What is wrong with my fish? Fish Health in Michigan

Gary Whelan

T. Loch, M. Gunn Van Deuren, M. VanAmberg, E. Eisch, P. Muzzall, and M. Faisal

Preserving our past... Creating our future

Fish Health is different and similar to Wildlife Health

Same General List of Potential Candidates with a few exceptions

- Bacterial
- Viral
- Fungal
- Parasites
- Stress and physiological disorders
- Differences
 - No fisheries equivalent to prion based diseases
 - No wildlife equivalent to rapid environmental shock

OF NATU

Generalized Fish and Wildlife Health Contrasts – Wildlife Better Known

- Pathogen ID
- Detection and Sampling
- Distribution
- Native or Invasive
- Symptoms and Species affected
- Disease ecology and Virulence
- Origin
- Transmission Vectors
- Elimination or Containment

Generalized Fish and Wildlife Health Contrasts

- Treatments Somewhat similar
 - Fish
 - Wild Generally not possible
 - Hatcheries Often possible as options are available
 - Wildlife
 - Wild Possible occasionally
 - Captive Possible as easier to handle animals and drugs available
- Resource Value Affected Similar
- Human Implications of the Pathogen – Very Different

Givens

A Given - Michigan's Resource Scale

- Aquatic
 - Great Lakes (38,575 sq. miles)
 - Approx. 11,000 inland lakes (1,305 sq. miles)
 - 36,000-72,000 miles of streams/flowing water
- 154 species of fish
 - 27 non-native species
- Many species of invertebrates
 - 10 species of crayfish
 - 43 species of native mussels......
- Thus, Most aquatic pathogens are poorly understood

A Given - Fisheries Infrastructure

- Six state fish hatcheries
- Five egg take and harvest stations
- 20-40 extensive rearing ponds
- About 325 tons of fish from 21 species and strains are produced annually

Last Givens

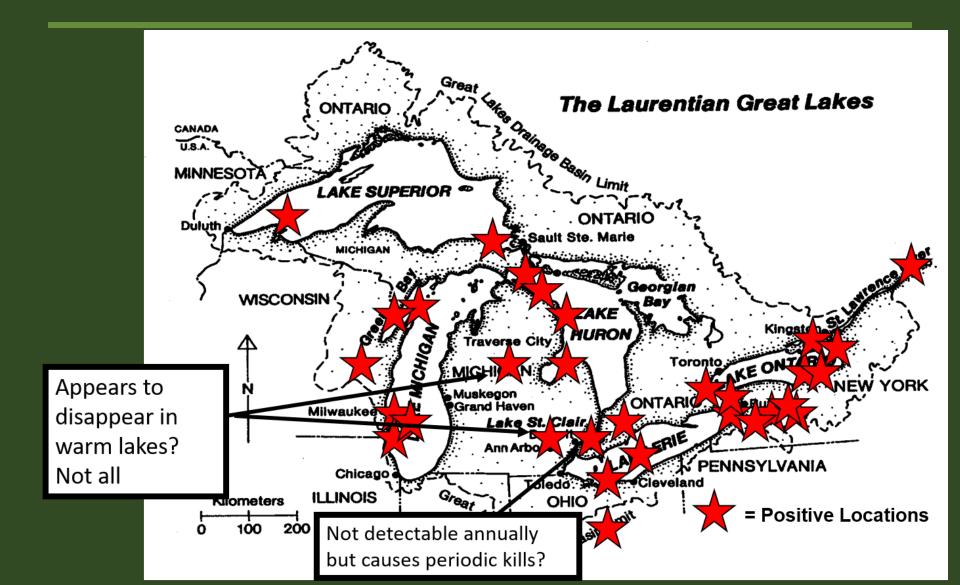
- Funding and staffing
- Many pathways for pathogen movement and introduction Most marginally controlled
 - Commercial transportation
 - Fish in Commerce
 - Bait
 - Private Aquaculture Most controlled
 - Pet Trade
 - Live fish in transit
 - Anglers
- Most aquatic pathogens are very difficult to manage

The Current Pathogen Actors Guild

- Flavobacterium
- Bacterial Kidney Disease
- Furunculosis
- Epizootic Epitheliotrophic Disease
- Viral Hemorrhagic Septicemia
- Infectious Pancreatic Necrosis
- Whirling Disease

Likely Who - The All-Star Pathogen List

- Flavobacterium Fish Enemy Number 1 100s of isolates
 - Bacterial coldwater disease (*Flavobacterium psychrophilum*)
 - Bacterial gill disease (*Flavobacterium columnare*)
 - Ubiquitous in distribution
- Bacterial Kidney Disease (R. salmoncida)
 - Caused population level mortalities of Great Lakes salmonids in the 1980s and early 1990s
 - Invasive?
 - Broadly distributed
- EEDv Epitheliotropic Disease Virus Salmonid Herpes Virus 3
 - Stress mediated Lake Trout skin disease in hatcheries
 - MSFH high mortalities at times
 - Native herpes virus that never causes issues in the wild
 - Found in wild Lake Trout in lakes Superior, Huron and Michigan

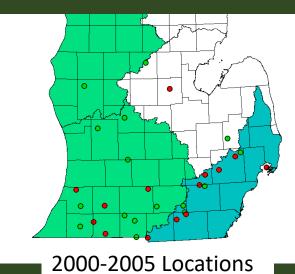


Likely Who - The All-Star Pathogen List

- VHSv –Viral Hemorrhagic Septicemia virus (IVb) Rhabdovirus
 - Invasive marine virus from Maritime Region of Canada that can infect over 25 fish species
 - Established about 2000 with the likely vector being commercial shipping.
 - Continues to cause large scale population level mortalities
 - 1000s (2018) to many millions of fish (2006 and 2017)

Current VHSv Distribution in the Great Lakes Basin

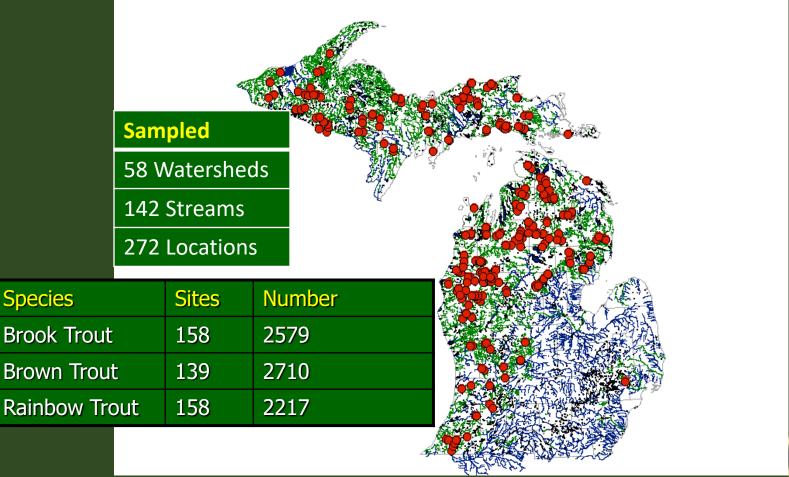
Likely Who – The All-Star Pathogen List


- Furunculosis (A. salmonicida) Bacteria
 - Historically caused large hatchery mortalities but controlled by vaccines today
 - Found widely in wild trout populations and only occasionally see clinical signs
- IPNv Infectious Pancreatic Necrosis virus

 Birnaviridae
 - Stress mediated issue in hatcheries and does periodically cause mortalities in trout
 - While seen in a few waters in wild trout, it is very uncommon

Likely Who – The All-Star Pathogen List

- Largemouth Bass Virus (LMBv) Iridoviridae (Ranavirus like)
 - Invasive pathogen from the Southern US
 - Arrived in MI about 2000, likely from by an angler translocation
 - Southern MI lakes through the early 2000s and caused mortalities of 10-20% of adult Largemouth Bass
 - Now making a resurgence in SMB and causing skin lesions along with potential recruitment issues


Likely Who – The All-Star Pathogen List

- Whirling Disease *Myxobolus cerebralis* Myxosporean
 - Invasive parasite from Europe
 - First found in MI in 1968
 - Population level effects in Western trout rivers but not in Midwest or East
 - We do not have the right intermediate tubificid (aquatic worms) hosts
 - Lineage III and IV are the key ones
 - Conditions favorable for these linkages could change with climate change as they need high organic material and temperatures than the other lineages

Wild Fish Disease Survey Sites 1998-2003

1998-2003 Results

Species	Sample Sites	Positive Watersheds	Positive Streams	Prevalence
ВКТ	158	6	9	55%
BNT	139	3	6	38%
RBT	158	7	11	72%

About 10% of Michigan Trout Streams are Positive for *Mcer*

Likely Who – The All-Star Pathogen List

- Thiamine Deficiency Syndrome
 - Key forage species, particularly Alewives, have a high concentrations of long fatty acids and thiaminase
 - Cause thiamine loss in salmonids, particularly Lake Trout
 - Complete recruitment failure as the fry do not develop without adequate thiamine
 - Requires thiamine treatment of eggs in hatcheries
- Coolwater fish diseases are marginally understood
 - Carp viruses (Koi Herpesvirus) and STN Herpesvirus
 - Expect surprises from climate change

Likely Who's Next

- IHNv Infectious hematopoietic necrosis virus – Rhabdovirus
 - West Coast salmonid disease
 - Not in Great Lakes Basin
 - Can cause large epizootic events
- ISAv Infectious salmon anemia virus RNA virus - Isavirus
 - East Coast and European virus with large losses seen in Atlantic Salmon farms
 - Not in Great Lakes Basin
 - Nonvirulent forms that can become virulent

Likely Who's Next

- PKD Proliferative Kidney Disease Myxozoan parasite
 - West and Intermountain
 - Causes large epizootic events in stressful conditions for salmonids and Mountain Whitefish
 - Not in Great Lakes Basin?
 - Currently, testing is difficult but new assays in development
- Spring Viremia of Carp Rhabdovirus
 - Found in the US in a few locations but not MI
 - Can jump hosts to native minnow species

Key Fish Health Program Components

- Policy, Staffing and Funding
- Surveillance
- Biosecurity
- Inspection and Testing
- Treatment
- Research and Assessment
- Public Communication

Key Fish Health Decision Questions

- Pathogen ID?
- Ecology?
- Hosts?
- Virulence?
- Distribution and origin?
- Vectors?
- Elimination or containment?
- Treatment?
- Resource value affected?

Fish Health Policy

- Fish health is a food and economic security issue
 - Nearly all fish pathogens are not human pathogens
- Must have a firm science-based policy basis
 - GLFHC Model Fish Health Program and GLFC community of practice
 - Test using AFS-Bluebook or OIE procedures
 - Coordinated processes, procedures and communication
 - Require inspections for importations and transfers
 - Require all private stockings of public waters and bait industry to use inspected and certified fish with species specific testing
 - Salmonids VHSv, IHNv, ISAv, IPNv, and *Myxobolus cerebralis*
 - Other species LMBv, *Heterosporis sp.*, STN Herpesviruses, SVCv, KHV, FMNv, GOSv
 - Based on host sensitivity, virulence, and transmission to other species

Fish Health Staffing and Budget

- Staffing
 - Policy and Analysis (0.3 FTE)
 - Gary Whelan
 - Edward Eisch
 - Field sampling from units
 - Coordination (0.5 FTE)
 - Jeremiah Blaauw
 - Laboratory (PERM MSU AAHL)
 - Dr. Thomas Loch
 - Michelle Gunn Van Deuren
 - Many grad and undergraduate students
- Annual Budget
 - Approx. \$450,000-\$500,000 (1.5%)

Surveillance – Broodstocks

- All feral broodstocks tested annually
 - Steelhead
 - Chinook and Coho Salmon
 - Walleye
 - Muskellunge
 - Lake Sturgeon
- Captive broodstocks Tested multiple times annually
 - Brook and Lake Trout
 - Brown and Rainbow Trout

Best Case Wild Fish Surveillance

- Use temporal and spatial sampling design
 - Fixed and random sites like our Status and Trends sampling
- Use citizen scientists as an initial screening tool
- Sentinel sites key initial pathogen locations
 - Duluth, Sault Ste. Marie, Chicago, Detroit, Toledo, Cleveland, Welland Canal, Toronto, Hamilton, and Montreal
 - High use waters Houghton Lake, Lake St. Clair

Wild Fish Surveillance – Current MI Approach

- Hatchery surface water supplies
 - MSFH and PRSFH
- Fish transfers from wild sources to other waters
 - Surrogate species
- Myxobolus cerebralis in selected waters
- Fish kill investigations
- Eyes in the Field 380+ citizen observations since February 2018
- Lack of resources does not allow appropriate statistical design
 - Opportunistic and reactionary approach

Biosecurity

- Field
 - All gear and equipment is disinfected
- Fish Production
 - UV filters at MSFH and PRSFH
 - Individual equipment for each raceway and tank
 - Foot baths at building entrances
 - Facilities are intensively cleaned, and all dead fish removed as soon as observed
 - Mortalities closely monitored to examine for disease patterns

Biosecurity

Fish Production

- All fish stocking trucks are disinfected after use and limited truck transfer between facilities
- Other than eggs and fry from broodstock facilities, fish are not transferred between facilities
- Actively manage hatchery fish against pathogens
 - Keep different types of fish as separate as possible
 - Vaccines
 - Select against pathogen carriers
 - Cover raceways to reduce stress
 - Keep densities and stress as low as possible
 - Herd immunity used for select diseases
- Extensive testing of production fish
- Baitfish

Testing and Inspections

- All GLFHC agencies report on their fish health findings
- Test all GLFHC Model Program pathogens for appropriate species
 - R. salmoncida, Y. ruckeri, A. salmonicida
 - VHSv, IHNv, ISAv, IPNv, EEDv (Salmonid herpesvirus 3), White sturgeon iridovirus, Sturgeon herpesviruses
 - *M. cerebralis, Heterosporis* sp.
- Test broodstocks, production, and transfer fish
- MSU- AADL Testing Totals FY2021
 - Total cases 169 (6573 fish)
 - Inspections 124 (5703 fish)
 - Diagnostic 31 (591 fish)
 - Wild Fish Diagnostics and kills 15 (279 fish)

Disease Treatment

- Complete diagnostic testing done on affected hatchery fish
- Use available chemicals and drugs that are registered or under INAD
 - Vet scripts also used but infrequently
- For all bacterial pathogens, we test antibiotic susceptibility before treatment
 - Prevent antibiotic resistance

Research

- Developing pathogen histories
 - Analyses of published Great Lakes parasites completed
 - Analysis of published inland Michigan fish parasites in draft manuscript
 - Whirling disease history in Michigan in progress
 - Histories on BKD, EEDv and TDS planned
- Database refinement and population, and trend evaluation of current data in progress
- Statistical sample sizes in progress with PERM faculty
 - Standard sample sizes are based on wrong statistical model
 - Standardized random instead of clumped

Research

- MSU-AADL (PERM)
 - Flavobacteria control work
 - Pathogen challenge experiments
 - VHSv susceptibility for White Suckers
 - STN pathogen analysis
 - PKD test development

Public Communications

- The public notices dead fish
 - Respond to all public inquires and Eyes in the Field Reports
- If it bleeds, it leads with the press
 - Get confirmed information out into the press on fish kill events
 - Proactive with fish health press releases
 - Winter and summerkill
- Emphasize epizootic risk from fish pathogens
 - Viruses None
 - Bacteria and fungi Mostly none
 - Parasites None if cooked
 - Freshwater fish Do not eat raw fish products

Questions or Comments

Gary Whelan whelang@michigan.gov 517-242-2764

