 0.0035
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	<0.0036	0.097	0.098	0.11	0.098	0.083	0.079	0.08	0,085	0.062	0.013	0.013	0.016
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0036	0.042	0.042	0.046	0.043	0.16	0.16	0.15	0.14	0.13	0.014	0.017	0.019
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA.	NCL	NCL	<0.0036	0.047	0.052	0.05	0.049	0.015	0.015	0.015	0.014	0.014	0.0042	0.0043	0.0047
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0036	< 0.0035	< 0.0036	<0,0035	<0.0035	<0,0037	< 0.0035	< 0.0035	<0,0035	< 0.0035	< 0.0036	<0.0037	< 0.0035
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0035	< 0.0037	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
Perfluoroheptanoic acid (PFHpA)	NCI.	NCI.	NCL	NA.	NCL	NCL	< 0.0036	0.07	0.078	0.077	0.076	0.043	0.042	0.039	0.045	0.038	0.0056	0.0082	0.0094
Perfluorohexanoic acid (PFHxA)	NCI.	NCI.	NC).	NA	NCL	NCL	< 0.0036	0.088	0.1	0.1	0.1	0.038	0.038	0.036	0.034	0.034	0.0068	0.0085	0.0093
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0035	< 0,0036	< 0.0035	<0.0035	< 0.0037	< 0.0035	< 0.0035	<0,0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA	NCL	NCL	< 0.0018	0.09	0.12	0.12	0.11	0.16	0.17	0.17	0.17	0.15	0.016	0.022	0.022
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	<0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0035	0.04	0.034	0.033	0.032	0.029	< 0.0036	<0,0037	< 0.0035
PFOA + PFOS (Calculated)	NCL.	NCI.	NCL	0.01	NCL	NCL.	ND.	0.09	0.12	0.12	0.11	0.2	0.2	0.2	0.2	0.18	0.016	0.022	0.022
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA:	NCL	NCL	< 0.0036	0.045	0.054	0.052	0.049	0.017	0.017	0.015	0,016	0.014	< 0.0036	0.0039	0.0045
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	<0.0035	< 0.0036	< 0.0035	<0.0035	<0.0037	< 0.0035	< 0.0035	< 0.0035	<0.0035	< 0.0036	<0.0037	< 0.0035
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0035	< 0.0035	< 0.0037	<0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
Perfluoroundecanoic acid (PFUnDA)	NCI.	NCI.	NCI.	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0036	< 0.0035	<0.0035	< 0.0037	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	<0.0037	< 0.0035
Total PFAS (Calculated)	NCI	NCL	NCI	NA	NCL	NCL	ND	0.64	0.71	0.73	0.68	0.64	0.63	0.62	0.61	0.54	0.075	0.093	0.1

Sample Location	The state of the	To a second second	Part 201 Generic		EGLE Residential		HS-MW-20S	HS-MW-21D	HS-MW-21D	HS-MW-21D	HS-MW-21D	HS-MW-21D	HS-MW-21D	HS-MW-21M	HS-MW-21M	HS-MW-21M	HS-MW-21M	HS-MW-21S	HS-MW-21S
Sample Name	Part 201 Generic Residential	COLUMN TO STREET, STRE	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW-20S	H5-MW-21D	HS-GW-MW21D	HS-GW-MW21D DUP	HS-GW-MW21D	HS-GW-MW-21D	HS-GW-MW-21D DUP	HS-MW-21M	H5-GW-MW21M	HS-GW-MW21M	HS-GW-MW-21M	HS-MW-21S	HS-GW-MW2
Well Screen Interval (Feet below ground surface)	Groundwater Cleanu Criteria – Drinking	p Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ⁴	Indoor Air Interim	Removal	61,1-66,1	76.2-86.2	76.2-86.2	76.2-86.2	76.2-86.2	76,2-86,2	76.2-86.2	59-64	59-64	59-64	59-64	9.8-19.8	9,8-19,8
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UK29008-001	UB28086-003	UE18016-001	UE18016-002	Ul19006-003	UL12091-001	UL12091-002	UB28086-002	UE18016-003	UI19006-004	UK29008-020	UB28086-001	UE18016-00
Sample Date	water	Mater arreviace	Indoor Air Inhalation ²		Level - Groundwater		11/26/2019	02/27/2019	05/16/2019	05/16/2019	09/16/2019	12/09/2019	12/09/2019	02/27/2019	05/16/2019	09/16/2019	11/27/2019	02/27/2019	05/16/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	<0,0036	< 0.0036	< 0.0036	< 0.0036	<0,0036	< 0.0035	< 0.0037	<0,0036	< 0.0036	<0,0037	< 0.0037	<0.0037
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0036	< 0.0036	< 0.0036	0.0058	< 0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	<0.0037	< 0.0037	< 0.0037
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	<0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0037	< 0.0037
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCI.	NCL	NA	NCL	NCL	< 0.007	< 0.0072	< 0.0073	< 0.0073	< 0.0072	<0.0072	< 0.0071	< 0.0075	<0.0073	< 0.0071	<0.0074	<0.0073	< 0.0074
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0,018	< 0.0036	< 0.0036	< 0.0036	< 0.0036	<0,0036	<0.0035	< 0.0037	<0,0036	< 0.0036	<0.0037	< 0.0037	< 0.0037
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0036	< 0.0036	<0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0037	<0.0037
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	<0.0037	< 0.0037	< 0.0037
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.007	<0.0072	< 0.0073	< 0.0073	<0.0072	<0.0072	< 0.0071	< 0.0075	<0,0073	<0.0071	<0.0074	< 0.0073	< 0.0074
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0035	< 0.0036	< 0.0036	< 0.0035	< 0.0036	< 0.0036	< 0.0035	< 0.0037	<0,0036	< 0.0036	<0,0037	< 0.0037	< 0.0037
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	0,012	< 0.0036	<0.0036	< 0.0036	<0.0036	<0.0036	< 0.0035	< 0.0037	<0.0036	< 0.0036	<0.0037	< 0.0037	< 0.0037
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	0.013	< 0.0036	< 0.0036	<0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	<0.0037	< 0.0037	< 0.0037
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL.	NA.	NCL	NCL	0.0067	< 0.0036	< 0.0036	< 0.0036	< 0.0036	<0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0037	< 0.0037
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0035	< 0.0036	< 0.0036	< 0,0036	< 0.0036	<0,0036	< 0.0035	< 0.0037	<0,0036	< 0.0036	<0.0037	< 0.0037	< 0.0037
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	<0.0037	< 0.0037	< 0.0037
Perfluoroheptanoic acid (PFHpA)	NCI.	NCI.	NCL	NA	NCL	NCL	0.0092	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0037	< 0.0037
Perfluorohexanoic acid (PFHxA)	NCI.	NCI.	NCI.	NA	NCL	NCL	-0.013	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0037	< 0.0037
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0035	< 0.0036	< 0.0036	< 0.0036	<0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	<0.0037	< 0.0037	< 0.0037
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA	NCL	NCL	0.023	< 0.0018	< 0.0018	< 0.0018	< 0.0018	<0.0018	<0.0018	<0.0019	< 0.0018	<0.0018	<0.0019	0.0028	0.0026
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	<0,0035	<0,0036	< 0.0036	< 0.0036	< 0.0036	<0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0037	< 0.0037
PFOA + PFOS (Calculated)	NCI.	NCI:	NCL.	0.01	NCL	NCL	0.023	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0028	.0,0026
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA.	NCL	NCL	0.0064	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	<0.0036	<0.0036	<0.0037	< 0.0037	< 0.0037
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	<0.0036	<0.0036	<0.0037	< 0.0037	< 0.0037
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0036	< 0.0036	<0.0036	< 0.0036	< 0.0036	<0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0037	< 0.0037
Perfluoroundecanoic acid (PFUnDA)	NCI.	NCL	NCL.	NA	NCL	NCL	< 0.0035	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0035	< 0.0037	< 0.0036	< 0.0036	<0.0037	< 0.0037	< 0.0037
Total PEAS (Calculated)	NCI	NCL	NC)	NA	NCI	NCL	0.1	ND	ND.	ND	0.0058	ND	ND.	ND.	ND	ND	ND	0.0028	0,0026

Sample Location	The second second	5. WEST 20 F.O.	Part 201 Generic		EGLE Residential		HS-MW-215	HS-MW-215	H5-MW-23A	H5-MW-23A	HS-MW-23B	HS-MW-23B	HS-MW-23C	HS-MW-23C	H5-MW-23D	HS-MW-23D	HS-MW-24A	HS-MW-248	HS-MW-25D
Sample Name	Part 201 Generic Residential	C12 -	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW21S	HS-GW-MW-215	HS-GW-MW23A	H5-GW-MW-23A	HS-GW-MW23B	HS-GW-MW-238	HS-GW-MW23C	H5-GW-MW-23C	HS-GW-MW23D	HS-GW-MW-23D	HS-GW-MW-24A	HS-GW-MW-248	HS-MW-25D
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	9.8-19.8	9.8-19.8	72.1-77.1	72,1-77,1	137.9-142.8	137.9-142.8	210.2-215	210,2-215	238.9-243.9	238.9-243.9	55.6-60,4	225.2-230	65.7-70.7
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UI19006-006	UK29008-022	UI21016-007	UL05055-032	UI21016-009	UL05055-033	UI26001-001	UL05055-034	UI21016-008	UL12091-008	UL12091-009	UL12091-015	UC02020-009
Sample Date	Water	reater atteriace	Indoor Air Inhalation ²		Level - Groundwater		09/16/2019	11/27/2019	09/20/2019	12/06/2019	09/20/2019	12/06/2019	09/23/2019	12/06/2019	09/20/2019	12/10/2019	12/10/2019	12/11/2019	03/01/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	<0,0035	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	<0,0035	< 0.0037	< 0.0036
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0035	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0037	< 0.0036
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0035	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0037	< 0.0036
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCI.	NCL	NA.	NCL	NCL	< 0.0074	< 0.007	<0.0072	< 0.0071	<0.0068	<0,007	< 0.007	<0.0071	<0.0069	<0.0072	<0.007	<0.0074	< 0.0072
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	< 0.0037	0,0036	0.02	0.018	0.015	0,014	0.26	0.28	0,23	0.14	< 0.0035	< 0.0037	0.016
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0035	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0037	< 0.0036
Perfluoroheptane suffonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0035	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	<0.0037	< 0.0036
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0074	<0.007	< 0.0072	< 0.0071	<0.0068	< 0.007	< 0.007	< 0.0071	<0,0069	<0.0072	< 0.007	< 0.0074	< 0.0072
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0035	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	<0.0035	<0,0035	< 0.0036	<0.0035	< 0.0037	< 0.0036
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA	NCL	NCL	<0.0037	< 0.0035	0.011	0.0094	0.0081	0.0071	0,22	0.23	0.15	0.076	< 0.0035	< 0.0037	< 0.0036
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0035	0.02	0.019	0.019	0.015	0.091	0.09	0.016	0.011	<0.0035	< 0.0037	0.008
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA.	NCL	'NCL	<0.0037	< 0.0035	< 0.0036	< 0.0035	< 0.0034	< 0.0035	0.064	0.067	0.067	0.043	< 0.0035	< 0.0037	0.0054
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL.	NA.	NCL	NCL	< 0.0037	< 0.0035	< 0.0036	< 0.0035	< 0.0034	<0.0035	< 0.0035	< 0.0035	< 0,0035	< 0.0036	< 0.0035	< 0.0037	< 0.0036
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0035	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	< 0.0037	< 0.0036
Perfluoroheptanoic acid (PFHpA)	NCI.	NCI.	NCL	NA.	NCL	NCL	< 0.0037	< 0.0035	< 0.0036	< 0.0035	< 0.0034	< 0.0035	0,05	0.057	0.037	0.02	<0.0035	<0.0037	0.0056
Perfluorohexanoic acid (PFHxA)	NCI.	NCI.	NC).	NA	NCI.	NCI.	< 0.0037	< 0.0035	0.0047	< 0.0035	0.0061	0.0044	0.22	0.26	0.24	0.16	< 0.0035	< 0.0037	0.011
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0035	< 0,0036	< 0.0035	< 0.0034	<0.0035	< 0.0035	< 0.0035	<0,0035	< 0.0036	<0.0035	< 0.0037	< 0.0036
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA	NCL	NCL	0.0034	0.0031	0.013	0.012	0.0075	0.0082	0.03	0.03	0.013	0.0056	<0.0017	< 0.0018	0.016
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	<0,0037	< 0.0035	0.0042	0.015	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	<0.0036	< 0.0035	<0.0037	0.072
PFOA + PFOS (Calculated)	NCL.	NCI.	NCL	0.01	NCL	NCL	0.0034	0.0031	0.017	0.027	0.0075	0.0082	0.03	0.03	0.013	0.0056	ND	ND	0.088
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0035	<0.0036	< 0.0035	< 0.0034	<0.0035	0.1	0.11	0.13	0.08	< 0.0035	< 0.0037	0.0091
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0035	< 0.0036	< 0.0035	< 0.0034	<0.0035	< 0.0035	< 0.0035	< 0.0035	<0.0036	< 0.0035	<0.0037	< 0.0036
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0035	< 0.0036	<0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	<0.0037	< 0.0036
Pertluoroundecanoic acid (PFUnDA)	NCL	NCI.	NCL-	NA	NCL	NCL	< 0.0037	<0.0035	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0036	< 0.0035	<0.0037	< 0.0036
Total PFAS (Calculated)	NCI	NCL	NC)	NA	NCI	NC1	0.0034	0.0067	0.073	0.073	0.056	0.049	1	1.1	0.88	0.54	ND	ND	0.14

Sample Location			Part 201 Generic		EGLE Residential		HS-MW-25D	HS-MW-25D	HS-MW-25D	H5-MW-255	HS-MW-25S	HS-MW-255	HS-MW-25S	H5-MW-26D	HS-MW-26D	HS-MW-26D	H5-MW-26D	HS-MW-26M	HS-MW-26N
Sample Name	Part 201 Generic Residential	Part 201 Generic Groundwater Cleanup	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW25D	HS-GW-MW25D	HS-GW-MW-25D	HS-MW-255	HS-GW-MW255	HS-GW-MW255	HS-GW-MW-25S	HS-MW-26D	HS-GW-MW26D	HS-GW-MW26D	HS-GW-MW-26D	HS-MW-26M	HS-GW-MW2
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup	Criteria –	Criteria –	CD Value ³	Indoor Air Interim	Removal	65.7-70.7	65.7-70.7	65.7-70.7	51.1-56.1	51.1-56.1	51.1-56.1	51,1-56.1	79.6-84.6	79.6-84.6	79.6-84.6	79.6-84.6	61.7-66.7	61.7-66.7
Laboratory Sample ID(s)	Criteria – Drinking Water ²	Groundwater Surface Water Interface	Groundwater Volatilization to		Action Screening	Management Levels ⁵	UE15023-008	UI19006-009	UL05055-004	UC02020-008	UE15023-007	UI19006-012	UL05055-002	UC02020-003	UE15023-009	UI12010-013	UK21036-008	UC02020-002	UE15023-01
Sample Date	water	Water after face	Indoor Air Inhalation ²		Level - Groundwater		05/14/2019	09/17/2019	12/02/2019	03/01/2019	05/14/2019	09/17/2019	12/02/2019	02/28/2019	05/15/2019	09/11/2019	11/19/2019	02/28/2019	05/15/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0037	< 0.0037	< 0.0038	< 0.0037	< 0.0036	<0.0038	< 0.0037	< 0.0037	<0,0036	< 0.0038	<0,0035	<0.0038	<0.0037
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0038	< 0.0037	< 0.0037	<0.0036	<0.0038	<0.0035	<0.0038	< 0.0037
N-Ethyl perfluorooctane sulfonamide (EtFQSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0038	< 0.0037	< 0.0037	< 0.0036	< 0.0038	< 0.0035	< 0.0038	< 0.0037
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCt.	NA.	NCL	NCL	< 0.0074	< 0.0073	< 0.0077	< 0.0073	< 0.0072	<0.0076	< 0.0074	< 0.0074	< 0.0071	<0.0077	<0.007	< 0.0076	< 0.0074
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0,012	0.011	0.018	0.017	0,01	0.0082	0.012	< 0.0037	<0,0036	<0.0038	< 0.0035	0.0044	0,0046
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0038	< 0.0037	<0.0036	< 0.0038	< 0.0037	< 0.0037	< 0.0036	<0.0038	< 0.0035	<0.0038	< 0.0037
Perfluoroheptane sulfonic acid (PFHpS)	NCI.	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0038	< 0.0037	<0.0036	< 0.0038	< 0.0037	< 0.0037	< 0.0036	<0.0038	<0.0035	< 0.0038	< 0.0037
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0074	< 0.0073	< 0.0077	< 0.0073	<0.0072	< 0.0076	< 0.0074	< 0.0074	<0,0071	<0.0077	< 0.007	<0.0076	< 0.0074
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0037	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0038	< 0.0037	< 0.0037	<0,0036	< 0.0038	<0.0035	< 0.0038	< 0.0037
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	<0.0038	< 0.0037	< 0.0036	<0.0038	< 0.0037	< 0.0037	<0.0036	<0.0038	<0.0035	< 0.0038	< 0.0037
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	0.0069	0.007	0.0082	0.0083	0.0045	0.0045	0.0057	< 0.0037	<0.0036	<0.0038	<0.0035	< 0.0038	< 0.0037
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL.	NA.	NCL	NCL	0.0047	0.0045	0.0054	0.0046	< 0.0036	<0.0038	0.0039	< 0.0037	< 0.0036	<0.0038	< 0.0035	<0.0038	< 0.0037
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL.	NA.	NCL	NCL	< 0,0037	< 0.0037	< 0.0038	< 0,0037	< 0.0036	<0,0038	< 0.0037	< 0.0037	<0,0036	< 0.0038	< 0.0035	< 0.0038	< 0.0037
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	< 0.0038	< 0.0037	< 0.0036	< 0.0038	< 0.0037	< 0.0037	< 0.0036	< 0.0038	<0.0035	<0.0038	< 0.0037
Perfluoroheptanoic acid (PFHpA)	NCI.	NCL.	NCL	NA	NCL	NCL	0.0045	< 0.0037	0.005	0.064	< 0.0036	< 0.0038	0.0049	< 0.0037	< 0.0036	<0.0038	< 0.0035	<0.0038	< 0.0037
Perfluorohexanoic acid (PFHxA)	NCI.	NCI.	NCI.	NA.	NCL	NCL	0.01	0.0076	0.012	0.0089	0.0056	0.0068	0.0092	< 0.0037	< 0.0036	<0.0038	< 0.0035	<0.0038	< 0.0037
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0037	< 0.0037	<0.0038	< 0.0037	<0.0036	< 0.0038	< 0.0037	< 0.0037	<0.0036	<0.0038	<0.0035	<0.0038	< 0.0037
Perfluorooctonoic acid (PFOA)	800.0	12	(D	NA	NCL	NCL	0.014	0.01	0.015	0.012	0.0091	0.011	0.014	0.0022	<0.0018	<0.0019	<0.0017	0.006	0.0055
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	0.051	0.039	0.042	0.11	0.071	0.057	0.061	< 0.0037	< 0.0036	< 0.0038	< 0.0035	0.014	0.011
PFOA + PFOS (Calculated)	NCI.	NCI.	NCL	0.01	NCL	NCL	0.065	0.049	0.057	0.12	0.08	0.068	0.075	0,0022	ND	ND	ND	0.02	0.017
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA	NCL	NCL	0.0086	0.0061	0.0087	0.007	0.0043	0.0047	0.0067	<0,0037	< 0.0036	<0.0038	<0.0035	< 0.0038	< 0.0037
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	<0.0038	< 0.0037	< 0.0036	<0.0038	< 0.0037	< 0.0037	<0.0036	<0.0038	<0.0035	<0.0038	< 0.0037
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	<0.0037	<0.0038	<0.0037	<0.0036	< 0.0038	<0.0037	< 0.0037	< 0.0036	<0.0038	< 0.0035	<0.0038	< 0.0037
Perfluoroundecanoic acid (PFUnDA)	NCI.	NCL	NCL.	NA	NCL	NCL	< 0.0037	< 0.0037	<0.0038	< 0.0037	< 0.0036	< 0.0038	< 0.0037	< 0.0037	< 0.0036	<0.0038	< 0.0035	<0.0038	< 0.0037
Total PEAS (Calculated)	NCI	NCL	NCI	NA	NCI	NC)	0.17	0.085	0.11	0.17	0.1	0.097	0.12	0.0022	ND	ND	ND	0.024	0.021

Sample Location	Control or	U ASSESSED	Part 201 Generic		EGLE Residential		HS-MW-26M	HS-MW-26M	HS-MW-265	H5-MW-265	HS-MW-26S	HS-MW-265	HS-MW-26S	HS-MW-27A	H5-MW-27B	HS-MW-27B	HS-MW-27C	HS-MW-27C	HS-MW-27D
Sample Name	Part 201 Generic Residential	Part 201 Generic Groundwater Cleanup	CONTRACTOR CONTRACTOR		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW26M	HS-GW-MW-26M	HS-MW-26S	HS-GW-MW26S	HS-GW-MW265	HS-GW-MW26S DUP	HS-GW-MW-265	HS-GW-MW-27A	HS-GW-MW27B	HS-GW-MW-27B	HS-GW-MW27C	HS-GW-MW-27C	HS-GW-MW2
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup	Criteria –	Criteria –	CD Value ³	Indoor Air Interim	Removal	61.7-66.7	61.7-66.7	25.8-30.8	25,8-30,8	25.8-30.8	25,8-30,8	25,8-30.8	21.6-26.2	35.4-38	35.4-38	41.3-45.9	41.3-45.9	52.4-56.4
Laboratory Sample ID(s)	Criteria – Drinking Water ²	Groundwater Surface Water Interface	Groundwater Volatilization to		Action Screening	Management Levels ⁵	UI12010-017	UK21036-005	UC02020-001	UE15023-010	UI12010-015	UI12010-018	UK21036-001	UK19008-001	UI12010-002	UK19008-003	UI12010-001	UK19008-002	UI12010-003
Sample Date	water	Angles attendace	Indoor Air Inhalation ²		Level - Groundwater		09/11/2019	11/19/2019	02/28/2019	05/15/2019	09/11/2019	09/11/2019	11/19/2019	11/18/2019	09/09/2019	11/18/2019	09/09/2019	11/18/2019	09/09/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0035	<0,0037	< 0.0036	< 0.0036	< 0.0038	<0.0037	< 0.0037	<0.0038	<0,0034	<0.0037	<0,0036	< 0.0038	< 0.0034
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	< 0.0037	< 0.0037	<0.0038	<0.0034	< 0.0037	<0.0035	<0.0038	< 0.0034
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	<0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	< 0.0037	< 0.0037	<0.0038	< 0.0034	< 0.0037	< 0.0035	<0.0038	< 0.0034
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCL	NA	NCL	NCL	< 0.0071	< 0.0073	< 0.0073	< 0.0073	< 0.0076	<0.0073	< 0.0073	<0.0077	<0.0068	< 0.0075	<0.0072	<0.0075	<0.0068
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0.0049	0,0053	< 0.0036	< 0.0036	<0.0038	<0,0037	< 0.0037	0.004	< 0.0034	< 0.0037	< 0.0036	< 0.0038	< 0.0034
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0037	< 0.0036	<0.0036	<0.0038	< 0.0037	< 0.0037	< 0.0038	< 0.0034	< 0.0037	<0.0036	<0.0038	< 0.0034
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	<0.0037	< 0.0037	<0.0038	< 0.0034	< 0.0037	<0.0036	<0.0038	< 0.0034
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0071	<0.0073	< 0.0073	< 0.0073	<0.0076	<0.0073	< 0.0073	<0.0077	<0,0068	< 0.0075	<0.0072	< 0.0075	<0.0068
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NEL	NA.	NCL	NCL	<0,0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	<0.0037	< 0.0037	<0.0038	<0,0034	< 0.0037	<0,0036	< 0.0038	< 0.0034
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA	NCL	NCL	<0.0035	< 0.0037	<0.0036	< 0.0036	< 0.0038	<0.0037	< 0.0037	<0.0038	<0.0034	< 0.0037	<0.0036	< 0.0038	< 0.0034
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	< 0.0037	<0.0037	0.0056	<0.0034	< 0.0037	<0.0036	<0.0038	< 0.0034
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL.	NA.	NCL	NCL	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	<0.0037	< 0.0037	0.0067	< 0.0034	< 0.0037	< 0.0036	<0.0038	< 0.0034
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA	NCL	NCL	<0,0035	< 0.0037	< 0.0036	< 0,0036	< 0.0038	<0,0037	< 0.0037	<0.0038	< 0.0034	< 0.0037	< 0.0036	<0.0038	< 0.0034
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0037	<0.0036	< 0.0036	< 0.0038	< 0.0037	< 0.0037	<0.0038	< 0.0034	< 0.0037	< 0.0036	<0.0038	< 0.0034
Perfluoroheptanoic acid (PFHpA)	NCI.	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	< 0.0037	< 0.0037	< 0.0038	< 0.0034	< 0.0037	< 0.0036	<0.0038	< 0.0034
Perfluorohexanoic acid (PFHxA)	NCL	NCI.	NCL	NA	NCL	NCL	< 0.0035	< 0.0037	<0.0036	< 0.0036	< 0.0038	< 0.0037	< 0.0037	0.0069	< 0.0034	< 0.0037	< 0.0036	<0.0038	< 0.0034
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	<0.0037	< 0.0037	<0,0038	<0.0034	< 0.0037	<0.0036	<0.0038	< 0.0034
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA	NCL	NCL	0.0054	0.0052	< 0.0018	< 0.0018	< 0.0019	<0.0018	<0.0018	0.0051	< 0.0017	<0.0019	<0.0018	< 0.0019	< 0.0017
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	0.016	0.017	< 0.0036	< 0.0036	< 0.0038	< 0.0037	< 0.0037	<0.0038	< 0.0034	< 0.0037	< 0.0036	<0.0038	< 0.0034
PFOA + PFOS (Calculated)	NCL	NCI.	NCL	0.01	NCL	NCL	0.021	0.022	ND	ND	ND	ND	ND	0.0051	ND	ND	ND	ND	ND
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	< 0.0037	< 0.0037	<0.0038	< 0.0034	<0.0037	<0.0036	< 0.0038	< 0.0034
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	< 0.0037	< 0.0037	<0.0038	< 0.0034	< 0.0037	< 0.0036	< 0.0038	< 0.0034
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0037	< 0.0036	< 0.0036	< 0.0038	< 0.0037	<0.0037	<0.0038	< 0.0034	< 0.0037	< 0.0036	<0.0038	< 0.0034
Pertluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL.	NA	NCL	NCL	< 0.0035	<0.0037	< 0.0036	< 0.0036	< 0.0038	<0.0037	< 0.0037	< 0.0038	< 0.0034	< 0.0037	<0.0036	< 0.0038	< 0.0034
Total PEAS (Calculated)	NCI	NCL	NC)	NΔ	NCI	NC)	0.026	0.028	ND	ND	ND	ND	ND	0.028	ND	ND	ND	ND	ND

Sample Location	Value Village	1 1 2 2 2 2 2 W	Part 201 Generic		EGLE Residential		HS-MW-27D	HS-MW-27E	HS-MW-27E	HS-MW-28A	HS-MW-28A	HS-MW-28B	HS-MW-28B	HS-MW-28C	H5-MW-28C	HS-MW-28D	HS-MW-28D	HS-MW-28D	HS-MW-28E
Sample Name	Part 201 Generic Residential	COLUMN TO SERVICE STATE OF THE PARTY OF THE	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW-27D	HS-GW-MW27E	HS-GW-MW-27E	HS-GW-MW28A	HS-GW-MW-28A	HS-GW-MW28B	HS-GW-MW-28B	H5-GW-MW28C	HS-GW-MW-28C	HS-GW-MW28D	HS-GW-MW-28D	HS-GW-MW-28D DUP	HS-GW-MW2
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria –	Criteria – Groundwater	CD Value ⁴	Indoor Air Interim	Removal	52.4-56.4	58.5-62.5	58.5-62.5	39.1-43.7	39.1-43.7	43,3-47,9	43.3-47.9	49.2-53.8	49,2-53,8	62,2-66.8	62,2-66.8	62,2-66,8	82.7-87.3
Laboratory Sample ID(s)	Water ²	Groundwater Surface Water Interface ²	Volatilization to		Action Screening	Management Levels ⁵	UK21036-002	UI12010-004	UK19008-004	Ul19006-013	UK21036-018	UI19006-005	UK21036-019	UI19006-001	UK21036-016	UI19006-010	UK21036-014	UK21036-015	UI19006-011
Sample Date	water	water affer face	Indoor Air Inhalation		Level - Groundwater		11/19/2019	09/09/2019	11/18/2019	09/17/2019	11/21/2019	09/16/2019	11/21/2019	09/16/2019	11/21/2019	09/17/2019	11/21/2019	11/21/2019	09/17/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0038	<0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	<0.0038	<0,0035	< 0.0035	<0,0036	< 0.0037	< 0.0035
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	<0.0038	< 0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	0.011	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
N-Ethyl perfluorooctane sulfonamide (EtFQSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0038	< 0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	< 0.0038	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCt.	NA	NCL	NCL	< 0.0076	< 0.0073	< 0.0074	< 0.0072	< 0.0072	<0.0074	< 0.0075	< 0.0076	<0.0071	<0.007	<0.0072	< 0.0074	< 0.007
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	< 0.0038	< 0.0036	< 0.0037	0.0063	0,0047	0.0083	0.0092	<0.0038	<0,0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA-	NCL	NCL	< 0.0038	< 0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	< 0.0038	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
Perfluoroheptane sulfonic acid (PFHpS)	NCI.	NCL	NCL	NA	NCL	NCL	< 0.0038	< 0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	<0.0038	< 0.0035	< 0.0035	< 0.0036	<0.0037	< 0.0035
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	<0.0076	<0.0073	< 0.0074	<0.0072	<0.0072	<0.0074	< 0.0075	< 0.0076	<0.0071	<0.007	<0.0072	< 0.0074	<0.007
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0038	< 0.0036	< 0.0037	< 0.0035	< 0.0036	< 0.0037	< 0.0038	<0,0038	< 0.0035	< 0.0035	<0,0036	< 0.0037	< 0.0035
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA	NCL	NCL	<0.0038	< 0.0036	<0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	<0.0038	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0038	< 0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	<0.0038	< 0.0035	< 0.0035	<0.0036	< 0.0037	< 0.0035
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA.	NCL	NCL	<0.0038	0.01	0.0074	< 0.0036	< 0.0036	<0.0037	< 0.0038	< 0.0038	< 0.0035	< 0.0035	< 0.0036	< 0.0037	<0.0035
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA	NCL	NCL	<0,0038	< 0.0036	< 0.0037	< 0,0036	< 0.0036	<0,0037	< 0.0038	<0.0038	<0,0035	< 0.0035	< 0.0036	<0.0037	< 0.0035
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0038	< 0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	< 0.0038	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
Perfluoroheptanoic acid (PFHpA)	NCI.	NCL	NCL.	NA.	NCL	NCL	< 0.0038	< 0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	<0.0038	< 0.0035	< 0.0035	< 0.0036	<0.0037	< 0.0035
Perfluorofiexanoic acid (PFHxA)	NCI.	NCI	NCL	NA	NCL	NCL	< 0.0038	0.0037	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	<0.0038	< 0.0035	< 0.0035	< 0.0036	<0.0037	< 0.0035
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0038	< 0.0036	< 0.0037	< 0.0036	< 0.0036	<0.0037	< 0.0038	<0.0038	<0,0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
Perfluorooctonoic acid (PFDA)	0.008	12	(D	NA	NCL	NCL	<0.0019	0.0031	0.0025	< 0.0018	< 0.0018	0.0023	< 0.0019	<0.0019	< 0.0018	< 0.0017	< 0.0018	< 0.0018	< 0.0018
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA.	NCL	NCL	<0.0038	< 0,0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	< 0.0038	< 0.0035	<0.0035	< 0.0036	< 0.0037	< 0.0035
PFOA + PFOS (Calculated)	NCI.	NCI.	NCL	0.01	NCL	NCL	ND.	0.0031	0.0025	ND	ND	0.0023	ND	ND	ND	ND	ND	ND	ND.
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0038	< 0.0036	< 0.0037	< 0.0036	<0.0036	< 0.0037	< 0.0038	<0.0038	<0.0035	< 0.0035	<0.0036	< 0.0037	< 0.0035
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0038	<0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	< 0.0038	< 0.0035	< 0.0035	<0.0036	< 0.0037	< 0.0035
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0038	<0.0036	< 0.0037	<0.0036	< 0.0036	< 0.0037	<0.0038	< 0.0038	< 0.0035	< 0.0035	< 0.0036	<0.0037	< 0.0035
Pertluoroundecanoic acid (PFUnDA)	NCI.	NCL	NCI.	NA	NCL	NCL	< 0.0038	< 0.0036	< 0.0037	< 0.0036	< 0.0036	< 0.0037	< 0.0038	< 0.0038	< 0.0035	< 0.0035	< 0.0036	< 0.0037	< 0.0035
Total PEAS (Calculated)	NCI	NCL	NC)	NA	NCI.	NC)	ND	0.017	0.0099	0.0063	0.0047	0.011	0.0097	0.011	ND	ND	ND	ND	ND

Sample Location	No. of the	Total Colors	Part 201 Generic		EGLE Residential		HS-MW-28E	HS-MW-29A	H5-MW-29B	H5-MW-29C	HS-MW-29D	HS-MW-30A	A0E-WM-2H	HS-MW-30A	HS-MW-30A	HS-MW-30B	HS-MW-30B	HS-MW-30B	HS-MW-30C
Sample Name	Part 201 Generic Residential	CONTRACTOR STREET	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW-28E	H5-GW-MW-29A	HS-GW-MW-29B	HS-GW-MW-29C	HS-GW-MW-29D	HS-GW-MW30A	HS-GW-MW30A	HS-GW-MW-30A	HS-GW-MW-30A DUP	HS-GW-MW30B	HS-GW-MW30B	HS-GW-MW-30B	HS-GW-MW30
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	82.7-87.3	3,5-13.5	16.8-21.8	27,2-32,2	37.1-42.1	46,9-51,5	46.9-51,5	46.9-51.5	46,9-51,5	51,5-56.1	51.5-56.1	51,5-56,1	77,4-82
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UK21036-017	UK19008-006	UK21036-003	UK21036-004	UK19008-005	UG03026-005	UI19006-014	UK19008-010	UK19008-011	UG03026-007	UI21016-001	UK19008-014	UG06001-001
Sample Date	water	reater atteriace	Indoor Air Inhalation ²		Level - Groundwater		11/21/2019	11/18/2019	11/19/2019	11/19/2019	11/18/2019	07/02/2019	09/17/2019	11/20/2019	11/20/2019	07/02/2019	09/19/2019	11/20/2019	07/03/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0036	<0,0035	< 0.0034	< 0.0035	< 0.0035	<0.0035	< 0.0035	< 0.0035	<0.0042	< 0.0036	<0,0038	< 0.0035	<0.0037
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0042	< 0.0036	< 0.0038	< 0.0035	< 0.0037
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0042	< 0.0036	<0.0038	< 0.0035	< 0.0037
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCL	NA	NCL	NCL	< 0.0072	<0.007	<0.0069	< 0.007	< 0.007	< 0.0071	< 0.0069	< 0.0071	< 0.0084	< 0.0072	<0.0075	<0.007	< 0.0074
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	< 0.0036	0.018	0.024	0.011	0,0035	0.0061	0.0068	0.0072	0.0069	0,0071	0.0074	0.0073	0,0057
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0042	< 0.0036	<0.0038	<0.0035	<0.0037
Perfluoroheptane suffonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	0.01	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	<0,0035	< 0.0042	< 0.0036	< 0.0038	<0.0035	< 0.0037
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0072	<0.007	< 0.0069	<0.007	<0,007	<0.0071	< 0.0069	< 0.0071	<0.0084	<0.0072	<0.0075	<0.007	< 0.0074
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	<0,0035	<0,0042	< 0.0036	<0,0038	< 0.0035	< 0.0037
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	<0.0036	0.0056	< 0.0034	< 0.0035	<0.0035	< 0.0035	< 0.0035	<0.0035	<0.0042	< 0.0036	<0.0038	< 0.0035	< 0.0037
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL.	NCL	NA	NCL	NCL.	< 0.0036	0.025	< 0.0034	< 0.0035	< 0.0035	0.0038	< 0.0035	<0.0035	< 0.0042	0.0038	<0.0038	0.0038	< 0.0037
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL.	NA.	NCL	NCL	< 0.0036	0.01	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0042	< 0.0036	<0.0038	< 0.0035	< 0.0037
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA	NCL	NCL	<0,0036	< 0.0035	< 0.0034	< 0,0035	< 0.0035	<0,0035	< 0.0035	< 0.0035	< 0.0042	< 0.0036	<0.0038	< 0.0035	< 0.0037
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0042	< 0.0036	<0.0038	<0.0035	< 0.0037
Perfluoroheptanoic acid (PFNpA)	NCI.	NCL	NCL	NA.	NCL	NCL	< 0.0036	0.0064	< 0.0034	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0042	< 0.0036	<0.0038	< 0.0035	< 0.0037
Perfluorohexanoic acid (PFHxA)	NCL	NCI	NCL	NA	NCL	NCL	< 0.0036	0.017	< 0.0034	< 0.0035	<0.0035	<0.0035	< 0.0035	< 0.0035	< 0.0042	< 0.0036	< 0.0038	< 0.0035	< 0.0037
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0036	<0,0035	< 0.0034	< 0.0035	< 0.0035	<0.0035	< 0.0035	< 0.0035	<0.0042	< 0.0036	<0.0038	< 0.0035	< 0.0037
Perfluorooctanoic acid (PFOA)	0.008	12	(D	NA.	NCL	NCL	< 0.0018	0.036	<0.0017	< 0.0018	< 0.0018	0.0033	0.0025	0.003	0.0027	0.0064	0.0035	0.0041	< 0.0018
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	<0.0036	0.32	0.004	< 0.0035	< 0.0035	<0.0035	< 0.0035	< 0.0035	< 0.0042	< 0.0036	<0.0038	<0.0035	< 0.0037
PFOA + PFOS (Calculated)	NCL.	NCI.	NCL.	0.01	NCL	NCL	ND.	0.36	0.004	ND	ND	0.0033	0.0025	0.003	0.0027	0.0064	0.0035	0.0041	ND
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	0,01	< 0.0034	< 0.0035	<0.0035	< 0.0035	< 0.0035	<0,0035	< 0.0042	<0,0036	< 0.0038	< 0.0035	< 0.0037
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0036	< 0.0035	< 0.0034	< 0.0035	<0.0035	<0.0035	< 0.0035	< 0.0035	< 0.0042	<0.0036	< 0.0038	< 0.0035	< 0.0037
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0036	< 0.0035	< 0.0034	< 0.0035	< 0.0035	< 0.0035	<0.0035	< 0.0035	< 0.0042	< 0.0036	< 0.0038	<0.0035	< 0.0037
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL-	NA	NCL	NCL	< 0.0036	<0.0035	< 0.0034	< 0.0035	< 0.0035	<0.0035	< 0.0035	< 0.0035	< 0.0042	< 0.0036	< 0.0038	<0.0035	< 0.0037
Total PFAS (Calculated)	NCL	NCL	NCL	NA.	NCL	NCL	ND	0.46	0.028	0.011	0.0035	0.013	0,0093	0.01	0.0096	0.017	0.011	0.015	0,0057

Sample Location	Vocation or	STATE OF BUILDING	Part 201 Generic		EGLE Residential		HS-MW-30C	HS-MW-30C	HS-MW-30D	HS-MW-30D	HS-MW-30D	HS-MW-30E	HS-MW-30E	HS-MW-30E	HS-MW-31A	HS-MW-31A	HS-MW-31A	HS-MW-31B	HS-MW-31B
Sample Name	Part 201 Generic Residential	COLUMN TO SERVICE STREET	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW30C	HS-GW-MW-30C	HS-GW-MW30D	HS-GW-MW30D	HS-GW-MW-30D	HS-GW-MW30E	HS-GW-MW30E	HS-GW-MW-30E	HS-GW-MW31A	HS-GW-MW31A	HS-GW-MW-31A	HS-GW-MW318	HS-GW-MW31
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	77.4-82	77.4-82	112.7-117.3	112,7-117,3	112.7-117.3	123.2-127.7	123.2-127.7	123.2-127.7	17.1-21,6	17.1-21.6	17.1-21.5	26-30.5	26-30,5
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UI19006-015	UK21036-026	UG03026-008	UI21016-002	UK21036-024	UG03026-006	UI19006-016	UK21036-025	UG03026-003	Ul13033-001	UK21036-006	UG03026-001	UI13033-004
Sample Date	Water	reater atternace	Indoor Air Inhalation ²		Level - Groundwater		09/17/2019	11/22/2019	07/02/2019	09/19/2019	11/22/2019	07/02/2019	09/17/2019	11/22/2019	07/01/2019	09/12/2019	11/19/2019	07/01/2019	09/12/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	<0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	< 0.0034	<0.0038	<0,0035	< 0.0035	<0,0036	< 0.0036	< 0.0037
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL.	<0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	0.0047	< 0.0038	< 0.0035	< 0.0035	< 0.0035	<0.0036	< 0.0037
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	< 0.0034	< 0.0038	< 0.0035	< 0.0035	<0.0036	< 0.0036	< 0.0037
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCI.	NCL	NA	NCL	NCL	< 0.0069	< 0.0069	< 0.0071	< 0.007	< 0.0071	< 0.0074	< 0.0069	< 0.0077	< 0.007	< 0.007	< 0.0073	<0.0073	< 0.0075
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0.0055	0,0055	0.0048	0.0053	0,0056	0.0055	0.0063	0.0059	0,011	0,0055	0.0068	0.014	0.012
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	<0.0035	< 0.0036	< 0.0037	< 0.0034	< 0.0038	< 0.0035	< 0.0035	< 0.0036	<0.0036	< 0.0037
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	< 0.0034	<0.0038	< 0.0035	< 0.0035	< 0.0036	<0.0036	< 0.0037
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	<0,0069	<0.0069	< 0.0071	<0.007	<0.0071	<0.0074	< 0.0069	<0.0077	<0.007	<0.007	< 0.0073	< 0.0073	<0.0075
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	< 0.0034	<0.0038	< 0.0035	< 0.0035	<0,0036	< 0.0036	< 0.0037
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	<0.0035	< 0.0034	<0.0036	< 0.0035	<0.0036	<0.0037	< 0.0034	<0.0038	< 0.0035	< 0.0035	< 0.0036	0.0041	0,0049
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL.	NCL	NA	NCL	NCL.	< 0.0035	< 0.0034	< 0.0036	<0.0035	< 0.0036	<0.0037	< 0.0034	< 0.0038	0.0071	0.0075	0.0053	0.011	0.011
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL.	NA.	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	<0.0037	< 0.0034	< 0.0038	<0.0035	< 0.0035	< 0.0036	0.006	0.0042
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	<0,0035	< 0.0036	<0,0037	< 0.0034	< 0.0038	<0,0035	< 0.0035	< 0.0036	<0.0036	< 0.0037
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	< 0.0034	< 0.0038	< 0.0035	< 0.0035	<0.0036	<0.0036	< 0.0037
Perfluoroheptanoic acid (PFHpA)	NCI.	NCI.	NCL	NA.	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	< 0.0034	< 0.0038	< 0.0035	< 0.0035	< 0.0036	0.0038	< 0.0037
Perfluorofiexanoic acid (PFHxA)	NCL	NCI.	NCI.	NA	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	< 0.0034	< 0.0038	< 0.0035	< 0.0035	0.0043	0.0056	0.0082
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	<0.0036	< 0.0037	< 0.0034	< 0.0038	<0.0035	< 0.0035	<0.0036	< 0.0036	< 0.0037
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA.	NCL	NCL	< 0.0017	< 0.0017	< 0.0018	< 0.0018	< 0.0018	<0.0018	< 0.0017	<0.0019	0.0035	0.0038	0.0032	0.022	0.012
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	<0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	< 0.0034	< 0.0038	< 0.0035	< 0.0035	< 0.0036	0.0059	0.005
PFOA + PFOS (Calculated)	NCI.	NCI.	NCL.	0.01	NCL	NCL	ND.	ND	ND	ND	ND	ND	ND.	ND	0.0035	0.0038	0.0032	0.028	0.017
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0034	<0.0036	< 0.0035	< 0.0036	< 0.0037	< 0.0034	<0.0038	< 0.0035	<0.0035	< 0.0036	0.0051	0.0059
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	<0.0036	< 0.0037	< 0.0034	<0.0038	< 0.0035	< 0.0035	<0.0036	< 0.0036	< 0.0037
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	<0.0034	< 0.0038	< 0.0035	< 0.0035	< 0.0036	<0.0036	< 0.0037
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL-	NA	NCL	NCL	< 0.0035	< 0.0034	< 0.0036	< 0.0035	< 0.0036	< 0.0037	< 0.0034	< 0.0038	< 0.0035	< 0.0035	< 0.0036	<0.0036	< 0.0037
Total PFAS (Calculated)	NCI	NCL	NCL	NA.	NCL	NCL	0.0055	0.0055	0.0048	0.0053	0.0056	0.0055	0.011	0.0059	0.022	0.017	0.02	0.078	0.063

Sample Location	No. of the last	1.0 x 3 x 10 x	Part 201 Generic		EGLE Residential		HS-MW-31B	HS-MW-31C	HS-MW-31C	H5-MW-31C	HS-MW-31D	HS-MW-31D	HS-MW-31D	HS-MW-31E	HS-MW-31E	HS-MW-31E	HS-MW-31E	HS-MW-32A	HS-MW-32A
Sample Name	Part 201 Generic Residential	C. L. C. S. L. C. S. C. S. C. C. C. L.	Residential Groundwater Cleanup		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW-31B	HS-GW-MW31C	HS-GW-MW31C	HS-GW-MW-31C	HS-GW-MW31D	HS-GW-MW31D	H5-GW-MW-31D	HS-GW-MW31E	HS-GW-MW31E DUP	HS-GW-MW31E	HS-GW-MW-31E	HS-GW-MW32A	HS-GW-MW3
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ³	Indoor Air Interim	Removal	26-30.5	41.3-45.8	41.3-45.8	41.3-45.8	48.8-53.4	48.8-53.4	48,8-53.4	64.1-68.7	64.1-68.7	64.1-68.7	64.1-68.7	60,9-65.5	60.9-65.5
Laboratory Sample ID(s)	Water ²	Water Interface	Volatilization to		Action Screening	Management Levels ⁵	UK19008-013	UG03026-004	UI13033-003	UK21036-007	UG03026-002	UJ13033-002	UK21036-027	UG06001-002	UG06001-003	UI13033-005	UK19008-009	UE25011-005	UI07020-001
Sample Date	water	reater atternace	Indoor Air Inhalation ²		Level - Groundwater		11/20/2019	07/01/2019	09/12/2019	11/19/2019	07/01/2019	09/12/2019	11/22/2019	07/03/2019	07/03/2019	09/12/2019	11/20/2019	05/24/2019	09/06/2019
Parameter (µg/L)																			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	<0.0037	< 0.0035	< 0.0036	< 0.0036	<0.0034	< 0.0037	< 0.0037	<0,0036	< 0.0034	<0,0035	< 0.0036	<0.0037
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	<0.0036	< 0.0037
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0036	< 0.0037
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL.	NCI.	NCL	NA	NCL	NCL	< 0.0073	< 0.0075	< 0.007	< 0.0073	< 0.0072	< 0.0069	< 0.0075	< 0.0075	< 0.0072	< 0.0068	< 0.007	<0.0073	< 0.0074
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA	NCL	1,200	0,012	0.018	0.016	0.015	0.012	0,011	0.0076	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0036	< 0.0037
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0035	<0.0036	< 0.0036	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	<0.0036	< 0.0037
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0036	< 0.0037
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0073	<0.0075	<0.007	< 0.0073	<0.0072	<0,0069	< 0.0075	<0.0075	<0.0072	< 0.0068	< 0.007	< 0.0073	< 0.0074
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0,0037	< 0.0037	< 0.0035	< 0.0035	< 0.0036	< 0.0034	< 0.0037	< 0.0037	<0,0036	< 0.0034	<0.0035	< 0.0036	< 0.0037
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA.	NCL	NCL	0.0043	0.005	0.0052	0.0048	< 0.0036	0.0035	< 0.0037	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0036	< 0.0037
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL.	0.013	0.011	0.0095	0.01	0.0082	0.0069	0.0053	< 0.0037	< 0.0036	< 0.0034	<0.0035	<0.0036	< 0.0037
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL.	NA.	NCL	NCL	0.0072	0.0051	0.0048	0.0047	0.0042	0.0035	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0036	< 0.0037
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0,0037	< 0.0037	< 0.0035	< 0,0036	< 0.0036	< 0.0034	< 0.0037	< 0.0037	< 0,0036	< 0.0034	< 0.0035	< 0.0036	< 0.0037
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	<0.0035	<0.0036	< 0.0037
Perfluoroheptanoic acid (PFHpA)	NCL.	NCI.	NCL.	NA.	NCL	NCL	0.018	< 0.0037	< 0.0035	< 0.0036	0.0037	0.0038	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0036	< 0.0037
Perfluorohexanoic acid (PFHxA)	NCL	NCI	NCI.	NA	NCL	NCL	-0.017	0.006	0.0063	0.0073	0.0074	0.0064	0.0041	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0036	< 0.0037
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	< 0.0035	< 0.0036	<0.0036	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0036	< 0.0037
Perfluorooctonoic acid (PFOA)	0.008	12	(D	NA.	NCL	NCL	0.052	0.01	0,0086	0.0079	0.0073	0.0075	0.0074	<0.0019	< 0.0018	< 0.0017	<0.0018	< 0.0018	< 0.0019
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA	NCL	NCL	0.014	0.0077	0.0059	0.0052	0.0044	0.0053	0.007	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0036	< 0.0037
PFOA + PFOS (Calculated)	NCL.	NCI.	NCL.	0.01	NCL	NCL	0.066	0.018	0.015	0.013	0.012	0.013	0.014	ND	ND	ND.	ND	ND.	ND.
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA.	NCL	NCL	0.014	0.004	0.0045	0.0057	0.006	0.0048	< 0.0037	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0036	< 0.0037
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	<0.0035	< 0.0036	< 0.0037
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0034	<0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0036	< 0.0037
Perfluoroundecanoic acid (PFUnDA)	NCL.	NCL	NCL-	NA	NCL	NCL	< 0.0037	< 0.0037	< 0.0035	< 0.0036	< 0.0036	< 0.0034	< 0.0037	< 0.0037	< 0.0036	< 0.0034	< 0.0035	< 0.0036	< 0.0037
Total PEAS (Calculated)	NO	NCI	NC)	NA	NCI	NCI	0.15	0.067	0.061	0.061	0.053	0.053	0.031	ND.	ND.	ND	ND	ND	ND

Sample Location	19 //10 //1	Language III	Part 201 Generic		EGLE Residential		HS-MW-32A	HS-MW-32B	HS-MW-32B	HS-MW-32B	HS-MW-32C	HS-MW-32C	HS-MW-32C	HS-MW-32D	HS-MW-32D	HS-MW-32D
Sample Name	Part 201 Generic Residential	Part 201 Generic Groundwater Cleanup	L. L. L. S.		Recommended Volatilization to	U.S. EPA Residential Tap Water Regional	HS-GW-MW-32A	HS-GW-MW32B	H5-GW-MW32B	HS-GW-MW-32B	HS-GW-MW32C	HS-GW-MW32C	HS-GW-MW-32C	H5-GW-MW32D	HS-GW-MW32D	HS-GW-MW-320
Well Screen Interval (Feet below ground surface)	Groundwater Cleanup Criteria – Drinking	Criteria – Groundwater Surface	Criteria – Groundwater	CD Value ⁴	Indoor Air Interim	Removal	60,9-65.5	79.1-83.7	79.1-83.7	79.1-83.7	108.8-113.4	108.8-113.4	108.8-113.4	142,3-146,9	142.3-146.9	142,3-146,9
Laboratory Sample ID(s)	Water ²	Water Interface ²	Volatilization to		Action Screening	Management Levels ⁵	UK29008-003	UE25011-006	UI07020-003	UK29008-004	UE25011-007	UI07020-002	UK29008-005	UE25011-008	UI07020-004	UK29008-006
Sample Date	water	***************************************	Indoor Air Inhalation		Level - Groundwater		11/26/2019	05/24/2019	09/06/2019	11/26/2019	05/24/2019	09/06/2019	11/26/2019	05/24/2019	09/06/2019	11/26/2019
Parameter (µg/L)																
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0035	<0.0035	< 0.0038	< 0.0036	<0,0037	<0.0037	< 0.0035	<0,0035
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	<0.0037	< 0.0035	<0.0035	<0.0038	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0035
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	<0.0037	< 0.0035	< 0.0035	< 0.0038	< 0.0036	< 0.0037	<0.0037	< 0.0035	< 0.0035
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	NA	NCI.	NCL	< 0.0068	< 0.0074	< 0.0069	< 0.0069	<0.0076	< 0.0071	< 0.0074	< 0.0074	< 0.0069	<0.0071
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NA.	NCL	1,200	< 0.0034	< 0.0037	< 0.0035	< 0.0035	<0.0038	<0.0036	<0,0037	< 0.0037	< 0.0035	<0,0035
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0035	< 0.0035	<0.0038	< 0.0036	< 0.0037	<0.0037	< 0.0035	< 0.0035
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NA.	NCI.	NC.L.	< 0.0034	< 0.0037	< 0.0035	< 0.0035	< 0.0038	< 0.0036	< 0.0037	<0.0037	<0.0035	< 0.0035
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0068	< 0.0074	< 0.0069	<0.0069	< 0.0076	< 0.0071	< 0.0074	< 0.0074	<0.0069	<0,0071
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0035	<0,0035	< 0.0038	< 0.0036	<0,0037	< 0.0037	< 0.0035	<0,0035
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	<0.0035	< 0.0035	< 0.0038	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0035
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0035	< 0.0035	< 0.0038	< 0.0036	<0.0037	< 0.0037	< 0.0035	< 0.0035
Perfluorobutanoic acid (PFBA)	NCL	NCI.	NCL	NA	NCI.	NCL.	< 0.0034	< 0.0037	< 0.0035	< 0.0035	<0.0038	< 0.0036	< 0.0037	<0.0037	0.0044	< 0.0035
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NA.	NCL	NCL	< 0.0034	<0,0037	< 0.0035	< 0.0035	<0.0038	< 0.0036	<0,0037	< 0.0037	< 0.0035	< 0,0035
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0035	< 0.0035	<0.0038	< 0.0036	< 0.0037	< 0.0037	< 0.0035	<0.0035
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	NA.	NCI	NCL.	< 0.0034	< 0.0037	< 0.0035	< 0.0035	<0.0038	< 0.0036	< 0.0037	<0.0037	< 0.0035	<0.0035
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0034	< 0.0037	< 0.0035	< 0.0035	< 0.0038	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0035
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	< 0.0035	< 0.0035	< 0.0038	< 0.0036	< 0.0037	< 0.0037	<0.0035	<0.0035
Perfluorooctanoic acid (PFOA)	0.008	12	(D	NA	NCL	NCL	< 0.0017	< 0.0018	< 0.0017	< 0.0017	< 0.0019	< 0.0018	<0.0019	< 0.0018	< 0.0017	< 0.0018
Perfluorooctane sulfonic acid (PFOS)	0.016	0.012	NLV	NA.	NCI.	NCL	< 0.0034	< 0.0037	< 0.0035	< 0.0035	< 0.0038	< 0.0036	< 0.0037	< 0.0037	< 0.0035	< 0.0035
PFOA + PFOS (Calculated)	NCL	NCI.	NCL	0.01	NCI.	NCI.	ND	ND	ND	ND	ND.	ND	ND.	ND	ND:	ND.
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	<0.0035	< 0.0035	<0.0038	< 0.0036	<0,0037	< 0.0037	<0.0035	< 0.0035
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	<0.0035	<0.0035	<0.0038	< 0.0036	<0.0037	<0.0037	<0.0035	< 0.0035
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NA	NCL	NCL	< 0.0034	< 0.0037	<0.0035	< 0.0035	<0.0038	< 0.0036	< 0.0037	<0.0037	< 0.0035	< 0.0035
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	NA	NCL	NCL.	< 0.0034	< 0.0037	< 0.0035	< 0.0035	<0.0038	< 0.0036	< 0.0037	< 0.0037	< 0.0035	<0.0035
Total PFAS (Calculated)	NCL	NCL	NCL	NA	NCL	NCL	ND	ND	ND	ND.	ND	ND.	ND	ND	0.0044	ND

Areas 11/12

Algoma and Plainfield Townships, Kent County, MI

NOTES:

- 1. Concentration and criteria units are micrograms per Liter (µg/L) or parts per billion (ppb). Calculated criteria and concentrations are rounded to two significant digits. "ND" indicates the parameters used in the calculation were not detected. "NC" indicates not calculated.
- 2. Michigan Part 201 Groundwater Cleanup Criteria are based on "Table 1, Groundwater: Residential and Nonresidential Part 201 Generic Cleanup Criteria and Screening Levels/Part 213 Tier I Risk Based Screening Levels," Michigan Administrative Code, Cleanup Criteria Requirements for Response Activity, Rules 299.44 and 299.49, effective December 30, 2013; last revised August 3, 2020. Abbreviations Include:
 - "ID" indicates insufficient data to develop criterion.
 - "NCL" indicates no criterion listed in EGLE Table 1.
- 3. "CD Value" refers to the PFOA+PFOS value of 0.01 µg/l. in the Consent Decree.
- 4. EGLE Residential Groundwater Recommended Volatilization to Indoor Air Interim Action Screening Levels, (RIASLs) for were based on EGLE's Toxics Steering Group's "Media-Specific Interim Action Screening Levels," published in August 2017. The EGLE published the RIASLs in August 2017, and recently removed the RIASLs from the EGLE website. The EGLE is reportedly evaluating the RIASLs for appropriate use and applicability. These are included for reference. Abbreviations Include:
 - "NCL" indicates no value listed in the Media-Specific Interim Action Screening Levels table.
- 5. U.S. EPA Residential Tap Water Regional Removal Management Levels (RMLs) were based on "Generic RML Tables," updated November 2018,
- 6. Bold, italic number with thick line border or italic parameter name indicates that parameter was detected above the Michigan Part 201 Groundwater Cleanup Criteria, Media-Specific Internm Action Screening Levels, MCL, or CD Value, U.S. EPA RMLs are provided for reference only and results detected above the EPA RMLs are not bolded or italicized.
- 7. Abbreviations include:
 - "< RL" indicates the parameter was analyzed for but not detected above the method detection limit; RL = Reporting Limit.
- "DUP" indicates a duplicate sample.
- 8. Sample names presented are from Shealy Environmental Services, Inc. laboratory reports, Sample names presented in ALS Environmental lab reports may have minor differences based on laboratory interpretation of the chains of custody.
- 9. Well screen interval presented is the top of the well screen to the bottom of the well screen in feet below ground surface.

FIGURES

GROUNDWATER ELEVATIONS WERE NOT MEASURED FROM RESIDENTIAL WATER SUPPLY WELLS.

4. WELL SCREEN ELEVATIONS PROVIDED IN FEET ABOVE MEAN SEA LEVEL, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88). RESIDENTIAL WELL SCREEN ELEVATIONS AND BOREHOLE LITHOLOGY ELEVATIONS WERE CALCULATED USING WELL INFORMATION PROVIDED BY THE STATE OF MICHIGAN'S WELLOGIC DATABASE AND GROUND SURFACE ELEVATIONS OF THE CENTER OF THE PPN GENERATED FROM LIDAR DATA PROVIDED BY KENT COUNTY. ELEVATIONS ARE ROUNDED TO THE NEAREST

5. MONITORING WELL SCREEN AQUIFER ZONES ARE DESIGNATED AS PERCHED, SHALLOW, OR DEEP, CONCENTRATIONS OF TOTAL PFAS AND PFOA+PFOS DEPICTED ARE MAXIMUM CONCENTRATIONS DETECTED AT THE SPECIFIED LOCATION.

INLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF E-SECENVIRONMENTAL, INC. (2A.). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR THE USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION DENTIFIED THE DRAWING THE DRAWING SHALL NOT DE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR ISE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUTTHE PRIOR WRITTER CONSENT OF GZA, AN TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTE EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LABILITY TO GZ

ROSE & WESTRA, A DIVISION OF GZA 601 FIFTH STREET NW, SUITE 102 **GRAND RAPIDS, MICHIGAN 49504**

NORTH KENT STUDY AREA GEOLOGICAL CROSS SECTION A-A' AREAS 11/12 RAP

	GeoEnvironment lineers and Scient www.gza.com		PREPARED FO		J/WWW
PROJ MGR:	LJP REVIEWED BY:	MW	CHECKED BY:	LMN	FIGURE
DESIGNED BY:	JC DRAWN BY:	JC	SCALE: 1	36,000	1
DATE: 12/07/2020	PROJECT NO: 16.006296	1.40	REVISION NO:		6

SURFACE WATER

MONITORING WELL

DEVELOPED BASED ON MEASUREMENTS MADE IN GROUNDWATER MONITORING WELLS IN NOVEMBER 2019. GROUNDWATER ELEVATIONS WERE NOT MEASURED FROM RESIDENTIAL WATER SUPPLY WELLS.

4. WELL SCREEN ELEVATIONS PROVIDED IN FEET ABOVE MEAN SEA LEVEL, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88). RESIDENTIAL WELL SCREEN ELEVATIONS AND BOREHOLE LITHOLOGY ELEVATIONS WERE CALCULATED USING WELL INFORMATION PROVIDED BY THE STATE OF MICHIGAN'S WELLOGIC DATABASE AND GROUND SURFACE ELEVATIONS OF THE CENTER OF THE PPN GENERATED FROM LIDAR DATA PROVIDED BY KENT COUNTY. ELEVATIONS ARE ROUNDED TO THE NEAREST

5. MONITORING WELL SCREEN AQUIFER ZONES ARE DESIGNATED AS PERCHED, SHALLOW, OR DEEP, CONCENTRATIONS OF TOTAL PFAS AND PFOA+PFOS DEPICTED ARE MAXIMUM CONCENTRATIONS DETECTED AT THE SPECIFIED LOCATION.

INLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GEOENVIRONMENTAL, INC. (2A.). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR THE USE BY GZA'S CENTENDED THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION DENTIFIED HE DRAWING IS THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR ISE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSIST OF GZA, WRANSFER, REUSES, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN CONSIST OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZ.

ROSE & WESTRA, A DIVISION OF GZA 601 FIFTH STREET NW, SUITE 102 **GRAND RAPIDS, MICHIGAN 49504**

NORTH KENT STUDY AREA **GEOLOGICAL CROSS SECTION B-B'** AREAS 11/12 RAP

	ngine	Environmenta ers and Scienti ww.gza.com		PREPARED		/www
PROJ MGR:	LJP	REVIEWED BY:	MW	CHECKED	BY: LMN	FIGURE
DESIGNED BY:	JC	DRAWN BY:	JC	SCALE:	1:36,000	1.100112
DATE: 12/07/202	20	PROJECT NO: 16.0062961	.40	REVISION	NO:	7

NORTH KENT STUDY AREA

GEOLOGICAL CROSS SECTION C-C'

AREAS 11/12 RAP

JC SCALE:

REVISION NO

WN&J/WWW

CHECKED BY: LMN FIGURE

1:36,000

GZA GeoEnvironmental, Inc

Engineers and Scientists

PROJECT NO:

16.0062961.40

CANNONSBURG

RD NE

APPENDIX A – 2019 GROUNDWATER SAMPLING SUPPLEMENTAL MEMORANDUM

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICA

WATER

CONSTRUCTION MANAGEMENT

APPENDIX A 2019 GROUNDWATER SAMPLING SUPPLEMENTAL MEMORANDUM

June 18, 2020 File No. 16.0062961.40

PREPARED FOR:

Wolverine World Wide, Inc. Rockford, Michigan

Rose & Westra, a Division of GZA GeoEnvironmental, Inc.

601 Fifth Street NW | Suite 102 | Grand Rapids, MI 49504 616.956.6123

30 Offices Nationwide www.gza.com

Copyright© 2020 GZA GeoEnvironmental, Inc.

Page | 1

1.0 INTRODUCTION

Since April 2017, Wolverine has voluntarily and proactively worked with EGLE, the Kent County Health Department (KCHD), and Michigan Department of Health and Human Services (MDHHS) to establish zones for drinking water well testing, provided alternate (bottled) water service, point of use (faucet) water filters, and point of entry (whole house) filter systems. As of December 2019, R&W/GZA has installed monitoring wells at twenty-nine (29) locations totaling eighty-four (84) wells within the House Street Study Area as shown on **Figure 4** of the Draft Areas 11 and 12 Response Activity Plan, North Kent Study Area, submitted to EGLE on June 18, 2020 (Draft Areas 11 and 12 RAP [R&W/GZA, 2020]). Of the 29 locations, seven (7) are located on the HSDS property, one (1) is on the adjoining Michigan Department of Transportation (MDOT) parcel, three (3) are located on the US-131 right-of-way (ROW), and the remaining eighteen (18) are placed within or surrounding the PFAS plume.

2.0 INVESTIGATION METHODOLOGY

2.1 GROUNDWATER INVESTIGATIONS

R&W/GZA retained drilling contractors to perform subsurface exploration and monitoring well installation to continue delineation of the extent of PFOA and PFOS both vertically and laterally in the NKSA. Since 2017, R&W/GZA oversaw the installation of eighty-four (84) groundwater monitoring wells at 29 locations in the HSDS study area. At most of the locations, multi-depth cluster wells were installed. The borings were drilled using either hollow stem auguring or rotosonic techniques. Soil samples were collected and logged every 5 feet. At certain locations VAP groundwater samples were collected every 10 feet in the saturated zone and submitted to an independent laboratory for the PFAS analysis using isotope dilution methodology in accordance with the most recent version of the DoD QSM procedures.

Monitoring well screen intervals were selected based on PFAS VAP sampling results and geological conditions. Each monitoring well was constructed of factory-slotted, 0.010-inch, 5-foot long PVC screen (in a few cases, 10-foot), and flush-threaded well casing. The annular space surrounding the well screen was filled with sand filter pack to approximately 3 feet above the top of the well screen, followed by a one- to one-and-one-half-foot-thick hydrated bentonite seal. The remaining annulus was filled with cement and bentonite grout to approximately 1 foot bgs. The wells were finished with a steel protective casing set in a concrete pad. A locking expansion cap was placed in the top of the PVC casing. The NKSA-wide soil boring logs and well installation logs were included in the GSI RAP (R&W/GZA 2020). Static water level measurements are provided on **Table 4** of the Draft Areas 11 and 12 RAP. See **Figure 4** of the Draft Areas 11 and 12 RAP for the groundwater monitoring well and residential groundwater sampling locations.

Following installation, the newly installed wells were developed to remove sediment from the sand filter pack and well casing. The wells were developed using a 12-volt Mini-Typhoon® submersible pump equipped with dedicated tubing for each well. The pump was decontaminated between wells using a water and Alconox® wash with a water rinse. The wells were developed until the water ran clear. The development water was containerized and staged prior to proper disposal. The tubing and other disposable materials used during the well development were placed in a separate drum and stored for proper disposal.

In addition, surface water level measurement gauges were installed in the following locations in the Rogue River:

- Rockford Dam Seawall;
- East Bridge Street Bridge;

- Rogue River Road Bridge; and
- Jericho Avenue Bridge

The water levels measured from these locations were used in combination with available gaging height data at USGS gaging station, USGS04118500, to evaluate surface water levels in the Rogue River.

2.2 GROUNDWATER SAMPLING METHODS

Groundwater sampling followed the low-flow purging and sampling procedures identified in the project QAPP approved by EGLE in December 2018 (R&W/GZA, 2018). The wells were purged using either a GeoTech Peristaltic Pump or a GeoTech Bladder Pump and control box. Static water levels in the monitoring wells were measured to maintain stabilized drawdowns during purging. Field indicator parameters, temperature, pH, dissolved oxygen, specific conductance, ORP and turbidity, were monitored using a YSI PRO and field turbidity meters in accordance with the low-flow sampling SOP in the project QAPP. Once the field parameters stabilized, a groundwater sample was collected by disconnecting the tubing from the flow-through cell and collecting the sample directly from the tubing.

Groundwater samples were collected in laboratory-supplied sample containers labeled with the well ID, sample time and date, and analytes. The samples were packed in coolers with ice and shipped to the laboratory under chain-of-custody control via overnight express shipping.

As the subsurface exploration and monitoring well installation progressed, the newly installed wells were added to the sampling list in the quarter following their installation and development.

Groundwater sampling was conducted quarterly throughout 2019. See **Table 1** below for sampling dates. The objective of the groundwater sampling was to provide data to evaluate water quality in the newly installed wells relative to historic, spatial, and temporal concentration trends.

Table 1 – Quarterly Groundwater Sampling Event Dates

Quarter	Dates Sampled
Quarter 1	February 26 - March 31
Quarter 2	May 14 – May 30 ¹
Quarter 3	September 6 – September 27
Quarter 4	November 18 – December 12
Note:	series 30 and 31 sampled from July 1

Due to the well installation schedule all 84 wells were not sampled all four quarters. **Table 2**, below, lists the wells that were sampled during Quarter 1 and those that were added during subsequent sampling rounds. Well construction information is provided **Table 3** of the Draft Areas 11 and 12 RAP.

Table 2: House Street Study Area Well Additions

Quarter	Wells Sampled
	HS-MW-1S, HS-MW-1D, HS-MW-2S, HS-MW-3S, HS-MW-4S, HS-MW-5D, HS-MW-5S, HS-MW-6D, HS-MW-6S, HS-MW-7S, HS-MW-8, HS-MW-9D, HS-MW-9M, HS-MW-9S, HS-MW-10D, HS-MW-10D, HS-MW-10M-HS-MW-10D, HS-MW-11M-HS-MW-11M-HS-MW-15D, HS-MW-15D, HS-MW-1
Quarter 1	10M, HS-MW-10S, HS-MW-11D, HS-MW-11M, HS-MW-11S, HS-MW-15D, HS-MW-15M, HS-MW-15S, HS-MW-17D, HS-MW-17M, HS-MW-17S, HS-MW-18D, HS-MW-18S, HS-MW-19D, HS-MW-19S, HS-MW-20D, HS-MW-20M, HS-MW-20S, HS-MW-21D, HS-MW-21M, HS-MW-21S, HS-MW-21D, HS-MW-21S, HS-MW-
	25D, HS-MW-25S, HS-MW-26D, HS-MW-26M, HS-MW-26S Quarter 1 wells plus:
Quarter 2	HS-MW-30A, HS-MW-30B, HS-MW-30C, HS-MW-30D, HS-MW-30E, HS-MW-31A, HS-MW-31B, HS-MW-31C, HS-MW-31D, HS-MW-31E, HS-MW-32A, HS-MW-32B, HS-MW-32C, HS-MW-32D
Quarter 3	Quarter 1 and Quarter 2 wells plus: HS-MW-23A, HS-MW-23B, HS-MW-23C, HS-MW-23D, HS-MW-27A, HS-MW-27B, HS-MW-27C, HS-MW-27D, HS-MW-27E, HS-MW-28A, HS-MW-28B, HS-MW-28C, HS-MW-28D, HS-MW-28E
Quarter 4	Quarter 1, Quarter 2, and Quarter 3 wells plus: HS-MW-12A, HS-MW-12B, HS-MW-12C, HS-MW-12D, HS-MW-12E, HS-MW-24A, HS-MW-24B, HS-MW-29A, HS-MW-29B, HS-MW-29C, HS-MW-29D

3.0 STUDY AREA SAMPLING RESULTS

Groundwater analytical results for PFAS are provided on **Table 6** of the Draft Areas 11 and 12 RAP, and analytical reports are included as **Attachment 1**.

4.0 QA/QC

Investigative QA/QC procedures are outlined in the project QAPP approved by EGLE in December 2018 and subsequently revised. Selected data have or will be validated according to performance requirements and the QA/QC limits in Table D.1.1 of the project QAPP. In addition, R&W/GZA consulted the general guidance in the EPA Contract Laboratory Program National Functional Guidance for Organic and Inorganic Superfund Data Review and relevant analytical methods to assess data usability.

In R&W/GZA's opinion, the field and laboratory quality control results indicate that the sampling and analyses performed in generating the data described in this Report were generally consistent with the analytical methods and the project QAPP requirements. The project data are acceptable and suitable for site characterization purposes and consequently can be used for decision-making purposes. The limitations identified by the applied qualifiers should be considered when using the data.

5.0 REFERENCES

R&W/GZA. (2018). Quality Assurance Project Plan, Former Wolverine Tannery, House Street Disposal Area, and Wolven/Jewell Area, Per- and Polyfluoroalkyl Substances Investigation Program. Grand Rapids, MI: R&W/GZA.

R&W/GZA. (2020). Areas 11 and 12 Response Activity Plan, North Kent Study Area. Submitted to EGLE June 18, 2020.

Attachment 1 – Laboratory Analytical Data

Report of Analysis

GZA GeoEnvironmental, Inc.

601 Fifth Street N.W., Suite 102 Grand Rapids, MI 49504 Attention: Loretta J. Powers

Project Name: 16.0062335.52 T2

Project Number: 16.0062335.52 T2

Lot Number: UC21029

Date Completed:04/04/2019

N. Saikaly

04/05/2019 5:42 PM Approved and released by: Project Manager: Nisreen Saikaly

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative GZA GeoEnvironmental, Inc. Lot Number: UC21029

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), applicable Shealy standard operating procedures (SOPs), the 2003 NELAC standard, and Shealy policies. Additionally, the DoD QSM version 5.1 has been followed for these samples, and specifically Table B-15 was followed for all PFAS samples. Any exceptions to the QAMP, SOPs, NELAC standards, the DoD QSM, or policies are qualified on the results page or discussed below.

All QC associated with these samples was in compliance with DOD QSM 5.1 table B-15 and our PFAS SOP. DoD reporting conventions and qualifiers are not utilized in this data package.

Correction factors (CF) are used to calculate the original sample concentration. The CF is the inverse of the concentration factor (sample volume / extract final volume) times the dilution factor (DF). For undiluted analysis. The extract is prepared for injection by adding 182 uL of sample extract + 8 uL of reagent water + 10 uL of internal standard solution to a polypropylene autosampler vial. An extra correction factor of 0.91 (182 uL / 200 uL = 0.91) applies. The CF is calculated as follows:

CF = DF * FV / Vo

FV is volume of extract (mL)
Vo is initial sample volume (mL)
DF is dilution factor. For undiluted analysis, DF = 1/0.91.

Sample concentration for aqueous samples: Concentration (ng/L) = Cs*CF,

$$Cs = \left(\frac{A_s}{A_{is}} - b\right) * \left(\frac{C_{is}}{a}\right)$$
Where:

As is peak response of target analyte in the sample
Ais is peak response of internal standard in the sample
Cs is concentration of target analyte in the sample
Cis is concentration of internal standard in the sample (1ng/mL)
a is the slope from the ICAL linear regression
b is the y-intercept from the ICAL linear regression

Semivolatile Organic Compounds

The laboratory control spike (LCS) recovery for bis(2-Chloroethyl)ether exceeded method control limits in batch11166; however, all other QC criteria for the LCS were within acceptance criteria and method control limits. The associated sample results (all samples in this report) were non-detect, therefore the results were reported and no corrective action was required.

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

The matrix spike and matrix spike duplicate (MS/MSD) recoveries in batch 11166 were outside acceptance criteria. All other QC criteria for the batch was within acceptance criteria and method control limits. The MS/MSD recovery results are attributed to matrix interference. The associated sample results were reported and no corrective action was required.

Nitrate-Nitrite

The MS/MSD recoveries in batch 11110 were outside acceptance criteria. All other QC criteria for the batch was within acceptance criteria and method control limits. The MS/MSD recovery results are attributed to matrix interference. The associated sample results were reported and no corrective action was required.

Sample Summary GZA GeoEnvironmental, Inc.

Lot Number: UC21029

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	HS-MW-10S	Aqueous	03/18/2019 1505	03/21/2019
002	HS-MW-10M	Aqueous	03/18/2019 1235	03/21/2019
003	HS-MW-10D	Aqueous	03/18/2019 1210	03/21/2019
004	HS-MW-9S	Aqueous	03/19/2019 1500	03/21/2019
005	HS-MW-9M	Aqueous	03/19/2019 1345	03/21/2019
006	HS-MW-9D	Aqueous	03/19/2019 1350	03/21/2019
007	HS-MW-6S	Aqueous	03/20/2019 1415	03/21/2019
800	HS-MW-6D	Aqueous	03/20/2019 1600	03/21/2019
009	FB-3/20	Aqueous	03/20/2019 1610	03/21/2019

(9 samples)

Detection Summary GZA GeoEnvironmental, Inc.

Lot Number: UC21029

Sampl	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	HS-MW-10S	Aqueous	Chloride	300.0	38		mg/L	8
001	HS-MW-10S	Aqueous	Hardness (total)	SM 2340C-	320		mg/L	8
001	HS-MW-10S	Aqueous	Nitrate-Nitrite - N	353.2	1.6	В	mg/L	8
001	HS-MW-10S	Aqueous	Phosphorus	365.1	0.0057	J	mg/L	8
001	HS-MW-10S	Aqueous	Sulfate	300.0	5.4		mg/L	8
001	HS-MW-10S	Aqueous	Acetone	8260B	3.2	J	ug/L	9
001	HS-MW-10S	Aqueous	Aluminum	200.8	13	J	ug/L	14
001	HS-MW-10S	Aqueous	Barium	200.8	60		ug/L	14
001	HS-MW-10S	Aqueous	Boron	200.8	28	J	ug/L	14
001	HS-MW-10S	Aqueous	Iron	200.8	380		ug/L	14
001	HS-MW-10S	Aqueous	Magnesium	200.8	24000		ug/L	14
001	HS-MW-10S	Aqueous	Nickel	200.8	1.3	J	ug/L	14
001	HS-MW-10S	Aqueous	Sodium	200.8	15000		ug/L	14
001	HS-MW-10S	Aqueous	Titanium	200.8	1.4	J	ug/L	14
001	HS-MW-10S	Aqueous	PFHpS	537 Modified-	4.7		ng/L	15
001	HS-MW-10S	Aqueous	PFHxS	537 Modified-	6.0		ng/L	15
001	HS-MW-10S	Aqueous	PFOA	537 Modified-	12		ng/L	15
001	HS-MW-10S	Aqueous	PFOS	537 Modified-	40		ng/L	15
002	HS-MW-10M	Aqueous	Chloride	300.0	440		mg/L	16
002	HS-MW-10M	Aqueous	Cyanide - Total	SM 4500-CN	0.012		mg/L	16
002	HS-MW-10M	Aqueous	Hardness (total)	SM 2340C-	440		mg/L	16
002	HS-MW-10M	Aqueous	Nitrate-Nitrite - N	353.2	1.1	В	mg/L	16
002	HS-MW-10M	Aqueous	Phosphorus	365.1	0.019	J	mg/L	16
002	HS-MW-10M	Aqueous	Sulfate	300.0	25		mg/L	16
002	HS-MW-10M	Aqueous	Acetone	8260B	3.0	J	ug/L	17
002	HS-MW-10M	Aqueous	Aluminum	200.8	16	J	ug/L	22
002	HS-MW-10M	Aqueous	Barium	200.8	120		ug/L	22
002	HS-MW-10M	Aqueous	Boron	200.8	25	J	ug/L	22
002	HS-MW-10M	Aqueous	Chromium	200.8	1.6	BJ	ug/L	22
002	HS-MW-10M	Aqueous	Iron	200.8	560		ug/L	22
002	HS-MW-10M	Aqueous	Magnesium	200.8	30000		ug/L	22
002	HS-MW-10M	Aqueous	Nickel	200.8	1.8	J	ug/L	22
002	HS-MW-10M	Aqueous	Sodium	200.8	240000		ug/L	22
002	HS-MW-10M	Aqueous	Titanium	200.8	1.7	J	ug/L	22
002	HS-MW-10M	Aqueous	PFBS	537 Modified-	8.5		ng/L	23
002	HS-MW-10M	Aqueous	PFHxS	537 Modified-	4.8		ng/L	23
002	HS-MW-10M	Aqueous	PFOA	537 Modified-	8.4		ng/L	23
002	HS-MW-10M	Aqueous	PFOS	537 Modified-	13		ng/L	23
003	HS-MW-10D	Aqueous	Ammonia - N (gas	350.1	0.35		mg/L	24
003	HS-MW-10D	Aqueous	Chloride	300.0	3.9		mg/L	24
003	HS-MW-10D	Aqueous	Cyanide - Total	SM 4500-CN	0.011		mg/L	24
003	HS-MW-10D	Aqueous	Hardness (total)	SM 2340C-	520		mg/L	24
003	HS-MW-10D	Aqueous	Nitrate-Nitrite - N	353.2	0.014	BJ	mg/L	24
003	HS-MW-10D	Aqueous	Phosphorus	365.1	0.055		mg/L	24
003	HS-MW-10D	Aqueous	Sulfate	300.0	270		mg/L	24

Detection Summary (Continued)

Lot Number: UC21029

Sampl	le Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
003	HS-MW-10D	Aqueous	Acetone	8260B	2.7	J	ug/L	25
003	HS-MW-10D	Aqueous	Aluminum	200.8	940		ug/L	30
003	HS-MW-10D	Aqueous	Arsenic	200.8	1.7	J	ug/L	30
003	HS-MW-10D	Aqueous	Barium	200.8	35		ug/L	30
003	HS-MW-10D	Aqueous	Boron	200.8	80		ug/L	30
003	HS-MW-10D	Aqueous	Chromium	200.8	3.8	BJ	ug/L	30
003	HS-MW-10D	Aqueous	Copper	200.8	2.0	J	ug/L	30
003	HS-MW-10D	Aqueous	Iron	200.8	4700		ug/L	30
003	HS-MW-10D	Aqueous	Lead	200.8	0.78	J	ug/L	30
003	HS-MW-10D	Aqueous	Magnesium	200.8	25000		ug/L	30
003	HS-MW-10D	Aqueous	Nickel	200.8	3.3	J	ug/L	30
003	HS-MW-10D	Aqueous	Sodium	200.8	8000		ug/L	30
003	HS-MW-10D	Aqueous	Titanium	200.8	43		ug/L	30
003	HS-MW-10D	Aqueous	Zinc	200.8	4.4	J	ug/L	30
004	HS-MW-9S	Aqueous	Chloride	300.0	71		mg/L	32
004	HS-MW-9S	Aqueous	Hardness (total)	SM 2340C-	350		mg/L	32
004	HS-MW-9S	Aqueous	Nitrate-Nitrite - N	353.2	2.4	В	mg/L	32
004	HS-MW-9S	Aqueous	Phosphorus	365.1	0.022	J	mg/L	32
004	HS-MW-9S	Aqueous	Sulfate	300.0	15		mg/L	32
004	HS-MW-9S	Aqueous	Acetone	8260B	2.7	J	ug/L	33
004	HS-MW-9S	Aqueous	Barium	200.8	32		ug/L	38
004	HS-MW-9S	Aqueous	Boron	200.8	22	J	ug/L	38
004	HS-MW-9S	Aqueous	Chromium	200.8	1.6	BJ	ug/L	38
004	HS-MW-9S	Aqueous	Iron	200.8	330		ug/L	38
004	HS-MW-9S	Aqueous	Magnesium	200.8	29000		ug/L	38
004	HS-MW-9S	Aqueous	Sodium	200.8	33000		ug/L	38
005	HS-MW-9M	Aqueous	Ammonia - N (gas	350.1	0.15		mg/L	40
005	HS-MW-9M	Aqueous	Chloride	300.0	23		mg/L	40
005	HS-MW-9M	Aqueous	Hardness (total)	SM 2340C-	320		mg/L	40
005	HS-MW-9M	Aqueous	Nitrate-Nitrite - N	353.2	0.014	BJ	mg/L	40
005	HS-MW-9M	Aqueous	Phosphorus	365.1	0.019	J	mg/L	40
005	HS-MW-9M	Aqueous	Sulfate	300.0	24		mg/L	40
005	HS-MW-9M	Aqueous	Acetone	8260B	2.4	J	ug/L	41
005	HS-MW-9M	Aqueous	Aluminum	200.8	28	J	ug/L	46
005	HS-MW-9M	Aqueous	Barium	200.8	82		ug/L	46
005	HS-MW-9M	Aqueous	Boron	200.8	18	J	ug/L	46
005	HS-MW-9M	Aqueous	Iron	200.8	720		ug/L	46
005	HS-MW-9M	Aqueous	Magnesium	200.8	27000		ug/L	46
005	HS-MW-9M	Aqueous	Nickel	200.8	1.3	J	ug/L	46
005	HS-MW-9M	Aqueous	Sodium	200.8	5100		ug/L	46
005	HS-MW-9M	Aqueous	Titanium	200.8	2.0	J	ug/L	46
006	HS-MW-9D	Aqueous	Ammonia - N (gas	350.1	0.43		mg/L	48
006	HS-MW-9D	Aqueous	Chloride	300.0	69		mg/L	48
006	HS-MW-9D		Cyanide - Total	SM 4500-CN	0.011		mg/L	48
006	HS-MW-9D	Aqueous	Hardness (total)	SM 2340C-	340		mg/L	48
006	HS-MW-9D	Aqueous	Nitrate-Nitrite - N	353.2	0.0024	BJ	mg/L	48
006	HS-MW-9D	Aqueous	Phosphorus	365.1	0.055		mg/L	48
006	HS-MW-9D	Aqueous		300.0	45		mg/L	48

Detection Summary (Continued)

Lot Number: UC21029

Sampl	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
006	HS-MW-9D	Aqueous	Acetone	8260B	2.6	J	ug/L	49
006	HS-MW-9D	Aqueous	Carbon disulfide	8260B	0.44	J	ug/L	49
006	HS-MW-9D	Aqueous	Aluminum	200.8	130		ug/L	54
006	HS-MW-9D	Aqueous	Barium	200.8	99		ug/L	54
006	HS-MW-9D	Aqueous	Boron	200.8	29	J	ug/L	54
006	HS-MW-9D	Aqueous	Chromium	200.8	1.5	BJ	ug/L	54
006	HS-MW-9D	Aqueous	Iron	200.8	930		ug/L	54
006	HS-MW-9D	Aqueous	Magnesium	200.8	26000		ug/L	54
006	HS-MW-9D	Aqueous	Nickel	200.8	1.5	J	ug/L	54
006	HS-MW-9D	Aqueous	Sodium	200.8	13000		ug/L	54
006	HS-MW-9D	Aqueous	Titanium	200.8	5.6		ug/L	54
006	HS-MW-9D	Aqueous	Zinc	200.8	6.2	J	ug/L	54
007	HS-MW-6S	Aqueous	Chloride	300.0	47		mg/L	56
007	HS-MW-6S	Aqueous	Hardness (total)	SM 2340C-	390		mg/L	56
007	HS-MW-6S	Aqueous	Nitrate-Nitrite - N	353.2	0.98	В	mg/L	56
007	HS-MW-6S	Aqueous	Phosphorus	365.1	0.0068	J	mg/L	56
007	HS-MW-6S	Aqueous	Sulfate	300.0	21		mg/L	56
007	HS-MW-6S	Aqueous	Chloroform	8260B	0.54	J	ug/L	57
007	HS-MW-6S	Aqueous	Aluminum	200.8	28	J	ug/L	62
007	HS-MW-6S	Aqueous	Barium	200.8	79		ug/L	62
007	HS-MW-6S	Aqueous	Boron	200.8	25	J	ug/L	62
007	HS-MW-6S	Aqueous	Chromium	200.8	2.6	BJ	ug/L	62
007	HS-MW-6S	Aqueous	Copper	200.8	1.9	J	ug/L	62
007	HS-MW-6S	Aqueous	Iron	200.8	450		ug/L	62
007	HS-MW-6S	Aqueous	Magnesium	200.8	31000		ug/L	62
007	HS-MW-6S	Aqueous	Nickel	200.8	1.6	J	ug/L	62
007	HS-MW-6S	Aqueous	Sodium	200.8	15000		ug/L	62
007	HS-MW-6S	Aqueous	Titanium	200.8	1.7	J	ug/L	62
007	HS-MW-6S	Aqueous	Zinc	200.8	33		ug/L	62
007	HS-MW-6S	Aqueous	PFBS	537 Modified-	47		ng/L	63
007	HS-MW-6S	Aqueous	PFPeS	537 Modified-	61		ng/L	63
007	HS-MW-6S	Aqueous	PFHxS	537 Modified-	85		ng/L	63
007	HS-MW-6S	Aqueous	PFBA	537 Modified-	4.6		ng/L	63
007	HS-MW-6S	Aqueous	PFHpA	537 Modified-	15		ng/L	63
007	HS-MW-6S	Aqueous	PFHxA	537 Modified-	31		ng/L	63
007	HS-MW-6S	Aqueous	PFOA	537 Modified-	44		ng/L	63
007	HS-MW-6S	Aqueous	PFPeA	537 Modified-	7.8		ng/L	63
007	HS-MW-6S	Aqueous	PFOS	537 Modified-	8.7		ng/L	63
800	HS-MW-6D	Aqueous	Ammonia - N (gas	350.1	0.14		mg/L	64
800	HS-MW-6D	Aqueous	Chloride	300.0	66		mg/L	64
800	HS-MW-6D	Aqueous	Hardness (total)	SM 2340C-	490		mg/L	64
800	HS-MW-6D	Aqueous	Nitrate-Nitrite - N	353.2	0.012	BJ	mg/L	64
800	HS-MW-6D	Aqueous	Phosphorus	365.1	0.033	J	mg/L	64
800	HS-MW-6D	Aqueous	Sulfate	300.0	230		mg/L	64
800	HS-MW-6D	Aqueous	Acetone	8260B	3.4	J	ug/L	65
008	HS-MW-6D	Aqueous	Aluminum	200.8	62		ug/L	70
008	HS-MW-6D	Aqueous	Arsenic	200.8	3.5		ug/L	70
008	HS-MW-6D	Aqueous	Barium	200.8	28		ug/L	70

Detection Summary (Continued)

Lot Number: UC21029

e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
HS-MW-6D	Aqueous	Boron	200.8	55	7.5	ug/L	70
HS-MW-6D	Aqueous	Chromium	200.8	1.8	BJ	ug/L	70
HS-MW-6D	Aqueous	Iron	200.8	1500		ug/L	70
HS-MW-6D	Aqueous	Magnesium	200.8	23000		ug/L	70
HS-MW-6D	Aqueous	Nickel	200.8	2.3	J	ug/L	70
HS-MW-6D	Aqueous	Sodium	200.8	20000		ug/L	70
HS-MW-6D	Aqueous	Titanium	200.8	3.7	J	ug/L	70
HS-MW-6D	Aqueous	Zinc	200.8	4.9	J	ug/L	70
	HS-MW-6D HS-MW-6D HS-MW-6D HS-MW-6D HS-MW-6D HS-MW-6D HS-MW-6D	HS-MW-6D Aqueous	HS-MW-6D Aqueous Boron HS-MW-6D Aqueous Chromium HS-MW-6D Aqueous Iron HS-MW-6D Aqueous Magnesium HS-MW-6D Aqueous Nickel HS-MW-6D Aqueous Sodium HS-MW-6D Aqueous Titanium	HS-MW-6D Aqueous Boron 200.8 HS-MW-6D Aqueous Chromium 200.8 HS-MW-6D Aqueous Iron 200.8 HS-MW-6D Aqueous Magnesium 200.8 HS-MW-6D Aqueous Nickel 200.8 HS-MW-6D Aqueous Sodium 200.8 HS-MW-6D Aqueous Titanium 200.8	HS-MW-6D Aqueous Boron 200.8 55 HS-MW-6D Aqueous Chromium 200.8 1.8 HS-MW-6D Aqueous Iron 200.8 1500 HS-MW-6D Aqueous Magnesium 200.8 23000 HS-MW-6D Aqueous Nickel 200.8 2.3 HS-MW-6D Aqueous Sodium 200.8 20000 HS-MW-6D Aqueous Titanium 200.8 3.7	HS-MW-6D Aqueous Boron 200.8 55 HS-MW-6D Aqueous Chromium 200.8 1.8 BJ HS-MW-6D Aqueous Iron 200.8 1500 HS-MW-6D Aqueous Magnesium 200.8 23000 HS-MW-6D Aqueous Nickel 200.8 2.3 J HS-MW-6D Aqueous Sodium 200.8 20000 H HS-MW-6D Aqueous Titanium 200.8 3.7 J	HS-MW-6D Aqueous Boron 200.8 55 ug/L HS-MW-6D Aqueous Chromium 200.8 1.8 BJ ug/L HS-MW-6D Aqueous Iron 200.8 1500 ug/L HS-MW-6D Aqueous Magnesium 200.8 23000 ug/L HS-MW-6D Aqueous Nickel 200.8 2.3 J ug/L HS-MW-6D Aqueous Sodium 200.8 20000 ug/L HS-MW-6D Aqueous Titanium 200.8 3.7 J ug/L

(149 detections)

Inorganic non-metals

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC21029-001

Description: HS-MW-10S

Date Sampled:03/18/2019 1505

Matrix: Aqueous

Date Received: 03/21/2019

Run		Analytical Method	Dilution	Analysis Date A		Prep Date	Batch
1	350.1	(Ammonia - N) 350.1	1	03/28/2019 1454	MSG		11537
1		(Chloride) 300.0	1	04/02/2019 1407	SLU		12073
1	10-204-00-1-X	(Cyanide - To) SM 4500-CN E-	1	03/27/2019 1525	MSG	03/27/2019 1140	11401
1		(Hardness (to) SM 2340C-2011	1	03/27/2019 1719	KFE		11494
1		(Nitrate-Nitr) 353.2	1	03/23/2019 1728	MDD		11110
1		(Phosphorus) 365.1	1	03/26/2019 1413	DMA	03/25/2019 1335	11197
1		(Sulfate) 300.0	1	04/02/2019 1407	SLU		12072
1		(Sulfide) SM 4500-S2 F-2011	1	03/21/2019 2027	HET		10988

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ammonia - N (gas diffusion)		350.1	ND		0.10	0.020	mg/L	1
Chloride		300.0	38		1.0	0.20	mg/L	1
Cyanide - Total	57-12-5	SM 4500-CN E-	ND		0.010	0.010	mg/L	1
Hardness (total)		SM 2340C-	320		10	2.0	mg/L	1
Nitrate-Nitrite - N		353.2	1.6	В	0.020	0.0015	mg/L	1
Phosphorus	7723-14-0	365.1	0.0057	J	0.050	0.0050	mg/L	1
Sulfate		300.0	5.4		1.0	0.20	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-	ND		1.0	1.0	mg/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10S

Laboratory ID: UC21029-001

Date Sampled:03/18/2019 1505 Date Received: 03/21/2019

Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date** Batch 5030B 8260B 03/29/2019 1136 BWS 11689

67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	3.2 J ND ND ND ND ND ND ND	20 1.0 1.0 1.0 2.0	2.0 0.40 0.40 0.40 0.40	u g/L ug/L ug/L ug/L ug/L	1 1 1
75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7	8260B 8260B 8260B 8260B 8260B 8260B	ND ND ND ND	1.0 1.0 2.0 10	0.40 0.40 0.40	ug/L ug/L	1
75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7	8260B 8260B 8260B 8260B 8260B	ND ND ND	1.0 2.0 10	0.40 0.40	ug/L	
74-83-9 78-93-3 75-15-0 56-23-5 108-90-7	8260B 8260B 8260B 8260B	ND ND	2.0 10	0.40 0.40	ug/L	4
78-93-3 75-15-0 56-23-5 108-90-7	8260B 8260B 8260B	ND	10	0.40		1
75-15-0 56-23-5 108-90-7	8260B 8260B					1
56-23-5 108-90-7	8260B	ND		2.0	ug/L	1
108-90-7			1.0	0.40	ug/L	1
	22225	ND	1.0	0.40	ug/L	1
75-00-3	8260B	ND	1.0	0.40	ug/L	1
	8260B	ND	2.0	0.40	ug/L	1
67-66-3						1
						1
						1
						1
124-48-1	8260B					1
106-93-4	8260B	ND				1
95-50-1	8260B	ND				1
	8260B					1
	8260B				10.00	1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
						1
	67-66-3 74-87-3 110-82-7 96-12-8 124-48-1	67-66-3 8260B 74-87-3 8260B 110-82-7 8260B 96-12-8 8260B 124-48-1 8260B 106-93-4 8260B 95-50-1 8260B 541-73-1 8260B 106-46-7 8260B 75-71-8 8260B 75-34-3 8260B 107-06-2 8260B 75-35-4 8260B 156-60-5 8260B 156-60-5 8260B 10061-01-5 8260B 10061-02-6 8260B 100-41-4 8260B 98-82-8 8260B 79-20-9 8260B 108-87-2 8260B 108-87-2 8260B 108-87-2 8260B 108-87-2 8260B 108-87-2 8260B 108-87-2 8260B 109-42-5 8260B 179-34-5 8260B 108-88-3 8260B 108-88-3 8260B 108-88-3 8260B 108-88-1 8260B	67-66-3 8260B ND 74-87-3 8260B ND 110-82-7 8260B ND 96-12-8 8260B ND 124-48-1 8260B ND 106-93-4 8260B ND 95-50-1 8260B ND 106-46-7 8260B ND 75-71-8 8260B ND 75-34-3 8260B ND 107-06-2 8260B ND 156-59-2 8260B ND 156-59-2 8260B ND 78-87-5 8260B ND 10061-02-6 8260B ND 100-41-4 8260B ND 100-41-4 8260B ND 98-82-8 8260B ND 1634-04-4 8260B ND 108-10-1 8260B ND 108-87-2 8260B ND 108-87-1 8260B ND 108-87-2 8260B ND 108-87-2 8260B ND 108-87-2 8260B ND 108-87-1 8260B ND 108-88-3 8260B ND 108-88-3 8260B ND 108-88-3 8260B ND 108-88-3 8260B ND 108-88-1 8260B ND 108-88-1 8260B ND 108-88-1 8260B ND	67-66-3 8260B ND 1.0 74-87-3 8260B ND 1.0 110-82-7 8260B ND 1.0 96-12-8 8260B ND 1.0 124-48-1 8260B ND 1.0 106-93-4 8260B ND 1.0 95-50-1 8260B ND 1.0 95-50-1 8260B ND 1.0 106-46-7 8260B ND 1.0 75-71-8 8260B ND 1.0 75-71-8 8260B ND 1.0 107-06-2 8260B ND 1.0 75-34-3 8260B ND 1.0 107-06-2 8260B ND 1.0 156-59-2 8260B ND 1.0 156-60-5 8260B ND 1.0 78-87-5 8260B ND 1.0 10061-01-5 8260B ND 1.0 100-41-4 8260B ND 1.0 98-82-8 8260B ND 1.0 98-	67-66-3 8260B ND 1.0 0.40 74-87-3 8260B ND 1.0 0.50 110-82-7 8260B ND 1.0 0.40 96-12-8 8260B ND 1.0 0.40 124-48-1 8260B ND 1.0 0.40 106-93-4 8260B ND 1.0 0.40 95-50-1 8260B ND 1.0 0.40 95-50-1 8260B ND 1.0 0.40 541-73-1 8260B ND 1.0 0.40 106-46-7 8260B ND 1.0 0.40 75-71-8 8260B ND 1.0 0.40 75-34-3 8260B ND 1.0 0.40 75-35-4 8260B ND 1.0 0.40 75-35-4 8260B ND 1.0 0.40 78-87-5 8260B ND 1.0 0.40 78-87-5 8260B ND	67-66-3 8260B ND 1.0 0.40 ug/L 74-87-3 8260B ND 1.0 0.50 ug/L 110-82-7 8260B ND 1.0 0.40 ug/L 96-12-8 8260B ND 1.0 0.40 ug/L 124-48-1 8260B ND 1.0 0.40 ug/L 106-93-4 8260B ND 1.0 0.40 ug/L 95-50-1 8260B ND 1.0 0.40 ug/L 541-73-1 8260B ND 1.0 0.40 ug/L 106-46-7 8260B ND 1.0 0.40 ug/L 75-71-8 8260B ND 1.0 0.40 ug/L 75-34-3 8260B ND 1.0 0.40 ug/L 107-06-2 8260B ND 1.0 0.40 ug/L 156-59-2 8260B ND 1.0 0.40 ug/L 156-60-5 8260B ND 1.0 0.40 ug/L 10061-01-5 8260B ND 1.0 0.40 ug/L 10061-02-6 8260B ND 1.0 0.40 ug/L 10061-02-6 8260B ND 1.0 0.40 ug/L 110061-02-6 8260B ND 1.0 0.40 ug/L 1100-41-4 8260B ND 1.0 0.40 ug/L 1100-41-4 8260B ND 1.0 0.40 ug/L 1108-87-2 8260B ND 1.0 0.40 ug/L 1108-88-3 8260B ND 1.0 0.40 ug/L

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10S

Laboratory ID: UC21029-001 Matrix: Aqueous

Date Sampled:03/18/2019 1505 Date Received: 03/21/2019

Run Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date** Batch 5030B 8260B 03/29/2019 1136 BWS 11689

CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
79-01-6	8260B	ND	1.0	0.40	ug/L	1
75-69-4	8260B	ND	1.0	0.40	ug/L	1
75-01-4	8260B	ND	1.0	0.40	ug/L	1
1330-20-7	8260B	ND	1.0	0.40	ug/L	1
179601-23-1	8260B	ND	1.0	0.40	ug/L	1
95-47-6	8260B	ND	1.0	0.40	ug/L	1
	Number 79-01-6 75-69-4 75-01-4 1330-20-7 179601-23-1	Number Method 79-01-6 8260B 75-69-4 8260B 75-01-4 8260B 1330-20-7 8260B 179601-23-1 8260B	Number Method Result Q 79-01-6 8260B ND 75-69-4 8260B ND 75-01-4 8260B ND 1330-20-7 8260B ND 179601-23-1 8260B ND	Number Method Result Q LOQ 79-01-6 8260B ND 1.0 75-69-4 8260B ND 1.0 75-01-4 8260B ND 1.0 1330-20-7 8260B ND 1.0 179601-23-1 8260B ND 1.0	Number Method Result Q LOQ DL 79-01-6 8260B ND 1.0 0.40 75-69-4 8260B ND 1.0 0.40 75-01-4 8260B ND 1.0 0.40 1330-20-7 8260B ND 1.0 0.40 179601-23-1 8260B ND 1.0 0.40	Number Method Result Q LOQ DL Units 79-01-6 8260B ND 1.0 0.40 ug/L 75-69-4 8260B ND 1.0 0.40 ug/L 75-01-4 8260B ND 1.0 0.40 ug/L 1330-20-7 8260B ND 1.0 0.40 ug/L 179601-23-1 8260B ND 1.0 0.40 ug/L

Run 1 Acceptance Surrogate Q % Recovery Limits 1,2-Dichloroethane-d4 100 70-130 Bromofluorobenzene 91 70-130 Toluene-d8 97 70-130

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10S

Date Sampled:03/18/2019 1505
Date Received:03/21/2019

Laboratory ID: UC21029-001

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3520C
 8270D
 1
 04/03/2019 2004
 SCD
 03/25/2019 1939
 11166

8270D 8270D	ND N	0.20 0.20 0.80 0.20 0.80 20 0.20 0.20 0.20 0.20 0.80 1.6 0.80 0.80 0.80 0.80	0.040 0.040 0.50 0.060 0.50 1.0 0.040 0.070 0.040 0.040 0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND N	0.80 0.20 0.80 20 0.20 0.20 0.20 0.20 0.80 1.6 0.80 0.80 0.80 0.80	0.50 0.060 0.50 1.0 0.040 0.070 0.040 0.040 0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND N	0.20 0.80 20 0.20 0.20 0.20 0.20 0.80 1.6 0.80 0.80 0.80 0.80 0.80	0.060 0.50 1.0 0.040 0.070 0.040 0.040 0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND N	0.80 20 0.20 0.20 0.20 0.20 0.80 1.6 0.80 0.80 0.80 0.80	0.50 1.0 0.040 0.070 0.040 0.040 0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND N	20 0.20 0.20 0.20 0.20 0.20 0.80 1.6 0.80 0.80 0.80 0.80	1.0 0.040 0.070 0.040 0.040 0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND N	0.20 0.20 0.20 0.20 0.80 1.6 0.80 0.80 0.80 0.80	1.0 0.040 0.070 0.040 0.040 0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND N	0.20 0.20 0.20 0.20 0.80 1.6 0.80 0.80 0.80 0.80	0.040 0.070 0.040 0.040 0.040 0.50 1.0 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND N	0.20 0.20 0.20 0.80 1.6 0.80 0.80 0.80 0.80	0.040 0.040 0.040 0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND	0.20 0.20 0.80 1.6 0.80 0.80 0.80 0.80	0.040 0.040 0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND ND ND ND ND ND	0.20 0.80 1.6 0.80 0.80 0.80 0.80	0.040 0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND ND ND ND ND ND	0.80 1.6 0.80 0.80 0.80 0.80	0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L	1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND ND ND ND ND ND	1.6 0.80 0.80 0.80 0.80	0.50 1.0 0.50 0.50 0.50	ug/L ug/L ug/L ug/L	1
8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND ND ND ND ND	1.6 0.80 0.80 0.80 0.80	1.0 0.50 0.50 0.50	ug/L ug/L ug/L	1
8270D 8270D 8270D 8270D 8270D 8270D	ND ND ND ND	0.80 0.80 0.80 0.80 0.80	0.50 0.50 0.50	ug/L ug/L	
8270D 8270D 8270D 8270D 8270D	ND ND ND ND	0.80 0.80 0.80 0.80	0.50 0.50	ug/L	
8270D 8270D 8270D 8270D	ND ND ND	0.80 0.80	0.50		
8270D 8270D 8270D	ND	0.80			1
8270D 8270D	ND	0.80		ug/L	1
8270D			0.50	ug/L	1
		0.20	0.030	ug/L	1
	ND	0.20	0.030	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	4.0	1.8	ug/L	1
8270D	ND	1.6	1.0	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	0.80	0.48	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	4.0	1.0	ug/L	1
8270D	ND	1.6	0.50	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	4.0	0.50	ug/L	1
8270D	ND	0.20	0.10	ug/L	1
8270D	ND	0.20	0.030	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
					1
					1
82700					1
					1
8270D					1
8270D 8270D	1,10				1
8270D 8270D 8270D	ND				1
8270D 8270D 8270D 8270D	ND ND	16			1
1	8270D 8270D 8270D 8270D	8270D ND 8270D ND 8270D ND 8270D ND 8270D ND 8270D ND 7 8270D ND	4 8270D ND 4.0 8270D ND 0.80 8270D ND 0.20 8270D ND 0.80 8270D ND 0.20 8270D ND 0.80 8270D ND 0.80 8270D ND 1.6	4 8270D ND 4.0 2.0 8270D ND 0.80 0.31 8270D ND 0.20 0.040 8270D ND 0.80 0.50 8270D ND 0.20 0.040 8270D ND 0.80 0.21 8270D ND 1.6 1.5	4 8270D ND 4.0 2.0 ug/L 8270D ND 0.80 0.31 ug/L 8270D ND 0.20 0.040 ug/L 8270D ND 0.80 0.50 ug/L 8270D ND 0.20 0.040 ug/L 8270D ND 0.80 0.21 ug/L 7 8270D ND 0.80 0.21 ug/L

LOQ = Limit of Quantitation

ND = Not detected at or above the LOQ

H = Out of holding time

B = Detected in the method blank

N = Recovery is out of criteria

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

W = Reported on wet weight basis

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10S

Laboratory ID: UC21029-001

Matrix: Aqueous

Date Sampled:03/18/2019 1505 Date Received: 03/21/2019

3520C

Run Prep Method

Analytical Method Dilution Analysis Date Analyst 8270D 04/03/2019 2004 SCD 03/25/2019 1939 11166

Prep Date Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Nitrobenzene	98-95-3	8270D	ND	0.80	0.55	ug/L	1
2-Nitrophenol	88-75-5	8270D	ND	1.6	1.0	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	0.80	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	0.80	0.50	ug/L	1
Pentachlorophenol	87-86-5	8270D	ND	4.0	2.0	ug/L	1
Phenanthrene	85-01-8	8270D	ND	0.20	0.060	ug/L	1
Phenol	108-95-2	8270D	ND	0.80	0.50	ug/L	1
Pyrene	129-00-0	8270D	ND	0.20	0.10	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	0.80	0.50	ug/L	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	0.80	0.50	ug/L	1

Surrogate		in 1 Acceptance covery Limits	
2-Fluorobiphenyl		59 37-129	
2-Fluorophenol		38 24-127	
Nitrobenzene-d5		76 38-127	
Phenol-d5	23	53 28-128	
Terphenyl-d14	19	93 10-148	
2,4,6-Tribromophenol		60 35-144	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10S

Date Sampled:03/18/2019 1505 Date Received: 03/21/2019

Laboratory ID: UC21029-001

Matrix: Aqueous

0.000091

mg/L

Run Prep Method

Mercury

Analytical Method Dilution Analysis Date Analyst 7470A 03/28/2019 1217 JMH

7439-97-6

Prep Date Batch 03/27/2019 1341 11405

0.00020

ND

CAS Analytical Number Method **Parameter** Result Q LOQ DL Units Run 7470A

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10S

Date Sampled:03/18/2019 1505 Date Received:03/21/2019 Laboratory ID: UC21029-001

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 200.2
 200.8
 1
 03/28/2019 0021
 BNW
 03/23/2019 0847
 11022

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	200.8	13	J	40	10	ug/L	1
Antimony	7440-36-0	200.8	ND		2.0	0.50	ug/L	1
Arsenic	7440-38-2	200.8	ND		2.0	1.3	ug/L	1
Barium	7440-39-3	200.8	60		5.0	1.3	ug/L	1
Beryllium	7440-41-7	200.8	ND		0.40	0.15	ug/L	1
Boron	7440-42-8	200.8	28	J	50	6.3	ug/L	1
Cadmium	7440-43-9	200.8	ND		0.50	0.13	ug/L	1
Chromium	7440-47-3	200.8	ND		5.0	1.3	ug/L	1
Cobalt	7440-48-4	200.8	ND		5.0	1.3	ug/L	1
Copper	7440-50-8	200.8	ND		5.0	1.3	ug/L	1
Iron	7439-89-6	200.8	380		50	13	ug/L	1
Lead	7439-92-1	200.8	ND		1.0	0.25	ug/L	1
Magnesium	7439-95-4	200.8	24000		400	50	ug/L	1
Molybdenum	7439-98-7	200.8	ND		10	2.5	ug/L	1
Nickel	7440-02-0	200.8	1.3	J	5.0	1.3	ug/L	1
Selenium	7782-49-2	200.8	ND		5.0	1.3	ug/L	1
Silver	7440-22-4	200.8	ND		1.0	0.25	ug/L	1
Sodium	7440-23-5	200.8	15000		400	150	ug/L	1
Thallium	7440-28-0	200.8	ND		0.50	0.15	ug/L	1
Titanium	7440-32-6	200.8	1.4	J	5.0	1.3	ug/L	1
Vanadium	7440-62-2	200.8	ND		5.0	2.5	ug/L	1
Zinc	7440-66-6	200.8	ND		10	2.5	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10S

Laboratory ID: UC21029-001 Matrix: Aqueous

3.5

ng/L

Date Sampled:03/18/2019 1505 Date Received: 03/21/2019

537 MOD

Perfluorooctanesulfonic acid (PFOS)

Run Prep Method

1

Analytical Method 537 Modified-ID

Dilution Analysis Date Analyst 03/27/2019 2232 SES

Prep Date

Batch 03/26/2019 1814 11294

CAS Analytical Result Q LOQ Run Parameter Number Method Units 1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS) 39108-34-4 537 Modified-ND 3.5 ng/L 1 1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS) 27619-97-2 537 Modified-ND 3.5 ng/L 1 ND N-ethylperfluoro-1-octanesulfonamide (EtFOSA) 4151-50-2 537 Modified-35 ng/L 1 N-methylperfluoro-1-octanesulfonamide (MeFOSA) 31506-32-8 537 Modified-ND 7.0 na/L 1 Perfluoro-1-butanesulfonic acid (PFBS) 375-73-5 537 Modified-ND 3.5 ng/L Perfluoro-1-decanesulfonic acid (PFDS) 335-77-3 537 Modified-ND 3.5 ng/L 1 Perfluoro-1-heptanesulfonic acid (PFHpS) 375-92-8 537 Modified-4.7 3.5 ng/L 1 Perfluoro-1-nonanesulfonic acid (PFNS) 537 Modified-ND 68259-12-1 70 ng/L Perfluoro-1-octanesulfonamide (PFOSA) 754-91-6 537 Modified-ND 3.5 ng/L Perfluoro-1-pentanesulfonic acid (PFPeS) 2706-91-4 537 Modified-ND 35 ng/L Perfluorohexanesulfonic acid (PFHxS) 355-46-4 537 Modified-6.0 3.5 ng/L 537 Modified-Perfluoro-n-butanoic acid (PFBA) 375-22-4 ND 3.5 ng/L Perfluoro-n-decanoic acid (PFDA) 335-76-2 537 Modified-ND 3.5 ng/L Perfluoro-n-dodecanoic acid (PFDoA) 307-55-1 537 Modified-ND 3.5 ng/L Perfluoro-n-heptanoic acid (PFHpA) 375-85-9 537 Modified-ND 3.5 ng/L Perfluoro-n-hexanoic acid (PFHxA) 307-24-4 537 Modified-ND ng/L 3.5 Perfluoro-n-nonanoic acid (PFNA) 375-95-1 537 Modified-ND 3.5 ng/L Perfluoro-n-octanoic acid (PFOA) 335-67-1 537 Modified-12 1.8 ng/L Perfluoro-n-pentanoic acid (PFPeA) 2706-90-3 537 Modified-ND 3.5 na/L Perfluoro-n-tetradecanoic acid (PFTeDA) 376-06-7 537 Modified-ND 3.5 ng/L Perfluoro-n-tridecanoic acid (PFTrDA) 72629-94-8 537 Modified-ND 3.5 ng/L 1 Perfluoro-n-undecanoic acid (PFUdA) 2058-94-8 537 Modified-ND 3.5 ng/L

Surrogate	Run 1 A Q % Recovery	cceptance Limits	
13C2_6:2FTS	104	50-150	
13C2_8:2FTS	117	50-150	
13C2_PFDoA	110	50-150	
13C2_PFTeDA	118	50-150	
13C3_PFBS	113	50-150	
13C3_PFHxS	117	50-150	
13C4_PFBA	110	50-150	
13C4_PFHpA	107	50-150	
13C5_PFHxA	112	50-150	
13C5_PFPeA	114	50-150	
13C6_PFDA	114	50-150	
13C7_PFUdA	114	50-150	
13C8_PFOA	115	50-150	
13C8_PFOS	115	50-150	
13C8_PFOSA	114	50-150	
13C9_PFNA	109	50-150	
d-EtFOSA	80	50-150	
d-MeFOSA	76	50-150	

537 Modified-

40

1763-23-1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Inorganic non-metals

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10M

Laboratory ID: UC21029-002

Matrix: Aqueous

Date Sampled:03/18/2019 1235

Date Received: 03/21/201						
Run	Prep Method					

Run 1	Prep Method 350.1	Analytical Method (Ammonia - N) 350.1	Dilution 1	Analysis Date Analyst 03/28/2019 1456 MSG	Prep Date Batch 11537
1		(Chloride) 300.0	5	03/30/2019 0924 SLU	11833
1	10-204-00-1-X	(Cyanide - To) SM 4500-CN E-	1	03/28/2019 1227 MSG	03/28/2019 1101 11519
1		(Hardness (to) SM 2340C-2011	1	03/27/2019 1719 KFE	11494
1		(Nitrate-Nitr) 353.2	1	03/23/2019 1729 MDD	11110
1		(Phosphorus) 365.1	1	03/28/2019 1625 MSG	03/28/2019 1218 11531
1		(Sulfate) 300.0	1	03/30/2019 0858 SLU	11830
1		(Sulfide) SM 4500-S2 F-2011	1	03/21/2019 2027 HET	10988

CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
	350.1	ND		0.10	0.020	mg/L	1
	300.0	440		5.0	1.0	mg/L	1
57-12-5	SM 4500-CN	0.012		0.010	0.010	mg/L	1
	SM 2340C-	440		10	2.0	mg/L	1
	353.2	1.1	В	0.020	0.0015	mg/L	1
7723-14-0	365.1	0.019	J	0.050	0.0050	mg/L	1
	300.0	25		1.0	0.20	mg/L	1
18496-25-8	SM 4500-S2 F-	ND		1.0	1.0	mg/L	1
	Number 57-12-5 7723-14-0	Number Method 350.1 300.0 57-12-5 SM 4500-CN SM 2340C- 353.2 7723-14-0 365.1 300.0	Number Method Result 350.1 ND 300.0 440 57-12-5 SM 4500-CN 0.012 SM 2340C- 440 353.2 1.1 7723-14-0 365.1 0.019 300.0 25	Number Method Result Q 350.1 ND 300.0 440 57-12-5 SM 4500-CN 0.012 SM 2340C- 440 353.2 1.1 B 7723-14-0 365.1 0.019 J 300.0 25	Number Method Result Q LOQ 350.1 ND 0.10 300.0 440 5.0 57-12-5 SM 4500-CN 0.012 0.010 SM 2340C- 440 10 353.2 1.1 B 0.020 7723-14-0 365.1 0.019 J 0.050 300.0 25 1.0	Number Method Result Q LOQ DL 350.1 ND 0.10 0.020 300.0 440 5.0 1.0 57-12-5 SM 4500-CN 0.012 0.010 0.010 SM 2340C- 440 10 2.0 353.2 1.1 B 0.020 0.0015 7723-14-0 365.1 0.019 J 0.050 0.0050 300.0 25 1.0 0.20	Number Method Result Q LOQ DL Units 350.1 ND 0.10 0.020 mg/L 300.0 440 5.0 1.0 mg/L 57-12-5 SM 4500-CN 0.012 0.010 0.010 mg/L SM 2340C- 440 10 2.0 mg/L 353.2 1.1 B 0.020 0.0015 mg/L 7723-14-0 365.1 0.019 J 0.050 0.0050 mg/L 300.0 25 1.0 0.20 mg/L

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10M

Date Sampled:03/18/2019 1235
Date Received:03/21/2019

Laboratory ID: UC21029-002

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 5030B
 8260B
 1
 03/29/2019 1200
 BWS
 11689

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	3.0	J	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND		1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND		1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND		1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND		2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND		10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND		1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND		1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND		1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND		2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND		1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND		1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND		1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND		1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND		1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND		1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND		1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND		2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND		1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND		1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND		1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND		1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND		1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND		1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND		1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND		10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND		1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND		10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND		5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND		1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND		1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND		1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND		1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND		1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND		1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

is out of criteria P = The RPD between two GC columns exceeds 40% on wet weight basis

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC21029-002 Matrix: Aqueous

Description: HS-MW-10M

Date Sampled:03/18/2019 1235 Date Received: 03/21/2019

> **Prep Date** Batch

Run Prep Method Analytical Method Dilution Analysis Date Analyst 1 5030B 8260B 03/29/2019 1200 BWS 11689

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260B	ND	1.0	0.40	ug/L	1
m+p - Xylenes	179601-23-1	8260B	ND	1.0	0.40	ug/L	1
o - Xylenes	95-47-6	8260B	ND	1.0	0.40	ug/L	1
	Run 1 Accept	ance					

Q	% Recovery	Limits
	102	70-130
	96	70-130
	98	70-130
	Q	Q % Recovery 102 96

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC21029-002

Description: HS-MW-10M

Matrix: Aqueous

Date Sampled:03/18/2019 1235 Date Received: 03/21/2019

3520C

Run Prep Method

Analytical Method Dilution Analysis Date Analyst **Prep Date** Batch 8270D 04/03/2019 1600 SCD 03/25/2019 1939 11166

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acenaphthene	83-32-9	8270D	ND	0.20	0.040	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	0.20	0.040	ug/L	1
Acetophenone	98-86-2	8270D	ND	0.80	0.50	ug/L	1
Anthracene	120-12-7	8270D	ND	0.20	0.060	ug/L	1
Atrazine	1912-24-9	8270D	ND	0.80	0.50	ug/L	1
Benzidine	92-87-5	8270D	ND	20	1.0	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	0.20	0.040	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	0.20	0.070	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	0.20	0.040	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	0.20	0.040	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	0.20	0.040	ug/L	1
Butyl benzyl phthalate	85-68-7	8270D	ND	0.80	0.50	ug/L	1
Caprolactam	105-60-2	8270D	ND	1.6	1.0	ug/L	1
Carbazole	86-74-8	8270D	ND	0.80	0.50	ug/L	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	0.80	0.50	ug/L	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	0.80	0.50	ug/L	1
2-Chloronaphthalene	91-58-7	8270D	ND	0.80	0.50	ug/L	1
2-Chlorophenol	95-57-8	8270D	ND	0.80	0.50	ug/L	1
Chrysene	218-01-9	8270D	ND	0.20	0.030	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	0.20	0.030	ug/L	1
Dibenzofuran	132-64-9	8270D	ND	0.80	0.50	ug/L	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	4.0	1.8	ug/L	1
2,4-Dichlorophenol	120-83-2	8270D	ND	1.6	1.0	ug/L	1
Diethylphthalate	84-66-2	8270D	ND	0.80	0.50	ug/L	1
Dimethyl phthalate	131-11-3	8270D	ND	0.80	0.50	ug/L	1
2,4-Dimethylphenol	105-67-9	8270D	ND	0.80	0.48	ug/L	1
Di-n-butyl phthalate	84-74-2	8270D	ND	0.80	0.50	ug/L	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	4.0	1.0	ug/L	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	1.6	0.50	ug/L	1
Di-n-octylphthalate	117-84-0	8270D	ND	0.80	0.50	ug/L	1
1,2-Diphenylhydrazine(as azobenzene)	103-33-3	8270D	ND	0.80	0.50	ug/L	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	4.0	0.50	ug/L	1
Fluoranthene	206-44-0	8270D	ND	0.20	0.10	ug/L	1
Fluorene	86-73-7	8270D	ND	0.20	0.030	ug/L	1
Hexachlorobenzene	118-74-1	8270D	ND	0.80	0.50	ug/L	1
Hexachlorobutadiene	87-68-3	8270D	ND	0.80	0.50	ug/L	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	4.0	2.0	ug/L	1
Hexachloroethane	67-72-1	8270D	ND	0.80	0.31	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	0.20	0.040	ug/L	1
Isophorone	78-59-1	8270D	ND	0.80	0.50	ug/L	1
2-Methylnaphthalene	91-57-6	8270D	ND	0.20	0.040	ug/L	1
2-Methylphenol	95-48-7	8270D	ND	0.80	0.21	ug/L	1
3+4-Methylphenol	106-44-5	8270D	ND	1.6	1.5	ug/L	1
Naphthalene	91-20-3	8270D	ND	0.20	0.050	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

ND = Not detected at or above the LOQ N = Recovery is out of criteria

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10M

Laboratory ID: UC21029-002

Matrix: Aqueous

Date Sampled:03/18/2019 1235

3520C

Date Received: 03/21/2019

Run Prep Method

Analytical Method Dilution Analysis Date Analyst **Prep Date** Batch 8270D 04/03/2019 1600 SCD 03/25/2019 1939 11166

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Nitrobenzene	98-95-3	8270D	ND	0.80	0.55	ug/L	1
2-Nitrophenol	88-75-5	8270D	ND	1.6	1.0	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	0.80	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	0.80	0.50	ug/L	1
Pentachlorophenol	87-86-5	8270D	ND	4.0	2.0	ug/L	1
Phenanthrene	85-01-8	8270D	ND	0.20	0.060	ug/L	1
Phenol	108-95-2	8270D	ND	0.80	0.50	ug/L	1
Pyrene	129-00-0	8270D	ND	0.20	0.10	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	0.80	0.50	ug/L	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	0.80	0.50	ug/L	1

Surrogate	Run 1 Q % Recovery	Acceptance ry Limits	
2-Fluorobiphenyl	59	37-129	
2-Fluorophenol	38	24-127	
Nitrobenzene-d5	75	38-127	
Phenol-d5	50	28-128	
Terphenyl-d14	79	10-148	
2,4,6-Tribromophenol	59	35-144	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10M

Date Sampled:03/18/2019 1235
Date Received:03/21/2019

Laboratory ID: UC21029-002

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 7470A
 1
 03/28/2019 1225
 JMH
 03/27/2019 1341
 11405

CAS Analytical Method **Parameter** Number Result Q LOQ DL Units Run 7470A Mercury 7439-97-6 ND 0.00020 mg/L 0.000091

LOQ = Limit of Quantitation

H = Out of holding time

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10M Date Sampled:03/18/2019 1235 Laboratory ID: UC21029-002

Matrix: Aqueous

Date Received: 03/21/2019

Run Prep Method Analytical Method Dilution 1 200.2 200.8 2 200.2 200.8

Analysis Date Analyst 1 03/28/2019 0026 BNW 5 03/28/2019 1648 BNW

Prep Date Batch 03/23/2019 0847 11022 03/23/2019 0847 11022

Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
7429-90-5	200.8	16	J	40	10	ug/L	1
7440-36-0	200.8	ND		2.0	0.50	ug/L	1
7440-38-2	200.8	ND		2.0	1.3	ug/L	1
7440-39-3	200.8	120		5.0	1.3	ug/L	1
7440-41-7	200.8	ND		0.40	0.15	ug/L	1
7440-42-8	200.8	25	J	50	6.3	ug/L	1
7440-43-9	200.8	ND		0.50	0.13	ug/L	1
7440-47-3	200.8	1.6	BJ	5.0	1.3	ug/L	1
7440-48-4	200.8	ND		5.0	1.3	ug/L	1
7440-50-8	200.8	ND		5.0	1.3	ug/L	1
7439-89-6	200.8	560		50	13	ug/L	1
7439-92-1	200.8	ND		1.0	0.25	ug/L	1
7439-95-4	200.8	30000		400	50	ug/L	1
7439-98-7	200.8	ND		10	2.5	ug/L	1
7440-02-0	200.8	1.8	J	5.0	1.3	ug/L	1
7782-49-2	200.8	ND		5.0	1.3	ug/L	1
7440-22-4	200.8	ND		1.0	0.25	ug/L	1
7440-23-5	200.8	240000		2000	750	ug/L	2
7440-28-0	200.8	ND		0.50	0.15	ug/L	1
7440-32-6	200.8	1.7	J	5.0	1.3	ug/L	1
7440-62-2	200.8	ND		5.0	2.5	ug/L	1
7440-66-6	200.8	ND		10	2.5	ug/L	1
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-42-8 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-98-7 7440-02-0 7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-32-6 7440-62-2	7429-90-5 200.8 7440-36-0 200.8 7440-38-2 200.8 7440-39-3 200.8 7440-41-7 200.8 7440-42-8 200.8 7440-47-3 200.8 7440-48-4 200.8 7439-89-6 200.8 7439-95-4 200.8 7439-98-7 200.8 7440-02-0 200.8 7440-22-4 200.8 7440-23-5 200.8 7440-28-0 200.8 7440-32-6 200.8 7440-62-2 200.8	7429-90-5 200.8 16 7440-36-0 200.8 ND 7440-38-2 200.8 ND 7440-39-3 200.8 120 7440-41-7 200.8 ND 7440-42-8 200.8 25 7440-43-9 200.8 ND 7440-47-3 200.8 ND 7440-50-8 200.8 ND 7439-89-6 200.8 ND 7439-95-1 200.8 ND 7439-98-7 200.8 ND 7440-02-0 200.8 ND 7440-22-4 200.8 ND 7440-23-5 200.8 ND 7440-28-0 200.8 ND 7440-32-6 200.8 ND 7440-62-2 200.8 ND	7429-90-5 7440-36-0 7440-38-2 200.8 ND 7440-39-3 200.8 ND 7440-41-7 200.8 ND 7440-42-8 200.8 25 J 7440-43-9 200.8 ND 7440-47-3 200.8 ND 7440-48-4 200.8 ND 7440-50-8 200.8 ND 7439-89-6 200.8 ND 7439-92-1 200.8 ND 7439-98-7 200.8 ND 7440-02-0 200.8 ND 7440-22-4 200.8 ND 7440-23-5 200.8 ND 7440-32-6 200.8 ND 7440-32-6 200.8 ND 7440-32-6 200.8 ND 7440-32-6 200.8 ND	7429-90-5 200.8 16 J 40 7440-36-0 200.8 ND 2.0 7440-38-2 200.8 ND 2.0 7440-39-3 200.8 120 5.0 7440-41-7 200.8 ND 0.40 7440-42-8 200.8 ND 0.50 7440-43-9 200.8 ND 0.50 7440-47-3 200.8 ND 5.0 7440-48-4 200.8 ND 5.0 7439-89-6 200.8 ND 5.0 7439-92-1 200.8 ND 1.0 7439-95-4 200.8 ND 10 7440-02-0 200.8 ND 10 7440-02-0 200.8 ND 5.0 7440-22-4 200.8 ND 5.0 7440-23-5 200.8 ND 1.0 7440-28-0 200.8 ND 0.50 7440-32-6 200.8 ND 0.50 7440-32-6	7429-90-5 200.8 16 J 40 10 7440-36-0 200.8 ND 2.0 0.50 7440-38-2 200.8 ND 2.0 1.3 7440-39-3 200.8 120 5.0 1.3 7440-41-7 200.8 ND 0.40 0.15 7440-42-8 200.8 25 J 50 6.3 7440-43-9 200.8 ND 0.50 0.13 7440-47-3 200.8 ND 5.0 1.3 7440-48-4 200.8 ND 5.0 1.3 7440-50-8 200.8 ND 5.0 1.3 7439-89-6 200.8 ND 1.0 0.25 7439-95-4 200.8 ND 1.0 0.25 7440-02-0 200.8 ND 1.0 2.5 7440-02-0 200.8 ND 5.0 1.3 7440-23-5 200.8 ND 5.0 1.3 7440-23-6	7429-90-5 200.8 16 J 40 10 ug/L 7440-36-0 200.8 ND 2.0 0.50 ug/L 7440-38-2 200.8 ND 2.0 1.3 ug/L 7440-39-3 200.8 120 5.0 1.3 ug/L 7440-41-7 200.8 ND 0.40 0.15 ug/L 7440-42-8 200.8 25 J 50 6.3 ug/L 7440-43-9 200.8 ND 0.50 0.13 ug/L 7440-47-3 200.8 1.6 BJ 5.0 1.3 ug/L 7440-48-4 200.8 ND 5.0 1.3 ug/L 7440-50-8 200.8 ND 5.0 1.3 ug/L 7439-89-6 200.8 560 50 13 ug/L 7439-95-4 200.8 ND 1.0 0.25 ug/L 7440-02-0 200.8 ND 1.0 2.5 ug/L

LOQ = Limit of Quantitation

H = Out of holding time

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10M

Laboratory ID: UC21029-002 Matrix: Aqueous

Date Sampled:03/18/2019 1235 Date Received: 03/21/2019

Run Prep Method 537 MOD Analytical Method Dilution Analysis Date Analyst 537 Modified-ID

03/27/2019 2245 SES

Prep Date

Batch 03/26/2019 1814 11294

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.5	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.5	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.5	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.0	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	8.5	3.5	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.0	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.5	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	4.8	3.5	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	8.4	1.8	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.5	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	13	3.5	ng/L	1

Surrogate	Run 1 / Q % Recovery	Acceptance Limits	
13C2_6:2FTS	94	50-150	
13C2_8:2FTS	104	50-150	
13C2_PFDoA	104	50-150	
13C2_PFTeDA	107	50-150	
13C3_PFBS	109	50-150	
13C3_PFHxS	106	50-150	
13C4_PFBA	105	50-150	
13C4_PFHpA	104	50-150	
13C5_PFHxA	109	50-150	
13C5_PFPeA	109	50-150	
13C6_PFDA	103	50-150	
13C7_PFUdA	110	50-150	
13C8_PFOA	109	50-150	
13C8_PFOS	106	50-150	
13C8_PFOSA	104	50-150	
13C9_PFNA	104	50-150	
d-EtFOSA	79	50-150	
d-MeFOSA	72	50-150	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Inorganic non-metals

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC21029-003

Description: HS-MW-10D

Date Sampled:03/18/2019 1210

Matrix: Aqueous

Date Received: 03/21/2019

Run 1	Prep Method 350.1	Analytical Method (Ammonia - N) 350.1	Dilution 1	Analysis Date Analyst 03/29/2019 1417 DMA	Prep Date Batch 11687
1		(Chloride) 300.0	1	03/30/2019 0950 SLU	11833
1	10-204-00-1-X	(Cyanide - To) SM 4500-CN E-	1	03/28/2019 1228 MSG	03/28/2019 1101 11519
1		(Hardness (to) SM 2340C-2011	1	03/27/2019 1719 KFE	11494
1		(Nitrate-Nitr) 353.2	1	03/23/2019 1701 MDD	11110
1		(Phosphorus) 365.1	1	03/28/2019 1625 MSG	03/28/2019 1218 11531
2		(Sulfate) 300.0	5	04/02/2019 1423 SLU	12072
1		(Sulfide) SM 4500-S2 F-2011	1	03/21/2019 2027 HET	10988

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ammonia - N (gas diffusion)		350.1	0.35		0.10	0.020	mg/L	1
Chloride		300.0	3.9		1.0	0.20	mg/L	1
Cyanide - Total	57-12-5	SM 4500-CN	0.011		0.010	0.010	mg/L	1
Hardness (total)		SM 2340C-	520		10	2.0	mg/L	1
Nitrate-Nitrite - N		353.2	0.014	BJ	0.020	0.0015	mg/L	1
Phosphorus	7723-14-0	365.1	0.055		0.050	0.0050	mg/L	1
Sulfate		300.0	270		5.0	1.0	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-	ND		1.0	1.0	mg/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC21029-003

Description: HS-MW-10D

Matrix: Aqueous

Date Sampled:03/18/2019 1210 Date Received: 03/21/2019

5030B

Run Prep Method

1

Analytical Method Dilution Analysis Date Analyst 8260B

03/29/2019 1222 BWS

Prep Date

Batch 11689

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	2.7 J	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

H = Out of holding time

B = Detected in the method blank

N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10D

Date Sampled:03/18/2019 1210

Matrix: Aqueous

Laboratory ID: UC21029-003

Date Received: 03/21/2019

Run Prep Method 1 5030B

Toluene-d8

Analytical Method Dilution Analysis Date Analyst 8260B

03/29/2019 1222 BWS

Prep Date

Batch 11689

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260B	ND	1.0	0.40	ug/L	1
m+p - Xylenes	179601-23-1	8260B	ND	1.0	0.40	ug/L	1
o - Xylenes	95-47-6	8260B	ND	1.0	0.40	ug/L	1
Surrogate	tun 1 Accept ecovery Lim						
1,2-Dichloroethane-d4	104 70-1	30					
Bromofluorobenzene	93 70-1	30					

70-130

101

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10D

Date Sampled:03/18/2019 1210

Laboratory ID: UC21029-003

Matrix: Aqueous

Date Received: 03/21/2019 Run Prep Method 3520C 1

Dilution **Analytical Method** 8270D

Analysis Date Analyst 04/03/2019 1624 SCD

Prep Date 03/25/2019 1939 11166

Batch

CAS Analytical **Parameter** Number Result Q LOQ DL Units Run Method Acenaphthene 83-32-9 8270D ND 0.20 0.040 ug/L 1 208-96-8 8270D ND 0.20 ug/L Acenaphthylene 0.040 1 98-86-2 8270D ND 0.80 Acetophenone 0.50 ug/L 1 Anthracene 120-12-7 8270D ND 0.20 ug/L 1 0.060 0.80 Atrazine 1912-24-9 8270D ND 0.50 ug/L 1 Benzidine 92-87-5 8270D ND 20 1.0 ug/L 1 Benzo(a)anthracene 56-55-3 8270D ND 0.20 0.040 ug/L 1 0.070 Benzo(a)pyrene 50-32-8 8270D ND 0.20 ug/L 1 Benzo(b)fluoranthene 205-99-2 8270D ND 0.20 0.040 ug/L 1 Benzo(g,h,i)perylene 191-24-2 8270D ND 0.20 0.040 ug/L 1 Benzo(k)fluoranthene 207-08-9 8270D ND 0.20 0.040 ug/L 1 85-68-7 8270D ND 0.80 0.50 ug/L Butyl benzyl phthalate 1 ND 105-60-2 8270D 1.6 1.0 ug/L Caprolactam 1 Carbazole 86-74-8 8270D ND 0.80 0.50 ug/L 1 4-Chloro-3-methyl phenol 59-50-7 8270D ND 0.80 ug/L 1 0.50 ND 0.80 bis(2-Chloroethyl)ether 111-44-4 8270D ug/L 1 0.50 2-Chloronaphthalene 91-58-7 8270D ND 0.80 ug/L 0.50 1 2-Chlorophenol 95-57-8 8270D ND 0.80 ug/L 1 0.50 8270D ND 0.20 Chrysene 218-01-9 ug/L 0.030 1 Dibenzo(a,h)anthracene 53-70-3 8270D ND 0.20 0.030 ug/L 1 ND Dibenzofuran 132-64-9 8270D 0.80 ug/L 0.50 1 3.3'-Dichlorobenzidine 91-94-1 8270D ND 40 1.8 ug/L 1 2,4-Dichlorophenol 120-83-2 8270D ND 1.6 ug/L 1 1.0 Diethylphthalate 84-66-2 8270D ND 0.80 0.50 ug/L 1 131-11-3 8270D ND 0.80 Dimethyl phthalate 0.50 ug/L 1 2,4-Dimethylphenol 105-67-9 8270D ND 0.80 0.48 ug/L 1 Di-n-butyl phthalate 84-74-2 8270D ND 0.80 ug/L 1 0.50 534-52-1 8270D ND 4,6-Dinitro-2-methylphenol 4.0 1.0 ug/L 1 2,4-Dinitrotoluene 8270D ND 121-14-2 1.6 ug/L 0.50 1 8270D 0.80 Di-n-octylphthalate 117-84-0 ND 0.50 ug/L 1 103-33-3 8270D ND 0.80 1,2-Diphenylhydrazine(as azobenzene) ug/L 0.50 1 bis(2-Ethylhexyl)phthalate 117-81-7 8270D ND 4.0 0.50 ug/L 1 Fluoranthene 206-44-0 8270D ND 0.20 ug/L 0.10 1 Fluorene 86-73-7 8270D ND 0.20 0.030 ug/L 1 ND 0.80 Hexachlorobenzene 118-74-1 8270D ug/L 0.50 1 0.80 Hexachlorobutadiene 87-68-3 8270D ND 0.50 ug/L 1 ND Hexachlorocyclopentadiene 77-47-4 8270D 4.0 2.0 ug/L 1 Hexachloroethane 67-72-1 8270D ND 0.80 ug/L 1 0.31 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 0.20 0.040 ug/L 1 78-59-1 8270D ND 0.80 0.50 ug/L 1 Isophorone 2-Methylnaphthalene 91-57-6 8270D ND 0.20 0.040 ug/L 1 2-Methylphenol 95-48-7 8270D ND 0.80 0.21 ug/L 1 3+4-Methylphenol 106-44-5 8270D ND 1.5 1.6 ug/L 1 0.20 Naphthalene 91-20-3 8270D ND 0.050 ug/L 1

LOQ = Limit of Quantitation

B = Detected in the method blank

N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

H = Out of holding time W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ND = Not detected at or above the LOQ

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10D Date Sampled:03/18/2019 1210 Laboratory ID: UC21029-003 Matrix: Aqueous

Date Received: 03/21/2019

3520C

Run Prep Method

Analytical Method Dilution Analysis Date Analyst 8270D 04/03/2019 1624 SCD 03/25/2019 1939 11166

Prep Date Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Nitrobenzene	98-95-3	8270D	ND	0.80	0.55	ug/L	1
2-Nitrophenol	88-75-5	8270D	ND	1.6	1.0	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	0.80	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	0.80	0.50	ug/L	1
Pentachlorophenol	87-86-5	8270D	ND	4.0	2.0	ug/L	1
Phenanthrene	85-01-8	8270D	ND	0.20	0.060	ug/L	1
Phenol	108-95-2	8270D	ND	0.80	0.50	ug/L	1
Pyrene	129-00-0	8270D	ND	0.20	0.10	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	0.80	0.50	ug/L	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	0.80	0.50	ug/L	1

2-Fluorobiphenyl 68 37-129 2-Fluorophenol 46 24-127 Nitrobenzene-d5 82 38-127 Phonol d5 82 30-129	
Nitrobenzene-d5 82 38-127	•
Dhanal 45 CO 20 120	
Phenol-d5 68 28-128	
Terphenyl-d14 100 10-148	
2,4,6-Tribromophenol 74 35-144	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10D

Date Sampled:03/18/2019 1210 Date Received: 03/21/2019

Laboratory ID: UC21029-003

Matrix: Aqueous

Run Prep Method

Analytical Method Dilution **Analysis Date Analyst** 7470A

03/28/2019 1227 JMH

Prep Date Batch 03/27/2019 1341 11405

CAS Analytical Method **Parameter** Number Result Q LOQ DL Units Run 7470A Mercury 7439-97-6 ND 0.00020 mg/L 0.000091

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10D

Laboratory ID: UC21029-003 Matrix: Aqueous

Date Sampled:03/18/2019 1210 Date Received: 03/21/2019

Run Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date** Batch 200.2 200.8 03/28/2019 0032 BNW 03/23/2019 0847 11022

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	200.8	940		40	10	ug/L	1
Antimony	7440-36-0	200.8	ND		2.0	0.50	ug/L	1
Arsenic	7440-38-2	200.8	1.7	J	2.0	1.3	ug/L	1
Barium	7440-39-3	200.8	35		5.0	1.3	ug/L	1
Beryllium	7440-41-7	200.8	ND		0.40	0.15	ug/L	1
Boron	7440-42-8	200.8	80		50	6.3	ug/L	1
Cadmium	7440-43-9	200.8	ND		0.50	0.13	ug/L	1
Chromium	7440-47-3	200.8	3.8	BJ	5.0	1.3	ug/L	1
Cobalt	7440-48-4	200.8	ND		5.0	1.3	ug/L	1
Copper	7440-50-8	200.8	2.0	J	5.0	1.3	ug/L	1
Iron	7439-89-6	200.8	4700		50	13	ug/L	1
Lead	7439-92-1	200.8	0.78	J	1.0	0.25	ug/L	1
Magnesium	7439-95-4	200.8	25000		400	50	ug/L	1
Molybdenum	7439-98-7	200.8	ND		10	2.5	ug/L	1
Nickel	7440-02-0	200.8	3.3	J	5.0	1.3	ug/L	1
Selenium	7782-49-2	200.8	ND		5.0	1.3	ug/L	1
Silver	7440-22-4	200.8	ND		1.0	0.25	ug/L	1
Sodium	7440-23-5	200.8	8000		400	150	ug/L	1
Thallium	7440-28-0	200.8	ND		0.50	0.15	ug/L	1
Titanium	7440-32-6	200.8	43		5.0	1.3	ug/L	1
Vanadium	7440-62-2	200.8	ND		5.0	2.5	ug/L	1
Zinc	7440-66-6	200.8	4.4	J	10	2.5	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-10D Date Sampled:03/18/2019 1210 Laboratory ID: UC21029-003

Matrix: Aqueous

ng/L

Date Received: 03/21/2019

Run Prep Method 537 MOD Analytical Method Dilution Analysis Date Analyst 537 Modified-ID

03/27/2019 2257 SES

Prep Date

Batch 03/26/2019 1814 11294

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.8	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.8	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.8	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.5	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	ND	3.8	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.8	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.8	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.5	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.8	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.8	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	ND	3.8	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.8	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.8	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.8	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.8	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.8	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.8	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	ND	1.9	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.8	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.8	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.8	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.8	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance Limits	
13C2_6:2FTS	99	50-150	
13C2_8:2FTS	114	50-150	
13C2_PFDoA	103	50-150	
13C2_PFTeDA	112	50-150	
13C3_PFBS	113	50-150	
13C3_PFHxS	107	50-150	
13C4_PFBA	110	50-150	
13C4_PFHpA	105	50-150	
13C5_PFHxA	110	50-150	
13C5_PFPeA	110	50-150	
13C6_PFDA	104	50-150	
13C7_PFUdA	114	50-150	
13C8_PFOA	106	50-150	
13C8_PFOS	110	50-150	
13C8_PFOSA	101	50-150	
13C9_PFNA	111	50-150	
d-EtFOSA	79	50-150	
d-MeFOSA	79	50-150	

537 Modified-

ND

1763-23-1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

Perfluorooctanesulfonic acid (PFOS)

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Inorganic non-metals

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC21029-004

Description: HS-MW-9S

Matrix: Aqueous

Date Sampled:03/19/2019 1500 Date Received:03/21/2019

Run		Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	350.1	(Ammonia - N) 350.1	1	03/29/2019 1419 DMA		11687
1		(Chloride) 300.0	1	03/30/2019 1109 SLU		11833
1	10-204-00-1-X	(Cyanide - To) SM 4500-CN E-	1	03/28/2019 1229 MSG	03/28/2019 1101	11519
1		(Hardness (to) SM 2340C-2011	1	03/27/2019 1719 KFE		11494
1		(Nitrate-Nitr) 353.2	5	03/23/2019 1705 MDD		11110
1		(Phosphorus) 365.1	1	03/28/2019 1630 MSG	03/28/2019 1218	11531
2		(Sulfate) 300.0	1	04/02/2019 1439 SLU		12072
1		(Sulfide) SM 4500-S2 F-2011	1	03/21/2019 2027 HET		10988

Parameter	CAS Number		Result	Q	LOQ	DL	Units	Run
Ammonia - N (gas diffusion)		350.1	ND		0.10	0.020	mg/L	1
Chloride		300.0	71		1.0	0.20	mg/L	1
Cyanide - Total	57-12-5	SM 4500-CN E-	ND		0.010	0.010	mg/L	1
Hardness (total)		SM 2340C-	350		10	2.0	mg/L	1
Nitrate-Nitrite - N		353.2	2.4	В	0.10	0.0075	mg/L	1
Phosphorus	7723-14-0	365.1	0.022	J	0.050	0.0050	mg/L	1
Sulfate		300.0	15		1.0	0.20	mg/L	2
Sulfide	18496-25-8	SM 4500-S2 F-	ND		1.0	1.0	mg/L	1
Camac	10400 20 0	OW 4000 02 1	110		1.0	1.0	mg/L	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9S

Date Sampled:03/19/2019 1500
Date Received:03/21/2019

Laboratory ID: UC21029-004

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 5030B
 8260B
 1
 03/29/2019 1245
 BWS
 11689

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	2.7 J	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9S

Date Sampled:03/19/2019 1500
Date Received:03/21/2019

Laboratory ID: UC21029-004

Batch

11689

Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date
1 5030B 8260B 1 03/29/2019 1245 BWS

CAS Analytical **Parameter** Number Method Result Q LOQ DL Units Run Trichloroethene 8260B ND 79-01-6 1.0 0.40 ug/L 1 75-69-4 Trichlorofluoromethane 8260B ND 1.0 ug/L 1 0.40 Vinyl chloride 75-01-4 8260B ND 1.0 ug/L 1 0.40 1330-20-7 ND Xylenes (total) 8260B 1.0 0.40 ug/L 1 m+p - Xylenes 179601-23-1 8260B ND 1.0 ug/L 1 0.40 95-47-6 o - Xylenes 8260B ND 1.0 0.40 ug/L 1

 Surrogate
 Q
 Run 1 Recovery
 Acceptance Limits

 1,2-Dichloroethane-d4
 99
 70-130

 Bromofluorobenzene
 81
 70-130

 Toluene-d8
 92
 70-130

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9S

Date Sampled:03/19/2019 1500

Laboratory ID: UC21029-004

Matrix: Aqueous

Date Received: 03/21/2019 Run Prep Method 3520C 1

Dilution **Analytical Method** 8270D

Analysis Date Analyst 04/03/2019 1648 SCD

Prep Date 03/25/2019 1939 11166

Batch

CAS Analytical **Parameter** Number Result Q LOQ DL Units Run Method Acenaphthene 83-32-9 8270D ND 0.20 0.040 ug/L 1 208-96-8 8270D ND 0.20 ug/L Acenaphthylene 0.040 1 98-86-2 8270D ND 0.80 Acetophenone 0.50 ug/L 1 Anthracene 120-12-7 8270D ND 0.20 ug/L 1 0.060 0.80 Atrazine 1912-24-9 8270D ND 0.50 ug/L 1 Benzidine 92-87-5 8270D ND 20 1.0 ug/L 1 Benzo(a)anthracene 56-55-3 8270D ND 0.20 0.040 ug/L 1 0.070 Benzo(a)pyrene 50-32-8 8270D ND 0.20 ug/L 1 Benzo(b)fluoranthene 205-99-2 8270D ND 0.20 0.040 ug/L 1 Benzo(g,h,i)perylene 191-24-2 8270D ND 0.20 0.040 ug/L 1 Benzo(k)fluoranthene 207-08-9 8270D ND 0.20 0.040 ug/L 1 85-68-7 8270D ND 0.80 0.50 ug/L Butyl benzyl phthalate 1 ND 105-60-2 8270D 1.6 1.0 ug/L Caprolactam 1 Carbazole 86-74-8 8270D ND 0.80 0.50 ug/L 1 4-Chloro-3-methyl phenol 59-50-7 8270D ND 0.80 ug/L 1 0.50 bis(2-Chloroethyl)ether ND 0.80 111-44-4 8270D ug/L 1 0.50 2-Chloronaphthalene 91-58-7 8270D ND 0.80 ug/L 0.50 1 2-Chlorophenol 95-57-8 8270D ND 0.80 ug/L 1 0.50 218-01-9 8270D ND 0.20 Chrysene ug/L 0.030 1 Dibenzo(a,h)anthracene 53-70-3 8270D ND 0.20 0.030 ug/L 1 ND Dibenzofuran 132-64-9 8270D 0.80 ug/L 0.50 1 3.3'-Dichlorobenzidine 91-94-1 8270D ND 40 1.8 ug/L 1 2,4-Dichlorophenol 120-83-2 8270D ND 1.6 ug/L 1 1.0 Diethylphthalate 84-66-2 8270D ND 0.80 0.50 ug/L 1 131-11-3 8270D ND 0.80 Dimethyl phthalate 0.50 ug/L 1 2,4-Dimethylphenol 105-67-9 8270D ND 0.80 0.48 ug/L 1 Di-n-butyl phthalate 84-74-2 8270D ND 0.80 ug/L 1 0.50 534-52-1 8270D ND 4,6-Dinitro-2-methylphenol 4.0 1.0 ug/L 1 2,4-Dinitrotoluene 8270D ND 121-14-2 1.6 ug/L 0.50 1 117-84-0 8270D 0.80 Di-n-octylphthalate ND 0.50 ug/L 1 1,2-Diphenylhydrazine(as azobenzene) 103-33-3 8270D ND 0.80 ug/L 0.50 1 bis(2-Ethylhexyl)phthalate 117-81-7 8270D ND 4.0 0.50 ug/L 1 Fluoranthene 206-44-0 8270D ND 0.20 ug/L 0.10 1 Fluorene 86-73-7 8270D ND 0.20 0.030 ug/L 1 ND 0.80 Hexachlorobenzene 118-74-1 8270D ug/L 0.50 1 0.80 Hexachlorobutadiene 87-68-3 8270D ND 0.50 ug/L 1 ND Hexachlorocyclopentadiene 77-47-4 8270D 4.0 2.0 ug/L 1 Hexachloroethane 67-72-1 8270D ND 0.80 ug/L 1 0.31 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D ND 0.20 0.040 ug/L 1 78-59-1 8270D ND 0.80 0.50 ug/L 1 Isophorone 2-Methylnaphthalene 91-57-6 8270D ND 0.20 0.040 ug/L 1 2-Methylphenol 95-48-7 8270D ND 0.80 0.21 ug/L 1

LOQ = Limit of Quantitation ND = Not detected at or above the LOQ

3+4-Methylphenol

Naphthalene

B = Detected in the method blank

N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

8270D

8270D

ND

ND

1.5

0.050

1.6

0.20

ug/L

ug/L

1

1

H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

106-44-5

91-20-3

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9S

Date Sampled:03/19/2019 1500

3520C

Laboratory ID: UC21029-004

Matrix: Aqueous

Date Received: 03/21/2019 Run Prep Method

1

Analytical Method 8270D

Dilution **Analysis Date Analyst** 04/03/2019 1648 SCD

Prep Date 03/25/2019 1939 11166

Batch

CAS Analytical **Parameter** Number Method Result Q LOQ DL Units Run Nitrobenzene 8270D 98-95-3 ND 0.80 0.55 ug/L 1 2-Nitrophenol 88-75-5 8270D ND 1.6 ug/L 1 1.0 N-Nitrosodi-n-propylamine 621-64-7 8270D ND 0.80 0.50 ug/L 1 0.80 N-Nitrosodiphenylamine (Diphenylamine) 86-30-6 8270D ND ug/L 1 0.50 Pentachlorophenol 87-86-5 8270D ND 4.0 2.0 ug/L 1 Phenanthrene 85-01-8 8270D ND 0.20 0.060 ug/L Phenol 108-95-2 8270D ND 0.80 0.50 ug/L 129-00-0 ND 0.10 Pyrene 8270D 0.20 ug/L 95-95-4 0.50 2,4,5-Trichlorophenol 8270D ND 0.80 ug/L 1 2,4,6-Trichlorophenol 88-06-2 0.50 8270D ND 0.80 ug/L

Accentance

Surrogate	Q	% Recovery	Limits
2-Fluorobiphenyl		54	37-129
2-Fluorophenol		48	24-127
Nitrobenzene-d5		70	38-127
Phenol-d5		66	28-128
Terphenyl-d14		92	10-148
2,4,6-Tribromophenol		62	35-144

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9S

Date Sampled:03/19/2019 1500 Date Received: 03/21/2019

Laboratory ID: UC21029-004

Matrix: Aqueous

Run Prep Method

Analytical Method Dilution Analysis Date Analyst 7470A

03/28/2019 1230 JMH

Prep Date Batch 03/27/2019 1341 11405

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Mercury	7439-97-6	7470A	ND	0.00020	0.000091	mg/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9S

Date Sampled:03/19/2019 1500
Date Received:03/21/2019

Laboratory ID: UC21029-004

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 200.2
 200.8
 1
 03/28/2019 0038
 BNW
 03/23/2019 0847
 11022

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	200.8	ND		40	10	ug/L	1
Antimony	7440-36-0	200.8	ND		2.0	0.50	ug/L	1
Arsenic	7440-38-2	200.8	ND		2.0	1.3	ug/L	1
Barium	7440-39-3	200.8	32		5.0	1.3	ug/L	1
Beryllium	7440-41-7	200.8	ND		0.40	0.15	ug/L	1
Boron	7440-42-8	200.8	22	J	50	6.3	ug/L	1
Cadmium	7440-43-9	200.8	ND		0.50	0.13	ug/L	1
Chromium	7440-47-3	200.8	1.6	BJ	5.0	1.3	ug/L	1
Cobalt	7440-48-4	200.8	ND		5.0	1.3	ug/L	1
Copper	7440-50-8	200.8	ND		5.0	1.3	ug/L	1
Iron	7439-89-6	200.8	330		50	13	ug/L	1
Lead	7439-92-1	200.8	ND		1.0	0.25	ug/L	1
Magnesium	7439-95-4	200.8	29000		400	50	ug/L	1
Molybdenum	7439-98-7	200.8	ND		10	2.5	ug/L	1
Nickel	7440-02-0	200.8	ND		5.0	1.3	ug/L	1
Selenium	7782-49-2	200.8	ND		5.0	1.3	ug/L	1
Silver	7440-22-4	200.8	ND		1.0	0.25	ug/L	1
Sodium	7440-23-5	200.8	33000		400	150	ug/L	1
Thallium	7440-28-0	200.8	ND		0.50	0.15	ug/L	1
Titanium	7440-32-6	200.8	ND		5.0	1.3	ug/L	1
Vanadium	7440-62-2	200.8	ND		5.0	2.5	ug/L	1
Zinc	7440-66-6	200.8	ND		10	2.5	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9S

Date Sampled:03/19/2019 1500 Date Received: 03/21/2019

Laboratory ID: UC21029-004

Matrix: Aqueous

Run Prep Method 537 MOD

Prep Date

Batch

Analytical Method Dilution Analysis Date Analyst 537 Modified-ID 03/27/2019 2310 SES 03/26/2019 1814 11294

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.6	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.6	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.6	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.3	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.3	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.6	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	ND	1.8	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	3.6	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance Limits	
13C2_6:2FTS	91	50-150	
13C2_8:2FTS	96	50-150	
13C2_PFDoA	99	50-150	
13C2_PFTeDA	102	50-150	
13C3_PFBS	104	50-150	
13C3_PFHxS	102	50-150	
13C4_PFBA	98	50-150	
13C4_PFHpA	102	50-150	
13C5_PFHxA	103	50-150	
13C5_PFPeA	106	50-150	
13C6_PFDA	98	50-150	
13C7_PFUdA	104	50-150	
13C8_PFOA	102	50-150	
13C8_PFOS	104	50-150	
13C8_PFOSA	97	50-150	
13C9_PFNA	100	50-150	
d-EtFOSA	72	50-150	
d-MeFOSA	69	50-150	

LOQ	=	Limit	of	Quantitation	

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ND = Not detected at or above the LOQ H = Out of holding time

Inorganic non-metals

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9M

Laboratory ID: UC21029-005

Date Sampled:03/19/2019 1345

Matrix: Aqueous

Date Received: 03/21/2019

Run 1	Prep Method 350.1	Analytical Method (Ammonia - N) 350.1	Dilution 1	Analysis Date Analyst 03/29/2019 1421 DMA	Prep Date Batch 11687
1		(Chloride) 300.0	1	04/02/2019 1455 SLU	12073
1	10-204-00-1-X	(Cyanide - To) SM 4500-CN E-	1	03/28/2019 1231 MSG	03/28/2019 1101 11519
1		(Hardness (to) SM 2340C-2011	1	03/27/2019 1719 KFE	11494
1		(Nitrate-Nitr) 353.2	1	03/23/2019 1706 MDD	11110
1		(Phosphorus) 365.1	1	03/28/2019 1630 MSG	03/28/2019 1218 11531
1		(Sulfate) 300.0	1	04/02/2019 1455 SLU	12072
1		(Sulfide) SM 4500-S2 F-2011	1	03/21/2019 2027 HET	10988

Parameter	CAS Number		Result	Q	LOQ	DL	Units	Run
Ammonia - N (gas diffusion)		350.1	0.15		0.10	0.020	mg/L	1
Chloride		300.0	23		1.0	0.20	mg/L	1
Cyanide - Total	57-12-5	SM 4500-CN E-	ND		0.010	0.010	mg/L	1
Hardness (total)		SM 2340C-	320		10	2.0	mg/L	1
Nitrate-Nitrite - N		353.2	0.014	BJ	0.020	0.0015	mg/L	1
Phosphorus	7723-14-0	365.1	0.019	J	0.050	0.0050	mg/L	1
Sulfate		300.0	24		1.0	0.20	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-	ND		1.0	1.0	mg/L	1
Nitrate-Nitrite - N Phosphorus Sulfate		353.2 365.1 300.0	0.014 0.019 24		0.020 0.050 1.0	0.0015 0.0050 0.20	mg/L mg/L mg/L	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9M

Date Sampled:03/19/2019 1345
Date Received:03/21/2019

5030B

Run Prep Method

Laboratory ID: UC21029-005

Matrix: Aqueous

Analytical Method Dilution Analysis Date Analyst Prep Date Batch
8260B 1 03/29/2019 1308 BWS 11689

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	2.4 J	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1.3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9M

Laboratory ID: UC21029-005

Matrix: Aqueous

Date Sampled:03/19/2019 1345

Date Received: 03/21/2019

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260B	1	03/29/2019 1308 BWS		11689

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260B	ND	1.0	0.40	ug/L	1
m+p - Xylenes	179601-23-1	8260B	ND	1.0	0.40	ug/L	1
o - Xylenes	95-47-6	8260B	ND	1.0	0.40	ug/L	1
	Run 1 Accept	tance					

Surrogate	Q	% Recovery	Limits
1,2-Dichloroethane-d4		103	70-130
Bromofluorobenzene		92	70-130
Toluene-d8		99	70-130

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9M Date Sampled:03/19/2019 1345

3520C

Laboratory ID: UC21029-005

Matrix: Aqueous

Date Received: 03/21/2019

Run Prep Method

1

Analytical Method Dilution Analysis Date Analyst 8270D

04/03/2019 1713 SCD

Prep Date 03/25/2019 1939 11166

Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acenaphthene	83-32-9	8270D	ND	0.20	0.040	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	0.20	0.040	ug/L	1
Acetophenone	98-86-2	8270D	ND	0.80	0.50	ug/L	1
Anthracene	120-12-7	8270D	ND	0.20	0.060	ug/L	1
Atrazine	1912-24-9	8270D	ND	0.80	0.50	ug/L	1
Benzidine	92-87-5	8270D	ND	20	1.0	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	0.20	0.040	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	0.20	0.070	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	0.20	0.040	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	0.20	0.040	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	0.20	0.040	ug/L	1
Butyl benzyl phthalate	85-68-7	8270D	ND	0.80	0.50	ug/L	1
Caprolactam	105-60-2	8270D	ND	1.6	1.0	ug/L	1
Carbazole	86-74-8	8270D	ND	0.80	0.50	ug/L	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	0.80	0.50	ug/L	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	0.80	0.50	ug/L	1
2-Chloronaphthalene	91-58-7	8270D	ND	0.80	0.50	ug/L	1
2-Chlorophenol	95-57-8	8270D	ND	0.80	0.50	ug/L	1
Chrysene	218-01-9	8270D	ND	0.20	0.030	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	0.20	0.030	ug/L	1
Dibenzofuran	132-64-9	8270D	ND	0.80	0.50	ug/L	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	4.0	1.8	ug/L	1
2,4-Dichlorophenol	120-83-2	8270D	ND	1.6	1.0	ug/L	1
Diethylphthalate	84-66-2	8270D	ND	0.80	0.50	ug/L	1
Dimethyl phthalate	131-11-3	8270D	ND	0.80	0.50	ug/L	1
2,4-Dimethylphenol	105-67-9	8270D	ND	0.80	0.48	ug/L	1
Di-n-butyl phthalate	84-74-2	8270D	ND	0.80	0.50	ug/L	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	4.0	1.0	ug/L	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	1.6	0.50	ug/L	1
Di-n-octylphthalate	117-84-0	8270D	ND	0.80	0.50	ug/L	1
1,2-Diphenylhydrazine(as azobenzene)	103-33-3	8270D	ND	0.80	0.50	ug/L	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	4.0	0.50	ug/L	1
Fluoranthene	206-44-0	8270D	ND	0.20	0.10	ug/L	1
Fluorene	86-73-7	8270D	ND	0.20	0.030	ug/L	1
Hexachlorobenzene	118-74-1	8270D	ND	0.80	0.50	ug/L	1
Hexachlorobutadiene	87-68-3	8270D	ND	0.80	0.50	ug/L	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	4.0	2.0	ug/L	1
Hexachloroethane	67-72-1	8270D	ND	0.80	0.31	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	0.20	0.040	ug/L	1
Isophorone	78-59-1	8270D	ND	0.80	0.50	ug/L	1
2-Methylnaphthalene	91-57-6	8270D	ND	0.20	0.040	ug/L	1
2-Methylphenol	95-48-7	8270D	ND	0.80	0.21	ug/L	1
3+4-Methylphenol	106-44-5	8270D	ND	1.6	1.5	ug/L	1
Naphthalene	91-20-3	8270D	ND	0.20	0.050	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9M

Date Sampled:03/19/2019 1345

Laboratory ID: UC21029-005

Matrix: Aqueous

Date Received: 03/21/2019

Run Prep Method 3520C Analytical Method Dilution Analysis Date Analyst 8270D

04/03/2019 1713 SCD

Prep Date

Batch

03/25/2019 1939 11166

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Nitrobenzene	98-95-3	8270D	ND	0.80	0.55	ug/L	1
2-Nitrophenol	88-75-5	8270D	ND	1.6	1.0	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	0.80	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	0.80	0.50	ug/L	1
Pentachlorophenol	87-86-5	8270D	ND	4.0	2.0	ug/L	1
Phenanthrene	85-01-8	8270D	ND	0.20	0.060	ug/L	1
Phenol	108-95-2	8270D	ND	0.80	0.50	ug/L	1
Pyrene	129-00-0	8270D	ND	0.20	0.10	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	0.80	0.50	ug/L	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	0.80	0.50	ug/L	1

Surrogate	Q % Recovery	Limits	
2-Fluorobiphenyl	71	37-129	_
2-Fluorophenol	75	24-127	
Nitrobenzene-d5	89	38-127	
Phenol-d5	86	28-128	
Terphenyl-d14	103	10-148	
2,4,6-Tribromophenol	84	35-144	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9M

Date Sampled:03/19/2019 1345

Laboratory ID: UC21029-005

Matrix: Aqueous

Date Received: 03/21/2019

Run Prep Method

Analytical Method Dilution 7470A

Analysis Date Analyst 03/28/2019 1232 JMH

Prep Date Batch 03/27/2019 1341 11405

CAS Analytical Number Method **Parameter** Result Q LOQ DL Units Run 7470A Mercury 7439-97-6 ND 0.00020 mg/L 0.000091

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria

P = The RPD between two GC columns exceeds 40%

W = Reported on wet weight basis

Shealy Environmental Services, Inc.

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9M

Date Sampled:03/19/2019 1345 Date Received: 03/21/2019

Laboratory ID: UC21029-005

Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analyst 200.2 200.8 03/28/2019 0044 BNW

Prep Date Batch 03/23/2019 0847 11022

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	200.8	28	J	40	10	ug/L	1
Antimony	7440-36-0	200.8	ND		2.0	0.50	ug/L	1
Arsenic	7440-38-2	200.8	ND		2.0	1.3	ug/L	1
Barium	7440-39-3	200.8	82		5.0	1.3	ug/L	1
Beryllium	7440-41-7	200.8	ND		0.40	0.15	ug/L	1
Boron	7440-42-8	200.8	18	J	50	6.3	ug/L	1
Cadmium	7440-43-9	200.8	ND		0.50	0.13	ug/L	1
Chromium	7440-47-3	200.8	ND		5.0	1.3	ug/L	1
Cobalt	7440-48-4	200.8	ND		5.0	1.3	ug/L	1
Copper	7440-50-8	200.8	ND		5.0	1.3	ug/L	1
Iron	7439-89-6	200.8	720		50	13	ug/L	1
Lead	7439-92-1	200.8	ND		1.0	0.25	ug/L	1
Magnesium	7439-95-4	200.8	27000		400	50	ug/L	1
Molybdenum	7439-98-7	200.8	ND		10	2.5	ug/L	1
Nickel	7440-02-0	200.8	1.3	J	5.0	1.3	ug/L	1
Selenium	7782-49-2	200.8	ND		5.0	1.3	ug/L	1
Silver	7440-22-4	200.8	ND		1.0	0.25	ug/L	1
Sodium	7440-23-5	200.8	5100		400	150	ug/L	1
Thallium	7440-28-0	200.8	ND		0.50	0.15	ug/L	1
Titanium	7440-32-6	200.8	2.0	J	5.0	1.3	ug/L	1
Vanadium	7440-62-2	200.8	ND		5.0	2.5	ug/L	1
Zinc	7440-66-6	200.8	ND		10	2.5	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9M

Date Sampled:03/19/2019 1345
Date Received: 03/21/2019

Laboratory ID: UC21029-005

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 537 MOD
 537 Modified-ID
 1
 03/27/2019 2323
 SES
 03/26/2019 1814
 11294

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.6	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.6	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.6	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.1	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.6	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	ND	1.8	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	3.6	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance Limits	
13C2_6:2FTS	96	50-150	
13C2_8:2FTS	112	50-150	
13C2_PFDoA	108	50-150	
13C2_PFTeDA	116	50-150	
13C3_PFBS	114	50-150	
13C3_PFHxS	107	50-150	
13C4_PFBA	107	50-150	
13C4_PFHpA	108	50-150	
13C5_PFHxA	112	50-150	
13C5_PFPeA	111	50-150	
13C6_PFDA	108	50-150	
13C7_PFUdA	113	50-150	
13C8_PFOA	111	50-150	
13C8_PFOS	118	50-150	
13C8_PFOSA	106	50-150	
13C9_PFNA	107	50-150	
d-EtFOSA	81	50-150	
d-MeFOSA	79	50-150	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Inorganic non-metals

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC21029-006

Description: HS-MW-9D

Matrix: Aqueous

Date Sampled:03/19/2019 1350
Date Received:03/21/2019

Run Prep Method Analytical Method Dilution **Analysis Date Analyst Prep Date** Batch 1 350.1 (Ammonia - N) 350.1 03/29/2019 1423 DMA 11687 1 12073 (Chloride) 300.0 1 04/02/2019 1544 SLU 10-204-00-1-X (Cyanide - To) SM 4500-CN E-1 03/28/2019 1232 MSG 03/28/2019 1101 11519 (Hardness (to) SM 2340C-2011 1 03/27/2019 1719 KFE 11494 1 (Nitrate-Nitr) 353.2 1 03/23/2019 1714 MDD 11110 (Phosphorus) 365.1 1 03/28/2019 1630 MSG 03/28/2019 1218 11531 (Sulfate) 300.0 1 1 04/02/2019 1544 SLU 12072 (Sulfide) SM 4500-S2 F-2011 10988 1 03/21/2019 2027 HET

CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
	350.1	0.43		0.10	0.020	mg/L	1
	300.0	69		1.0	0.20	mg/L	1
57-12-5	SM 4500-CN	0.011		0.010	0.010	mg/L	1
	SM 2340C-	340		10	2.0	mg/L	1
	353.2	0.0024	BJ	0.020	0.0015	mg/L	1
7723-14-0	365.1	0.055		0.050	0.0050	mg/L	1
	300.0	45		1.0	0.20	mg/L	1
18496-25-8	SM 4500-S2 F-	ND		1.0	1.0	mg/L	1
	Number 57-12-5 7723-14-0	Number Method 350.1 300.0 57-12-5 SM 4500-CN SM 2340C- 353.2 7723-14-0 365.1 300.0	Number Method Result 350.1 0.43 300.0 69 57-12-5 SM 4500-CN 0.011 SM 2340C- 340 353.2 0.0024 7723-14-0 365.1 0.055 300.0 45	Number Method Result Q 350.1 0.43 300.0 69 57-12-5 SM 4500-CN 0.011 SM 2340C- 340 353.2 0.0024 BJ 7723-14-0 365.1 0.055 300.0 45	Number Method Result Q LOQ 350.1 0.43 0.10 300.0 69 1.0 57-12-5 SM 4500-CN 0.011 0.010 SM 2340C- 340 10 353.2 0.0024 BJ 0.020 7723-14-0 365.1 0.055 0.050 300.0 45 1.0	Number Method Result Q LOQ DL 350.1 0.43 0.10 0.020 300.0 69 1.0 0.20 57-12-5 SM 4500-CN 0.011 0.010 0.010 SM 2340C- 340 10 2.0 353.2 0.0024 BJ 0.020 0.0015 7723-14-0 365.1 0.055 0.050 0.0050 300.0 45 1.0 0.20	Number Method Result Q LOQ DL Units 350.1 0.43 0.10 0.020 mg/L 300.0 69 1.0 0.20 mg/L 57-12-5 SM 4500-CN 0.011 0.010 0.010 mg/L SM 2340C- 340 10 2.0 mg/L 353.2 0.0024 BJ 0.020 0.0015 mg/L 7723-14-0 365.1 0.055 0.050 0.0050 mg/L 300.0 45 1.0 0.20 mg/L

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9D

Date Sampled:03/19/2019 1350
Date Received:03/21/2019

Laboratory ID: UC21029-006

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 5030B
 8260B
 1
 03/29/2019 1333
 BWS
 11689

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	2.6	J	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND		1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND		1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND		1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND		2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND		10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	0.44	J	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND		1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND		1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND		2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND		1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND		1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND		1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND		1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND		1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND		1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND		1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND		2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND		1.0	0.40	ug/L	1
1.2-Dichloroethane	107-06-2	8260B	ND		1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND		1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND		1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND		1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND		1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND		1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND		1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND		10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND		1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND		1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND		10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND		5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND		1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND		1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND		1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND		1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND		1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND		1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND		1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND		1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND		1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9D

Date Sampled:03/19/2019 1350

Laboratory ID: UC21029-006

Matrix: Aqueous

Date Received: 03/21/2019

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst

 1
 5030B
 8260B
 1
 03/29/2019 1333 BWS

Prep Date

Batch 11689

Parameter	Nu	CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79	-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75	-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75	-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330	-20-7	8260B	ND	1.0	0.40	ug/L	1
m+p - Xylenes	179601	-23-1	8260B	ND	1.0	0.40	ug/L	1
o - Xylenes	95	-47-6	8260B	ND	1.0	0.40	ug/L	1
Surrogate	Run 1 Q % Recovery	Accept Limi						
1,2-Dichloroethane-d4	104	70-1	30					
Bromofluorobenzene	94	70-1	30					
Toluene-d8	101	70-1	30					

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9D

Laboratory ID: UC21029-006 Matrix: Aqueous

Date Sampled:03/19/2019 1350 Date Received: 03/21/2019

Run Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date** Batch 1 3520C 8270D 04/03/2019 1737 SCD 03/25/2019 1939 11166

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acenaphthene	83-32-9	8270D	ND	0.20	0.040	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	0.20	0.040	ug/L	1
Acetophenone	98-86-2	8270D	ND	0.80	0.50	ug/L	1
Anthracene	120-12-7	8270D	ND	0.20	0.060	ug/L	1
Atrazine	1912-24-9	8270D	ND	0.80	0.50	ug/L	1
Benzidine	92-87-5	8270D	ND	20	1.0	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	0.20	0.040	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	0.20	0.070	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	0.20	0.040	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	0.20	0.040	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	0.20	0.040	ug/L	1
Butyl benzyl phthalate	85-68-7	8270D	ND	0.80	0.50	ug/L	1
Caprolactam	105-60-2	8270D	ND	1.6	1.0	ug/L	1
Carbazole	86-74-8	8270D	ND	0.80	0.50	ug/L	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	0.80	0.50	ug/L	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	0.80	0.50	ug/L	1
2-Chloronaphthalene	91-58-7	8270D	ND	0.80	0.50	ug/L	1
2-Chlorophenol	95-57-8	8270D	ND	0.80	0.50	ug/L	1
Chrysene	218-01-9	8270D	ND	0.20	0.030	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	0.20	0.030	ug/L	1
Dibenzofuran	132-64-9	8270D	ND	0.80	0.50	ug/L	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	4.0	1.8	ug/L	1
2,4-Dichlorophenol	120-83-2	8270D	ND	1.6	1.0	ug/L	1
Diethylphthalate	84-66-2	8270D	ND	0.80	0.50	ug/L	1
Dimethyl phthalate	131-11-3	8270D	ND	0.80	0.50	ug/L	1
2,4-Dimethylphenol	105-67-9	8270D	ND	0.80	0.48	ug/L	1
Di-n-butyl phthalate	84-74-2	8270D	ND	0.80	0.50	ug/L	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	4.0	1.0	ug/L	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	1.6	0.50	ug/L	1
Di-n-octylphthalate	117-84-0	8270D	ND	0.80	0.50	ug/L	1
1,2-Diphenylhydrazine(as azobenzene)	103-33-3	8270D	ND	0.80	0.50	ug/L	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	4.0	0.50	ug/L	1
Fluoranthene	206-44-0	8270D	ND	0.20	0.10	ug/L	1
Fluorene	86-73-7	8270D	ND	0.20	0.030	ug/L	1
Hexachlorobenzene	118-74-1	8270D	ND	0.80	0.50	ug/L	1
Hexachlorobutadiene	87-68-3	8270D	ND	0.80	0.50	ug/L	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	4.0	2.0	ug/L	1
Hexachloroethane	67-72-1	8270D	ND	0.80	0.31	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	0.20	0.040	ug/L	1
Isophorone	78-59-1	8270D	ND	0.80	0.50	ug/L	1
2-Methylnaphthalene	91-57-6	8270D	ND	0.20	0.040	ug/L	1
2-Methylphenol	95-48-7	8270D	ND	0.80	0.21	ug/L	1
3+4-Methylphenol	106-44-5	8270D	ND	1.6	1.5	ug/L	1
Naphthalene	91-20-3	8270D	ND	0.20	0.050	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the LOQ

B = Detected in the method blank N = Recovery is out of criteria

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

H = Out of holding time W = Reported on wet weight basis

Client: GZA GeoEnvironmental, Inc.

3520C

Description: HS-MW-9D

Laboratory ID: UC21029-006

Matrix: Aqueous

Date Sampled:03/19/2019 1350 Date Received: 03/21/2019

Run Prep Method

1

Analytical Method Dilution Analysis Date Analyst 8270D

04/03/2019 1737 SCD

Prep Date 03/25/2019 1939 11166

Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Nitrobenzene	98-95-3	8270D	ND	0.80	0.55	ug/L	1
2-Nitrophenol	88-75-5	8270D	ND	1.6	1.0	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	0.80	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	0.80	0.50	ug/L	1
Pentachlorophenol	87-86-5	8270D	ND	4.0	2.0	ug/L	1
Phenanthrene	85-01-8	8270D	ND	0.20	0.060	ug/L	1
Phenol	108-95-2	8270D	ND	0.80	0.50	ug/L	1
Pyrene	129-00-0	8270D	ND	0.20	0.10	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	0.80	0.50	ug/L	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	0.80	0.50	ug/L	1

Surrogate	Run 1 Q % Recover	Acceptance y Limits	
2-Fluorobiphenyl	59	37-129	
2-Fluorophenol	37	24-127	
Nitrobenzene-d5	74	38-127	
Phenol-d5	80	28-128	
Terphenyl-d14	98	10-148	
2,4,6-Tribromophenol	63	35-144	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9D

Date Sampled:03/19/2019 1350 Date Received: 03/21/2019

Laboratory ID: UC21029-006

Matrix: Aqueous

Run Prep Method

Analytical Method Dilution Analysis Date Analyst 7470A

03/28/2019 1235 JMH

Prep Date 03/27/2019 1341 11405

Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Mercury	7439-97-6	7470A	ND	0.00020	0.000091	mg/L	1

LOQ = Limit of Quantitation

H = Out of holding time

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9D

Date Sampled:03/19/2019 1350 Date Received:03/21/2019 Laboratory ID: UC21029-006

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 200.2
 200.8
 1
 03/28/2019 0050
 BNW
 03/23/2019 0847
 11022

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	200.8	130		40	10	ug/L	1
Antimony	7440-36-0	200.8	ND		2.0	0.50	ug/L	1
Arsenic	7440-38-2	200.8	ND		2.0	1.3	ug/L	1
Barium	7440-39-3	200.8	99		5.0	1.3	ug/L	1
Beryllium	7440-41-7	200.8	ND		0.40	0.15	ug/L	1
Boron	7440-42-8	200.8	29	J	50	6.3	ug/L	1
Cadmium	7440-43-9	200.8	ND		0.50	0.13	ug/L	1
Chromium	7440-47-3	200.8	1.5	ВЈ	5.0	1.3	ug/L	1
Cobalt	7440-48-4	200.8	ND		5.0	1.3	ug/L	1
Copper	7440-50-8	200.8	ND		5.0	1.3	ug/L	1
Iron	7439-89-6	200.8	930		50	13	ug/L	1
Lead	7439-92-1	200.8	ND		1.0	0.25	ug/L	1
Magnesium	7439-95-4	200.8	26000		400	50	ug/L	1
Molybdenum	7439-98-7	200.8	ND		10	2.5	ug/L	1
Nickel	7440-02-0	200.8	1.5	J	5.0	1.3	ug/L	1
Selenium	7782-49-2	200.8	ND		5.0	1.3	ug/L	1
Silver	7440-22-4	200.8	ND		1.0	0.25	ug/L	1
Sodium	7440-23-5	200.8	13000		400	150	ug/L	1
Thallium	7440-28-0	200.8	ND		0.50	0.15	ug/L	1
Titanium	7440-32-6	200.8	5.6		5.0	1.3	ug/L	1
Vanadium	7440-62-2	200.8	ND		5.0	2.5	ug/L	1
Zinc	7440-66-6	200.8	6.2	J	10	2.5	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-9D

Date Sampled:03/19/2019 1350 Date Received: 03/21/2019

Laboratory ID: UC21029-006

Matrix: Aqueous

Run Prep Method 537 MOD Analytical Method Dilution 537 Modified-ID

Analysis Date Analyst 04/02/2019 1714 SES

Prep Date

Batch 03/27/2019 1140 11382

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.5	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.5	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.5	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.0	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.0	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.5	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	ND	1.7	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.5	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	3.5	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance / Limits
13C2_6:2FTS	119	50-150
13C2_8:2FTS	113	50-150
13C2_PFDoA	115	50-150
13C2_PFTeDA	117	50-150
13C3_PFBS	122	50-150
13C3_PFHxS	131	50-150
13C4_PFBA	124	50-150
13C4_PFHpA	124	50-150
13C5_PFHxA	124	50-150
13C5_PFPeA	126	50-150
13C6_PFDA	114	50-150
13C7_PFUdA	118	50-150
13C8_PFOA	129	50-150
13C8_PFOS	125	50-150
13C8_PFOSA	114	50-150
13C9_PFNA	135	50-150
d-EtFOSA	90	50-150
d-MeFOSA	86	50-150

LOQ = Limit of Quantitation
ND Not detected at an about the I

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ND = Not detected at or above the LOQ H = Out of holding time

Inorganic non-metals

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC21029-007

Description: HS-MW-6S

Date Sampled:03/20/2019 1415

Matrix: Aqueous

Date Received: 03/21/2019

Run 1	Prep Method 350.1	Analytical Method (Ammonia - N) 350.1	Dilution 1	Analysis Date Analyst 03/29/2019 1435 DMA	Prep Date Batch 11687
1		(Chloride) 300.0	1	04/02/2019 1632 SLU	12073
1	10-204-00-1-X	(Cyanide - To) SM 4500-CN E-	1	03/28/2019 1233 MSG	03/28/2019 1101 11519
1		(Hardness (to) SM 2340C-2011	1	03/27/2019 1719 KFE	11494
1		(Nitrate-Nitr) 353.2	1	03/23/2019 1716 MDD	11110
1		(Phosphorus) 365.1	1	03/28/2019 1630 MSG	03/28/2019 1218 11531
1		(Sulfate) 300.0	1	04/02/2019 1632 SLU	12072
1		(Sulfide) SM 4500-S2 F-2011	1	03/21/2019 2027 HET	10988

Parameter	CAS Number		Result	Q	LOQ	DL	Units	Run
Ammonia - N (gas diffusion)		350.1	ND		0.10	0.020	mg/L	1
Chloride		300.0	47		1.0	0.20	mg/L	1
Cyanide - Total	57-12-5	SM 4500-CN E-	ND		0.010	0.010	mg/L	1
Hardness (total)		SM 2340C-	390		10	2.0	mg/L	1
Nitrate-Nitrite - N		353.2	0.98	В	0.020	0.0015	mg/L	1
Phosphorus	7723-14-0	365.1	0.0068	J	0.050	0.0050	mg/L	1
Sulfate		300.0	21		1.0	0.20	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-	ND		1.0	1.0	mg/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6S

Date Received: 03/21/2019

Date Sampled:03/20/2019 1415

Laboratory ID: UC21029-007

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 5030B
 8260B
 1
 03/29/2019 1356
 BWS
 11689

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	ND	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	0.54 J	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6S

Laboratory ID: UC21029-007 Matrix: Aqueous

Date Sampled:03/20/2019 1415 Date Received: 03/21/2019

Run Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date** Batch 1 5030B 8260B

03/29/2019 1356 BWS 11689

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260B	ND	1.0	0.40	ug/L	1
m+p - Xylenes	179601-23-1	8260B	ND	1.0	0.40	ug/L	1
o - Xylenes	95-47-6	8260B	ND	1.0	0.40	ug/L	1
	Run 1 Accept	ance					

Run 1 Surrogate Q % Recovery Limits 1,2-Dichloroethane-d4 103 70-130 Bromofluorobenzene 97 70-130 Toluene-d8 100 70-130

LOQ = Limit of Quantitation ND = Not detected at or above the LOQ B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6S

Date Received: 03/21/2019

Date Sampled:03/20/2019 1415

Laboratory ID: UC21029-007

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3520C
 8270D
 1
 04/03/2019 1802
 SCD
 03/25/2019 1939
 11166

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acenaphthene	83-32-9	8270D	ND	0.20	0.040	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	0.20	0.040	ug/L	1
Acetophenone	98-86-2	8270D	ND	0.80	0.50	ug/L	1
Anthracene	120-12-7	8270D	ND	0.20	0.060	ug/L	1
Atrazine	1912-24-9	8270D	ND	0.80	0.50	ug/L	1
Benzidine	92-87-5	8270D	ND	20	1.0	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	0.20	0.040	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	0.20	0.070	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	0.20	0.040	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	0.20	0.040	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	0.20	0.040	ug/L	1
Butyl benzyl phthalate	85-68-7	8270D	ND	0.80	0.50	ug/L	1
Caprolactam	105-60-2	8270D	ND	1.6	1.0	ug/L	1
Carbazole	86-74-8	8270D	ND	0.80	0.50	ug/L	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	0.80	0.50	ug/L	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	0.80	0.50	ug/L	1
2-Chloronaphthalene	91-58-7	8270D	ND	0.80	0.50	ug/L	1
2-Chlorophenol	95-57-8	8270D	ND	0.80	0.50	ug/L	1
Chrysene	218-01-9	8270D	ND	0.20	0.030	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	0.20	0.030	ug/L	1
Dibenzofuran	132-64-9	8270D	ND	0.80	0.50	ug/L	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	4.0	1.8	ug/L	1
2,4-Dichlorophenol	120-83-2	8270D	ND	1.6	1.0	ug/L	1
Diethylphthalate	84-66-2	8270D	ND	0.80	0.50	ug/L	1
Dimethyl phthalate	131-11-3	8270D	ND	0.80	0.50	ug/L	1
2,4-Dimethylphenol	105-67-9	8270D	ND	0.80	0.48	ug/L	1
Di-n-butyl phthalate	84-74-2	8270D	ND	0.80	0.50	ug/L	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	4.0	1.0	ug/L	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	1.6	0.50	ug/L	1
Di-n-octylphthalate	117-84-0	8270D	ND	0.80	0.50	ug/L	1
1,2-Diphenylhydrazine(as azobenzene)	103-33-3	8270D	ND	0.80	0.50	ug/L	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	4.0	0.50	ug/L	1
Fluoranthene	206-44-0	8270D	ND	0.20	0.10	ug/L	1
Fluorene	86-73-7	8270D	ND	0.20	0.030	ug/L	1
Hexachlorobenzene	118-74-1	8270D	ND	0.80	0.50	ug/L	1
Hexachlorobutadiene	87-68-3	8270D	ND	0.80	0.50	ug/L	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	4.0	2.0	ug/L	1
Hexachloroethane	67-72-1	8270D	ND	0.80	0.31	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	0.20	0.040	ug/L	1
Isophorone	78-59-1	8270D	ND	0.80	0.50	ug/L	1
2-Methylnaphthalene	91-57-6	8270D	ND	0.20	0.040	ug/L	1
2-Methylphenol	95-48-7	8270D	ND	0.80	0.21	ug/L	1
3+4-Methylphenol	106-44-5	8270D	ND	1.6	1.5	ug/L	1
Naphthalene	91-20-3	8270D	ND	0.20	0.050	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6S

Date Sampled:03/20/2019 1415

3520C

Laboratory ID: UC21029-007

Matrix: Aqueous

Date Received: 03/21/2019

Run Prep Method

Analytical Method Dilution Analysis Date Analyst 8270D

04/03/2019 1802 SCD

Prep Date 03/25/2019 1939 11166

Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Nitrobenzene	98-95-3	8270D	ND	0.80	0.55	ug/L	1
2-Nitrophenol	88-75-5	8270D	ND	1.6	1.0	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	0.80	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	0.80	0.50	ug/L	1
Pentachlorophenol	87-86-5	8270D	ND	4.0	2.0	ug/L	1
Phenanthrene	85-01-8	8270D	ND	0.20	0.060	ug/L	1
Phenol	108-95-2	8270D	ND	0.80	0.50	ug/L	1
Pyrene	129-00-0	8270D	ND	0.20	0.10	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	0.80	0.50	ug/L	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	0.80	0.50	ug/L	1

Surrogate	Run 1 Acceptance Q % Recovery Limits	
2-Fluorobiphenyl	58 37-129	
2-Fluorophenol	43 24-127	
Nitrobenzene-d5	75 38-127	
Phenol-d5	50 28-128	
Terphenyl-d14	92 10-148	
2,4,6-Tribromophenol	63 35-144	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6S

Date Sampled:03/20/2019 1415

Laboratory ID: UC21029-007

Matrix: Aqueous

Date Received: 03/21/2019

Run Prep Method

1

Analytical Method Dilution Analysis Date Analyst 7470A

03/28/2019 1237 JMH

Prep Date Batch 03/27/2019 1341 11405

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Mercury	7439-97-6	7470A	ND	0.00020	0.000091	mg/L	1

LOQ = Limit of Quantitation

H = Out of holding time

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6S

Date Sampled:03/20/2019 1415

200.2

Matrix: Aqueous

Laboratory ID: UC21029-007

Date Received: 03/21/2019 Run Prep Method

Analytical Method Dilution Analysis Date Analyst 200.8

03/28/2019 0056 BNW

Prep Date 03/23/2019 0847 11022

Batch

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	200.8	28	J	40	10	ug/L	1
Antimony	7440-36-0	200.8	ND		2.0	0.50	ug/L	1
Arsenic	7440-38-2	200.8	ND		2.0	1.3	ug/L	1
Barium	7440-39-3	200.8	79		5.0	1.3	ug/L	1
Beryllium	7440-41-7	200.8	ND		0.40	0.15	ug/L	1
Boron	7440-42-8	200.8	25	J	50	6.3	ug/L	1
Cadmium	7440-43-9	200.8	ND		0.50	0.13	ug/L	1
Chromium	7440-47-3	200.8	2.6	BJ	5.0	1.3	ug/L	1
Cobalt	7440-48-4	200.8	ND		5.0	1.3	ug/L	1
Copper	7440-50-8	200.8	1.9	J	5.0	1.3	ug/L	1
Iron	7439-89-6	200.8	450		50	13	ug/L	1
Lead	7439-92-1	200.8	ND		1.0	0.25	ug/L	1
Magnesium	7439-95-4	200.8	31000		400	50	ug/L	1
Molybdenum	7439-98-7	200.8	ND		10	2.5	ug/L	1
Nickel	7440-02-0	200.8	1.6	J	5.0	1.3	ug/L	1
Selenium	7782-49-2	200.8	ND		5.0	1.3	ug/L	1
Silver	7440-22-4	200.8	ND		1.0	0.25	ug/L	1
Sodium	7440-23-5	200.8	15000		400	150	ug/L	1
Thallium	7440-28-0	200.8	ND		0.50	0.15	ug/L	1
Titanium	7440-32-6	200.8	1.7	J	5.0	1.3	ug/L	1
Vanadium	7440-62-2	200.8	ND		5.0	2.5	ug/L	1
Zinc	7440-66-6	200.8	33		10	2.5	ug/L	1

LOQ = Limit of Quantitation

H = Out of holding time

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6S

Date Sampled:03/20/2019 1415 Date Received: 03/21/2019

Laboratory ID: UC21029-007

Matrix: Aqueous

Run Prep Method 537 MOD Analytical Method Dilution Analysis Date Analyst 537 Modified-ID

04/01/2019 1522 SES

Prep Date

Batch 03/27/2019 1140 11382

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.6	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.6	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.6	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.3	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	47	3.6	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.3	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	61	3.6	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	85	3.6	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	4.6	3.6	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	15	3.6	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	31	3.6	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	44	1.8	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	7.8	3.6	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	8.7	3.6	ng/L	1

Surrogate	Q % Recovery	Limits	
13C2_6:2FTS	87	50-150	
13C2_8:2FTS	110	50-150	
13C2_PFDoA	100	50-150	
13C2_PFTeDA	107	50-150	
13C3_PFBS	103	50-150	
13C3_PFHxS	92	50-150	
13C4_PFBA	103	50-150	
13C4_PFHpA	98	50-150	
13C5_PFHxA	101	50-150	
13C5_PFPeA	112	50-150	
13C6_PFDA	99	50-150	
13C7_PFUdA	108	50-150	
13C8_PFOA	99	50-150	
13C8_PFOS	96	50-150	
13C8_PFOSA	94	50-150	
13C9_PFNA	102	50-150	
d-EtFOSA	64	50-150	
d-MeFOSA	61	50-150	

Run 1 Acceptance

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Inorganic non-metals

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6D

Date Received: 03/21/2019

Date Sampled:03/20/2019 1600

Laboratory ID: UC21029-008

Matrix: Aqueous

Run 1	Prep Method 350.1	Analytical Method (Ammonia - N) 350.1	Dilution 1	Analysis Date A 03/29/2019 1437		Prep Date	Batch 11687
1		(Chloride) 300.0	1	04/02/2019 1649	SLU		12073
1	10-204-00-1-X	(Cyanide - To) SM 4500-CN E-	1	03/28/2019 1236	MSG	03/28/2019 1101	11519
1		(Hardness (to) SM 2340C-2011	1	03/27/2019 1719	KFE		11494
1		(Nitrate-Nitr) 353.2	1	03/23/2019 1717	MDD		11110
1		(Phosphorus) 365.1	1	03/28/2019 1630	MSG	03/28/2019 1218	11531
2		(Sulfate) 300.0	5	04/03/2019 0337	SLU		12072
1		(Sulfide) SM 4500-S2 F-2011	1	03/21/2019 2027	HET		10988

Ullits	Run
mg/L	1
mg/L	2
mg/L	1
	mg/L mg/L mg/L mg/L mg/L mg/L

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6D

Date Sampled:03/20/2019 1600 Date Received: 03/21/2019

Laboratory ID: UC21029-008

Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date** Batch 1 5030B 8260B 03/29/2019 1419 BWS 11689

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	3.4 J	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the LOQ

B = Detected in the method blank

N = Recovery is out of criteria

W = Reported on wet weight basis

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

H = Out of holding time

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6D

Sampled:03/20/2019 1600

Laboratory ID: UC21029-008

Matrix: Aqueous

Date Sampled:03/20/2019 1600 Date Received: 03/21/2019

5030B

Run Prep Method

Analytical Method Dilution Analysis Date Analyst Prep Date Batch 8260B 1 03/29/2019 1419 BWS 11689

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260B	ND	1.0	0.40	ug/L	1
m+p - Xylenes	179601-23-1	8260B	ND	1.0	0.40	ug/L	1
o - Xylenes	95-47-6	8260B	ND	1.0	0.40	ug/L	1

 Surrogate
 Q
 Run 1 Recovery
 Acceptance Limits

 1,2-Dichloroethane-d4
 103
 70-130

 Bromofluorobenzene
 95
 70-130

 Toluene-d8
 97
 70-130

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6D

Date Sampled:03/20/2019 1600
Date Received:03/21/2019

Laboratory ID: UC21029-008

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3520C
 8270D
 1
 04/03/2019 1826
 SCD
 03/25/2019 1939
 11166

8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND N	0.20 0.20 0.80 0.20 0.80 20 0.20 0.20 0.20 0.20 0.20	0.040 0.040 0.50 0.060 0.50 1.0 0.040 0.070 0.040	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND N	0.80 0.20 0.80 20 0.20 0.20 0.20	0.50 0.060 0.50 1.0 0.040 0.070	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND	0.20 0.80 20 0.20 0.20 0.20 0.20	0.060 0.50 1.0 0.040 0.070 0.040	ug/L ug/L ug/L ug/L ug/L	1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND	0.80 20 0.20 0.20 0.20 0.20	0.50 1.0 0.040 0.070 0.040	ug/L ug/L ug/L ug/L	1 1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND ND ND ND ND ND	20 0.20 0.20 0.20 0.20	1.0 0.040 0.070 0.040	ug/L ug/L ug/L	1 1 1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND ND ND ND ND	0.20 0.20 0.20 0.20	1.0 0.040 0.070 0.040	ug/L ug/L	1
8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND ND ND ND	0.20 0.20 0.20	0.070 0.040	ug/L	1
8270D 8270D 8270D 8270D 8270D 8270D 8270D	ND ND ND ND	0.20 0.20	0.040	ug/L	
8270D 8270D 8270D 8270D 8270D 8270D	ND ND ND	0.20			
8270D 8270D 8270D 8270D 8270D	ND ND		0.040	ug/L	1
8270D 8270D 8270D 8270D	ND	0.20		ug/L	1
8270D 8270D 8270D 8270D	ND		0.040	ug/L	1
8270D 8270D 8270D		0.80	0.50	ug/L	1
8270D 8270D	ND	1.6	1.0	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
	ND	0.80	0.50	ug/L	1
	ND	0.80	0.50	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	0.20	0.030	ug/L	1
8270D	ND	0.20	0.030	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	4.0	1.8	ug/L	1
8270D	ND	1.6	1.0	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	0.80	0.48	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	4.0	1.0	ug/L	1
8270D	ND	1.6	0.50	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	4.0	0.50	ug/L	1
8270D	ND	0.20	0.10	ug/L	1
8270D	ND	0.20	0.030	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	0.80	0.50	ug/L	1
8270D	ND	4.0	2.0	ug/L	1
					1
					1
					1
					1
8270D					1
8270D 8270D					1
8270D 8270D 8270D					1
	8270D 8270D 8270D 8270D 8270D 8270D	8270D ND 8270D ND 8270D ND 8270D ND 8270D ND 8270D ND	8270D ND 0.80 8270D ND 0.20 8270D ND 0.80 8270D ND 0.20 8270D ND 0.80	8270D ND 0.80 0.31 8270D ND 0.20 0.040 8270D ND 0.80 0.50 8270D ND 0.20 0.040 8270D ND 0.80 0.21 8270D ND 1.6 1.5	8270D ND 0.80 0.31 ug/L 8270D ND 0.20 0.040 ug/L 8270D ND 0.80 0.50 ug/L 8270D ND 0.20 0.040 ug/L 8270D ND 0.80 0.21 ug/L 8270D ND 1.6 1.5 ug/L

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6D

Date Sampled:03/20/2019 1600
Date Received: 03/21/2019

Laboratory ID: UC21029-008

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3520C
 8270D
 1
 04/03/2019 1826
 SCD
 03/25/2019 1939
 11166

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Nitrobenzene	98-95-3	8270D	ND	0.80	0.55	ug/L	1
2-Nitrophenol	88-75-5	8270D	ND	1.6	1.0	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	0.80	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	0.80	0.50	ug/L	1
Pentachlorophenol	87-86-5	8270D	ND	4.0	2.0	ug/L	1
Phenanthrene	85-01-8	8270D	ND	0.20	0.060	ug/L	1
Phenol	108-95-2	8270D	ND	0.80	0.50	ug/L	1
Pyrene	129-00-0	8270D	ND	0.20	0.10	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	0.80	0.50	ug/L	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	0.80	0.50	ug/L	1

Surrogate	Q % Recovery Limits	
2-Fluorobiphenyl	53 37-129	
2-Fluorophenol	46 24-127	
Nitrobenzene-d5	68 38-127	
Phenol-d5	55 28-128	
Terphenyl-d14	83 10-148	
2,4,6-Tribromophenol	53 35-144	

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6D

Date Sampled:03/20/2019 1600

Laboratory ID: UC21029-008

Matrix: Aqueous

Date Received: 03/21/2019

Run Prep Method

 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 7470A
 1
 03/28/2019 1245
 JMH
 03/27/2019 1341
 11405

CAS Analytical Number Method **Parameter** Result Q LOQ DL Units Run 7470A Mercury 7439-97-6 ND 0.00020 mg/L 0.000091

LOQ = Limit of Quantitation

H = Out of holding time

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ

N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6D

Date Sampled:03/20/2019 1600
Date Received:03/21/2019

Laboratory ID: UC21029-008

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 200.2
 200.8
 1
 03/28/2019 0102
 BNW
 03/23/2019 0847
 11022

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	200.8	62		40	10	ug/L	1
Antimony	7440-36-0	200.8	ND		2.0	0.50	ug/L	1
Arsenic	7440-38-2	200.8	3.5		2.0	1.3	ug/L	1
Barium	7440-39-3	200.8	28		5.0	1.3	ug/L	1
Beryllium	7440-41-7	200.8	ND		0.40	0.15	ug/L	1
Boron	7440-42-8	200.8	55		50	6.3	ug/L	1
Cadmium	7440-43-9	200.8	ND		0.50	0.13	ug/L	1
Chromium	7440-47-3	200.8	1.8	BJ	5.0	1.3	ug/L	1
Cobalt	7440-48-4	200.8	ND		5.0	1.3	ug/L	1
Copper	7440-50-8	200.8	ND		5.0	1.3	ug/L	1
Iron	7439-89-6	200.8	1500		50	13	ug/L	1
Lead	7439-92-1	200.8	ND		1.0	0.25	ug/L	1
Magnesium	7439-95-4	200.8	23000		400	50	ug/L	1
Molybdenum	7439-98-7	200.8	ND		10	2.5	ug/L	1
Nickel	7440-02-0	200.8	2.3	J	5.0	1.3	ug/L	1
Selenium	7782-49-2	200.8	ND		5.0	1.3	ug/L	1
Silver	7440-22-4	200.8	ND		1.0	0.25	ug/L	1
Sodium	7440-23-5	200.8	20000		400	150	ug/L	1
Thallium	7440-28-0	200.8	ND		0.50	0.15	ug/L	1
Titanium	7440-32-6	200.8	3.7	J	5.0	1.3	ug/L	1
Vanadium	7440-62-2	200.8	ND		5.0	2.5	ug/L	1
Zinc	7440-66-6	200.8	4.9	J	10	2.5	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

W = Reported on wet weight basis

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-6D

Date Sampled:03/20/2019 1600
Date Received: 03/21/2019

Laboratory ID: UC21029-008

Matrix: Aqueous

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 537 MOD
 537 Modified-ID
 1
 04/01/2019 1600
 SES
 03/27/2019 1140
 11382

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.5	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.5	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.5	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.0	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.0	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.5	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	ND	1.8	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.5	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	3.5	ng/L	1

Surrogate	Q % Recovery	cceptance Limits	
13C2_6:2FTS	99	50-150	
13C2_8:2FTS	134	50-150	
13C2_PFDoA	108	50-150	
13C2_PFTeDA	110	50-150	
13C3_PFBS	101	50-150	
13C3_PFHxS	99	50-150	
13C4_PFBA	108	50-150	
13C4_PFHpA	106	50-150	
13C5_PFHxA	103	50-150	
13C5_PFPeA	111	50-150	
13C6_PFDA	117	50-150	
13C7_PFUdA	107	50-150	
13C8_PFOA	101	50-150	
13C8_PFOS	111	50-150	
13C8_PFOSA	97	50-150	
13C9_PFNA	104	50-150	
d-EtFOSA	73	50-150	
d-MeFOSA	68	50-150	

LOQ = Limit of Quantitation B = Detected in the method blank

ND = Not detected at or above the LOQ N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

H = Out of holding time W = Reported on wet weight basis

teria P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: FB-3/20

Date Sampled:03/20/2019 1610
Date Received:03/21/2019

Laboratory ID: UC21029-009

Matrix: Aqueous

RunPrep MethodAnalytical MethodDilutionAnalysis DateAnalystPrep DateBatch1537 MOD537 Modified-ID104/02/2019 1727SES03/27/2019 114011382

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	4.1	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	4.1	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	4.1	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	8.3	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	ND	4.1	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	4.1	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	4.1	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	8.3	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	4.1	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	4.1	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	ND	4.1	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	4.1	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	4.1	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	4.1	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	4.1	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	4.1	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	4.1	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	ND	2.1	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	4.1	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	4.1	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	4.1	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	4.1	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	4.1	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance Limits	
13C2_6:2FTS	121	50-150	
13C2_8:2FTS	118	50-150	
13C2_PFDoA	119	50-150	
13C2_PFTeDA	114	50-150	
13C3_PFBS	125	50-150	
13C3_PFHxS	127	50-150	
13C4_PFBA	128	50-150	
13C4_PFHpA	131	50-150	
13C5_PFHxA	124	50-150	
13C5_PFPeA	128	50-150	
13C6_PFDA	118	50-150	
13C7_PFUdA	122	50-150	
13C8_PFOA	130	50-150	
13C8_PFOS	121	50-150	
13C8_PFOSA	102	50-150	
13C9_PFNA	133	50-150	
d-EtFOSA	63	50-150	
d-MeFOSA	61	50-150	

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

H = Out of holding time

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

W = Reported on wet weight basis

Sample ID: UQ10988-001

Batch: 10988

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfide	ND		1	1.0	1.0	mg/L	03/21/2019 2027

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $\label{eq:J} J = \text{Estimated result} < \text{LOQ and} \geq \text{DL}$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ10988-002

Batch: 10988

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Sulfide	10	11		1	105	80-120	03/21/2019 2027

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11110-001

Batch: 11110

Analytical Method: 353.2

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Nitrate-Nitrite - N	0.0021	J	1	0.020	0.0015	mg/L	03/23/2019 1640

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11110-002

Batch: 11110

Analytical Method: 353.2

Matrix: Aqueous

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Nitrate-Nitrite - N	0.80	0.83		1	104	90-110	03/23/2019 1641

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC21029-003MS

Batch: 11110

Matrix: Aqueous

Analytical Method: 353.2

Parameter	Sample Amount	Spike Amount	Result				% Rec	
	(mg/L)	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Nitrate-Nitrite - N	0.014	0.80	0.69	N	1	84	90-110	03/23/2019 1702

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC21029-003MD

Batch: 11110 Analytical Method: 353.2 Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date	
Nitrate-Nitrite - N	0.014	0.80	0.67	N	1	82	2.8	90-110	20	03/23/2019 1704	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC21029-005MS

Batch: 11110

Matrix: Aqueous

Analytical Method: 353.2

Parameter	Sample Amount (mg/L)	Spike Amount	Result				% Rec		
		(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date	
Nitrate-Nitrite - N	0.014	0.80	0.83		1	102	90-110	03/23/2019 1712	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: UC21029-005MD

Batch: 11110

Matrix: Aqueous

Analytical Method: 353.2

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Nitrate-Nitrite - N	0.014	0.80	0.82		1	101	0.63	90-110	20	03/23/2019 1713

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11197-001

Batch: 11197

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 03/25/2019 1335

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Phosphorus	ND		1	0.050	0.0050	mg/L	03/26/2019 1322

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $\label{eq:J} J = \text{Estimated result} < \text{LOQ and} \geq \text{DL}$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11197-002

Batch: 11197

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 03/25/2019 1335

Parameter	Spike Amount	Result				% Rec	
	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Phosphorus	0.25	0.23		1	92	90-110	03/26/2019 1322

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \ge DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC21029-001MS

Batch: 11197

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 03/25/2019 1335

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Phosphorus	0.0057	0.25	0.23		1	91	90-110	03/26/2019 1413

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC21029-001MD

Batch: 11197

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 03/25/2019 1335

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Phosphorus	0.0057	0.25	0.24		1	94	3.3	90-110	20	03/26/2019 1414

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11401-001

Batch: 11401

Analytical Method: SM 4500-CN E-2011

Matrix: Aqueous

Prep Method: 10-204-00-1-X Prep Date: 03/27/2019 1140

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Cyanide - Total	ND		1	0.010	0.010	mg/L	03/27/2019 1442

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11401-002

Batch: 11401

Analytical Method: SM 4500-CN E-2011

Matrix: Aqueous

Prep Method: 10-204-00-1-X

Prep Date: 03/27/2019 1140

Parameter	Spike Amount	Result				% Rec	
	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Cyanide - Total	0.10	0.11		1	108	90-110	03/27/2019 1443

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11494-001

Batch: 11494

Analytical Method: SM 2340C-2011

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Hardness (total)	ND		1	10	2.0	mg/L	03/27/2019 1719

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $\label{eq:J} J = \text{Estimated result} < \text{LOQ and} \geq \text{DL}$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11494-002

Batch: 11494

Analytical Method: SM 2340C-2011

Matrix: Aqueous

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Hardness (total)	100	110		1	110	90-110	03/27/2019 1719

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11519-001

Batch: 11519

Analytical Method: SM 4500-CN E-2011

Matrix: Aqueous

Prep Method: 10-204-00-1-X

Prep Date: 03/28/2019 1101

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Cyanide - Total	ND		1	0.010	0.010	mg/L	03/28/2019 1203

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11519-002

Batch: 11519

Analytical Method: SM 4500-CN E-2011

Matrix: Aqueous

Prep Method: 10-204-00-1-X

Prep Date: 03/28/2019 1101

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Cyanide - Total	0.10	0.11		1	106	90-110	03/28/2019 1204

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11531-001

Batch: 11531

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 03/28/2019 1218

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Phosphorus	ND		1	0.050	0.0050	mg/L	03/28/2019 1620

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $\label{eq:J} J = \text{Estimated result} < \text{LOQ and} \geq \text{DL}$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11531-002

Batch: 11531

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 03/28/2019 1218

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Phosphorus	0.25	0.23		1	93	90-110	03/28/2019 1625

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11537-001

Batch: 11537

Analytical Method: 350.1

Matrix: Aqueous

Prep Method: 350.1

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ammonia - N (gas diffusion)	0.021	J	1	0.10	0.020	mg/L	03/28/2019 1354

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11537-002

Batch: 11537

Matrix: Aqueous Prep Method: 350.1

Analytical Method: 350.1

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Ammonia - N (gas diffusion)	1.0	1.0		1	102	90-110	03/28/2019 1356

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: UQ11687-001

Batch: 11687

Analytical Method: 350.1

Matrix: Aqueous

Prep Method: 350.1

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ammonia - N (gas diffusion)	ND		1	0.10	0.020	mg/L	03/29/2019 1409

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11687-002

Batch: 11687

Matrix: Aqueous Prep Method: 350.1

Analytical Method: 350.1

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Ammonia - N (gas diffusion)	1.0	1.1		1	105	90-110	03/29/2019 1411

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: UC21029-006MS

Batch: 11687

Matrix: Aqueous Prep Method: 350.1

Analytical Method: 350.1

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Ammonia - N (gas diffusion)	0.43	1.0	1.4		1	100	90-110	03/29/2019 1431

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: UC21029-006MD

Batch: 11687

Matrix: Aqueous Prep Method: 350.1

Analytical Method: 350.1

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Ammonia - N (gas diffusion)	0.43	1.0	1.4		1	99	0.14	90-110	20	03/29/2019 1433

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11830-001

Batch: 11830

Matrix: Aqueous

Analytical Method: 300.0

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfate	ND		1	1.0	0.20	mg/L	03/29/2019 1905

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11830-002

Batch: 11830

Analytical Method: 300.0

Matrix: Aqueous

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Sulfate	20	20		1	101	90-110	03/29/2019 2233

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $\label{eq:J} J = \text{Estimated result} < \text{LOQ and} \geq \text{DL}$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: UC21029-004MS

Batch: 11830

Matrix: Aqueous

Analytical N	Method:	300.0

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result	Q	Dil		% Rec Limit	Analysis Date
			(mg/L)			% Rec		
Sulfate	14	20	33		1	93	90-110	03/30/2019 1135

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: UC21029-004MD

Batch: 11830 Analytical Method: 300.0 Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date	
Sulfate	14	20	33		1	95	0.91	90-110	20	03/30/2019 1201	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $\label{eq:J} J = \text{Estimated result} < \text{LOQ and} \geq \text{DL}$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MB

Sample ID: UQ11833-001

Batch: 11833

Matrix: Aqueous

Analytical Method: 300.0

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Chloride	ND		1	1.0	0.20	mg/L	03/29/2019 1905

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - LCS

Sample ID: UQ11833-002

Batch: 11833

Analytical Method: 300.0

Matrix: Aqueous

Parameter	Spike Amount	Result				% Rec	
	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Chloride	20	20		1	102	90-110	03/29/2019 2233

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Inorganic non-metals - MS

Sample ID: UC21029-004MS

Batch: 11833

Matrix: Aqueous

Analytical Method: 300.0

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Chloride	71	20	89		1	93	90-110	03/30/2019 1135

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Inorganic non-metals - MSD

Sample ID: UC21029-004MD

Batch: 11833

Matrix: Aqueous

Analytical Method: 300.0

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Chloride	71	20	90		1	95	0.67	90-110	20	03/30/2019 1201

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MB

Sample ID: UQ12072-001

Batch: 12072

Analytical Method: 300.0

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfate	ND		1	1.0	0.20	mg/L	04/02/2019 0947

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - LCS

Sample ID: UQ12072-002

Batch: 12072

Analytical Method: 300.0

Matrix: Aqueous

Parameter	Spike Amount	Result				% Rec	
	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Sulfate	20	20		1	101	90-110	04/02/2019 1020

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Inorganic non-metals - MS

Sample ID: UC21029-005MS

Batch: 12072 Analytical Method: 300.0 Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Sulfate	24	20	43		1	96	90-110	04/02/2019 1511

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $\label{eq:J} J = \text{Estimated result} < \text{LOQ and} \geq \text{DL}$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MSD

Sample ID: UC21029-005MD

Batch: 12072 Analytical Method: 300.0 Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date	
Sulfate	24	20	43		1	96	0.23	90-110	20	04/02/2019 1528	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MB

Sample ID: UQ12073-001

Batch: 12073 Analytical Method: 300.0 Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Chloride	ND		1	1.0	0.20	ma/L	04/02/2019 0947

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - LCS

Sample ID: UQ12073-002

Batch: 12073

Matrix: Aqueous

Analytical Method: 300.0

Parameter	Spike Amount	Result				% Rec	
	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Chloride	20	20		1	101	90-110	04/02/2019 1020

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Inorganic non-metals - MS

Sample ID: UC21029-005MS

Batch: 12073

Matrix: Aqueous

Analytical Method: 300.0

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Chloride	23	20	42		1	98	90-110	04/02/2019 1511

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Inorganic non-metals - MSD

Sample ID: UC21029-005MD

Batch: 12073 Analytical Method: 300.0 Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Chloride	23	20	43		1	99	0.47	90-110	20	04/02/2019 1528

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS - MB

Sample ID: UQ11689-001

Batch: 11689 Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

LOQ DL Units Parameter Result Q Dil **Analysis Date** Acetone ND 1 20 2.0 ug/L 03/29/2019 1050 0.40 Benzene ND 1 1.0 ug/L 03/29/2019 1050 Bromodichloromethane ND 1 1.0 0.40 ug/L 03/29/2019 1050 Bromoform ND 1 1.0 0.40 ug/L 03/29/2019 1050 Bromomethane (Methyl bromide) ND 1 2.0 0.40 ug/L 03/29/2019 1050 2-Butanone (MEK) ND 1 10 2.0 ug/L 03/29/2019 1050 Carbon disulfide ND 1 1.0 0.40 ug/L 03/29/2019 1050 Carbon tetrachloride ND 1.0 0.40 03/29/2019 1050 1 ug/L Chlorobenzene ND 1.0 0.40 ug/L 03/29/2019 1050 Chloroethane ND 1 2.0 0.40 ug/L 03/29/2019 1050 Chloroform ND 1 1.0 0.40 ug/L 03/29/2019 1050 0.50 Chloromethane (Methyl chloride) ND 1.0 03/29/2019 1050 1 ug/L Cyclohexane ND 1 1.0 0.40 ug/L 03/29/2019 1050 1,2-Dibromo-3-chloropropane (DBCP) ND 1 1.0 0.40 ug/L 03/29/2019 1050 Dibromochloromethane ND 1 1.0 0.40 ug/L 03/29/2019 1050 1,2-Dibromoethane (EDB) ND 1.0 0.40 ug/L 03/29/2019 1050 1 0.40 1,2-Dichlorobenzene ND 1 1.0 ug/L 03/29/2019 1050 0.40 ND 1.0 ug/L 03/29/2019 1050 1.3-Dichlorobenzene 1 1.4-Dichlorobenzene ND 1 1.0 0.40 ug/L 03/29/2019 1050 Dichlorodifluoromethane ND 1 2.0 0.60 ug/L 03/29/2019 1050 1.1-Dichloroethane ND 1 1.0 0.40 ug/L 03/29/2019 1050 1,2-Dichloroethane ND 1 1.0 0.40 ug/L 03/29/2019 1050 ug/L ND 1.0 0.40 03/29/2019 1050 1.1-Dichloroethene 1 ND 1.0 0.40 cis-1,2-Dichloroethene 1 ug/L 03/29/2019 1050 trans-1,2-Dichloroethene ND 1 1.0 0.40 ug/L 03/29/2019 1050 0.40 1,2-Dichloropropane ND 1 1.0 ug/L 03/29/2019 1050 cis-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 03/29/2019 1050 trans-1,3-Dichloropropene ND 1 1.0 0.40 ug/L 03/29/2019 1050 ND 1.0 0.40 03/29/2019 1050 Ethylbenzene 1 ug/L 2-Hexanone ND 1 10 2.0 ug/L 03/29/2019 1050 0.40 Isopropylbenzene ND 1 1.0 ug/L 03/29/2019 1050 Methyl acetate ND 1.0 0.40 ug/L 03/29/2019 1050 0.40 Methyl tertiary butyl ether (MTBE) ND 1.0 ug/L 03/29/2019 1050 1 10 2.0 4-Methyl-2-pentanone ND 1 ug/L 03/29/2019 1050 ND 5.0 0.40 ug/L 03/29/2019 1050 Methylcyclohexane 1 Methylene chloride ND 1 1.0 0.40 ug/L 03/29/2019 1050 Styrene ND 1 1.0 0.41 ug/L 03/29/2019 1050 1,1,2,2-Tetrachloroethane ND 1.0 0.40 ug/L 03/29/2019 1050 1 Tetrachloroethene ND 1.0 0.40 ug/L 03/29/2019 1050 0.40 Toluene ND 1.0 ug/L 03/29/2019 1050 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 1 1.0 0.42 ug/L 03/29/2019 1050 1,2,4-Trichlorobenzene ND 1 1.0 0.40 ug/L 03/29/2019 1050 1,1,1-Trichloroethane ND 1 1.0 0.40 ug/L 03/29/2019 1050

LOQ = Limit of Quantitation

1,1,2-Trichloroethane

P = The RPD between two GC columns exceeds 40%

1

1.0

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

0.40

N = Recovery is out of criteria

ug/L

03/29/2019 1050

LOD = Limit of Detection ND = Not detected at or above the LOQ

ND

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS - MB

Sample ID: UQ11689-001

Batch: 11689

Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	1.0	0.40	ug/L	03/29/2019 1050
Trichlorofluoromethane	ND		1	1.0	0.40	ug/L	03/29/2019 1050
Vinyl chloride	ND		1	1.0	0.40	ug/L	03/29/2019 1050
Xylenes (total)	ND		1	1.0	0.40	ug/L	03/29/2019 1050
m+p - Xylenes	ND		1	1.0	0.40	ug/L	03/29/2019 1050
o - Xylenes	ND		1	1.0	0.40	ug/L	03/29/2019 1050
Surrogate	Q % I	Rec	Acceptance Limit				
1,2-Dichloroethane-d4	9	3	70-130				
Bromofluorobenzene	8-	4	70-130				
Toluene-d8	9	3	70-130				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS - LCS

Sample ID: UQ11689-002 Batch: 11689 Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260B

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acetone	100	87		1	87	60-140	03/29/2019 0951
Benzene	50	48		1	97	70-130	03/29/2019 0951
Bromodichloromethane	50	48		1	97	70-130	03/29/2019 0951
Bromoform	50	43		1	85	70-130	03/29/2019 0951
Bromomethane (Methyl bromide)	50	52		1	104	70-130	03/29/2019 0951
2-Butanone (MEK)	100	88		1	88	70-130	03/29/2019 0951
Carbon disulfide	50	44		1	87	70-130	03/29/2019 0951
Carbon disulide Carbon tetrachloride	50	44		1	93	70-130 70-130	03/29/2019 0951
Chlorobenzene	50	46		1	93	70-130	03/29/2019 0951
Chloroethane	50	44		1	89	70-130	03/29/2019 0951
						70-130	
Chloroform	50	46		1	92		03/29/2019 0951
Chloromethane (Methyl chloride)	50	55		1	111	60-140	03/29/2019 0951
Cyclohexane	50	57		1	114	70-130	03/29/2019 0951
1,2-Dibromo-3-chloropropane (DBCP)	50	46		1	92	70-130	03/29/2019 0951
Dibromochloromethane	50	46		1	92	70-130	03/29/2019 0951
1,2-Dibromoethane (EDB)	50	49		1	98	70-130	03/29/2019 0951
1,2-Dichlorobenzene	50	45		1	90	70-130	03/29/2019 0951
1,3-Dichlorobenzene	50	44		1	88	70-130	03/29/2019 0951
1,4-Dichlorobenzene	50	44		1	88	70-130	03/29/2019 0951
Dichlorodifluoromethane	50	47		1	94	60-140	03/29/2019 0951
1,1-Dichloroethane	50	49		1	98	70-130	03/29/2019 0951
1,2-Dichloroethane	50	55		1	110	70-130	03/29/2019 0951
1,1-Dichloroethene	50	46		1	91	70-130	03/29/2019 0951
cis-1,2-Dichloroethene	50	45		1	90	70-130	03/29/2019 0951
trans-1,2-Dichloroethene	50	46		1	92	70-130	03/29/2019 0951
1,2-Dichloropropane	50	52		1	103	70-130	03/29/2019 0951
cis-1,3-Dichloropropene	50	50		1	99	70-130	03/29/2019 0951
trans-1,3-Dichloropropene	50	48		1	96	70-130	03/29/2019 0951
Ethylbenzene	50	47		1	95	70-130	03/29/2019 0951
2-Hexanone	100	110		1	107	70-130	03/29/2019 0951
Isopropylbenzene	50	48		1	96	70-130	03/29/2019 0951
Methyl acetate	50	55		1	110	70-130	03/29/2019 0951
Methyl tertiary butyl ether (MTBE)	50	43		1	86	70-130	03/29/2019 0951
4-Methyl-2-pentanone	100	110		1	108	70-130	03/29/2019 0951
Methylcyclohexane	50	51		1	103	70-130	03/29/2019 0951
Methylene chloride	50	44		1	88	70-130	03/29/2019 0951
Styrene	50	47		1	95	70-130	03/29/2019 0951
1,1,2,2-Tetrachloroethane	50	46		1	92	70-130	03/29/2019 0951
Tetrachloroethene	50	48		1	95	70-130	03/29/2019 0951
Toluene	50	48		1	95	70-130	03/29/2019 0951
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	47		1	95	70-130	03/29/2019 0951
1,2,4-Trichlorobenzene	50	41		1	82	70-130	03/29/2019 0951
1,1,1-Trichloroethane	50	48		1	97	70-130	03/29/2019 0951
1,1,2-Trichloroethane	50	47		1	94	70-130	03/29/2019 0951

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS - LCS

Sample ID: UQ11689-002

Batch: 11689

Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260B

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q Dil	% Rec	% Rec Limit	Analysis Date
Trichloroethene	50	50	1	101	70-130	03/29/2019 0951
Trichlorofluoromethane	50	47	1	95	70-130	03/29/2019 0951
Vinyl chloride	50	50	1	101	70-130	03/29/2019 0951
Xylenes (total)	100	95	1	95	70-130	03/29/2019 0951
m+p - Xylenes	50	48	1	95	70-130	03/29/2019 0951
o - Xylenes	50	47	1	94	70-130	03/29/2019 0951
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	98	70-130				
Bromofluorobenzene	97	70-130				
Toluene-d8	97	70-130				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: UQ11166-001 Batch: 11166

Matrix: Aqueous Prep Method: 3520C

Analytical Method: 8270D

Prep Date: 03/25/2019 1939

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acenaphthene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Acenaphthylene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Acetophenone	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Anthracene	ND		1	0.20	0.060	ug/L	04/03/2019 1041
Atrazine	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Benzidine	ND		1	20	1.0	ug/L	04/03/2019 1041
Benzo(a)anthracene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Benzo(a)pyrene	ND		1	0.20	0.070	ug/L	04/03/2019 1041
Benzo(b)fluoranthene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Benzo(g,h,i)perylene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Benzo(k)fluoranthene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Butyl benzyl phthalate	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Caprolactam	ND		1	1.6	1.0	ug/L	04/03/2019 1041
Carbazole	ND		1	0.80	0.50	ug/L	04/03/2019 1041
4-Chloro-3-methyl phenol	ND		1	0.80	0.50	ug/L	04/03/2019 1041
bis(2-Chloroethyl)ether	ND		1	0.80	0.50	ug/L	04/03/2019 1041
2-Chloronaphthalene	ND		1	0.80	0.50	ug/L	04/03/2019 1041
2-Chlorophenol	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Chrysene	ND		1	0.20	0.030	ug/L	04/03/2019 1041
Dibenzo(a,h)anthracene	ND		1	0.20	0.030	ug/L	04/03/2019 1041
Dibenzofuran	ND		1	0.80	0.50	ug/L	04/03/2019 1041
3,3'-Dichlorobenzidine	ND		1	4.0	1.8	ug/L	04/03/2019 1041
2,4-Dichlorophenol	ND		1	1.6	1.0	ug/L	04/03/2019 1041
Diethylphthalate	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Dimethyl phthalate	ND		1	0.80	0.50	ug/L	04/03/2019 1041
2,4-Dimethylphenol	ND		1	0.80	0.48	ug/L	04/03/2019 1041
Di-n-butyl phthalate	ND		1	0.80	0.50	ug/L	04/03/2019 1041
4,6-Dinitro-2-methylphenol	ND		1	4.0	1.0	ug/L	04/03/2019 1041
2,4-Dinitrotoluene	ND		1	1.6	0.50	ug/L	04/03/2019 1041
Di-n-octylphthalate	ND		1	0.80	0.50	ug/L	04/03/2019 1041
1,2-Diphenylhydrazine(as azobenzene)	ND		1	0.80	0.50	ug/L	04/03/2019 1041
bis(2-Ethylhexyl)phthalate	ND		1	4.0	0.50	ug/L	04/03/2019 1041
Fluoranthene	ND		1	0.20	0.10	ug/L	04/03/2019 1041
Fluorene	ND		1	0.20	0.030	ug/L	04/03/2019 1041
Hexachlorobenzene	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Hexachlorobutadiene	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Hexachlorocyclopentadiene	ND		1	4.0	2.0	ug/L	04/03/2019 1041
Hexachloroethane	ND		1	0.80	0.31	ug/L	04/03/2019 1041
Indeno(1,2,3-c,d)pyrene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Isophorone	ND		1	0.80	0.50	ug/L	04/03/2019 1041
2-Methylnaphthalene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
2-Methylphenol	ND		1	0.80	0.21	ug/L	04/03/2019 1041
3+4-Methylphenol	ND		1	1.6	1.5	ug/L	04/03/2019 1041
Naphthalene	ND		1	0.20	0.050	ug/L	04/03/2019 1041

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

N = Recovery is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: UQ11166-001 Batch: 11166

-001

Analytical Method: 8270D

Matrix: Aqueous Prep Method: 3520C

Prep Date: 03/25/2019 1939

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Nitrobenzene	ND		1	0.80	0.55	ug/L	04/03/2019 1041
2-Nitrophenol	ND		1	1.6	1.0	ug/L	04/03/2019 1041
N-Nitrosodi-n-propylamine	ND		1	0.80	0.50	ug/L	04/03/2019 1041
N-Nitrosodiphenylamine (Dipheny	lamine) ND		1	0.80	0.50	ug/L	04/03/2019 1041
Pentachlorophenol	ND		1	4.0	2.0	ug/L	04/03/2019 1041
Phenanthrene	ND		1	0.20	0.060	ug/L	04/03/2019 1041
Phenol	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Pyrene	ND		1	0.20	0.10	ug/L	04/03/2019 1041
2,4,5-Trichlorophenol	ND		1	0.80	0.50	ug/L	04/03/2019 1041
2,4,6-Trichlorophenol	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Surrogate	Q % Re		eptance Limit				
2-Fluorobiphenyl	55	3	37-129				
2-Fluorophenol	46	2	24-127				
Nitrobenzene-d5	70	3	88-127				
Phenol-d5	56	2	28-128				
Terphenyl-d14	96	•	10-148				
2,4,6-Tribromophenol	63	3	35-144				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: UQ11166-002 Batch: 11166

Matrix: Aqueous Prep Method: 3520C

Analytical Method: 8270D

Prep Date: 03/25/2019 1939

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	8.0	5.4		1	68	30-122	04/03/2019 1106
Acenaphthylene	8.0	5.4		1	67	30-130	04/03/2019 1106
Acetophenone	8.0	8.4		1	105	30-130	04/03/2019 1106
Anthracene	8.0	6.1		1	77	30-123	04/03/2019 1106
Atrazine	8.0	6.6		1	82	30-130	04/03/2019 1106
Benzidine	40	24		1	61	10-115	04/03/2019 1106
Benzo(a)anthracene	8.0	6.6		1	83	40-125	04/03/2019 1106
Benzo(a)pyrene	8.0	6.5		1	81	40-128	04/03/2019 1106
Benzo(b)fluoranthene	8.0	7.0		1	88	32-145	04/03/2019 1106
Benzo(g,h,i)perylene	8.0	6.8		1	86	42-128	04/03/2019 1106
Benzo(k)fluoranthene	8.0	7.0		1	87	50-135	04/03/2019 1106
Butyl benzyl phthalate	8.0	7.9		1	98	54-135	04/03/2019 1106
Caprolactam	8.0	6.2		1	78	30-130	04/03/2019 1106
				1		30-130	
Carbazole	8.0	6.7			83		04/03/2019 1106
4-Chloro-3-methyl phenol	8.0	5.5	N	1	69 116	30-123 35-114	04/03/2019 1106
bis(2-Chloroethyl)ether	8.0	9.2	IN	1			04/03/2019 1106
2-Chloronaphthalene	8.0	4.8		1	60 57	39-128	04/03/2019 1106
2-Chlorophenol	8.0	4.6			57	39-115	04/03/2019 1106
Chrysene	8.0	6.6		1	83	50-130	04/03/2019 1106
Dibenzo(a,h)anthracene	8.0	7.2		1	90	30-130	04/03/2019 1106
Dibenzofuran	8.0	5.2		1	64	30-118	04/03/2019 1106
3,3'-Dichlorobenzidine	8.0	5.1		1	63	10-126	04/03/2019 1106
2,4-Dichlorophenol	8.0	4.6		1	58	30-121	04/03/2019 1106
Diethylphthalate	8.0	6.4		1	80	40-125	04/03/2019 1106
Dimethyl phthalate	8.0	5.8		1	73	40-127	04/03/2019 1106
2,4-Dimethylphenol	8.0	5.2		1	65	20-125	04/03/2019 1106
Di-n-butyl phthalate	8.0	7.6		1	95	40-127	04/03/2019 1106
4,6-Dinitro-2-methylphenol	8.0	5.5		1	68	46-134	04/03/2019 1106
2,4-Dinitrotoluene	8.0	6.0		1	75	51-128	04/03/2019 1106
Di-n-octylphthalate	8.0	7.0		1	88	55-143	04/03/2019 1106
1,2-Diphenylhydrazine(as azobenzene)	8.0	6.8		1	85	30-130	04/03/2019 1106
bis(2-Ethylhexyl)phthalate	8.0	7.9		1	99	50-133	04/03/2019 1106
Fluoranthene	8.0	6.5		1	82	40-128	04/03/2019 1106
Fluorene	8.0	5.4		1	67	30-124	04/03/2019 1106
Hexachlorobenzene	8.0	5.5		1	69	30-125	04/03/2019 1106
Hexachlorobutadiene	8.0	4.2		1	52	24-110	04/03/2019 1106
Hexachlorocyclopentadiene	40	18		1	46	22-122	04/03/2019 1106
Hexachloroethane	8.0	4.5		1	56	28-116	04/03/2019 1106
Indeno(1,2,3-c,d)pyrene	8.0	7.1		1	89	50-125	04/03/2019 1106
Isophorone	8.0	6.2		1	77	30-130	04/03/2019 1106
2-Methylnaphthalene	8.0	4.8		1	60	40-132	04/03/2019 1106
2-Methylphenol	8.0	7.5		1	94	37-115	04/03/2019 1106
3+4-Methylphenol	8.0	7.0		1	88	44-112	04/03/2019 1106
Naphthalene	8.0	5.1		1	64	40-122	04/03/2019 1106

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

N = Recovery is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: UQ11166-002 Batch: 11166 Matrix: Aqueous Prep Method: 3520C

Analytical Method: 8270D

Prep Date: 03/25/2019 1939

Parameter	Spil Amo (ug/	unt	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Nitrobenzene	8.0		5.9		1	74	39-123	04/03/2019 1106
2-Nitrophenol	8.0		5.2		1	65	36-123	04/03/2019 1106
N-Nitrosodi-n-propylamine	8.0		9.0		1	113	39-119	04/03/2019 1106
N-Nitrosodiphenylamine (Diphenylamine)	8.0		5.7		1	71	30-123	04/03/2019 1106
Pentachlorophenol	16		11		1	67	34-137	04/03/2019 1106
Phenanthrene	8.0		6.0		1	75	40-123	04/03/2019 1106
Phenol	8.0		4.7		1	59	30-130	04/03/2019 1106
Pyrene	8.0		7.0		1	87	40-126	04/03/2019 1106
2,4,5-Trichlorophenol	8.0		4.8		1	59	30-123	04/03/2019 1106
2,4,6-Trichlorophenol	8.0		5.0		1	62	30-125	04/03/2019 1106
Surrogate	Q	% Rec	Accepta Limi					
2-Fluorobiphenyl		61	37-1	29				
2-Fluorophenol		35	24-1	27				
Nitrobenzene-d5		74	38-1	27				
Phenol-d5		57	28-1	28				
Terphenyl-d14		93	10-1	48				
2,4,6-Tribromophenol		70	35-1	44				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - MS

Sample ID: UC21029-001MS

Batch: 11166

Matrix: Aqueous Prep Method: 3520C

Prep Date: 03/25/2019 1939

	Analytical	Method:	8270D
--	------------	---------	-------

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
A service of the Artist of the				u				Analysis Date
Acenaphthene	ND	16	9.0		1	56	30-122	04/03/2019 2028
Acenaphthylene	ND	16	9.1		1	57	30-130	04/03/2019 2028
Acetophenone	ND	16	13		1	81	30-130	04/03/2019 2028
Anthracene	ND	16	9.6		1	60	30-123	04/03/2019 2028
Atrazine	ND	16	12		1	74	30-130	04/03/2019 2028
Benzidine	ND	80	43		1	54	10-115	04/03/2019 2028
Benzo(a)anthracene	ND	16	12		1	77	40-125	04/03/2019 2028
Benzo(a)pyrene	ND	16	13		1	78	40-128	04/03/2019 2028
Benzo(b)fluoranthene	ND	16	13		1	82	30-130	04/03/2019 2028
Benzo(g,h,i)perylene	ND	16	13		1	84	30-130	04/03/2019 2028
Benzo(k)fluoranthene	ND	16	13		1	79	30-130	04/03/2019 2028
Butyl benzyl phthalate	ND	16	15		1	92	54-135	04/03/2019 2028
Caprolactam	ND	16	11		1	68	30-130	04/03/2019 2028
Carbazole	ND	16	11		1	71	30-130	04/03/2019 2028
4-Chloro-3-methyl phenol	ND	16	9.8		1	61	30-130	04/03/2019 2028
bis(2-Chloroethyl)ether	ND	16	15		1	94	30-130	04/03/2019 2028
2-Chloronaphthalene	ND	16	7.8		1	49	30-130	04/03/2019 2028
2-Chlorophenol	ND	16	8.1		1	51	30-130	04/03/2019 2028
Chrysene	ND	16	12		1	75	30-130	04/03/2019 2028
Dibenzo(a,h)anthracene	ND	16	13		1	83	30-130	04/03/2019 2028
Dibenzofuran	ND	16	8.6		1	54	30-118	04/03/2019 2028
3,3'-Dichlorobenzidine	ND	16	10		1	65	10-126	04/03/2019 2028
2,4-Dichlorophenol	ND	16	8.1		1	51	30-121	04/03/2019 2028
Diethylphthalate	ND	16	11		1	67	40-125	04/03/2019 2028
Dimethyl phthalate	ND	16	9.5		1	59	40-127	04/03/2019 2028
2,4-Dimethylphenol	ND	16	11		1	67	20-125	04/03/2019 2028
Di-n-butyl phthalate	ND	16	14		1	86	40-127	04/03/2019 2028
4,6-Dinitro-2-methylphenol	ND	16	8.6		1	54	30-130	04/03/2019 2028
2,4-Dinitrotoluene	ND	16	10		1	63	30-130	04/03/2019 2028
Di-n-octylphthalate	ND	16	13		1	82	30-130	04/03/2019 2028
1,2-Diphenylhydrazine(as azobenzene)	ND	16	11		1	70	30-130	04/03/2019 2028
bis(2-Ethylhexyl)phthalate	ND	16	15		1	91	30-130	04/03/2019 2028
Fluoranthene	ND	16	11		1	71	40-128	04/03/2019 2028
Fluorene	ND	16	9.0		1	56	30-124	04/03/2019 2028
Hexachlorobenzene	ND	16	8.6		1	54	30-125	04/03/2019 2028
Hexachlorobutadiene	ND	16	6.7		1	42	24-110	04/03/2019 2028
Hexachlorocyclopentadiene	ND	80	29		1	36	30-130	04/03/2019 2028
Hexachloroethane	ND	16	7.0		1	44	30-130	04/03/2019 2028
Indeno(1,2,3-c,d)pyrene	ND	16	13		1	83	30-130	04/03/2019 2028
Isophorone	ND	16	11		1	68	30-130	04/03/2019 2028
2-Methylnaphthalene	ND	16	7.9		1	50	40-132	04/03/2019 2028
2-Methylphenol	ND	16	12		1	74	30-130	04/03/2019 2028
3+4-Methylphenol	ND	16	12		1	72	30-130	04/03/2019 2028
Naphthalene	ND	16	8.7		1	54	30-130	04/03/2019 2028

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - MS

Sample ID: UC21029-001MS

Batch: 11166

Matrix: Aqueous Prep Method: 3520C

Prep Date: 03/25/2019 1939

Analytical Method: 8270D

Parameter	Sam Amo (ug/	unt	Spike Amour (ug/L)	nt Result	Q	Dil	% Rec	% Rec Limit	Analysis Date
Nitrobenzene	ND		16	11		1	69	30-130	04/03/2019 2028
2-Nitrophenol	ND		16	9.2		1	57	30-130	04/03/2019 2028
N-Nitrosodi-n-propylamine	ND		16	14		1	86	30-130	04/03/2019 2028
N-Nitrosodiphenylamine (Diphenylamine)	ND		16	9.1		1	57	30-123	04/03/2019 2028
Pentachlorophenol	ND		32	18		1	57	30-130	04/03/2019 2028
Phenanthrene	ND		16	9.4		1	59	40-123	04/03/2019 2028
Phenol	ND		16	8.1		1	51	30-130	04/03/2019 2028
Pyrene	ND		16	12		1	74	40-126	04/03/2019 2028
2,4,5-Trichlorophenol	ND		16	8.0		1	50	30-123	04/03/2019 2028
2,4,6-Trichlorophenol	ND		16	8.3		1	52	30-125	04/03/2019 2028
Surrogate	Q	% Rec	. /	Acceptance Limit					
2-Fluorobiphenyl		50		37-129					
2-Fluorophenol		34		24-127					
Nitrobenzene-d5		68		38-127					
Phenol-d5		50		28-128					
Terphenyl-d14		82		10-148					
2,4,6-Tribromophenol		54		35-144					

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: UC21029-001MD

Batch: 11166

Matrix: Aqueous Prep Method: 3520C

Prep Date: 03/25/2019 1939

Analytical Method: 8270D

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec	% RPD Limit	Analysis Date
Acenaphthene	ND	16	12		1	72	25	30-122	40	04/03/2019 2053
Acenaphthylene	ND	16	12		1	73	25	30-130	40	04/03/2019 2053
Acetophenone	ND	16	20	+	1	123	41	30-130	40	04/03/2019 2053
Anthracene	ND	16	12		1	77	24	30-123	40	04/03/2019 2053
Atrazine	ND	16	14		1	87	16	30-130	40	04/03/2019 2053
Benzidine	ND	80	48		1	59	9.7	10-115	40	04/03/2019 2053
Benzo(a)anthracene	ND	16	14		1	87	12	40-125	40	04/03/2019 2053
Benzo(a)pyrene	ND	16	14		1	86	9.6	40-128	40	04/03/2019 2053
Benzo(b)fluoranthene	ND	16	15		1	91	10	30-130	40	04/03/2019 2053
Benzo(g,h,i)perylene	ND	16	14		1	87	3.3	30-130	40	04/03/2019 2053
Benzo(k)fluoranthene	ND	16	14		1	88	11	30-130	40	04/03/2019 2053
Butyl benzyl phthalate	ND	16	17		1	106	14	54-135	40	04/03/2019 2053
Caprolactam	ND	16	14		1	86	25	30-130	40	04/03/2019 2053
Carbazole	ND	16	14		1	85	18	30-130	40	04/03/2019 2053
4-Chloro-3-methyl phenol	ND	16	13		1	79	25	30-130	40	04/03/2019 2053
bis(2-Chloroethyl)ether	ND	16	23	N,+		144	43	30-130	40	04/03/2019 2053
2-Chloronaphthalene	ND	16	10		1	65	28	30-130	40	04/03/2019 2053
2-Chlorophenol	ND	16	12		1	75	39	30-130	40	04/03/2019 2053
Chrysene	ND	16	14		1	86	14	30-130	40	04/03/2019 2053
Dibenzo(a,h)anthracene	ND	16	14		1	88	5.6	30-130	40	04/03/2019 2053
Dibenzofuran	ND	16	11		1	68	23	30-118	40	04/03/2019 2053
3,3'-Dichlorobenzidine	ND	16	9.1		1	57	14	10-126	40	04/03/2019 2053
2,4-Dichlorophenol	ND	16	10		1	63	22	30-121	40	04/03/2019 2053
Diethylphthalate	ND	16	14		1	87	25	40-125	40	04/03/2019 2053
Dimethyl phthalate	ND	16	12		1	76	25	40-127	40	04/03/2019 2053
2,4-Dimethylphenol	ND	16	13		1	84	23	20-125	40	04/03/2019 2053
Di-n-butyl phthalate	ND	16	16		1	98	13	40-127	40	04/03/2019 2053
4,6-Dinitro-2-methylphenol	ND	16	9.8		1	61	13	30-130	40	04/03/2019 2053
2,4-Dinitrotoluene	ND	16	13		1	80	24	30-130	40	04/03/2019 2053
Di-n-octylphthalate	ND	16	14		1	90	10	30-130	40	04/03/2019 2053
1,2-Diphenylhydrazine(as azobenzene)	ND	16	14		1	89	23	30-130	40	04/03/2019 2053
bis(2-Ethylhexyl)phthalate	ND	16	16		1	99	8.5	30-130	40	04/03/2019 2053
Fluoranthene	ND	16	13		1	84	18	40-128	40	04/03/2019 2053
Fluorene	ND	16	11		1	72	24	30-124	40	04/03/2019 2053
Hexachlorobenzene	ND	16	11		1	69	25	30-125	40	04/03/2019 2053
Hexachlorobutadiene	ND	16	7.6		1	47	12	24-110	40	04/03/2019 2053
Hexachlorocyclopentadiene	ND	80	33		1	41	14	30-130	40	04/03/2019 2053
Hexachloroethane	ND	16	9.2		1	58	27	30-130	40	04/03/2019 2053
Indeno(1,2,3-c,d)pyrene	ND	16	14		1	88	6.9	30-130	40	04/03/2019 2053
Isophorone	ND	16	14		1	87	24	30-130	40	04/03/2019 2053
2-Methylnaphthalene	ND	16	10		1	65	27	40-132	40	04/03/2019 2053
2-Methylphenol	ND	16	18	+	1	112	41	30-130	40	04/03/2019 2053
3+4-Methylphenol	ND	16	17	- 5	1	109	40	30-130	40	04/03/2019 2053
Naphthalene	ND	16	11		1	71	26	30-130	40	04/03/2019 2053

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: UC21029-001MD

Batch: 11166

Matrix: Aqueous Prep Method: 3520C

Prep Date: 03/25/2019 1939

Analytical	Method:	8270D

Amo	unt	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
ND		16	14		1	85	21	30-130	40	04/03/2019 2053
ND		16	12		1	72	23	30-130	40	04/03/2019 2053
ND		16	21	N,+	1	134	44	30-130	40	04/03/2019 2053
ND		16	11		1	69	20	30-123	40	04/03/2019 2053
ND		32	22		1	68	17	30-130	40	04/03/2019 2053
ND		16	12		1	75	25	40-123	40	04/03/2019 2053
ND		16	12	+	1	77	41	30-130	40	04/03/2019 2053
ND		16	14		1	89	18	40-126	40	04/03/2019 2053
ND		16	10		1	63	22	30-123	40	04/03/2019 2053
ND		16	11		1	66	24	30-125	40	04/03/2019 2053
Q	% Rec	A	cceptance Limit							
	62		37-129							
	30		24-127							
	83		38-127							
	74		28-128							
	92		10-148							
	69		35-144							
	Amo (ug/ ND ND ND ND ND ND ND ND ND ND ND ND	ND 83 74 92	Amount (ug/L) ND	Amount (ug/L) Amount (ug/L) Result (ug/L) ND 16 14 ND 16 21 ND 16 11 ND 32 22 ND 16 12 ND 16 12 ND 16 12 ND 16 14 ND 16 10 ND 16 11 ND 16 11 Acceptance Limit 11 Acceptance Limit 24-127 83 38-127 74 28-128 92 10-148	Amount (ug/L) Amount (ug/L) Result (ug/L) Q ND 16 14 N,+ ND 16 12 N,+ ND 16 11 N,+ ND 16 12 + ND 16 12 + ND 16 12 + ND 16 14 N ND 16 10 N ND 16 11 Acceptance Limit Q % Rec Acceptance Limit 2 30 24-127 33 38-127 74 28-128 92 10-148	Amount (ug/L) Amount (ug/L) Result (ug/L) Q Dil ND 16 14 1 ND 16 12 N,+ 1 ND 16 11 1 1 ND 32 22 1 1 ND 16 12 + 1 ND 16 12 + 1 ND 16 14 1 1 ND 16 10 1 1 ND 16 11 1 1 ND 16 10 1 1 ND 16 11 1 1 Acceptance Limit 2 2 3 3 30 24-127 3 3 38-127 74 28-128 92 10-148 4	Amount (ug/L) Result (ug/L) Q Dil % Rec ND 16 14 1 85 ND 16 12 1 72 ND 16 21 N,+ 1 134 ND 16 11 1 69 ND 32 22 1 68 ND 16 12 + 1 75 ND 16 12 + 1 77 ND 16 14 1 89 ND 16 10 1 63 ND 16 11 1 66 ND 16 1 1 1 66 ND 16 1 1 1 66 Acceptance Limit 2 2 2 2 1 62 37-129 30 24-127 3 38-127 74 28-128 92 10-148 92 <t< td=""><td>Amount (ug/L) Result (ug/L) Q Dil % Rec % RPD ND 16 14 1 85 21 ND 16 12 1 72 23 ND 16 21 N,+ 1 134 44 ND 16 11 1 69 20 ND 32 22 1 68 17 ND 16 12 + 1 75 25 ND 16 12 + 1 77 41 ND 16 14 1 89 18 ND 16 10 1 63 22 ND 16 1 1 66 24 ND 16 1 1 66 24 Q Receptance Limit 1 66 24 30 24-127 2 3 38-127 3 74<!--</td--><td>Amount (ug/L) Result (ug/L) Q Dil % Rec % RPD % Rec Limit ND 16 14 1 85 21 30-130 ND 16 12 1 72 23 30-130 ND 16 21 N,+ 1 134 44 30-130 ND 16 11 1 69 20 30-123 ND 32 22 1 68 17 30-130 ND 16 12 1 75 25 40-123 ND 16 12 + 1 77 41 30-130 ND 16 14 1 89 18 40-126 ND 16 10 1 63 22 30-123 ND 16 11 1 66 24 30-125 Q * Rec Acceptance Limit 30 24-127 2 2</td><td>Amount (ug/L) Result (ug/L) Q Dil % Rec % RPD % RPD % RPD % RPD % RPD % RPD Limit Limit Limit Limit Limit ND ND 16 14 1 85 21 30-130 40 40 AD ND 16 12 1 72 23 30-130 40 AD ND 16 21 N,+ 1 134 44 30-130 40 AD ND 16 11 1 69 20 30-130 40 AD AD 16 11 1 69 20 30-130 40 AD AD 16 12 1 75 25 40-123 40 AD AD 16 12 + 1 77 41 30-130 40 AD AD AD AD 16 10 1 63 22 30-123 40 AD AD AD AD <th< td=""></th<></td></td></t<>	Amount (ug/L) Result (ug/L) Q Dil % Rec % RPD ND 16 14 1 85 21 ND 16 12 1 72 23 ND 16 21 N,+ 1 134 44 ND 16 11 1 69 20 ND 32 22 1 68 17 ND 16 12 + 1 75 25 ND 16 12 + 1 77 41 ND 16 14 1 89 18 ND 16 10 1 63 22 ND 16 1 1 66 24 ND 16 1 1 66 24 Q Receptance Limit 1 66 24 30 24-127 2 3 38-127 3 74 </td <td>Amount (ug/L) Result (ug/L) Q Dil % Rec % RPD % Rec Limit ND 16 14 1 85 21 30-130 ND 16 12 1 72 23 30-130 ND 16 21 N,+ 1 134 44 30-130 ND 16 11 1 69 20 30-123 ND 32 22 1 68 17 30-130 ND 16 12 1 75 25 40-123 ND 16 12 + 1 77 41 30-130 ND 16 14 1 89 18 40-126 ND 16 10 1 63 22 30-123 ND 16 11 1 66 24 30-125 Q * Rec Acceptance Limit 30 24-127 2 2</td> <td>Amount (ug/L) Result (ug/L) Q Dil % Rec % RPD % RPD % RPD % RPD % RPD % RPD Limit Limit Limit Limit Limit ND ND 16 14 1 85 21 30-130 40 40 AD ND 16 12 1 72 23 30-130 40 AD ND 16 21 N,+ 1 134 44 30-130 40 AD ND 16 11 1 69 20 30-130 40 AD AD 16 11 1 69 20 30-130 40 AD AD 16 12 1 75 25 40-123 40 AD AD 16 12 + 1 77 41 30-130 40 AD AD AD AD 16 10 1 63 22 30-123 40 AD AD AD AD <th< td=""></th<></td>	Amount (ug/L) Result (ug/L) Q Dil % Rec % RPD % Rec Limit ND 16 14 1 85 21 30-130 ND 16 12 1 72 23 30-130 ND 16 21 N,+ 1 134 44 30-130 ND 16 11 1 69 20 30-123 ND 32 22 1 68 17 30-130 ND 16 12 1 75 25 40-123 ND 16 12 + 1 77 41 30-130 ND 16 14 1 89 18 40-126 ND 16 10 1 63 22 30-123 ND 16 11 1 66 24 30-125 Q * Rec Acceptance Limit 30 24-127 2 2	Amount (ug/L) Result (ug/L) Q Dil % Rec % RPD % RPD % RPD % RPD % RPD % RPD Limit Limit Limit Limit Limit ND ND 16 14 1 85 21 30-130 40 40 AD ND 16 12 1 72 23 30-130 40 AD ND 16 21 N,+ 1 134 44 30-130 40 AD ND 16 11 1 69 20 30-130 40 AD AD 16 11 1 69 20 30-130 40 AD AD 16 12 1 75 25 40-123 40 AD AD 16 12 + 1 77 41 30-130 40 AD AD AD AD 16 10 1 63 22 30-123 40 AD AD AD AD <th< td=""></th<>

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11022-001

Batch: 11022

Analytical Method: 200.8

Matrix: Aqueous Prep Method: 200.2

Prep Date: 03/23/2019 847

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Aluminum	ND		1	40	10	ug/L	03/25/2019 1257
Antimony	ND		1	2.0	0.50	ug/L	03/25/2019 1257
Arsenic	ND		1	2.0	1.3	ug/L	03/25/2019 1257
Barium	ND		1	5.0	1.3	ug/L	03/25/2019 1257
Beryllium	ND		1	0.40	0.15	ug/L	03/25/2019 1257
Boron	ND		1	50	6.3	ug/L	03/27/2019 1110
Cadmium	ND		1	0.50	0.13	ug/L	03/25/2019 1257
Chromium	1.3	J	1	5.0	1.3	ug/L	03/25/2019 1257
Cobalt	ND		1	5.0	1.3	ug/L	03/25/2019 1257
Copper	ND		1	5.0	1.3	ug/L	03/25/2019 1257
Iron	ND		1	50	13	ug/L	03/25/2019 1257
Lead	ND		1	1.0	0.25	ug/L	03/25/2019 1257
Magnesium	ND		1	400	50	ug/L	03/25/2019 1257
Molybdenum	ND		1	10	2.5	ug/L	03/25/2019 1257
Nickel	ND		1	5.0	1.3	ug/L	03/25/2019 1257
Selenium	ND		1	5.0	1.3	ug/L	03/25/2019 1257
Silver	ND		1	1.0	0.25	ug/L	03/25/2019 1257
Sodium	ND		1	400	150	ug/L	03/27/2019 1110
Thallium	ND		1	0.50	0.15	ug/L	03/25/2019 1257
Titanium	ND		1	5.0	1.3	ug/L	03/25/2019 1257
Vanadium	ND		1	5.0	2.5	ug/L	03/25/2019 1257
Zinc	ND		1	10	2.5	ug/L	03/25/2019 1257

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Sample ID: UQ11022-002 Batch: 11022

Analytical Method: 200.8

Matrix: Aqueous Prep Method: 200.2

Prep Date: 03/23/2019 847

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Aluminum	100	100		1	103	85-115	03/25/2019 1303
Antimony	100	93		1	93	85-115	03/25/2019 1303
Arsenic	100	100		1	100	85-115	03/25/2019 1303
Barium	100	100		1	101	85-115	03/25/2019 1303
Beryllium	100	110		1	111	85-115	03/25/2019 1303
Boron	100	100		1	104	85-115	03/27/2019 1116
Cadmium	100	97		1	97	85-115	03/25/2019 1303
Chromium	100	95		1	95	85-115	03/25/2019 1303
Cobalt	100	91		1	91	85-115	03/25/2019 1303
Copper	100	96		1	96	85-115	03/25/2019 1303
Iron	1000	960		1	96	85-115	03/25/2019 1303
Lead	100	96		1	96	85-115	03/25/2019 1303
Magnesium	1000	1100		1	108	85-115	03/25/2019 1303
Molybdenum	100	95		1	95	85-115	03/25/2019 1303
Nickel	100	97		1	97	85-115	03/25/2019 1303
Selenium	100	99		1	99	85-115	03/25/2019 1303
Silver	100	100		1	100	85-115	03/25/2019 1303
Sodium	1000	1000		1	102	85-115	03/27/2019 1116
Thallium	100	93		1	93	85-115	03/25/2019 1303
Titanium	100	96		1	96	85-115	03/25/2019 1303
Vanadium	100	98		1	98	85-115	03/25/2019 1303
Zinc	100	100		1	100	85-115	03/25/2019 1303

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

CVAA - MB

Sample ID: UQ11405-001

Batch: 11405

Analytical Method: 7470A

Matrix: Aqueous Prep Method: 245.1

Prep Date: 03/27/2019 1341

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Mercury	ND		1	0.00020	0.000091	mg/L	03/28/2019 1202

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

CVAA - LCS

Sample ID: UQ11405-002

Batch: 11405

Analytical Method: 7470A

Matrix: Aqueous Prep Method: 245.1

Prep Date: 03/27/2019 1341

	Result				% Rec		
Parameter Amount (mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date	
Mercury	0.0020	0.0019		1	96	80-120	03/28/2019 1205

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

CVAA - MS

Sample ID: UC21029-001MS

Batch: 11405

Analytical Method: 7470A

Matrix: Aqueous Prep Method: 245.1

Prep Date: 03/27/2019 1341

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Mercury	ND	0.0020	0.0019		1	94	85-115	03/28/2019 1220

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

CVAA - MSD

Sample ID: UC21029-001MD

Batch: 11405

Analytical Method: 7470A

Matrix: Aqueous Prep Method: 245.1

Prep Date: 03/27/2019 1341

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Mercury	ND	0.0020	0.0019		1	93	1.1	85-115	20	03/28/2019 1222

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MB

Sample ID: UQ11294-001 Batch: 11294

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/26/2019 1814

8:2 FTS	D D D D D D D D D D D D D D D		1 1 1 1 1 1 1 1	4.0 4.0 4.0 8.0 4.0 4.0 4.0	ng/L ng/L ng/L ng/L ng/L ng/L	03/27/2019 2117 03/27/2019 2117 03/27/2019 2117 03/27/2019 2117 03/27/2019 2117 03/27/2019 2117
EtFOSA N MeFOSA N PFBS N PFDS N PFHpS N PFNS N PFOSA N PFPeS N PFHxS N PFBA N	D D D D D D D		1 1 1 1 1	4.0 8.0 4.0 4.0 4.0	ng/L ng/L ng/L ng/L ng/L	03/27/2019 2117 03/27/2019 2117 03/27/2019 2117 03/27/2019 2117
MeFOSA N PFBS N PFDS N PFHpS N PFNS N PFOSA N PFPeS N PFHxS N PFBA N	D D D D D D		1 1 1 1	8.0 4.0 4.0 4.0	ng/L ng/L ng/L ng/L	03/27/2019 2117 03/27/2019 2117 03/27/2019 2117
PFBS N PFDS N PFHpS N PFNS N PFOSA N PFPeS N PFHxS N PFBA N	D D D D D		1 1 1	4.0 4.0 4.0	ng/L ng/L ng/L	03/27/2019 2117 03/27/2019 2117
PFDS N PFHpS N PFNS N PFOSA N PFPeS N PFHxS N PFBA N	D D D D		1 1 1	4.0 4.0	ng/L ng/L	03/27/2019 2117
PFHpS N PFNS N PFOSA N PFPeS N PFHxS N PFBA N	D D D		1 1	4.0	ng/L	
PFNS N PFOSA N PFPeS N PFHxS N PFBA N	D D D		1			00/07/07/0
PFOSA N PFPeS N PFHxS N PFBA N	D D			8.0		03/27/2019 2117
PFPeS N PFHxS N PFBA N	D		1	0.0	ng/L	03/27/2019 2117
PFHxS N			1	4.0	ng/L	03/27/2019 2117
PFBA N	D		1	4.0	ng/L	03/27/2019 2117
			1	4.0	ng/L	03/27/2019 2117
PFDA N	D		1	4.0	ng/L	03/27/2019 2117
	D		1	4.0	ng/L	03/27/2019 2117
PFDoA N	D		1	4.0	ng/L	03/27/2019 2117
PFHpA N			1	4.0	ng/L	03/27/2019 2117
PFHxA N			1	4.0	ng/L	03/27/2019 2117
PFNA N			1	4.0	ng/L	03/27/2019 2117
PFOA N	D		1	2.0	ng/L	03/27/2019 2117
PFPeA N			1	4.0	ng/L	03/27/2019 2117
PFTeDA N			1	4.0	ng/L	03/27/2019 2117
PFTrDA N	D		1	4.0	ng/L	03/27/2019 2117
PFUdA N			1	4.0	ng/L	03/27/2019 2117
PFOS N	D.		1	4.0	ng/L	03/27/2019 2117
Surrogate	% Rec	Accep Lir	otance nit			
13C2_6:2FTS	103	50-	-150			
13C2_8:2FTS	124	50-	-150			
13C2_PFDoA	111	50-	-150			
13C2_PFTeDA	118	50-	-150			
13C3_PFBS	121	50-	-150			
13C3_PFHxS	115		-150			
13C4_PFBA	111		-150			
13C4_PFHpA	110		-150			
13C5_PFHxA	113		-150			
13C5_PFPeA	116		-150			
13C6_PFDA	107		-150			
13C7_PFUdA	118		-150			
13C8_PFOA	109		-150			
13C8_PFOS	123		-150			
13C8_PFOSA	97		-150			
13C9_PFNA	116		-150			
13C9_PFNA	110	50-	-150			

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MB

Sample ID: UQ11294-001

Batch: 11294

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/26/2019 1814

Surrogate	Q % F	Rec	Acceptance Limit	
d-EtFOSA	72	'2	50-150	
d-MeFOSA	68	88	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCS

Sample ID: UQ11294-002

Batch: 11294

Analytical Method: 537 Modified-ID

Matrix: Aqueous
Prep Method: 537 MOD

Prep Date: 03/26/2019 1814

Parameter	Spike Amount (ng/L)	Result (ng/L)	Q Dil	% Rec	% Rec Limit	Analysis Date
8:2 FTS	19	19	1	102	70-150	03/27/2019 2130
6:2 FTS	19	23	1	121	70-150	03/27/2019 2130
EtFOSA	20	21	1	106	70-150	03/27/2019 2130
MeFOSA	20	24	1	118	70-150	03/27/2019 2130
PFBS	18	17	1	95	70-150	03/27/2019 2130
PFDS	19	17	1	86	70-150	03/27/2019 2130
PFHpS	19	18	1	95	70-150	03/27/2019 2130
PFNS	19	18	1	93	70-150	03/27/2019 2130
PFOSA	20	19	1	94	70-150	03/27/2019 2130
PFPeS	19	18	1	93	70-150	03/27/2019 2130
PFHxS	18	18	1	100	70-150	03/27/2019 2130
PFBA	20	19	1	97	70-150	03/27/2019 2130
PFDA	20	18	1	92	70-150	03/27/2019 2130
PFDoA	20	19	1	97	70-150	03/27/2019 2130
PFHpA	20	20	1	99	70-150	03/27/2019 2130
PFHxA	20	19	1	95	70-150	03/27/2019 2130
PFNA	20	17	1	87	70-150	03/27/2019 2130
PFOA	20	19	1	94	70-150	03/27/2019 2130
PFPeA	20	19	1	95	70-150	03/27/2019 2130
PFTeDA	20	20	1	98	70-150	03/27/2019 2130
PFTrDA	20	20	1	100	70-150	03/27/2019 2130
PFUdA	20	18	1	89	70-150	03/27/2019 2130
PFOS	19	19	1	102	70-150	03/27/2019 2130
Surrogate	Q % Rec	Acceptano Limit	e			
13C2_6:2FTS	93	50-150				
13C2_8:2FTS	123	50-150				
13C2_PFDoA	115	50-150				
13C2_PFTeDA	115	50-150				
13C3_PFBS	122	50-150				
13C3_PFHxS	114	50-150				
13C4_PFBA	116	50-150				
13C4_PFHpA	116	50-150				
13C5_PFHxA	120	50-150				
13C5_PFPeA	117	50-150				
13C6_PFDA	115	50-150				
13C7_PFUdA	120	50-150				
13C8_PFOA	114	50-150				
13C8_PFOS	118	50-150				
13C8_PFOSA 13C9_PFNA	106 122	50-150 50-150				
	122	50 150				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCS

Sample ID: UQ11294-002

Batch: 11294

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/26/2019 1814

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		60	50-150	
d-MeFOSA		60	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCSD

Sample ID: UQ11294-003

Batch: 11294

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/26/2019 1814

Spike Amount (ng/L)	Result (ng/L)	Q	Dil 1	% Rec	% RPD 5.5	% Rec Limit	% RPD Limit	Analysis Date 03/27/2019 2142
19	21							
			1			70-150		03/27/2019 214:
			1			70-150		03/27/2019 214:
20	24		1	121	3.0	70-150	30	03/27/2019 214:
18	18		1	101	6.3	70-150	30	03/27/2019 214:
19	17		1	90	4.1	70-150	30	03/27/2019 214:
19	18		1	94	1.3	70-150	30	03/27/2019 214:
19	17		1	89	5.3	70-150	30	03/27/2019 214:
20	20		1	98	4.3	70-150	30	03/27/2019 214:
19	17		1	92	1.0	70-150	30	03/27/2019 214:
18	17		1	92	8.2	70-150	30	03/27/2019 214:
20	20		1	98	1.5	70-150	30	03/27/2019 214:
			1	93	1.2	70-150	30	03/27/2019 214:
			1	97	0.33	70-150	30	03/27/2019 214:
			1	99	0.091	70-150		03/27/2019 214:
								03/27/2019 214
								03/27/2019 214
								03/27/2019 214
								03/27/2019 214
								03/27/2019 214
								03/27/2019 214
								03/27/2019 214
19			1	88	15	70-150	30	03/27/2019 214
Q % Red	Acc	ceptance Limit						
103		50-150						
110		50-150						
115		50-150						
116		50-150						
120		50-150						
114		50-150						
		50-150						
116								
121		50-150						
,=.								
102		50-150						
	Amount (ng/L) 19 19 20 20 20 18 19 19 19 19 20 20 19 18 20 20 20 20 20 20 20 20 20 20 19 Q % Rec 103 110 115 116 120 114 114 112 117 117 119 116 119	Amount (ng/L) 19	Amount (ng/L)	Amount (ng/L)	Name	Amount (ng/L)	Amount (ng/L)	Amount (ng/L)

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCSD

Sample ID: UQ11294-003

Batch: 11294

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/26/2019 1814

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		64	50-150	
d-MeFOSA		62	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MB

Sample ID: UQ11382-001 Batch: 11382

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/27/2019 1140

Parameter	ameter Result Q Dil		LOQ	Units	Analysis Date
8:2 FTS	ND	1	4.0	ng/L	04/01/2019 1240
6:2 FTS	ND	1	4.0	ng/L	04/01/2019 1240
EtFOSA	ND	1	4.0	ng/L	04/01/2019 1240
MeFOSA	ND	1	8.0	ng/L	04/01/2019 1240
PFBS	ND	1	4.0	ng/L	04/01/2019 1240
PFDS	ND	1	4.0	ng/L	04/01/2019 1240
PFHpS	ND	1	4.0	ng/L	04/01/2019 1240
PFNS	ND	1	8.0	ng/L	04/01/2019 1240
PFOSA	ND	1	4.0	ng/L	04/01/2019 1240
PFPeS	ND	1	4.0	ng/L	04/01/2019 1240
PFHxS	ND	1	4.0	ng/L	04/01/2019 1240
PFBA	ND	1	4.0	ng/L	04/01/2019 1240
PFDA	ND	1	4.0	ng/L	04/01/2019 1240
PFDoA	ND	1	4.0	ng/L	04/01/2019 1240
PFHpA	ND	1	4.0	ng/L	04/01/2019 1240
PFHxA	ND	1	4.0	ng/L	04/01/2019 1240
PFNA	ND	1	4.0	ng/L	04/01/2019 1240
PFOA	ND	1	2.0	ng/L	04/01/2019 1240
PFPeA	ND	1	4.0	ng/L	04/01/2019 1240
PFTeDA	ND	1	4.0	ng/L	04/01/2019 1240
PFTrDA	ND	1	4.0	ng/L	04/01/2019 1240
PFUdA	ND	1	4.0	ng/L	04/01/2019 1240
PFOS	ND	1	4.0	ng/L	04/01/2019 1240
Surrogate	Q % Rec	Acceptance Limit			
13C2_6:2FTS	91	50-150			
13C2_8:2FTS	118	50-150			
13C2_PFDoA	103	50-150			
13C2_PFTeDA	97	50-150			
13C3_PFBS	103	50-150			
13C3_PFHxS	97	50-150			
13C4_PFBA	102	50-150			
_ 13C4_PFHpA	101	50-150			
13C5_PFHxA	100	50-150			
	108	50-150			
13C5 PFPeA					
13C5_PFPeA 13C6_PFDA		50-150			
13C6_PFDA	100 104	50-150 50-150			
13C6_PFDA 13C7_PFUdA	100 104	50-150			
13C6_PFDA 13C7_PFUdA 13C8_PFOA	100 104 99	50-150 50-150			
13C6_PFDA 13C7_PFUdA	100 104	50-150			

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MB

Sample ID: UQ11382-001

Batch: 11382

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/27/2019 1140

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		66	50-150	
d-MeFOSA		58	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $\label{eq:J} J = \text{Estimated result} < \text{LOQ and} \geq \text{DL}$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCS

Sample ID: UQ11382-002

Batch: 11382

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/27/2019 1140

Parameter	Spike Amount (ng/L)	Result (ng/L) Q	Dil	% Rec	% Rec Limit	Analysis Date
8:2 FTS	19	18	1	95	70-150	04/01/2019 125
6:2 FTS	19	18	1	96	70-150	04/01/2019 125
EtFOSA	20	22	1	108	70-150	04/01/2019 125
MeFOSA	20	24	1	122	70-150	04/01/2019 125
PFBS	18	16	1	92	70-150	04/01/2019 125
PFDS	19	15	1	80	70-150	04/01/2019 125
PFHpS	19	16	1	84	70-150	04/01/2019 125
PFNS	19	17	1	90	70-150	04/01/2019 125
PFOSA	20	18	1	92	70-150	04/01/2019 125
PFPeS	19	15	1	80	70-150	04/01/2019 125
PFHxS	18	17	1	95	70-150	04/01/2019 125
PFBA	20	19	1	95	70-150	04/01/2019 125
PFDA	20	17	1	84	70-150	04/01/2019 125
PFDoA	20	18	1	88	70-150	04/01/2019 125
PFHpA	20	18	1	89	70-150	04/01/2019 125
PFHxA	20	18	1	89	70-150	04/01/2019 125
PFNA	20	16	1	82	70-150	04/01/2019 125
PFOA	20	17	1	85	70-150	04/01/2019 125
PFPeA	20	18	1	90	70-150	04/01/2019 125
PFTeDA	20	18	1	89	70-150	04/01/2019 125
PFTrDA	20	17	1	85	70-150	04/01/2019 125
PFUdA	20	17	1	86	70-150	04/01/2019 125
PFOS	19	15	1	83	70-150	04/01/2019 125
Surrogate	Q % Rec	Acceptance Limit				
13C2_6:2FTS	93	50-150				
13C2_8:2FTS	126	50-150				
13C2_PFDoA	107	50-150				
13C2_PFTeDA	89	50-150				
13C3_PFBS	113	50-150				
	103	50-150				
13C3 PFHxS	103					
13C3_PFHxS 13C4_PFBA						
13C4_PFBA	110	50-150				
13C4_PFBA 13C4_PFHpA	110 107					
13C4_PFBA 13C4_PFHpA 13C5_PFHxA	110 107 105	50-150 50-150 50-150				
13C4_PFBA 13C4_PFHpA	110 107	50-150 50-150				
13C4_PFBA 13C4_PFHpA 13C5_PFHxA 13C5_PFPeA	110 107 105 111	50-150 50-150 50-150 50-150				
13C4_PFBA 13C4_PFHpA 13C5_PFHxA 13C5_PFPeA 13C6_PFDA	110 107 105 111 114	50-150 50-150 50-150 50-150 50-150				
13C4_PFBA 13C4_PFHpA 13C5_PFHxA 13C5_PFPeA 13C6_PFDA 13C7_PFUdA	110 107 105 111 114 113	50-150 50-150 50-150 50-150 50-150				
13C4_PFBA 13C4_PFHpA 13C5_PFHxA 13C5_PFPeA 13C6_PFDA 13C7_PFUdA 13C8_PFOA	110 107 105 111 114 113	50-150 50-150 50-150 50-150 50-150 50-150				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCS

Sample ID: UQ11382-002

Batch: 11382

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/27/2019 1140

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		60	50-150	
d-MeFOSA		53	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCSD

Sample ID: UQ11382-003 Batch: 11382 Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/27/2019 1140

Parameter	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
8:2 FTS	19	19		1	98	3.0	70-150	30	04/01/2019 130
6:2 FTS	19	20		1	104	7.4	70-150	30	04/01/2019 130
EtFOSA	20	24		1	119	9.5	70-150	30	04/01/2019 130
MeFOSA	20	29		1	143	16	70-150	30	04/01/2019 130
PFBS	18	17		1	98	6.9	70-150	30	04/01/2019 130
PFDS	19	17		1	89	10	70-150	30	04/01/2019 130
PFHpS	19	17		1	91	8.5	70-150	30	04/01/2019 130
PFNS	19	18		1	92	2.5	70-150	30	04/01/2019 130
PFOSA	20	20		1	99	6.6	70-150	30	04/01/2019 130
PFPeS	19	17		1	93	16	70-150	30	04/01/2019 130
PFHxS	18	16		1	89	6.7	70-150	30	04/01/2019 130
PFBA	20	19		1	96	1.6	70-150	30	04/01/2019 130
PFDA	20	19		1	95	12	70-150	30	04/01/2019 130
PFDoA	20	17		1	87	0.55	70-150	30	04/01/2019 130
PFHpA	20	19		1	94	5.8	70-150	30	04/01/2019 130
PFHxA	20	19		1	94	6.1	70-150	30	04/01/2019 130
PFNA	20	17		1	85	4.3	70-150	30	04/01/2019 130
PFOA	20	19		1	93	9.1	70-150	30	04/01/2019 130
PFPeA	20	18		1	92	2.8	70-150	30	04/01/2019 130
PFTeDA	20	19		1	94	5.0	70-150	30	04/01/2019 130
PFTrDA	20	18		1	88	3.9	70-150	30	04/01/2019 130
PFUdA	20	18		1	91	5.8	70-150	30	04/01/2019 130
PFOS	19	17		1	93	11	70-150	30	04/01/2019 130
Surrogate	Q % Rec	Ac	ceptance Limit						
13C2_6:2FTS	94		50-150						
13C2_8:2FTS	121		50-150						
13C2_PFDoA	110		50-150						
13C2_PFTeDA	91		50-150						
13C3_PFBS	108		50-150						
13C3_PFHxS	108		50-150						
13C4_PFBA	109		50-150						
13C4_PFHpA	102		50-150						
13C5_PFHxA	108		50-150						
1205 DED-A	115		50-150						
13C5_PFPeA			50-150						
13C5_PFPeA 13C6_PFDA	105		00 100						
13C6_PFDA	105 116		50-150						
13C6_PFDA 13C7_PFUdA									
13C6_PFDA 13C7_PFUdA 13C8_PFOA	116		50-150						
	116 102		50-150 50-150						

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCSD

Sample ID: UQ11382-003

Batch: 11382

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/27/2019 1140

Surrogate	Q % F		otance mit	
d-EtFOSA	64	4 50-	-150	
d-MeFOSA	54	4 50-	-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Chain of Custody and Miscellaneous Documents

SHEALY

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172
Telephone No. (803) 791-9700 Fax No. (803) 791-9111

10. 1	 m	1-	_	_
P.J	 m	ю.	-	т

										V	ww.s	healy	lab.co	m								
Client		Report to		at											Teleph		/ E-mail		956-61			Quote No. 21129
Rose and Westra / GZA		Lori Powe						_							oretta.powers@gza.com Analysis (Attach list if more space is needed)							
Address 501 Fifth Street NW, Suits 102		Sampler's	1.			MA	11	n							Personal Processor (Contract of Processor)						Page 1 of 1	
Gity State Zip Code Grand Rapids Mt 49504		xPrinted N	1100	M	Make	W []	W	_	_													1001-011-11-1001-0-1001-0-11-0-11
Project Name 16.0082335.52 T2		T (III) Bed I	40/110		(year)	7																UC21029
Project Number 16.0052335.52 T2	P.O.No.		55 E		Ма	trix						iner										MMS
Sample ID / Description (Containers for each cample may be combined on one line)	Date	Time	G-Grab O-Composite	Acusous	Solid	Non- Aqueous		Unpres.	H2SO4	HMO3	HCI	NeOH	Н20	Меон	PFAS					5		Remarks / Cooler I.D.
HS-MW-10S	3/18/2019	15:05	G	х				2							х							
HS-MW-10M	3/18/2019	12:35	G	x				2							X							
HS-MW-10D	3/18/2019	12:10	G	×				2							X							
HS-MW-9S	3/19/2019	15:00	G	×				2							х							
HS-MW-9M	3/19/2019	13:45	G	×				2							Х							
HS-MW-9D	3/19/2019	13:50	G	×				2							Х							
HS-MW-6S	3/20/2019	14:15	G	×				2							x							4
HS-MW-6D	3/20/2019	16:00	G	×				2							Х							
FB-3/20	3/20/19	16:10	1.7	Y				2					ļ.,		X					-		
Turn Around Time Required (Prior lab approval requi	ros for avandined 1	TAT)	Sam	ela Di	sposi					_	L	Post	able h	lazan	d Identi	ication	List any	known h	azarda	in the	emarks)	QC Requirements
Astandard Rush (Please Specify)	and the property of	,	-		to Cli		X	Dispo	isəl b	y Lab		X	kn Haz	ardous	Plan	nable [] S	kin hillant	SDS pro	ruided [Unknow	n	
1. Relinquished by Makayla Myers			Date 3/20	2019			Time ,	70	0				eceive							Darte		Time
2. Relinquished by			Date				Time					2. R	eceive	ad by						Date		Time
3. Relinquished by			Date				Time					3. R	ecsive	ed by						Date		Time
4. Relinquished by Fed				-Z1-				09	32						eceive	by	L	Hit	_	Date 3~c	1-19	7 June 0932
Note: All samples are retained for four weeks from receipt unless other arrangements are made.													USE eived		Y e (Che:	k) 🗹	Y □N	☐lce	Pack		Receip	nt Temp. <u>2.9</u> -c

Document Number: ME0020W-01

SHEALY

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172
Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

											W	E.WW	healty	lab.co										120 (10)
Client	77.5		Report to		ct											Telepi	hone N			818-6				Quote No. 21129
Rose and Westr	a / GZA		Lori Powe					- Locks	12-							loretta.powers@gza.com Analysis (Attach list if more space is needed)								
Address 801 Fifth Street NW, Su	ite 102		Samplers	111 1	11	. 1	10	11.								Ansiy	BIS (ATT	ich list		Page 1 of 1				
City Grand Rapids	State Zip Code MI 49504		X_// Printed N			Hand	/// * Mag	M	4	_							త							
Project Name 16,0062335.52 T2			Timod	400.10	/		1	7								65	Wetals, Hg		SS SS					
Project Number 16.0062335,52 T2		P.O No.		g cilso		Ma	trix			No of Contain Preservative				_		SVOCS	ist Met		nouds	monia, itrite			Cyanide	UC21029
Sample ID / (Containers for each semble s		Date	Time	C=Composite	Aqueous	Solid.	Non- Aqueous		Unpres.	HZSO4	HNOG	5 E	NaOH	NuOH& Zn Acetate	нови	VOCs &	Project List 1 Hardness	Chloride	Tollal phosphorus	Total ammonia, Nitrate/Nitrite	Sulfide	Suffate	Total Cy.	Shealy Water
HS-MW-9S		3/19/2019	15:00	G	х				2	1	3	3	1	2		×	×	×	X	x	X	X	×	
HS-MW-9M		3/19/2019	13:45	G	x				2	1	3	3	1	2		×	х	х	χ	х	x	х	×	
HS-MW-9D		3/19/2019	13:50	G	x				2	1	3	3	1	2		×	x	х	х	Х	х	х	х	
HS-MW-10S		3/18/2019	15:05	G	×				2	1	3	3	1	2		x	x	x	х	X	х	Х	x	
HS-MW-10M		3/18/2019	12:35	G	×				2	1	3	3	1	2		X	X	X	X	X	х	Х	x	
HS-MW-10D		3/18/2019	12:10	G	х				2	1	3	3	1	2		х	X	×	х	Х	х	Х	×	
HŞ-MW-6D		3/20/2019	16:00	G	×				2	1	3	3	1	2		×	x	x	х	х	х	x	х	
HS-MW-6S		3/20/2019	14:15	G	×	H			2	1	3	3	1	2		x	х	х	x	×	х	×	х	
				C-4		sposa							Pos	thia i	ezen	Ident	ification	(Lief	anu kr	nown ha	zards	in the r	emarks)	QC Requirements
Turn Around Time Require	id (Prior Jab approvat requir	ed for extended (81)	-	range lear	spose to Clie		$X_{\mathbb{C}}$	ispo	sal by	Lab V									SDS pro				
1. Relinquished by Makayla Myers				Date 3/20/	2019			Time 17	00				1. R	eceive	d by							Date		Time
2. Relinquished by				Date				Time			-		2. R	eceive	ed by							Date		T)ma
3. Relinquished by				Date				Time					3. R	eceive	od by							Date		Time
4. Relinquished by	Fed	EX		Date 3	<i>u</i> -	19		Time	0	93	2		4. L:	aborat	ary R	eceive	d by	×	PH	jh		Data 3-2	1-19	Time 0932
Relinquished by Fed EX Project Metals List: Al. Sb, As, Ba, Be, B, Cd, Cr, Co, Cu, Fe, Property of the programments a						Mo, M	li, Se	, Ag. 1	Va, 1	lī, Tl	V, Z	.D.		USE			ck) [/v 1	TN	□kc	Pack		Receipt	Tema. 42 °C 3.

SHEALY ENVIRONMENTAL

Shealy Environmental Services, Inc. Document Number: MB0018C-14

Page I of t Effective Date: 8/2/2018

Sample Receipt Checklist (SRC)

Client: GZA	Cooler Inspected by/date: LKH / 03-21-2019 Lot #: UC21029
Means of receipt	
✓ Yes No	Were custody seals present on the cooler?
Yes No	NA 2. If custody seals were present, were they intact and unbroken?
pH Strip ID: 18-	
	ture upon receipt / Derived (Corrected) temperature upon receipt %Solid Snap-Cup ID: NA 3.7 /3.7 °C NA /NA °C NA /NA °C
	perature Blank Against Bottles IR Gun ID: 5 IR Gun Correction Factor: 0 °C
Method of coolar	nt: Wet Ice Ice Packs Dry Ice None
☐ Yes ☐ No	3 If temperature of any cooler exceeded 6.0°C was Project Manager Navidado
✓ Yes □ No	
✓ Yes □ No	
☑ Yes □ No	
☑ Yes ☐ No	
☑ Yes ☐ No	
✓ Yes □No	
✓ Yes □ No	
☑ Yes ☐ No	
☑ Yes □ No	12 Did all popular andre in the control of the cont
☑ Yes ☐ No	13. Was adequate sample volume available?
☑ Yes ☐ No	The state of the s
☐ Yes ☑ No	The state of the s
☐ Yes ☑ No	16 For VOA and DOV 175 and a fall to the state of the sta
☑ Yes ☐ No	NA 17. Were all DRO/metals/nutrient samples received at a pH of < 2?
✓ Yes ☐ No	■ NA 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 92
☑ Yes ☐ No	NA 19. Were all applicable NH ₂ /TKN/cyanide/phenol/625 (< 0.5mg/L) samples free of residual chlorine?
□ Yes □ No	NA 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS?
☐ Yes ☑ No	21. Was the quote number listed on the container label? If yes, Quote # 16938
Sample Preserva	
Sample(s) NA	y subject of with nearspace.)
in sample receivis	300 C 40
Time of preservat	ion NA If more than one preservative is needed, please note in the comments below.
Sample(s) NA	were received with bubbles >6 mm in diameter.
Samples(s) <u>NA</u> adjusted accordin	were received with TRC > 0.5 mg/L (If #19 is no) and were gly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: NA
SR barcode labels	applied by: LKH/MEC Date: 03-21-2019
Comments:	

Report of Analysis

GZA GeoEnvironmental, Inc.

601 Fifth Street N.W., Suite 102 Grand Rapids, MI 49504 Attention: Loretta J. Powers

Project Name: 16.0062335.52 T2

Project Number: 16.0062335.52 T2

Lot Number: UC23028

Date Completed:04/08/2019

N. Saikaly

04/09/2019 2:05 PM Approved and released by: Project Manager: Nisreen Saikaly

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative GZA GeoEnvironmental, Inc. Lot Number: UC23028

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), applicable Shealy standard operating procedures (SOPs), the 2003 NELAC standard, and Shealy policies. Additionally, the DoD QSM version 5.1 has been followed for these samples, and specifically Table B-15 was followed for all PFAS samples. Any exceptions to the QAMP, SOPs, NELAC standards, the DoD QSM, or policies are qualified on the results page or discussed below.

PFAS

All QC associated with these samples was in compliance with DOD QSM 5.1 table B-15 and our PFAS SOP. DoD reporting conventions and qualifiers are not utilized in this data package.

Correction factors (CF) are used to calculate the original sample concentration. The CF is the inverse of the concentration factor (sample volume / extract final volume) times the dilution factor (DF). For undiluted analysis. The extract is prepared for injection by adding 182 uL of sample extract + 8 uL of reagent water + 10 uL of internal standard solution to a polypropylene autosampler vial. An extra correction factor of 0.91 (182 uL / 200 uL = 0.91) applies. The CF is calculated as follows:

CF = DF * FV / Vo

FV is volume of extract (mL)
Vo is initial sample volume (mL)
DF is dilution factor. For undiluted analysis, DF = 1/0.91.

Sample concentration for aqueous samples: Concentration (ng/L) = Cs*CF,

$$C_{\text{Where:}} = \left(\frac{A_s}{A_{is}} - b\right) * \left(\frac{C_{is}}{a}\right)$$

A_s is peak response of target analyte in the sample
A_{is} is peak response of internal standard in the sample
C_s is concentration of target analyte in the sample
C_{is} is concentration of internal standard in the sample (1ng/mL)
a is the slope from the ICAL linear regression
b is the y-intercept from the ICAL linear regression

Surrogate recovery for the following samples was outside the upper control limit: UC23028-001 (4:2 FTS, 6:2 FTS), UC23028-004 (8:2 FTS). These samples did not contain any associated target analytes; therefore, re-extraction was not performed.

The matrix spike duplicate (MSD) recoveries in batch 11828 were outside acceptance criteria. All other

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

QC criteria for the batch was within acceptance criteria and method control limits. The MS/MSD recovery results are attributed to matrix interference. The associated sample results were reported and no corrective action was required.

Volatile Organic Compounds

The continuing calibration verification (CCV) associated with sample UC23028-002, UC23028-003, UC23028-005 recovered above the upper control limit for Acetone. The samples associated with this CCV were non-detect for the affected analytes; therefore, the data has been reported.

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 12007 exceeded acceptance criteria for the following analyte: Acetone. Acetone was biased high and not detected in the samples affected: UC23028-002, UC23028-003, UC23028-005.

Semivolatile Organic Compounds

The LCS recovery for bis(2-Chloroethyl)ether exceeded method control limits in batch 11166; however, all other QC criteria for the LCS/LCSD were within acceptance criteria and method control limits. The associated sample results were non-detect, therefore the results were reported and no corrective action was required.

Metals

The MS/MSD recoveries in batch 11443 were outside acceptance criteria. All other QC criteria for the batch was within acceptance criteria and method control limits. The MS/MSD recovery results are attributed to matrix interference. The associated sample results were reported and no corrective action was required.

Cyanide

The matrix spike and matrix spike duplicate (MS/MSD) recoveries in batch 11698 were outside acceptance criteria. All other QC criteria for the batch was within acceptance criteria and method control limits. The MS/MSD recovery results are attributed to matrix interference. The associated sample results were reported and no corrective action was required.

Sample Summary GZA GeoEnvironmental, Inc.

Lot Number: UC23028

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	HS-MW-7S	Aqueous	03/21/2019 1110	03/23/2019
002	HS-MW-7S DUP	Aqueous	03/21/2019 1110	03/23/2019
003	HS-MW-8	Aqueous	03/21/2019 1400	03/23/2019
004	EB-32019-SS	Aqueous	03/21/2019 1000	03/23/2019
005	Trip Blank	Aqueous	03/21/2019 0800	03/23/2019
	2 (2 F # 05/2)	2,122.222		- 1 CALES

(5 samples)

Detection Summary GZA GeoEnvironmental, Inc.

Lot Number: UC23028

Sampl	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	HS-MW-7S	Aqueous	Chloride	300.0	31		mg/L	6
001	HS-MW-7S	Aqueous	Hardness (total)	SM 2340C-	400		mg/L	6
001	HS-MW-7S	Aqueous	Nitrate-Nitrite - N	353.2	2.1	В	mg/L	6
001	HS-MW-7S	Aqueous	Phosphorus	365.1	0.010	J	mg/L	6
001	HS-MW-7S	Aqueous	Sulfate	300.0	18		mg/L	6
001	HS-MW-7S	Aqueous	Acetone	8260B	2.7	J	ug/L	7
001	HS-MW-7S	Aqueous	Benzo(a)anthracene	8270D	0.11	J	ug/L	9
001	HS-MW-7S	Aqueous	Benzo(b)fluoranthene	8270D	0.12	J	ug/L	9
001	HS-MW-7S	Aqueous	Benzo(g,h,i)perylene	8270D	0.072	J	ug/L	9
001	HS-MW-7S	Aqueous	Benzo(k)fluoranthene	8270D	0.049	J	ug/L	9
001	HS-MW-7S	Aqueous	Chrysene	8270D	0.074	J	ug/L	9
001	HS-MW-7S	Aqueous	Fluoranthene	8270D	0.14	J	ug/L	9
001	HS-MW-7S	Aqueous	Indeno(1,2,3-c,d)pyrene	8270D	0.058	J	ug/L	9
001	HS-MW-7S	Aqueous	Aluminum	200.8	14	J	ug/L	12
001	HS-MW-7S	Aqueous	Barium	200.8	58		ug/L	12
001	HS-MW-7S	Aqueous	Boron	200.8	14	BJ	ug/L	12
001	HS-MW-7S	Aqueous	Iron	200.8	420		ug/L	12
001	HS-MW-7S	Aqueous	Magnesium	200.8	37000		ug/L	12
001	HS-MW-7S	Aqueous	Nickel	200.8	1.3	J	ug/L	12
001	HS-MW-7S	Aqueous	Sodium	200.8	7200		ug/L	12
001	HS-MW-7S	Aqueous	Titanium	200.8	2.5	J	ug/L	12
001	HS-MW-7S	Aqueous	Zinc	200.8	8.7	J	ug/L	12
001	HS-MW-7S	Aqueous	PFBS	537 Modified-	5.1		ng/L	13
001	HS-MW-7S	Aqueous	PFHxS	537 Modified-	11		ng/L	13
001	HS-MW-7S	Aqueous	PFOA	537 Modified-	2.9		ng/L	13
002	HS-MW-7S DUP	Aqueous	Chloride	300.0	31		mg/L	14
002	HS-MW-7S DUP	Aqueous	Hardness (total)	SM 2340C-	400		mg/L	14
002	HS-MW-7S DUP	Aqueous	Nitrate-Nitrite - N	353.2	2.0	В	mg/L	14
002	HS-MW-7S DUP	Aqueous	Phosphorus	365.1	0.0092	J	mg/L	14
002	HS-MW-7S DUP	Aqueous	Sulfate	300.0	18		mg/L	14
002	HS-MW-7S DUP	Aqueous	Benzo(a)anthracene	8270D	0.060	J	ug/L	17
002	HS-MW-7S DUP	Aqueous	Benzo(b)fluoranthene	8270D	0.19	J	ug/L	17
002	HS-MW-7S DUP	Aqueous	Benzo(g,h,i)perylene	8270D	0.054	J	ug/L	17
002	HS-MW-7S DUP	Aqueous	Benzo(k)fluoranthene	8270D	0.062	J	ug/L	17
002	HS-MW-7S DUP	Aqueous	Chrysene	8270D	0.055	J	ug/L	17
002	HS-MW-7S DUP	Aqueous	bis(2-Ethylhexyl)phthalate	8270D	1.1	J	ug/L	17
002	HS-MW-7S DUP	Aqueous	Indeno(1,2,3-c,d)pyrene	8270D	0.058	J	ug/L	17
002	HS-MW-7S DUP	Aqueous	Pyrene	8270D	0.10	J	ug/L	18
002	HS-MW-7S DUP	Aqueous	Aluminum	200.8	16	J	ug/L	20
002	HS-MW-7S DUP	Aqueous	Barium	200.8	58		ug/L	20
002	HS-MW-7S DUP	Aqueous	Boron	200.8	14	BJ	ug/L	20
002	HS-MW-7S DUP	Aqueous		200.8	400		ug/L	20
002	HS-MW-7S DUP	Aqueous	Magnesium	200.8	36000		ug/L	20
002	HS-MW-7S DUP	Aqueous	Nickel	200.8	1.4	J	ug/L	20
002	HS-MW-7S DUP	Aqueous	Sodium	200.8	7100		ug/L	20

Detection Summary (Continued)

Lot Number: UC23028

Sampl	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
002	HS-MW-7S DUP	Aqueous	Titanium	200.8	2.7	J	ug/L	20
002	HS-MW-7S DUP	Aqueous	Zinc	200.8	5.4	J	ug/L	20
002	HS-MW-7S DUP	Aqueous	PFBS	537 Modified-	5.3		ng/L	21
002	HS-MW-7S DUP	Aqueous	PFHxS	537 Modified-	9.9		ng/L	21
002	HS-MW-7S DUP	Aqueous	PFOA	537 Modified-	3.0		ng/L	21
003	HS-MW-8	Aqueous	Chloride	300.0	29		mg/L	22
003	HS-MW-8	Aqueous	Hardness (total)	SM 2340C-	220		mg/L	22
003	HS-MW-8	Aqueous	Nitrate-Nitrite - N	353.2	1.3	В	mg/L	22
003	HS-MW-8	Aqueous	Phosphorus	365.1	0.010	J	mg/L	22
003	HS-MW-8	Aqueous	Sulfate	300.0	11		mg/L	22
003	HS-MW-8	Aqueous	Acetone	8260B	2.2	J	ug/L	23
003	HS-MW-8	Aqueous	Barium	200.8	14		ug/L	28
003	HS-MW-8	Aqueous	Boron	200.8	23	BJ	ug/L	28
003	HS-MW-8	Aqueous	Iron	200.8	220		ug/L	28
003	HS-MW-8	Aqueous	Magnesium	200.8	17000		ug/L	28
003	HS-MW-8	Aqueous	Sodium	200.8	9000		ug/L	28
003	HS-MW-8	Aqueous	Titanium	200.8	1.6	J	ug/L	28
003	HS-MW-8	Aqueous	PFBS	537 Modified-	26		ng/L	29
003	HS-MW-8	Aqueous	PFHpS	537 Modified-	78		ng/L	29
003	HS-MW-8	Aqueous	PFPeS	537 Modified-	44		ng/L	29
003	HS-MW-8	Aqueous	PFHxS	537 Modified-	150		ng/L	29
003	HS-MW-8	Aqueous	PFBA	537 Modified-	6.6		ng/L	29
003	HS-MW-8	Aqueous	PFHpA	537 Modified-	37		ng/L	29
003	HS-MW-8	Aqueous	PFHxA	537 Modified-	16		ng/L	29
003	HS-MW-8	Aqueous	PFOA	537 Modified-	380		ng/L	29
003	HS-MW-8	Aqueous	PFPeA	537 Modified-	5.5		ng/L	29
003	HS-MW-8	Aqueous	PFOS	537 Modified-	140		ng/L	29
005	Trip Blank	Aqueous	Acetone	8260B	5.9	J	ug/L	31

(73 detections)

Inorganic non-metals

Client:GZA GeoEnvironmental, Inc.
Description: HS-MW-7S
Date Sampled:03/21/2019 1110

Date Received: 03/23/2019

Laboratory ID: UC23028-001 Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 350.1 (Ammonia - N) 350.1 03/29/2019 1623 DMA 11688 1 (Chloride) 300.0 1 04/02/2019 1721 SLU 12073 10-204-00-1-X (Cyanide - To) SM 4500-CN E-1 03/29/2019 1859 MSG 03/29/2019 1632 11698 (Hardness (to) SM 2340C-2011 1 03/27/2019 1719 KFE 11494 1 (Nitrate-Nitr) 353.2 2 03/23/2019 1718 MDD 11110 1 (Phosphorus) 365.1 1 03/28/2019 1632 MSG 03/28/2019 1218 11531 (Sulfate) 300.0 1 1 04/02/2019 1721 SLU 12072 (Sulfide) SM 4500-S2 F-2011 1 03/27/2019 1542 HET 11466 1

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ammonia - N (gas diffusion)		350.1	ND		0.10	0.020	mg/L	1
Chloride		300.0	31		1.0	0.20	mg/L	1
Cyanide - Total	57-12-5	SM 4500-CN E-	ND		0.010	0.010	mg/L	1
Hardness (total)		SM 2340C-	400		10	2.0	mg/L	1
Nitrate-Nitrite - N		353.2	2.1	В	0.040	0.0030	mg/L	1
Phosphorus	7723-14-0	365.1	0.010	J	0.050	0.0050	mg/L	1
Sulfate		300.0	18		1.0	0.20	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-	ND		1.0	1.0	mg/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the LOQ B = Detected in the method blank

N = Recovery is out of criteria

H = Out of holding time W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S

Date Sampled:03/21/2019 1110

Date Received: 03/23/2019

Laboratory ID: UC23028-001

Matrix: Aqueous

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260B	1	04/02/2019 0613 MNS		11939

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	2.7 J	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1.1.2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the LOQ

H = Out of holding time

B = Detected in the method blank

N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Laboratory ID: UC23028-001

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S

Date Sampled:03/21/2019 1110

-MW-7S Matrix: Aqueous

Date Received: 03/23/2019

Date Received: 03/23/2019

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 5030B 8260B 1 04/02/2019 0613 MNS 11939

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260B	ND	1.0	0.40	ug/L	1
m+p - Xylenes	179601-23-1	8260B	ND	1.0	0.40	ug/L	1
o - Xylenes	95-47-6	8260B	ND	1.0	0.40	ug/L	1

SurrogateQRun 1 / RecoveryAcceptance Limits1,2-Dichloroethane-d410570-130Bromofluorobenzene9370-130Toluene-d810370-130

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S

Date Sampled:03/21/2019 1110

3520C

Date Received: 03/23/2019

Run Prep Method

Laboratory ID: UC23028-001

Matrix: Aqueous

Analytical Method Dilution Analysis Date Analyst Prep Date Batch 8270D 04/03/2019 1851 SCD 03/25/2019 1939 11166

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acenaphthene	83-32-9	8270D	ND		0.20	0.040	ug/L	1
Acenaphthylene	208-96-8	8270D	ND		0.20	0.040	ug/L	1
Acetophenone	98-86-2	8270D	ND		0.80	0.50	ug/L	1
Anthracene	120-12-7	8270D	ND		0.20	0.060	ug/L	1
Atrazine	1912-24-9	8270D	ND		0.80	0.50	ug/L	1
Benzidine	92-87-5	8270D	ND		20	1.0	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	0.11	J	0.20	0.040	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND		0.20	0.070	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	0.12	J	0.20	0.040	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	0.072	J	0.20	0.040	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	0.049	J	0.20	0.040	ug/L	1
Butyl benzyl phthalate	85-68-7	8270D	ND		0.80	0.50	ug/L	1
Caprolactam	105-60-2	8270D	ND		1.6	1.0	ug/L	1
Carbazole	86-74-8	8270D	ND		0.80	0.50	ug/L	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		0.80	0.50	ug/L	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		0.80	0.50	ug/L	1
2-Chloronaphthalene	91-58-7	8270D	ND		0.80	0.50	ug/L	1
2-Chlorophenol	95-57-8	8270D	ND		0.80	0.50	ug/L	1
Chrysene	218-01-9	8270D	0.074	J	0.20	0.030	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		0.20	0.030	ug/L	1
Dibenzofuran	132-64-9	8270D	ND		0.80	0.50	ug/L	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND		4.0	1.8	ug/L	1
2,4-Dichlorophenol	120-83-2	8270D	ND		1.6	1.0	ug/L	1
Diethylphthalate	84-66-2	8270D	ND		0.80	0.50	ug/L	1
Dimethyl phthalate	131-11-3	8270D	ND		0.80	0.50	ug/L	1
2,4-Dimethylphenol	105-67-9	8270D	ND		0.80	0.48	ug/L	1
Di-n-butyl phthalate	84-74-2	8270D	ND		0.80	0.50	ug/L	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND		4.0	1.0	ug/L	1
2,4-Dinitrotoluene	121-14-2	8270D	ND		1.6	0.50	ug/L	1
Di-n-octylphthalate	117-84-0	8270D	ND		0.80	0.50	ug/L	1
1,2-Diphenylhydrazine(as azobenzene)	103-33-3	8270D	ND		0.80	0.50	ug/L	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		4.0	0.50	ug/L	1
Fluoranthene	206-44-0	8270D	0.14	J	0.20	0.10	ug/L	1
Fluorene	86-73-7	8270D	ND		0.20	0.030	ug/L	1
Hexachlorobenzene	118-74-1	8270D	ND		0.80	0.50	ug/L	1
Hexachlorobutadiene	87-68-3	8270D	ND		0.80	0.50	ug/L	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND		4.0	2.0	ug/L	1
Hexachloroethane	67-72-1	8270D	ND		0.80	0.31	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	0.058	J	0.20	0.040	ug/L	1
Isophorone	78-59-1	8270D	ND		0.80	0.50	ug/L	1
2-Methylnaphthalene	91-57-6	8270D	ND		0.20	0.040	ug/L	1
2-Methylphenol	95-48-7	8270D	ND		0.80	0.21	ug/L	1
3+4-Methylphenol	106-44-5	8270D	ND		1.6	1.5	ug/L	1
Naphthalene	91-20-3	8270D	ND		0.20	0.050	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the LOQ N = Recovery is out of criteria H = Out of holding time W = Reported on wet weight basis

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S

Date Sampled:03/21/2019 1110

Date Received: 03/23/2019

Laboratory ID: UC23028-001

Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 3520C 8270D 1 04/03/2019 1851 SCD 03/25/2019 1939 11166

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Rur
Nitrobenzene	98-95-3	8270D	ND	0.80	0.55	ug/L	1
2-Nitrophenol	88-75-5	8270D	ND	1.6	1.0	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	0.80	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	0.80	0.50	ug/L	1
Pentachlorophenol	87-86-5	8270D	ND	4.0	2.0	ug/L	1
Phenanthrene	85-01-8	8270D	ND	0.20	0.060	ug/L	1
Phenol	108-95-2	8270D	ND	0.80	0.50	ug/L	1
Pyrene	129-00-0	8270D	ND	0.20	0.10	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	0.80	0.50	ug/L	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	0.80	0.50	ug/L	1

Surrogate	Q	% Recovery	Limits
2-Fluorobiphenyl		68	37-129
2-Fluorophenol		79	24-127
Nitrobenzene-d5		89	38-127
Phenol-d5		95	28-128
Terphenyl-d14		98	10-148
2,4,6-Tribromophenol		76	35-144

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S

Date Sampled:03/21/2019 1110

Date Received: 03/23/2019

Run Prep Method

Laboratory ID: UC23028-001

Matrix: Aqueous

Analytical Method Dilution Analysis Date Analyst Prep Date Batch 7470A 04/01/2019 1906 JMH 04/01/2019 1354 11839

CAS Analytical Result Q Parameter Number Method LOQ DL Units Run 7439-97-6 7470A ND Mercury 0.00020 mg/L 0.000091

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S

Date Sampled:03/21/2019 1110

Date Received: 03/23/2019

Laboratory ID: UC23028-001 Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 200.2 200.8 1 03/30/2019 2312 BNW 03/27/2019 1908 11443 2 200.2 200.8 1 04/03/2019 1724 BNW 03/27/2019 1908 11443

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	200.8	14	J	40	10	ug/L	1
Antimony	7440-36-0	200.8	ND		2.0	0.50	ug/L	1
Arsenic	7440-38-2	200.8	ND		2.0	1.3	ug/L	1
Barium	7440-39-3	200.8	58		5.0	1.3	ug/L	1
Beryllium	7440-41-7	200.8	ND		0.40	0.15	ug/L	1
Boron	7440-42-8	200.8	14	BJ	50	6.3	ug/L	1
Cadmium	7440-43-9	200.8	ND		0.50	0.13	ug/L	1
Chromium	7440-47-3	200.8	ND		5.0	1.3	ug/L	1
Cobalt	7440-48-4	200.8	ND		5.0	1.3	ug/L	1
Copper	7440-50-8	200.8	ND		5.0	1.3	ug/L	1
Iron	7439-89-6	200.8	420		50	13	ug/L	2
Lead	7439-92-1	200.8	ND		1.0	0.25	ug/L	1
Magnesium	7439-95-4	200.8	37000		400	50	ug/L	1
Molybdenum	7439-98-7	200.8	ND		10	2.5	ug/L	1
Nickel	7440-02-0	200.8	1.3	J	5.0	1.3	ug/L	1
Selenium	7782-49-2	200.8	ND		5.0	1.3	ug/L	1
Silver	7440-22-4	200.8	ND		1.0	0.25	ug/L	1
Sodium	7440-23-5	200.8	7200		400	150	ug/L	1
Thallium	7440-28-0	200.8	ND		0.50	0.15	ug/L	1
Titanium	7440-32-6	200.8	2.5	J	5.0	1.3	ug/L	1
Vanadium	7440-62-2	200.8	ND		5.0	2.5	ug/L	1
Zinc	7440-66-6	200.8	8.7	J	10	2.5	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria
W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S

Date Sampled:03/21/2019 1110

537 MOD

Date Received: 03/23/2019

Run Prep Method

1

Analytical Method Dilution Analysis Date Analyst 537 Modified-ID

04/03/2019 1403 SES

Prep Date

Batch 04/01/2019 1155 11828

Laboratory ID: UC23028-001

Matrix: Aqueous

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.5	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.5	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.5	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	5.1	3.5	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.1	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.5	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	11	3.5	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	2.9	1.8	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.5	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	3.5	ng/L	1

Surrogate	Q	Run 1 % Recovery	Acceptance Limits
13C2_6:2FTS	N	152	50-150
13C2_8:2FTS		137	50-150
13C2_PFDoA		129	50-150
13C2_PFTeDA		127	50-150
13C3_PFBS		130	50-150
13C3_PFHxS		132	50-150
13C4_PFBA		133	50-150
13C4_PFHpA		143	50-150
13C5_PFHxA		139	50-150
13C5_PFPeA		131	50-150
13C6_PFDA		131	50-150
13C7_PFUdA		125	50-150
13C8_PFOA		140	50-150
13C8_PFOS		130	50-150
13C8_PFOSA		122	50-150
13C9_PFNA		138	50-150
d-EtFOSA		94	50-150
d-MeFOSA		99	50-150

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Inorganic non-metals

Client: GZA GeoEnvironmental, Inc. Description: HS-MW-7S DUP

Laboratory ID: UC23028-002

Matrix: Aqueous

Date Sampled:03/21/2019 1110

Date Received: 03/23/2019

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Batch
1	350.1	(Ammonia - N) 350.1	1	03/29/2019 1631 DMA	11688
1		(Chloride) 300.0	1	04/02/2019 1737 SLU	12073
1	10-204-00-1-X	(Cyanide - To) SM 4500-CN E-	1	03/29/2019 1900 MSG	03/29/2019 1632 11698
1		(Hardness (to) SM 2340C-2011	1	03/27/2019 1719 KFE	11494
1		(Nitrate-Nitr) 353.2	2	03/23/2019 1720 MDD	11110
1		(Phosphorus) 365.1	1	04/02/2019 1346 DMA	04/01/2019 1007 11825
1		(Sulfate) 300.0	1	04/02/2019 1737 SLU	12072
1		(Sulfide) SM 4500-S2 F-2011	1	03/27/2019 1542 HET	11466

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ammonia - N (gas diffusion)		350.1	ND		0.10	0.020	mg/L	1
Chloride		300.0	31		1.0	0.20	mg/L	1
Cyanide - Total	57-12-5	SM 4500-CN E-	ND		0.010	0.010	mg/L	1
Hardness (total)		SM 2340C-	400		10	2.0	mg/L	1
Nitrate-Nitrite - N		353.2	2.0	В	0.040	0.0030	mg/L	1
Phosphorus	7723-14-0	365.1	0.0092	J	0.050	0.0050	mg/L	1
Sulfate		300.0	18		1.0	0.20	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-	ND		1.0	1.0	mg/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the LOQ B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S DUP

Laboratory ID: UC23028-002

Matrix: Aqueous

Date Sampled:03/21/2019 1110 Date Received: 03/23/2019

5030B

Run Prep Method

Analytical Method Dilution Analysis Date Analyst 8260B

04/02/2019 1424 BWS

Prep Date

Batch 12007

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	ND	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S DUP

Date Sampled:03/21/2019 1110

Date Received: 03/23/2019

Laboratory ID: UC23028-002

Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 5030B 8260B 04/02/2019 1424 BWS 12007

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260B	ND	1.0	0.40	ug/L	1
m+p - Xylenes	179601-23-1	8260B	ND	1.0	0.40	ug/L	1
o - Xylenes	95-47-6	8260B	ND	1.0	0.40	ug/L	1

Q		Acceptance Limits
	91	70-130
	97	70-130
	95	70-130
	Q	97

LOQ = Limit of Quantitation ND = Not detected at or above the LOQ B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S DUP

Laboratory ID: UC23028-002 Matrix: Aqueous

Date Sampled:03/21/2019 1110

3520C

Date Received: 03/23/2019

Run Prep Method

Analytical Method

Dilution

8270D

Analysis Date Analyst 04/03/2019 1915 SCD

Prep Date 03/25/2019 1939 11166

Batch

CAS Analytical Parameter Number Result Q LOQ DL Units Run Method 0.20 Acenaphthene 83-32-9 8270D ND 0.040 ug/L 1 Acenaphthylene 208-96-8 8270D ND 0.20 ug/L 1 0.040 Acetophenone 98-86-2 8270D ND 0.80 ug/L 0.50 1 ND Anthracene 120-12-7 8270D 0.20 ug/L 1 0.060 0.80 Atrazine 1912-24-9 8270D ND 0.50 ug/L 1 ND 20 Benzidine 92-87-5 8270D 1.0 ug/L 1 Benzo(a)anthracene 56-55-3 8270D 0.060 0.20 0.040 ug/L 1 0.070 Benzo(a)pyrene 50-32-8 8270D ND 0.20 ug/L 1 Benzo(b)fluoranthene 205-99-2 8270D 0.19 J 0.20 0.040 ug/L 1 Benzo(g,h,i)perylene 191-24-2 8270D 0.054 J 0.20 0.040 ug/L 1 0.062 J 0.20 0.040 Benzo(k)fluoranthene 207-08-9 8270D ug/L 1 Butyl benzyl phthalate 85-68-7 8270D ND 0.80 0.50 ug/L 1 ND 1.6 1.0 Caprolactam 105-60-2 8270D ug/L 1 Carbazole 86-74-8 8270D ND 0.80 0.50 ug/L 1 4-Chloro-3-methyl phenol 59-50-7 8270D ND 0.80 0.50 ug/L 1 bis(2-Chloroethyl)ether 8270D ND 0.80 ug/L 111-44-4 0.50 1 2-Chloronaphthalene 91-58-7 8270D ND 0.80 ug/L 1 0.50 2-Chlorophenol 95-57-8 8270D ND 0.80 ug/L 1 0.50 218-01-9 8270D 0.055 J 0.20 ug/L Chrysene 1 0.030 Dibenzo(a,h)anthracene 53-70-3 8270D ND 0.20 0.030 ug/L 1 Dibenzofuran 132-64-9 8270D ND 0.80 ug/L 1 0.50 3.3'-Dichlorobenzidine 91-94-1 8270D ND 4.0 ug/L 1.8 1 2,4-Dichlorophenol 120-83-2 8270D ND 1.6 ug/L 1 1.0 Diethylphthalate 84-66-2 8270D ND 0.80 0.50 ug/L 1 131-11-3 8270D ND 0.80 ug/L Dimethyl phthalate 0.50 1 2,4-Dimethylphenol 105-67-9 8270D ND 0.80 0.48 ug/L 1 84-74-2 Di-n-butyl phthalate 8270D ND 0.80 ug/L 0.50 1 4,6-Dinitro-2-methylphenol 534-52-1 8270D ND ug/L 4.0 1.0 1 2,4-Dinitrotoluene 8270D ND 1.6 121-14-2 ug/L 1 0.50 ug/L Di-n-octylphthalate 117-84-0 8270D ND 0.80 0.50 1 1,2-Diphenylhydrazine(as azobenzene) 103-33-3 8270D ND 0.80 ug/L 1 0.50 bis(2-Ethylhexyl)phthalate 117-81-7 8270D 1.1 J 4.0 0.50 ug/L 1 Fluoranthene 206-44-0 8270D ND 0.20 ug/L 1 0.10 Fluorene 86-73-7 8270D ND 0.20 0.030 ug/L 118-74-1 ND 0.80 ug/L Hexachlorobenzene 8270D 1 0.50 8270D 0.80 Hexachlorobutadiene 87-68-3 ND 0.50 ug/L 1 8270D ND 4.0 Hexachlorocyclopentadiene 77-47-4 2.0 ug/L 1 Hexachloroethane 67-72-1 8270D ND 0.80 ug/L 1 0.31 Indeno(1,2,3-c,d)pyrene 193-39-5 8270D 0.058 J 0.20 0.040 ug/L 1 Isophorone 78-59-1 8270D ND 0.80 0.50 ug/L 1 2-Methylnaphthalene 91-57-6 8270D ND 0.20 0.040 ug/L 1 95-48-7 ND 0.80 0.21 2-Methylphenol 8270D ug/L 1 3+4-Methylphenol 106-44-5 8270D ND 1.6 1.5 ug/L 1 8270D ND 0.20 0.050 Naphthalene 91-20-3 ug/L 1

LOQ = Limit of Quantitation

B = Detected in the method blank

N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S DUP

Laboratory ID: UC23028-002

Matrix: Aqueous

Date Received: 03/23/2019

Date Sampled:03/21/2019 1110

Run Prep Method 3520C

2-Fluorophenol

Analytical Method Dilution Analysis Date Analyst

04/03/2019 1915 SCD

Prep Date 03/25/2019 1939 11166

Batch

Parameter	P	CAS lumber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Nitrobenzene		98-95-3	8270D	ND		0.80	0.55	ug/L	1
2-Nitrophenol	4	38-75-5	8270D	ND		1.6	1.0	ug/L	1
N-Nitrosodi-n-propylamine	62	21-64-7	8270D	ND		0.80	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)		36-30-6	8270D	ND		0.80	0.50	ug/L	1
Pentachlorophenol	87-86-5		8270D	ND		4.0	2.0	ug/L	1
Phenanthrene		35-01-8	8270D	ND		0.20	0.060	ug/L	1
Phenol	10	8-95-2	8270D	ND		0.80	0.50	ug/L	1
Pyrene	11	9-00-0	8270D	0.10	J	0.20	0.10	ug/L	1
2,4,5-Trichlorophenol		95-95-4	8270D	ND		0.80	0.50	ug/L	1
2,4,6-Trichlorophenol	1	38-06-2	8270D	ND		0.80	0.50	ug/L	1
Surrogate	Run 1 Q % Recove	Accep ry Lim							
2-Fluorobiphenyl	52	37-	129						

24-127

32

Nitrobenzene-d5 67 38-127 Phenol-d5 46 28-128 Terphenyl-d14 88 10-148 2,4,6-Tribromophenol 52 35-144

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S DUP

Date Sampled:03/21/2019 1110

Date Received: 03/23/2019

Laboratory ID: UC23028-002

Matrix: Aqueous

Run Prep Method

Analytical Method Dilution Analysis Date Analyst 7470A 04/01/2019 1908 JMH

Prep Date Batch 04/01/2019 1354 11839

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Mercury	7439-97-6	7470A	ND	0.00020	0.000091	mg/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ND = Not detected at or above the LOQ

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S DUP

Date Sampled:03/21/2019 1110

200.2

200.2

Date Received: 03/23/2019

Run Prep Method

1

2

Laboratory ID: UC23028-002 Matrix: Aqueous

Analytical Method Dilution Analysis Date Analyst Prep Date Batch 200.8 1 03/30/2019 2329 BNW 03/27/2019 1908 11443 200.8 1 04/03/2019 1747 BNW 03/27/2019 1908 11443

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	200.8	16	J	40	10	ug/L	1
Antimony	7440-36-0	200.8	ND		2.0	0.50	ug/L	1
Arsenic	7440-38-2	200.8	ND		2.0	1.3	ug/L	1
Barium	7440-39-3	200.8	58		5.0	1.3	ug/L	1
Beryllium	7440-41-7	200.8	ND		0.40	0.15	ug/L	1
Boron	7440-42-8	200.8	14	BJ	50	6.3	ug/L	1
Cadmium	7440-43-9	200.8	ND		0.50	0.13	ug/L	1
Chromium	7440-47-3	200.8	ND		5.0	1.3	ug/L	1
Cobalt	7440-48-4	200.8	ND		5.0	1.3	ug/L	1
Copper	7440-50-8	200.8	ND		5.0	1.3	ug/L	1
Iron	7439-89-6	200.8	400		50	13	ug/L	2
Lead	7439-92-1	200.8	ND		1.0	0.25	ug/L	1
Magnesium	7439-95-4	200.8	36000		400	50	ug/L	1
Molybdenum	7439-98-7	200.8	ND		10	2.5	ug/L	1
Nickel	7440-02-0	200.8	1.4	J	5.0	1.3	ug/L	1
Selenium	7782-49-2	200.8	ND		5.0	1.3	ug/L	1
Silver	7440-22-4	200.8	ND		1.0	0.25	ug/L	1
Sodium	7440-23-5	200.8	7100		400	150	ug/L	1
Thallium	7440-28-0	200.8	ND		0.50	0.15	ug/L	1
Titanium	7440-32-6	200.8	2.7	J	5.0	1.3	ug/L	1
Vanadium	7440-62-2	200.8	ND		5.0	2.5	ug/L	1
Zinc	7440-66-6	200.8	5.4	J	10	2.5	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-7S DUP Date Sampled:03/21/2019 1110 Laboratory ID: UC23028-002

Matrix: Aqueous

Run Prep Method 1 537 MOD

Date Received: 03/23/2019

Analytical Method Dilution Analysis Date Analyst 537 Modified-ID

04/03/2019 1416 SES

Prep Date 04/01/2019 1155 11828

Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.5	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.5	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.5	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.0	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	5.3	3.5	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.0	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.5	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.5	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	9.9	3.5	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	3.0	1.8	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.5	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.5	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	3.5	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance y Limits
13C2_6:2FTS	149	50-150
13C2_8:2FTS	125	50-150
13C2_PFDoA	132	50-150
13C2_PFTeDA	124	50-150
13C3_PFBS	127	50-150
13C3_PFHxS	127	50-150
13C4_PFBA	126	50-150
13C4_PFHpA	131	50-150
13C5_PFHxA	132	50-150
13C5_PFPeA	128	50-150
13C6_PFDA	131	50-150
13C7_PFUdA	123	50-150
13C8_PFOA	133	50-150
13C8_PFOS	134	50-150
13C8_PFOSA	120	50-150
13C9_PFNA	136	50-150
d-EtFOSA	88	50-150
d-MeFOSA	81	50-150

LOQ =	Limit	of	Quantitation	

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ND = Not detected at or above the LOQ H = Out of holding time

Inorganic non-metals

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-8

Date Sampled: 03/21/2019 1400

Date Received: 03/23/2019

Laboratory ID: UC23028-003

Matrix: Aqueous

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Batch
2	350.1	(Ammonia - N) 350.1	1	04/01/2019 1645 DMA	11903
1		(Chloride) 300.0	1	04/05/2019 1830 SLU	12587
1	10-204-00-1-X	(Cyanide - To) SM 4500-CN E-	1	03/29/2019 1901 MSG	03/29/2019 1632 11698
1		(Hardness (to) SM 2340C-2011	1	03/27/2019 1719 KFE	11494
1		(Nitrate-Nitr) 353.2	1	03/23/2019 1721 MDD	11110
1		(Phosphorus) 365.1	1	04/02/2019 1346 DMA	04/01/2019 1007 11825
1		(Sulfate) 300.0	1	04/05/2019 1830 SLU	12589
1		(Sulfide) SM 4500-S2 F-2011	1	03/27/2019 1542 HET	11466

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Ammonia - N (gas diffusion)		350.1	ND		0.10	0.020	mg/L	2
Chloride		300.0	29		1.0	0.20	mg/L	1
Cyanide - Total	57-12-5	SM 4500-CN E-	ND		0.010	0.010	mg/L	1
Hardness (total)		SM 2340C-	220		10	2.0	mg/L	1
Nitrate-Nitrite - N		353.2	1.3	В	0.020	0.0015	mg/L	1
Phosphorus	7723-14-0	365.1	0.010	J	0.050	0.0050	mg/L	1
Sulfate		300.0	11		1.0	0.20	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F-	ND		1.0	1.0	mg/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the LOQ B = Detected in the method blank

N = Recovery is out of criteria

P = The RPD between two GC columns exceeds 40%

E = Quantitation of compound exceeded the calibration range

H = Out of holding time W = Reported on wet weight basis

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

5030B

Description: HS-MW-8

Laboratory ID: UC23028-003

Matrix: Aqueous

Date Sampled:03/21/2019 1400

Date Received: 03/23/2019

Run Prep Method

Analytical Method Dilution Analysis Date Analyst Prep Date Batch 8260B 04/02/2019 1447 BWS 12007

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	2.2 J	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-8

Laboratory ID: UC23028-003

Matrix: Aqueous

Date Sampled:03/21/2019 1400

Date Received: 03/23/2019

Run Prep Method

Analytical Method Dilution Analysis Date Analyst Prep Date Batch 12007

Parameter		CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6		8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4		8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4		8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7		8260B	ND	1.0	0.40	ug/L	1
m+p - Xylenes	179601-23-1		8260B	ND	1.0	0.40	ug/L	1
o - Xylenes	95-	47-6	8260B	ND	1.0	0.40	ug/L	1
Surrogate	Run 1 Q % Recovery	Accepta Limit						
1,2-Dichloroethane-d4	94	70-13	0					
Bromofluorobenzene	96	70-13	0					
Toluene-d8	94	70-13	0					

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-8

Laboratory ID: UC23028-003

Matrix: Aqueous

Date Sampled:03/21/2019 1400

3520C

Date Received: 03/23/2019

Run Prep Method

Analytical Method Dilution Analysis Date Analyst Prep Date Batch 8270D 04/03/2019 1940 SCD 03/25/2019 1939 11166

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acenaphthene	83-32-9	8270D	ND	0.20	0.040	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	0.20	0.040	ug/L	1
Acetophenone	98-86-2	8270D	ND	0.80	0.50	ug/L	1
Anthracene	120-12-7	8270D	ND	0.20	0.060	ug/L	1
Atrazine	1912-24-9	8270D	ND	0.80	0.50	ug/L	1
Benzidine	92-87-5	8270D	ND	20	1.0	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	0.20	0.040	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	0.20	0.070	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	0.20	0.040	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	0.20	0.040	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	0.20	0.040	ug/L	1
Butyl benzyl phthalate	85-68-7	8270D	ND	0.80	0.50	ug/L	1
Caprolactam	105-60-2	8270D	ND	1.6	1.0	ug/L	1
Carbazole	86-74-8	8270D	ND	0.80	0.50	ug/L	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	0.80	0.50	ug/L	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	0.80	0.50	ug/L	1
2-Chloronaphthalene	91-58-7	8270D	ND	0.80	0.50	ug/L	1
2-Chlorophenol	95-57-8	8270D	ND	0.80	0.50	ug/L	1
Chrysene	218-01-9	8270D	ND	0.20	0.030	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	0.20	0.030	ug/L	1
Dibenzofuran	132-64-9	8270D	ND	0.80	0.50	ug/L	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	4.0	1.8	ug/L	1
2,4-Dichlorophenol	120-83-2	8270D	ND	1.6	1.0	ug/L	1
Diethylphthalate	84-66-2	8270D	ND	0.80	0.50	ug/L	1
Dimethyl phthalate	131-11-3	8270D	ND	0.80	0.50	ug/L	1
2,4-Dimethylphenol	105-67-9	8270D	ND	0.80	0.48	ug/L	1
Di-n-butyl phthalate	84-74-2	8270D	ND	0.80	0.50	ug/L	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	4.0	1.0	ug/L	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	1.6	0.50	ug/L	1
Di-n-octylphthalate	117-84-0	8270D	ND	0.80	0.50	ug/L	1
1,2-Diphenylhydrazine(as azobenzene)	103-33-3	8270D	ND	0.80	0.50	ug/L	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	4.0	0.50	ug/L	1
Fluoranthene	206-44-0	8270D	ND	0.20	0.10	ug/L	1
Fluorene	86-73-7	8270D	ND	0.20	0.030	ug/L	1
Hexachlorobenzene	118-74-1	8270D	ND	0.80	0.50	ug/L	1
Hexachlorobutadiene	87-68-3	8270D	ND	0.80	0.50	ug/L	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	4.0	2.0	ug/L	1
Hexachloroethane	67-72-1	8270D	ND	0.80	0.31	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	0.20	0.040	ug/L	1
Isophorone	78-59-1	8270D	ND	0.80	0.50	ug/L	1
2-Methylnaphthalene	91-57-6	8270D	ND	0.20	0.040	ug/L	1
2-Methylphenol	95-48-7	8270D	ND	0.80	0.21	ug/L	1
3+4-Methylphenol	106-44-5	8270D	ND	1.6	1.5	ug/L	1
Naphthalene	91-20-3	8270D	ND	0.20	0.050	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC23028-003

Matrix: Aqueous

Date Sampled:03/21/2019 1400

Description: HS-MW-8

Date Received: 03/23/2019

Run Prep Method

Analytical Method Dilution Analysis Date Analyst Prep Date Batch

Parameter		(Num	CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Rur
Nitrobenzene		98-9	95-3	8270D	ND	0.80	0.55	ug/L	1
2-Nitrophenol		88-7	75-5	8270D	ND	1.6	1.0	ug/L	1
N-Nitrosodi-n-propylamine		621-6	64-7	8270D	ND	0.80	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)		86-3	30-6	8270D	ND	0.80	0.50	ug/L	1
Pentachlorophenol		87-8	36-5	8270D	ND	4.0	2.0	ug/L	1
Phenanthrene		85-0	01-8	8270D	ND	0.20	0.060	ug/L	1
Phenol		108-9	95-2	8270D	ND	0.80	0.50	ug/L	1
Pyrene		129-0	0-0	8270D	ND	0.20	0.10	ug/L	1
2,4,5-Trichlorophenol		95-9	95-4	8270D	ND	0.80	0.50	ug/L	1
2,4,6-Trichlorophenol		88-0	06-2	8270D	ND	0.80	0.50	ug/L	1
Surrogate	Q	Run 1 / % Recovery	Acceptar Limits						
2-Fluorobiphenyl		60	37-129	9					
2-Fluorophenol		39	24-12	7					
Nitrobenzene-d5		77	38-12	7					
Phenol-d5		55	28-128	3					
Terphenyl-d14		101	10-148	3					
2,4,6-Tribromophenol		65	35-14	1					

LOQ = Limit of Quantitation ND = Not detected at or above the LOQ B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

CVAA

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-8

Date Sampled:03/21/2019 1400

Date Received: 03/23/2019

Run Prep Method

Laboratory ID: UC23028-003

Matrix: Aqueous

Analytical Method Dilution Analysis Date Analyst Prep Date Batch 7470A 04/01/2019 1911 JMH 04/01/2019 1354 11839

CAS Analytical Result Q Parameter Number Method LOQ DL Units Run 7439-97-6 7470A ND Mercury 0.00020 mg/L 0.000091

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ND = Not detected at or above the LOQ

ICP-MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-8

Date Sampled:03/21/2019 1400

200.2

200.2

Date Received: 03/23/2019

Run Prep Method

1

2

Laboratory ID: UC23028-003 Matrix: Aqueous

Analytical Method Dilution Analysis Date Analyst Prep Date Batch 200.8 1 03/30/2019 2341 BNW 03/27/2019 1908 11443 200.8 1 04/03/2019 1759 BNW 03/27/2019 1908 11443

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	200.8	ND		40	10	ug/L	1
Antimony	7440-36-0	200.8	ND		2.0	0.50	ug/L	1
Arsenic	7440-38-2	200.8	ND		2.0	1.3	ug/L	1
Barium	7440-39-3	200.8	14		5.0	1.3	ug/L	1
Beryllium	7440-41-7	200.8	ND		0.40	0.15	ug/L	1
Boron	7440-42-8	200.8	23	BJ	50	6.3	ug/L	1
Cadmium	7440-43-9	200.8	ND		0.50	0.13	ug/L	1
Chromium	7440-47-3	200.8	ND		5.0	1.3	ug/L	1
Cobalt	7440-48-4	200.8	ND		5.0	1.3	ug/L	1
Copper	7440-50-8	200.8	ND		5.0	1.3	ug/L	1
Iron	7439-89-6	200.8	220		50	13	ug/L	2
Lead	7439-92-1	200.8	ND		1.0	0.25	ug/L	1
Magnesium	7439-95-4	200.8	17000		400	50	ug/L	1
Molybdenum	7439-98-7	200.8	ND		10	2.5	ug/L	1
Nickel	7440-02-0	200.8	ND		5.0	1.3	ug/L	1
Selenium	7782-49-2	200.8	ND		5.0	1.3	ug/L	1
Silver	7440-22-4	200.8	ND		1.0	0.25	ug/L	1
Sodium	7440-23-5	200.8	9000		400	150	ug/L	1
Thallium	7440-28-0	200.8	ND		0.50	0.15	ug/L	1
Titanium	7440-32-6	200.8	1.6	J	5.0	1.3	ug/L	1
Vanadium	7440-62-2	200.8	ND		5.0	2.5	ug/L	1
Zinc	7440-66-6	200.8	ND		10	2.5	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-8

Date Sampled:03/21/2019 1400

Date Received: 03/23/2019

Laboratory ID: UC23028-003

Matrix: Aqueous

Run Prep Method 537 MOD Analytical Method Dilution 537 Modified-ID

Analysis Date Analyst 04/03/2019 1428 SES

Prep Date 04/01/2019 1155 11828

Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.6	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.6	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.6	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.2	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	26	3.6	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	78	3.6	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.2	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	44	3.6	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	150	3.6	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	6.6	3.6	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	37	3.6	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	16	3.6	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	380	1.8	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	5.5	3.6	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	140	3.6	ng/L	1

Currents	Run 1 A	Acceptance	
Surrogate	Q % Recovery	Limits	
13C2_6:2FTS	143	50-150	
13C2_8:2FTS	129	50-150	
13C2_PFDoA	125	50-150	
13C2_PFTeDA	120	50-150	
13C3_PFBS	127	50-150	
13C3_PFHxS	123	50-150	
13C4_PFBA	123	50-150	
13C4_PFHpA	124	50-150	
13C5_PFHxA	135	50-150	
13C5_PFPeA	125	50-150	
13C6_PFDA	125	50-150	
13C7_PFUdA	117	50-150	
13C8_PFOA	128	50-150	
13C8_PFOS	129	50-150	
13C8_PFOSA	118	50-150	
13C9_PFNA	135	50-150	
d-EtFOSA	86	50-150	
d-MeFOSA	91	50-150	

LOQ =	Limit	of	Quantitation

B = Detected in the method blank

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

PFAS by LC/MS/MS

Client: GZA GeoEnvironmental, Inc.

Description: EB-32019-SS Date Sampled:03/21/2019 1000 Laboratory ID: UC23028-004

Matrix: Aqueous

Date Received: 03/23/2019

Run Prep Method 537 MOD Analytical Method Dilution Analysis Date Analyst 537 Modified-ID

04/03/2019 1506 SES

Prep Date 04/01/2019 1155 11828

Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.9	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.9	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.9	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.8	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	ND	3.9	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.9	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.9	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.8	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.9	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.9	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	ND	3.9	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.9	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.9	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.9	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.9	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.9	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.9	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	ND	1.9	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.9	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.9	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.9	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.9	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	3.9	ng/L	1
Surrogate Q 9	Run 1 Accept % Recovery Lim	tance its				

Surrogate	Q	Run 1 % Recovery	Acceptance Limits	
13C2_6:2FTS		149	50-150	
13C2_8:2FTS	N	159	50-150	
13C2_PFDoA		134	50-150	
13C2_PFTeDA		115	50-150	
13C3_PFBS		131	50-150	
13C3_PFHxS		128	50-150	
13C4_PFBA		133	50-150	
13C4_PFHpA		135	50-150	
13C5_PFHxA		137	50-150	
13C5_PFPeA		128	50-150	
13C6_PFDA		127	50-150	
13C7_PFUdA		125	50-150	
13C8_PFOA		136	50-150	
13C8_PFOS		125	50-150	
13C8_PFOSA		122	50-150	
13C9_PFNA		137	50-150	
d-EtFOSA		84	50-150	
d-MeFOSA		83	50-150	

LOQ =	Limit	of	Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

ND = Not detected at or above the LOQ H = Out of holding time

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC23028-005

Description: Trip Blank

Matrix: Aqueous

Date Sampled:03/21/2019 0800 Date Received: 03/23/2019

Run Prep Method 1 5030B Analytical Method Dilution 8260B

Analysis Date Analyst 04/02/2019 1228 BWS

Prep Date

Batch 12007

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	5.9 J	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	ND	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank

N = Recovery is out of criteria

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS

Client: GZA GeoEnvironmental, Inc.

Laboratory ID: UC23028-005

Description: Trip Blank

Date Sampled:03/21/2019 0800 Date Received: 03/23/2019

Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 5030B 8260B 04/02/2019 1228 BWS 12007

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260B	ND	1.0	0.40	ug/L	1
m+p - Xylenes	179601-23-1	8260B	ND	1.0	0.40	ug/L	1
o - Xylenes	95-47-6	8260B	ND	1.0	0.40	ug/L	1

Surrogate Q % Recovery Limits 1,2-Dichloroethane-d4 95 70-130 Bromofluorobenzene 101 70-130 70-130 Toluene-d8 96

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Sample ID: UQ11110-001

Batch: 11110 Analytical Method: 353.2 Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Nitrate-Nitrite - N	0.0021	j	1	0.020	0.0015	mg/L	03/23/2019 1640

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11110-002

Batch: 11110

Matrix: Aqueous

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Nitrate-Nitrite - N	0.80	0.83		1	104	90-110	03/23/2019 1641

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11466-001

Batch: 11466

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfide	ND		1	1.0	1.0	mg/L	03/27/2019 1542

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11466-002

Batch: 11466

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Sulfide	10	9.8		1	98	80-120	03/27/2019 1542

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11466-003

Batch: 11466

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Sulfide	10	9.9		1	99	1.0	80-120	20	03/27/2019 1542

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MS

Batch: 11466

Analytical Method: SM 4500-S2 F-2011

Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Sulfide	ND	10	10		1	105	70-130	03/27/2019 1542

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11494-001

Batch: 11494

Analytical Method: SM 2340C-2011

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Hardness (total)	ND		1	10	2.0	mg/L	03/27/2019 1719

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11494-002

Batch: 11494

Analytical Method: SM 2340C-2011

Matrix: Aqueous

Parameter	Spike Amount (mg/L)	Result (mg/L)	0	Dil	% Rec	% Rec Limit	Analysis Date
Hardness (total)	100	110	- Q	1	70 KeC	90-110	03/27/2019 1719

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MS

Batch: 11494

Analytical Method: SM 2340C-2011

Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Hardness (total)	220	100	300		1	88	70-130	03/27/2019 1719

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MD

Batch: 11494

Analytical Method: SM 2340C-2011

Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Hardness (total)	220	100	310		1	96	2.6	70-130	20	03/27/2019 1719

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11531-001

Batch: 11531

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 03/28/2019 1218

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Phosphorus	ND		1	0.050	0.0050	mg/L	03/28/2019 1620

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11531-002

Batch: 11531

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 03/28/2019 1218

Parameter	Spike Amount	Result				% Rec	
	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Phosphorus	0.25	0.23		1	93	90-110	03/28/2019 1625

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11688-001

Batch: 11688

Analytical Method: 350.1

Matrix: Aqueous Prep Method: 350.1

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ammonia - N (gas diffusion)	0.025	J	1	0.10	0.020	mg/L	03/29/2019 1523

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11688-002

Batch: 11688

Matrix: Aqueous Prep Method: 350.1

Analytical Method: 350.1

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Ammonia - N (gas diffusion)	1.0	1.1		1	106	90-110	03/29/2019 1525

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11698-001

Batch: 11698

Analytical Method: SM 4500-CN E-2011

Matrix: Aqueous

Prep Method: 10-204-00-1-X Prep Date: 03/29/2019 1632

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Cyanide - Total	ND		1	0.010	0.010	mg/L	03/29/2019 1855

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11698-002

Batch: 11698

Analytical Method: SM 4500-CN E-2011

Matrix: Aqueous

Prep Method: 10-204-00-1-X

Prep Date: 03/29/2019 1632

Parameter	Spike Amount	Result				% Rec	
	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Cyanide - Total	0.10	0.11		1	105	90-110	03/29/2019 1856

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MS

Batch: 11698

Analytical Method: SM 4500-CN E-2011

Matrix: Aqueous

Prep Method: 10-204-00-1-X

Prep Date: 03/29/2019 1632

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Cyanide - Total	ND	0.10	0.11	N	1	113	90-110	03/29/2019 1902

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MD

Batch: 11698

Analytical Method: SM 4500-CN E-2011

Matrix: Aqueous

Prep Method: 10-204-00-1-X

Prep Date: 03/29/2019 1632

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Cyanide - Total	ND	0.10	0.12	N	1	117	3.5	90-110	20	03/29/2019 1903

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11825-001

Batch: 11825

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 04/01/2019 1007

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Phosphorus	ND		1	0.050	0.0050	mg/L	04/02/2019 1325

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11825-002

Batch: 11825

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 04/01/2019 1007

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Phosphorus	0.25	0.27		1	109	90-110	04/02/2019 1325

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-002MS

Batch: 11825

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 04/01/2019 1007

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Phosphorus	0.0092	0.25	0.24		1	93	90-110	04/02/2019 1346

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-002MD

Batch: 11825

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 04/01/2019 1007

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Phosphorus	0.0092	0.25	0.24		1	92	1.5	90-110	20	04/02/2019 1346

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MS

Batch: 11825

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 04/01/2019 1007

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Phosphorus	0.010	0.25	0.25		1	94	90-110	04/02/2019 1346

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MD

Batch: 11825

Analytical Method: 365.1

Matrix: Aqueous Prep Method: 365.1

Prep Date: 04/01/2019 1007

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Phosphorus	0.010	0.25	0.25		1	94	0.15	90-110	20	04/02/2019 1346

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11903-001

Batch: 11903

Analytical Method: 350.1

Matrix: Aqueous Prep Method: 350.1

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Ammonia - N (gas diffusion)	0.020	J	1	0.10	0.020	mg/L	04/01/2019 1641

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11903-002

Batch: 11903

Matrix: Aqueous Prep Method: 350.1

Analytical Method: 350.1

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q			% Rec	Analysis Date
				Dil	% Rec	Limit	
Ammonia - N (gas diffusion)	1.0	1.0		1	101	90-110	04/01/2019 1643

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MS

Batch: 11903

Matrix: Aqueous Prep Method: 350.1

Analytical Method: 350.1

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Ammonia - N (gas diffusion)	ND	1.0	0.99		1	99	90-110	04/01/2019 1647

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MD

Batch: 11903

Matrix: Aqueous Prep Method: 350.1

Analytical Method: 350.1

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Ammonia - N (gas diffusion)	ND	1.0	0.97		1	97	1.2	90-110	20	04/01/2019 1649

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MB

Sample ID: UQ12072-001

Batch: 12072

Analytical Method: 300.0

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfate	ND		1	1.0	0.20	mg/L	04/02/2019 0947

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - LCS

Sample ID: UQ12072-002

Batch: 12072

Matrix: Aqueous

Analytical Method: 300.0

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Sulfate	20	20		1	101	90-110	04/02/2019 1020

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MB

Sample ID: UQ12073-001

Batch: 12073

Analytical Method: 300.0

Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Chloride	ND		1	1.0	0.20	mg/L	04/02/2019 0947

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - LCS

Sample ID: UQ12073-002

Batch: 12073

Matrix: Aqueous

Analytical Method: 300.0

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Chloride	20	20		1	101	90-110	04/02/2019 1020

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MB

Sample ID: UQ12587-001

Batch: 12587 Analytical Method: 300.0 Matrix: Aqueous

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Chloride	ND		1	1.0	0.20	ma/L	04/05/2019 1712

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - LCS

Sample ID: UQ12587-002

Batch: 12587

Matrix: Aqueous

Analytical Method: 300.0

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Chloride	20	20		1	102	90-110	04/05/2019 1804

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MS

Sample ID: UC23028-003MS

Batch: 12587 Analytical Method: 300.0 Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Chloride	29	20	48		1	98	90-110	04/05/2019 1856

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MSD

Sample ID: UC23028-003MD

Batch: 12587

Matrix: Aqueous

Analytical Method: 300.0

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Chloride	29	20	49		1	98	0.21	90-110	20	04/05/2019 1922

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MB

Sample ID: UQ12589-001

Batch: 12589

Matrix: Aqueous

Analytical Method: 300.0

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Sulfate	ND		1	1.0	0.20	mg/L	04/05/2019 1712

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - LCS

Sample ID: UQ12589-002

Batch: 12589

Matrix: Aqueous

Analytical Method: 300.0

	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Sulfate	20	20		1	102	90-110	04/05/2019 1804

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MS

Sample ID: UC23028-003MS

Batch: 12589

Matrix: Aqueous

Analytical Method: 300.0

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Sulfate	11	20	31		1	98	90-110	04/05/2019 1856

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Inorganic non-metals - MSD

Sample ID: UC23028-003MD

Batch: 12589 Analytical Method: 300.0 Matrix: Aqueous

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date	
Sulfate	11	20	31		1	99	0.32	90-110	20	04/05/2019 1922	_

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11939-001 Batch: 11939

Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	2.0	ug/L	04/02/2019 0007
Benzene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Bromodichloromethane	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Bromoform	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	04/02/2019 0007
2-Butanone (MEK)	ND		1	10	2.0	ug/L	04/02/2019 0007
Carbon disulfide	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Chlorobenzene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Chloroethane	ND		1	2.0	0.40	ug/L	04/02/2019 0007
Chloroform	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	04/02/2019 0007
Cyclohexane	ND		1	1.0	0.40	ug/L	04/02/2019 0007
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Dibromochloromethane	ND		1	1.0	0.40	ug/L	04/02/2019 0007
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	04/02/2019 0007
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	04/02/2019 0007
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	04/02/2019 0007
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	04/02/2019 0007
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	04/02/2019 0007
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Ethylbenzene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
2-Hexanone	ND		1	10	2.0	ug/L	04/02/2019 0007
Isopropylbenzene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Methyl acetate	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	04/02/2019 0007
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	04/02/2019 0007
Methylcyclohexane	ND		1	5.0	0.40	ug/L	04/02/2019 0007
Methylene chloride	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Styrene	ND		1	1.0	0.41	ug/L	04/02/2019 0007
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Tetrachloroethene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Toluene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	04/02/2019 0007

LOQ = Limit of Quantitation

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

P = The RPD between two GC columns exceeds 40%

1

1

N = Recovery is out of criteria

0.40

0.40

0.40

ug/L

ug/L

ug/L

04/02/2019 0007

04/02/2019 0007

04/02/2019 0007

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

1.0

1.0

1.0

LOD = Limit of Detection ND = Not detected at or above the LOQ

ND

ND

ND

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS - MB

Sample ID: UQ11939-001

Batch: 11939

Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Trichlorofluoromethane	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Vinyl chloride	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Xylenes (total)	ND		1	1.0	0.40	ug/L	04/02/2019 0007
m+p - Xylenes	ND		1	1.0	0.40	ug/L	04/02/2019 0007
o - Xylenes	ND		1	1.0	0.40	ug/L	04/02/2019 0007
Surrogate	Q %1	Rec	Acceptance Limit				- 1 - 1 - 1 - 1 - 1
1,2-Dichloroethane-d4	10	04	70-130				
Bromofluorobenzene	9	6	70-130				
Toluene-d8	10	05	70-130				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: UQ11939-002 Batch: 11939

Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acetone	100	100	4	1	101	60-140	04/01/2019 2311
Benzene	50	52		1	104	70-130	04/01/2019 2311
Bromodichloromethane	50	52		1	104	70-130	04/01/2019 2311
Bromoform	50	43		1	86	70-130	04/01/2019 2311
	50	51			102	70-130	
Bromomethane (Methyl bromide)				1			04/01/2019 2311
2-Butanone (MEK)	100	100		1	101	70-130	04/01/2019 2311
Carbon disulfide	50	49 54		1	98 108	70-130 70-130	04/01/2019 2311
Carbon tetrachloride	50			1			04/01/2019 2311
Chlorothean	50	49		1	98	70-130	04/01/2019 2311
Chloroethane	50	45		1	89	70-130	04/01/2019 2311
Chloroform	50	51		1	102	70-130	04/01/2019 2311
Chloromethane (Methyl chloride)	50	60		1	120	60-140	04/01/2019 2311
Cyclohexane	50	57		1	113	70-130	04/01/2019 2311
1,2-Dibromo-3-chloropropane (DBCP)	50	49		1	97	70-130	04/01/2019 2311
Dibromochloromethane	50	54		1	109	70-130	04/01/2019 2311
1,2-Dibromoethane (EDB)	50	57		1	114	70-130	04/01/2019 2311
1,2-Dichlorobenzene	50	47		1	95	70-130	04/01/2019 2311
1,3-Dichlorobenzene	50	48		1	96	70-130	04/01/2019 2311
1,4-Dichlorobenzene	50	47		1	95	70-130	04/01/2019 2311
Dichlorodifluoromethane	50	66		1	132	60-140	04/01/2019 2311
1,1-Dichloroethane	50	52		1	103	70-130	04/01/2019 2311
1,2-Dichloroethane	50	58		1	117	70-130	04/01/2019 2311
1,1-Dichloroethene	50	53		1	107	70-130	04/01/2019 2311
cis-1,2-Dichloroethene	50	52		1	104	70-130	04/01/2019 2311
trans-1,2-Dichloroethene	50	52		1	105	70-130	04/01/2019 2311
1,2-Dichloropropane	50	52		1	104	70-130	04/01/2019 2311
cis-1,3-Dichloropropene	50	54		1	107	70-130	04/01/2019 2311
trans-1,3-Dichloropropene	50	55		1	109	70-130	04/01/2019 2311
Ethylbenzene	50	50		1	100	70-130	04/01/2019 2311
2-Hexanone	100	100		1	101	70-130	04/01/2019 2311
Isopropylbenzene	50	49		1	98	70-130	04/01/2019 2311
Methyl acetate	50	57		1	114	70-130	04/01/2019 2311
Methyl tertiary butyl ether (MTBE)	50	58		1	116	70-130	04/01/2019 2311
4-Methyl-2-pentanone	100	100		1	101	70-130	04/01/2019 2311
Methylcyclohexane	50	54		1	109	70-130	04/01/2019 2311
Methylene chloride	50	51		1	103	70-130	04/01/2019 2311
Styrene	50	49		1	98	70-130	04/01/2019 2311
1,1,2,2-Tetrachloroethane	50	54		1	108		
						70-130	04/01/2019 2311
Tetrachloroethene Toluene	50 50	47 53		1 1	94 107	70-130 70-130	04/01/2019 2311
				1			04/01/2019 2311
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	54			107	70-130	04/01/2019 2311
1,2,4-Trichlorobenzene	50	39		1	79	70-130	04/01/2019 2311
1,1,1-Trichloroethane	50	53		1	107	70-130	04/01/2019 2311
1,1,2-Trichloroethane	50	56		1	112	70-130	04/01/2019 2311

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS - LCS

Sample ID: UQ11939-002 Batch: 11939

Analytical Method: 8260B

Matrix: Aqueous

Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Trichloroethene	50	52		1	105	70-130	04/01/2019 2311
Trichlorofluoromethane	50	53		1	105	70-130	04/01/2019 2311
Vinyl chloride	50	46		1	91	70-130	04/01/2019 2311
Xylenes (total)	100	99		1	99	70-130	04/01/2019 2311
m+p - Xylenes	50	49		1	98	70-130	04/01/2019 2311
o - Xylenes	50	50		1	99	70-130	04/01/2019 2311
Surrogate	Q % F	Accepta Rec Limi					-0.0
1,2-Dichloroethane-d4	10	2 70-1	30				
Bromofluorobenzene	96	70-1	30				
Toluene-d8	10	2 70-1	30				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS - MB

Sample ID: UQ12007-001 Batch: 12007

Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	2.0	ug/L	04/02/2019 1123
Benzene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Bromodichloromethane	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Bromoform	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	04/02/2019 1123
2-Butanone (MEK)	ND		1	10	2.0	ug/L	04/02/2019 1123
Carbon disulfide	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Chlorobenzene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Chloroethane	ND		1	2.0	0.40	ug/L	04/02/2019 1123
Chloroform	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Chloromethane (Methyl chloride)	ND		1	1.0	0.50	ug/L	04/02/2019 1123
Cyclohexane	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Dibromochloromethane	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	04/02/2019 1123
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	04/02/2019 1123
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Ethylbenzene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
2-Hexanone	ND		1	10	2.0	ug/L	04/02/2019 1123
Isopropylbenzene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Methyl acetate	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	04/02/2019 1123
	ND		1	10	2.0	ug/L ug/L	04/02/2019 1123
4-Methyl-2-pentanone Methylcyclohexane	ND		1	5.0	0.40		04/02/2019 1123
						ug/L	
Methylene chloride	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Styrene	ND		1	1.0	0.41	ug/L	04/02/2019 1123
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Tetrachloroethene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Toluene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	04/02/2019 1123
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	04/02/2019 1123
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L	04/02/2019 1123

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND =

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS - MB

Sample ID: UQ12007-001

Batch: 12007

Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Trichlorofluoromethane	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Vinyl chloride	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Xylenes (total)	ND		1	1.0	0.40	ug/L	04/02/2019 1123
m+p - Xylenes	ND		1	1.0	0.40	ug/L	04/02/2019 1123
o - Xylenes	ND		1	1.0	0.40	ug/L	04/02/2019 1123
Surrogate	Q %I	Rec	Acceptance Limit				
1,2-Dichloroethane-d4	9	6	70-130				
Bromofluorobenzene	10	00	70-130				
Toluene-d8	9	6	70-130				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ12007-002

Matrix: Aqueous Prep Method: 5030B

	Batch:	12007
Analytical	Method:	8260B

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acetone	100	190	N	1	192	60-140	04/02/2019 1011
Benzene	50	49		1	97	70-130	04/02/2019 1011
Bromodichloromethane	50	47		1	94	70-130	04/02/2019 1011
Bromoform	50	43		1	87	70-130	04/02/2019 1011
Bromomethane (Methyl bromide)	50	54		1	107	70-130	04/02/2019 1011
2-Butanone (MEK)	100	130		1	126	70-130	04/02/2019 1011
Carbon disulfide	50	53		1	106	70-130	04/02/2019 1011
Carbon tetrachloride	50	49		1	99	70-130	04/02/2019 1011
Chlorobenzene	50	44		1	88	70-130	04/02/2019 1011
Chloroethane	50	43		1	85	70-130	04/02/2019 1011
Chloroform	50	48		1	96	70-130	04/02/2019 1011
Chloromethane (Methyl chloride)	50	52		1	104	60-140	04/02/2019 1011
	50	57		1	113	70-130	04/02/2019 1011
Cyclohexane				1			
1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane	50	48		1	96 91	70-130 70-130	04/02/2019 1011
	50 50	45 48		1	97	70-130	04/02/2019 1011 04/02/2019 1011
1,2-Dibromoethane (EDB)				1			
1,2-Dichlorobenzene	50	43			86	70-130	04/02/2019 1011
1,3-Dichlorobenzene	50	41		1	83	70-130	04/02/2019 1011
1,4-Dichlorobenzene	50	41		1	83	70-130	04/02/2019 1011
Dichlorodifluoromethane	50	63		1	126	60-140	04/02/2019 1011
1,1-Dichloroethane	50	51		1	102	70-130	04/02/2019 1011
1,2-Dichloroethane	50	56		1	112	70-130	04/02/2019 1011
1,1-Dichloroethene	50	54		1	107	70-130	04/02/2019 1011
cis-1,2-Dichloroethene	50	51		1	102	70-130	04/02/2019 1011
trans-1,2-Dichloroethene	50	51		1	102	70-130	04/02/2019 1011
1,2-Dichloropropane	50	46		1	92	70-130	04/02/2019 1011
cis-1,3-Dichloropropene	50	48		1	96	70-130	04/02/2019 1011
trans-1,3-Dichloropropene	50	47		1	94	70-130	04/02/2019 1011
Ethylbenzene	50	44		1	89	70-130	04/02/2019 1011
2-Hexanone	100	86		1	86	70-130	04/02/2019 1011
Isopropylbenzene	50	45		1	90	70-130	04/02/2019 1011
Methyl acetate	50	57		1	113	70-130	04/02/2019 1011
Methyl tertiary butyl ether (MTBE)	50	52		1	104	70-130	04/02/2019 1011
4-Methyl-2-pentanone	100	89		1	89	70-130	04/02/2019 1011
Methylcyclohexane	50	53		1	107	70-130	04/02/2019 1011
Methylene chloride	50	51		1	101	70-130	04/02/2019 1011
Styrene	50	44		1	88	70-130	04/02/2019 1011
1,1,2,2-Tetrachloroethane	50	45		1	90	70-130	04/02/2019 1011
Tetrachloroethene	50	47		1	94	70-130	04/02/2019 1011
Toluene	50	46		1	92	70-130	04/02/2019 1011
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	56		1	112	70-130	04/02/2019 1011
1,2,4-Trichlorobenzene	50	41		1	82	70-130	04/02/2019 1011
1,1,1-Trichloroethane	50	50		1	100	70-130	04/02/2019 1011
1,1,2-Trichloroethane	50	45		1	90	70-130	04/02/2019 1011

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS - LCS

Sample ID: UQ12007-002 Batch: 12007

Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	% Rec Limit	Analysis Date
Trichloroethene	50	51	1	101	70-130	04/02/2019 1011
Trichlorofluoromethane	50	51	1	102	70-130	04/02/2019 1011
Vinyl chloride	50	50	1	99	70-130	04/02/2019 1011
Xylenes (total)	100	90	1	90	70-130	04/02/2019 1011
m+p - Xylenes	50	45	1	89	70-130	04/02/2019 1011
o - Xylenes	50	45	1	91	70-130	04/02/2019 1011
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	97	70-130				
Bromofluorobenzene	97	70-130				
Toluene-d8	94	70-130				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: UC23028-003MS

Batch: 12007 Analytical Method: 8260B Matrix: Aqueous Prep Method: 5030B

Bernard	Sample Amount	Spike Amount	Result		2.5	0/ 5	% Rec	interests.
Parameter	(ug/L)	(ug/L)	(ug/L)	Q	Dil	% Rec	Limit	Analysis Date
Acetone	2.2	100	100		1	99	60-140	04/02/2019 1900
Benzene	ND	50	50		1	101	70-130	04/02/2019 1900
Bromodichloromethane	ND	50	46		1	92	70-130	04/02/2019 1900
Bromoform	ND	50	38		1	76	70-130	04/02/2019 1900
Bromomethane (Methyl bromide)	ND	50	55		1	111	70-130	04/02/2019 1900
2-Butanone (MEK)	ND	100	95		1	95	70-130	04/02/2019 1900
Carbon disulfide	ND	50	50		1	99	70-130	04/02/2019 1900
Carbon tetrachloride	ND	50	50		1	100	70-130	04/02/2019 1900
Chlorobenzene	ND	50	46		1	92	70-130	04/02/2019 1900
Chloroethane	ND	50	43		1	86	70-130	04/02/2019 1900
Chloroform	ND	50	47		1	95	70-130	04/02/2019 1900
Chloromethane (Methyl chloride)	ND	50	51		1	101	60-140	04/02/2019 1900
Cyclohexane	ND	50	58		1	116	70-130	04/02/2019 1900
1,2-Dibromo-3-chloropropane (DBCP)	ND	50	46		1	92	70-130	04/02/2019 1900
Dibromochloromethane	ND	50	43		1	86	70-130	04/02/2019 1900
1,2-Dibromoethane (EDB)	ND	50	49		1	98	70-130	04/02/2019 1900
1,2-Dichlorobenzene	ND	50	43		1	85	70-130	04/02/2019 1900
1,3-Dichlorobenzene	ND	50	43		1	85	70-130	04/02/2019 1900
1,4-Dichlorobenzene	ND	50	43		1	85	70-130	04/02/2019 1900
Dichlorodifluoromethane	ND	50	68		1	136	60-140	04/02/2019 1900
1,1-Dichloroethane	ND	50	51		1	102	70-130	04/02/2019 1900
1,2-Dichloroethane	ND	50	54		1	109	70-130	04/02/2019 1900
1,1-Dichloroethene	ND	50	57		1	114	70-130	04/02/2019 1900
cis-1,2-Dichloroethene	ND	50	52		1	103	70-130	04/02/2019 1900
trans-1,2-Dichloroethene	ND	50	52		1	104	70-130	04/02/2019 1900
1,2-Dichloropropane	ND	50	47		1	94	70-130	04/02/2019 1900
cis-1,3-Dichloropropene	ND	50	47		1	93	70-130	04/02/2019 1900
trans-1,3-Dichloropropene	ND	50	46		1	92	70-130	04/02/2019 1900
Ethylbenzene	ND	50	48		1	96	70-130	04/02/2019 1900
2-Hexanone	ND	100	79		1	79	70-130	04/02/2019 1900
Isopropylbenzene	ND	50	47		1	93	70-130	04/02/2019 1900
Methyl acetate	ND	50	42		1	85	70-130	04/02/2019 1900
Methyl tertiary butyl ether (MTBE)	ND	50	51		1	103	70-130	04/02/2019 1900
4-Methyl-2-pentanone	ND	100	81		1	81	70-130	04/02/2019 1900
Methylcyclohexane	ND	50	58		1	115	70-130	04/02/2019 1900
Methylene chloride	ND	50	51		1	102	70-130	04/02/2019 1900
	ND	50	44		1	88	70-130	04/02/2019 1900
Styrene 1,1,2,2-Tetrachloroethane	ND	50	45		1	89	70-130	04/02/2019 1900
Tetrachloroethene Toluene	ND ND	50 50	50 49		1 1	100 97	70-130 70-130	04/02/2019 1900 04/02/2019 1900
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	58		1	115	70-130	04/02/2019 1900
1,2,4-Trichlorobenzene	ND	50	41		1	82	70-130	04/02/2019 1900

LOQ = Limit of Quantitation

1,1,1-Trichloroethane

1,1,2-Trichloroethane

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

102

89

70-130

70-130

04/02/2019 1900

04/02/2019 1900

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

50

50

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

51

45

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

ND

ND

Volatile Organic Compounds by GC/MS - MS

Sample ID: UC23028-003MS

Batch: 12007

Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260B

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Trichloroethene	ND	50	54		1	108	70-130	04/02/2019 1900
Trichlorofluoromethane	ND	50	53		1	106	70-130	04/02/2019 1900
Vinyl chloride	ND	50	51		1	101	70-130	04/02/2019 1900
Xylenes (total)	ND	100	93		1	93	70-130	04/02/2019 1900
m+p - Xylenes	ND	50	46		1	93	70-130	04/02/2019 1900
o - Xylenes	ND	50	46		1	93	70-130	04/02/2019 1900
Surrogate	Q % Red		eptance Limit	4				
1,2-Dichloroethane-d4	91		70-130					
Bromofluorobenzene	96	7	70-130					
Toluene-d8	93	7	70-130					

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MD

Batch: 12007 Analytical Method: 8260B Matrix: Aqueous Prep Method: 5030B

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec	% RPD Limit	Analysis Date
Acetone	2.2	100	110	Q	1	112	11	60-140	20	04/02/2019 1924
Benzene	ND	50	50		1	100	0.60	70-130	20	04/02/2019 1924
Bromodichloromethane	ND	50	46		1	92	0.31	70-130	20	04/02/2019 1924
Bromoform	ND	50	38		1	77	1.8	70-130	20	04/02/2019 1924
		50	56		1	111	0.64	70-130	20	
Bromomethane (Methyl bromide)	ND ND	100	100		1	102		70-130	20	04/02/2019 1924 04/02/2019 1924
2-Butanone (MEK) Carbon disulfide	ND	50	49		1	99	6.4 0.40	70-130	20	04/02/2019 1924
Carbon tetrachloride	ND	50	50		1	101	1.2	70-130	20	04/02/2019 1924
Chlorobenzene	ND	50	47		1	94	1.3	70-130	20	04/02/2019 1924
Chloroethane	ND	50	43		1	85	0.36	70-130	20	04/02/2019 1924
Chloroform	ND	50	48		1	95	0.80	70-130	20	04/02/2019 1924
	ND	50	52		1	104	3.1	60-140	20	04/02/2019 1924
Chloromethane (Methyl chloride)	ND	50	58		1	117	0.47	70-130	20	04/02/2019 1924
Cyclohexane	ND	50	47		1	94	1.9	70-130	20	04/02/2019 1924
1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane					1	94 87		70-130	20	04/02/2019 1924
1,2-Dibromoethane (EDB)	ND ND	50 50	43 50		1	100	0.63 1.2	70-130	20	04/02/2019 1924
1,2-Distribution (EDB)	ND	50	44		1	87	2.2	70-130	20	04/02/2019 1924
1,3-Dichlorobenzene	ND	50	43		1	87	1.7	70-130	20	04/02/2019 1924
		50			1	85		70-130	20	04/02/2019 1924
1,4-Dichlorobenzene Dichlorodifluoromethane	ND	50	42 66		1	132	0.34 3.0	60-140	20	04/02/2019 1924
1,1-Dichloroethane	ND ND	50	52		1	104	1.9	70-130	20	04/02/2019 1924
1,2-Dichloroethane	ND	50	55		1	110	0.74	70-130 70-130	20	04/02/2019 1924
1,1-Dichloroethene cis-1,2-Dichloroethene	ND ND	50 50	56 52		1	112 105	2.1 1.4	70-130	20 20	04/02/2019 1924 04/02/2019 1924
trans-1,2-Dichloroethene	ND	50	53		1	105	0.67	70-130	20	04/02/2019 1924
	ND	50	47		1	94	0.69	70-130	20	04/02/2019 1924
1,2-Dichloropropane	ND	50	47		1	93	0.073	70-130	20	04/02/2019 1924
cis-1,3-Dichloropropene										
trans-1,3-Dichloropropene	ND	50 50	46		1	93 95	1.4	70-130	20 20	04/02/2019 1924
Ethylbenzene	ND		47		1		1.3	70-130		04/02/2019 1924
2-Hexanone	ND	100	82		1	82	3.3	70-130	20	04/02/2019 1924
Isopropylbenzene	ND	50	48		1	96	2.9	70-130	20	04/02/2019 1924
Methyl acetate	ND	50	47		1	94	10	70-130	20	04/02/2019 1924
Methyl tertiary butyl ether (MTBE)	ND	50	51		1	102	0.66	70-130	20	04/02/2019 1924
4-Methyl-2-pentanone	ND	100	84		1	84	4.2	70-130	20	04/02/2019 1924
Methylcyclohexane	ND	50	57		1	115	0.27	70-130	20	04/02/2019 1924
Methylene chloride	ND	50	50		1	100	1.2	70-130	20	04/02/2019 1924
Styrene	ND	50	45		1	91	2.9	70-130	20	04/02/2019 1924
1,1,2,2-Tetrachloroethane	ND	50	45		1	91	1.6	70-130	20	04/02/2019 1924
Tetrachloroethene	ND	50	50		1	100	0.33	70-130	20	04/02/2019 1924
Toluene	ND	50	49		1	98	0.53	70-130	20	04/02/2019 1924
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	50	58		1	116	1.1	70-130	20	04/02/2019 1924
1,2,4-Trichlorobenzene	ND	50	41		1	83	1.0	70-130	20	04/02/2019 1924
1,1,1-Trichloroethane	ND	50	52		1	104	1.7	70-130	20	04/02/2019 1924
1,1,2-Trichloroethane	ND	50	46		1	92	3.4	70-130	20	04/02/2019 1924

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Volatile Organic Compounds by GC/MS - MSD

Sample ID: UC23028-003MD

Batch: 12007

Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260B

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Trichloroethene	ND	50	54		1	108	0.17	70-130	20	04/02/2019 1924
Trichlorofluoromethane	ND	50	53		1	106	0.18	70-130	20	04/02/2019 1924
Vinyl chloride	ND	50	51		1	103	1.6	70-130	20	04/02/2019 1924
Xylenes (total)	ND	100	94		1	94	1.1	70-130	20	04/02/2019 1924
m+p - Xylenes	ND	50	47		1	93	0.62	70-130	20	04/02/2019 1924
o - Xylenes	ND	50	47		1	94	1.6	70-130	20	04/02/2019 1924
Surrogate	Q % Re		ceptance Limit	<u>A</u>						
1,2-Dichloroethane-d4	92		70-130							
Bromofluorobenzene	96		70-130							
Toluene-d8	93		70-130							

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: UQ11166-001 Batch: 11166

Analytical Method: 8270D

Matrix: Aqueous Prep Method: 3520C

Prep Date: 03/25/2019 1939

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acenaphthene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Acenaphthylene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Acetophenone	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Anthracene	ND		1	0.20	0.060	ug/L	04/03/2019 1041
Atrazine	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Benzidine	ND		1	20	1.0	ug/L	04/03/2019 1041
Benzo(a)anthracene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Benzo(a)pyrene	ND		1	0.20	0.070	ug/L	04/03/2019 1041
Benzo(b)fluoranthene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Benzo(g,h,i)perylene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Benzo(k)fluoranthene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Butyl benzyl phthalate	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Caprolactam	ND		1	1.6	1.0	ug/L	04/03/2019 1041
Carbazole	ND		1	0.80	0.50	ug/L	04/03/2019 1041
4-Chloro-3-methyl phenol	ND		1	0.80	0.50	ug/L	04/03/2019 1041
bis(2-Chloroethyl)ether	ND		1	0.80	0.50	ug/L	04/03/2019 1041
2-Chloronaphthalene	ND		1	0.80	0.50	ug/L	04/03/2019 1041
2-Chlorophenol	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Chrysene	ND		1	0.20	0.030	ug/L	04/03/2019 1041
Dibenzo(a,h)anthracene	ND		1	0.20	0.030	ug/L	04/03/2019 1041
Dibenzofuran	ND		1	0.80	0.50	ug/L	04/03/2019 1041
3,3'-Dichlorobenzidine	ND		1	4.0	1.8	ug/L	04/03/2019 1041
2,4-Dichlorophenol	ND		1	1.6	1.0	ug/L	04/03/2019 1041
Diethylphthalate	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Dimethyl phthalate	ND		1	0.80	0.50	ug/L	04/03/2019 1041
2,4-Dimethylphenol	ND		1	0.80	0.48	ug/L	04/03/2019 1041
Di-n-butyl phthalate	ND		1	0.80	0.50	ug/L	04/03/2019 1041
4,6-Dinitro-2-methylphenol	ND		1	4.0	1.0	ug/L	04/03/2019 1041
2,4-Dinitrotoluene	ND		1	1.6	0.50	ug/L	04/03/2019 1041
Di-n-octylphthalate	ND		1	0.80	0.50	ug/L	04/03/2019 1041
1,2-Diphenylhydrazine(as azobenzene)	ND		1	0.80	0.50	ug/L	04/03/2019 1041
bis(2-Ethylhexyl)phthalate	ND		1	4.0	0.50	ug/L	04/03/2019 1041
Fluoranthene	ND		1	0.20	0.10	ug/L	04/03/2019 1041
Fluorene	ND		1	0.20	0.030	ug/L	04/03/2019 1041
Hexachlorobenzene	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Hexachlorobutadiene	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Hexachlorocyclopentadiene	ND		1	4.0	2.0	ug/L	04/03/2019 1041
Hexachloroethane	ND		1	0.80	0.31	ug/L	04/03/2019 1041
Indeno(1,2,3-c,d)pyrene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
Isophorone	ND		1	0.80	0.50	ug/L	04/03/2019 1041
2-Methylnaphthalene	ND		1	0.20	0.040	ug/L	04/03/2019 1041
2-Methylphenol	ND		1	0.80	0.21	ug/L	04/03/2019 1041
3+4-Methylphenol	ND		1	1.6	1.5	ug/L	04/03/2019 1041
Naphthalene	ND		1	0.20	0.050	ug/L	04/03/2019 1041

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL ND = Not detected at or above the LOQ + = RPD is out of criteria

LOD = Limit of Detection

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: UQ11166-001

Batch: 11166 Analytical Method: 8270D Matrix: Aqueous Prep Method: 3520C

Prep Date: 03/25/2019 1939

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Nitrobenzene	ND		1	0.80	0.55	ug/L	04/03/2019 1041
2-Nitrophenol	ND		1	1.6	1.0	ug/L	04/03/2019 1041
N-Nitrosodi-n-propylamine	ND		1	0.80	0.50	ug/L	04/03/2019 1041
N-Nitrosodiphenylamine (Diphenylar	mine) ND		1	0.80	0.50	ug/L	04/03/2019 1041
Pentachlorophenol	ND		1	4.0	2.0	ug/L	04/03/2019 1041
Phenanthrene	ND		1	0.20	0.060	ug/L	04/03/2019 1041
Phenol	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Pyrene	ND		1	0.20	0.10	ug/L	04/03/2019 1041
2,4,5-Trichlorophenol	ND		1	0.80	0.50	ug/L	04/03/2019 1041
2,4,6-Trichlorophenol	ND		1	0.80	0.50	ug/L	04/03/2019 1041
Surrogate	Q % Red	Ac	ceptance Limit				
2-Fluorobiphenyl	55		37-129				
2-Fluorophenol	46		24-127				
Nitrobenzene-d5	70		38-127				
Phenol-d5	56		28-128				
Terphenyl-d14	96		10-148				
2,4,6-Tribromophenol	63		35-144				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: UQ11166-002 Batch: 11166

Analytical Method: 8270D

Matrix: Aqueous Prep Method: 3520C

Prep Date: 03/25/2019 1939

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	8.0	5.4		1	68	30-122	04/03/2019 1106
Acenaphthylene	8.0	5.4		1	67	30-130	04/03/2019 1106
Acetophenone	8.0	8.4		1	105	30-130	04/03/2019 1106
Anthracene	8.0	6.1		1	77	30-123	04/03/2019 1106
Atrazine	8.0	6.6		1	82	30-130	04/03/2019 1106
Benzidine	40	24		1	61	10-115	04/03/2019 1106
Benzo(a)anthracene	8.0	6.6		1	83	40-125	04/03/2019 1106
Benzo(a)pyrene	8.0	6.5		1	81	40-128	04/03/2019 1106
Benzo(b)fluoranthene	8.0	7.0		1	88	32-145	04/03/2019 1106
Benzo(g,h,i)perylene	8.0	6.8		1	86	42-128	04/03/2019 1106
Benzo(k)fluoranthene	8.0	7.0		1	87	50-135	04/03/2019 1106
Butyl benzyl phthalate	8.0	7.9		1	98	54-135	04/03/2019 1106
Caprolactam	8.0	6.2		1	78	30-130	04/03/2019 1106
Carbazole	8.0	6.7		1	83	30-130	04/03/2019 1106
4-Chloro-3-methyl phenol	8.0	5.5		1	69	30-123	04/03/2019 1106
bis(2-Chloroethyl)ether	8.0	9.2	N	1	116	35-114	04/03/2019 1106
2-Chloronaphthalene	8.0	4.8	14	1	60	39-128	04/03/2019 1106
2-Chlorophenol	8.0	4.6		1	57	39-115	04/03/2019 1106
Chrysene	8.0	6.6		1	83	50-130	04/03/2019 1106
Dibenzo(a,h)anthracene	8.0	7.2		1	90	30-130	04/03/2019 1106
Dibenzofuran	8.0	5.2		1	64	30-130	04/03/2019 1106
3,3'-Dichlorobenzidine		5.1			63	10-126	
	8.0 8.0	4.6		1	58	30-121	04/03/2019 1106 04/03/2019 1106
2,4-Dichlorophenol	8.0	6.4		1	80	40-125	04/03/2019 1106
Diethylphthalate	8.0	5.8		1	73	40-125	04/03/2019 1106
Dimethyl phthalate	8.0	5.2		1	65	20-125	04/03/2019 1106
2,4-Dimethylphenol							
Di-n-butyl phthalate	8.0	7.6		1	95	40-127	04/03/2019 1106
4,6-Dinitro-2-methylphenol	8.0	5.5		1	68	46-134	04/03/2019 1106
2,4-Dinitrotoluene	8.0	6.0		1	75	51-128	04/03/2019 1106
Di-n-octylphthalate	8.0	7.0		1	88	55-143	04/03/2019 1106
1,2-Diphenylhydrazine(as azobenzene)	8.0	6.8		1	85	30-130	04/03/2019 1106
bis(2-Ethylhexyl)phthalate	8.0	7.9		1	99	50-133	04/03/2019 1106
Fluoranthene	8.0	6.5		1	82	40-128	04/03/2019 1106
Fluorene	8.0	5.4		1	67	30-124	04/03/2019 1106
Hexachlorobenzene	8.0	5.5		1	69	30-125	04/03/2019 1106
Hexachlorobutadiene	8.0	4.2		1	52	24-110	04/03/2019 1106
Hexachlorocyclopentadiene	40	18		1	46	22-122	04/03/2019 1106
Hexachloroethane	8.0	4.5		1	56	28-116	04/03/2019 1106
Indeno(1,2,3-c,d)pyrene	8.0	7.1		1	89	50-125	04/03/2019 1106
Isophorone	8.0	6.2		1	77	30-130	04/03/2019 1106
2-Methylnaphthalene	8.0	4.8		1	60	40-132	04/03/2019 1106
2-Methylphenol	8.0	7.5		1	94	37-115	04/03/2019 1106
3+4-Methylphenol	8.0	7.0		1	88	44-112	04/03/2019 1106
Naphthalene	8.0	5.1		1	64	40-122	04/03/2019 1106

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: UQ11166-002 Batch: 11166 Matrix: Aqueous Prep Method: 3520C

Analytical Method: 8270D

Prep Date: 03/25/2019 1939

Parameter	Spi Amo (ug.	unt	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Nitrobenzene	8.0		5.9		1	74	39-123	04/03/2019 1106
2-Nitrophenol	8.0		5.2		1	65	36-123	04/03/2019 1106
N-Nitrosodi-n-propylamine	8.0		9.0		1	113	39-119	04/03/2019 1106
N-Nitrosodiphenylamine (Diphenylamine)	8.0		5.7		1	71	30-123	04/03/2019 1106
Pentachlorophenol	16		11		1	67	34-137	04/03/2019 1106
Phenanthrene	8.0		6.0		1	75	40-123	04/03/2019 1106
Phenol	8.0		4.7		1	59	30-130	04/03/2019 1106
Pyrene	8.0		7.0		1	87	40-126	04/03/2019 1106
2,4,5-Trichlorophenol	8.0		4.8		1	59	30-123	04/03/2019 1106
2,4,6-Trichlorophenol	8.0		5.0		1	62	30-125	04/03/2019 1106
Surrogate	Q	% Rec	Accepta Limi					
2-Fluorobiphenyl		61	37-12	29				
2-Fluorophenol		35	24-12	27				
Nitrobenzene-d5		74	38-12	27				
Phenol-d5		57	28-12	28				
Terphenyl-d14		93	10-1	48				
2,4,6-Tribromophenol		70	35-1	44				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11443-001

Batch: 11443

Analytical Method: 200.8

Matrix: Aqueous Prep Method: 200.2

Prep Date: 03/27/2019 1908

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Aluminum	ND		1	40	10	ug/L	03/28/2019 1705
Antimony	ND		1	2.0	0.50	ug/L	03/28/2019 1705
Arsenic	ND		1	2.0	1.3	ug/L	03/28/2019 1705
Barium	ND		1	5.0	1.3	ug/L	03/28/2019 1705
Beryllium	ND		1	0.40	0.15	ug/L	03/28/2019 1705
Boron	25	J	1	50	6.3	ug/L	03/28/2019 1705
Cadmium	ND		1	0.50	0.13	ug/L	03/28/2019 1705
Chromium	ND		1	5.0	1.3	ug/L	03/28/2019 1705
Cobalt	ND		1	5.0	1.3	ug/L	03/28/2019 1705
Copper	1.3	J	1	5.0	1.3	ug/L	03/28/2019 1705
Iron	ND		1	50	13	ug/L	03/28/2019 1705
Lead	ND		1	1.0	0.25	ug/L	03/28/2019 1705
Magnesium	ND		1	400	50	ug/L	03/28/2019 1705
Molybdenum	ND		1	10	2.5	ug/L	03/28/2019 1705
Nickel	ND		1	5.0	1.3	ug/L	03/28/2019 1705
Selenium	ND		1	5.0	1.3	ug/L	03/28/2019 1705
Silver	ND		1	1.0	0.25	ug/L	03/28/2019 1705
Sodium	ND		1	400	150	ug/L	03/29/2019 2250
Thallium	ND		1	0.50	0.15	ug/L	03/28/2019 1705
Titanium	ND		1	5.0	1.3	ug/L	03/28/2019 1705
Vanadium	ND		1	5.0	2.5	ug/L	03/28/2019 1705
Zinc	ND		1	10	2.5	ug/L	03/28/2019 1705

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ11443-002 Batch: 11443

Analytical Method: 200.8

Matrix: Aqueous Prep Method: 200.2

Prep Date: 03/27/2019 1908

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Aluminum	100	99		1	99	85-115	03/28/2019 1711
Antimony	100	97		1	97	85-115	03/28/2019 1711
Arsenic	100	97		1	97	85-115	03/28/2019 1711
Barium	100	99		1	99	85-115	03/28/2019 1711
Beryllium	100	97		1	97	85-115	03/28/2019 1711
Boron	100	110		1	107	85-115	03/28/2019 1711
Cadmium	100	97		1	97	85-115	03/28/2019 1711
Chromium	100	95		1	95	85-115	03/28/2019 1711
Cobalt	100	93		1	93	85-115	03/28/2019 1711
Copper	100	97		1	97	85-115	03/28/2019 1711
Iron	1000	1000		1	100	85-115	03/28/2019 1711
Lead	100	100		1	100	85-115	03/28/2019 1711
Magnesium	1000	1000		1	104	85-115	03/28/2019 1711
Molybdenum	100	95		1	95	85-115	03/28/2019 1711
Nickel	100	93		1	93	85-115	03/28/2019 1711
Selenium	100	100		1	102	85-115	03/28/2019 1711
Silver	100	98		1	98	85-115	03/28/2019 1711
Sodium	1000	1000		1	101	85-115	03/29/2019 2256
Thallium	100	100		1	100	85-115	03/28/2019 1711
Titanium	100	99		1	99	85-115	03/28/2019 1711
Vanadium	100	95		1	95	85-115	03/28/2019 1711
Zinc	100	93		1	93	85-115	03/28/2019 1711

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-002MS

Batch: 11443

Analytical Method: 200.8

Matrix: Aqueous Prep Method: 200.2

Prep Date: 03/27/2019 1908

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Aluminum	16	100	120		1	103	70-130	03/30/2019 2335
Antimony	ND	100	100		1	100	70-130	03/30/2019 2335
Arsenic	ND	100	100		1	100	70-130	03/30/2019 2335
Barium	58	100	160		1	104	70-130	03/30/2019 2335
Beryllium	ND	100	85		1	85	70-130	03/30/2019 2335
Boron	14	100	100		1	87	70-130	03/30/2019 2335
Cadmium	ND	100	99		1	99	70-130	03/30/2019 2335
Chromium	ND	100	100		1	100	70-130	03/30/2019 2335
Cobalt	ND	100	98		1	98	70-130	03/30/2019 2335
Copper	ND	100	110		1	110	70-130	03/30/2019 2335
Iron	400	1000	1400		1	97	70-130	04/03/2019 1753
Lead	ND	100	99		1	99	70-130	03/30/2019 2335
Magnesium	36000	1000	37000	N	1	53	70-130	03/30/2019 2335
Molybdenum	ND	100	97		1	97	70-130	03/30/2019 2335
Nickel	1.4	100	99		1	98	70-130	03/30/2019 2335
Selenium	ND	100	100		1	102	70-130	03/30/2019 2335
Silver	ND	100	100		1	103	70-130	03/30/2019 2335
Sodium	7100	1000	8100		1	107	70-130	03/30/2019 2335
Thallium	ND	100	100		1	103	70-130	03/30/2019 2335
Titanium	2.7	100	100		1	100	70-130	03/30/2019 2335
Vanadium	ND	100	100		1	103	70-130	03/30/2019 2335
Zinc	5.4	100	110		1	100	70-130	03/30/2019 2335

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: UC23028-003MS

Batch: 11443

Analytical Method: 200.8

Matrix: Aqueous Prep Method: 200.2

Prep Date: 03/27/2019 1908

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Aluminum	ND	100	110		1	111	70-130	03/30/2019 2347
Antimony	ND	100	100		1	102	70-130	03/30/2019 2347
Arsenic	ND	100	100		1	103	70-130	03/30/2019 2347
Barium	14	100	120		1	107	70-130	03/30/2019 2347
Beryllium	ND	100	95		1	95	70-130	03/30/2019 2347
Boron	23	100	120		1	98	70-130	03/30/2019 2347
Cadmium	ND	100	100		1	100	70-130	03/30/2019 2347
Chromium	ND	100	100		1	102	70-130	03/30/2019 2347
Cobalt	ND	100	100		1	100	70-130	03/30/2019 2347
Copper	ND	100	110		1	113	70-130	03/30/2019 2347
Iron	220	1000	1300		1	105	70-130	04/03/2019 1819
Lead	ND	100	100		1	100	70-130	03/30/2019 2347
Magnesium	17000	1000	18000	N	1	132	70-130	03/30/2019 2347
Molybdenum	ND	100	99		1	99	70-130	03/30/2019 2347
Nickel	ND	100	100		1	101	70-130	03/30/2019 2347
Selenium	ND	100	110		1	109	70-130	03/30/2019 2347
Silver	ND	100	110		1	106	70-130	03/30/2019 2347
Sodium	9000	1000	9900		1	98	70-130	03/30/2019 2347
Thallium	ND	100	110		1	105	70-130	03/30/2019 2347
Titanium	1.6	100	110		1	104	70-130	03/30/2019 2347
Vanadium	ND	100	110		1	105	70-130	03/30/2019 2347
Zinc	ND	100	100		1	104	70-130	03/30/2019 2347

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MD

Batch: 11443

Analytical Method: 200.8

Matrix: Aqueous Prep Method: 200.2

Prep Date: 03/27/2019 1908

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Aluminum	ND	100	110		1	109	2.2	70-130	20	03/30/2019 2352
Antimony	ND	100	100		1	102	0.20	70-130	20	03/30/2019 2352
Arsenic	ND	100	100		1	101	2.1	70-130	20	03/30/2019 2352
Barium	14	100	120		1	104	2.3	70-130	20	03/30/2019 2352
Beryllium	ND	100	94		1	94	0.80	70-130	20	03/30/2019 2352
Boron	23	100	120		1	96	0.92	70-130	20	03/30/2019 2352
Cadmium	ND	100	100		1	100	0.30	70-130	20	03/30/2019 2352
Chromium	ND	100	100		1	102	0.39	70-130	20	03/30/2019 2352
Cobalt	ND	100	98		1	98	2.1	70-130	20	03/30/2019 2352
Copper	ND	100	110		1	114	0.88	70-130	20	03/30/2019 2352
Iron	220	1000	1200		1	103	1.8	70-130	20	04/03/2019 1825
Lead	ND	100	100		1	100	0.75	70-130	20	03/30/2019 2352
Magnesium	17000	1000	18000		1	114	1.0	70-130	20	03/30/2019 2352
Molybdenum	ND	100	96		1	96	3.0	70-130	20	03/30/2019 2352
Nickel	ND	100	99		1	99	2.7	70-130	20	03/30/2019 2352
Selenium	ND	100	110		1	106	2.6	70-130	20	03/30/2019 2352
Silver	ND	100	100		1	105	0.76	70-130	20	03/30/2019 2352
Sodium	9000	1000	9800		1	88	1.0	70-130	20	03/30/2019 2352
Thallium	ND	100	100		1	104	1.1	70-130	20	03/30/2019 2352
Titanium	1.6	100	100		1	103	0.95	70-130	20	03/30/2019 2352
Vanadium	ND	100	100		1	104	1.3	70-130	20	03/30/2019 2352
Zinc	ND	100	100		1	105	0.38	70-130	20	03/30/2019 2352

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

CVAA - MB

Sample ID: UQ11839-001

Batch: 11839

Analytical Method: 7470A

Matrix: Aqueous Prep Method: 245.1

Prep Date: 04/01/2019 1354

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Mercury	ND		1	0.00020	0.000091	mg/L	04/01/2019 1845

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

CVAA - LCS

Sample ID: UQ11839-002

Batch: 11839

Analytical Method: 7470A

Matrix: Aqueous Prep Method: 245.1

Prep Date: 04/01/2019 1354

Parameter	Spike Amount (mg/L)	Result				% Rec	
		(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Mercury	0.0020	0.0019		1	95	80-120	04/01/2019 1848

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

CVAA - MS

Sample ID: UC23028-003MS

Batch: 11839

Analytical Method: 7470A

Matrix: Aqueous Prep Method: 245.1

Prep Date: 04/01/2019 1354

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Mercury	ND	0.0020	0.0019		1	96	85-115	04/01/2019 1913

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

CVAA - MSD

Sample ID: UC23028-003MD

Batch: 11839

Analytical Method: 7470A

Matrix: Aqueous Prep Method: 245.1

Prep Date: 04/01/2019 1354

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Mercury	ND	0.0020	0.0019		1	97	0.80	85-115	20	04/01/2019 1916

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MB

Sample ID: UQ11828-001 Batch: 11828

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 04/01/2019 1155

Parameter	Result	Q Dil	LOQ	Units	Analysis Date
8:2 FTS	ND	1	4.0	ng/L	04/03/2019 1301
6:2 FTS	ND	1	4.0	ng/L	04/03/2019 1301
EtFOSA	ND	1	4.0	ng/L	04/03/2019 1301
MeFOSA	ND	1	8.0	ng/L	04/03/2019 1301
PFBS	ND	1	4.0	ng/L	04/03/2019 1301
PFDS	ND	1	4.0	ng/L	04/03/2019 1301
PFHpS	ND	1	4.0	ng/L	04/03/2019 1301
PFNS	ND	1	8.0	ng/L	04/03/2019 1301
PFOSA	ND	1	4.0	ng/L	04/03/2019 1301
PFPeS	ND	1	4.0	ng/L	04/03/2019 1301
PFHxS	ND	1	4.0	ng/L	04/03/2019 1301
PFBA	ND	1	4.0	ng/L	04/03/2019 1301
PFDA	ND	1	4.0	ng/L	04/03/2019 1301
PFDoA	ND	1	4.0	ng/L	04/03/2019 1301
PFHpA	ND	1	4.0	ng/L	04/03/2019 1301
PFHxA	ND	1	4.0	ng/L	04/03/2019 1301
PFNA	ND	1	4.0	ng/L	04/03/2019 1301
PFOA	ND	1	2.0	ng/L	04/03/2019 1301
PFPeA	ND	1	4.0	ng/L	04/03/2019 1301
PFTeDA	ND	1	4.0	ng/L	04/03/2019 1301
PFTrDA	ND	1	4.0	ng/L	04/03/2019 1301
PFUdA	ND	1	4.0	ng/L	04/03/2019 1301
PFOS	ND	1	4.0	ng/L	04/03/2019 1301
Surrogate	Q % Rec	Acceptance Limit			
13C2_6:2FTS	147	50-150			
13C2_8:2FTS	120	50-150			
13C2_PFDoA	110	50-150			
13C2_PFTeDA	104	50-150			
13C3_PFBS	119	50-150			
13C3_PFHxS	126	50-150			
13C4_PFBA	120	50-150			
13C4_PFHpA	125	50-150			
13C5_PFHxA	120	50-150			
13C5_PFPeA	120	50-150			
13C6_PFDA	113	50-150			
13C7_PFUdA	115	50-150			
13C8_PFOA	129	50-150			
13C8_PFOS	117	50-150			
13C8_PFOSA	107	50-150			
13C9_PFNA	125	50-150			

LOQ = Limit of Quantitation

DL = Detection Limit

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and <math>\geq DL$

N = Recovery is out of criteria + = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MB

Sample ID: UQ11828-001

Batch: 11828

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 04/01/2019 1155

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		75	50-150	
d-MeFOSA		60	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCS

Sample ID: UQ11828-002 Batch: 11828 Analytical Method: 537 Modified-ID Matrix: Aqueous
Prep Method: 537 MOD
Prep Date: 04/01/2019 1155

Spike Amount (na/L)	Result (na/L) Q	Dil	% Rec	% Rec Limit	Analysis Date			
					04/03/2019 1314			
					04/03/2019 1314			
					04/03/2019 1314			
					04/03/2019 1314			
					04/03/2019 1314			
					04/03/2019 1314			
		1	96	70-150	04/03/2019 1314			
19	16	1	83	70-150	04/03/2019 1314			
20	20	1	98	70-150	04/03/2019 1314			
19	16	1	87	70-150	04/03/2019 1314			
18	18	1	99	70-150	04/03/2019 1314			
20	19	1	97	70-150	04/03/2019 1314			
20	20	1	99	70-150	04/03/2019 1314			
20	19	1	95	70-150	04/03/2019 1314			
20	18	1	91	70-150	04/03/2019 1314			
		1			04/03/2019 1314			
					04/03/2019 1314			
		1			04/03/2019 1314			
					04/03/2019 1314			
					04/03/2019 1314			
					04/03/2019 1314			
					04/03/2019 1314			
19		1	89	70-150	04/03/2019 1314			
Q % Rec	Acceptance Limit							
150	50-150							
132	50-150							
117	50-150							
113	50-150							
	30-130							
	Amount (ng/L) 19 19 20 20 18 19 19 19 19 19 20 20 19 18 20 20 20 20 20 20 20 20 20 20 20 20 19 Q % Rec 150 132 117 104 131 126 129 135 132 129 128 124 141 127	Amount (ng/L)	Amount (ng/L)	Amount (ng/L)	Amount (ng/L) Result (ng/L) Q Dil % Rec Limit 19 17 1 90 70-150 19 19 1 101 70-150 20 23 1 117 70-150 20 20 1 100 70-150 18 16 1 91 70-150 19 15 1 77 70-150 19 16 1 83 70-150 19 16 1 83 70-150 20 20 1 98 70-150 19 16 1 83 70-150 19 16 1 87 70-150 19 16 1 87 70-150 20 19 1 97 70-150 20 19 1 97 70-150 20 18 1 91 70-150 20 18			

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCS

Sample ID: UQ11828-002

Batch: 11828

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 04/01/2019 1155

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		77	50-150	
d-MeFOSA		76	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MS Batch: 11828

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 04/01/2019 1155

Parameter	Sample Amount (ng/L)	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
8:2 FTS	ND	17	21		1	118	70-150	04/03/2019 144
6:2 FTS	ND	17	16		1	91	70-150	04/03/2019 144
EtFOSA	ND	18	23		1	126	70-150	04/03/2019 144
MeFOSA	ND	18	19		1	105	70-150	04/03/2019 144
PFBS	26	16	41		1	92	70-150	04/03/2019 144
PFDS	ND	18	16		1	94	70-150	04/03/2019 144
PFHpS	78	17	95		1	93	70-150	04/03/2019 144
PFNS	ND	17	17		1	95	70-150	04/03/2019 144
PFOSA	ND	18	19		1	105	70-150	04/03/2019 144
PFPeS	44	17	61		1	96	70-150	04/03/2019 144
PFHxS	150	17	160	N	1	52	70-150	04/03/2019 144
PFBA	6.6	18	24		1	98	70-150	04/03/2019 1447
PFDA	ND	18	18		1	99	70-150	04/03/2019 144
PFDoA	ND	18	18		1	99	70-150	04/03/2019 144
PFHpA	37	18	59		1	120	70-150	04/03/2019 144
PFHxA	16	18	36		1	112	70-150	04/03/2019 144
PFNA	ND	18	18		1	97	70-150	04/03/2019 1441
PFOA	380	18	380	N	1	-5.2	70-150	04/03/2019 1441
PFPeA	5.5	18	23		1	95	70-150	04/03/2019 1441
PFTeDA	ND	18	18		1	98	70-150	04/03/2019 1441
PFTrDA	ND	18	17		1	94	70-150	04/03/2019 144
PFUdA	ND	18	17		1	93	70-150	04/03/2019 144
PFOS	140	17	160		1	125	70-150	04/03/2019 144
Surrogate	Q % Re	Acc ec I	eptance _imit					
13C2_6:2FTS	143		50-150					
13C2_8:2FTS	118		50-150					
13C2_PFDoA	125		60-150					
13C2_PFTeDA	124		50-150					
13C3_PFBS	129		50-150					
13C3_PFHxS	127		50-150					
13C4_PFBA	123		50-150					
13C4_PFHpA	126		50-150					
13C5_PFHxA	135		60-150					
13C5_PFPeA	131		50-150					
13C6_PFDA	125	Ę	60-150					
1300_110/			50-150					
13C7_PFUdA	128							
	128 134		50-150					
13C7_PFUdA			50-150 50-150					
13C7_PFUdA 13C8_PFOA	134	Ę						

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MS

Sample ID: UC23028-003MS

Batch: 11828

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 04/01/2019 1155

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		77	50-150	
d-MeFOSA		83	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UC23028-003MD Batch: 11828

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 04/01/2019 1155

Parameter	Sample Amount (ng/L)	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
8:2 FTS	ND	17	15	+	1	86	32	70-150	30	04/03/2019 1453
6:2 FTS	ND	17	16		1	92	1.2	70-150	30	04/03/2019 1453
EtFOSA	ND	18	21		1	118	7.3	70-150	30	04/03/2019 1453
MeFOSA	ND	18	22		1	125	16	70-150	30	04/03/2019 1453
PFBS	26	16	38		1	74	7.3	70-150	30	04/03/2019 1453
PFDS	ND	17	14		1	81	16	70-150	30	04/03/2019 1453
PFHpS	78	17	93		1	83	1.9	70-150	30	04/03/2019 1453
PFNS	ND	17	16		1	90	7.0	70-150	30	04/03/2019 1453
PFOSA	ND	18	18		1	100	5.6	70-150	30	04/03/2019 1453
PFPeS	44	17	59		1	83	3.9	70-150	30	04/03/2019 1453
PFHxS	150	16	180		1	133	7.8	70-150	30	04/03/2019 1453
PFBA	6.6	18	24		1	95	2.8	70-150	30	04/03/2019 1453
PFDA	ND	18	17		1	93	7.0	70-150	30	04/03/2019 1453
PFDoA	ND	18	19		1	103	3.3	70-150	30	04/03/2019 1453
PFHpA	37	18	51		1	78	14	70-150	30	04/03/2019 1453
PFHxA	16	18	34		1	101	6.3	70-150	30	04/03/2019 1453
PFNA	ND	18	17		1	95	2.9	70-150	30	04/03/2019 1453
PFOA	380	18	400		1	136	6.5	70-150	30	04/03/2019 1453
PFPeA	5.5	18	22		1	90	4.4	70-150	30	04/03/2019 1453
PFTeDA	ND	18	18		1	97	1.7	70-150	30	04/03/2019 1453
PFTrDA	ND	18	17		1	94	0.79	70-150	30	04/03/2019 1453
PFUdA	ND	18	17		1	95	1.2	70-150	30	04/03/2019 1453
PFOS	140	17	150		1	109	1.8	70-150	30	04/03/2019 1453
Surrogate	Q % Re	Acc	ceptance Limit							
13C2_6:2FTS	149		50-150							
13C2_8:2FTS	140		50-150							
13C2_PFDoA	123		50-150							
13C2_PFTeDA	123		50-150							
13C3_PFBS	131		50-150							
- 13C3_PFHxS	123		50-150							
13C4_PFBA	125		50-150							
- 13C4_PFHpA	136		50-150							
13C5_PFHxA	134		50-150							
13C5_PFPeA	132		50-150							
 13C6_PFDA	130		50-150							
13C7_PFUdA	127		50-150							
13C8_PFOA	123		50-150							
	127		50-150							
13C8_PFUS										
13C8_PFOS 13C8_PFOSA	121		50-150							

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MSD

Sample ID: UC23028-003MD Batch: 11828

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 04/01/2019 1155

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		83	50-150	
d-MeFOSA		82	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Chain of Custody and Miscellaneous Documents

www.shealylab.com

SHEAL

Chain of Custody Record

Shealy Environmental Services, Inc. 108 Vantage Point Drive

West Columbia, South Carolina 29172

Number Telephone No. (803) 791-9700 Fax No. (803) 791-9111

www.shealylab.com Telephone No. / E-mail 616-956-6123 Quote No. Report to Contact loretta.cowers@gza.com 21129 Rose and Westra / GZA Lori Powers Analysis (Attach list if more space is needed) Sampler's Signature Address of 1 601 Fifth Street NW, Suite 102 State | Zip Code 49504 Grand Rapids Printed Name Project Name 16.0062335.52 T2 UC23028 No of Containers by P.O No. Project Number Matrix Preservative Type 16.0062335.52 T2 MIAS Non-Aqueous Aquebus Unpres. H2504 HNOS NeoH Solid MOOH H20 Sample ID / Description PFAS Remarks / Cooler I.D. Time Date (Constiners for each semile may be combined on one line): G 2 X × HS-MW-75 3/21/2019 11:10 G 2 HS-MW-7CDUP 3/21/2019 11:10 × X G 2 HS-MW-8 MS/MSD 3/21/2019 14:00 × X G 2 HS-MW-8 3/21/2019 14:00 × X EB-32019-SS 10-12 Possible Hezard Identification (List any known hazards in the remarks). QC Requirements Turn Around Time Required (Prior lab approval required for expedited TAT) Sample Disposal NDisposal by Lab Standard Return to Client Rush (Please Specify) Date Time 1. Relinquished by Date Time 1. Received by 3/21/2019 9:30 Makayla Myers Date 2. Relinquished by Date Time 2. Received by Ilma Date 3. Relinquished by 3. Received by Time Time Date 3-23-19 Date 3-23-19 4. Laboratory Received by 4. Relinquished by 0850 0850 Note: All samples are retained for four weeks from receipt LAB USE ONLY Dice Pack Receipt Temp. Received on Ice (Check) unless other arrangements are made

Document Number: ME002OW-01

LY ENVIRONMENTAL

SHEALY

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172
Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

										٧	ww.s	healy	ab.cc	m									mg aya
Client		Report to		ct											Telep	hone N			616-9				Quote No.
Rose and Westra / GZA		Lori Pawa		F												181	CONTRACTOR OF THE	CONTRACTOR OF THE PARTY OF THE	wers(c	_			21129
Address 501 Frifth Street NW, Suite 102		Sampler's	Signa	ture		14									Anary	sia (Álti	Page 1 of 1						
City State Zip Code		11/	MILANAIN MILLINA																	1 91 7			
Brand Rapids MI 49504		X_///	inted Name Makeyla Myoga													ජේ							
Project Name 6,0062385.52 T2		rimadi	45/116	/ "	Hollkoly	J.	7									яв, Нд,		100					
roject Number 6.0062335.52 T2	P.O No.		ejse ejse		Ma	trix				of C eser					SVOCE	ist Met		sphon	monia. Itrite			anide	UC23028
Sample ID / Description (Certainers for each sample may be constituted on one line)	Date	Time	G-Grab C-Composi	Aqueous	Solid	Non- Agueous		Unpres.	H2504	HNO3	HCI	HOSN	n2 & HCeN Acetech	MeOH	Vocs &	Project List Metals, Hardness	Chloride	Total phosphorus	Total ammonia, Nitrate/Nitrite	Sulfide	Sulfate	Total Cyanide	Kemarks / Cooler I.I Sheaty Water
HS-MW-75	3/21/2019	11:10	G	х				2	1	3	3	1	2		×	×	х	х	х	X.	х	×	
HS-MW-75DUP	3/21/2019	11:10	G	x				2	1	3	3	1	2		×	×	x	х	х	х	x	x	
HS-MW-8	3/21/2019	14.00	G	X				2	1	3	3	1	2		×	X	X	x	X	X	X	×	
HS-MW-8 MS/MSD	3/21/2019	14:00	G	x				2	1	3	3	1	2		x	x	х	х	х	X	х	x	
Trip Blank	3/21/2019	8:00	G	×							2	IN.			X								Trip blank
		,	_									Щ											
			-																				
												_											
										-						-			-	_			1
													illa I	la mana	d lalast	Mantine	() lot	onu lu	l ha		in librar	eam adus)	QC Requirements
um Around Time Required (Prior lab approval requir Standard Rush (Please Specify)	ed for expedited T	AΠ			isposi to Cli		X	Dispo	sal p	y Lab		Possible Hazard Identification (List any known hazards in the remarks Non-Hazardous Flammable							QC Requirements				
Relinquished by Makayla Myers			Date 3/21/				Time 9:30					1. R	cociw	d by							Date		Time
Relinquished by			Date	1			Time					2. R	eceive	d by							Date		Time
Relinquished by			Date				Time					3. R	ecelve	ed by							Date		Time
Relinquished by Fed EX			Date 3-	23	-19		Time	68	350	0	•	4. Li	aborat	ory R	oceive	d by	ð	PH.	th		Date 3 -	23-19	Time 0850
Project Metals List: Al, Sb, As, Ba, Be, B Samples are retained for 4 weeks unless o			o, Mg,	Hg,	Mo, I	Ni, Se	a, Ag,	Na,	Ti, T	, V, Z	n.	LAB Rec	USE	ONLY on los	(Che	ck) [1		☐lce l			Receipt 1	cmp 2.8 % 3

Document Number; ME002CW-01.

SHEALY ENVIRONMENTAL SERVICES, INC.

Sheaty Environmental Services, Inc. Document Number: ME0018C-14

Page 1 of I Effective Date: 8/2/2018

Sample Receipt Checklist (SRC)

Client: G	ZA	Cooler Inspected by/date: LKH / 03-23-2019 Lot #: UC23028
Means of		
✓ Yes		Were custody scals present on the cooler?
✓ Yes		NA 2. If custody seals were present, were they intact and unbroken?
oH Strip	ID: 18-2	225 Chlorine Strip ID: 19-152 Tested by: LKII
Original t	temperati	ure upon receipt / Derived (Corrected) temperature upon receipt
4.0 /4.	0 °C 2	2.8 /2.8 °C 3.4 /3.4 °C NA /NA °C
Method:	☑ Temp	erature Blank Against Bottles IR Gun ID: 5 IR Gun Correction Factor: 0 °C
Method o	f coolan	t: 🛮 Wet Ice 🗌 Ice Packs 🔲 Dry Ice 🔲 None
☐ Yes	□ No	1: Will Wet Ice Li Ice Packs Li Dry Ice Li None 3. If temperature of any cooler exceeded 6.0°C, was Project Manager Notified? PM was Notified by: phone / email / face-to-face (circle one).
☑ Yes	□ No	□ NA 4. Is the commercial courier's packing slip attached to this form?
☑ Yes	□ No	5. Were proper custody procedures (relinquished/received) followed?
☑ Yes	□No	6. Were sample IDs listed on the COC?
✓ Yes	☐ No	7. Were sample IDs listed on all sample containers?
✓ Yes	□ No	Was collection date & time listed on the COC?
✓ Yes	□No	9. Was collection date & time listed on all sample containers?
☑ Yes	□ No	10. Did all container label information (ID, date, time) agree with the COC?
☑ Yes	□ No	11. Were tests to be performed listed on the COC?
☑ Yes	□ No	12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?
☑ Yes	□ No	13. Was adequate sample volume available?
☐ Yes	☑ No	14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?
☐ Yes	☑ No	15. Were any samples containers missing/excess (circle one) samples Not listed on COC?
☐ Yes	☑ No	In any of the VOA vials?
✓ Yes	□No	NA 17. Were all DRO/metals/nutrient samples received at a pH of ≤ 2?
Z Yes		NA 18. Were all evanide samples received at a pH > 12 and sulfide samples received at a pH > 9?
∠ Yes	Zo	□ NA 19. Were all applicable NH ₃ /TKN/cyanide/phenol/625 (< 0.5mg/L) samples free of residual chlorine?
☐ Yes	□ No	20 Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)
☐ Yes	✓ No	21. Was the quote number listed on the container label? If yes, Quote #
	Preserva	ation (Must be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s) NA	were received incorrectly preserved and were adjusted according
		ng with NA mL of circle one: H2SO4, HNO3, HCl, NaOH using SR # NA . tion NA . If more than one preservative is needed, please note in the comments below.
Sample(s) NA	were received with bubbles >6 mm in diameter.
Samples	(s) NA	were received with TRC > 0.5 mg/L (If #19 is no) and were ngly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID; NA
_		s applied by: LKH Date: 03-23-2019
Comme		
-		

15-Mar-2019

Nisreen Saikaly Shealy Environmental Services, Inc. 106 Vantage Point Dr. West Columbia, SC 29169

Re: 16.0062335.52 T2 Work Order: 1903165

Dear Nisreen,

ALS Environmental received 8 samples on 05-Mar-2019 through 08-Mar-2019 for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 25.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely.

Electronically approved by: Chad Whelton

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

ALS Group, USA

Date: 15-Mar-19

Client: Shealy Environmental Services, Inc.

Project: 16.0062335.52 T2 Work Order Sample Summary

Work Order: 1903165

Lab Samp ID	Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
1903165-01	HS-MW-20S	Aqueous		3/4/2019 12:15	3/5/2019 11:05	
1903165-02	EB-1	Aqueous		3/4/2019 13:45	3/5/2019 11:05	
1903165-03	EB-2	Aqueous		3/4/2019 14:10	3/5/2019 11:05	
1903165-04	HS-MW-20M	Aqueous		3/6/2019 12:20	3/7/2019 09:45	
1903165-05	HS-MW-20D	Aqueous		3/6/2019 12:25	3/7/2019 09:45	
1903165-06	HS-MW-17S	Aqueous		3/6/2019 16:15	3/7/2019 09:45	
1903165-07	HS-MW-17M	Aqueous		3/7/2019 11:50	3/8/2019 10:50	
1903165-08	HS-MW-17D	Aqueous		3/7/2019 12:25	3/8/2019 10:50	

Date: 15-Mar-19

Client: Shealy Environmental Services, Inc.

Project: 16.0062335.52 T2 Case Narrative

Work Order: 1903165

Samples for the above noted Work Order were received on 03/05/2019. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Date: 15-Mar-19 ALS Group, USA

Client: Shealy Environmental Services, Inc.

QUALIFIERS, Project: 16.0062335.52 T2

ACRONYMS, UNITS WorkOrder: 1903165

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
H	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND O	Not Detected at the Reporting Limit
P	Sample amount is > 4 times amount spiked Dual Column results percent difference > 40%
R	RPD above laboratory control limit
s	Spike Recovery outside laboratory control limits
Ū	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
Е	EPA
sw	SW-846 Update III
Units Reporte	d Description
μg/L	Micrograms per Liter
mg/L	Milligrams per Liter

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903165

 Sample ID:
 HS-MW-20S
 Lab ID:
 1903165-01

 Collection Date:
 3/4/2019 12:15 PM
 Matrix:
 AQUEOUS

Analyses	Result		Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 01:08 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 01:08 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	3.3		2.0	μg/L	1	3/5/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND	(0.0050	mg/L	1	3/5/2019 12:14 PM

Date: 15-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903165

 Sample ID:
 EB-1
 Lab ID:
 1903165-02

 Collection Date:
 3/4/2019 01:45 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 01:21 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 01:21 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/5/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/5/2019 12:14 PM

Date: 15-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903165

 Sample ID:
 EB-2
 Lab ID:
 1903165-03

Collection Date: 3/4/2019 02:10 PM Matrix: AQUEOUS

Analyses	Result		port imit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC		S	W830	OM		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 01:34 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 01:34 PM
CYANIDE, AVAILABLE		C)IA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	µg/L	1	3/5/2019 01:00 PM
CHROMIUM, HEXAVALENT		s	W719	6A		Analyst: JEB
Chromium, Hexavalent	ND	0.0	050	mg/L	1	3/5/2019 12:14 PM

Date: 15-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903165

 Sample ID:
 HS-MW-20M
 Lab ID:
 1903165-04

 Collection Date:
 3/6/2019 12:20 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 01:47 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 01:47 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	4.6		2.0	μg/L	1	3/8/2019 11:00 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/7/2019 10:20 AM

Date: 15-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903165

 Sample ID:
 HS-MW-20D
 Lab ID:
 1903165-05

 Collection Date:
 3/6/2019 12:25 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 02:00 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 02:00 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/8/2019 11:00 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/7/2019 10:20 AM

Date: 15-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903165

 Sample ID:
 HS-MW-17S
 Lab ID:
 1903165-06

 Collection Date:
 3/6/2019 04:15 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 02:13 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 02:13 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/8/2019 11:00 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/7/2019 10:20 AM

Date: 15-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903165

 Sample ID:
 HS-MW-17M
 Lab ID:
 1903165-07

 Collection Date:
 3/7/2019 11:50 AM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 02:39 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 02:39 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	3.0		2.0	μg/L	1	3/11/2019 02:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/8/2019 11:14 AM

Date: 15-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903165

 Sample ID:
 HS-MW-17D
 Lab ID:
 1903165-08

 Collection Date:
 3/7/2019 12:25 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 02:52 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 02:52 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/11/2019 02:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/8/2019 11:14 AM

Date: 15-Mar-19

Client: Shealy Environmental Services, Inc.

Work Order:

1903165

Project: 16.0062335.52 T2

Date: 15-Mar-19

QC BATCH REPORT

Batch ID: R256427	Instrument ID HPLC2		Method	d: SW8 30	MOC						
MBLK	Sample ID: MBLKW1-R256427				U	nits: mg/	L	Analys	is Date: 3	3/12/2019 1	12:16 PM
Client ID:	Run IE	: HPLC2	_190312A		Sec	No: 555	7672	Prep Date: 3/12/2019		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
			OFIL Val	9 336292		MINLO			MINED		Quui
Acetic Acid	ND	5.0									
Formic Acid	ND	5.0									
LCS	Sample ID: LCSW1`-R256427				U	nits: mg/	L	Analys	is Date: 3	3/12/2019 1	12:29 PM
Client ID:	Run II	: HPLC2	_190312A		Sec	No: 555	7673	Prep Date: 3/12	2/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid	525.9	5.0	500		0	105	80-120	0			
Formic Acid	517.5	5.0	500		0	104	80-120	0			
MS	Sample ID: 1903165-01A MS				U	nits: mg/	L	Analys	is Date: 3	3/12/2019 1	12:42 PM
Client ID: HS-MW-20	OS Run IE	: HPLC2	_190312A		Sec	No: 555	7674	Prep Date: 3/12	2/2019	DF: 2	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid	1001	10	1000		0	100	75-125	0			
Formic Acid	985.5	10	1000		0	98.5	75-125	0			
MSD	Sample ID: 1903165-01A MSD				U	nits: mg/	Ĺ,	Analys	is Date: 3	3/12/2019 1	12:55 PM
Client ID: HS-MW-20	OS Run IE	: HPLC2	_190312A		Sec	No: 555	7676	Prep Date: 3/12	2/2019	DF: 2	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid	1022	10	1000		0	102	75-125	1001	2.02	2 20	
Formic Acid	999.4	10	1000		0	99.9	75-125	985.5	1.4	4 20	
The following samp	oles were analyzed in this batch:	19	903165-01A 903165-04A 903165-07A	19	9031	65-02A 65-05A 65-08A	2.3	03165-03A 03165-06A			

Note:

Shealy Environmental Services, Inc.

Work Order:

1903165

Project:

16.0062335.52 T2

Batch ID: R255929	Instrument ID WETCH	HEM		Method	d: SW719	06A					
MBLK	Sample ID: MB-R255929-R	255929				Units: m	g/L	Analy	/sis Date: 3/	5/2019 12	:14 PN
Client ID:	F	Run ID: V	VETC	HEM_19030	5F	SeqNo: 55	46238	Prep Date:		DF: 1	
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Chromium, Hexavale	nt !	ND 0.	0050								
LCS	Sample ID: LCS-R255929-F	R255929				Units: me	g/L	Analy	/sis Date: 3/	5/2019 12	:14 PI
Client ID:	F	5F	SeqNo: 55	46239	Prep Date:		DF: 1				
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Chromium, Hexavale	nt 0.20	031 0.	0050	0.2		0 102	91-113		0		
MS	Sample ID: 1903165-02B M	IS				Units: m	g/L	Analy	/sis Date: 3/	5/2019 12	:14 PM
Client ID: EB-1	F	Run ID: V	VETC	HEM_19030	5 F	SeqNo: 55	46242	Prep Date:		DF: 1	
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Chromium, Hexavale	nt 0.19	994 0.	0050	0.2	0.000	03 99.6	91-113		0		
MSD	Sample ID: 1903165-02B M	ISD				Units: m	g/L	Analy	sis Date: 3/	5/2019 12	:14 PN
Client ID: EB-1	F	Run ID: V	VETC	HEM_19030	5F	SeqNo: 55	46243	Prep Date:		DF: 1	
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
	nt 0.21	19 0	0050	0.2	0.000	03 106	91-113	0.199	4 6.08	10	

Shealy Environmental Services, Inc.

Work Order:

1903165

Project:	16.0062335.52 T2										
Batch ID: R255940	Instrument ID FS	3100		Metho	d: OIA 1 6	77					
MBLK	Sample ID: MB-R2559	40-R25594	0			Units: µg/L	_	Analy	sis Date:	3/5/2019 0	1:00 PM
Client ID:		Run IE	: FS3100	_190305B		SeqNo: 554	6597	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		ND	2.0								
LCS	Sample ID: LCS-R2559		Units: µg/L Analysis Date:					3/5/2019 01:00 PM			
Client ID:		Run IE	: FS3100	_190305B		SeqNo: 554	6598	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		42.83	2.0	50		0 85.7	82-132	0	0		
MS	Sample ID: 1903165-02	2C MS				Units: µg/l		Analy	sis Date:	3/5/2019 0	1:00 PM
Client ID: EB-1		Run IE	: FS3100	_190305B		SeqNo: 554	6601	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		49.38	2.0	50	0.5	55 97.7	82-130		0		
MSD	Sample ID: 1903165-02	2C MSD				Units: µg/L		Analy	sis Date:	3/5/2019 0	1:00 PM
Client ID: EB-1		Run IE	: FS3100	_190305B		SeqNo: 554	6602	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		51.51	2.0	50	0.5	55 102	82-130	49.3	8 4.2	2 11	

Shealy Environmental Services, Inc.

Work Order:

1903165

Project:

16.0062335.52 T2

Batch ID: R256056	Instrument ID WE	TCHEM		Method	: SW719	6A								
MBLK	Sample ID: MB-R25605	6-R2560	56			Units: mg/	'L	Analy	sis Date: 3/	7/2019 10	:20 AN			
Client ID:		Run I	D: WETCH	HEM_190307	'E	SeqNo: 554	9452	Prep Date:		DF: 1				
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua			
Chromium, Hexavale	nt	ND	0.0050											
LCS	Sample ID: LCS-R2560	56- R 2560	056		sis Date: 3/	e: 3/7/2019 10:20 AM								
Client ID:		Run I	D: WETCH	IEM_190307		DF: 1								
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua			
Chromium, Hexavale	nt (0.2019	0.0050	0.2		0 101	91-113	()					
MS	Sample ID: 1903165-04	B MS				Units: mg/	L	Analy	sis Date: 3/	7/2019 10	:20 AN			
Client ID: HS-MW-20	M	Run I	D: WETCH	HEM_190307	E	SeqNo: 554	9455	Prep Date:	DF: 1					
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua			
Chromium, Hexavale	nt (0.1956	0.0050	0.2	0.00	15 97	91-113	()					
MSD	Sample ID: 1903165-04	B MSD				Units: mg/	L	Analy	sis Date: 3/	7/2019 10	:20 AN			
Client ID: HS-MW-20	M	Run I	D: WETCH	HEM_190307	'E	SeqNo: 554	9456	Prep Date:		DF: 1				
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua			
Chromium, Hexavale	nt (0.2081	0.0050	0.2	0.00	15 103	91-113	0.1956	6.19	10				
The following samp	les were analyzed in this	s batch:	19	03165-04B	19	03165-05B	10	003165-06B						

Shealy Environmental Services, Inc.

Work Order:

1903165

Project:

16.0062335.52 T2

Batch ID: R256144	Instrument ID W	ETCHEM		Metho	d: SW719	6A								
MBLK	Sample ID: MB-R2561	44-R2561	44			Units: mg/	L	Analys	is Date: 3/	8/2019 11	:14 AN			
Client ID:		Run I	D: WETCH	HEM_19030	8D	SeqNo: 555	1328	Prep Date:		DF: 1				
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua			
Chromium, Hexavale	ent	ND	0.0050											
LCS	Sample ID: LCS-R256	144-R256	144			Units: mg/	L	Analys	is Date: 3/	8/2019 11	:14 AN			
Client ID:		Run I	D: WETC	HEM_19030	8D	SeqNo: 555	1329	Prep Date:		DF: 1				
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua			
Chromium, Hexavale	ent	0.2044	0.0050	0.2		0 102	91-113	0						
MS	Sample ID: 1903165-0	7B MS				Units: mg/	L	Analys	is Date: 3/	8/2019 11	:14 AN			
Client ID: HS-MW-17	7M	Run I	D: WETCH	HEM_19030	8D	SeqNo: 555	1331	Prep Date:		DF: 1				
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua			
Chromium, Hexavale	ent	0.1931	0.0050	0.2	0.000	96.4	91-113	0						
MSD	Sample ID: 1903165-0	7B MSD				Units: mg/	L	Analys	is Date: 3/	8/2019 11	:14 AN			
Client ID: HS-MW-17	7M	Run I	D: WETCH	HEM_19030	8D	SeqNo: 555	1332	Prep Date:		DF: 1				
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua			
Chromium, Hexavale	ent	0.1994	0.0050	0.2	0.000	99.6	91-113	0.1931	3.21	10				
The following samp	les were analyzed in th	is batch:	19	903165-07B	19	03165-08B								

Shealy Environmental Services, Inc.

Work Order:

1903165

Project:

16.0062335.52 T2

QC	BATC	HR	EPO]	RT

Batch ID: R256158	Instrument ID FS3	100		Method	d: OIA 16	77													
MBLK	Sample ID: MB-R25615	8-R256158				Uı	nits: µg/L		Anal	ysis Date: 3/	8/2019 11	:00 AN							
Client ID:		Run ID:	FS3100	_190308A		Sec	No: 555 1	1882	Prep Date:		DF: 1								
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua							
Cyanide, Available		ND	2.0																
LCS	Sample ID: LCS-R25615	58-R25615	8			Uı	nits: µg/L		Anal	ysis Date: 3/	3/8/2019 11:00 A								
Client ID:		Run ID:	FS3100	_190308A		Sec	No: 555 1	1883	Prep Date:		DF: 1								
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua							
Cyanide, Available		45.59	2.0	50		0	91.2	82-132		0									
MS	Sample ID: 1903235-01/	A MS				Uı	nits: µg/L		Anal	ysis Date: 3/	8/2019 11	:00 AN							
Client ID:		Run ID:	FS3100	_190308A		Sec	No: 5551	1888	Prep Date:		DF: 1								
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua							
Cyanide, Available		33.15	2.0	50	1.1	15	64	82-130		0		s							
MSD	Sample ID: 1903235-01/	A MSD				Uı	nits: µg/L		Anal	ysis Date: 3/	8/2019 11	:00 AN							
Client ID:		Run ID:	FS3100	_190308A		Sec	No: 5551	1889	Prep Date:		DF: 1								
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua							
Cyanide, Available		31.78	2.0	50	1.1	15	61.3	82-130	33.1	15 4.22	11	S							
The following samp	oles were analyzed in this	batch:	19	03165-04C	19	0316	65-05C	19	03165-06C										

Shealy Environmental Services, Inc.

Work Order:

1903165

Project:

16.0062335.52 T2

Batch ID: R256274	Instrument ID FS3100			Method	: OIA 16	77							
MBLK	Sample ID: MB-R256274-R2	256274				U	nits: µg/L		Analys	is Date: 3/	11/2019 0	2:00 PM	
Client ID:	F	Run ID:	FS3100	_190311B		Sec	No: 555 4	1031	Prep Date:		DF: 1		
Analyte	Res	ult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Cyanide, Available	N	ND	2.0										
LCS	Sample ID: LCS-R256274-R	256274				U	nits: μg/L		Analysi	is Date: 3/	8/11/2019 02:00 PM		
Client ID:	F	Run ID:	FS3100	_190311B		Sec	No: 5554	1032	Prep Date:		DF: 1		
Analyte	Res	ult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Cyanide, Available	46.	11	2.0	50		0	92.2	82-132	0				
MS	Sample ID: 1903399-01A M	s				U	nits: µg/L		Analys	is Date: 3/	11/2019 0	2:00 PM	
Client ID:	F	Run ID:	FS3100	_190311B	SeqNo: 5554037 Prep Date: D								
Analyte	Res	ult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Cyanide, Available	52.	19	2.0	50	0.0	1	104	82-130	0				
MSD	Sample ID: 1903399-01A M	SD				U	nits: µg/L		Analys	is Date: 3/	11/2019 0	2:00 PM	
Client ID:	F	Run ID:	FS3100	_190311B		Sec	No: 555 4	1038	Prep Date:		DF: 1		
Analyte	Res	ult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Cyanide, Available	51.	95	2.0	50	0.0	1	104	82-130	52.19	0.461	11		

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172

Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

www.shealylab.com Report to Contact Telephone No. / E-mail 616-956-6123 Quote No. Client 20986 Rose and Westra / GZA Lori Powers loretta.powers@gza.com Analysis (Attach list if more space is needed) Sampler's Signature Page Address 601 Fifth Street NW, Suite 102 of <u>1</u> Zip Code Grand Rapids MI 49504 **Printed Name** Jack Markosky Hexavalent Chromium (7199) **Project Name Laboratory Lot Number** 16.0062335.52 T2 Available Cyanide P.O No. No of Containers by Project Number Matrix Preservative Type 16.0062335.52 T2 Formic Acid Acetic Acid NaOH/Zn Aqueous H2S04 MeOH Unpres. NaOH HNO3 Solid Remarks / Cooler I.D. Non-Sample ID / Description ᄗ Date Time **ALS Water** (Containers for each sample may be combined on one line) G 4 MW-20S 3/4/2019 1215 Х 1 Х Х х Х EB-1 3/4/2019 1345 G 4 1 Equipment blank X х Х Х X G EB-2 3/4/2019 1410 X 4 1 Х Х Х Х Equipment blank Possible Hazard Identification (List any known hazards in the remarks) QC Requirements Sample Disposal Turn Around Time Required (Prior lab approval required for expedited TAT) No Disposal by Lab Return to Client Non-Hazardous Flammable Skin Imitant SDS provided Unknown Standard Rush (Please Specify) 1. Relinquished by Time Time Date Received by. 1000 3/5/2019 1000 Jack Markosky Date /19 2. Received by Date 2. Relinguished by Time 3. Relinquished by Date Time 3. Received by Date Time 4. Relinquished by Date Time 4. Laboratory Received by Date Time Note: All samples are retained for four weeks from receipt LAB USE ONLY Receipt Temp. 2_0 °c SR unless other arrangements are made. Received on Ice (Check) Y N Ice Pack

SHEALY

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172
Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

www.shealylab.com Client Report to Contact Telephone No. / E-mail 616-956-6123 Quote No. Rose and Westra / GZA Lori Powers loretta.powers@gza.com 20986 Address Sampler's Signature Analysis (Attach list if more space is needed) Page 601 Fifth Street NW, Suite 102 of 1 City State Zip Code Grand Rapids MI 49504 Printed Name Jack Markosky Hexavalent Chromium (7199) Project Name Laboratory Lot Number 16.0062335.52 T2 Available Cyanide P.O No. Project Number No of Containers by Matrix 16.0062335.52 T2 Preservative Type Formic Acid Acetic Acid NaOH/Zn Aqueous H2S04 Acetate Unpres. MeOH HNO3 NaOH Solid Sample ID / Description Remarks / Cooler I.D. Š Ÿ Date Time (Containers for each sample may be combined on one line) **ALS Water** MW-20M G 3/6/2019 1220 Х 4 1 X х х Х MW-20D G 3/6/2019 1225 Х 4 1 X Х Х Х MW-17S 3/6/2019 1615 G 4 Х 1 X Х Х Х Turn Around Time Required (Prior lab approval required for expedited TAT) Possible Hazard Identification (List any known hazards in the remarks) Sample Disposal QC Requirements N_{Disposal by Lab} Standard Rush (Please Specify) Non-Hazardous Flammable Skin Irritant SDS provided Unknown Return to Client 1. Relinquished by Date 1. Received by Date Time Jack Markosky 3/7/*19 2. Relinquished by 2. Received by Date Time Relinquished by Date Time 3. Received by Date Time 4. Relinguished by Date Time 4. Laboratory Received by Date Note: All samples are retained for four weeks from receipt LAB USE ONLY unless other arrangements are made. Received on Ice (Check) $\prod Y \prod N$ ☐lce Pack Receipt Temp.

(0)

Document Number: ME002OW-01

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172

Number

Telephone No. (803) 791-9700 Fax No. (803) 791-9111 www.shealylab.com Report to Contact Client Telephone No. / E-mail 616-956-6123 Quote No. Rose and Westra / GZA Lori Powers loretta.powers@gza.com 20986 Sampler's Signature Address Analysis (Attach list if more space is needed) Page 601 Fifth Street NW, Suite 102 of 1 City State Zip Code 49504 Grand Rapids Printed Name Jack Markosky Hexavalent Chromium (7199) Project Name Laboratory Lot Number 16.0062335.52 T2 Available Cyanide P.O No. Project Number No of Containers by Matrix 16.0062335.52 T2 Preservative Type Formic Acid Acetic Acid NaOH/Zn Acetate Aqueous H2S04 Unpres. HN03 NaOH MeOH Solid Sample ID / Description Remarks / Cooler I.D. Ş HC Date Time (Containers for each sample may be combined on one line) ALS Water 7 HS-MW-17M G 3/7/2019 1150 X 1 Х Х х Х .∢ HS-MW-17D 1225 G 3/7/2019 X 4 1 Х Х X х Possible Hazard Identification (List any known hazards in the remarks) Turn Around Time Required (Prior lab approval required for expedited TAT) Sample Disposal QC Requirements X Disposal by Lab Standard Rush (Please Specify) X Non-Hazardous Flammable Skin Irritant SDS provided Unknown Return to Client 1. Relinquished by Date Received by Time 0930 3/8/19 0930 Jack Markosky 3/8/2019 INN 2. Relinguished by Date Time 2. Received by Date 3/8/19 1050 3. Relinquished by Date Time 3. Received by Time Date 4. Relinquished by Time 4. Laboratory Received by Date Time Note: All samples are retained for four weeks from receipt LAB USE ONLY unless other arrangements are made. Received on Ice (Check) Y N ☐lce Pack

Receipt Temp.

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172
Telephone No. (803) 791-9700 Fax No. (803) 791-9111
www.shealylab.com

Number

	·									WWW.	2) ICG!	yiab.c	A2: 11																	
Client				Report to		act											Telephone No. / E-mail 616-956-6123 loretta.powers@gza.com Analysis (Attach list if more space is needed)										ote No.			
Rose and Westr	a / G/	<u> </u>		Lori Powe																						209	86			
Address				Sampler's	Sign	ature																				Pag	je			
601 Fifth Street NW, Su						(7K.	12.	1229																1		of 1	Ĺ	
City	State	Zip Code		x	x 914/														T	Т		T				Т				
Grand Rapids MI 49504					Name		Jack	Mark	osky									1	1		1	1	1		1	1				
Project Name 16.0062335.52 T2																		mii.						li	aborat	ory Lot I	Number			
Project Number P.O No. 16 0062335.52 T2				92		Ma	atrix		No of Conta								70	yanid	5	5										
Sample ID / Description (Containers for each sample may be combined on one line)		Date	Time	G=Grab	Aqueous Solid Non-			Unpres.	H2S04	HN03		NaOH/Zn Acetate NaOH MeOH		Acetic Acid	Formic Acid	Available Cyanide	Hexavalent Chromium (7199)								ks / Coo LS Wate					
HS-MW-20S 3/4/2			3/4/2019	1215	G	×				4				Ī	1	1	×	x	×	x		 	T	1	1	1				
EB-1			3/4/2019	1345	G	×			Г	4				T	1	T	×	х	x	х		╅	1	†		T	,		····	
EB-2			3/4/2019	1410	G	×	Γ	Τ		4		Г	Г	┢	1	T	×	x	×	×		╁	†	T		╁				
						T		 		I^-					1			<u> </u>				 	1	T	+	T				
					Г	T		Γ		╅		-	ļ			┢			<u> </u>	T	†	T	T	十		<u> </u>				
						<u> </u>								T		T				 	T	╁	T	T	1	· · · · · · · · · · · · · · · · · · ·			***************************************	
										Г				Τ	T							T		1	T					
																1			<u> </u>							T			***************************************	
																		<u> </u>					1	T		T	***********	*****		
																Ī							<u> </u>	1				****		
Turn Around Time Required	(Prior le	b approval requi	ed for expedited T	AT)	Sam	ple Di	spos	a!		**********				Pos:	ible l	lazaro	dident	fication	n (List	any kr	own h	ezards	in the	rema	rks)	ac	Regu	remen	is	
⊠ _{Standard} □ Rush (Pl	ase Spe	cify)				eturn	to Cli	ent	X	Dispo	osal b	y Lab	,	X Non-Hazardous Flammebia]Skin ir	ritant 🔲	SDS pro	wided [Unikno	en.			·			
Relinquished by Jack Markosky					Date				Time					1. R	eceive	ed by							Date			Tim	e	·		
2. Relinquished by					3/5/2									<u> </u>									<u> </u>			L				
· ·					Date				Time	•				2. R	eceive	ed by							Date			Tim	е			
Relinquished by					Date	******			Time	ł				3. R	eceive	ed by							Date			Tim	8	***		
4. Relinquished by					Date				Time)				4. LE	borat	ory R	eceive	i by					Date	Date			ė			
Note: All samples are retained for four weeks from rece unless other arrangements are made.						ecei	ot							ONLY on ice		ж) Г] Y [N	∏ice	Pack		Re	eceipt Te	·mo		°C				

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, South Carolina 29172 Telephona No. (803) 791-9700 Fax No. (803) 791-9111 www.shealylab.com

Number

												,	mw.	HECKI	nao G	J(\$1										
Client				Report to	Conta	ct											Telephone No. / E-mail 616-956-6123								Quate No.	
Rose and Westra	1 GZ	ZA		Lori Powe	rs															lla.po						20986
Address		•		Samplers	Signa	ature											Analy	sis (At	lach lis	t if mor	e spac	e is ne	eded)			Page
601 Fifth Street NW, Sui	te 102					,		7,6	يجريم	100																1 of 1
City	State	Zip Code		x		١.	7	16		700								Γ	T			T	Τ	T		
Grand Rapids	M	49504		Printed N	vame		Jack	Marke	oskv			-						l						i		
Project Name	<u></u>			1	14			141123344										l		Ę						Laboratory Lot Number
16.0062335.52 T2]																ΙΈ						Laboratory Lot Number
Project Number			P.O No.		Т	· · ·				T	No	of C	onta	iner	s by		1		끝	2						
16.0062335.52 T2					9	l	Mi	atrix				eser					_	۰ ا	😤	Ö						
Sample ID / (Containers for each sample at			Date	Time	G=Grab C=Composite	Aqueous	Solid	Non- Aqueous		Unpres	H2S04	H NO3		NaOH/Zn Acetate		MeOH	Acetic Acid	Formic Acid	Available Cyanide	Hexavalent Chromium (7199)						Remarks / Cooler I.D. ALS Water
HS-MW-20M			3/6/2019	1220	G	×	Γ	Γ		4					1		×	x	×	×						
HS-MW-20D			3/6/2019	1225	G	x				4					1		x	×	×	х						
HS-MW-17S			3/6/2019	1615	G	x				4					1		x	х	×	×						
							Γ	Π		Γ					Π											
		***************************************											Г									Π	Τ			
								1							П											
					T		Γ		Г	Г			T													
Turn Around Time Required	(Prior i	ab approval rec	uired for expedited	(TAT)	Sam	ple D	ispos	ai				-		Pos	sible I	lazar	d Ideni	ficatio	n (Lis	any kr	own h	azards	in the	remai	ks)	QC Requirements
Standard CRush (Pl			•			etum	to CI	ient	(X	Disp	osal t	y Lab	,	(X)	lan-Hez	erdous	Flan	rnable [Skin li	ritent [SOS pro	bebive	Unkno	₩n		-
Relinquished by Jack Markosky					Date 3/7/2				Time	8				1. R	eceiv	ed by	,						Date	1		Time
2. Relinquished by				·····	Date				Time					2 P	eceiv	art her							Date			Time
					vale				Laura					<u> </u>									<u> </u>			
3. Relinquished by					Date				Tima	В				3. R	eceiv	ed by							Date			Time
4. Relinquished by					Date	!			Time	B				4. L	abora	ory R	eceive	d by					Date	1		Time
	Note: All samples are retained for four weeks from receipt unless other arrangements are made.						LAB USE ONLY Received on Ice (Check) Y N Ice Pack Receipt T				emp. °C															

Sample Receipt Checklist

Client Name: §	SHEALYENV				Date/Time	Received:	05-Mar-19	<u>11:05</u>	
Work Order: 1	<u>1903165</u>				Received b	y:	<u>DS</u>		
Checklist comple	ted by <i>Diane Shaxa</i> eSignature	05	-Mar-19 Date	R€	eviewed by:	Chad VO eSignature	Welton		05-Mar-19 Date
Matrices: Carrier name:	Aqueous ALSHN								
Shipping containe	er/cooler in good condition?		Yes	~	No 🗌	Not Pres	ent 🗌		
Custody seals int	act on shipping container/coole	?	Yes		No 🗌	Not Pres	ent 🗹		
Custody seals int	act on sample bottles?		Yes		No 🗌	Not Pres	ent 🗹		
Chain of custody	present?		Yes	~	No 🗌				
Chain of custody	signed when relinquished and r	eceived?	Yes	~	No 🗌				
Chain of custody	agrees with sample labels?		Yes	~	No 🔙				
Samples in prope	er container/bottle?		Yes	v	No 🔙				
Sample container	rs intact?		Yes	~	No				
Sufficient sample	volume for indicated test?		Yes	V	No				
All samples recei	ved within holding time?		Yes	V	No				
Container/Temp I	Blank temperature in complianc	e?	Yes	~	No 🗌				
Sample(s) receive	ed on ice?		Yes	V	No				
Temperature(s)/T	hermometer(s):		2.0/2.0	<u>c</u>		SR	12		
Cooler(s)/Kit(s):									
	e(s) sent to storage:		3/5/201 Yes		2:45 AM No	No VOA vials	submitted		
	s have zero headspace? otable upon receipt?		Yes		No 🗌	N/A	Japinilou	\$E	
pH adjusted?	nable upon receipt:		Yes		No ✓				
pH adjusted by:			-	:					
Login Notes:									
Client Contacted:	:	Date Contacted:			Person	Contacted:			
Contacted By:		Regarding:							
,									
Comments:									
CorrectiveAction:									
								SRC	Page 1 of 1

28-Mar-2019

Nisreen Saikaly Shealy Environmental Services, Inc. 106 Vantage Point Dr. West Columbia, SC 29169

Re: 16.0062335.52 T2 Work Order: 1903547

Dear Nisreen,

ALS Environmental received 13 samples on 12-Mar-2019 through 15-Mar-2019 for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 30.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely.

Electronically approved by: Chad Whelton

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

ALS Group, USA

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

Project: 16.0062335.52 T2

Work Order: 1903547

Work Order Sample Summary

Lab Samp II	Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
1903547-01	HS-MW-1D	Aqueous		3/11/2019 12:50	3/12/2019 10:30	
1903547-02	HS-MW-1S	Aqueous		3/11/2019 12:55	3/12/2019 10:30	
1903547-03	HS-MW-2	Aqueous		3/11/2019 14:45	3/12/2019 10:30	
1903547-04	HS-MW-11S	Aqueous		3/14/2019 11:50	3/15/2019 10:35	
1903547-05	HS-MW-11M	Aqueous		3/14/2019 11:40	3/15/2019 10:35	
1903547-06	HS-MW-11D	Aqueous		3/14/2019 14:50	3/15/2019 10:35	
1903547-07	HS-MW-5S	Aqueous		3/14/2019 11:20	3/15/2019 10:35	
1903547-08	HS-MW-5D	Aqueous		3/14/2019 15:50	3/15/2019 10:35	
1903547-09	HS-MW-3S	Aqueous		3/13/2019 14:30	3/15/2019 10:35	
1903547-10	HS-MW-3S DUP	Aqueous		3/13/2019 14:30	3/15/2019 10:35	
1903547-11	HS-MW-4	Aqueous		3/15/2019 11:10	3/15/2019 16:05	
1903547-12	HS-MW-3S	Aqueous		3/15/2019 13:45	3/15/2019 16:05	
1903547-13	HS-MW-3S DUP	Aqueous		3/15/2019 13:45	3/15/2019 16:05	

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

Project: 16.0062335.52 T2 Case Narrative

Work Order: 1903547

Samples for the above noted Work Order were received on 03/12/2019. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Wet Chemistry:

Batch R256519, Method CR6 7196 GW, Samples 1903547-04B, -05B, and -07B: Sample holding time for Hexavalent Chromium was missed due to laboratory error. Results should be considered estimated.

Date: 28-Mar-19 ALS Group, USA

Client: Shealy Environmental Services, Inc.

QUALIFIERS, 16.0062335.52 T2 **Project:**

ACRONYMS, UNITS WorkOrder: 1903547

Qualifier	Description
Vuanner *	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
H	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
О	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U X	Analyzed but not detected above the MDL Analyzed but not detected in the Mothed Plank between the MDL and Penertine Limit agreed a regular year whilit beckers and as
A	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
E	EPA
sw	SW-846 Update III
Units Reported	Description
μg/L	Micrograms per Liter
mg/L	Milligrams per Liter

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-1D
 Lab ID:
 1903547-01

 Collection Date:
 3/11/2019 12:50 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 03:05 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 03:05 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/12/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JSH
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/12/2019 10:45 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-1S
 Lab ID:
 1903547-02

 Collection Date:
 3/11/2019 12:55 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 03:18 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 03:18 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/12/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JSH
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/12/2019 10:45 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-2
 Lab ID:
 1903547-03

 Collection Date:
 3/11/2019 02:45 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/12/2019 03:31 PM
Formic Acid	ND		25	mg/L	1	3/12/2019 03:31 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	µg/L	1	3/12/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JSH
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/12/2019 10:45 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-11S
 Lab ID:
 1903547-04

 Collection Date:
 3/14/2019 11:50 AM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 05:44 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 05:44 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/19/2019 11:30 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND	Н	0.0050	mg/L	1	3/15/2019 11:55 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-11M
 Lab ID:
 1903547-05

 Collection Date:
 3/14/2019 11:40 AM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 05:57 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 05:57 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/19/2019 11:30 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND	H	0.0050	mg/L	1	3/15/2019 11:55 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-11D
 Lab ID:
 1903547-06

 Collection Date:
 3/14/2019 02:50 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 06:10 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 06:10 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/19/2019 11:30 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/15/2019 11:55 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-5S
 Lab ID:
 1903547-07

 Collection Date:
 3/14/2019 11:20 AM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 06:23 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 06:23 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/19/2019 11:30 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND	Н	0.0050	mg/L	1	3/15/2019 11:55 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-5D
 Lab ID:
 1903547-08

 Collection Date:
 3/14/2019 03:50 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 06:36 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 06:36 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/19/2019 11:30 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/15/2019 11:55 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-3S
 Lab ID:
 1903547-09

 Collection Date:
 3/13/2019 02:30 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 05:31 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 05:31 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/19/2019 11:30 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-38 DUP
 Lab ID:
 1903547-10

 Collection Date:
 3/13/2019 02:30 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit Units		Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 07:02 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 07:02 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/19/2019 11:30 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-4
 Lab ID:
 1903547-11

 Collection Date:
 3/15/2019 11:10 AM
 Matrix:
 AQUEOUS

Analyses	Result		Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 07:15 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 07:15 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	µg/L	1	3/19/2019 11:30 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND	(0.0050	mg/L	1	3/16/2019 09:38 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-3S
 Lab ID:
 1903547-12

 Collection Date:
 3/15/2019 01:45 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
CHROMIUM, HEXAVALENT Chromium, Hexavalent	ND		SW719 0.0050	6A mg/L	1	Analyst: JEB 3/16/2019 09:38 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903547

 Sample ID:
 HS-MW-3S DUP
 Lab ID:
 1903547-13

 Collection Date:
 3/15/2019 01:45 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
CHROMIUM, HEXAVALENT Chromium, Hexavalent	ND		SW719 0.0050	P 6A mg/L	1	Analyst: JEB 3/16/2019 09:38 AM

Date: 28-Mar-19

Client: Shealy Environmental Services, Inc.

Work Order:

1903547

Project: 16.0062335.52 T2

Date: 28-Mar-19

Batch ID: R256427	Instrument ID HPLC2		Method	d: SW8 30	MO						
MBLK	Sample ID: MBLKW1-R256427				U	Jnits: mg/l	Ĺ,	Analys	sis Date: 3/	12/2019 1	2:16 PM
Client ID:	Run ID	: HPLC2	_190312A		Se	qNo: 5557	7672	Prep Date: 3/1:	2/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid	ND	5.0									
Formic Acid	ND	5.0									
LCS	Sample ID: LCSW1`-R256427				U	Inits: mg/	L	Analys	sis Date: 3/	12/2019 1	2:29 PM
Client ID:	Run ID	: HPLC2	_190312A		Se	qNo: 5557	7673	Prep Date: 3/1:	2/2019	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid	525.9	5.0	500		0	105	80-120	0			
Formic Acid	517.5	5.0	500		0	104	80-120	0			
MS	Sample ID: 1903165-01A MS				U	Jnits: mg/l	L.	Analys	sis Date: 3/	12/2019 1	2:42 PM
Client ID:	Run ID	: HPLC2	_190312A		Se	qNo: 5557	7674	Prep Date: 3/1:	2/2019	DF: 2	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid	1001	10	1000		0	100	75-125	0			
Formic Acid	985.5	10	1000		0	98.5	75-125	0			
MSD	Sample ID: 1903165-01A MSD				U	Jnits: mg/	<u>L</u>	Analys	sis Date: 3/	12/2019 1	2:55 PM
Client ID:	Run ID	: HPLC2	_190312A		Se	qNo: 555 7	7676	Prep Date: 3/1:	2/2019	DF: 2	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid	1022	10	1000		0	102	75-125	1001	2.02	20	
Formic Acid	999.4	10	1000		0	99.9	75-125	985.5	1.4	20	

Shealy Environmental Services, Inc.

Work Order:

1903547

Project:

16.0062335.52 T2

Batch ID: R256885	Instrument ID HP	LC2		Method	d: SW8 30	OM						
MBLK	Sample ID: MB-R25688	85-R256885				Į	Units: mg/	L	Analys	is Date: 3/	19/2019 0	4:39 PM
Client ID:		Run ID:	HPLC2	_190319A		Se	eqNo: 556 8	3904	Prep Date: 3/19	/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid		ND	5.0									
Formic Acid		ND	5.0									
LCS	Sample ID: LCS-R2568	385-R25688	5			ı	Jnits: mg/l	L	Analys	is Date: 3/	19/2019 0	4:52 PM
Client ID:		Run ID:	HPLC2	_190319A		Se	eqNo: 556 8	3905	Prep Date: 3/19	/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid		522.2	5.0	500		0	104	80-120	0			
Formic Acid		508.9	5.0	500		0	102	80-120	0			
MS	Sample ID: 1903547-09	PAMS				ı	Jnits: mg/l	L.	Analys	is Date: 3/	19/2019 0	5:05 PM
Client ID: HS-MW-38	3	Run ID:	HPLC2	_190319A		Se	eqNo: 556 8	8912	Prep Date: 3/19	/2019	DF: 2	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid		996.2	10	1000		0	99.6	75-125	0			
Formic Acid		1018	10	1000		0	102	75-125	0			
MSD	Sample ID: 1903547-09	AMSD				ı	Jnits: mg/l	L	Analys	is Date: 3/	19/2019 0	5:18 PM
Client ID: HS-MW-38	3	Run ID:	HPLC2	_190319A		Se	eqNo: 556 8	8913	Prep Date: 3/19	/2019	DF: 2	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid		1011	10	1000		0	101	75-125	996.2	1.52	20	
Formic Acid		1009	10	1000		0	101	75-125	1018	0.977	20	
The following samples were analyzed in this batch:		19	003547-04A 003547-07A 003547-10A	19	9035	547-05A 547-08A 547-11A		03547-06A 03547-09A				

Shealy Environmental Services, Inc.

Work Order:

1903547

Project:

16.0062335.52 T2

Batch ID: R256307	Instrument ID WETCHEN	И	Method	: SW719	6A					
MBLK	Sample ID: MB-R256307-R256	6307			Units: mg/	L	Analys	sis Date: 3	/12/2019 1	0:45 AN
Client ID:	Rur	ID: WETC	HEM_190312	2E	SeqNo: 555	4975	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt ND	0.0050								
LCS	Sample ID: LCS-R256307-R25	6307			Units: mg/	L	Analys	sis Date: 3	/12/2019 1	0:45 AM
Client ID:	Rur	ID: WETC	HEM_190312	2E	SeqNo: 555	4976	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt 0.2019	0.0050	0.2		0 101	91-113	()		
MS	Sample ID: 1903547-01B MS				Units: mg/	L	Analys	sis Date: 3	/12/2019 1	0:45 AM
Client ID: HS-MW-1D	Rur	ID: WETC	HEM_190312	2E	SeqNo: 555	4978	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt 0.2131	0.0050	0.2	0.001	5 106	91-113	()		
MSD	Sample ID: 1903547-01B MSD	i			Units: mg/	L	Analys	sis Date: 3	/12/2019 1	0:45 AM
Client ID: HS-MW-1D	Rur	n ID: WETC	HEM_190312	2E	SeqNo: 555	4979	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	nt 0.2006	0.0050	0.2	0.001	5 99.6	91-113	0.2131	6.04	10	

Shealy Environmental Services, Inc.

Work Order:

1903547

Project:

16.0062335.52 T2

Batch ID: R256315	Instrument ID FS3100		Metho	d: OIA 16	77						
MBLK	Sample ID: MB-R256315-R25631	5			ι	Jnits: µg/L		Analy	sis Date: 3	/12/2019 0	1:00 PM
Client ID:	Run ID	: FS3100	0_190312B		Se	qNo: 555 5	5210	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available	ND	2.0									
LCS	Sample ID: LCS-R256315-R2563	15			ι	Jnits: µg/L		Analy	sis Date: 3	/12/2019 0	1:00 PM
Client ID:	Run ID	: FS3100	_190312B		Se	qNo: 555 5	5211	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available	44.05	2.0	50		0	88.1	82-132	2	0		
MS	Sample ID: 1903542-01A MS				ι	Jnits: µg/L		Analy	sis Date: 3	/12/2019 0	1:00 PM
Client ID:	Run ID	: FS3100	_190312B		Se	qNo: 5555	5213	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available	49.41	2.0	50	1	.8	95.2	82-130	- 0	0		
MSD	Sample ID: 1903542-01A MSD				ι	Jnits: µg/L		Analy	sis Date: 3	/12/2019 0	1:00 PM
Client ID:	Run ID	: FS3100	_190312B		Se	qNo: 555 5	5214	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available	51.41	2.0	50	1	.8	99.2	82-130	49.4	1 3.97	11	
The following samp	oles were analyzed in this batch:	19	903547-01C	19	9035	547-02C	19	03547-03C			

Shealy Environmental Services, Inc.

Work Order:

1903547

Project:

16.0062335.52 T2

Batch ID: R256519	Instrument ID WETCHEM		Metho	d: SW71	96A					
MBLK	Sample ID: MB-R256519-R2565	19			Units: mg	/L	Analys	is Date: 3/	15/2019 1	1:55 AM
Client ID:	Run I	ID: WET	TCHEM_19031	5D	SeqNo: 556	60058	Prep Date:		DF: 1	
Analyte	Result	PG	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt ND	0.005	50							
LCS	Sample ID: LCS-R256519-R256	519			Units: mg	/L	Analys	is Date: 3/	15/2019 1	1:55 AM
Client ID:	Run I	D: WET	TCHEM_19031	5D	SeqNo: 556	60059	Prep Date:		DF: 1	
Analyte	Result	PC	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt 0.2069	0.005	0.2		0 103	91-113	0			
MS	Sample ID: 1903547-05B MS				Units: mg	/L	Analys	is Date: 3/	15/2019 1	1:55 AM
Client ID: HS-MW-1	M Run I	D: WET	TCHEM_19031	5D	SeqNo: 556	60062	Prep Date:		DF: 1	
Analyte	Result	PG	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt 0.2069	0.005	0.2	0.00	15 103	91-113	0			
MSD	Sample ID: 1903547-05B MSD				Units: mg	/L	Analys	is Date: 3/	15/2019 1	1:55 AM
Client ID: HS-MW-11	M Run I	D: WET	TCHEM_19031	5D	SeqNo: 556	60063	Prep Date:		DF: 1	
Analyte	Result	PG	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt 0.2106	0.005	0.2	0.00	15 105	91-113	0.2069	1.77	10	
The following samp	les were analyzed in this batch:		1903547-04B 1903547-07B		903547-05B 903547-08B	19	903547-06B			

Shealy Environmental Services, Inc.

Work Order:

1903547

Project:

16.0062335.52 T2

Batch ID: R256568	Instrument ID WETCHEM		Method	d: SW719	06A					
MBLK	Sample ID: MB-R256568-R2565	68			Units: mg	/L	Analy	sis Date: 3/	16/2019 0	9:38 AM
Client ID:	Run I	D: WETC	HEM_19031	6A	SeqNo: 556	1065	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavalen	t ND	0.0050								
LCS	Sample ID: LCS-R256568-R256	568			Units: mg	/L	Analy	sis Date: 3/	16/2019 0	9:38 AM
Client ID:	Run I	D: WETC	HEM_19031	6A	SeqNo: 556	1066	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavalen	t 0.2069	0.0050	0.2		0 103	91-113		0		
MS	Sample ID: 1903547-12AMS				Units: mg	/L	Analy	sis Date: 3/	16/2019 0	9:38 AM
Client ID: HS-MW-3S	Run I	D: WETC	HEM_19031	6A	SeqNo: 556	1069	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavalen	t 0.2044	0.0050	0.2	0.00	15 101	91-113		0		
MSD	Sample ID: 1903547-12AMSD				Units: mg	/L	Analy	sis Date: 3/	16/2019 0	9:38 AM
Client ID: HS-MW-3S	Run I	D: WETC	HEM_19031	6A	SeqNo: 556	1070	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavalen	t 0.2069	0.0050	0.2	0.00	15 103	91-113	0.204	4 1.22	10	
The following sample	es were analyzed in this batch:	1	903547-11B	19	03547-12A	19	903547-13A			

Shealy Environmental Services, Inc.

Work Order:

1903547

Project:

16.0062335.52 T2

QC	BATCH	REP	ORT

Batch ID: R256755	Instrument ID FS:	3100		Method	: OIA 16	77					
MBLK	Sample ID: MB-R25675	55-R25675	5			Units: μο	j/L	Analys	is Date: 3/	19/2019 1	1:30 AM
Client ID:		Run ID	FS3100	_190319B		SeqNo: 55	65369	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%RE0	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		ND	2.0								
LCS	Sample ID: LCS-R2567	55-R25675	55			Units: μο	g/L	Analys	is Date: 3/	19/2019 1	1:30 AN
Client ID:		Run ID	FS3100	_190319B		SeqNo: 55	65370	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REG	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		47.6	2.0	50		0 95.2	82-132	0			
MS	Sample ID: 1903547-09	BMS				Units: μο	g/L	Analys	is Date: 3/	19/2019 1	1:30 AM
Client ID: HS-MW-3S		Run ID	FS3100	_190319B		SeqNo: 55	65377	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REG	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		48.28	2.0	50	0.3	27 96	82-130	0			
MSD	Sample ID: 1903547-09	BMSD				Units: μο	J/L	Analys	is Date: 3/	19/2019 1	1:30 AM
Client ID: HS-MW-3S		Run ID	FS3100	_190319B		SeqNo: 55	65378	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%RE	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		49.42	2.0	50	0.2	27 98.3	82-130	48.28	2.33	11	
The following sampl	es were analyzed in thi	s batch:	19	03547-04C 03547-07C 03547-10B	19	903547-05C 903547-08C 903547-11C	19	003547-06C 003547-09B			

SHEALY

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

www.shealylab.com Report to Contact Telephone No. / E-mail 616-956-6123 Quote No. Client Rose and Westra / GZA Lori Powers loretta.powers@gza.com 20986 Sampler's Signature Analysis (Attach list if more space is needed) Address Page 601 Fifth Street NW, Suite 102 of 1 City State | Zip Code 49504 Grand Rapids MI Printed Name Jack Markosky Hexavalent Chromium (7199) Project Name Laboratory Lot Number 16.0062335.52 T2 Available Cyanide P.O No. No of Containers by Project Number Matrix G=Grab C=Composite 16.0062335.52 T2 Preservative Type Formic Acid Acetic Acid NaOH/Zn Acetate Aqueous H2S04 MeOH Unpres. NaOH Non-Aqueous HN03 Solid Sample ID / Description Remarks / Cooler I.D. 宁 Date Time (Containers for each sample may be combined on one line) **ALS Water** HS-MW-1D G 3/11/2019 1250 4 X 1 Х Х Х X G HS-MW-1S 3/11/2019 1255 X 4 1 Х X х X HS-MW-2 G 3/11/2019 1445 4 х х х Possible Hazard Identification (List any known hazards in the remarks) Turn Around Time Required (Prior lab approval required for expedited TAT) Sample Disposal QC Requirements NDisposal by Lab Standard Rush (Please Specify) Return to Client X Non-Hazardous Flammable Skin Irritant SDS provided Unknown 1. Relinquished by Date 1. Received by Time 0945 3/12/19 00145 Jack Markosky 3/12/2019 u un 2. Relinquished by 2. Received by Time Time 2/12/19 Relinguished by Date Time 3. Received by Date Time 4. Relinquished by Date Time 4. Laboratory Received by Date Note: All samples are retained for four weeks from receipt LAB USE ONLY Receipt Temp. 3.6 °C SQZ Received on Ice (Check) Y N Ice Pack unless other arrangements are made.

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172
Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

											W WY WV .	Silcaly	iav.u	2111												
Client			Report to Contact									Telephone No. / E-mail 616-956-6123 Quote No.														
Rose and Westra / GZA			Lori Powers									loretta.powers@gza.com								20986						
Address		Sampler's	Signa	ature											Analy	sis (At	tach lis	t if mor	e spac	æ is ne	eded)			Page		
601 Fifth Street NW, Suite 102				1		15	22	22																1	of ,	1
City State Zip Code		7 _x		-	Jan.	/ / .	//																			
Grand Rapids MI 49504		Printed I	lame	·····	Jack I	Marko:	skv			-																
Project Name 16.0062335.52 T2							J.,										ψ	min Em						Lat	oratory Lot	Number
Project Number	P.O No.	<u> </u>	1						No	of C	onta	ainer	s bv		1		<u>.</u>	15								
16.0062335.52 T2			_ <u>#</u>		Ma	trix						ve Ty				<u>.</u>	🖔	15		1						
Sample ID / Description (Containers for each sample may be combined on one	ne) Date	Time	G=Grab C=Composite	Aqueous	Solid	Non- Aqueous		Unpres.	H2SO4	HNO3	Τ	NaOH/Zn Acetate		МеОН	Acetic Acid	Formic Acid	Available Cyanide	Hexavalent Chromium (7199)						Re	marks / Co	
HS-MW-11S	3/14/2019	1150	G	х				4					1		х	х	х	х								
HS-MW-11M	3/14/2019	1140	G	х				4					1		х	х	х	х								
HS-MW-11D	3/14/2019	1450	G	×				4					1		х	х	х	x								
HS-MW-5S	3/14/2019	1120	G	х				4					1		х	х	х	х								
HS-MW-5D	3/14/2019	1550	G	х				4					1		х	х	х	х								
																	,								***************************************	
											1			<u> </u>												
Turn Around Time Required (Prior lab approval r	quired for expedited	TAT)	Sam	ple D	sposa	 }	L	·				Pos	sible F	lazar	didenti	ficatio	n (List	any kr	own h	azards	in the	remar	ks)	QC R	equireme	nts
Standard Rush (Please Specify)			Return to Client Disposal by Lab						Non-Hazardous Flammable Skin Irritant SDS provided							Unknov	vrs									
Relinquished by			Date				Time	:				1. R	eceive	ed by							Date			Time		
Jack Markosky			1	/2019				0	745					ستوسد. موجون سد	<i>,</i>	an	7	~			2/1	5/19	1		CHE	
2. Relinquished by			Date 5/15/19				Time /03)				2. Received by				8	<i>-</i>	艾	(Date			Time			
3. Relinguished by			Date				Time				3. R	eceive	d by	1						Date	Date		Time			
4. Relinquished by				:			Time	1				4. La	4. Laboratory Received by						Date	ate		Time				
	oles are retaine					ecei	ot						USE eived			ck) [] Y		lce	Pack		Re	eceipt T	emp. <u>2</u>	<u>'.</u> 4 .	c SRZ

1903547

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172
Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

www.shealylab.com Report to Contact Telephone No. / E-mail 616-956-6123 Quote No. Client Rose and Westra / GZA 20986 Lori Powers loretta.powers@gza.com Analysis (Attach list if more space is needed) Sampler's Signature Page Address 601 Fifth Street NW, Suite 102 of 1 State Zip Code Grand Rapids 49504 MI Jack Markosky **Printed Name** Hexavalent Chromium (7199) Project Name Laboratory Lot Number 16.0062335.52 T2 Available Cyanide P.O No. No of Containers by Project Number Matrix 16.0062335.52 T2 Preservative Type Formic Acid Acetic Acid G=Grab C=Composi NaOH/Zn Aqueous Acetate MeOH Aqueous Unpres. H2S04 NaOH Solid HN03 Remarks / Cooler I.D. Sample ID / Description Non 오 Date Time **ALS Water** (Containers for each sample may be combined on one line) HS-MW-3D G 3 Resampling for H. Cr. 3/13/2019 1430 Х Х Х Х G 3 Resampling for H. Cr. HS-MW-3D DUP 3/13/2019 1430 X х Х Х HS-MW-3D MS/MSD G 3 Resampling for H. Cr. 1430 1 3/13/2019 X Х Χ Х Possible Hazard Identification (List any known hazards in the remarks) Sample Disposal QC Requirements Turn Around Time Required (Prior lab approval required for expedited TAT) Disposal by Lab Non-Hazardous Flammable Skin Imitant SDS provided Unknown Standard ☐Return to Client Rush (Please Specify) Date 3/15/19 Time 1. Relinguished by Date 1. Received by Time 0945 0945 Jack Markosky 3/15/2019 2. Relinguished by Time Received by Date Time 1035 3/15/15 Relinguished by Date 3. Received by Date Time Time 4. Laboratory Received by Date 4. Relinquished by Date Time Note: All samples are retained for four weeks from receipt LAB USE ONLY Received on Ice (Check) lce Pack $\prod Y \prod N$ unless other arrangements are made.

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172
Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

www.shealylab.com Report to Contact Telephone No. / E-mail 616-956-6123 Quote No. Client Rose and Westra / GZA Lori Powers loretta.powers@gza.com 20986 Sampler's Signature Analysis (Attach list if more space is needed) Page Address 601 Fifth Street NW, Suite 102 of <u>1</u> City State Zip Code Grand Rapids М 49504 Printed Name Jack Markosky Hexavalent Chromium (7199) **Project Name** Laboratory Lot Number 16.0062335.52 T2 Available Cyanide P.O No. No of Containers by Project Number Matrix Preservative Type 16.0062335.52 T2 Formic Acid G=Grab C=Composit Acetic Acid NaOH/Zn Acetate Aqueous MeOH Unpres. H2S04 HN03 NaOH Solid Remarks / Cooler I.D. Sample ID / Description 오 Ŕ Date Time **ALS Water** (Containers for each sample may be combined on one line) HS-MW-4 G 3/15/2019 1110 х Х HS-MW-3S G 3/15/2019 1345 Х Х HS-MW-3S DUP 3/15/2019 1345 G х 1 Х HS-MW-3S MS/MSD G 3/15/2019 1345 Х 1 Х Possible Hazard Identification (List any known hazards in the remarks) QC Requirements Turn Around Time Required (Prior lab approval required for expedited TAT) Sample Disposal XDisposal by Lab Standard Non-Hazardous Flammable Skin Irritant SDS provided Unknown Rush (Please Specify) Return to Client 1. Relinguished by Date 1. Received by Time 7313 1515 15/19 Jack Markosky 3/15/2019 2. Relinquished by Date 2. Received by 3. Relinquished by Date Time 3. Received by Date Time 4. Laboratory Received by 4. Relinguished by 1605 3/15/19 1605 Note: All samples are retained for four weeks from receipt LAB USE ONLY Received on Ice (Check) $\prod Y \prod N$ Ice Pack unless other arrangements are made. Receipt Temp.

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172

Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

www.shealylab.com Report to Contact Telephone No. / E-mail 616-956-6123 Quote No. Client Rose and Westra / GZA Lori Powers 20986 loretta.powers@gza.com Sampler's Signature Analysis (Attach list if more space is needed) Address Page 601 Fifth Street NW, Suite 102 of 1 City State Zip Code 49504 Grand Rapids MI Printed Name Jack Markosky Hexavalent Chromium (7199) Project Name Laboratory Lot Number 16.0062335.52 T2 Available Cyanide P.O No. No of Containers by Project Number Matrix G=Grab C=Composite 16.0062335.52 T2 Preservative Type Formic Acid Acetic Acid NaOH/Zn Acetate Aqueous Unpres. H2S04 HN03 NaOH MeOH Solid Remarks / Cooler I.D. Sample ID / Description Ρ̈́ Ÿ Date Time (Containers for each sample may be combined on one line) **ALS Water** HS-MW-3S G 3 Resampling for H. Cr. 3/13/2019 1430 х HS-MW-3S DUP G 3 1430 Resampling for H. Cr. 3/13/2019 Х 1 Х Х Х HS-MW-3S MS/MSD 3/13/2019 1430 G 3 1 Resampling for H. Cr. х Х х Possible Hazard Identification (List any known hazards in the remarks) QC Requirements Turn Around Time Required (Prior lab approval required for expedited TAT) Sample Disposal XDisposal by Lab Non-Hazardous Flammable Skin Irritant SDS provided Unknown Rush (Please Specify) Standard Return to Client 1. Relinguished by 1. Received by Date Time Date Time Jack Markosky 3/15/2019 2. Relinguished by Date Time 2. Received by Date Time 3. Relinquished by Date Date Time 3. Received by Time 4. Relinguished by Date Time 4. Laboratory Received by Date Time Note: All samples are retained for four weeks from receipt LAB USE ONLY Received on Ice (Check) TY N ☐lce Pack unless other arrangements are made. Receipt Temp.

Sample Receipt Checklist

Client Name:	SHEALYENV				Date/Time	Received:	<u>12-Mar-19</u>	10:30	
Work Order:	<u>1903547</u>				Received b	y:	<u>DS</u>		
Checklist compl	eted by <i>Sane Shace</i> esignature		12-Mar-19 _{Date}	l	Reviewed by:	Chad V. eSignature	Welton		12-Mar-19 Date
Matrices: Carrier name:	Aqueous ALSHN								
Shipping contain	ner/cooler in good condition?		Yes	~	No 🗌	Not Pres	ent		
Custody seals in	ntact on shipping container/coole	r?	Yes		No 🗌	Not Pres	ent 🗹		
Custody seals in	ntact on sample bottles?		Yes		No 🗌	Not Pres	ent 🗸		
Chain of custody	y present?		Yes	~	No 🗌				
Chain of custody	y signed when relinquished and r	eceived?	Yes	~	No 🔙				
Chain of custody	y agrees with sample labels?		Yes	~	No 🔙				
Samples in prop	er container/bottle?		Yes	~	No 🔙				
Sample containe	ers intact?		Yes	~	No 🔙				
Sufficient sample	e volume for indicated test?		Yes	~	No 🗌				
All samples rece	eived within holding time?		Yes	~	No 🗔				
Container/Temp	Blank temperature in complianc	e?	Yes	v	No 🗆				
Sample(s) recei	ved on ice?		Yes	V	No 🗔				
	Thermometer(s):		3.6/3.6	C		SF	32		
Cooler(s)/Kit(s):									
•	ole(s) sent to storage: als have zero headspace?		3/12/20 Yes		0:32:23 AM No	No VOA vials	s submitted		
	eptable upon receipt?		Yes		No 🗌	N/A			
pH adjusted?	,		Yes		No 🗸	N/A			
pH adjusted by:			_						
Login Notes:									
Client Contacted	i:	Date Contacted:			Person	Contacted:			
Contacted By:		Regarding:							
-									
Comments:									
CorrectiveAction	n:								
								SRC	Page 1 of 1

31-Mar-2019

Nisreen Saikaly Shealy Environmental Services, Inc. 106 Vantage Point Dr. West Columbia, SC 29169

Re: 16.0062335.52 T2 Work Order: 1903985

Dear Nisreen,

ALS Environmental received 11 samples on 19-Mar-2019 through 22-Mar-2019 for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 28.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely.

Electronically approved by: Chad Whelton

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

ALS Group, USA

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

Project: 16.0062335.52 T2 Work Order Sample Summary

Work Order: 1903985

Lah Samp II	Client Sample ID	Matrix	Tag Number	Collection Date	Date Received	Hold
<u>-</u>	<u>-</u>	MATIA	1ag Number	-		IIVIU
1903985-01	HS-MW-10S	Aqueous		3/18/2019 15:05	3/19/2019 11:10	LI
1903985-02	HS-MW-10M	Aqueous		3/18/2019 12:35	3/19/2019 11:10	
1903985-03	HS-MW-10D	Aqueous		3/18/2019 12:10	3/19/2019 11:10	
1903985-04	HS-MW-9D	Aqueous		3/19/2019 13:50	3/20/2019 12:00	
1903985-05	HS-MW-9M	Aqueous		3/19/2019 13:45	3/20/2019 12:00	
1903985-06	HS-MW-9S	Aqueous		3/19/2019 15:00	3/20/2019 12:00	
1903985-07	HS-MW-6S	Aqueous		3/20/2019 14:15	3/21/2019 12:15	
1903985-08	HS-MW-6D	Aqueous		3/20/2019 16:00	3/21/2019 12:15	
1903985-09	HS-MW-7s	Aqueous		3/21/2019 11:10	3/22/2019 11:30	
1903985-10	HS-MW-8	Aqueous		3/21/2019 14:00	3/22/2019 11:30	
1903985-11	HS-MW-8 DUP	Aqueous		3/21/2019 14:00	3/22/2019 11:30	

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

Project: 16.0062335.52 T2 Case Narrative

Work Order: 1903985

Samples for the above noted Work Order were received on 03/19/2019. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Wet Chemistry:

Batch R257005, Method CR6_7196_GW, Sample 1903985-09B: Sample holding time for Hexavalent Chromium expired due to laboratory error. Results should be considered estimated.

Batch R257131, Method CNAV_1677_W, Sample 1903985-09CMS: The matrix spike recovery was outside of the control limit for Available Cyanide. However, the matrix spike duplicate recovery and the RPD between the MS and MSD were in control. No qualification is required.

Date: 31-Mar-19 ALS Group, USA

Client: Shealy Environmental Services, Inc.

QUALIFIERS, Project: 16.0062335.52 T2

ACRONYMS, UNITS WorkOrder: 1903985

Onalifica	Description
Qualifier *	Description Value exceeds Regulatory Limit
· 李辛	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
H	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
O	Sample amount is > 4 times amount spiked
p	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	<u>Description</u>
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
Е	EPA
SW	SW-846 Update III
Units Reported	Description
μg/L	Micrograms per Liter
mg/L	Milligrams per Liter

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-10S
 Lab ID:
 1903985-01

 Collection Date:
 3/18/2019 03:05 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 07:28 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 07:28 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/22/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/19/2019 11:35 AM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-10M
 Lab ID:
 1903985-02

 Collection Date:
 3/18/2019 12:35 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 07:41 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 07:41 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/22/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/19/2019 11:35 AM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-10D
 Lab ID:
 1903985-03

 Collection Date:
 3/18/2019 12:10 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/19/2019 07:54 PM
Formic Acid	ND		25	mg/L	1	3/19/2019 07:54 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/22/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/19/2019 11:35 AM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-9D
 Lab ID:
 1903985-04

 Collection Date:
 3/19/2019 01:50 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ОМ		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/25/2019 07:52 PM
Formic Acid	ND		25	mg/L	1	3/25/2019 07:52 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/22/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/20/2019 12:58 PM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-9M
 Lab ID:
 1903985-05

 Collection Date:
 3/19/2019 01:45 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	OM		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/25/2019 08:05 PM
Formic Acid	ND		25	mg/L	1	3/25/2019 08:05 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/22/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/20/2019 12:58 PM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-9S
 Lab ID:
 1903985-06

 Collection Date:
 3/19/2019 03:00 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/25/2019 08:18 PM
Formic Acid	ND		25	mg/L	1	3/25/2019 08:18 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/22/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/20/2019 12:58 PM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-6S
 Lab ID:
 1903985-07

 Collection Date:
 3/20/2019 02:15 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/25/2019 08:31 PM
Formic Acid	ND		25	mg/L	1	3/25/2019 08:31 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/22/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/21/2019 01:01 PM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-6D
 Lab ID:
 1903985-08

 Collection Date:
 3/20/2019 04:00 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/25/2019 08:44 PM
Formic Acid	ND		25	mg/L	1	3/25/2019 08:44 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/22/2019 01:00 PM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/21/2019 01:01 PM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-7s
 Lab ID:
 1903985-09

 Collection Date:
 3/21/2019 11:10 AM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/25/2019 07:39 PM
Formic Acid	ND		25	mg/L	1	3/25/2019 07:39 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/25/2019 11:00 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND	H	0.0050	mg/L	1	3/22/2019 12:50 PM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-8
 Lab ID:
 1903985-10

 Collection Date:
 3/21/2019 02:00 PM
 Matrix:
 AQUEOUS

Analyses	Result		leport Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/25/2019 09:10 PM
Formic Acid	ND		25	mg/L	1	3/25/2019 09:10 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	2.9		2.0	μg/L	1	3/25/2019 11:00 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND	0	.0050	mg/L	1	3/22/2019 12:50 PM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

 Project:
 16.0062335.52 T2
 Work Order:
 1903985

 Sample ID:
 HS-MW-8 DUP
 Lab ID:
 1903985-11

 Collection Date:
 3/21/2019 02:00 PM
 Matrix:
 AQUEOUS

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
ACIDS BY HPLC			SW830	ом		Analyst: KYM
Acetic Acid	ND		25	mg/L	1	3/25/2019 09:23 PM
Formic Acid	ND		25	mg/L	1	3/25/2019 09:23 PM
CYANIDE, AVAILABLE			OIA 16	77		Analyst: MB
Cyanide, Available	ND		2.0	μg/L	1	3/25/2019 11:00 AM
CHROMIUM, HEXAVALENT			SW719	6A		Analyst: JEB
Chromium, Hexavalent	ND		0.0050	mg/L	1	3/22/2019 12:50 PM

Date: 31-Mar-19

Client: Shealy Environmental Services, Inc.

Work Order:

1903985

Project: 16.0062335.52 T2

QC BATCH REPORT

Date: 31-Mar-19

Batch ID: R256885	Instrument ID HPLC	2		Method	: SW830	MO						
MBLK	Sample ID: MB-R256885-	R25688	5			Units: mg/L			Analys	is Date: 3	/19/2019 0	4:39 PN
Client ID:		Run ID	HPLC2	_190319A		SeqNo: 5568904			Prep Date: 3/19	DF: 1		
Analyte	R	esult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid		ND	5.0									
Formic Acid		ND	5.0									
LCS	Sample ID: LCS-R256885	-R25688	15			Units: mg/L			Analys	is Date: 3	/19/2019 0	4:52 PN
Client ID:	Run ID: HPLC2_190319A			_190319A		Se	qNo: 556 8	3905	Prep Date: 3/19	9/2019	DF: 1	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid	5	22.2	5.0	500		0	104	80-120	0			
Formic Acid	5	08.9	5.0	500		0	102	80-120	0			
MS	Sample ID: 1903547-09AMS					Units: mg/L			Analys	is Date: 3	/19/2019 0	5:05 PN
Client ID:		Run ID	HPLC2	_190319A		Se	qNo: 556 8	3912	Prep Date: 3/19	9/2019	DF: 2	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid	9	96.2	10	1000		0	99.6	75-125	0			
Formic Acid	-	1018	10	1000		0	102	75-125	0			
MSD	Sample ID: 1903547-09A	MSD				ι	Jnits: mg/l	L,	Analys	is Date: 3	/19/2019 0	5:18 PN
Client ID:		Run ID	HPLC2	_190319A		Se	qNo: 556 8	3913	Prep Date: 3/19	9/2019	DF: 2	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid		1011	10	1000		0	101	75-125	996.2	1.52	2 20	
Formic Acid		1009	10	1000		0	101	75-125	1018	0.977	20	

Shealy Environmental Services, Inc.

Work Order:

1903985

Project:

16.0062335.52 T2

Batch ID: R257162	Instrument ID HP	LC2		Method	d: SW8 30	MOC						
MBLK	Sample ID: MBLKW1-F	257162				ι	Jnits: mg/	L	Analys	is Date: 3/	25/2019 0	6:48 PN
Client ID:		Run ID	: HPLC2	_190325A		Se	qNo: 557 6	6091	Prep Date: 3/25	6/2019	DF: 1	
Analyta		Dogult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte		Result	PQL	SPK Vai	,		%KEC	F-112177	7,000	%KPD		Quai
Acetic Acid		ND	5.0									
Formic Acid		ND	5.0									
LCS	Sample ID: LCSW1-R2	57162				ι	Jnits: mg/	L	Analys	is Date: 3	25/2019 0	7:01 PM
Client ID:		Run ID	: HPLC2	_190325A		Se	qNo: 5576	6092	Prep Date: 3/25	6/2019	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acetic Acid		499.7	5.0	500		0	99.9	80-120	0			
Formic Acid		505.6	5.0	500		0	101	80-120	0			
MS	Sample ID: 1903985-09	A MS				ι	Jnits: mg/l	L.	Analys	is Date: 3	25/2019 0	7:13 PN
Client ID: HS-MW-7s		Run ID	: HPLC2	_190325A		Se	qNo: 557 6	6093	Prep Date: 3/25	5/2019	DF: 2	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Acetic Acid		997.9	10	1000		0	99.8	75-125	0			
Formic Acid		1010	10	1000		0	101	75-125	0			
MSD	Sample ID: 1903985-09	A MSD				ι	Jnits: mg/l	L.	Analys	is Date: 3	25/2019 0	7:26 PM
Client ID: HS-MW-7s		Run ID	: HPLC2	_190325A		Se	qNo: 5576	6094	Prep Date: 3/25	5/2019	DF: 2	
Analyta		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte			7 (44)	22 No. 7 Sep	1,010					70KFD		Quai
Acetic Acid		998.5	10	1000		0	99.9	75-125	997.9	0.0631	20	
Formic Acid		1005	10	1000		0	101	75-125	1010	0.493	20	
The following samp	les were analyzed in thi	s batch:	19	03985-04A 03985-07A 03985-10A	19	9039	985-05A 985-08A 985-11A	1.00	03985-06A 03985-09A			

Shealy Environmental Services, Inc.

Work Order:

1903985

Project:

16.0062335.52 T2

Batch ID: R256730	Instrument ID WETCHE	М	Metho	d: SW719	6A					
MBLK	Sample ID: MB-R256730-R25	6730			Units: mg/	L	Analys	sis Date: 3	/19/2019 1	1:35 AN
Client ID:	Ru	n ID: WETC	HEM_19031	9A	SeqNo: 556	4800	Prep Date:		DF: 1	
Analyte	Resul	t PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt NE	0.0050								
LCS	Sample ID: LCS-R256730-R2	56730			Units: mg/	L	Analys	sis Date: 3	/19/2019 1	1:35 AM
Client ID:	Ru	n ID: WETC	HEM_19031	9A	SeqNo: 556	4801	Prep Date:		DF: 1	
Analyte	Resul	t PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt 0.2069	0.0050	0.2		0 103	91-113	0			
MS	Sample ID: 1903985-01B MS				Units: mg/	L	Analys	sis Date: 3	/19/2019 1	1:35 AM
Client ID: HS-MW-10	S Ru	n ID: WETC	HEM_19031	9A	SeqNo: 556	4803	Prep Date:		DF: 1	
Analyte	Resul	t PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt 0.2056	0.0050	0.2	0.000	3 103	91-113	0			
MSD	Sample ID: 1903985-01B MSI	D			Units: mg/	L	Analys	sis Date: 3	/19/2019 1	1:35 AM
Client ID: HS-MW-10	S Ru	n ID: WETC	HEM_19031	9A	SeqNo: 556	4804	Prep Date:		DF: 1	
Analyte	Resul	t PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	nt 0.2094	0.0050	0.2	0.000	3 105	91-113	0.2056	1.83	10	
The following samp	les were analyzed in this batc	h.	1903985-01B	10	03985-02B	10	03985-03B			

Shealy Environmental Services, Inc.

Work Order:

1903985

Project:	16.0062335.52 T	2									
Batch ID: R256824	Instrument I	WETCHEM		Metho	d: SW719	6A					
MBLK	Sample ID: MB-R2	256824-R2568	24			Units: mg/	L	Anal	ysis Date:	3/20/2019	12:58 PM
Client ID:		Run I	D: WETCH	HEM_19032	0G	SeqNo: 556	7331	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexaval	ent	ND	0.0050								
LCS	Sample ID: LCS-R	256824-R256	824			Units: mg/	L	Anal	ysis Date:	3/20/2019	12:58 PM
Client ID:		Run I	D: WETCH	HEM_19032	0G	SeqNo: 556	7332	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexaval	ent	0.2031	0.0050	0.2		0 102	91-113		0		
MS	Sample ID: 190398	85-06B MS				Units: mg/	L	Anal	ysis Date:	3/20/2019	12:58 PM
Client ID: HS-MW-9	s	Run I	D: WETCH	HEM_19032	0G	SeqNo: 556	7336	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexaval	ent	0.2019	0.0050	0.2	0.001	5 100	91-113		0		
MSD	Sample ID: 190398	85-06B MSD				Units: mg/	L	Anal	ysis Date:	3/20/2019	12:58 PM
Client ID: HS-MW-9	os	Run I	D: WETCH	HEM_19032	0G	SeqNo: 556	7337	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual

The following samples were analyzed in this batch:

Chromium, Hexavalent

101

91-113

0.2019

0.593

10

0.0015

0.2031

0.0050

0.2

Shealy Environmental Services, Inc.

Work Order:

1903985

16.0062335.52 T2

Project: Batch ID: R256911 Instrument ID WETCHEM Method: SW7196A MBLK Sample ID: MB-R256911-R256911 Units: mg/L Analysis Date: 3/21/2019 01:01 PM SeqNo: 5569509 Prep Date: Client ID: DF: 1 Run ID: WETCHEM_190321H RPD SPK Ref Control RPD Ref Value Limit Value Limit Qual Analyte Result PQL SPK Val %REC %RPD ND Chromium, Hexavalent 0.0050 LCS Units: mg/L Sample ID: LCS-R256911-R256911 Analysis Date: 3/21/2019 01:01 PM Client ID: SeqNo: 5569510 Prep Date: DF: 1 Run ID: WETCHEM_190321H SPK Ref Control RPD Ref RPD Value Limit Value Limit %RPD Analyte Result PQL SPK Val %REC Qual Chromium, Hexavalent 0.2019 0.0050 0.2 101 91-113 0 Sample ID: 1903985-07B MS Units: ma/L Analysis Date: 3/21/2019 01:01 PM SeqNo: 5569512 DF: 1 Client ID: HS-MW-6S Run ID: WETCHEM_190321H Prep Date: RPD SPK Ref Control RPD Ref Value Value Limit Limit Analyte Result PQL SPK Val %REC %RPD Qual Chromium, Hexavalent 0.2031 0.0050 0.0015 101 91-113 0 0.2 MSD Sample ID: 1903985-07B MSD Units: mg/L Analysis Date: 3/21/2019 01:01 PM DF: 1 Client ID: HS-MW-6S SeqNo: 5569513 Prep Date: Run ID: WETCHEM_190321H RPD Ref RPD SPK Ref Control Limit Value Limit Value Result PQL SPK Val %REC %RPD Qual Analyte 0.1994

The following samples were analyzed in this batch:

Chromium, Hexavalent

1903985-07B

0.2

0.0050

1903985-08B

99

91-113

0.2031

1.84

10

0.0015

Shealy Environmental Services, Inc.

Work Order:

1903985

Project:

16.0062335.52 T2

Batch ID: R257005	Instrument ID	WETCHEM		Method	d: SW719	6A					
MBLK	Sample ID: MB-R2	57005-R2570	05			Units: mg/	L	Analys	sis Date: 3/	22/2019 1	2:50 PM
Client ID:		Run I	D: WETCH	HEM_19032	2G	SeqNo: 557	1888	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	ent	ND	0.0050								
LCS	Sample ID: LCS-R2	257005-R257	005			Units: mg/	L	Analys	sis Date: 3/	22/2019 1	2:50 PN
Client ID:		Run I	D: WETCH	IEM_19032	2G	SeqNo: 557	1889	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	ent	0.2056	0.0050	0.2		0 103	91-113	0			
MS	Sample ID: 190398	5-09BMS				Units: mg/	L	Analys	sis Date: 3/	22/2019 1	2:50 PM
Client ID: HS-MW-7	5	Run I	D: WETCH	HEM_19032	2G	SeqNo: 557	1891	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	ent	0.2081	0.0050	0.2	-0.00	105	91-113	0			Н
MSD	Sample ID: 190398	5-09BMSD				Units: mg/	L	Analys	sis Date: 3/	22/2019 1	2:50 PM
Client ID: HS-MW-7	3	Run I	D: WETCH	HEM_19032	2G	SeqNo: 557	1892	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chromium, Hexavale	ant	0.2019	0.0050	0.2	-0.00	101	91-113	0.2081	3.02	10	Н

Shealy Environmental Services, Inc.

Work Order:

1903985

Project:

16.0062335.52 T2

Batch ID: R257057	Instrument ID FS31	00		Method	d: OIA 16	77						
MBLK	Sample ID: MB-R257057	-R257057				U	nits: μg/L		Analys	sis Date: 3/	22/2019 0	1:00 PM
Client ID:		Run ID:	FS3100	_190322A		Sec	qNo: 557 3	3284	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		ND	2.0									
LCS	Sample ID: LCS-R25705	7-R25705	7			U	nits: µg/L		Analys	sis Date: 3/	22/2019 0	1:00 PM
Client ID:		Run ID:	FS3100	_190322A		Sec	qNo: 557 3	3285	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		42.82	2.0	50		0	85.6	82-132	O			
MS	Sample ID: 19031144-01	вмѕ				U	nits: µg/L		Analys	sis Date: 3/	22/2019 0	1:00 PM
Client ID:		Run ID:	FS3100	_190322A		Sec	qNo: 557 3	3288	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		55.89	2.0	50	9.9	95	91.9	82-130	0			
MSD	Sample ID: 19031144-01	в мѕр				U	nits: µg/L		Analys	sis Date: 3/	22/2019 0	1:00 PM
Client ID:		Run ID:	FS3100	_190322A		Sec	qNo: 557 3	3289	Prep Date:		DF: 1	
Analyte	F	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available	1.13	57.22	2.0	50	9.9	95	94.5	82-130	55.89	2.35	11	
The following samp	oles were analyzed in this	batch:	19	03985-01C 03985-04C 03985-07C	19	039	85-02C 85-05C 85-08C		03985-03C 03985-06C			

Shealy Environmental Services, Inc.

Work Order:

1903985

Project:	16.0062335.52 T2											
Batch ID: R257131	Instrument ID FS	3100		Metho	d: OIA 1 6	77						
MBLK	Sample ID: MB-R2571	31-R25713	1			Units	: µg/L		Analy	sis Date:	3/25/2019 1	1:00 AM
Client ID:		Run ID	: FS3100	_190325A		SeqNo	557	5091	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%F	REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		ND	2.0									
LCS	Sample ID: LCS-R257	131-R2571	31			Units	: μg/L		Analy	sis Date:	3/25/2019 1	1:00 AM
Client ID:		Run ID	: FS3100	_190325A		SeqNo	557	5092	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%F	REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		41.55	2.0	50		0 8	3.1	82-132	()		
MS	Sample ID: 1903985-0	9CMS				Units	: μg/L		Analy	sis Date:	3/25/2019 1	1:00 AM
Client ID: HS-MW-7s		Run ID	: FS3100	_190325A		SeqNo	557	5100	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%F	REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		39.41	2.0	50	-0.2	26 7	9.3	82-130	()		s
MSD	Sample ID: 1903985-0	9CMSD				Units	μg/L		Analy	sis Date:	3/25/2019 1	1:00 AM
Client ID: HS-MW-7s		Run ID	: FS3100	_190325A		SeqNo	: 557	5101	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%F	REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Available		41.65	2.0	50	-0.2	26 8	3.8	82-130	39.41	1 5.5	3 11	

unless other arrangements are made.

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111 Number

www.shealylab.com 616-956-6123 Quote No. Telephone No. / E-mail Report to Contact 20986 loretta.powers@gza.com Loretta Powers Rose and Westra / GZA Analysis (Attach list if more space is needed) Page Sampler's Signature Address of 1 601 Fifth Street NW, Suite 102 Zip Code State 49504 Grand Rapids Mi Hexavalent Chromium (7199) Laboratory Lot Number Project Name 16.0062335.62 T-2 Available Cyanide No of Containers by P.O No. Project Number Matrix Preservative Type Formic Acid G=Grab C=Composite 16.0062335.52 T-2 Acetic Acid Unpres. Aqueous H2SO4 MeOH HN03 NaOH Remarks / Cooler I.D. Solid 오 Sample ID / Description Date Time **ALS Water** (Containers for each sample may be combined on one line) 5 Х G 1 Х х Х 3/18/2019 15:05 Х HS-MW-10S G 5 х х Х Х 3/18/2019 12:35 х HS-MW-10M 5 Х Х 12:10 G Х HS-MW-10D 3/18/2019 Х Possible Hazard Identification (List any known hazards in the remarks) QC Requirements Sample Disposal Turn Around Time Required (Prior lab approval required for expedited TAT) Non-Hazardous Flammable Skin Irritant DS provided Inknown Disposal by Lab LReturn to Client Rush (Please Specify) XI_{Standard} Time 1. Received by 1. Relinquished by 09:00 000 3/19/19 Date 3/19/19 Date Time 2. Received by 2. Relinquished by 1110 Date Time Time 3. Received by Date 3. Relinguished by Date 4. Laboratory Received by Date Time 4. Relinquished by LAB USE ONLY Note: All samples are retained for four weeks from receipt Receipt Temp 2.0 Ce Pack Received on Ice (Check) $\prod_{i} Y_i \prod_{j} V_j$

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

www.shealylab.com Telephone No. / E-mail 616-956-6123 Quote No. Report to Contact 20986 loretta.powers@gza.com Lori Powers Rose and Westra / GZA Analysis (Attach list if more space is needed) Sampler's Signature Page Address of 1 601 Fifth Street NW, Suite 102 State Zip Code City 49504 Grand Rapids MI Hexavalent Chromium (7199) Project Name Laboratory Lot Number 16.0062335.52 T2 Available Cyanide P.O No. No of Containers by Project Number Matrix G=Grab C=Composite Preservative Type 16.0062335.52 T2 Formic Acid Acetic Acid NaOH/Zn Acetate Aqueous Aqueous H2S04 NaOH MeOH Unpres. HN03 Solid Remarks / Cooler I.D. Sample ID / Description 귳 Date Time **ALS Water** (Containers for each sample may be combined on one line) HS-MW-9D 3/19/2019 G 4 1 х Х X 13:50 Х Х G 4 1 HS-MW-9M 3/19/2019 13:45 Х Х Х Х Х G HS-MW-9S 3/19/2019 15:00 4 Х Х X Х Х Possible Hazard Identification (List any known hazards in the remarks) QC Requirements Sample Disposal Turn Around Time Required (Prior lab approval required for expedited TAT) Oisposal by Lab Non-Hazardous Flammable Skin Imitant SDS provided Unknown Return to Client Standard Rush (Please Specify) 1. Relinguished by Date Time 0836 Received by 0945 3/20/19 3/19/2019 Makayla Myers 2. Received by Date Time 2. Relinguished by 3/20/17 1200 Date Time 3. Received by 3. Relinquished by Date Time Date Date Time 4. Laboratory Received by 4. Relinguished by Note: All samples are retained for four weeks from receipt LAB USE ONLY Receipt Temp. 3.6 Received on Ice (Check) Y N Ice Pack unless other arrangements are made.

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172
Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

www.shealylab.com Report to Contact Telephone No. / E-mail 616-956-6123 Quote No. Client Rose and Westra / GZA loretta.powers@gza.com 20986 Lori Powers Sampler's Signature Analysis (Attach list if more space is needed) Page Address 601 Fifth Street NW, Suite 102 of 1 City State Zip Code Grand Rapids М 49504 Hexavalent Chromium (7199) Project Name Laboratory Lot Number 16.0062335.52 T2 Available Cyanide No of Containers by P.O No. Project Number Matrix 16.0062335.52 T2 Preservative Type Formic Acid Acetic Acid Non-Aqueous NaOH/Zn Acetate Aqueous МеОН Unpres. H2S04 NaOH Solid HN03 Remarks / Cooler I.D. Sample ID / Description 오 Date Time **ALS Water** (Containers for each sample may be combined on one line) HS-MW-6S 3/20/2019 G 4 14:15 Х Х Х Х X HS-MW-6D G 3/20/2019 16:00 4 х Х Х Х Х Possible Hazard Identification (List any known hazards in the remarks) Sample Disposal QC Requirements Turn Around Time Required (Prior lab approval required for expedited TAT) Disposal by Lab Non-Hazardous Flammable Skin Imitant SDS provided Unknown Standard Rush (Please Specify) Return to Client 1. Relinguished by Date Time Date 3/21/19 Time 1. Received by 1000 Makayla Myers 3/21/2019 8:30 2. Relinguished by Time 2. Received by Date 3/21/19 1215 3. Relinquished Time 3. Received by Date Time 4. Relinguished by Date 4. Laboratory Received by Date Time Note: All samples are retained for four weeks from receipt LAB USE ONLY Receipt Temp. 3.8 Received on Ice (Check) $\prod Y \prod N$ Clce Pack unless other arrangements are made.

Shealy Environmental Services, Inc. 106 Vantage Point Drive

West Columbia, South Carolina 29172
Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

www.shealylab.com 616-956-6123 Quote No. Telephone No. / E-mail Report to Contact Client 20986 loretta.powers@gza.com Rose and Westra / GZA Lori Powers Analysis (Attach list if more space is needed) Page Sampler's Signature Address of 1 601 Fifth Street NW, Suite 102 State Zip Code М 49504 Grand Rapids Hexavalent Chromium (7199) **Laboratory Lot Number** Project Name Available Cyanide 16.0062335.52 T2 P.O No. No of Containers by Project Number Matrix Preservative Type Formic Acid 16.0062335.52 T2 Acetic Acid C=Compo NaOH/Zn Acetate MeOH Aqueous NaOH Unpres. H2S04 Non-Aqueou Remarks / Cooler I.D. Solid Sample ID / Description 호 Date Time **ALS Water** (Containers for each sample may be combined on one line) HS-MW-7C G 4 1 х Х Х Х 3/21/2019 11:10 X 1 G 4 10 HS-MW-8 3/21/2019 14:00 Х Х Х Х Х G 4 1 х х X X HS-MW-7kMS/MSD 3/21/2019 11:10 Х G 1 14:00 4 Х Х X Х HS-MW-8 DUP 3/21/2019 Х Possible Hazard Identification (List any known hazards in the remarks) QC Requirements Sample Disposal nound Time Required (Prior lab approval required for expedited TAT) Non-Hazardous Flammable Skin Irritant SDS provided Unknown Disposal by Lab Standard Rush (Please Specify) Return to Client Date Time . Received 1. Relinquished by 3 21 19 0906 1000 3/21/2019 Makayla Myers Date 2. Received by 2. Relinquished by Date 3. Received by Date Time 3. Relinquished by 4. Relinquished by Date 3/2 Note: All samples are retained for four weeks from receipt LAB USE ONLY Receipt Temp. 24 lce Pack Received on Ice (Check) ПΥ unless other arrangements are made.

Sample Receipt Checklist

Client Name:	SHEALYENV			Date/Time	Received:	19-Mar-19	<u>11:10</u>	
Work Order:	<u>1903985</u>			Received b	y:	<u>DS</u>		
Checklist compl	eted by <i>Diane Skaw</i> eSignature	19-	-Mar-19 Date	Reviewed by:	Alex J. C eSignature) saozar		19-Mar-19 Date
Matrices: Carrier name:	Aqueous ALSHN							
Shipping contain	ner/cooler in good condition?		Yes 🗸	. No []	Not Prese	nt]		
Custody seals in	ntact on shipping container/coole	ir?	Yes 🗌	No 🗌	Not Prese	ent 🗸		
Custody seals in	ntact on sample bottles?		Yes 🗌	No 🗌	Not Prese	ent 🗹		
Chain of custod	y present?		Yes 🗹	No 🗌				
Chain of custod	y signed when relinquished and	received?	Yes 🗸	. No 🗌				
Chain of custod	y agrees with sample labels?		Yes 🗸	No 🔝				
Samples in prop	per container/bottle?		Yes 🗸	No _				
Sample contain	ers intact?		Yes 🗸	, No 🗌				
Sufficient sample	e volume for indicated test?		Yes 🗸	No 🗌				
All samples reco	eived within holding time?		Yes 🗸	No 🗔				
Container/Temp	Blank temperature in compliance	e?	Yes 🗸	No 🗆				
Sample(s) recei			Yes 🗸	No 🗔				
	/Thermometer(s):		2.0/2.0 c		SR2	<u> </u>		
Cooler(s)/Kit(s):	ole(s) sent to storage:		3/10/2010	11:28:10 AM				
	als have zero headspace?		Yes ✓		No VOA vials	submitted		
	eptable upon receipt?		Yes 🗸	No 🗌	N/A			
pH adjusted? pH adjusted by:			Yes	No 🗸	N/A			
Login Notes:								
Client Contacte	d:	Date Contacted:		Person	Contacted:			
Contacted By:		Regarding:						
Comments:								
CorrectiveAction	n:							
							SRCI	Page 1 of 1

Report of Analysis

GZA GeoEnvironmental, Inc.

601 Fifth Street N.W., Suite 102 Grand Rapids, MI 49504 Attention: Leslie Nelson

Project Name: 16.0062335.52 Project Number: 16.0062335.52

Lot Number: UB27031

Date Completed:03/08/2019

N. Saikaly

03/08/2019 7:18 PM Approved and released by: Project Manager: Nisreen Saikaly

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative GZA GeoEnvironmental, Inc. Lot Number: UB27031

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), applicable Shealy standard operating procedures (SOPs), the 2003 NELAC standard, and Shealy policies. Additionally, the DoD QSM version 5.1 has been followed for these samples, and specifically Table B-15 was followed for all PFAS samples. Any exceptions to the QAMP, SOPs, NELAC standards, the DoD QSM, or policies are qualified on the results page or discussed below.

All QC associated with these samples was in compliance with DOD QSM 5.1 table B-15 and our PFAS SOP. DoD reporting conventions and qualifiers are not utilized in this data package.

Correction factors (CF) are used to calculate the original sample concentration. The CF is the inverse of the concentration factor (sample volume / extract final volume) times the dilution factor (DF). For undiluted analysis. The extract is prepared for injection by adding 182 uL of sample extract + 8 uL of reagent water + 10 uL of internal standard solution to a polypropylene autosampler vial. An extra correction factor of 0.91 (182 uL / 200 uL = 0.91) applies. The CF is calculated as follows:

CF = DF * FV / Vo

FV is volume of extract (mL)
Vo is initial sample volume (mL)
DF is dilution factor. For undiluted analysis, DF = 1/0.91.

Sample concentration for aqueous samples: Concentration (ng/L) = Cs*CF,

$$C_{\text{Where:}} = \left(\frac{A_{\text{s}}}{A_{\text{is}}} - b\right) * \left(\frac{C_{\text{is}}}{a}\right)$$

As is peak response of target analyte in the sample
Ais is peak response of internal standard in the sample
Cs is concentration of target analyte in the sample
Cis is concentration of internal standard in the sample (1ng/mL)
a is the slope from the ICAL linear regression
b is the y-intercept from the ICAL linear regression

Sample Summary GZA GeoEnvironmental, Inc.

Lot Number: UB27031

Sample ID	Matrix	Date Sampled	Date Received
HS-MW-14M	Aqueous	02/26/2019 1222	02/27/2019
HS-MW-14S	Aqueous	02/26/2019 1250	02/27/2019
HS-MW-14D	Aqueous	02/26/2019 1500	02/27/2019
HS-MW-14D DUP	Aqueous	02/26/2019 1500	02/27/2019
	HS-MW-14M HS-MW-14S HS-MW-14D	HS-MW-14M Aqueous HS-MW-14S Aqueous HS-MW-14D Aqueous	HS-MW-14M Aqueous 02/26/2019 1222 HS-MW-14S Aqueous 02/26/2019 1250 HS-MW-14D Aqueous 02/26/2019 1500

(4 samples)

Detection Summary GZA GeoEnvironmental, Inc.

Lot Number: UB27031

Sample Sample ID	Matrix Parameter	Method	Result	Q	Units	Page
		2.574.30.25.5				

(0 detections)

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-14M Date Sampled:02/26/2019 1222 Laboratory ID: UB27031-001

Matrix: Aqueous

Run Prep Method 537 MOD

Date Received: 02/27/2019

Analytical Method Dilution Analysis Date Analyst

Prep Date

Batch

537 Modified-ID 03/05/2019 2125 SES 03/04/2019 1100 99148 CAS Analytical Result Q LOQ

Parameter	Number	Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.6	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.6	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.6	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.1	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.6	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	ND	1.8	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	3.6	ng/L	1

	Acceptance Limits	
93	50-150	
106	50-150	
106	50-150	
98	50-150	
111	50-150	
113	50-150	
115	50-150	
110	50-150	
115	50-150	
120	50-150	
112	50-150	
108	50-150	
113	50-150	
110	50-150	
105	50-150	
115	50-150	
77	50-150	
81	50-150	
	Q % Recovery 93 106 106 98 111 113 115 110 115 120 112 108 113 110 105 115 77	93 50-150 106 50-150 106 50-150 98 50-150 111 50-150 113 50-150 115 50-150 115 50-150 116 50-150 117 50-150 117 50-150 118 50-150 119 50-150 110 50-150 110 50-150 1110 50-150 1111 50-150 1111 50-150 1111 50-150 1111 50-150 1111 50-150 1111 50-150 1111 50-150 1111 50-150 1111 50-150 1111 50-150

LOQ = Limit of Quantitation

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-14S

Laboratory ID: UB27031-002 Matrix: Aqueous

Date Sampled:02/26/2019 1250 Date Received:02/27/2019

Run Prep Method Analytical Method Dilution 1 537 MOD 537 Modified-ID 1

ution Analysis Date Analyst 1 03/05/2019 2138 SES Prep Date Batch 03/04/2019 1100 99148

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.6	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.6	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.6	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.1	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.6	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.6	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	ND	1.8	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.6	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	3.6	ng/L	1

Surrogate	Run 1 A Q % Recovery	Acceptance Limits	
13C2_6:2FTS	102	50-150	
13C2_8:2FTS	114	50-150	
13C2_PFDoA	106	50-150	
13C2_PFTeDA	102	50-150	
13C3_PFBS	115	50-150	
13C3_PFHxS	115	50-150	
13C4_PFBA	120	50-150	
13C4_PFHpA	116	50-150	
13C5_PFHxA	121	50-150	
13C5_PFPeA	118	50-150	
13C6_PFDA	117	50-150	
13C7_PFUdA	115	50-150	
13C8_PFOA	116	50-150	
13C8_PFOS	115	50-150	
13C8_PFOSA	108	50-150	
13C9_PFNA	118	50-150	
d-EtFOSA	77	50-150	
d-MeFOSA	84	50-150	

LOQ	=	Limit	of	Quantitation	

B = Detected in the method blank

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-14D Date Sampled:02/26/2019 1500 Laboratory ID: UB27031-003

Matrix: Aqueous

Run Prep Method 537 MOD

Date Received: 02/27/2019

Analytical Method Dilution 537 Modified-ID

Analysis Date Analyst 03/05/2019 2254 SES

Prep Date Batch 03/05/2019 1110 99271

Parameter	CAS Number	Analytical Method	Result Q	LOQ	Units	Run
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	39108-34-4	537 Modified-	ND	3.7	ng/L	1
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	27619-97-2	537 Modified-	ND	3.7	ng/L	1
N-ethylperfluoro-1-octanesulfonamide (EtFOSA)	4151-50-2	537 Modified-	ND	3.7	ng/L	1
N-methylperfluoro-1-octanesulfonamide (MeFOSA)	31506-32-8	537 Modified-	ND	7.5	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	537 Modified-	ND	3.7	ng/L	1
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	537 Modified-	ND	3.7	ng/L	1
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	537 Modified-	ND	3.7	ng/L	1
Perfluoro-1-nonanesulfonic acid (PFNS)	68259-12-1	537 Modified-	ND	7.5	ng/L	1
Perfluoro-1-octanesulfonamide (PFOSA)	754-91-6	537 Modified-	ND	3.7	ng/L	1
Perfluoro-1-pentanesulfonic acid (PFPeS)	2706-91-4	537 Modified-	ND	3.7	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	537 Modified-	ND	3.7	ng/L	1
Perfluoro-n-butanoic acid (PFBA)	375-22-4	537 Modified-	ND	3.7	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537 Modified-	ND	3.7	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537 Modified-	ND	3.7	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537 Modified-	ND	3.7	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537 Modified-	ND	3.7	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537 Modified-	ND	3.7	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537 Modified-	ND	1.9	ng/L	1
Perfluoro-n-pentanoic acid (PFPeA)	2706-90-3	537 Modified-	ND	3.7	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537 Modified-	ND	3.7	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537 Modified-	ND	3.7	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537 Modified-	ND	3.7	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	537 Modified-	ND	3.7	ng/L	1

	Run 1	Acceptance
Surrogate	Q % Recovery	Limits
13C2_6:2FTS	103	50-150
13C2_8:2FTS	103	50-150
13C2_PFDoA	108	50-150
13C2_PFTeDA	105	50-150
13C3_PFBS	119	50-150
13C3_PFHxS	119	50-150
13C4_PFBA	123	50-150
13C4_PFHpA	124	50-150
13C5_PFHxA	118	50-150
13C5_PFPeA	121	50-150
13C6_PFDA	116	50-150
13C7_PFUdA	115	50-150
13C8_PFOA	119	50-150
13C8_PFOS	116	50-150
13C8_PFOSA	106	50-150
13C9_PFNA	121	50-150
d-EtFOSA	77	50-150
d-MeFOSA	84	50-150

LOQ =	Limit	of	Quantitation

B = Detected in the method blank

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

Client: GZA GeoEnvironmental, Inc.

Description: HS-MW-14D DUP Date Sampled:02/26/2019 1500

Laboratory ID: UB27031-004 Matrix: Aqueous

3.6

3.6

3.6

3.6

3.6

ng/L

ng/L

ng/L

ng/L

ng/L

Run Prep Method 537 MOD 1

Date Received: 02/27/2019

Perfluoro-n-pentanoic acid (PFPeA)

Perfluoro-n-tetradecanoic acid (PFTeDA)

Perfluoro-n-tridecanoic acid (PFTrDA)

Perfluoro-n-undecanoic acid (PFUdA)

Perfluorooctanesulfonic acid (PFOS)

Analytical Method Dilution 537 Modified-ID

Analysis Date Analyst 03/05/2019 2332 SES

Prep Date Batch 03/05/2019 1110 99271

CAS Analytical Parameter Number Result Q LOQ Units Run Method 1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS) 537 Modified-39108-34-4 ND 3.6 ng/L 537 Modified-ND 1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS) 27619-97-2 3.6 ng/L 1 N-ethylperfluoro-1-octanesulfonamide (EtFOSA) 537 Modified-ND ng/L 4151-50-2 3.6 1 N-methylperfluoro-1-octanesulfonamide (MeFOSA) 31506-32-8 537 Modified-ND 7.3 ng/L Perfluoro-1-butanesulfonic acid (PFBS) 375-73-5 537 Modified-ND 3.6 ng/L Perfluoro-1-decanesulfonic acid (PFDS) 335-77-3 537 Modified-ND 3.6 ng/L Perfluoro-1-heptanesulfonic acid (PFHpS) 375-92-8 537 Modified-ND 3.6 ng/L Perfluoro-1-nonanesulfonic acid (PFNS) 68259-12-1 537 Modified-ND 7.3 ng/L Perfluoro-1-octanesulfonamide (PFOSA) 754-91-6 537 Modified-ND 3.6 ng/L Perfluoro-1-pentanesulfonic acid (PFPeS) 2706-91-4 537 Modified-ND 36 ng/L Perfluorohexanesulfonic acid (PFHxS) 355-46-4 537 Modified-ND 3.6 ng/L Perfluoro-n-butanoic acid (PFBA) 375-22-4 537 Modified-ND 3.6 ng/L Perfluoro-n-decanoic acid (PFDA) 335-76-2 537 Modified-ND 3.6 ng/L Perfluoro-n-dodecanoic acid (PFDoA) 307-55-1 537 Modified-ND 3.6 ng/L Perfluoro-n-heptanoic acid (PFHpA) 375-85-9 537 Modified-ND ng/L 3.6 Perfluoro-n-hexanoic acid (PFHxA) 307-24-4 537 Modified-ND 3.6 ng/L Perfluoro-n-nonanoic acid (PFNA) 375-95-1 537 Modifiedng/L ND 3.6 Perfluoro-n-octanoic acid (PFOA) 335-67-1 537 Modified-ND 1.8 ng/L

537 Modified-

537 Modified-

537 Modified-

537 Modified-

537 Modified-

ND

ND

ND

ND

ND

2706-90-3

376-06-7

72629-94-8

2058-94-8

1763-23-1

Surrogate	Run 1 Q % Recovery	Acceptance Limits
13C2_6:2FTS	120	50-150
13C2_8:2FTS	117	50-150
13C2_PFDoA	107	50-150
13C2_PFTeDA	103	50-150
13C3_PFBS	113	50-150
13C3_PFHxS	114	50-150
13C4_PFBA	119	50-150
13C4_PFHpA	116	50-150
13C5_PFHxA	115	50-150
13C5_PFPeA	123	50-150
13C6_PFDA	114	50-150
13C7_PFUdA	105	50-150
13C8_PFOA	121	50-150
13C8_PFOS	112	50-150
13C8_PFOSA	105	50-150
13C9_PFNA	118	50-150
d-EtFOSA	77	50-150
d-MeFOSA	83	50-150

LOQ =	Limit	of	Quantitation

B = Detected in the method blank

N = Recovery is out of criteria W = Reported on wet weight basis P = The RPD between two GC columns exceeds 40%

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the LOQ H = Out of holding time

Sample ID: UQ99148-001 Batch: 99148

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/04/2019 1100

Parameter	Result	Q Dil	LOQ	Units	Analysis Date
8:2 FTS	ND	1	4.0	ng/L	03/05/2019 1635
6:2 FTS	ND	1	4.0	ng/L	03/05/2019 1635
EtFOSA	ND	1	4.0	ng/L	03/05/2019 1635
MeFOSA	ND	1	8.0	ng/L	03/05/2019 1635
PFBS	ND	1	4.0	ng/L	03/05/2019 1635
PFDS	ND	1	4.0	ng/L	03/05/2019 1635
PFHpS	ND	1	4.0	ng/L	03/05/2019 1635
PFNS	ND	1	8.0	ng/L	03/05/2019 1635
PFOSA	ND	1	4.0	ng/L	03/05/2019 1635
PFPeS	ND	1	4.0	ng/L	03/05/2019 1635
PFHxS	ND	1	4.0	ng/L	03/05/2019 1635
PFBA	ND	1	4.0	ng/L	03/05/2019 1635
PFDA	ND	1	4.0	ng/L	03/05/2019 1635
PFDoA	ND	1	4.0	ng/L	03/05/2019 1635
PFHpA	ND	1	4.0	ng/L	03/05/2019 1635
PFHxA	ND	1	4.0	ng/L	03/05/2019 1635
PFNA	ND	1	4.0	ng/L	03/05/2019 1635
PFOA	ND	1	2.0	ng/L	03/05/2019 1635
PFPeA	ND	1	4.0	ng/L	03/05/2019 1635
PFTeDA	ND	1	4.0	ng/L	03/05/2019 1635
PFTrDA	ND	1	4.0	ng/L	03/05/2019 1635
PFUdA	ND	1	4.0	ng/L	03/05/2019 1635
PFOS	ND	1	4.0	ng/L	03/05/2019 1635
Surrogate	Q % Rec	Acceptance Limit			
13C2_6:2FTS	106	50-150			
13C2_8:2FTS	99	50-150			
13C2_PFDoA	99	50-150			
13C2_PFTeDA	93	50-150			
13C3_PFBS	108	50-150			
13C3_PFHxS	114	50-150			
13C4_PFBA	118	50-150			
13C4_PFHpA	113	50-150			
13C5_PFHxA	113	50-150			
13C5_PFPeA	118	50-150			
13C6_PFDA	107	50-150			
13C7_PFUdA	107	50-150			
13C8_PFOA	113	50-150			
13C8_PFOS	107	50-150			
13C8_PFOSA	96	50-150			
13C9_PFNA	118	50-150			
13C3_FFINA	110	30-130			

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MB

Sample ID: UQ99148-001 Batch: 99148

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/04/2019 1100

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		61	50-150	
d-MeFOSA		61	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ99148-002 Batch: 99148 Analytical Method: 537 Modified-ID Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/04/2019 1100

Parameter	Spike Amount (ng/L)	Result (ng/L)	Q Dil	% Rec	% Rec Limit	Analysis Date
:2 FTS	19	22	1	117	70-150	03/05/2019 1647
:2 FTS	19	19	1	98	70-150	03/05/2019 164
EtFOSA	20	25	1	124	70-150	03/05/2019 164
MeFOSA	20	23	1	116	70-150	03/05/2019 164
PFBS	18	18	1	104	70-150	03/05/2019 164
PFDS	19	17	1	89	70-150	03/05/2019 164
PFHpS	19	18	1	93	70-150	03/05/2019 164
PFNS	19	18	1	94	70-150	03/05/2019 164
PFOSA	20	21	i	103	70-150	03/05/2019 164
PFPeS	19	19	1	103	70-150	03/05/2019 164
PFHxS	18	18	1	96	70-150	03/05/2019 164
PFBA	20	20	1	98	70-150	03/05/2019 164
PFDA	20	20	1	98	70-150	03/05/2019 164
PFDoA	20	20	1	101	70-150	03/05/2019 164
PFHpA	20	21	1	103	70-150	03/05/2019 164
PFHxA	20	20	1	98	70-150	03/05/2019 164
PFNA	20	20	1	101	70-150	03/05/2019 164
PFOA	20	20	1	99	70-150	03/05/2019 164
PFPeA	20	20	1	98	70-150	03/05/2019 1647
PFTeDA	20	20	1	101	70-150	03/05/2019 164
PFTrDA	20	17	1	87	70-150	03/05/2019 164
PFUdA	20	20	1	98	70-150	03/05/2019 1647
PFOS	19	18	1	97	70-150	03/05/2019 164
Surrogate	Q % Rec	Acceptance Limit	9			
3C2_6:2FTS	104	50-150				
3C2_8:2FTS	109	50-150				
3C2_PFDoA	97	50-150				
3C2_PFTeDA	75	50-150				
3C3_PFBS	108	50-150				
3C3_PFHxS	114	50-150				
3C4_PFBA	115	50-150				
3C4_PFHpA	113	50-150				
3C5_PFHxA	116	50-150				
3C5_PFPeA	115	50-150				
3C6_PFDA	113	50-150				
3C7_PFUdA	110	50-150				
3C8_PFOA	114	50-150				
3C8_PFOS	106	50-150				
3C8_PFOSA	101	50-150				
3C9_PFNA	117	50-150				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated \ result < LOQ \ and \ge DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCS

Sample ID: UQ99148-002

Batch: 99148

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/04/2019 1100

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		64	50-150	
d-MeFOSA		69	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCSD

Sample ID: UQ99148-003 Batch: 99148 Analytical Method: 537 Modified-ID Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/04/2019 1100

Parameter	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
8:2 FTS	19	20		1	102	13	70-150	30	03/05/2019 1700
6:2 FTS	19	22		1	117	18	70-150	30	03/05/2019 1700
EtFOSA	20	23		1	115	7.3	70-150	30	03/05/2019 1700
MeFOSA	20	24		1	122	5.3	70-150	30	03/05/2019 1700
PFBS	18	19		1	110	5.7	70-150	30	03/05/2019 1700
PFDS	19	17		1	87	1.6	70-150	30	03/05/2019 1700
PFHpS	19	18		1	95	1.5	70-150	30	03/05/2019 1700
PFNS	19	17		1	90	3.8	70-150	30	03/05/2019 1700
PFOSA	20	22		1	109	5.5	70-150	30	03/05/2019 1700
PFPeS	19	20		1	107	3.4	70-150	30	03/05/2019 1700
PFHxS	18	18		1	98	1.5	70-150	30	03/05/2019 1700
PFBA	20	20		1	101	3.4	70-150	30	03/05/2019 1700
PFDA	20	19		1	96	1.4	70-150	30	03/05/2019 1700
PFDoA	20	20		1	99	1.9	70-150	30	03/05/2019 1700
PFHpA	20	21		1	103	0.063	70-150	30	03/05/2019 1700
PFHxA	20	19		1	94	3.6	70-150	30	03/05/2019 1700
PFNA	20	21		1	104	2.9	70-150	30	03/05/2019 1700
PFOA	20	20		1	102	2.9	70-150	30	03/05/2019 1700
PFPeA	20	20		1	99	0.48	70-150	30	03/05/2019 1700
PFTeDA	20	21		1	104	2.7	70-150	30	03/05/2019 1700
PFTrDA	20	17		1	87	0.017	70-150	30	03/05/2019 1700
PFUdA	20	19		1	97	1.0	70-150	30	03/05/2019 1700
PFOS	19	18		1	97	0.050	70-150	30	03/05/2019 1700
Surrogate	Q % Rec	Ace	ceptance Limit						
13C2_6:2FTS	96		50-150						
13C2_8:2FTS	97		50-150						
13C2_PFDoA	95		50-150						
13C2_PFTeDA	73		50-150						
13C3_PFBS	101		50-150						
13C3_PFHxS	106		50-150						
13C4_PFBA	109		50-150						
13C4_PFHpA	110		50-150						
13C5_PFHxA	108		50-150						
13C5_PFPeA	110		50-150						
13C6_PFDA	110		50-150						
13C7_PFUdA	104		50-150						
13C8_PFOA	107		50-150						
13C8_PFOS	103		50-150						
13C8_PFOSA	91		50-150						
13C9_PFNA	111		50-150						

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCSD

Sample ID: UQ99148-003 Batch: 99148

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/04/2019 1100

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		55	50-150	
d-MeFOSA		55	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ99271-001 Batch: 99271 Analytical Method: 537 Modified-ID Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/05/2019 1110

eter Result Q S ND		LOQ	Units	Analysis Date
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	4.0	791	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	8.0	ng/L	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	8.0	ng/L	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
ND	1	4.0	ng/L	03/05/2019 2216
	1			03/05/2019 2216
	1			03/05/2019 2216
	1			03/05/2019 2216
	1			03/05/2019 2216
				03/05/2019 2216
				03/05/2019 2216
				03/05/2019 2216
ND		4.0	ng/L	03/05/2019 2216
Q % Rec	Acceptance Limit			
103	50-150			
106	50-150			
115	50-150			
115	50-150			
	50-150			
119				
119 114				
119 114 105	50-150 50-150			
	ND N	ND 1	ND 1 4.0 ND 1 4.0 ND 1 4.0 ND 1 4.0 ND 1 8.0 ND 1 4.0 ND	ND 1 4.0 ng/L ND 1 4.0 ng/L ND 1 8.0 ng/L ND 1 8.0 ng/L ND 1 8.0 ng/L ND 1 4.0 ng/L ND

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MB

Sample ID: UQ99271-001 Batch: 99271

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/05/2019 1110

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		67	50-150	
d-MeFOSA		72	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UQ99271-002 Batch: 99271 Analytical Method: 537 Modified-ID Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/05/2019 1110

Spike Amount (ng/L)	Result (ng/L) Q	Dil	% Rec	% Rec Limit	Analysis Date		
					03/05/2019 2228		
					03/05/2019 2228		
					03/05/2019 2228		
					03/05/2019 2228		
					03/05/2019 2228		
					03/05/2019 2228		
					03/05/2019 2228		
		1		70-150	03/05/2019 2228		
20	22	1	108	70-150	03/05/2019 2228		
19	20	1	105	70-150	03/05/2019 2228		
	18	1	99	70-150	03/05/2019 2228		
	20	1		70-150	03/05/2019 2228		
20	20	1	99	70-150	03/05/2019 2228		
20	21	1	105	70-150	03/05/2019 2228		
20	21	1	105	70-150	03/05/2019 2228		
20	19	1	94	70-150	03/05/2019 2228		
20	19	1	96	70-150	03/05/2019 2228		
20	20	1	100	70-150	03/05/2019 2228		
20	20	1	99	70-150	03/05/2019 2228		
20	20	1	102	70-150	03/05/2019 2228		
20	19	1	94	70-150	03/05/2019 2228		
20	20	1	100	70-150	03/05/2019 2228		
19	19	1	105	70-150	03/05/2019 2228		
Q % Rec	Acceptance Limit						
80	50-150						
99	50-150						
98	50-150						
88	50-150						
110	50-150						
99	50-150						
	Amount (ng/L) 19 19 20 20 18 19 19 19 19 20 19 18 20 20 20 20 20 20 20 20 20 2	Amount (ng/L) Q 19	Amount (ng/L) Q Dil 19	Amount (ng/L) Result (ng/L) Q Dil % Rec 19 24 1 129 20 23 1 115 20 22 1 115 20 22 1 112 18 18 1 103 19 18 1 93 19 19 1 97 20 22 1 108 19 19 1 97 20 22 1 108 19 20 1 105 18 18 1 99 20 20 1 105 18 18 1 99 20 20 1 105 20 21 1 105 20 21 1 100 20 20 1 100 20 20 1 100 20	Amount (ng/L) Result (ng/L) Q Dil % Rec Limit 19 24 1 123 70-150 19 24 1 129 70-150 20 23 1 115 70-150 20 22 1 112 70-150 20 22 1 112 70-150 18 18 1 103 70-150 19 18 1 93 70-150 19 19 1 99 70-150 19 19 1 97 70-150 19 19 1 97 70-150 20 22 1 108 70-150 19 20 1 105 70-150 20 20 1 99 70-150 20 20 1 99 70-150 20 20 1 105 70-150 20 20		

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - LCS

Sample ID: UQ99271-002 Batch: 99271

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/05/2019 1110

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		60	50-150	
d-MeFOSA		66	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UB27031-003MS Batch: 99271

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/05/2019 1110

Parameter	Sample Amount (ng/L)	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date	
8:2 FTS	ND	18	19		1	108	70-150	03/05/2019 2306	
6:2 FTS	ND	17	20		1	117	70-150	03/05/2019 2306	
EtFOSA	ND	18	21		1	113	70-150	03/05/2019 2306	
MeFOSA	ND	18	21		1	117	70-150	03/05/2019 2306	
PFBS	ND	16	16		1	100	70-150	03/05/2019 2306	
PFDS	ND	18	16		1	91	70-150	03/05/2019 2306	
PFHpS	ND	17	17		1	100	70-150	03/05/2019 2306	
PFNS	ND	18	18		1	101	70-150	03/05/2019 2306	
PFOSA	ND	18	20		1	107	70-150	03/05/2019 2306	
PFPeS	ND	17	18		1	106	70-150	03/05/2019 2306	
PFHxS	ND	17	16		1	97	70-150	03/05/2019 2306	
PFBA	ND	18	17		1	95	70-150	03/05/2019 2306	
PFDA	ND	18	17		1	92	70-150	03/05/2019 2306	
PFDoA	ND	18	18		1	98	70-150	03/05/2019 2306	
PFHpA	ND	18	20		1	112	70-150	03/05/2019 2306	
PFHxA	ND	18	18		1	100	70-150	03/05/2019 2306	
PFNA	ND	18	17		1	95	70-150	03/05/2019 2306	
PFOA	ND	18	18		1	97	70-150	03/05/2019 2306	
PFPeA	ND	18	17		1	93	70-150	03/05/2019 2306	
PFTeDA	ND	18	19		1	105	70-150	03/05/2019 2306	
PFTrDA	ND	18	18		1	98	70-150	03/05/2019 2306	
PFUdA	ND	18	19		1	104	70-150	03/05/2019 2306	
PFOS	ND	17	17		1	98	70-150	03/05/2019 2306	
Surrogate	Q % Re	Acc ec I	eptance Limit						
13C2_6:2FTS	95	5	50-150						
13C2_8:2FTS	101	5	50-150						
13C2_PFDoA	106	5	50-150						
13C2_PFTeDA	101		50-150						
13C3_PFBS	115		50-150						
13C3_PFHxS	110		50-150						
13C4_PFBA	119		50-150						
13C4_PFBA 13C4_PFHpA	110		50-150						
13C5_PFHxA	115		50-150						
13C5_PFPeA	120		50-150						
13C6_PFDA	114		50-150						
	107	5	50-150						
13C7_PFUdA									
	117	5	50-150						
13C8_PFOA	117 110		50-150 50-150						
13C7_PFUdA 13C8_PFOA 13C8_PFOS 13C8_PFOSA		5							

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MS

Sample ID: UB27031-003MS

Batch: 99271 Analytical Method: 537 Modified-ID Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/05/2019 1110

Surrogate	Q 9	% Rec	Acceptance Limit	
d-EtFOSA		77	50-150	
d-MeFOSA		78	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Sample ID: UB27031-003MD Batch: 99271

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/05/2019 1110

Parameter	Sample Amount (ng/L)	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
8:2 FTS	ND	17	21		1	120	10	70-150	30	03/05/2019 2319
6:2 FTS	ND	17	21		1	123	4.9	70-150	30	03/05/2019 2319
EtFOSA	ND	18	18		1	98	14	70-150	30	03/05/2019 2319
MeFOSA	ND	18	19		1	105	11	70-150	30	03/05/2019 2319
PFBS	ND	16	17		1	108	6.9	70-150	30	03/05/2019 2319
PFDS	ND	18	17		1	97	5.7	70-150	30	03/05/2019 2319
PFHpS	ND	17	17		1	95	4.8	70-150	30	03/05/2019 2319
PFNS	ND	18	18		1	102	0.11	70-150	30	03/05/2019 2319
PFOSA	ND	18	19		1	106	0.68	70-150	30	03/05/2019 2319
PFPeS	ND	17	18		1	105	0.96	70-150	30	03/05/2019 2319
PFHxS	ND	17	16		1	98	0.44	70-150	30	03/05/2019 2319
PFBA	ND	18	18		1	101	5.6	70-150	30	03/05/2019 2319
PFDA	ND	18	17		1	94	1.5	70-150	30	03/05/2019 2319
PFDoA	ND	18	18		1	99	0.34	70-150	30	03/05/2019 2319
PFHpA	ND	18	19		1	104	7.9	70-150	30	03/05/2019 2319
PFHxA	ND	18	18		1	97	2.5	70-150	30	03/05/2019 2319
PFNA	ND	18	18		1	101	5.7	70-150	30	03/05/2019 2319
PFOA	ND	18	18		1	101	3.2	70-150	30	03/05/2019 2319
PFPeA	ND	18	18		1	97	3.8	70-150	30	03/05/2019 2319
PFTeDA	ND	18	18		1	100	5.3	70-150	30	03/05/2019 2319
PFTrDA	ND	18	17		1	93	5.8	70-150	30	03/05/2019 2319
PFUdA	ND	18	18		1	98	6.5	70-150	30	03/05/2019 2319
PFOS	ND	17	17		1	100	2.3	70-150	30	03/05/2019 2319
Surrogate	Q % Re	c Ac	ceptance Limit							
13C2_6:2FTS	86		50-150							
13C2_8:2FTS	100		50-150							
13C2_PFDoA	109		50-150							
13C2_PFTeDA	108		50-150							
13C3_PFBS	110		50-150							
13C3_PFHxS	115		50-150							
13C4_PFBA	117		50-150							
13C4_PFHpA	119		50-150							
13C5_PFHxA	115		50-150							
13C5_PFPeA	121		50-150							
13C6_PFDA	114		50-150							
13C7_PFUdA	113		50-150							
13C8_PFOA	116		50-150							
13C8_PFOS	107		50-150							
13C8_PFOSA	107		50-150							
13C9_PFNA	119		50-150							

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

PFAS by LC/MS/MS - MSD

Sample ID: UB27031-003MD Batch: 99271

Analytical Method: 537 Modified-ID

Matrix: Aqueous Prep Method: 537 MOD

Prep Date: 03/05/2019 1110

Surrogate	Q	% Rec	Acceptance Limit	
d-EtFOSA		80	50-150	
d-MeFOSA		82	50-150	

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and <math>\geq DL$

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Chain of Custody and Miscellaneous Documents

SHEAL

Chain of Custody Record

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, South Carolina 29172

Telephone No. (803) 791-9700 Fax No. (803) 791-9111

Number

C													WWW.s	sheal	dab.co	m								
Client Rose and West	-10	7.4		Report to Leslie Na		ct											Teleph	one No. /			956-8	4-7		Quote No.
Address	a / G/	LA		Sampler's	Same		_	-					-	_			lestie.netson@gza.com Analysis (Attach list if more space is needed)							21129
601 Fifth Street NW, S	ite 102			Sample:	a orgina	HUIS											Analys	3 (Attach	st if me	ога врас	e is ni	eeded)		Page
City		Zip Code		1	12	1	_	-											-	1				1 of 1
Grand Rapids	MI	49504		X_ Printed	Norma	.lo	nnifor	Marti		-	_													
Project Name 16.0052335.62																								
Project Number 16,0062335,52			P.O No.		at se		Ma	atrix						iner										UB27031
	Sample ID / Description consider seen semble may be compared on one line) S-MW-14M 2/26/2011			Time	G-G-ab	Aqueous	Solid	Non- Aqueous		Unpres	H2804	HNOB	면	HOMN	H20	MeOH	PFAS							NMS
HS-MW-14M			2/26/2019	1222	G	x				2							×		T I					
HS-MW-14S			2/26/2019	1250	G	x				2							x							
HS-MW-14D			2/26/2019	1500	G	x				2							x							
HS-MW-14D DUP	S-MW-14D DUP 2/26/2019			1500	G	x				2							х							
HS-MW-14D MS/N	1SD		2/26/2019	1500	G	x				2							х							
	-																							
																-								
	-																							
furn Around Time Require ⊠Standard □ Rush (P			ed for expedited T	АП	Samp Re		-		$\overline{\mathbb{X}}_{0}$	Эвро	sal by	Lab		100				estion (Li						QC Requirements
Relinquished by Jennifer Martin			-		Date				Time			-		1. Re	ceive	d by	_		_		-	Date		Time
2. Relinquished by				1000	2/26/3 Date	zu19	-	-	1800 Time	_	_	_	-	2. Re	oeive	d by						Date		Time
3. Relinquished by			_	_	Date	_	_		Time	_	_				ceive							Deta		
									- It iPe					J. 140	~~19G	a oy						DAGE		Time
Relinquished by		Fed				27		9 1		00	126	1		4. La	borate	ry Re	pei ved i	ıy c	21	Lite		Date J.ス	7-17	Time 0924
	Note: All samples are retained for four would unless other arrangements are					n m	eceip	t						USE (lved c		(Check)	ØÝ	□N	□loe P				Temp. 2.3 °C	

Document Number: ME0020W-01

Y ENVIRONMENTAL SERVICES,

SHEALY ENVIRONMENTAL SERVICES, INC.

Shealy Environmental Services, Inc. Document Number: ME0018C-14

Page 1 of 1 Effective Date: 8/2/2018

Sample Receipt Checklist (SRC)

Client: GZA	Cooler Inspected by/date: UKH / 02-27-2019 Let #: UB27031
Means of receip	ot: SESI Client UPS / FedFx Other:
✓ Yes N	
✓ Yes N	o NA 2. If custody scals were present, were they intact and unbroken?
pH Strip ID; NA	Chlorine Strip ID: NA
Original temper	ature upon receipt / Derived (Corrected) temperature upon receipt
72.5	NA C NA /NA °C NA /NA °C
Method: Ten	nperature Blank Against Bottles IR Gun ID; 5 IR Gun Correction Factor: 6 °C
Method of cools	ent: 🗹 Wet Ice 🔲 Ice Packs 🔲 Dry Ice 🗎 None
☐ Yes ☐ No	NA 3. If temperature of any cooler exceeded 6.0°C, was Project Manager Notified? PM was Notified by: phone / email / face-to-face (circle one).
☑ Yes □ No	NA 4. Is the commercial courier's packing slip attached to this form?
☑ Yes □ No	5. Were proper custody procedures (relinquished/received) followed?
☑ Yes ☐ No	6. Were sample IDs listed on the COC?
✓ Yes No	7. Were sample IDs listed on all sample containers?
☑ Yes ☐ No	8. Was collection date & time listed on the COC?
☑ Yex ☐ No	Was collection date & time listed on all sample containers?
☑ Yes □ No.	10. Did all container label information (ID, date, time) agree with the COC?
✓ Yes □ No	11. Were tests to be performed listed on the COC?
☑ Yes ☐ No	13 501 0
✓ Yes □ No	
☑ Yes ☐ No	
Yes No	- The complete received within 72 the floking time or 48 hours, whichever some family
	the state of the s
☐ Yes ☐ No	If NA 16. For VOA and RSK-175 samples, were bubbles present >"pea-size" (%" or 6mm in diameter) in any of the VOA vials?
☐ Yes ☐ No	NA 17. Were all DRO/metals/nutrient samples received at a pH of < 2?
☐ Yes ☐ No	NA 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?
☐ Yes ☐ No	LI NA chlorine? chlorine?
□Yes □No	NA 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)
	correctly transcribed from the COC into the comment section in LIM92
☐ Yes ☑ No	21. Was the quote number listed on the container label? If yes, Quote #
Sample Preserva	tion (Must be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s)_NA	
in sample receivin Time of preservati	- I I I I I I I I I I I I I I I I I I I
	ion NA
Sample(s) NA Samples(s) NA	were received with bubbles >6 mm in diameter.
djusted according	were received with TRC > 0.5 mg/L (If #19 is no) and were the sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID; NA
SR barcode labels	applied by: LKH Date: 02-27-2019
Comments:	