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ABSTRACT 

 

Statistical evaluation of the dose-response function in lead epidemiology is rarely 

attempted.  Economic evaluation of health benefits of lead reduction usually assumes a 

linear dose-response function, regardless of the outcome measure used.  We reanalyzed a 

previously published study, an international pooled data set combining data from seven 

prospective lead studies examining contemporaneous blood lead effect on seven year old 

child IQ (N=1333).  We constructed alternative linear multiple regression models with 

linear blood lead terms (linear-linear dose-response) and natural log transformed blood 

lead terms (log-linear dose-response).  We tested the two lead specifications for non-

linearity in the models, compared the two lead specifications for significantly better fit to 

the data, and examined the effects of possible residual confounding on the functional 

form of the dose-response relationship.  We found that a log-linear lead-IQ relationship 

was a significantly better fit than a linear-linear relationship for IQ (p=0.009) with little 

evidence of residual confounding of included model variables.  We substituted the log-

linear lead-IQ effect in a previously published health benefits model and found that the 

economic savings due to US population lead decrease between 1976 and 1999 (17.1 

µg/dL to 2.0 µg/dL) was 2.2 times ($319 billion) that calculated using a linear-linear dose 

response function ($149 billion).  The CDC action limit of 10 µg/dL for children fails to 

protect against the majority of damage and economic cost attributable to lead exposure.      
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INTRODUCTION 

Few researchers doubt that lead exposure has significant health consequences at levels 

below those considered medically acceptable just decades ago, though there is still debate 

over what levels of lead exposure, if any, can be considered harmless.  Key to this debate 

is determining the form of the dose-response function describing how the amount of 

exposure is related to the magnitude of the health effect. 

 

There are two basic forms of the dose-response function for lead: a simple linear model, 

where the increase in health effect is a linear function of increasing blood lead 

concentration (BPb), and a non-linear model, where the amount of health effect change 

attributable to lead changes according the region of the dose-response curve studied.  A 

threshold model, where the response to lead falls as some function of decreasing dose 

until a region of lead dose is reached below which there is no further detectable change in 

health, is a special case of the non-linear dose-response function. An alternative threshold 

model is one in which the response to lead changes as a function of increasing dose until 

an upper lead bound is reached at which point the increase in health damage exceeds 

predictions, as in cases of high doses producing organ damage. 

 

Although epidemiologists have become increasingly sophisticated in construction and 

diagnosis of models describing their data, as a whole we generally pay much less 

attention to systematically and rigorously addressing the specification of the dose-

response function.  A number of public-health issues depend on adequately specifying the 

form of the dose-response function for lead, chief among them regulatory action. 
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Cost-benefit analyses should form the backbone of regulatory decisions regarding 

permissible exposures or background concentrations of toxic substances in both 

population and occupational settings.  In such an ideal world, the savings in health care, 

disability, and productivity gain realized from reducing exposure to a particular substance 

are compared to the cost required to achieve that reduction in exposure.  Policy analysts 

seek the sweet spot, where the marginal costs of lead reduction equal the marginal 

benefits (i.e., where the slopes of the cost function and benefits function are equal)(Pacala 

et al. 2003).   Even if in the real world less easily quantifiable factors affect regulatory 

decisions, all parties to regulation have some notion of costs and benefits in mind when 

presenting their cases to regulatory agencies. 

 

One recent publication (Grosse et al. 2002) presented data on the economic benefits of 

nationwide lead reduction due to childhood IQ loss attributable to lead over the last 25 

years.  These authors conservatively used a linear dose-response function of lead-IQ as 

part of their model, stating that there was insufficient evidence to determine the shape of 

the dose-response function.  The economic savings predicted by their model were in the 

range of hundreds of billions of dollars over the lifetime of a yearly birth cohort. 

 

 

The lead-health dose-response function selected for the benefits model has clear 

implications for policy decisions based on it.  A threshold model suggests that once 

reductions of population level of lead reach the threshold, further lowering of lead would 

have no beneficial health or economic consequences.  The current CDC action limit of 

greater than 10 µg/dL for children would be justifiable on health grounds alone if there 
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were a threshold somewhere near that limit.  A linear model suggests that equal reduction 

in population blood lead is accompanied by equal reduction in health consequence from 

any starting level of lead.  Under a linear dose-response model, even though the health 

benefit would continue to increase with further population lead reduction, the present 

CDC action limit might be justifiable on economic grounds if the cost of further 

population BPb reduction far exceeded the recoverable economic benefits.  A non-linear 

model, especially one where health benefits are greater for lead reduction nearer the 

population zero lead point than farther from it, would argue for further reduction in 

population lead levels and CDC action limits if the accelerated health benefit at lower 

lead levels exceeded the increased costs of lead reduction to those levels. 

  

In this work we present a critical examination of the dose-response function in a widely 

studied area of epidemiological research with lead, childhood IQ.  We present easily 

accessible statistical techniques useful for deciding among alternative dose-response 

functions and for testing if residual confounding resulting from possible misspecification 

of model control variables affects the dose-response function.  We apply our dose-

response modeling results to the benefit model noted above to calculate changes in 

economic benefits realized from using a statistically adequate dose-response function.  

The results are placed in the context of public health policy and regulation. 

 

METHODS 

Data Sets 

 Childhood IQ 
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Altogether there have been eight prospective studies of lead exposure using child IQ or 

developmental index as the outcome measure with outcome measured at least to five 

years of age, of which seven (Baghurst et al. 1992; Bellinger et al. 1992; Canfield et al. 

2003; Dietrich et al. 1993; Ernhart et al. 1989; Schnaas et al. 2000; Wasserman et al. 

1997) agreed to participate in a pooled analysis study, combining the data sets to produce 

a study sample of 1333 with a 0.1-71.7 µg/dL range of lead exposure (Lanphear et al. in 

press, 2005).  All studies producing data for the pooled analysis were approved by an 

appropriate IRB.  Child IQ as measured by one of several versions of the Wechsler 

Intelligence Scales for Children around seven years of age was regressed on different 

indices of BPb (child BPb from 6 to 24 months, peak BPb during the first seven post-

natal years, average BPb over the same time, and contemporary BPb) in multiple 

regression models controlling for maternal IQ and education, quality of the home 

environment and child-caretaker interaction (HOME (Caldwell and Bradley 1984)), birth 

weight, and study site.  Other control and confounding variables, such as child’s sex, 

tobacco exposure during pregnancy, alcohol use during pregnancy, maternal age at 

delivery, marital status, and birth order had no significant effect in the models, did not 

significantly alter the IQ-lead relationship, and were not included in the final models.  All 

lead variables in the models were natural log transformed.  All lead variables had highly 

significant effects on IQ (p<0.0005) in the models. 

 

We selected BPb measured contemporaneously with the IQ for further analysis using the 

pooled data set (adjusted estimate of natural log lead [95% CI] on IQ = -2.70 [-3.74 - 

-1.66], as this was the measure to which Lanphear et al. devoted most attention even 

though it had the second smallest coefficient among the four presented. 
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Statistical Analyses 

 Multiple regression modeling 

The IQ data set was analyzed with the original model specifications, including log 

transformed BPb, using multiple regression analyses (Stata 8.2, Stata Corp., College 

Station, TX).  The IQ multiple regression model was also re-specified with a linear lead 

term.    

 

Specification tests for the functional form of the lead variable (dose-response 

function) 

The omitted variable test, or regression specification error test (RESET) (Ramsey 1969), 

statistically tests change in model fit when any polynomial transformation of the variable 

in question is used in place of the original functional form of the variable.  To test if the 

polynomial form is superior to the original form of the variable a chi-squared test is 

constructed by using the difference in two models’ chi-square (or the difference in 2 

times the log likelihood of the two models) with the number of degrees of freedom 

determined by the number of additional variables added to the polynomial model.  This is 

a maximum likelihood evaluation of changes in model fit and is a test of nested models, 

as the original specification is nested within the polynomial specification.  Its principal 

disadvantage is that it only tests if a polynomial specification is better than a simpler 

specification and does not allow direct comparison of two non-nested models each with a 

different specification, such as linear and logarithmic.  On the other hand, it is easy to do 

even in the absence of “canned” statistical routines and quickly tells if the original 

variable specification can be improved by adding polynomial terms. 
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An accessible approach for comparing variable specification between two non-nested 

models is the J Test (Davidson and MacKinnon 1981).  It can be realized by first 

obtaining predicted values for two models, each with a different specification of the same 

independent variable, then adding the prediction of the first model to the specification of 

the second model and vice versa (see Appendix for schematic recipe).  A clear indication 

in favor of one or the other specification would occur when one of these prediction-added 

models results in a significant value for one specification of the variable and the other 

prediction-added model results in a non-significant value.  A disadvantage of this test is 

its low power to detect a significant improvement in variable specification.  Hundreds or 

thousands of observations might be needed if the difference between two alternative 

variable specifications is subtle or the variable is measured over a limited range.  Low 

power is not a limiting factor in this study (N=1333, blood lead range 0.1 – 71.7 µg/dL). 

 

 Testing for residual confounding 

When control or confounding variables are either omitted or their functional form is 

misspecified the resulting residuals in the model could cause an alteration in the apparent 

functional form of the dose-response relationship (Becher 1992).  In the case of IQ, not 

accounting for the number of other family members, family socio-economic status, birth 

or childhood trauma or serious illness, IQ of the father, among other variables that might 

control subject IQ, could alter the measured form of the dose-response relationship for 

lead.  If these variables are not accounted for in the experimental design by becoming 

part of the inclusion/exclusion criteria or they are not tested for and, where appropriate, 

included in the models, they may contribute to residual confounding of the dose-response 

curve. 
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Another potential cause of residual confounding occurs when the functional form of 

included control or confounding variables is not correctly specified.  As much statistical 

modeling in epidemiology is performed using some variant of generalized linear models 

(here least squares regression), modelers may assume the linear specification of these 

other variables is correct.  For instance, a truly non-linear relationship between maternal 

and child IQ that is mistakenly modeled as a linear relationship, significant or not, will 

alter the residuals of child IQ over different parts of the maternal-child IQ relationship.  

Since the dose-response curve for lead-IQ is based on those residuals, this confounding 

can modify the modeled dose-response relationship. 

 

When residual confounding is caused by a variable omitted from the design there is little 

remedy available except to redesign the study and collect the data anew.  Fortunately, we 

can account for residual confounding when it is due to misspecification of included 

variables.  Generalized additive models (GAM) (Hastie and Tibshirani 1990) can use 

smoothing spline functions, among other smoothers, to fit continuous and ordinal 

independent variables to the dependent variable instead of pre-determined linear fits as 

with linear regression models.  Depending on the number of degrees of freedom allotted 

to the splines, the technique can follow complex non-linearity in the relationship between 

independent variables and the dependent variable, non-linearity that might be difficult to 

account for by parametric functions.  The penalty for increasing the complexity of the 

spline fit is the use of more degrees of freedom in the model.  GAM yields no parameters 

readily summarizing the relationship between independent variables and the dependent 

variable.  There is no disadvantage, however, if we want to use GAM to characterize the 

possibly complex relationships among independent control variables and the dependent 
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variable to avoid incorrect residuals from affecting the parametric dose-response 

relationship, as has been previously shown with simulations (Benedetti et al. 2004). 

  

GAM allows calculation of the gain from the spline fit over a linear fit by assessing the 

increase in deviance of the fit of the linear characterization of the variable compared to 

the spline fit characterization.  Under the null hypothesis that non-linearity of the 

smoothed function is an artifact, the gain is approximately a chi-squared distribution. 

Thus, approximate probability values can be calculated for improvement of fit using the 

spline function.  A significant gain indicates that the original linear or any other 

specification of the variable was a poorer fit to the data than the spline fit.  The procedure 

also gives a total model gain and model gain significance value. 

 

We used cubic-spline GAM modeling of IQ.  We modeled all continuous and ordinal 

variables with 2, 3, and 4 degrees of freedom cubic splines.  We constructed three 

alternative models based on the basic model above.  In the first series of GAM models we 

used untransformed BPb (linear BPb) spline-modeled with the same number of degrees 

of freedom as the control variables.  A significant gain in the spline-modeled 

untransformed BPb term would indicate that the original linear BPb specification could 

be improved upon, after correcting for any nonlinearity in the control variables. 

 

In the second series of GAM models we substituted the natural log transformed BPb 

variable for the linear BPb variable of the first model, allowing the number of degrees of 

freedom of the spline fit to vary as in the first model.  An insignificant gain of the natural 

log transformed lead variable would indicate there was no improvement detected in the 
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fit to the dependent variable by spline modeling of the log transformed lead variable, 

correcting for possible nonlinearity in the control variables.   

 

Finally, the third series of GAM models was constructed as above, except that the natural 

log transformed lead variable was held to one degree of freedom.  This tested the original 

natural log specification of the lead variable in a model where residual confounding from 

possible misspecification of the control variables was corrected.  Insignificant gains in 

the other variables would suggest that their original specifications were adequate.  The 

size of the lead coefficient was compared between the third series and the original 

multiple regression model to determine how much residual confounding of misspecified 

control variables affected the estimated size of the relationship between lead and the 

health outcome dependent variable.   

 

All statistical procedures described above were carried out in MATLAB 6.5.1 (The 

Mathworks, Natick, MA) and Stata 8.2 (Stata Corp., San Antonio, TX). 

 

 The benefits model 

We used a previously published model (Grosse et al. 2002) of economic benefits showing 

expected dollar savings produced by population lead declines in the United States from 

1976 through 1999 solely through increased population cognitive ability as measured by 

lead effects on child IQ.  The model posits that the dollar gain in the affected cohort is a 

simple product of reduction in BPb over the period (µg/dL), the IQ-BPb slope 

(IQ/µg/dL), the earnings-IQ slope (%), the present value of lifetime earnings of a 2-year 

old (in year 2000 dollars), and the size of the 2-year old cohort.  The authors of the model 

 13



used linear IQ-lead slopes of 0.185 - 0.323 IQ points for each 1 µg/dL, calculated from 

published meta-analyses. 

  

Instead of the linear IQ-lead slope, we substituted the change in IQ expected over the 

estimated 15.1 µg/dL decrease in population lead in the US, calculated by assuming both 

a linear-linear and a log-linear lead-IQ dose-response function using the results of the 

pooled analysis presented above and then recalculated the cohort benefit. 

 

RESULTS 

 Lead and IQ 

Table 1 shows the lead coefficients of the different IQ models.  Both linear and natural 

log lead specifications were highly significant (first two rows of table).  The omitted 

variable test using the linear lead variable showed a significant improvement in fit using 

the polynomial lead specification (p=0.020, third row), while the same test showed that a 

polynomial form of the log lead variable offered no improvement (p=0.258, fourth row).   

 

The J-test showed that the log lead specification was still significant (p=0.009) in a model 

with the prediction from the linear lead model added (fifth row).  The alternative model, 

the linear lead model with the prediction from the log lead model resulted in an 

insignificant linear lead variable (not shown in Table 1).  The results indicate that the log 

lead specification described the data significantly better than the linear lead specification. 

 

Tables 2-4 show the results of the GAM analyses.  Presented results are limited to the 2 

degrees of freedom spline fits, as they usually resulted in the largest gains and lowest 

probability values, though results were similar for the three and four degree of freedom 
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spline fits.  Spline fit gains are only shown for ordinal and continuous variables as 

dichotomous variables cannot be fit by splines and they remain in the model unmodified.   

 

In Table 2 the linear lead model is entirely fitted by splines.  Note that the gains of all 

control variables were non-significant, suggesting adequate specification of these 

variables as linear.  The gain of the linear lead variable was highly significant (p=0.006) 

and the total gain of the model was also significant (p=0.0142).  These findings indicate 

that both the linear lead specification and the model as a whole better fit the data when 

splines were used than when the original variables were fit by linear regression.  The 

results from Table 1, that the linear lead term did not adequately fit the data, was 

confirmed in Table 2 and the non-linear (spline) fit of the lead variable was not due to 

residual confounding with included variables. 

 

Table 3 shows the same spline-fit model as Table 2 but the natural log lead term is 

substituted for the linear lead term.  Once again, no control variable showed significant 

gain using the spline fit, the log-transformed lead variable gain was also non-significant 

(p=0.230), and the model itself was not significantly improved by fitting the variables 

with splines (p=0.176).  There was no significant improvement in the log-linear lead-IQ 

fit by adjusting for possible departures from that specification. 

 

In Table 4 the natural log-transformed lead variable is allowed to maintain its original 

specification while the remainder of the variables is fit with splines.  Comparison of the 

coefficient of the log lead variable in this model (beta = -2.62) with the coefficient of the 

multiple regression model (beta = -2.70; second coefficient from Table 1) further 

supports the result that there was no important misspecification of the control variables in 
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the original multiple regression model and the log-linear form of the dose-response curve 

was not affected by residual confounding of variables included in the model. 

 

These results strongly support the hypothesis that an adequate description of the dose-

response curve for the effect of lead on child IQ is log-linear, not linear, and that residual 

confounding of the dose-response specification by possible misspecification of included 

control variables played no role.  The log-linear dose-response relationship is compared 

to the linear dose-response relationship in Figure 1. 

 

 

 Economic Benefits Model for Lead-IQ 

 Grosse et al.’s benefit model of economic gains due to lead reduction effect on IQ in the 

US (Grosse et al. 2002), calculated the total year 2000 dollar savings as a result of the fall 

of BPb over a 23 year period.  Their model postulated that the dollar benefit per cohort 

was: 

 

Benefit = A x B x C x D x E, where 

A = reduction in BPb (µg/dL) 

B = IQ–BPb slope 

C = earnings–IQ slope (%) 

D = present value of earnings of 2-year old (in 2000 dollars) 

E = size of 2-year old cohort 

 

We use their “base case” figures of: 

C = 2.0 
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D = $723,000 

E = 3,800,000 

 

In place of Grosse’s A = 15.1 µg/dL, we used the difference in the natural log BPb values 

in 1976 and 1999: 

 

BPb (1976) = 17.1 µg/dL 

Natural log BPb (1976) = 2.84  

BPb (1999) = 2.0 µg/dL 

Natural log BPb (1999) = 0.69 

Difference in BPb (1976 – 1999) = 15.1 µg/dL 

Difference in natural log BPb (1976 – 1999) = 2.15 

 

In place of Grosse’s B = 0.257 IQ-BPb slope (every decrease of 1 µg/dL BPb is 

associated with an increase of 0.257 IQ points) used in their “base case” analysis, we 

used the natural log lead coefficient calculated from the pooled analysis study (Table 1, 

row 2), 2.70 (every natural log unit decrease in BPb is associated with an increase of 2.70 

IQ points).  The original benefits model used uncertainty in the reduction of BPb over the 

period studied (variable A, above) and the IQ-BPb slope (term B, above) to calculate 

upper and lower bounds on economic benefits.  We used only the uncertainty in the IQ-

BPb slope, calculated from the coefficients presented in Table 1 and from the reported 

meta-analysis Grosse et al. used (Schwartz 1994) in their base case analysis.  We present 

Grosse’s original calculations based on their linear lead coefficient, the new calculations 

based on a log-linear dose-response relationship with 95% confidence intervals of B  
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(-3.74 – -1.66), and, for comparison, the dollar savings per cohort based on the 

demonstrably incorrect linear lead specification calculated from the pooled analysis 

study, 0.18 (95% CI = 0.10 – 0.26) (Table 1, row 1).  These results are presented in Table 

5.  

 

Savings estimated using the correct log-linear dose-response relationship between BPb 

and IQ are nearly 2.2 times those estimated using a poorly fitting linear dose-response 

relationship for the same decrease in population BPb. 

 

 

DISCUSSION 

 

 Model Specification 

Diagnosing model specification is an essential part of statistical modeling, particularly 

when ordinal and continuous variables are part of the model.  Compared to the more 

commonly used diagnostic tests for general linear models, such as testing for distribution 

and homoskedasticity of residuals, formal tests of the assumed functional form of any 

independent variables against the dependent variable are scarcely reported in the 

epidemiological literature.  We often do not address functional form issues except as a 

byproduct of adjusting residual diagnostics.  For example, most lead-IQ studies in 

children, especially in the last 20 years, have used a natural log transformed lead variable 

to normalize the residual distribution of the model and correct for heteroskedasticity of 

residuals.  
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Although issues of the functional form of the lead-health effect relationship have 

occasionally been raised in the literature, notably by Joel Schwartz (e.g., see (Schwartz 

1994)), and more recently and extensively by Grosse et al. (Grosse et al. 2002), it is 

common practice for the authors of applications of these studies to economic analysis to 

use linear approximations of the lead effect over a limited range of BPb, as did Grosse et 

al.  Authors have not extrapolated health effects below the lower limits of lead in their 

data sets in the past.  Data sets studying a wide range of BPb have only recently become 

available.  Because linear and log lead specifications produce large differences in 

predictions only as BPb approaches zero (see Figure 1), data sets including substantial 

numbers of very low BPb are required to notice, appreciate, and test for adequacy of 

alternative specifications. Implicit in the log-lead specification is that change in health 

effect with change in BPb at higher levels is small, save when lead toxicity associated 

with pathological organ damage is reached. 

 

Most studies using a log-linear dose-response relationship also neglect to comment on the 

public health implications of this functional form.  As opposed to a linear dose-response 

relationship, where equal changes in health outcome are predicted for equal changes in 

BPb across the entire range of BPb, the log-linear relationship has the steepest slope at 

the lowest BPb.  Health outcome changes are equal for equal proportional changes in 

BPb across the entire tested range of BPb.  In the case of a log-linear dose-response 

relationship, the increase in population IQ predicted from a decrease in population BPb 

from 2 to 1 µg/dL is exactly the same as that predicted from a decrease in BPb from 20 to 

10 µg/dL or from 40 to 20 µg/dL, though populations exposed to these different 

concentrations of lead will likely have different mean IQs. 
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We calculated the BPb change in the US population between 1976 (17.1 µg/dL) and 1999 

(2.0 µg/dL) used by Grosse et al. at 2.15 natural log units change. The pooled analysis 

study has 38 subjects below 2 µg/dL BPb.  If we project the 1999 population BPb of 2.0 

another 2.15 natural log lead units down to a population lead level of 0.24 µg/dL in the 

indeterminate future, we can duplicate the health benefit of BPb reductions for the 

population already achieved by the reductions between 1976 and 1999, at least for IQ 

outcomes. 

 

The log-linear dose-response function for lead, especially if it generalizes across other 

health outcomes, may also account for the failure of many older studies to find significant 

lead-related effects.  In occupational studies of health effects of lead exposure, often the 

generally high mean BPb of the “exposed” groups and even the “non-exposed” control 

group place health comparisons among exposure levels on the flat end of the log-linear 

dose-response curve, where the dose-response curve approximates a nearly zero slope 

linear trend.  Under such conditions, a very large sample size would be needed to detect 

significant differences among groups.  If a linear model were used to specify the dose-

response relationship at higher BPb, even significant effects detected in large N studies 

would have small coefficients.  The apparent “no-effect” relationship predicted by the 

near zero slope of a log-linear dose-response function at elevated BPb is especially 

notable in the occupational lead-blood pressure literature. 

 

We do not propose that the log-linear dose-response function for BPb effect on child IQ 

is the “correct” dose-response function.  Our analysis only indicates that it is superior to a 

linear-linear dose-response function.  We examined two other non-linear dose-response 

functions for this relationship, a third-order polynomial and a logit dose-response 
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function.  The logit function is attractive as it can model a reduction of the dose-response 

slope as BPb falls below currently modeled data, thus providing for the possibility of an 

ultra-low threshold for lead effect on IQ.  The polynomial function would permit 

modeling of a new increase of slope of the dose-response function beyond the upper 

limits of the data set modeled here.  This would allow accounting for severe lasting 

effects of the pathological changes associated with lead-induced encephalopathy.  

However, the alternative non-linear dose-response functions both modeled the present 

data set no better than the log-linear function, including the steeper slope at low BPb.  

There was a difference of less than 0.2% of the variance in IQ accounted for by the lead 

variable among the three specifications.  As the log-linear dose-response relationship 

only required two parameters for complete specification and the alternatives required 

three parameters, we elected to use the most parsimonious specification for detailed 

analysis of the data set at hand. 

 

 Public Health and Policy Implications 

There appears to be no support for a threshold model for BPb effect on IQ.  On the 

contrary, instead of reaching a no effect lower limit, the presented work strongly suggests 

that most of the damage attributable to BPb occurs within the first few µg/dL of BPb 

within the lead range studied.  Any apparent threshold will appear at the upper ranges of 

BPb, where the dose-response curve flattens, at least until BPb reaches the range 

producing frank organ damage. 

 

In prospective lead studies of child development, including the pooled study IQ effects 

cited here, history of exposure is always available in the form of sequential blood lead 

measurements of each child.  We have good evidence that the log linear lead-IQ dose-
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response function is not an artifact of unmeasured history of exposure and represents the 

best available functional description of BPb on IQ. 

 

The drop in population lead exposure from mean BPb of 17.1 µg/dL to 2.0 µg/dL over 

the last quarter century produced the large health benefits calculated in Table 5.  Though 

lead in paint and food had been specifically regulated with the goal of reducing 

population lead exposure, the reduction of lead in air and eventually in dust, one of the 

major contributors to past urban population lead exposure (Mielke et al. 1983; Mielke et 

al. 1997; Mielke et al. 1999), was by and large due to the introduction of catalytic 

converters for automobiles.  Thus, a large part of the drop in population lead was only 

coincidentally achieved in response to the stated policy of reducing gaseous automobile 

contaminants.  Fortunate though we may have been to have benefited from this accidental 

process, it is unlikely that further reduction in population lead exposure will be achieved 

without increased targeted effort. 

 

While many hailed OSHA’s 1979 regulations seeking to limit occupational exposure to 

40 µg/dL and EPA’s promulgation in 1991 of action limits for childhood lead exposure to      

10 µg/dL, it appears very likely that these limits have prevented only a small percentage 

of the damage associated with lead exposure.  The total modeled increase in IQ from the 

pooled data study over the BPb range of 71.7 to 0.1 µg/dL was 17.7 IQ points.  The 

improvement in IQ predicted by the log-linear model down to the CDC action limit for 

children was 5.3 IQ points while the remainder of the IQ improvement (12.4 IQ points) 

was found below the CDC action limit.  If we continue to permit children, and by 

extension pregnant women, to maintain up to 10 µg/dL BPb without aggressive 
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intervention to lower exposure, we are still allowing most of the preventable sub-clinical 

damage to occur.   

 

Economic benefits realized by lead exposure reduction under a log-linear dose-response 

function are more than two times greater than previously estimated using a linear dose-

response function.  Updated cost studies of further population and occupational exposure 

reduction are long overdue.  Using updated cost and benefit models, epidemiologists and 

health economists can determine how much additional exposure reduction is 

economically warranted. 

 

This paper only addresses the form of the dose-response function for lead effect on child 

IQ.  Another well-studied area of health effects of lead exposure is the effect of lead on 

adult hypertension and blood pressure.  A recent meta-analysis of studies examining the 

effect of contemporary blood lead on adult blood pressure (Nawrot et al. 2002) used a 

log-linear dose-response relationship and found a significant effect.  For every doubling 

of BPb, the authors calculated a 1.0 mm Hg increase in systolic blood pressure and a 0.6 

mm Hg increase in diastolic blood pressure.  The pattern of increased blood pressure with 

increase in BPb was exactly the same as the decrease in child IQ with increased BPb.  

The greatest changes in predicted blood pressure occurred in the first few µg/dL of BPb.  

As the authors performed no formal testing of other forms of the dose-response function, 

the log-linear dose-response relationship for BPb on adult blood pressure should be 

examined in a pooled data study similar to that used for the IQ study detailed here.  If the 

original data in the studies contributing to the meta-analysis for blood pressure were used 

in a pooled analysis study, there would be over 50,000 subjects in the study.  Such a large 

study sample would allow testing other non-linear forms of the dose-response 
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relationship for lead and blood pressure against the log-linear form.  Any non-linear dose-

response relationship of the same general form as the log-linear function for blood 

pressure would have similar economic and public health repercussions to those discussed 

above for IQ.  Over the US population blood lead change measured between 1976 and 

1999, Nawrot’s coefficient translates into a 4.1 mm Hg decrease in population systolic 

blood pressure, a change with significant health and economic benefits. However, the 

majority of the health and economic benefits would be realized only by bringing 

population and occupational exposures well below currently permitted limits.        

     

CONCLUSIONS 

 

Correctly specifying the dose-response or exposure-health relationship in all 

epidemiological and toxicological studies has important scientific, economic, and policy 

implications.  Authors of such studies could take the initiative and apply statistical 

techniques similar to those discussed in this paper to test if the presented functional form 

of the dose-response relationship cannot be ruled out by definable statistical criteria.  

Journal editors and their reviewers can also insist that authors provide such evidence 

regarding dose-response curves in submitted manuscripts.  Adopting these practices will 

give toxicologists additional clues about mechanisms of effect, will give environmental 

economists more accurate data for their models, and will give regulators the needed 

information for evidence-based actions. 

 

If the non-linear form of the exposure-health effect curve is more appropriate to the data 

than a linear function, we still have the majority of our work ahead of us to protect the 

population from the effects of lead.
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TABLES 

 

Table 1. Lead coefficients for IQ as a function of modela 

 

 

Variable   Coefficient   95% CI   Probability 

          lower   upper 

linear lead modelb -0.18 -0.26 -0.10 <0.0005 

natural log lead  

modelc -2.70 -3.74 -1.66 <0.0005 

quadratic lead model  0.005  0.001  0.009  0.020 

quadratic log lead 

model -0.25 -0.76  0.26  0.258 

ln(lead) with  

linear lead  

Prediction (J-test) 

Model    -2.47    -4.30  -0.63 0.009 

acontrol variables for all models were HOME, birth weight, maternal IQ, 

maternal education, and site identification 

bmodel with linear lead specification 

cmodel with natural log lead specification 
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Table 2. Generalized additive model results for IQ: 

dichotomous variables (sites) not shown.  Spline fit of 

linear lead specification and all independent variables 

with two degree of freedom splines 

 

Variable      dfa  gain probability 

   of gain 

HOME 2 2.621 0.106 

birth weight 2 2.587 0.108 

maternal IQ 2 0.596 0.440 

maternal education 2 0.961 0.327 

linear lead 2 7.467 0.006 

Total gain (nonlinearity chisquare = 14.232 (5.003 df), 

p = 0.0142 

  adegrees of freedom approximate 
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Table 3. Spline fit of natural log lead specification and 

all independent variables with two degree of freedom 

splines 

 

Variable      dfa  gain probability 

   of gain 

HOME 2 2.646 0.104 

birth weight 2 2.515 0.113 

maternal IQ 2 0.603 0.438 

maternal education 2 0.690 0.406 

natural log lead 2 1.438 0.230 

Total gain (nonlinearity chisquare = 7.894 (5.005 df), 

p = 0.1626 

             adegrees of freedom approximate 
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Table 4. Spline fit of all independent variables with two 

degree of freedom splines with original natural log lead 

variable modeled as is 

 

Variable      dfa Linear     gain   probability 

Coefficient    of gain 

HOME 2 4.51 2.740 0.098 

birth weight 2 1.48 2.523 0.112 

maternal IQ 2 4.91 0.609 0.436 

maternal education 2 1.15 0.642 0.424 

natural log lead 1  -2.62 - - 

Total gain (nonlinearity chisquare = 6.514 (4.006 df), 

p = 0.1644 

     adegrees of freedom approximate 

 

 31



Table 5. Economic savings (year 2000 dollars) per cohort 

estimated from the Grosse et al.(1) IQ model according to 

dose-response specification 

 

Study  Benefit/Cohort 

(billions $)  95% CIa 

  lower   upper 

Grosse et al. 

linear lead 213.83 147.27 280.39 

Pooled analysis 

linear lead 148.58 82.18 215.82 

Pooled analysis 

natural log lead 318.98 196.30 441.67 

aconfidence intervals cannot be used to compare linear and log 

lead specifications as the linear specification is 

incorrect and the 95% CI calculated from it suffers from 

uncorrected residual heteroskedasticity 
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FIGURE LEGEND 

Figure 1 

Partial regression plot of adjusted IQ (adjusted for natural log lead model) and blood lead 

concentration (from Lanphear et al., in press).  The two regression lines with 95% CI 

represent the best fit estimates of the relationship between IQ and blood lead for natural 

log transformed blood lead (blue line) and linear blood lead (red line).  Note that the 

linear blood term overestimates the slope (change in IQ with change in blood lead) of the 

statistically superior natural log lead function down to 15 µg/dL and underestimates the 

slope below 15 µg/dL.  Scatter plot does not show all data points as the y-axis has been 

expanded to show differences in regression functions. 
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Figure 1 
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