CHAPTER I. Locality of the Copper Mines. ..... 5
  Location of the Copper Mines. ..... 5

CHAPTER II. Structural Features of Keweenaw Point. ..... 5
  General Geology of Keweenaw Point. ..... 5
  Structure of the Keweenawan Series. ..... 6
  Faulting. ..... 6

CHAPTER III. The Copper Bearing Rocks. ..... 7
  The Keweenawan Rocks. ..... 7
  L. L. Hubbard's Classification. ..... 7
  A. C. Lane's Classification. ..... 7
  R. Pumpelly's Descriptions and Classifications. ..... 8
  R. D. Irving's Descriptions of the Amygdaloids. ..... 10
  A. C. Lane on the Amygdaloids. ..... 12
  R. Pumpelly's Description of a Typical Ophite. ..... 12
  R. Pumpelly's Description of the Conglomerates of Portage Lake. ..... 14
  A. C. Lane on Decomposition of the Keweenawan Rocks. ..... 14

CHAPTER IV. Nature of the Copper Deposits. ..... 15
  Mode of Occurrence of the Copper. ..... 15
    The Copper Minerals. ..... 15
    Distribution of the Native Copper. ..... 15
    Productive Portions of Beds. ..... 15
    Shots. ..... 16
    Conglomerate Lodes. ..... 16
  Copper occurs as Small Particles. ..... 16

Amygdaloid Lodes. ..... 17
  Characteristics of Amygdaloid Lodes. ..... 17
  Hard Portions. ..... 17
  Soft Portions. ..... 17
  Wet and Dry Portions. ..... 17
  Crushed Portions. ..... 17
  Shear Zones. ..... 17
  Spliced Structure. ..... 18
  The Copper Bearing Beds are Thick. ..... 18
  R. D. Irving on Amygdaloids. ..... 18

Sandstone Lodes. ..... 18
  Nonesuch and White Pine. ..... 18

Epidotic Beds. ..... 19
  Ontonagon "Veins." ..... 19
  Irregular Distribution of the Copper. ..... 19
  R. D. Irving on Ontonagon Veins. ..... 19

Cupriferous Felsite. ..... 19
  Indiana Deposit. ..... 19

Fissure Veins. ..... 19
  Occurrence of Copper in Veins. ..... 19
  Central and Cliff Veins. ..... 20
  Ahmeek Vein. ..... 20
  Production of Fissure Veins. ..... 20
  C. E. Wright's Description of Central Mine Vein. ..... 20
  R. D. Irving's Description of Fissure Veins. ..... 20
  M. E. Wadsworth on Fissure Veins. ..... 21
  C. E. Wright's Description of Keweenaw County Veins. ..... 21

Paragenesis of Copper and Calcite. ..... 21

Sulphide Veins. ..... 22

Arsenides and Sulphides of Copper. ..... 22
  G. A. Koenig's Studies. ..... 22
  A. C. Lane on Sulphides and Arsenides. ..... 23

Arsenic in the Copper. ..... 23

Copper Oxide, Silicate and Carbonate Minerals. ..... 24

Accessory Minerals Containing Fluorine, Boron or Tungsten. ..... 24
  Aphyllite. ..... 24
  Flourite. ..... 24
  Datolite. ..... 24
  Powellite. ..... 24

Silver in Michigan Copper Deposits. ..... 24

CHAPTER V. The Copper Deposits or Lodes. ..... 25

Adventure No. 4 lode. ..... 25

Algomah Lode. ..... 25

Alouez Conglomerate. ..... 25
  At Alouez Mine. ..... 25
  At Franklin Jr. Mine. ..... 26

Ashbed Lode. ..... 26

Atlantic Lode. ..... 27
  General character. ..... 27
  L. L. Hubbard's Description. ..... 27
  C. Rominger's Description. ..... 27
  Production. ..... 27

Characteristics of the Conglomerate Lodes. ..... 16
Copper in both Pebbles and Matrix. ..... 16
Copper occurs as Small Particles. ..... 16
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baltic Lode</td>
<td>28</td>
</tr>
<tr>
<td>General Character</td>
<td>28</td>
</tr>
<tr>
<td>Distribution of the Copper</td>
<td>28</td>
</tr>
<tr>
<td>Future Production</td>
<td>28</td>
</tr>
<tr>
<td>L. L. Hubbard on Baltic Lode</td>
<td>29</td>
</tr>
<tr>
<td>The Calumet Conglomerate Lode</td>
<td>29</td>
</tr>
<tr>
<td>General Character</td>
<td>29</td>
</tr>
<tr>
<td>Occurrence of the Copper</td>
<td>29</td>
</tr>
<tr>
<td>Light and Dark Portions</td>
<td>29</td>
</tr>
<tr>
<td>Sandy Portions</td>
<td>29</td>
</tr>
<tr>
<td>Thickness</td>
<td>29</td>
</tr>
<tr>
<td>Distribution of Copper</td>
<td>29</td>
</tr>
<tr>
<td>The Calumet Shoot</td>
<td>29</td>
</tr>
<tr>
<td>The Leaner Portions</td>
<td>30</td>
</tr>
<tr>
<td>Strike and Dip</td>
<td>30</td>
</tr>
<tr>
<td>&quot;Brick&quot; Copper</td>
<td>30</td>
</tr>
<tr>
<td>The Hanging Wall</td>
<td>30</td>
</tr>
<tr>
<td>Early Openings at Tamarack Mine</td>
<td>30</td>
</tr>
<tr>
<td>At Tamarack Mine in 1896</td>
<td>31</td>
</tr>
<tr>
<td>The &quot;Crossing.&quot;</td>
<td>31</td>
</tr>
<tr>
<td>Tamarack Ore</td>
<td>31</td>
</tr>
<tr>
<td>Mine Water</td>
<td>31</td>
</tr>
<tr>
<td>At Osceola Mine</td>
<td>31</td>
</tr>
<tr>
<td>Production of the Calumet Conglomerate Lode</td>
<td>31</td>
</tr>
<tr>
<td>The Rich Portion</td>
<td>32</td>
</tr>
<tr>
<td>Richness and Depth</td>
<td>32</td>
</tr>
<tr>
<td>Chemical Composition of the Conglomerate</td>
<td>32</td>
</tr>
<tr>
<td>C. Rominger's Description of the Conglomerate</td>
<td>33</td>
</tr>
<tr>
<td>Replacement of Pebbles by Copper</td>
<td>34</td>
</tr>
<tr>
<td>Central Mine Vein</td>
<td>35</td>
</tr>
<tr>
<td>C. L. Lawton's Description</td>
<td>35</td>
</tr>
<tr>
<td>Production and Variation in Values with Depth</td>
<td>35</td>
</tr>
<tr>
<td>Forest Lode</td>
<td>36</td>
</tr>
<tr>
<td>Hancock Lodes</td>
<td>36</td>
</tr>
<tr>
<td>The No. 3 Lode</td>
<td>36</td>
</tr>
<tr>
<td>The No. 4 Lode</td>
<td>36</td>
</tr>
<tr>
<td>Footwall Trap</td>
<td>36</td>
</tr>
<tr>
<td>The Lode</td>
<td>36</td>
</tr>
<tr>
<td>Occurrence of the Copper</td>
<td>37</td>
</tr>
<tr>
<td>Prehnite Veins</td>
<td>37</td>
</tr>
<tr>
<td>Indiana Lode</td>
<td>37</td>
</tr>
<tr>
<td>Isle Royale Lode</td>
<td>37</td>
</tr>
<tr>
<td>General Character</td>
<td>37</td>
</tr>
<tr>
<td>T. Macfarlane's Description</td>
<td>38</td>
</tr>
<tr>
<td>Kearsarge Lode</td>
<td>38</td>
</tr>
<tr>
<td>General Character</td>
<td>38</td>
</tr>
<tr>
<td>Extent of Lode</td>
<td>39</td>
</tr>
<tr>
<td>Distribution of Copper</td>
<td>39</td>
</tr>
<tr>
<td>Parallel Lodes</td>
<td>39</td>
</tr>
<tr>
<td>Masses</td>
<td>39</td>
</tr>
<tr>
<td>Two Lodes at North Kearsarge</td>
<td>39</td>
</tr>
<tr>
<td>C. Rominger's Description</td>
<td>40</td>
</tr>
<tr>
<td>Lake Lode</td>
<td>40</td>
</tr>
<tr>
<td>General Character</td>
<td>40</td>
</tr>
<tr>
<td>East Lode</td>
<td>41</td>
</tr>
<tr>
<td>Mass Mine Lodes</td>
<td>41</td>
</tr>
<tr>
<td>Evergreen Lode</td>
<td>41</td>
</tr>
<tr>
<td>Butler Lode</td>
<td>41</td>
</tr>
<tr>
<td>Ogima Lode</td>
<td>41</td>
</tr>
<tr>
<td>Knowlton Lode</td>
<td>41</td>
</tr>
<tr>
<td>Michigan Mine Lodes</td>
<td>41</td>
</tr>
<tr>
<td>Minesota Lode</td>
<td>41</td>
</tr>
<tr>
<td>General Character</td>
<td>41</td>
</tr>
<tr>
<td>C. L. Lawton's Description</td>
<td>42</td>
</tr>
<tr>
<td>G. D. Emmerson's Report</td>
<td>43</td>
</tr>
<tr>
<td>Large Masses</td>
<td>43</td>
</tr>
<tr>
<td>Nonesuch Lode</td>
<td>44</td>
</tr>
<tr>
<td>General Character</td>
<td>44</td>
</tr>
<tr>
<td>At Nonesuch Mine</td>
<td>44</td>
</tr>
<tr>
<td>At White Pine Mine</td>
<td>44</td>
</tr>
<tr>
<td>R. D. Irving's Description</td>
<td>44</td>
</tr>
<tr>
<td>Osceola Lode</td>
<td>44</td>
</tr>
<tr>
<td>General Character</td>
<td>44</td>
</tr>
<tr>
<td>Hanging and Foot Parts</td>
<td>45</td>
</tr>
<tr>
<td>Future Production</td>
<td>45</td>
</tr>
<tr>
<td>C. Rominger's Description</td>
<td>45</td>
</tr>
<tr>
<td>C. L. Lawton's Description</td>
<td>45</td>
</tr>
<tr>
<td>At Tamarack Mine</td>
<td>46</td>
</tr>
<tr>
<td>Chemical Compositions of Osceola Lode</td>
<td>46</td>
</tr>
<tr>
<td>Pewabic Lode</td>
<td>46</td>
</tr>
<tr>
<td>General Character</td>
<td>46</td>
</tr>
<tr>
<td>Occurrence of the Copper</td>
<td>46</td>
</tr>
<tr>
<td>The Distribution of Copper</td>
<td>46</td>
</tr>
<tr>
<td>Production</td>
<td>47</td>
</tr>
<tr>
<td>Rich Portion</td>
<td>47</td>
</tr>
<tr>
<td>Present Average</td>
<td>47</td>
</tr>
<tr>
<td>Future Production</td>
<td>47</td>
</tr>
<tr>
<td>T. Macfarlane's Description</td>
<td>47</td>
</tr>
<tr>
<td>Mass Copper</td>
<td>48</td>
</tr>
<tr>
<td>C. E. Wright's Description</td>
<td>48</td>
</tr>
<tr>
<td>Early Workings at Franklin Mine</td>
<td>49</td>
</tr>
<tr>
<td>Variations in Yield</td>
<td>49</td>
</tr>
<tr>
<td>Change in Grade with Depth</td>
<td>49</td>
</tr>
<tr>
<td>Phoenix Mine Vein</td>
<td>50</td>
</tr>
<tr>
<td>Superior Lode</td>
<td>50</td>
</tr>
<tr>
<td>Superior West Lode</td>
<td>51</td>
</tr>
<tr>
<td>Winona Lode</td>
<td>51</td>
</tr>
<tr>
<td>Production of the Several Lodes in 1912</td>
<td>52</td>
</tr>
<tr>
<td>CHAPTER VI. ORIGIN OF THE DEPOSITS</td>
<td>52</td>
</tr>
<tr>
<td>Views of Geologists</td>
<td>52</td>
</tr>
<tr>
<td>Dr. R. Pumpelly</td>
<td>52</td>
</tr>
<tr>
<td>R. D. Irving</td>
<td>54</td>
</tr>
<tr>
<td>M. E. Wadsworth</td>
<td>54</td>
</tr>
<tr>
<td>C. R. Van Hise</td>
<td>55</td>
</tr>
<tr>
<td>F. Posepny</td>
<td>55</td>
</tr>
<tr>
<td>W. Lindgren</td>
<td>55</td>
</tr>
<tr>
<td>J. H. L. Vogt</td>
<td>56</td>
</tr>
<tr>
<td>H. L. Smyth</td>
<td>56</td>
</tr>
<tr>
<td>J. F. Kemp</td>
<td>56</td>
</tr>
<tr>
<td>Van Hise, Leith and Steidtmann</td>
<td>57</td>
</tr>
<tr>
<td>R. Beck and W. H. Weed</td>
<td>59</td>
</tr>
<tr>
<td>Frank F. Grout</td>
<td>59</td>
</tr>
<tr>
<td>A. C. Lane</td>
<td>59</td>
</tr>
<tr>
<td>Deposition of Copper by Solutions of Ferrous Salts</td>
<td>60</td>
</tr>
<tr>
<td>H. C. Biddle</td>
<td>60</td>
</tr>
<tr>
<td>H. N. Stokes</td>
<td>60</td>
</tr>
<tr>
<td>Deposition of Copper from Chloride Solutions</td>
<td>60</td>
</tr>
</tbody>
</table>
The Copper Industry in 1914, Walter E. Hopper........ 63

General Review...................................................... 64

Construction Work.................................................. 66

Mine Casualties.......................................................... 66

Sanitary Conditions................................................... 66

The Copper Handbook.................................................. 66

The Douglass Houghton Memorial................................... 67

Details of Operations of the Mining Companies in 1914................................................................. 67

List of Illustrations

Plates

Plate I A. Algomah lode, Algomah mine, Ontonagon county.
Photomicrograph X 10.  This is a very vesicular portion of the lode. Some of the black areas are melaconite, others the dark brown ground mass of the rock. The veinlet and some of the irregular areas are chrysocolla...........................81

Plate I B. Butler lode, Mass mine, Ontonagon county.
Photomicrograph X 10.  This microscopic section shows a fine textured ground mass and amygdules. The latter are chiefly composed of red feldspar, quartz and calcite. The dark red and stained semi-opaque feldspar forms the outer part of the amygdule. The clear transparent calcite and quartz were deposited after the feldspar and filled the central part of the cavities. The copper in this section occurs in fine grained ground mass and not in the amygdules. .............................................................................81

Plate II A. Baltic lode, Baltic mine.  Photomicrograph X 10.
This thin section shows fine grained rock with very few cavities. It illustrates the texture of a large portion of the Baltic lode. .............................................................................81

Plate II B. Baltic lode.  Photomicrograph X 8, this section shows the vesicular portion of the Baltic lode and a veinlet of calcite. A considerable portion of the copper is in rock which has been fractured and later cemented with calcite and other minerals. Copper occurs in fracture fillings but more largely in the altered rock near the fractures. .........81

Plate III A. Calumet conglomerate, Calumet and Hecla mine.
Photomicrograph X 12, this is a typical section of the quartz porphyry of the calumet conglomerate showing numerous clear crystals of quartz in a nearly opaque felsite ground mass. The quartz porphyry pebbles contain such numerous red particles that the ground mass is transparent only in very thin sections.........................81

Plate III B. Calumet conglomerate.  Photomicrograph X 8.
The conglomerate is made up largely of fragments of quartz porphyry but the rock contains so many minute red particles that it is nearly opaque in thin section. The clear transparent areas are quartz. ............................................................82

Plate IV A. Hancock No. 3 lode, Hancock mine.
Photomicrograph X 10.  This lode is a typical amygdaloidal. The amygdules in this particular section are composed of chlorite, quartz and calcite. Most of the semi-opaque chlorite has been deposited earlier than the clear transparent quartz and calcite. .........................................................82

Plate IV B. Hancock lode No. 4, 34th level.  Photomicrograph X 8. This section shows veinlets of calcite in a nearly opaque rock which is an altered porphyrite.........................82

Plate V A. Hancock lode.  Photomicrograph.  This section shows native copper in rather large particles along the middle of a vein of prehnite. Copper occurs also in small particles in the rock on either side of the vein. ...............82

Plate V B. Photomicrograph X 9, this section shows mode of occurrence of native copper (black) in datolite (white). (rings are air bubbles in the balsam on which the section is mounted).  Franklin Junior mine. ........................................82

The datolite of the Franklin mine is a white variety. It occurs frequently as rounded masses several inches in diameter. The central part of these masses is often free from copper. Near the outer edge, however, numerous small particles of copper of irregular shape, as shown in this halftone, are generally found.................................................................82

Plate VI A. Felsite, Indiana mine, Ontonagon county.
Photomicrograph X 10.  The felsite is semi-opaque owing to the abundance of dark red colored particles. Severe fracturing is indicated by numerous veinlets of colored minerals which have filled the fractures. .......................83

Plate VI B. Isle Royale lode, Isle Royale mine.
Photomicrograph X 8.  This section shows a fine textured rock with no amygdules. A considerable portion of the ore has this texture. Other parts are quite vesicular.................83

This section shows a rather distinctly crystallized porphyritic rock. The specimen was taken near the foot wall of the lode. ..............................................................83

Plate VII B. Isle Royale lode, Isle Royale mine.
Photomicrograph X 10.  This section shows large amygdules and a very fine grained ground mass. The semi-opaque mineral in the amygdules is epidote. The clear colorless mineral is quartz. In two cases the epidote forms the margin; in the others it is irregularly inter-grown with quartz. ..............................................................83

Plate VIII A. Lake lode, Lake mine.  Photomicrograph X 12.
This section shows both amygdules and porphyritic feldspar crystals in an opaque ground mass. The amygdules show clear transparent quartz and calcite and semi-transparent chlorite.....................................................83

Plate VIII B. Lake lode.  Photomicrograph X 10.  This section shows a pseudo-amygdaloidal portion of the lode. The clear transparent areas are chiefly pale green chlorite. The ground mass is distinctly crystalline..................83

Plate IX A. Nonesuch sandstone, White Pine mine.
Photomicrograph X 10.  This section shows a fine grained conglomeratic rock. The colorless pebbles are quartz. The large grains are felsite and melaphyre. Some of the small opaque particles are native copper. ......................84

Plate IX B. Nonesuch sandstone.  White Pine mine.  This section shows a fine grained sedimentary rock composed chiefly of clear colorless grains of quartz and dark colored rock particles. Some of the opaque particles are native copper and some are magnetite. ......................84

Plate X A. Pewabic lode, Quincy mine.  Photomicrograph X 8.
Prehnite is very abundant in the ore at the Quincy mine. This section shows numerous amygdules of prehnite in the opaque ground mass. Some of the opaque particles in the prehnite are native copper..................84
Plate X. B. Pewabic lode, Franklin Junior mine.
Photomicrograph X 10. This section shows a true amygdaloidal portion of the lode. Crystals of delessite (semi-opaque) appear at the border of clear transparent quartz which is the chief constituent of the amygdulites in this section.

Plate XI. A. Pewabic lode, Quincy mine. Photomicrograph X 10. This section shows a pseudo-amygdaloidal portion of the lode from near the footwall. The large transparent patches are secondary chlorite. They have not the character of true amygdulites.

Plate XI. B. Pewabic lode, Quincy mine. Photomicrograph X 8. Native copper in prehnite. This is a portion of the lode which has been largely replaced by prehnite (white in photograph). In the white prehnite are several irregular particles of copper. The main dark colored part of the section is altered rock containing particles of native copper.

Plate XII. A. Kearsarge lode, Wolverine mine.
Photomicrograph X 10. This section shows a typical amygdule with numerous large amygdulites. The clear colorless mineral is quartz. The semi-opaque crystals near the edge of the amygdulites are epidote.

Plate XII. B. Superior lode, Houghton mine. Photomicrograph X 10. This section shows coarse particles of native copper in large amygdules. In the dark ground mass there are numerous fine particles of metal. The lack of crystalline structure in the ground mass is noteworthy.

Plate XIII. A. Superior lode, Superior mine. Photomicrograph X 12. The copper in this section is in very small particles scattered through a fine grained rock.

Plate XIII. B. Superior lode, Superior mine. Photomicrograph X 10. This is a remarkably vesicular copper bearing rock. The amygdulites are chiefly calcite. The opaque ground mass is made up of a confused aggregate of particles too small for identification.

Plate XIV. A. Superior lode, Superior mine. Photomicrograph X 10. This is a dull brown massive rock showing no copper to the naked eye. Numerous small grains of copper are, however, readily observed under the microscope. The original texture of the rock has been obscured by secondary alteration.

Plate XIV. B. Superior lode, Superior mine. Photomicrograph X 10. This section shows a very vesicular rock. Amygdulites are chiefly calcite and contain little copper. Native copper occurs abundantly in very small particles in the dark ground mass.

Plate XV. A. Allouez conglomerate, Franklin junior mine.
Plate XV. B. Calumet conglomerate, Tamarack mine.
Plate XV. C. Ophite, weathered and fresh surfaces. Fresh fracture surface at left.

Plate XVI. A. Copper shells from calumet conglomerate.
Plate XVI. B. Mass copper, Ahmeek mine.
Plate XVI. C. Sandstone overlain by trap, Eagle River.
Plate XVI. D. Exposure of trap bed, Houghton.
Plate XVII. A. Domeykite vein. Isle Royale mine.
Plate XVII. B. Mass copper and fissured country rock, Ahmeek mine.
Plate XVII. C. Mass copper, Michigan smelter.
Plate XVIII. A. Foundations of the tamarack recrushing plant and the stamp sand in Torch Lake.
Plate XVIII. B. The large dredge for hoisting the Calumet and Hecla stamp sand from Torch Lake.

Figures

Figure 1. Outline map of Keweenaw Point showing location of mines.
Figure 2. Chief copper producing section of Keweenaw Point.
Figure 3. Cross section through Lake Superior from Huron mountains to Port Arthur (after A. C. Lane in Mines and Minerals).
Figure 4. Section at Franklin Junior mine showing Pewabic and Allouez lodes (after Lane).
Figure 5. Map showing mines on Baltic, Superior and Atlantic lodes.
Figure 6. Calumet conglomerate lode.
Figure 7. Map showing Calumet and Hecla and Tamarack mine locations.
Figure 8. Central mine, Keweenaw county, Michigan. Vertical section through east vein.
Figure 9. Geological section at Victoria mine, Forest lode, by Geo. Hooper.
Figure 10. Section across Pewabic and Hancock lodes, by J. L. Harris.
Figure 11. Map showing mines on Isle Royale and Quincy lodes.
Figure 12. Kearsarge amygdaloid lode.
Figure 13. Map showing location of chief producing mines on Kearsarge lode.
Figure 14. Cross section showing relationship of Butler, Mass, Oghima and Evergreen lodes at Mass mine (after Lane).
Figure 15. Transverse section through B shaft of the Michigan copper mine.
Figure 16. Ground plan sketch showing the relative position of Minesota conglomerate, Minesota vein, north vein of Minesota, and the calico amygdaloid.
Figure 17. Osceola amygdaloid lode.
Figure 18. Cross section through Osceola amygdaloid and Calumet conglomerate.
Figure 19. Longitudinal section of the Quincy mine. (To accompany description of Pewabic lode).
Figure 20. Sections at 7th, 36th and 59th levels of the Quincy mine (after Lane).
Figure 21. An old map showing stopes and poor ground on Pewabic lode.
Figure 22. Section ow Winona Mine showing Winona lode (After Lane).
LETTER OF TRANSMITTAL.

To the Honorable, the Board of Geological and Biological Survey of the State of Michigan:

Gov. Woodbridge N. Ferris.
Hon. Wm. J. McKone.
Hon. Fred L. Keeler.

Gentlemen:—Under authority of act number seven, Public Acts of Michigan, Session of 1911, I have the honor to present herewith Publication 19; Geological Series 16, the fourth of a series of annual statements of the production and value of the mineral products of Michigan, with a special article by R. E. Hore on Michigan Copper Deposits.

Very respectfully,
R. C. ALLEN,
Director.

MICHIGAN COPPER DEPOSITS.
REGINALD E. HORE.

CHAPTER I.

LOCATION OF THE COPPER MINES.

Michigan's copper mines are located in the northwestern part of the state close to the south shore of Lake Superior. Most of them are in Houghton and Keweenaw counties on Keweenaw Point and the others are in Ontonagon County, which adjoins Houghton County on the south and west.

The district is easily reached by rail from the south, east and west. From Chicago trains to Houghton and Calumet are run by the Chicago, Milwaukee and St. Paul and the Chicago and Northwestern Railways. These enter the Copper Country on the tracks of the local railway companies, the Copper Range and the Mineral Range. From Sault Ste. Marie, St. Ignace and Duluth the copper mines are reached by the Duluth, South Shore and Atlantic Railway.

Keweenaw Point is also readily accessible by steamer. Portage Lake and a ship canal afford ready passage for the lake boats across the point and Houghton is a regular port of call for all passenger steamers running between Duluth and Sault Ste. Marie. The unusual transportation facilities are an important factor in the Michigan copper industry. Fuel and supplies from lower lake ports are brought to the mines at low cost. Most of the copper produced is from Houghton County; but Keweenaw and Ontonagon also make important outputs and the richest of the younger mines, the Ahmeek, is in Keweenaw County. The deepest mines, the Calumet and Hecla and the Quincy, are both in Houghton County. According to B. S. Butler of the U. S. Geological Survey, 82.2% of the copper produced by Michigan mines in 1912 was credited to Houghton County. In the early days of the industry the chief production was from fissure-vein mines in Keweenaw County and bedded-vein mines in Ontonagon County.

Most of the important producers of today are located on a portion of the Copper Range about 25 miles long, extending from Painesdale in Houghton County to Mohawk in Keweenaw County. In order from southwest to northeast are the following well known mines: Champion, Trimountain, Baltic, Atlantic, Superior, Houghton, Isle Royale, Hancock, Quincy, Franklin, Osceola, LaSalle, Calumet and Hecla, Tamarack, Centennial, South Kearsarge, Wolverine, North Kearsarge, Allouez, Ahmeek, Mohawk and Ojibway. Further southwest in Ontonagon County are the Lake, Mass, Adventure, Michigan and Victoria mines. Other active properties in Houghton County are Winona, Wyandot, New Baltic, New Arcadian, St. Louis, Laurium, Oneco and Naumkeag. In Ontonagon County shafts have been started and development work carried on at South Lake, North Lake and Indiana properties. In the Porcupine Mountain district, further west, the White Pine mine is being thoroughly tested by the Calumet and Hecla Mining Co. In Keweenaw County the Keweenaw Copper Company is doing extensive exploratory work with diamond drills.

Among old mines once productive but now idle, are the Cliff and Central in Keweenaw County and the Minesota in Ontonagon County.

Figure 1. Outline map of Keweenaw Point showing location of mines.

CHAPTER II. STRUCTURAL FEATURES OF KEWEENAW POINT.*

GENERAL GEOLOGY OF KEWEENAW POINT.

The Keweenaw peninsula has in its central part a plateau at an elevation of 400 to 600 feet above the lake level. From this the ground slopes down on either side, gradually towards the west and more abruptly towards the east. A valley occupied by the narrow arm of Portage Lake cuts across this plateau, and gives ready access for lake ships. Further out on the point the plateau drops away, and there is a short gap of lower land followed by two long ridges which extend with occasional gaps well out to the end of the point. The
northern ridge is called the Greenstone Range, and the southern is known as the Bohemian Range.

The plateau and ridges along the central part of the peninsula are formed by the copper-bearing, Keweenawan formation, bedded igneous and sedimentary rocks dipping to the northwest, and striking with the general trend of the point. The western slope down to Lake Superior is formed by the upper members of the same series. The easterly part is formed by gently inclined Upper Cambrian sandstone, separated from the Keweenawan formation by a great fault which extends nearly the whole length of the point. The fault is from the evidence at hand supposed to be of the reverse type, the older series slipping up and over on the sandstone.

In this chapter merely an outline of the structure is given. For details the reader is referred to the monograph by Dr. A. C. Lane published by the Michigan Geological Survey, Publication 6, Geological Series 4.

STRUCTURE OF THE COPPER-BEARING SERIES.

The Copper Range of Keweenaw Point is comparatively simple in its larger geological features. The outcrop shows but the eroded edge of one limb of a synclinal formation, which dips under Lake Superior and appears again on the north shore. The beds strike with the general trend of the shore line northeast. Near the extremity of the point the strike is almost due east, and at the very extremity the formation bends south of east. In following the range out towards the point, there is found a lessening of the inclination of the beds. In going from lower to higher horizons the same change in dip is found, the lower beds dipping more steeply than the upper ones. On following down on the dip of a bed, there is found in all deep mines a lower angle of dip. At the Quincy Mine the dip of the lode near surface is about 54°, while a mile down the inclined shaft the dip is only 37°. At the Calumet and Hecla, the change in the same distance is very little, the inclination being 38° to 39° at surface and 36° to 37° at a depth of over one mile. At the Central Mine in Keweenaw county the dip decreases from 27° at surface to 21° in the lower levels. On the main copper range there are few marked divergences from the general structure as above outlined. The structure is illustrated by the accompanying section taken from Dr. Lane’s monograph.

Changes in strike and dip and thickness of beds occur in the neighborhood of some intrusive masses. Recent work at the Lake and South Lake mines in Ontonagon county has shown the beds there to be sharply folded, so that a part of the formation is dipping south instead of northwest. Further west in the Porcupine Mountains, folding and faulting has made the structure locally complex.

Faults are very numerous in the Keweenawan formation. The most important fault has brought the Keweenawan formation up against the Potsdam sandstone. In the northern part of Houghton County according to drilling records at the Mayflower property this fault dips to the west at a much smaller angle than do the beds of the Keweenawan formation. Beds at low horizons in the latter are probably cut off at no great depth; but none of the very productive lodes are very close to the sandstone here. Further south the dip of the fault is steeper.

Figure 2. Chief copper producing section of Keweenaw Point.

Figure 3. Cross section through Lake Superior from Huron mountains to Port Arthur (after A. C. Lane in Mines and Minerals).

There are instances where upper beds have slipped on lower beds great distances; but only in a few cases has the displacement been measured. Dr. Hubbard has estimated that one part may have moved on the lower part of the series about 2.7 miles north from its original position. In other cases a similar slide fault or "slide" has displaced upper beds downwards on lower beds for considerable, but unmeasured, distances.

Throughout the series there are frequently found thin beds of soft clay-like material or fluccan, which have probably been formed by beds sliding on one another in this way.

Besides these "slides" there are numerous faults where the fault plane cuts across the bedding. Where the amount of throw has been measured it is usually less than 100 feet, and most frequently it is so much less that displaced beds are picked up in the mines by a little
CHAPTER III. THE COPPER BEARING ROCKS.

THE KEWEENAWAN ROCKS. ¹

The Keewenawan formation in Michigan is commonly divided into two series, lower and upper. The lower is largely igneous, with occasional interbedded beds of sediment, and the upper largely sedimentary with some interbedded layers of igneous rocks. The division line between the two series is the base of the Outer Copper Harbor conglomerate. The copper bearing lodes are, with one exception, in the lower Keweenawan. The exception is a deposit in sandstone in the upper series.

The Lower Keewenawan of the Copper Range is chiefly made up of dark grey and brownish volcanic rocks. These occur in beds many of which are between 10 feet and 200 feet in thickness. Many others are thinner or thicker. With the dark colored volcanic rocks are imbedded reddish conglomerates and sandstones, ranging from mere seams up to beds of several hundred feet in thickness. In the horizon of the chief productive lodes, the sediments form only about seven per cent of the total thickness of the formation. In addition to the dark colored volcanic rocks, there are much smaller areas of light colored felsitic and porphyritic types, and more basic coarse grained intrusive masses. The felsites do not occur in the immediate vicinity of the chief copper lodes; but are common at both lower and higher horizons. Distinctly grained intrusive rocks, such as gabbros, occur in the Keweenaw series but are not found in the copper mines.

While the volcanic rocks of the Keewenaw are of many varieties, it is for most purposes unnecessary and often inconvenient to use different names for all the types. A simple classification such as that used by Dr. L. L. Hubbard, in Vol. VI of the Survey's publications has proven very satisfactory for many purposes.

¹An exhaustive monograph on the Keewenaw rocks has been recently written by Dr. A. C. Lane and published by the Michigan Geological Survey. Dr. Lane describes the rocks in detail and his report is accompanied by a large number of maps and geological sections. In the following pages will be found some earlier descriptions of the copper-bearing rocks taken from publications that are not readily obtained. Dr. Lane's report can be obtained on application to the Director of the Michigan Geological Survey at Lansing.

L. L. Hubbard's Classification.

Dr. Hubbard defines these rock names as follows: "In the following pages I shall use the term melaphyre generically to cover the more basic and augitic effusive rocks, qualifying it by doleritic when coarse grained, ophitic when lustre mottled, diabasic when it discloses lath-shaped feldspars in an augitic matrix, and amygdaloidal, when it contains gas-formed cavities either empty or filled with foreign minerals. The term porphyritic will be used to designate rocks known to be of medium acidity, whether they carry feldspars visible to the naked eye or not. The word trap, commonly used by the miners, is a convenient field term and will include fine grained compact varieties of both melaphyre and porphyrite, where the exact character of the rock has not been determined and more often, perhaps, will be used in a still broader sense, to cover the entire Keewenaw series. The very fine grained and highly acid rocks, formerly also included under the term trap, will be called felsite, or when they carry feldspar or quartz crystals in some abundance, porphyry."

The doleritic, ophitic and diabasic melaphyres are called dolerites, ophites, and diabases respectively. This terminology is not altogether in accord with that of other districts, but it has been long in use in the copper country and has proven very useful. The rocks called ophites⁺ are very common and easily distinguished from other traps. These rocks have been carefully described by Dr. Pumpelly, and are of special interest as almost all the amygdaloid lodes are parts of flows which in the less vesicular portions are ophites.

A. C. Lane's Classification.

A. C. Lane, in the introductory chapter of his recently published monograph on the Keweenaw series says: regarding nomenclature:

"The commonest copper bearing rocks are mainly old lava flows, and the usual type is much the same as any ordinary trap or basalt. * * * We might call these flows traps, but time-honored usage discriminates the main massive part as trap from the originally porous upper part as amygdaloid. * * * The term gabbro is kept for the deeper-seated intrusions. * * * Most of those rocks which are generally fairly uniformly coarse in grain are gabbro. All the effusives are wholly or partly of the melaphyre type. So we continue to use the term melaphyre for the dark colored lavas generally and call the coarser streaks doleritic melaphyre."

Dr. Lane uses the term ophite for the rocks which Pumpelly called lustre mottled melaphyres, and restricts the term diabase to intrusive dikes and sills. The feldspathic porphyritic beds of the Ashbed group he calls porphyrites and their texture he calls clomeroporphyrific.
R. Pumpelly's Descriptions And Classification.

R. Pumpelly gave a detailed description of the copper-bearing rocks as he knew them in 1873.* His description is a remarkably good one and a large portion is here quoted as the original publication has been long out of print:

"In the immediate neighborhood of Portage Lake, the strata composing the 'Mineral Range' have a uniform trend of North 35° East, and a nearly equally regular dip of 55° to 60° to west north-west.

"The series consists of beds of melaphyre, varying in thickness from 20 feet to more than 100 feet, the demarkation being frequently defined by the amygdaloidal or epidotic character of the upper portion of each bed. At intervals, varying from a few yards to several thousand feet, beds of conglomerate occur intercalated in the series.

"This is the general character of the country near Portage Lake for a distance of about three miles, measured west north-west across the formation.

"The trappean rocks of Portage Lake occur uniformly in beds varying from a few feet to one hundred feet, or more, in thickness. Frequently an appearance of subordinate bedding is observable, arising perhaps from the existence of joints lying parallel to the place of stratification, which divide the rock into plates a few inches to several feet thick.

"The texture of many varieties varies from compact and sometimes porphyritic, through fine-grained sub crystalline or earthy, to coarse-grained and distinctly crystalline. In individual beds the texture is usually found to undergo a more or less gradual change from compact or granular at the bottom, to a vesicular or amygdaloidal condition, in the neighborhood of the hanging wall.

"Green of various shades is the dominating color, and next to this brown and dirty red. Light and dark green, mottled or speckled with brown; dirty brownish-green; reddish-gray; and dark green, almost black; are the usual colors.

"Even in the fresh state, these rocks may be easily scratched with a knife, but they are exceedingly tough under the hammer. The force which crushes a fragment often leaves the powder very firmly compacted.


Chief Constituents—"The ingredients which are visible under the glass, and which seem to be common to all varieties, are a light green triclinic feldspar (apparently labradorite) and chloritic minerals of different shades of green. The magnet reveals a variable percentage of a magnetic iron. In some of the coarser grained varieties small jet black crystals apparently of augite or hornblende are occasionally visible. The accessory minerals observed, many or all of which are probably products of the alteration of the above constituents are:

"A brick-red foliaceous mineral resembling rubellan, [iddingsite?] occurring as very minute specks in some fine-grained varieties; it lends a soft rusty-brown appearance to the weathered surface and specckles the interior with red. Specular-iron in minute flakes, seemingly more frequent in the coarser-grained varieties. Calcite in seams and, more frequently, in grains and amygdules, especially in the amygdaloidal portion of the beds. Epidote rarely crystallized; most common in the amygdaloidal varieties, but frequently in seams and impregnations, and nearly always associated with quartz. Quartz which occurs in amygdules and seams and also as an indurating medium near the hanging-wall of many beds. Prehnite in amygdules and seams, mostly confined to the amygdaloidal portion of the beds. A chlorite-like mineral (delessite) soft, compact, amorphous, greenish black, sometimes altered to brick red, occurring in grains from pin-head to walnut size. A yellowish green soft earthy mineral, probably a green earth. Laumontite and leonardite in seams and amygdules. Analcite in amygdules. Orthoclase in small crystals and massive, in amygdaloidal cavities. Native copper sometimes in fine impregnations in the fine-grained rock, also in the sheets in joining cracks, but chiefly in the amygdules, masses, sheets and impregnations which form the metalliferous deposits in the amygdules, where it is occasionally associated with native silver. Native silver. Datolite massive in the amygdaloidal portion of some beds, and also in small aggregations of microscopical crystals in the same positions.*

In addition to the minerals mentioned by R. Pumpelly, the following have been noted by Prof. A. E. Seaman in the Keweenawan rocks. Adularia, agate, anhydrite, algonolite, azurite, aragonite, argentite, amethyst, annabergite, amphibole, anikerite, garite, biotite, bornite, cerargyrite, chalcocite, chioanthite, crysocolla, clachopyrite, chlorastrolite, cuprite, covellite, clinochlore (?), dolomite, domeykite, fluorite, gypsum, hematite, iddingsite, jasper, koalinite, keweenanite, limonite, magnetite, martite, marcasite, malaclite, melanoconite, muscovite, mohawkite, niccolite, para-melaconite, pyrite, pyrrhotite, philipsite, powellite, saponite, selenite, seminwhitneyite, serpentine, siderite, talc, thompsonite, wood, whitneyite and wollastonite.

Essential Constituents of Melaphyres.—"Everything goes to show that the normal, essential constituents of these rocks are, in their present condition, a triclinic feldspar, probably labradorite, and a ferruginous chlorite closely allied to delessite. This composition places these rocks among the typical melaphyres, the greater specific gravity of the Portage Lake varieties being accounted for by the fact that the specific gravity of
delessite is 2.89, while that of ordinary chlorite ranges from 2.65 to 2.78.

"Although the name melaphyre is an unfortunate one, having been first used to designate an entirely different rock, and having been successively applied to others of very various characters, it is now the only distinctive name for the class we have under consideration. All the trap rocks and associated amygdaloids of Portage Lake are varieties of melaphyre.

"But I do not doubt that any one who will carefully study the melaphyres of Portage Lake, and compare them with their equivalents in Keweenaw County, will feel convinced that the melaphyre owes its distinctive character to a process of metamorphism, in which the chlorite resulted, largely or wholly, from the alteration of hornblende or pyroxene. In the more distinctly crystallized traps of Keweenaw County, the pseudomorphic occurrence of chlorite after the hornblende or pyroxene constituent of the trap, may be traced through all the stages to a complete replacement of the latter by chlorite.

"The principal varieties of melaphyre on Portage Lake are:

1. Coarse grained; in which the crystals of feldspar and grains of delessite are more or less distinct. The color is greenish-gray. It contains generally grains of magnetite and small tabular crystals of specular iron.

2. Fine-grained; the constituents, light-green or reddish triclinic feldspar and dark-green delessite, are sometimes distinguishable, but more generally they are not so. The usual color is grayish-green, but it sometimes is speckled with brown, through the presence of small flakes of rubellan; or mixed green and brown from the oxide of iron produced in the decomposition of some of the constituents. As a rule the greater the amount of rubellan the less seems to be of magnetite. In some instances, especially in some of the beds east of the Isle Royale copper-bearing bed, the rock is fine-grained and sub crystalline, brilliant black-green, sometimes purplish; slightly shimmering; easily scratched with the knife; contains considerable magnetite, small pieces of rock adhering to the magnet. It weathers rusty gray.

3. Melaphyre-porphyry; dark-green, often nearly black; compact, with perfect conchoidal fracture; very hard; contains minute crystals of triclinic feldspar.

Amygdaloids.

"The amygdaloids are merely varieties of the melaphyre. On Portage Lake, they always form the upper or hanging-wall portion of beds of trap, into which they pass by a more or less gradual transition.

"It is rare that one finds a bed of trap which does not contain, here and there, scattered segregations of secondary minerals, especially delessite, but often calcite, laumonite, quartz, or chalcedony, or prehnite, occupying cavities which are often well defined and spherical or ovoidal, but sometimes wholly irregular in shape, and without definite wall. These enclosures usually become more frequent in ascending from the foot-wall of a bed toward the hanging-wall. The plane of demarkation between the amygdaloidal upper portion of a bed and the overlying rock is always well defined. Where they are sufficiently numerous to impress a distinctive character upon the rock, while at the same time the matrix retains the essential features, in regard to color and texture of the present trap, I have designated the variety amygdaloidal melaphyre.

Amygdaloidal Melaphyre.

"All the varieties of melaphyre on Portage Lake are subject to this modification, but there is a considerable variation among different beds in regard to the nature of the minerals in the amygdaloidal cavities. In all the varieties amygdules of delessite, or calcite, or quartz coated with delessite, or again spots of epidote, occur here and there in the body of the rock. In some beds the rock is characterized throughout by the presence of laumonite in small amygdules and minute seams.

"In the belt occupying 1,000 feet or more on either side of the Isle Royale copper-bearing bed many of the beds assume towards the top amygdules of delessite and of green flinty mineral, resembling chrysoprase, coated with delessite. These are gradually succeeded nearer the top by ovoidal, lenticular, or irregular amygdules, from the size of a bean to several inches in diameter, of prehnite, greenish-white, or tinged with pink generally amorphous, but often with a radiating structure, and sometimes slightly impregnated with native copper.

"The portion of the bed nearest the hanging-wall is often highly amygdaloidal, while the matrix has at the same time a different degree of hardness, texture and color, and often a different mineralogical constitution from the parent trap. These varieties form the amygdaloids proper.

Amygdaloids Proper.

"The amygdaloids are the most highly altered form of the melaphyre and present themselves under a variety of characters in different beds and in different parts of the same bed. The colors of the matrix are different shades of brown or red, and of green, or of these mixed. The texture varies from fine-grained or sometimes subcrystalline to compact; and the hardness ranges from that of limestone to that of quartz.

"Two quite different kinds of amygdaloid occur on Portage Lake, both separately and intimately associated in the same bed, and are easily distinguished by their different colors, the one being brown and the other green.

Brown amygdaloids.—"The brown, which exhibits the amygdaloidal character in its highest development, has a chocolate-brown to dirty red matrix, which generally is easily scratched with the knife, but is sometimes indurated and hard; it has a fine-grained to subcrystalline texture, and now and then contains minute reddish
crystals of feldspar, and fuses easily to a dark-green and somewhat magnetic glass.

"The amygdules in this variety are more generally spherical, but often somewhat irregular and connected, and more rarely long-cylindrical, and then usually perpendicular to the plane of bedding. The contents of these cavities, for they are very rarely empty, are laumontite, leonhardite, calcite, quartz, a soft green mineral (apparently green-earth), delessite (more rarely), native copper, epidote, prehnite, analcite, orthoclase. In places one, in others another, of these predominates; generally several are associated.

Green amygdaloids.—"The green variety is a very fine-grained to compact light grayish-green rock. It is generally very hard, striking fire under the steel. Its constituents are very largely free silica, and a green mineral which has been generally taken for epidote, but which is so minutely disseminated as to render it difficult of determination. Small pieces of the rock fuse easily on the edges to a dark enamel which gelatinizes with acids. These beds are called epidote 'veins,' and they are probably, in many instances, at least, an intimate mixture of quartz and epidote, though in otherwise nearly similar beds the green mineral is soft, and is probably either a green-earth or a chlorite. The cavities in this variety are often less regularly defined in shape than in the brown amygdaloid. The enclosed minerals are quartz, epidote, calcite, delessite, prehnite, laumontite, green-earth, analcite, native copper, orthoclase. "These two varieties of amygdaloids often occur together without any well defined lines of separation, the bed being made up of irregular masses of the two rocks. In places, however, the brown amygdaloid forms a band one to two feet thick on the hanging-wall, with a rather abrupt transition into the green amygdaloid underlying it; I have never observed the reverse.

"Some beds have an exceedingly mixed character; the amygdaloidal portions are associated with massive segregations of calcite, quartz and epidote, and are traversed by seams and irregular veins of these minerals. This structure is especially noticeable in the beds worked for copper. A somewhat similar structure occurs in other beds on a smaller scale, giving to them a brecciated or even a conglomerate-like appearance, which seems, however, to be due to purely metamorphic action; the best example of this is in the 'Ancient Pit' bed, on the Shelden and Columbian property.7"

Texture of amygdaloids.—In a later article Dr. Pumpelly says* of the amygdaloids: "The uppermost zone—the amygdaloid—in many beds is, in several respects, essentially different from the rest of the rock. In these instances, the matrix has a much finer texture, often quite aphanitic, even where the lower and pseudo-amygdaloid zones of the same bed are quite coarse grained and distinctly crystalline. The amygdules have generally a spherical or ovoidal forms, filling cavities with sharply defined walls. In some rare instances, the amygdules are long and cylindrical, and arranged perpendicular to the plane of bedding.

In thin sections, the difference between the texture of the matrix and the texture of the lower zone of the same bed is very apparent. While the primary constituents, when preserved, do not differ apparently in quality, they are of much smaller size, and sometimes show an arrested development and microfluidal structure. Here, too, the amygdules have sharply defined, evenly curved contours, differing wholly in this respect from the pseudo-amygdules of the lower zones of the same bed. Often also the primary minerals of the matrix are much more minute in the immediate neighborhood of the amygdules than away from them, and their disposition seems also to have been influenced by the presence of the amygdaloidal cavity. The color of the amygdaloid matrix varies between different shades of dark greenish brown, chocolate-brown, dull light green, and brilliant light green. All these colors often occur in the same bed, or even in the same specimen, and, like the difference in hardness—from 3 to 7—are due to metasomatic changes.

Scoriaceous amygdaloids.—"There is one variety, the scoriaceous amygdaloid, which occurs less often than the others, but is always strongly characterized. It consists of true amygdaloid and sandstone curiously associated. The amygdaloid is in contorted forms, from an inch or less to several feet in size, with a sharply defined, often wrinkled surface, and wholly enveloped with sandstone. The glaciated surface of the outcrops of this rock often present at the first glance the appearance of a conglomerate, in which here the amygdaloid, there the sandstone, appears to form the cement. Thin sections show that we have to do with a true sandstone of quartz and feldspar derived from quartz porphyry, and identical with that which forms the great sandstone beds of the copper series; and that the other constituent is a true amygdaloid.

"The conditions, as studied on the ground, indicate that these beds are volcanic scoriae, buried in the littoral sand. To this variety belong the famous 'Ash-bed' of the Copper-falls and Phoenix mines, and the beds worked in the Hancock and South Pewabic mines."


R. D. IRVING'S DESCRIPTION OF THE AMYGDALOIDS.

R. D. Irving says* of the amygdaloids: "The flows of the finer-grained rocks are all commonly provided with upper vesicular portions, by the subsequent filling of whose vesicles, and the various degrees of alteration of whose matrices have been produced the manifold types of amygdaloid known in the Lake Superior region.† The coarse rocks—olivinitic and orthoclastic gabbros—are not furnished with amygdaloids save when tending to a distinctly finer grain than usual.

"Externally, the matrix of the amygdaloid is commonly quite different from that of the rest of the bed. This difference consists principally in greater denseness of grain, from solidification while much of the matter was
not developed into distinct minerals. The difference is least, then, in the case of those beds whose lower portions are composed of some phase of the diabase-porphyrstes, in which there is also a greater or less proportion of unindividualized matter. In some of these beds, especially when the rock is of the dense brownish kind with highly conchoidal fracture, above described, there is no perceptible difference between the matrices of the vesicular and non-vesicular portions of the bed; but more usually there is a great difference in this respect between the lower and vesicular portions of a flow. The internal changes to which an open vesicular substance, composed largely of a molecularly unstable material like glass, must always be liable, have greatly increased the difference, and have given rise, by the variation in the decomposition products, to a great variety of amygdaloids, which it would seem at first sight hard to place together.

†Pumpelly has spoken of the olivinitic fine-grained kinds, his melaphyres, as less commonly provided with amygdaloids than are the olivine-free diabases of the ordinary type, but in my observations this is only true when the melaphyres have a distinct tendency to become coarse-grained, as in "The Greenstone" of Keweenaw Point. When they are fine-grained they appear to have amygdaloids quite as frequently as the olivine-free kinds.‡

"Under the microscope the matrix of the unaltered, or relatively little altered, amygdaloid shows nearly always much non-polarizing matter, commonly deeply stained with red ferrite. In this are developed needles of plagioclase to a greater or less extent, and often these needles seem to be but microliths arrested in the process of aggregation into crystals.*

"Augite particles occur, but are usually relatively sparse, and frequently fail entirely. Very often there is a fluidal structure brought out in the arrangement of the plagioclase microliths and the other particles, and in many cases the flowage direction is found to coincide with the longer axes of the elongated vesicles. The vesicles themselves, filled or empty, as the case may be, are always sharply outlined in the thin section, and there is immediately about them a crowding of the plagioclases and ferrite particles, as if by pressure in the cavity. Moreover, the individualized minerals, as Pumpelly has shown†, are often more minute in the vicinity of the vesicles than away from them. Porphyritic feldspars, macroscopically visible, are frequently developed in the matrix of the amygdaloids—so far as my observation has gone they are at least as often present as not—and in this respect we have yet another affinity between the amygdaloids and the non-vesicular diabase-porphyrstes.

"Macroscopically, the vesicles are seen to be commonly filled with secondary minerals—one or more of 'calcite, chlorite, epidote, quartz, prehnite, laumontite, copper, orthoclase, or their products of alteration.'‡ Often, however, I have observed the vesicles empty, either from the removal of the amygdules or from their having always remained empty. The walls of these empty cavities are commonly found to be smooth and dense, apparently from the pressure of the confined vapor.

Alteration—"Although a large number of sections of amygdaloids were cut with this object in view, I have not been able to find the time to extend the studies, so ably begun by Professor Pumpelly, of the changes which have brought about the fillings of the vesicles and the various stages of alteration of the matrix. He sums up the results of his studies on the alterations of both pseud-amygdaloids and the true vesicular amygdaloids in the following table, which is designed to show the course and final results of the most common process of alteration:

<table>
<thead>
<tr>
<th>Pseud-amygdaloid stage</th>
<th>Amygdaloid stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Hydration of chrysotile, when present.</td>
<td>I. Filling gas vesicles with prehnite, or other minerals. Change of matrix to ferruginous prehnite.</td>
</tr>
<tr>
<td>II. Change of augite, loss of line, and partial loss of iron and magnesia.</td>
<td>II. Change of the prehnite, in places, to Chlorite; in others, to calcite and green-earth; in others, to epidote and calcite.</td>
</tr>
<tr>
<td>III. Change of feldspar to prehnite, and formation of prehnite pseud-amygdaloids.</td>
<td>III. Entrance of quartz, filling all the interstices and replacing the calcite.</td>
</tr>
</tbody>
</table>


†Ibid., p. 283. U. S. Geol. Sur., Monograph V.


The following are Pumpelly's comments on this table:

"This is the broader history. Orthoclase is here, as in pseudo-amygdaloid, of sporadic occurrence and a product of the prehnite.

"The changes under II may affect only the amygdules, or, if the matrix was prehnitized, it applies to the whole mass of the amygdaloid. It does this in such a manner that, where carried to its extremes, considerable portions of the bed have lost every semblance of an amygdaloid and consists now of chlorite, epidote, calcite, and quartz, more or less intimately associated, or forming larger masses of the most indefinite shapes and merging into each other. Sometimes portions of partially altered prehnite occur. In places considerable masses of rich brown and green fresh prehnite filled with copper occur; but as a rule this mineral has given way to its products.

"To this process the copper-bearing beds of Portage Lake owe their origin. Considerable portions of these beds are but partially altered amygdaloids, containing amygdules of prehnite, chlorite, calcite, or quartz, with more or less copper; other portions are in the condition described above.

"This, too, (II. and II.), appears to have been the principal period of concentration of the copper. In the still amygdaloidal portions, this metal was deposited in the cavities and in cleavage-planes of some minerals,
and replaced calcite amygdules, etc. But in the confused and highly altered parts of the bed it crystallized free, where it had a chance: more generally it replaced other minerals on a considerable scale. It formed, in calcite bodies, those irregular, solid, branching forms, that are locally known as horn-copper, often many hundred pounds in weight; in the epidote, quartz, and prehnite bodies, it occurs as thread and flake-like impregnations: in the foliaceous lenticular chloritic bodies, it formed flakes between the cleavage-planes and oblique joints, or in places—and this is more particularly true of the fissure-veins, which we are not now considering—it replaces the chloritic, selvage-like substance till it forms literally pseudomorphs, sometimes several hundred tons in weight.

"When the amygdaloid has arrived at the condition we have been describing, it assumes some of the characters of a vein, in that although it presents no open fissure it contains greater or smaller masses of calcite and other minerals that are easily replaced by an intruder. To this period, probably belongs the replacement of calcite by datolite; and here, also, the rather rare occurrence of analcite crystals and the pseudomorphs of orthoclase after these.

"As I have already remarked, the pseudo-amygdaloids are merely altered forms of the same rock as the lower zone. There seems to be a definite limit at which this progressive change stops, and that is when all augite is changed to its green pseudomorph and a large percentage of the rest of the rock consists of pseudo-amygdules of delessite, and partial pseudomorphs of this after plagioclase. The occurrence of epidote and quartz is not general, and is confined to scattering pseudo-amygdules, in which these minerals have succeeded prehnite, perhaps in the local absence of the conditions necessary to produce the usual delessite.

"Thus I conceive that the extent of the change to the pseudo-amygdaloidal form is conditioned essentially by the amount of augite present, to supply first the lime necessary to aid in changing the plagioclase to prehnite, and next the iron and magnesia to form the delessite, whether by acting directly on the feldspar substance or on the prehnite.

"The amygdaloids proper were, probably, both structurally and chemically, somewhat different from the lower zone, in that it is reasonable to suppose that, in addition to being more or less porous, they contained a greater or less amount of amorphous base, which is more easily -altered than a crystalline aggregate. But, from whatever cause, the amygdaloids have, as we have seen, been capable of much greater changes than the lower zone. In them the tendency is undoubtedly towards the formation of quartz, chlorite and epidote rocks, as a more stable limit, through the mediation of prehnite and calcite."

A. C. Lane on Amygdaloids.

A. C. Lane says* of the amygdaloids: "The top of each flow is naturally more likely to be open in texture, full of bubbles, and thus more porous and easily crushed. Such tops are known as amygdaloids, and they are sought by the explorer, for in the filling of their pores the copper may be concentrated. A real amygdaloid top to an independent lava flow is likely to be fairly persistent and has numerous round walled cavities often filled with some white mineral. Its top is commonly pretty well marked while its base fades out gradually, into the underlying not bubbly compact part of the flow which is distinguished as 'trap.'

*Vol. VI, Part 1, Pl. 6, Fig. 3 and p. 167. I think the feldspar crystallizes better in the presence of steam, and that these doleritic streaks are where the lava had more water vapor.

R. Pumpelly's Description of a Typical Ophite.†

Dr. Pumpelly describes a typical ophite, the "Greenstone," as follows: "The rock, commonly known in the copper district as 'the Greenstone' is the best type of this subdivision. Forming a bed 400-500 feet thick, dipping northerly, its outcrop consists of a continuous series of ridges and nearly vertical escarpments, often several hundred feet high. These extend from the Allouez mine to Point Keweenaw and form both the most salient topographical feature of the peninsula and a well-defined horizon to which the geologists and the miner refer their measurements. The rock has suffered only to the extent of a partial alteration of one of its constituents—the olivine.

"It is dark-green, greenish-black, finely crystalline, very compact, hard, and brittle, and breaks with an uneven to
semi-conchoidal fracture. Porphyritic crystals, apparently of orthoclase, from 1-3 inch in length down, occur here and there—one or two on the surface of a specimen. They are generally single individuals; but sometimes twinned after the Carlsbad law, as is shown by the oppositely inclined basal cleavage. The powder of the rock yields to the magnet a beard of magnetite. The specific gravity is 2.92-2.95. It is an important characteristic of this rock, that its freshly fractured surface is mainly occupied by spots 1-3 to 3-4 inch in diameter, each of which reflects the light with a satin-like sheen. The reflection is not carried to the eye from all the spots at once; it is generally necessary to change the position of the specimen many times to observe the different reflections. Aside from this sheen, there is nothing, either in difference of color or texture, visible to the naked eye, to betray the presence of these spots, which might be called lustre-mottlings.


"To the naked eye, this phenomenon suggests, at once, interrupted cleavage of large individuals of one of the constituents, as the cause; but under a strong hand-glass, these reflecting surfaces show the same granular texture and character as the rest of the rock; and it is only when examined under the microscope, with an objective of the low power and in polarized light, that the appearance to the unaided eye is corroborated. We here find the cause in the fact that each spot is the cross-fracture or cleavage of a crystal of pyroxene, which in crystallizing has enclosed hundreds of feldspar crystals.

"The weathered surface is rusty gray, scarcely 1-50 inch thick; but it is covered with knobs which are due to the more rapid destruction of the materials between the pyroxene individuals.

"Examining thin sections under the microscope, we find the constituents to be plagioclase, pyroxene, olivine, and its alteration product, as well as magnetite, and an unindividualized substance, both fresh and altered, occupying interstices.

"In thin sections, the plagioclase is seen to exist in very sharply defined and fresh, thin, tabular crystals .001 to .002 inch thick and .01 inch, and less, long. It contains scattering interpositions of an opaque black substance, and minute brown particles, which may be, or have been, glass.

"The crystals of plagioclase have predetermined the contours of all the other constituents, except the olivine, which crystallized first.

"The predominating feldspar is anorthite, as determined by the angle between the principal sections in adjoining bands in the zone 0.1.i. Scattering large crystals, which happen in the sections to be cut parallel to i.i., have their principal sections at an angle of 23° with the edge 0.ii, which would indicate albite or labradorite.

"The augite is very fresh and transparent, almost colorless in the thin section, but with a tendency to purple-gray. An imperfect cleavage is indicated by somewhat irregular parallel fractures. It fills the interstices between the closely packed individuals of feldspar in such a manner that a single pyroxenic crystal encloses many hundreds of these, while its crystalline integrity is shown by the uniform color in polarized light, and by the arrangement of the cleavage cracks throughout the area of the augite individual.

"It is a remarkable fact that, while these large individuals of pyroxene contain thousands of feldspar crystals, they enclose only very few of olivine or of magnetite. These minerals, together with the unindividualized substances, are crowded into the spaces between the pyroxenes. In this intermediate space, which surrounds the pyroxene individuals with a continuous network, we find also a few small pyroxenes, just as isolated grains of olivine occur in the pyroxene areas.

"A careful examination of this occurrence will, I think, convince the observer that at the time the pyroxene crystallized both the olivine and the feldspar crystals, and apparently the magnetite, were already individualized; for, where we find any of these in contact with the pyroxene, we see that the latter has adapted itself to the already defined contours of the others. While the pyroxene enclosed the feldspar crystals with ease, it crowded the other constituents almost wholly into the surrounding spaces; a process which was facilitated by the presence of the then fluid, unindividualized substance.

"The pyroxene contains also brown interpositions similar to those in the feldspar, and some opaque. Where it occurs with olivine it often surrounds the grains of this mineral.

"The magnetite bodies are of irregular shape, moulding themselves sharply around the contours of the feldspar and olivine. Their sharply defined outlines are black and fresh.

"The olivine is abundant in integral and aggregated grains, and, very rarely, in crystals with recognizable though rounded contours. The individuals are .0008 to .005 inch in diameter, and are readily distinguishable from the augite, between crossed nicols, by the difference of colors, and in the crystals, by the parallelism of the principal section with the longer sides. Where pains have been taken to give a tolerably good polish to the surfaces of the thin section, the characteristic finely pitted surface of the olivine distinguishes it, even in ordinary light, from the augite, which takes a more perfect surface.

"There are few grains of olivine in this rock that are not more or less altered to a very pale green substance, sometimes tinged with brown. Under a high power, the olivine is seen to be traversed by intercommunicating canals .0002 to .00005 inch thick, filled with clear faint yellowish green to greenish-blue substance. From the sides of these channels, jagged points of the same substance penetrate the fresh olivine. In this manner larger or smaller parts of the grains have been changed...
to a feebly double-refracting substance which gives an aggregate polarization due to the arrangement of the minute individuals of the alteration product, which are sometimes felted, at others, parallel fibrous. This product is dichroitic; the pale green when the fibrous structure is parallel to the shorter diagonal of the polarizer, and pale orange when parallel to the longer diagonal. On the uncovered sections, this alteration product was found to be very soft under the needle.

"Apparently, not more than twenty to thirty per cent of the olivine is altered, which is very remarkable in a rock of such great age, considering the fact, which is emphasized by Zirkel, that the olivine is subject to complete alteration, even when its neighbors remain wholly intact.

"Where the interstices between the constituent crystalline minerals are not occupied by augite, they are filled with a transparent substance, in places colorless, in others of faintest green, almost colorless, only just distinguishable from the colorless feldspar in ordinary transmitted light. It often penetrates the feldspar crystals in cross fractures. Between crossed nicols it is black, sprinkled with minute blue-gray clouds—an aggregate polarization due, probably, to either an exceedingly minute radiating fibrous, or a granular, structure. Under a 1-16 inch objective (Hartnack's No. 10), portions of the black seem to remain dark on revolving between crossed nicols. The substance is at the most only very faintly green, and these were soft. Still, I am forced to believe that we have here to do with remnants of glass product was found to be very soft under the needle.

"The relative ages of the constituents of this rock appear to be well defined as follows:

<table>
<thead>
<tr>
<th>(I)</th>
<th>Original Magma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a) Dichroite alter. product.</td>
<td>5 (a) Alteration product.</td>
</tr>
</tbody>
</table>

"The residuary magma (5) must have been the last to solidify; to its presence was due the internal mobility of the mass, which rendered it possible for the augite to crystallize in larger individuals, and, in doing so, to crowd from its centers the olivine and magnetite individuals.

"This residuary base, probably, differs in chemical constitution from the original magma, since it is only the residue of this after the removal of the ingredients forming the crystalline constituents."

**R. Pumpelly's Description of the Conglomerates.**

R. Pumpelly thus describes the conglomerates: "The conglomerates of Portage Lake differ from each other but little, if at all, in lithological characteristics. The pebbles vary from the size of a pea to one foot or more in diameter, being coarser in some beds than in others. The different beds vary in thickness from mere seams to several hundred feet, and the same bed often varies greatly in width.

"The pebbles, in most of the beds on Portage Lake, consist almost exclusively of varieties of non-quartziferous felsitic porphyry. Two kinds predominate. One of these has a chocolate-brown to liver-brown subcrystalline to compact almost vitreous matrix containing very scattered minute crystals of triclinic feldspar of the same color as the base. The other and rarer variety, also non-quartziferous, has a chocolate-brown, compact to minutely crystalline matrix in which lie crystals 1-8 to 1-2 inch long, of a flesh-colored triclinic feldspar.

"In some beds there appear pebbles of a flesh-red rock, composed almost entirely of granular feldspar, containing small specks of a black undetermined mineral. In some instances the feldspar is wholly triclinic, in others the twin-striation is frequently absent. This variety of pebble is altogether absent in some beds, at least where they are opened, while in others they predominate, as in the Albany and Boston Conglomerate. Pebbles of compact melaphyre and of melaphyre amygdaloid also occur, but are quite subordinate in number to those already enumerated.

"The normal form of cement is a fine-grained sandstone, composed apparently of the same material as the pebbles. Often the cement is very subordinate in volume, the pebbles touching each other. Frequently, however, the reverse is the case, and often, the sandstone forms layers from less than an inch to many feet in thickness.

"The original character of the cement is often entirely lost; the interstices between the pebbles are sometimes, though rarely, empty. In places the sand is associated with oxide of iron, chlorite, a white talc-like mineral, and carbonate of lime, or it is entirely replaced by calcite, chlorite, epidote or even native copper.

"It is a remarkable fact that while all the conglomerate beds near Portage Lake are free from pebbles of quartz-porphry, those in the neighborhood of Calumet are characterized by pebbles rich in grains of quartz. This abrupt change takes place about six miles northeast from the lake."

**A. C. Lane on Decomposition of the Keweenawan Rocks.**

Dr. A. C. Lane has summarized* the changes as follows:

---


CHAPTER IV. NATURE OF THE COPPER DEPOSITS.

MODE OF OCCURRENCE OF THE COPPER.

The Copper Minerals.—Practically all of the copper mined occurs as the native metal. A very minor production is made from other copper minerals, chiefly arsenides. The deposits are remarkable for their very meagre content of sulphides. Chalcocite is the most common sulphide, but it is seldom found in large quantity. Oxide, carbonate and silicate minerals containing copper have been found frequently, but not in economic amounts.

The native copper occurs chiefly in bedded deposits. It has filled cavities in and replaced mineral and rock constituents of conglomerates and amygdaloids. If we except the fissure veins, the richest lode is a conglomerate; but all the other lodes now being worked are amygdaloids. Large amounts of native copper have also been mined from fissure veins which cut across the formation, and from epidotic veins or beds which lie nearly parallel with the formation. One deposit which promises to be profitable is a sandstone containing native copper and chalcocite. Native copper has also been found in a much fissured and altered mass of felsite.

The bedded deposits are long and continue to great depths. The most important ones are being worked for a distance of two to five miles along the strike. Two of the lodes are still being worked at over a mile down on the slope of the beds, and it is probable that others will be worked at a like depth. Most of the lodes average at least eight, and some over twenty-five feet in thickness.

Distribution of the native copper.—The copper is by no means evenly distributed throughout the lodes. Very large stretches are mined out in continuous stopes, but the regularity indicated by the stope maps gives an erroneous impression of the occurrence of the metal. Large quantities of barren rock are broken with the ore, and the copper-bearing portion has a content varying from a few pounds to several hundred pounds per ton. The rich ore forms a comparatively small portion of the output. The amount of waste rock included with the ore shipped varies not only with the deposits, but also according to the amount of hand sorting that is done in the mine. In some mines the ore is rather carefully picked and much of the rock broken is left underground. In other cases nearly all becomes mixed with the ore. It should be evident from these remarks that the proper interpretation of reports on yield per ton of different lodes or parts of the same lode requires a knowledge of the method of mining and handling the ore. Further information is to be found on the stope maps which show ground supposed to be barren or very low grade. It is common practice to record daily the character of ground opened in drifts, but most of the mine maps fail to show in any other way the grade of ore mined from individual stopes. The output from most shafts shows considerable uniformity in grade of ore produced from day to day, but this is largely due to the common practice of mining simultaneously in many widely separated stopes.

Productive portions of beds.—The irregular distribution of the metal is frequently commented on by the miners. Assays are seldom necessary and are not very satisfactory. Where there is any considerable quantity of copper, the mineral is readily detected by the naked eye or by feeling the rough jagged projections, and rich and poor ground are thus readily distinguished. It is known that the ore-bearing portions of a bed are of all shapes and sizes. It is common experience in a single stope to have a whole face in good ore followed for a few cuts by practically barren ground and then by good ore again. Within the limits of a stope the ore occurs in several bodies which are perhaps best referred to as patches. Sometimes the patches are larger and a whole stope may then be continuously in ore. These patches, small and large, form parts of still larger areas of the lode which are referred to as the productive areas and which are of very great size.
Shoots.—While the ore does not occur in shoots, in the sense in which this term is most commonly used, the productive areas bear a somewhat similar relation to the bed of which they are a part, as do shoots to veins. The difference is, at least partly, one of magnitude. The great size of the productive areas is a feature which distinguishes these from most other ore deposits and the use here of the term oreshoot is thus made after some hesitation and because there is no similar term available for deposits of such magnitude.

Some of these so-called shoots show a marked pitch along the strike. The Calumet shoot pitches almost due north and others in Houghton County pitch in a northerly direction. The pitch of the ore bodies at the Quincy mine is shown by the old stope plan, Fig. 21. At Victoria, mine, the pitch is toward the west. No very accurate record is kept of the output of individual stopes. Hence there are no figures available from which to construct diagrams showing how the copper was distributed in the ore mined. In some mines it is the practice to make daily notes on the character of new openings. This is commonly done by the captain or shift boss who notes simply whether the showing is good, fair or poor. From these notes maps have been constructed showing approximately the distribution of copper for large areas of a lode. These however are not available for publication. Not infrequently the necessary information has never been recorded, but entrusted to the captain's memory and ultimately lost entirely. Some idea of the distribution of the metal may be obtained from the description of individual lodes given in this report.

Change in value with depth.—The deposits show no very regular change in copper contents with depth. The deepest workings in the district are in comparatively lean ore. The best ore in the Calumet conglomerate was taken at depths from surface which increased as the workings were extended to the north. The statements of several who have commented on the change with depth agree to the extent that below 2,000 feet the ore does not average as rich as above 2,000 feet. It is probable however that the average for depths of 1,000 to 2,000 feet is above that of the portion above 1,000 feet. Mr. Jas. MacNaughton, general manager of the Calumet and Hecla Mining Co. states that “the copper contents lessen with depth and the falling off in richness begins to be noticed at 2,000 feet.” This statement is a general one for large areas of a lode. It should not be interpreted to mean that there is a gradual falling off in values. The lodes are patchy.

CONGLOMERATE LODGES.

Characteristics of the Conglomerate Lodes.—The conglomerate lodes are portions of sedimentary beds which are interstratified with the volcanic rocks. They are commonly reddish rocks with very numerous large pebbles. The pebbles are mostly quartz-porphyry and felsite, but there are occasional pebbles of many different types of trap and amygdaloid. The cement is a rather coarse sand made up of small rock grains and a few minerals of which the most common are calcite, quartz, native copper, and magnetite, hematite (var. martite) or other oxide. Epidote and chlorite are of frequent occurrence as constituents of the sand and as alteration products of the pebbles. In places these sedimentary beds contain few or no large pebbles, but in the copper-bearing zone such sandstone portions are usually subordinate to the coarse conglomeratic phase. At the Franklin Jr. mine, the lower part of the Allouez conglomerate bed is a sandstone.

Considering their character, the conglomerate beds are remarkably persistent, for it might be expected that they would vary much more in thickness than they do and frequently pinch out. On the lode which has been most extensively worked, the Calumet lode, variations in thickness from a few feet up to 40 feet have been found, but as the workings extend two miles along the strike and over a mile down on the dip, it is remarkable that the thin bed of coarse conglomerate was spread out so evenly. That some other conglomerate beds in the district are much less regular in thickness has been shown by Dr. Hubbard.*

Copper is in both pebbles and matrix.—In the conglomerate lodes the copper occurs chiefly in the matrix, where it has apparently filled spaces between and also replaced grains of mineral and rock. While part of it occurs in fine particles which may have been deposited between the sand grains, much of it is in particles of size and shape not in accord with such origin and it seems likely that most of the copper has replaced other constituents. Native copper also occurs in the pebbles and frequently these are quite heavy with the metal. Examination of these pebbles shows conclusively that the deposition of the copper has been made at the expense of the rock. It does not occur simply as a filling in fractures in the pebbles, but has rather the character of a pseudomorph after the pebble. Frequently the copper is in the form of a shell, but in other cases it occurs in irregular masses throughout the pebble, sometimes almost completely replacing it. At some rockhouses very large numbers of these heavy pebbles have been picked out from the ore and sent directly to the smelter. The present workings do not afford so many as were encountered a few years ago.

Copper is in small particles.—The copper in conglomerate lodes is commonly in smaller particles than that in the amygdaloids. Large masses have occasionally been found, but they are comparatively rare. Small masses or "barrel work" are also infrequently met with. With the exception of the copper pebbles, practically all the conglomerate ore is stamped and concentrated before smelting, while a very considerable portion of the copper from some amygdaloid lodes occurs in large and small masses which are sent directly to the smelter.

The replacement of pebbles by copper has been described by Dr. Raphael Pumpelly and Dr. A. C. Lane, and will be referred to later in this report in the discussion of origin of the ore.
AMYGDALOID LODES.

Characteristics of amygdaloid lodes.—The term amygdaloid lode is applied to those deposits which occur in much altered portions of the volcanic beds. Usually they are the upper part of the bed and decidedly amygdaloidal in character. Some, however, are not markedly amygdaloidal, and a large part of the ore in some mines occurs as replacement deposits and fracture fillings in fissured traps.

As a rule the rock carrying high values in copper is largely made up of secondary minerals, and the metal is usually enclosed in masses of these, especially in calcite, epidote, prehnite, chlorite and quartz. Copper occurs as a filling in amygdaloidal cavities, but it is by no means confined to them. In some lodes there is considerable copper with calcite, prehnite and quartz in minor fissures, but other lodes show little ore of this character. In some cases native copper occurs in a network of seams. These seamed masses show characteristics of mineralized shattered zones, but as the mineralization is confined largely to single beds the deposits are tabular masses similar in shape to the beds which are not so much fractured.

The amygdaloid lodes seldom occur singly, the chief producing lodes being closely accompanied by others carrying a subordinate amount of copper. In some cases, and this is notably so of the Kearsarge amygdaloid, the quantity of ore mined from the "east" and "west" lodes is almost negligible, but in other cases, of which the Pewabic is a notable example, there are two or three lodes of importance. The main lode at one shaft at the Quincy mine is not the lode which was regarded as the main lode at another shaft.

The Pewabic is thus a series of lodes which vary in relative importance from place to place. They are commonly spaced a short distance apart and occasionally come together, then often forming unusually large bodies of good ore. A somewhat similar feature is characteristic of the several lodes at the Mass Mine. On the Osceola amygdaloid the ore occurs partly in a fairly regular hanging portion and partly in a less regular but much thicker foot portion. At the Superior Mine there has been opened up a rich lode which lies a short and variable distance above the Superior lode. At the Isle Royale Mine, there are two somewhat similar lodes—the Isle Royale and the Grand Portage—spaced a short distance apart. At the Copper Range mines crosscuts into foot and hanging from the Baltic lode often disclose additional ore.

Hard portions.—Throughout the amygdaloidal lodes there occur irregular masses, frequently somewhat lenticular in shape, that are much harder than the surrounding rock. Such masses are commonly greenish in color and consist largely of a dense aggregate of epidote and other green minerals with quartz. The frequent occurrence of this material is called to the attention of the miners by the comparatively great difficulty encountered in drilling it.

Soft portions.—Occasionally also there occur very soft portions, in which much of the rock is friable and readily breaks away from irregularly branching copper masses which it contains. It has been noticed in some mines that these soft streaks commonly run across the lode, while the hard epidotic masses extend in the direction of the lode. There is often much copper in the epidotic rock and many masses occur in it.

Wet and dry portions.—It is often noticed that rich parts of the lode are wetter than the dry and in some mines the encountering of a little water in the openings is considered a sign of better ore ahead.

Crushed portions.—It is often found in following the lodes, that portions which are fractured and crushed very extensively are comparatively poor in copper contents. Dr. Lane says* regarding this phenomenon: “So far as my experience goes, where there is a great deal of disturbance and the rock is thoroughly decomposed, it is not likely to contain copper. The copper seems to be driven from it into a zone between the thoroughly disturbed and the less disturbed rock.”

Shear zones.—As Dr. Hubbard has pointed out, some of the amygdaloid beds are seats of shear zones, the copper and other secondary minerals occur in cavities caused primarily by shearing. He says:†

“Observation has already shown us that the copper in the amygdaloids is generally found not in the amygdaloidal cavities, but in brecciated material—in fissures. The thick footwall bed rendered possible a widespread and bubble-studded capping, in other words, a marked and extensive plane of weakness which would be particularly susceptible to shearing. The more circumscribed the amygdaloidal capping, by comparison with the more compact rocks in the extension of its planer the less it would be subject to shearing, and consequently the less it would offer cavities of mechanical origin for the deposition of secondary minerals. At the Champion Mine, I remember to have seen in six years only one piece of rock that contained shot copper. In the Winona Mine a similar condition exists. Moreover in the latter mine a well defined slip marks the course of the lode on the hanging-wall side, and other evidences of shearing are seen in the adjacent rock material. At the Ojibway near the shaft that has uncovered the more copper, a fissure vein in the hanging of the east lode is in evidence from near the surface to the bottom of the mine. I say fissure vein because I believe that specimens of crystallized copper occur more often in what, we are accustomed to call fissure veins than ill accidental cavities of more irregular occurrence.”

He states further‡ “We may expect to find shearing either (1) limited approximately by the area of any one of these beds; (2) extending into or through an adjoining
trap bed; (3) reflected into a transverse fault, or from the latter (4) transmitted into another amygdaloid.

"Of the first of these cases, we can probably collect little material evidence in this area, because we do not often mine in the traps beyond the limits of the copper. As to the second, I have sometimes thought that the Mabbs vein may possibly be the extension of the Baltic-Superior shear zone system, through the more compact trap; that the temporary disappearance of the Baltic zone of enrichment north of the Baltic Mine is due to the cross fissuring and disturbance in Section 16; and that the Arcadian-Isle Royale and Grand Portage lodes come under the fourth class of a shear transmitted from one plane of weakness to another."

†L. S. M. I., 1912, p. 231.
‡Loc. Cit. page 230.

**Spliced structure.**—Dr. Hubbard describes the development of a spliced structure in a bed and compares it with similar structure found in veins. He says:*

"The spliced structure above referred to was applied by Pumpelly to the ordinary fissure vein. The causes that produced it must be the same or closely allied to those that bring about shearing in the tilted beds of volcanic origin. In our amygdaloids we see these on a comparatively small scale. Near the extremity of Keweenaw Point 'accomodation' appears to have been made so far as evidence is at hand, largely in the cracks that run across the formation, some of them copper-bearing, and in the Ontonagon district the drag of the overlying beds has resulted in at least two cases in fissure veins that strike nearly parallel with, but dip more steeply than, the beds of the series. It is largely between these two areas that our productive bedded deposits have been found. May they or some of them not be due to mechanical movements very similar to those that produced the so-called fissure deposits at each end of the district."

The copper bearing beds are thick.—The amygdaloid lodes now being worked are parts of thick beds. According to Dr. Hubbard† the footwall trap at Winona Mine is 40 to 50 feet thick; at the Baltic and Champion from 100 to 150 feet thick for a length of four miles; and at Ojibway and Mohawk it (Kearsarge Foot) will probably average more than 100 feet and maintains a much greater thickness for several miles. It has been pointed out by Dr. Hubbard that the upper part of thick beds formed more or less continuous horizons of weakness through which shearing might easily take place, more easily than in beds of smaller area.

Dr. A. C. Lane remarks‡ that the most favorable place for copper is

"A belt near a heavy impervious belt, and in a somewhat pervious one, in which a certain amount of shattering has taken place." He elsewhere** calls attention to the fact that copper is commonly found under heavy impervious beds.

†L. S. M. I., p. 230, 1912. "In the Lake Superior area what influence, if any, did the thickness and contour of foot-wall beds have upon the subsequent disposition and distribution of copper in overlying beds."
‡L. S. M. I., 1912, p. 128. Unexplored parts of the copper Range of Keweenaw Point.

** Pub. 6, Michigan Geological Survey, 1912, p. 44.

**Dr. R. D. Irving,** in Mono. V. U. S. G. S. says of the amygdaloids, "The copper in these deposits is not restricted to that portion of the bed which was originally vesicular, but runs from it downward irregularly into the originally compact portions, following always a great alteration of the rock. The copper, however, tends always to be very irregular in distribution, and, even in the longest worked and most reliable amygdaloids, has frequently to be searched for through many feet of barren rock. In this search the diamond drill is now extensively used, the miners being guided in its use by the occurrence of seams of calcite and epidote, and other alteration forms, which, when followed up with the drill, are often found to lead to pockets containing much copper.

"In one class of amygdaloids, those of the ashbed-type—which I agree with Wadsworth in regarding as merely very highly scoriaceous and open lava flows, into whose interstices the intermingled detrital material has subsequently been washed—the distribution of the copper is sometimes more uniform than in the ordinary cupriferous amygdaloids, so that the whole of the bed may be broken down and taken to the stamps, as is done for instance at the Atlantic mine."

**SANDSTONE LODGES.**

Nonesuch and White Pine.—In some deposits in the Porcupine Mountain District, Ontonagon County, copper occurs in sediments of the upper Keweenawan. At the Nonesuch and White-Pine mines the cupriferous beds are gray sandstones which are in places conglomeratic. Copper occurs as the native metal and as a sulphide, chalcocite, distributed in the form of small grains and flakes. Some of the copper is in mere films which are readily carried away by water and hence not easily saved, but much of it is in grains that can be concentrated economically. The sandstones are largely made up of quartz grains with some darker colored rock particles and minerals. Among these grains the copper occurs partly in forms which suggest simple filling of spaces, but partly at least is probably a replacement. According to some authorities† copper frequently occurs as a coating on grain of magnetite.

Dr. Irving notes* that at the Nonesuch Mine most of the copper is clustered around magnetite particles.

†Steidtmann, **U. S. G. S. Monograph No. 52, Geology of Lake Superior District.**
Epidotic Beds.

Ontonagon "veins."—Epidotic beds, yellowish green in color, and composed largely of epidote and quartz, are of common occurrence, and several contain native copper. Such deposits are not commonly very productive; but in Ontonagon County a very profitable mine, the Minesota, had most of its copper in such an ore body.

The beds, or veins as they are sometimes called, strike with the bedded volcanic rocks, but dip somewhat more steeply and are hence not confined to one horizon. Many exceptionally large masses were found in the Minesota deposit.

Irregular distribution of the copper.—Chas. E. Wright describes the irregular distribution of the copper in these deposits. He says:

"In Ontonagon County the copper occurs in veins and in belts, which run with the formation. The copper-bearing veins, while conforming in direction with the strike of the inclosing rock, frequently dip at a greater angle, but always in the same direction. The beds which have been mined for copper are frequently distinguished by their irregularity, rendering it extremely difficult or impossible to define them. The product, which has been mainly in the form of masses, is in some portions of the range found scattered in the trap rock in a manner that sets at defiance any method of determining their location other than mere chance; blind, persistent work may lead to the discovery of an isolated mass or of a collection or a succession of masses, but it is frequently blind luck, and not the result of following any well defined clues."

Irving on Ontonagon Veins.—R. D. Irving in Mono. V, U. S. G. S. says of the bedded veins of Ontonagon County: "The copper deposits of the Ontonagon region have not had the study given them that has of late years been devoted to those of the Keweenaw Point and Portage Lake districts; so that it is not possible to be quite so positive in our statements in regard to them. The copper of this region never occurs in transverse fissures, but either lies in irregular accumulations—often solid masses many tons in weight—associated with much epidote and calcite, distributed along the course of diabase beds, or else occurs with more persistent and vein-like aggregations of epidote and calcite. The latter coincide always with the bearing of the formation, and commonly also with its dip, but in some cases, as for instance in the once famous Minesota mine, dip at a higher angle than that of the formation, which they consequently slowly traverse in depth. According to Foster and Whitney, deposits like that of the Minesota mine show another indication of a vein-like character in the shape of slickensided and generally sharply denned walls. The 'vein' at the National mine is also peculiar in lying at the base of one of the great lava flows, and immediately above a conglomerate bed, while coinciding with them in both bearing and dip."

"It is evident, even with our present knowledge of the deposits of the Ontonagon district, that their history has been essentially the same as that of the Portage Lake deposits. In the case of that copper which occurs irregularly distributed, along with epidote and calcite, throughout certain of the trappean beds, the process of replacement has gone on irregularly, because of some irregularity of texture in the original rock. Deposits like that of the Minesota mine may have resulted from the deflection of the altering waters along the course of a pre-existing but not open fissure; the 'vein' being in this case, as before, a replacement, at least in large measure, of original rock substance."

Cupriferous Felsite.

Indiana deposit.—Native copper and some malachite and chrysocolla have been found in recent years in masses of felsite at the Indiana and adjoining properties in Ontonagon County. While no deposits of this type have yet been extensively opened up, the management of the Indiana Copper Company considered that the showings obtained in drill cores are promising and a shaft has been sunk to permit of the testing of such deposits at a depth of over 1,400 feet.

The copper so far obtained occurs in portions of the felsite that are much altered and crushed and is usually accompanied by secondary quartz, calcite and epidote. In one case the copper occurs chiefly at the bottom of a mass of felsite, but in other cases it is well within the felsites traversed by the drills. The shape of these rock masses and their relation to the amygdaloids and sedimentary beds are as yet unknown. It is probable that the felsite occurs as irregular masses intruding the amygdaloids. Concerning the extent and shape of the copper deposits in the felsite there is as yet very little knowledge. Some of the information thus far obtained will be given in describing the Indiana deposit.

Fissure Veins.

Occurrence of copper in veins.—In fissure veins the copper occurs in masses, very irregularly distributed. The veins which have been extensively worked are all in Keweenaw County and most of them at nearly the same horizon—just below the thick bed known as "the Greenstone." They cut across the amygdaloid and trap beds and commonly are more productive and wider in the amygdaloids. In the dense traps and in sandstones the veins contain but little copper. At present no fissure vein deposits are being worked independently but considerable quantities of ore are taken from veins traversing the Kearsarge lode at the Ahmek and Mohawk mines. Years ago large production was made from veins at the Central and Cliff mines.
In the deposits mined at the Cliff, Central and several other properties, the copper occurred almost entirely as the native metal. At the Mohawk mine similar deposits yield arsenides which carry some cobalt and nickel in addition to copper. At the Ahmeek mine there is a very rich vein carrying native copper in a calcite gangue, and some mohawkite veins which have quartz as the chief gangue mineral.

Central and Cliff Veins.—According to those who examined these deposits when they were being worked, the copper commonly occurs with epidote, prehnite and chlorite. Calcite is abundant in most of the veins, but is stated to be not specially characteristic as there are many barren calcite veins. Numerous masses of country rock are enclosed in the vein matter. The veins are nearly vertical and the mine maps show that the ore bodies pitched with the dip of the beds traversed.

Ahmeek Vein.—The Ahmeek fissure vein crosses the Kearsarge amygdaloid close to No. 2 shaft and has therefore been frequently cut in drifting on the Kearsarge lode. It shows good ore on several of the upper levels, but has not been extensively opened up there. At the tenth level there is a drift on the vein for 245 feet into the hanging which has opened up remarkably rich ore. The copper occurs in thick slabs in masses of several tons. A short drift at the thirteenth level uncovered a slab twenty-eight feet long which was with difficulty broken into several pieces each weighing a few tons.

The vein varies in thickness from a mere ribbon to three feet and in places breaks into two parts separated by rock. It strikes across the Kearsarge lode and dips at about 70° northeast.

Production of fissure veins.—As compared with the amygdaloid and conglomerate lodes, the output from fissure veins has been very small and with the one conspicuous exception, the Ahmeek, it is at present almost negligible. Special interest is attached to them however, by the fact that the richest part of such veins is commonly found to be at the intersection with one of the cupriferous beds and hence they are encountered while mining the beds.

The most productive of the known vein deposits were worked out many years ago at the Cliff and Central mines. I can give no description of these deposits from personal observation, but may do some service by quoting from works not now readily available.

C. E. Wright’s description of Central Mine Vein.—In the report of the first Commissioner of Mineral Statistics* Mr. Chas. E. Wright says of the Central Mine deposits:

"The vein, which has nearly a north and south course, dips to the east. The principal product is mass copper of 65% purity; the deposits of this metal are found in talcspar, sugar spar, laumontite, chlorite and other minerals, often occurring in the form of beautiful crystals. The masses are often enormous, irregular slabs—isolated bodies of copper—and weigh in gross from 400 to 800 tons. They are mined by working on each side and removing the vein rock, and are blasted down so as to expose one face, by sand blasts in which several kegs of powder are used. They are cut, by means of chisels, into convenient blocks for handling, of from four to eight tons each. Some of these blocks are of great purity; when hoisted from the mine they are sent to the smelting works without further dressing."

The copper in the Ahmeek vein is also exposed by drifting in the rock on either side; but it is broken into pieces by heavy charges of 90% nitroglycerin and not cut, if cutting can be avoided.

*R. D. Irving’s description of fissure veins.—R. D. Irving says† of the productive veins.

“The transverse veins have been mined for copper on Keweenaw Point only, where they are found varying in width from mere seams to ten and even twenty and thirty feet. For the most part, however, they do not exceed one to three feet in width, the expanded portions being met where they traverse the amygdaloidal or otherwise open textured portions of the flows. The same veins which, in the amygdaloid and looser textured diabases, are expanded and often rich in copper, will, when in the more compact and massive beds, such as the well known Greenstone, contract to mere seams without metallic content; and the same is in large measure true of their intersections with the sandstone belts. The veins lie always very nearly at right angles to the trend of the beds which they traverse, standing always very near the perpendicular quartz, calcite and prehnite make up the common veinstone, but they are mingled with more or less of the wall rock of the vein, which frequently predominates greatly over any true veinstone. The veins are in fact for the most part not sharply defined from the surrounding rock, but consist in each case of a network of smaller seams traversing the shattered wall rock. Veins composed almost wholly of calcite are not unknown, but they are never productive of copper. The copper in these veins occurs both in smaller fragments and minute particles intimately mixed with veinstone, and again in masses many tons in weight. The larger masses frequently are found to contain within them portions of the wall rock.

"Nearly all the productive mines based on these transverse veins are working directly beneath the Greenstone, the layer which is described in a previous chapter as constituting as prominent a feature in the geology and topography of Keweenaw Point. This position of the mines is one not due to the non-occurrence of copper elsewhere in the course of these veins, but results from the fact that further south they become buried beneath a heavy coating of drift, while to the northward they pinch out and become barren in the broad Greenstone belt.

"These veins, on account of their transverse position to the bedding of the formation, of their often slickensided walls, and from their carrying often a true veinstone,
have commonly been regarded as ‘true fissures.’ That they are on the lines of pre-existing fissures or transverse cracks in the formation there can, I think, be no doubt, but they are not true fissure veins in the sense that the veinstone and metallic matter occupy, along with wall-rock fragments, original fissure space. I see in them simply the results of rock alteration entirely analogous to that which has brought about the deposition of copper and its associated veinstone minerals within the cupriferous amygdaloids. They are alteration zones which traverse, instead of following, the bedding, simply because the drainage of the altering waters has been given this direction by the pre-existing fissures. All of the phenomena of these veins coincide completely with the vein; the common occurrence of wall rock within the vein, or rather the embracing of the wall rock masses by the vein; the replacement of wall rock by copper masses; the occurrence of wall rock within these masses; the expansion of the veins and their greater richness where traversing the more readily alterable amygdaloids and looser textured diabases; their contraction and barrenness within the compact and less readily changeable Greenstone; and the coincidence of the paragenesis of the vein minerals with that of the cupriferous amygdaloids, are all facts better explicable on this theory than on any other.”

†Copper-Bearing Rocks of Lake Superior Mono. V., U. S. G. S., p. 423.

Wadsworth on veins.—Dr. M. E. Wadsworth says* of the vein deposits:

“In the veins the copper is found intimately mixed with the gangue, or in sheets or irregular masses. In sheet-form the copper extends downward or has its sides approximately parallel with the vein. Often the sheet is divided, and holds between its parts some of the gangue or melaphyre. It is also not uncommon to find, entirely enclosed in the copper, masses of melaphyre, quartz, calcite or other vein-minerals. The melaphyres themselves are often impregnated with copper adjacent to the veins.”


C. E. Wright’s description of Keweenaw County Veins.—Chas. E. Wright describes* the copper-bearing fissure veins of Keweenaw County in his 1882 report.

“The fissure veins in this portion of the range cross the formation, usually at an inclination approaching a right angle and dipping nearly or quite vertically; they vary in width from a few inches to several feet, sometimes, in very productive portions, widening out to even twelve feet or more. It is in these wide pockets that the greater portion of the copper is found; the extreme narrow portions of the vein serve only as leaders to guide in the work of excavating; the gangue of these veins is made up of quartz, calcite, prehnite, epidote, laumontite, datolite; quartz and calcareous spar are usually the predominating minerals. The rock in the richest metalliferous portions is a rather soft amygdaloid trap of a fine texture.

“These veins can be traced through the greenstone and have been found to be productive on both sides of it, but never in it.

“The product obtained from the veins is very largely in masses of native copper, or in pieces of a size termed barrel work. These veins sometimes contain more or less of the trap rock, in small pieces, to fragments of considerable size cemented together with the vein matter.”


PARAGENESIS OF COPPER AND CALCITE.

R. Pumpelly has discussed† the relations of copper and calcite in several cases. He says:

“In many of the instances in which calcite crystals are found enclosing copper, it is difficult and often impossible to distinguish as to the relative ages of the two. But specimens in my collection offer conclusive proof that each of the following cases occurs:

“I. The copper was present before the calcite began to form, and became enclosed in the growing crystal. In this case the copper and its associated minerals generally form the basis on which the calcite rests, and the crystals of the latter exhibit entering faces wherever the surface of the crystal is in contact with the copper; it should seem to indicate an effort at those points to crystallize free from the foreign substance, by forming separate individuals. But on the finished crystal the traces of this tendency are visible, generally, only in the comparatively very small entering faces at the contact with the copper.

“In this way calcite crystals, formed in a cavernous mass of copper, are intersected internally by a perfect network of thin plates of the metal, and yet preserve their cleavage unaffected; but wherever the copper comes in contact with the surface of the crystal, the small entering faces are present.


II. The crystal of calcite was partly formed, then became incrusted with copper, and was finished by a new growth, of calcite over the metallic film. 2

“A most remarkable instance of this case is that of a crystal about two inches long—a steep scalenohedron— with a basal termination of about one square inch surface. At this stage of its growth it was covered, over nearly the whole surface, with a thin coating of copper. The basal termination on scalenohedrons of calcite is as rare on Lake Superior as elsewhere, and in the few instances where I have seen it, it lacks the polish which indicates perfect growth. The tendency to complete the point of the scalenohedron is well shown on this specimen; over the partially copper-coated basal plane there are scattered a large number of perfectly pointed
In some parts of the specimen, the copper predominated each other, the resulting solid appears composed of thin as the copper itself. Where three such sets intersect separated by plates of calcite, which are, in places, thus formed the sheets are perfectly parallel, and are cleavage), and intersect each other. In each of the sets planes (nearly all of which are independent of the perfect straight. These sheets are parallel to several conglomerate. This calcite is traversed by continuous sharp demarkation into the common cement of the individual, though it passes on the edges without any continuity of the cleavage shows it to be a single individual. Thus one of the new scalenohedrons, after growing to the height of 1-4 inch, was, like the underlying one, also ended with a basal termination, on which again smaller new and well-pointed individuals were built up.

III. The copper has entered the calcite crystal since its growth was finished.

"A specimen, in my collection, illustrates this remarkably well. It is a cleavage-rhombohedron of opaque calcite, traversed by intersecting sheets of copper, which are wholly independent of the cleavage planes. On detaching the copper from the calcite, the surface of the latter appears rough; it is a fracture oblique to the cleavage, and the face of the fracture is formed by countless corners, or solid angles, of minute cleavage-rhombohedrons, as is fully proved by the reflection of the light. The copper-sheets, which are about 1-40 inch thick, reproduce this very completely.

"Another very remarkable specimen is from the cement of the Albany and Boston conglomerate. It is about one inch in diameter, and consists of opaque white calcite. The continuity of the cleavage shows it to be a single individual, though it passes on the edges without any sharp demarkation into the common cement of the conglomerate. This calcite is traversed by continuous sheets of copper 1-200 to 1-40 inch thick, which are perfectly straight. These sheets are parallel to several planes (nearly all of which are independent of the cleavage), and intersect each other. In each of the sets thus formed the sheets are perfectly parallel, and are separated by plates of calcite, which are, in places, as thin as the copper itself. Where three such sets intersect each other, the resulting solid appears composed of concentrically arranged laminae of copper and calcite. In some parts of the specimen, the copper predominated over the calcite. Wherever the faces of the copper laminae are exposed, they are marked with a delicate, reticulated tracery, indicating the lines of intersection of the sheet with the cleavage planes of the crystal. The cement in the vicinity of the calcite is impregnated with copper; in places it is almost wholly replaced by the metal in the fine granular condition called "brick copper," and into this the laminae of metal extend, without break, from the calcite. This specimen is really a pseudomorph of copper after calcite."

Dr. L. L. Hubbard has observed that in the trappy portion of the Kearsarge bed there are some feldspar crystals having copper along their cleavage planes. "Commenting on this Dr. L. L. Hubbard says: "In many cases the outer or later crystal is in twin position to the earlier. The earlier is generally milky and the later clear. These are distinctly two generations of calcite."

SULPHIDE VEINS.

Sulphides are found in veins similar to those containing arsenides, but are of even less commercial importance. At some mines, notably those of the Copper Range Consolidated Company, very narrow veins are frequently encountered in working the amygdaloid lodes and the sulphide is thus mined with the native copper ore; but never in very large quantity. Many of the veins cut across the formation but others strike with it. Chalcocite (Cu₂S) is the sulphide most frequently found. Covellite (Cu S), Bornite (Cu₃FeS₃) and chalcopyrite (Cu FeS₂) also occur. Chalcopryite is more common in the intrusive rocks of the Keweenawan than in the extrusives and is very rarely met with in the latter.

It was noted by Dr. L. L. Hubbard that some of the sulphide veins first observed seemed to pinch out at a comparatively short distance from the surface. However, deeper workings show quite numerous sulphide veins. Many of these if traced can be found to pinch out upwards as well as downwards. They have apparently no dependence, as far as origin is concerned, on the present surface.

ARSENIDES AND SULPHIDES OF COPPER.

While seldom of economic importance, several arsenides of copper occur in veins traversing the amygdaloid lodes. The best known ones are keweenawite (Cu, Ni, Co)₂₂ As; mohawkite (Cu, Ni, Co)₃ As; whitneyite Cu₉ As; domeykite Cu₃ As; algodonite, Cu₆ As; and stibio-domeykite, a variety of domeykite. At the Champion mine a large quantity of algodonite was found.

G. A. Koenig's Studies.—These minerals were carefully studied and analyzed by Dr. George A. Koenig, who says* regarding their occurrence:

"The knowledge of the existence of copper arsenides in the Keweenaw copper formation is nearly as old as the mining operations in this region themselves. In the matter of occurrence there are two points to be noted: (1) The arsenides are not found in the bedded deposits of native copper, but always in fissures, intersecting the beds. (2) These veins have thus far only been observed in the lower beds, near the foot of the formation to the southeast." Arsenic, however, is found in the smelted
and refined copper of all the mines. This element is a minimal amount in the copper from the Great Conglomerate of the Calumet and Hecla mine and becomes a maximum in the copper from the amygdaloid beds of the lower measures, on which the Mohawk, Wolverine, Arcadian, Sheldon-Columbia, Isle Royale, Atlantic, Baltic, Champion, etc. are located. The Sheldon-Columbia location near the shore of Portage Lake in the village of Houghton was the first mine which furnished copper arsenides, notably domeykite. The larger parts of the specimens in collections come probably from this mine. Whitneyite was found in a quartz vein in dark melaphyre, not far from the present Mohawk, but the existence of any copper rock was not suspected at that time at that point. Several masses of domeykite have been found in the drift on the Hancock shore of Portage Lake, very much decomposed, cupriferous and arsenic containing being the chief products. In the spring of 1898, the opening of a new street in East Houghton on the old Sheldon-Columbia location, disclosed a quartz vein containing some foliated domeykite. Many good specimens were gathered and have come into collections. A similar vein has been known for years on the old Huron location, now the southern end of the Isle Royale property. Algodonite was found in the Pewabic mine, located on the Quincy amygdaloid bed and which lies about 5,000 feet higher than the Isle Royal amygdaloid. In developing the Mohawk property a cross vein at right angles to the copper-bearing amygdaloid was met in December, 1899. This cross vein was from 12 to 15 inches wide when struck, but has since shown very varying dimensions. In a gangue of quartz and calcite the copper arsenides have been found in this vein more abundantly than in any of the locations mentioned above. Early in January Mr. Fred Smith, Superintendent of the Mohawk mine, sent me a solid piece weighing from four to five pounds, with the request to make a thorough investigation and report. On January 18th I reported to Mr. Smith that the mineral substance which he had sent me was a new mineral species which I proposed to call Mohawkite. Later on I received other material from Mr. Smith in which I identified an antimonial domeykite for which I propose the name Stibiodomeykite, and also some very peculiar intimate mixture of Mohawkite with Whitneyite. It appears that the Stibiodomeykite is the more prevalent of the arsenides, and not the Mohawkite as was thought at the start. The vein has since been traced to the outcrop where it was found to form a ridge owing to the quartz in the gangue."

A. C. Lane on sulphides and arsenides.—Dr. A. C. Lane says* of the occurrences: "Sulphides and arsenides occur but there is no sign of replacement of native copper with sulphides in depth. The contrary, if anything, is true. It is characteristic that the abundant sulphides are basic with excess of copper. Chalcopyrite is rare. Chalcolite is commoner and occurs in the Baltic and Champion mines in long 'seams' nearly parallel to the strike, not in 'fissures' across the lode. On the other hand the mohawkite occurs in cross-fissures. The algodonite at the Champion mine, according to Dr. Hubbard, is in a seam nearly parallel with the lode. "Whitneyite Cu$_9$ As$_2$ occurs on the third level of the Champion as well as in Mohawk.† On the whole, however, the sulphides and arsenides are thought to be superficial.

"Domeykite Cu$_3$ As (or stibiodomeykite with 1.29 to 0.7856% Sb) Sp. Gr. 7.906 at 21° C, occurs like the mohawkite, which is really only a nickeliferous variety, in the Grand Portage vein.

"Ledouxite (Cu Ni Co)$_4$. As may be an eutectic mixture‡.

"Algondonite Cu$_6$ As, Sp. Gr. 8.383 at 21° C.

"Mohawkite (Cu Ni Co)$_3$ As, a nickeliferous domeykite, Sp. Gr. 8.07 at 21° C. carrying about 63-69% copper, 3 to 7% nickel and 0.5 to 3% cobalt occurs in the Mohawk mine on the Kearsarge lode, and at least as far south as the North Kearsarge lode. A speck perhaps was seen in the Central mine section and Rhode Island four at 529 feet.

"It occurs in cross-fissures tightly welded to apparently fresh country rock, and H. V. Winchell thinks it is not a segregation.

"According to some indications the amygdaloids are leaner, harder and cold grey epidotic near these fissures.

"The occurrence of so-called mohawk-whitneyite with more copper, a mixture of whitneyite with a little mohawkite shows the tendency to native copper.

"Keweenawite (Cu Ni)$_2$ As (39-54% Cu 9.7 to 20% Ni) is pale red and occurs with Mohawkite in the Kearsarge lode."


**ARSENIC IN THE COPPER.**

Dr. A. C. Lane says* of the distribution of arsenic in the copper lodes.

"On the Kearsarge lode Mr. J. B. Cooper's tests indicate that there is more arsenic on the whole steadily to the north. Mohawkite occurs in the Ahmeek and North Kearsarge mine as well as in the Mohawk. The conductivity is 77½ to 81 at the Mohawk, 89-91½ at the..."
Wolverine, 91 at the Kearsarge. In the Calumet Tamarack shoot the arsenic increases going north and down. But the copper from the Osceola amygdaloid under (southeast of) the Calumet has but .0006%. As (conductivity 101) while the Calumet has .004 (conductivity 99.5). The Tamarack copper conductivity is 92 to 96, the per cent of copper in the rock melted being lower. The more coarsely crystallized copper is naturally the purest, but coarse copper from the Wolverine contained 0.12 to 0.003% As. However, the arsenic in the 'matrix' (the country rock) is generally more than in the copper. The Mass and Quincy have an extra low amount of arsenic. In the geologically higher lodes the arsenic is less. If the conductivity is more than 90 the As is less than 0.04. The Calumet No. 2 mineral has 0.015% As relative to the copper contained.

Arranged according to conductivity (arsenic) we have—

Franklin Junior 100 and Quincy 101 on Pewabic lode.
Atlantic mine (near Ashbed) 100.
Adventure 101, Mass 100 and Michigan 101.
Victoria 93 to 94.5.
Kearsarge 91.
Wolverine 89 to 91½.
Mohawk 77½ to 81.
Isle Royale 50 to 55.
Copper Range mines, Baltic, Champion, etc. 65 to 45.
Baltic 45 (with 0.19% As).

This is close to the Shelden and Columbia property and Grand Portage vein from which the arsenides were early described (algodonite, whitneyite, domeykite, etc.).

"It seems to me there are two or three factors involved which need disentangling, and I have not the data yet. The geologically younger lodes often have less As or S. But some of it I think comes from the country rock, for the mineral sent to the smelter may run from one-tenth to one-third rock, and some from arsenides and sulphides of the fissures."


COPPER OXIDE, SILICATE AND CARBONATE MINERALS.

These minerals are only occasionally encountered and do not occur, so far as known, in commercial quantity. One deposit at the Algomah property shows black melaconite (CuO), green chrysocolla (Cu SiO₃ + 2 H₂O) and green malachite (Cu CO₃. Cu (OH)₂) in irregular masses, and also a veinlet in a brown melaphyre. The deposit follows the bedding of the rocks, making bodies of varying thickness along the strike.

In several cases the green copper minerals have been found in drill cores, especially in the felsites in Ontonagon county. In one opening, on the Indiana property, carbonate and silicate with some native copper have been encountered at a depth of 1,140 feet in felsite.

ACCESSORY MINERALS CONTAINING FLUORINE, BORON OR TUNGSTEN (APOPHYLLITE, FLUORITE, DATOLITE AND POWELLITE.)

Apophyllite (hydrous silicate of calcium and potassium with some fluorine).

The occurrence of apophyllite has been noted by several writers who discuss the significance of its fluorine content in regard to origin of the deposits. The mineral is comparatively rare and the specimens collected are nearly, if not all, from a few fissure veins. Prof. A. E. Seaman has found numerous specimens at the Phoenix, St. Clair and Clark mines in Keweenaw County, but states that he has seldom seen it in Houghton county.

An analysis by L. J. Smith of one specimen, shows 0.96% fluorine.

Flourite (Calcium flouride Ca F₂).

According to Prof. A. E. Seaman flourite occurs in some veins in the Eagle River district. Recently it has been found in small quantity in the shaft at the Indiana Mine, Houghton County.

Datolite (A basic orthosilicate of boron and calcium, H Ca B Si O₅).

Is a fairly common mineral in the copper deposits, occurring both in the fissure veins and also in considerable quantity as rounded masses in the amygdaloid lodes. An analysis of the common white compact variety by Chandler shows SO₄-37.41, B₂ O₃ 21.40, Ca O 35.11, H₂ O 5.73, (Al₂O₈, Fe₂O₈) 0.35.

Powellite.—Dr. G. A. Koenig and Dr. L. L. Hubbard have described* specimens of powellite found in the 21st level of No. 8 shaft, South Hecla, Calumet conglomerate lode.

They describe it as a pale bluish green tetragonal mineral with vitreous lustre having one distinct and one imperfect cleavage. Analyses showed it to be essentially calcium molybdate containing tungsten. Two analyses made by independent methods showed:

<table>
<thead>
<tr>
<th></th>
<th>Mo O₅</th>
<th>WO₃</th>
<th>CuO</th>
<th>MnO</th>
<th>Fe₂O₃</th>
<th>Si O₅</th>
<th>Sum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67.74</td>
<td>6.84</td>
<td>4.33</td>
<td>4.59</td>
<td>0.66</td>
<td>1.52</td>
<td>97.43</td>
</tr>
<tr>
<td>2</td>
<td>67.66</td>
<td>6.78</td>
<td>4.26</td>
<td>4.59</td>
<td>0.64</td>
<td>1.48</td>
<td>97.43</td>
</tr>
</tbody>
</table>

The methods for estimation of tungsten give the percentage only approximately, one figure being probably too high and the other too low.

*SILVER IN MICHIGAN COPPER DEPOSITS.

Silver occurs in many, and probably all, of the copper lodes. It is present only in very minor quantity compared with the copper, but it is by no means negligible. The ore is not all treated for its silver and the actual amount mined is therefore not definitely known. The ores known
to contain appreciable amounts of silver are treated separately from the others at the smelters and the copper is cast in anodes in order that the silver may be recovered electrolytically. Some silver is also recovered by hand-picking metallics at the mills. The total production of silver for the past four years is reported by B. S. Butler, in the U. S. G. S. reports on Mineral Resources, as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Ounces silver obtained by picking</th>
<th>Tons ore yielding copper treated for silver</th>
<th>Pounds copper treated electrolytically for silver</th>
<th>Ounces silver recovered electrolytically</th>
<th>Ounces silver ton ore treated for silver</th>
<th>Total ounces silver recovered</th>
<th>Value of the silver.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1908</td>
<td>3,205</td>
<td>1,494,239</td>
<td>26,798,485</td>
<td>327,690</td>
<td>9,158</td>
<td>241,055</td>
<td>$127,739</td>
</tr>
<tr>
<td>1909</td>
<td>1,994</td>
<td>1,549,009</td>
<td>24,381,113</td>
<td>282,066</td>
<td>9,19</td>
<td>246,430</td>
<td>145,944</td>
</tr>
<tr>
<td>1910</td>
<td>1,314,000</td>
<td>2,419,500</td>
<td>23,180,300</td>
<td>220,300</td>
<td>9,217</td>
<td>230,000</td>
<td>278,476</td>
</tr>
<tr>
<td>1911</td>
<td>513</td>
<td>2,290,000</td>
<td>20,275,727</td>
<td>196,768</td>
<td>9,216</td>
<td>197,281</td>
<td>263,559</td>
</tr>
<tr>
<td>1912</td>
<td>2,500,000</td>
<td>41,200,130</td>
<td>42,845,438</td>
<td>528,435</td>
<td>9,211</td>
<td>528,435</td>
<td>724,999</td>
</tr>
</tbody>
</table>

The silver, like the copper, occurs as the native metal. Frequently small masses of copper and silver are found intergrown—forming so-called half-breeds. It has frequently been pointed out that the metals are not alloyed; but are simply grown together and can be easily separated by mechanical means. According to several writers, silver was more abundant nearer the surface than at great depths. The descriptions also indicate that it was more abundant in the fissure-vein mines of Keweenaw County, than it is in the bedded deposits now being worked.

CHAPTER V. THE COPPER DEPOSITS OR LODES.

The numerous lodes which have been worked more or less successfully will be described in alphabetical order. The chief producing lodes are the Calumet conglomerate and the Kearsarge, Baltic, Quincy, Osceola and Isle Royale amygdaloids.

ADVENTURE NO. 4 LODE.

The chief production at the Adventure mine, which was unprofitably operated for some years, was from lodes in the horizon of the Mass mine lodes described later. The recent work has been of an exploratory nature. The following remarks apply to the unusual type of deposit encountered in the recent openings.

In the cross at 1,500 feet level south from No. 3 shaft, there is exposed a fine grained greenish rock which carries in places some native copper. The rock resembles some epidotic felsites, but microscopic examination shows it to be distinctly fragmental. It is composed largely of quartz, epidote and rock grains. The latter are very dense and largely composed of feldspar and quartz. Many of them are probably felsites, but they are red stained and the texture is obscured. One section shows numerous copper particles with quartz and epidote between the sand grains. Some copper occurs in and has probably partly replaced the grains themselves. Some copper extends in a continuous mass from the quartz-epidote cement through the sand grains. It seems likely that the copper was not deposited with the sand but was brought in later and replaced constituents of sand grains and cement.

Below this light colored sandstone there is a dark brown sandstone containing much quartz and epidote, with some feldspar and calcite and numerous rounded grains of black oxide, probably magnetite, and red patches, probably hematite.

Above the sandstones is a brown mottled much fractured trap containing masses of green epidotic rock which frequently carries copper. The trap is largely made up of altered feldspar and dark green chlorite with numerous black grains and irregular red patches. One specimen of trap shows numerous minute grains of copper in a feldspar crystal.

ALGOMAH LODE.

The Algomah lode is the upper portion of a brown colored amygdaloid. It differs from the other lodes in carrying black oxide, green, silicate and green carbonate of copper instead of the native metal. Along the strike it shows great masses of green colored ore, more or less separated by stretches of brown amygdaloid. Sixty tons of selected ore was sampled and said to yield assays of 24% copper. Development has not proved a large body of good ore however.

The copper oxide in the Algomah lode occurs chiefly as dull black massive melaconite, but Prof. A. E. Seaman has found specimens showing black tetragonal crystals of paramelaconite in green malachite.

The lode strikes nearly north and dips to the west at an angle of about 70° at the shaft. It is close to the eastern sandstone and the northern drift on the lode intersected the great Keweenaw fault and the sandstone.

ALLOUEZ CONGLOMERATE.

This lode is not now being worked; but it contains considerable copper in places and may be opened up again at an early date.

At Allouez Mine.—Some characteristics of this lode are given in Chas. E. Wright's account of operations at the Allouez mine in 1882. He says:

"The center of the main 'shoot' of copper crosses No. 2 shaft at about the eighth level and makes with the vertical an angle of 30°, opening upward to the south."

"A remarkable 'slide' extends down through the mine from the surface 200 feet south of No. 1 shaft, and pitching to the north at an angle of 60°, crossing No. 2 at the thirteenth level. This slide is soft clay loam, crossing the formation. The tenth level is extending south to intercept a good shoot of copper that has been found to follow the slide. During the past year the eighth, ninth and tenth levels have been driven north to nearly No. 3"
shaft, and the main copper shoot of the mine is found to continue to these levels.

"The lode bears north 39° east, and dips 38° northwesterly; it is a very wide, coarse, conglomerate belt, corresponding with that which further north immediately underlies the greenstone. It is the same-belt which is now being opened at the Delaware—Conglomerate Mining Company—though, at the latter mine it is claimed that the belt is richer in copper than it is at the Allouez. They find richer specimens at the Conglomerate than are found to occur at the Allouez, and likewise limited portions of the lode that carry more copper, but to what extent this will affect the average yield to the advantage of the former company remains to be seen. Here, as at the Conglomerate, the belt is very wide—twenty to thirty feet in width—much too wide to work to advantage.

*Since this report was written the lode has again been opened up at the Franklin Jr. mine.†Report Com. Min. Stat. Mich., 1882, p. 82.

Figure 4. Section at Franklin Junior mine showing Pewabic and Allouez lodes (after Lane).

"The drifts are carried along the foot wall, and four feet or five feet of the conglomerate are left next to the hanging to help support it. The hanging wall is exceedingly poor, and requires frequent pillars to be left, together with considerable thickness to the bottoms of the drifts and a portion of the lode in contact with the wall, to support it.

"The lode is not uniform in richness. The copper appears to be in seams, where it occurs, alternating, in streaks. It is exceedingly lean in copper, but requires to be all taken down and subsequently sorted, and even then very much of it is stamped that is really worthless."

They have stamped during the year (1881), 74,538 tons of rock, which yielded 969 tons, 860 pounds of mineral, which, smelted, gave 710 tons, 1,403 pounds ingot copper. Number of tons rejected was 12,837, 1-7 of whole number of tons hoisted."

The yield per ton from the ore mined in 1881 was 19 pounds copper.

At Franklin Jr. Mine.—Thomas Macfarlane says* of the conglomerate mined by the Albany and Boston Mining Company (now Franklin Junior):

"The boulders and pebbles consist of various species of porphyry. One of them has a dark brown matrix with small white crystals of feldspar; another has a matrix of the same color, but with larger crystals of orthoclase, while a third variety consists principally of a fine grained mass of orthoclase, with which a small quantity of a dark colored mineral occurs in particles too small for determination. The matrix consists of a coarse grained sand of porphyritic material, impregnated with calcareous matter. In many places the interstices are not at all filled up, in other calc spar is the matrix, and very often, in the lower part of the bed, the matrix is almost all pure metallic copper. Sometimes the metal completely fills the whole space between the pebbles, sometimes it is accompanied by calc spar, but much more frequently is is disseminated in fine particles through the coarse grained matrix. Sometimes a pebble is found quite saturated with copper, but it seems to have been of a more porous nature than the others, and an amygdaloidal structure may be detected in it.

"As above mentioned, a bed of sandstone underlies the conglomerate. It shows traces of stratification, is of a dark-red color and evidently of the same material as the conglomerate pebbles but in finer particles." At the thirty-second level of the Franklin Junior mine a cross cut has been run from the workings or the Pewabic lode to test the Allouez conglomerate which had not been previously opened up at so great a depth. Where cut at the thirty-second level the conglomerate is thick and shows considerable copper.


ASHBED LODE.

The Ashbed lode is an amygdaloidal porphyrite which has been worked at several mines in Keweenaw county. It was frequently first opened incidentally in working fissure veins and commonly was then found richest where traversed by the veins. It has for some years not been worked, but the Keweenaw Copper Company has begun a thorough investigation of its possibilities.

The bed lies comparatively flat, being commonly inclined at an angle of less than 30°. This flat dip does not permit the broken ore to run freely down the stopes, and thus increases the cost of handling the ore. This difficulty is partially offset by the fact that the lode is rather easy to drill and break.
The Ashbed derives its name from the character of the upper part of the lava flow. This has a conglomeratic character due to mixture of large volcanic fragments with ash and mud.

Chas. L. Lawton says* of the lode at Copper Falls Mine:

"The rock yields about 0.7% copper. The lode is but seven feet in width and lies at an angle to the north of about 27°. * * * The Ashbed is faulted at three different points in this mine, west of the main adit. The main faults are 65 feet and cause a good deal of dead work in the drifts in each level. The Ashbed mines very cheaply. The main drawback is in the matter of getting the rock down from the stopes."


**ATLANTIC LODGE.**

General character.—The Atlantic Lode is comparatively low grade bed but was for several years worked profitably by the Atlantic Mining Company. In its best part it yielded only from 13 to 14 pounds copper per ton and as the workings were extended north and south and deeper the yield fell to 11 and 12 pounds. That the lode was profitable at all is due to the fact that this yield was obtained by continuous stoping. The copper was not very regularly scattered through the lode, but neither was it confined to portions which could be readily selected from waste rock. The whole lode was broken and an unusually low cost per ton thus obtained.

The rock in which the copper occurs is, according to Dr. Hubbard, a melaphyre conglomerate. The fragments of melaphyre, commonly amygdaloidal, are cemented by dark reddish sandy material which is in places greenish with epidote. This conglomeratic character is more noticeable in the upper part of the lode, while the lower portion is a dark brown amygdaloid. The Atlantic mine has been idle for several years, having caved in 1906.

Dr. L. L. Hubbard’s description.—Dr. L. L. Hubbard’s description† follows:

"The bed worked by the Atlantic Mining Co. is in part a melaphyre conglomerate,‡ being made up of fragments of amygdaloidal melaphyre in a matrix of fine but more or less angular basic sandy material, in places altered to epidote. The copper-bearing belt extends down into the unbroken amygdaloid. This and the underlying trap belong to the more basic lavas and have no immediate resemblance to the typical Ashbed rock as we find it on Keweenaw Point as far south as the Tamarack mine, other than in the fine dissemination of the copper which it carries. The Ashbed rock shows abundant greenish to reddish crystals of feldspar."

‡Pumpelly’s description tallies with this designation. Ibid 1, Pt. II, p. 77.

C. Rominger’s description.—C. Rominger says* of the Atlantic lode:

"The Atlantic Mine, situated about one mile south of its stamp works, is opened in a large dark brown colored amygdaloid belt, overlain by a conglomerate belt fifty feet wide. This amygdaloid belt has in part the character of a breccia composed of irregular larger and smaller blocks and rounded masses of a brown colored amygdaloid full of cavities, filled principally with calcspar and laumontite, but also quartz, prehnite, delessite, epidote and copper take part as filling-materials, either one alone or several of them associated, and of a cementing groundmass of the same brownish color as the inclosed amygdaloid masses, which exhibits distinct sedimentary lamination. The surface of the inclosed rounded masses of the amygdaloid is sometimes coated with a polished crust, streaky like slickensides; other times their pitted surface is shining as if glazed by exposure to fire.

"The copper is quite unequally distributed in this rock belt; the richer portions of it are copiously interspersed with larger shotlike grains and also with branching hackly masses of the metal which have moulded themselves after the shape of pre-existing fissures and cavities in the rock; much of copper is also contained in the amygdules in association with the other mentioned minerals.

"Other portions of the belt are poor and the copper contained in them occurs in smaller molecules. Practically no selection is attempted of the poorer rock from the richer, the entire width of the rock seam is taken out and the material run through the stamp mill."

Production.—Chas. L. Lawton says† of this lode: "It is a comparatively soft amygdaloid, not so soft but what it breaks well under the action of blasts. It averages 10 feet in width and is uniform enough to permit its all being stoped."

Mr. Lawton gives the figures on yield per fathom for years 1875-1888. The figures for following years are from the annual reports.

**PRODUCTION OF ATLANTIC Mine, 1875-1902.**

<table>
<thead>
<tr>
<th>Year</th>
<th>Tons</th>
<th>Copper</th>
<th>Copper</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875</td>
<td>80,000</td>
<td>278</td>
<td>19.58</td>
<td></td>
</tr>
<tr>
<td>1876</td>
<td>96,080</td>
<td>290</td>
<td>19.99</td>
<td></td>
</tr>
<tr>
<td>1877</td>
<td>102,180</td>
<td>243</td>
<td>19.42</td>
<td></td>
</tr>
<tr>
<td>1878</td>
<td>112,660</td>
<td>266</td>
<td>19.00</td>
<td></td>
</tr>
<tr>
<td>1879</td>
<td>159,825</td>
<td>244</td>
<td>14.27</td>
<td></td>
</tr>
<tr>
<td>1880</td>
<td>170,585</td>
<td>275</td>
<td>14.36</td>
<td></td>
</tr>
<tr>
<td>1881</td>
<td>189,499</td>
<td>259</td>
<td>13.86</td>
<td></td>
</tr>
<tr>
<td>1882</td>
<td>189,499</td>
<td>240</td>
<td>13.79</td>
<td></td>
</tr>
<tr>
<td>1883</td>
<td>169,510</td>
<td>259</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>241,010</td>
<td>238</td>
<td>14.66</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>247,031</td>
<td>238</td>
<td>14.18</td>
<td></td>
</tr>
<tr>
<td>1886</td>
<td>259,730</td>
<td>238</td>
<td>14.24</td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>298,055</td>
<td>228</td>
<td>13.94</td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td>278,880</td>
<td>228</td>
<td>13.27</td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td>297,300</td>
<td>38,819</td>
<td>192</td>
<td>13.0</td>
</tr>
<tr>
<td>1891</td>
<td>297,000</td>
<td>257</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>396,000</td>
<td>257</td>
<td>12.31</td>
<td></td>
</tr>
<tr>
<td>1893</td>
<td>313,070</td>
<td>239</td>
<td>12.35</td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td>313,525</td>
<td>219</td>
<td>14.06</td>
<td></td>
</tr>
<tr>
<td>1895</td>
<td>313,525</td>
<td>219</td>
<td>14.06</td>
<td></td>
</tr>
<tr>
<td>1896</td>
<td>313,525</td>
<td>219</td>
<td>14.06</td>
<td></td>
</tr>
<tr>
<td>1897</td>
<td>313,525</td>
<td>219</td>
<td>14.06</td>
<td></td>
</tr>
<tr>
<td>1898</td>
<td>313,525</td>
<td>219</td>
<td>14.06</td>
<td></td>
</tr>
<tr>
<td>1899</td>
<td>313,525</td>
<td>219</td>
<td>14.06</td>
<td></td>
</tr>
<tr>
<td>1899</td>
<td>313,525</td>
<td>219</td>
<td>14.06</td>
<td></td>
</tr>
<tr>
<td>1901</td>
<td>313,525</td>
<td>219</td>
<td>14.06</td>
<td></td>
</tr>
<tr>
<td>1902</td>
<td>313,525</td>
<td>219</td>
<td>14.06</td>
<td></td>
</tr>
</tbody>
</table>

BALTIC LODE.

General character.—The Baltic lode is the cupriferous upper portion of a thick bed of melaphyre. It is in part amygaloidal, but in part also dense brown trap which is more or less shattered and seamed with secondary minerals, especially calcite. The amygdaloidal portions have commonly a gray or brown ground mass and amygdules of white calcite. The trap is a brown melaphyre spotted with dark green chlorite—a pseudo-amygdaoid. Very little of the copper occurs as a filling in amygdaloidal cavities, and much of it is not in amygdaloid at all. The lode differs therefore from the regular portions of typical amygdaloid lodes and fracturing has been largely responsible for the formation of cavities in which the copper was deposited. This character has been noted by several writers and is expressed by Dr. Lane in the statement that "the Baltic lode is not one well defined amygdaloid top to a flow, but rather an impregnated shear zone or stockwerk, copper being found over a belt more than 40 feet wide." The footwall trap is, according to Dr. Hubbard, from 100 to 150 feet thick for a length, at the Baltic and Champion mines, of four miles. In the hanging wall of the main lode there is a second smaller deposit, known as the "West lode," which has been opened in several places by crosscuts or 45° raises. It has yielded good ore in some parts of the Champion and Baltic mines.

The Baltic lode is a wide one, being commonly from 15 to 60 feet and in some places 80 or 90 feet. The thickness at the mines averages about 24 feet. At the Baltic mine the lode strikes N. 60° E. and dips 73° N. W. This dip is much steeper than that of any of the other lodes being mined. At the Champion mine the Baltic lode strikes N. 26° E.

Fissures are numerous in the lode and at some of the mines faults and soft seams cut across it at short intervals. Many of the fissures are filled with calcite, making conspicuous, though usually very narrow white veins running across the dark colored rock. Many others are filled with soft greenish and reddish material, chloritic, talcose or clayey. These soft seams have apparently resulted from crushing and slipping. Often in such ground the lode is displaced many times in a short distance. Numerous narrow veins of calcite run parallel to the bedding and some contain chalcolite.

Distribution of the copper.—In parts of the lode, the copper is distributed rather evenly through the rock and little selection is then possible. In other places however, the copper is in bunches separated by very low grade or barren rock and the good ore is readily sorted out and the waste is used for filling the stope. As a rule the rich portions of the lode show copper very conspicuously and often include numerous masses. In places the copper, while in small particles and not showy, is very evenly distributed through the rock giving an ore which is comparatively low grade, but not mixed with barren rock.

Future production.—None of the mines on the Baltic lode have yet reached very great depth and its future yield can only be roughly guessed at. In 1911 Mr. J. R. Finlay estimated that the lode should produce 15,000,000 tons of ore containing 311,000,000 pounds of copper. This estimate is based on a lesser depth than that of the other great lodes and will be much exceeded if the ore persists with depth.
L. L. Hubbard on Baltic lode.—Dr. L. L. Hubbard in Vol. VI, of the publications of the Survey says* of the Baltic lode:

“The Baltic mine is in an amygdaloid bed, whose strike according to Mr. Theodore Dengler, Mining Engineer of the Atlantic and Baltic mines, is N. 60° 30' E. (Magn.). This bed crosses the line between sections 20 and 21, T. 54, R. 34, about 200 feet north of the quarter-post. It shows some slight evidence of disturbance, in the nature of shearing or slide-faulting, in the presence of several small fissures that strike with the bed and are nearly vertical; they are filled with a carbonate of lime and carry some chalcocite. These fissures appear to wedge out at a short depth from the surface. Other irregular seams cross the rock, filled with calcite, this being also the usual filling of the amygdules. The latter are irregular in shape, and in places almost look as if they were secondary, i. e., pseudoamygdules, due to the filling of irregular cavities or pores induced by chemical or by mechanical changes, or by both. The calcite is of earlier origin than the copper found associated with it, the latter showing the mould of the cleavage and twin-planes in the former. On being exposed to weathering the calcite becomes yellow from a small percentage of iron in it. The dip of this bed is about 73° to the northwest.”

*Page 135, Vol. VI, Keweenaw Point.

CALUMET CONGLOMERATE LODE.

General character.—The Calumet lode is the cupriferous portion of one of the conglomerate beds interstratified with the volcanic rocks of the lower Keweenawan. The conglomerate is a thin bed which has been traced more or less continuously for several miles. The ore bearing portion is almost entirely confined to that part, about two miles long, which outcrops on the property of the Calumet and Hecla Mining Company and which at depth crosses into the property of the Tamarack Mining Company. On other properties north and south it has been extensively worked but with the exception of a small area at the Tamarack Junior Mine, proven unprofitable. The conglomerate is overlain and underlain by thick beds of trap, chiefly coarse ophites.

The conglomerate rock mined is made up largely of pebbles of felsite and quartz-porphyry cemented together with small particles of rock, calcite and native copper. The cementing material commonly contains also iron oxides, quartz, epidote and chlorite. Much of the iron oxide is martite, a pseudomorph of hematite after magnetite. While most of the pebbles are silicious rocks, some are melaphyres or porphyrites.

The conglomerate is characteristically red, both pebbles and cement being commonly of that color. Near the surface it is somewhat redder than at depth. Most of the constituents are of light tones, but parts of the lode are largely made up of dark reddish brown pebbles. Most of the lighter colored pebbles, light red or flesh colored, are dense felsite or quartz porphyry. The darker colored ones have usually a finely felsitic ground mass and phenocrysts of brown red feldspar. Other dark brown ones have a very dense ground mass enclosing phenocrysts of quartz. Some are dark colored felsitic rocks with no phenocrysts. Many pebbles show an outer rim of lighter color than the interior. This results from alteration.

The small rock particles in the matrix are similar in character to the pebbles, but have been more extensively altered.

Occurrence of the copper.—The copper occurs chiefly as part of the cement, filling spaces between sand grains and pebbles, but some has replaced the rock constituents. It is a common occurrence to find large pebbles partially replaced by native copper. Mr. Chas. L. Lawton says in one of his reports that of the 47,247,990 pounds of copper recovered in 1885 about two per cent was from the “nigger heads” or small copper boulders. While most of the copper is coarse, much of it is in very minute particles and the ore has to be finely ground to avoid heavy losses in sand tailings.

Light and dark portions.—Where a large section across the lode is exposed, as in the drifts and stopes, there are usually to be seen rather distinct light and darker colored portions. The copper is chiefly in the light colored rock. The darker colored portions are noticeably more compact and less altered than the lighter. They have evidently not been much affected by the solutions which in more porous parts altered the rock and deposited native copper.

Sandy portions.—In places the conglomerate grades into a sandstone made up of particles similar to the cement of the conglomerate. The sandstone sometimes is locally heavy with copper, giving the so-called “brick” copper, but more commonly the sandstone portions are comparatively lean and often barren.

Thickness.—The thickness of the lode, as determined by mining operations, is from 10 feet to 20 feet. Near the surface at the Calumet mine the lode is said to have averaged about 13 feet, at some levels at great depth at the Tamarack mine about 22 feet and at similar depth further south in the Hecla mine about 10 feet. In the upper levels the lode was much thicker at the south Hecla shafts than at the Calumet shafts, but not so rich. According to Capt. Daniell, the thin portions “seem to occur in spots rather than in regular courses.” The average thickness of the ore still to be mined by the Calumet and Hecla Company is said to be about 15 feet.

Distribution of copper.—As a rule the values are irregularly distributed from wall to wall. In places the poorest part of the lode is near the hanging wall, and in other places the upper portion is the richest. In extensive workings tributary to one deep shaft the portion next the foot wall was always the least productive.

The Calumet shoot.—The richest part of the lode was that opened at the Calumet shafts and which forms a
very large shoot pitching north at about 70°. While production was largely from this shoot the ore averaged over five per cent copper and yielded over four per cent refined copper. The available records do not show definitely how the values held with depth; as the production from other leaner parts of the lode became larger in 1887 and the product is not distinguished. It is known, however, that the values at the fortieth level were still practically as high as in any of the levels above. As near as can be judged from the available records, the Calumet ore shoot for over a mile downwards on its pitch of 70°, continued with fair regularity to yield over four per cent copper and then, below the 57th level, yielded ore of much lower grade.

**Strike and dip.**—At the Calumet mine the conglomerate lode strikes N. 33° E. and near surface dips to the N. W. at an angle of about 38°. At the South Hecla mine the dip at surface is about 39°. At depth the angle of inclination is slightly less than at surface. One shaft, following the lode closely is inclined at 38° down to the 36th level and below that at 37° 30’. Dr. A. C. Lane in a section across the lode lode at one shaft gives the dip as 37° 10’.

**“Brick” copper.**—At the Calumet mine the conglomerate contains numerous sandstone streaks. These as a rule are thin and pinch out quickly, being of lenticular form; but in some places the sandstone layer is of considerable extent. There is frequently a good parting along the bedding of the sandstone and it is stated that such surfaces often show distinct ripple marks. Generally the sandstone contains very little copper, but on the other hand there are some thin bands two to three inches thick which are very rich. The copper is in a fine red sandstone made up of rock and mineral fragments of the same kinds as is the coarse conglomerate. Much of the sandstone is of a greenish gray color made up largely of quartz and epidote and commonly barren of copper.

In some places the thin red sandstone seams contain enough copper to pay the whole cost of mining and treating 12 feet of conglomerate. It is stated that some of these seams contain as high as 80 per cent copper.

**The hanging wall.**—The hanging wall of the conglomerate is a dense trap which has a good fracture plane at a distance of about one to two feet from the contact. In places there is vein material along this face and it appears to be a fissure along which some movement has taken place and which has been subsequently filled, chiefly with calcite. When exposed to the air the calcite crumbles and the roof breaks off easily thus necessitating care to prevent the fall of the “cab” as it is called by the miners. It is common practice to leave a little of the conglomerate on the hanging wall, to avoid disturbing the cab. Except where the lode is rich, the saving in cost of mining more than compensates for the loss of copper left in the conglomerate.

In the upper levels at the south end of the property there is a mud seam about four inches thick at the contact between the lode and the overlying trap.

**Early openings at Tamarack mine.**—Chas. L. Lawton describes the portion of the conglomerate first opened at the Tamarack mine. He says:“
"The lode averages about 12 feet wide, and so far as opened is all good ground, that is, all the vein carries copper; not in equal amount, however; some of it is very rich, but the rich rock and the poor are everywhere, in all parts of the lode. If a light is thrown upon a smooth, vertical section of the deposit, it shows the rich and poor rock nicely; the dark, barren portions are strongly contrasted with the segregations of light colored rock richly impregnated with mineral—a small amount of rock—five per cent—is rejected; this comes in part from the hanging, but also, mainly, from a deposit of sandstone that occurs in the vein south of the shaft. It is of variable width, but at no place takes more than five feet of the vein; sometimes against the hanging and again leaving a few feet of rich conglomerate between it and the hanging; in places it is simply a thin seam and wedges out entirely. So far they have no rich shoots of copper, as are found in the Calumet and Hecla, to bring up the average percentage."


At Tamarack mine in 1896.—Supt. W. E. Parnall said in his 1896 report on the Tamarack mine:

"The mine from the 12th to the 21st level (No. 1 shaft) opened lean, except in patches, compared with the ground above. Being confined to comparatively narrow limits, considering the output of rock, there was no chance for special selection, nor would it have been good mining to leave behind and expose to absolute loss ground on which a small profit could be made. This, I am pleased to state, has been struggled through."

South of No. 1 shaft there was a "crossing" or fault and near this the lode was poor. Supt. Daniell refers to it several times in his reports. He says in his report for 1889: "The 6th level has in all been opened for a length exceeding 800 feet and, excepting 50 feet in length of lean ground in the vicinity of the ‘crossing’ has been of excellent quality. The lode in 8th level south narrows from crosscut, and near the crossing is not much in excess of nine feet wide. We drifted through lean ground here; 100 feet in length we scarcely regard as good enough to stope. Beyond or south of the crossing the conglomerate affords fairly good stoping ground, but the lode does not run in excess of 10 feet wide."

Speaking generally of the parts of the lode near the crossing, he says: "We consider that the crossing affects this ground unfavorably." Regarding the distribution of the copper in the lode he says: "I cannot say that the copper courses in the (Tamarack) mine have any particular direction. Ordinarily, when the conglomerate is less than average width it is off in productiveness, but the narrow parts seem to occur in spots rather than in a regular course."

Supt. W. E. Parnall in his report for 1895 says of the portion of the lode first opened up at No. 3 shaft. "It will average 21 feet wide and is made up of very rich and very lean streaks." No. 3 shaft reached the lode at a depth of 4,185 feet where it was 19 feet thick.

The "crossing."—Reference to the "crossing" is also made by Supt. Daniell in the 1886 report of the Tamarack Mining Co. He says: "In the workings of the Hecla mine a 'crossing' or fault running nearly at right angles to the lode and enclosing strata has been noted. It-heaves or dislocates the beds of rock, the displacement being generally equal to, or greater than the thickness of the conglomerate, say from eight to ten feet. This, for a long time was regarded as the southern limit of the copper ground, and in its vicinity the lode has not been of average quality. As we pushed south at the second and third levels (Tamarack No. 1) we encountered several small fractures running across the conglomerate, and recently found, at 210 feet from the shaft the 'crossing.' At this point the throw is fully eight feet, the southern extension of the lode being towards the west or hanging wall."

Tamarack ore.—At Tamarack No. 3 according to Dr. Lane, the main good shoot of copper ground coming in from the Hecla (or "Black Hills") end of the Calumet comes in according to Capt. Rosevear, in the 15th level at 1,300 feet; and on the 18th level at 600 feet. Dr. Lane remarks that the damp ground is said to be better copper bearing.

Mine water.—Dr. Lane states* that "The Calumet conglomerate water is relatively fresher than that in the amygaloid rocks around it on either side; but this difference seems to disappear somewhat at great depth or at least that the ratio of Ca:Cl becomes about the same. The copper is richest in the middle water and becomes very slowly less rich as the lower water is reached, but continues good long after the lower water is well established and the Ca:Cl ratio has become 0.485."

At Osceola mine.—Chas. L. Lawton says† of the Calumet conglomerate as opened up at the Osceola mine.

"The conglomerate (C. and H.), which underlies this west amygdaloid has in places a remarkably good hanging wall. Where it was worked out ten years ago in large chambers the roof remains perfect. At other points it was broken up. Where the hanging is broken and poor the conglomerate is said to have carried copper, but in the portion having a firm hanging, the conglomerate was proportionally barren, and the amygdaloid was good—giving rise to the theory that the broken rock between the lodes allowed the copper to pass from the amygdaloid into the conglomerate.


Production of the Calumet conglomerate lode.—The conglomerate yielded more copper than any other lode on Keweenaw Point, and the metal has been won at a cost which has made the Calumet and Hecla the leading dividend producer among the mines of the world Mr. J. R. Finlay estimated, in 1911, that the Calumet and Hecla had still on the conglomerate lode about 27,000,000 tons of ore which should yield 26 pounds per ton—a total of
702,000,000 pounds of copper. In other estimate in the same year was 30,000,000 tons yielding 30 pounds per ton, a total of 900,000,000 pounds. On account of great depth and lower values, the Tamarack yield for the future is very problematical.

The following table from "The Mineral Industry" shows the output for Calumet and Hecla for several years. It will be noted that for the period from 1875 to 1886 the yield was remarkably uniform. During this period the Calumet mine was deepened to the 30th level, and the output was largely from the main Calumet ore shoot. Subsequently a much increased tonnage came from other shafts. Beginning in 1887, there was a large production from the Black Hills or South Hecla shafts. After 1891 for several years the yield was not made public. For the past few years it has been about 1.5 per cent.

### Production of Calumet and Hecla Mine, 1767-1891

<table>
<thead>
<tr>
<th>Year</th>
<th>Ore milled</th>
<th>Pounds refined copper</th>
<th>Yield per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1867</td>
<td>1,331,173</td>
<td>5,068,357</td>
<td>4.28</td>
</tr>
<tr>
<td>1868</td>
<td>2,012,169</td>
<td>7,048,675</td>
<td>4.28</td>
</tr>
<tr>
<td>1869</td>
<td>1,455,519</td>
<td>5,822,200</td>
<td>4.28</td>
</tr>
<tr>
<td>1870</td>
<td>1,001,791</td>
<td>3,906,365</td>
<td>3.90</td>
</tr>
<tr>
<td>1871</td>
<td>1,994,240</td>
<td>7,976,960</td>
<td>4.00</td>
</tr>
<tr>
<td>1872</td>
<td>1,992,190</td>
<td>7,972,560</td>
<td>4.00</td>
</tr>
<tr>
<td>1873</td>
<td>1,580,000</td>
<td>5,980,000</td>
<td>4.00</td>
</tr>
<tr>
<td>1874</td>
<td>1,800,000</td>
<td>6,900,000</td>
<td>4.00</td>
</tr>
<tr>
<td>1875</td>
<td>1,994,240</td>
<td>7,976,960</td>
<td>4.00</td>
</tr>
<tr>
<td>1876</td>
<td>1,992,190</td>
<td>7,972,560</td>
<td>4.00</td>
</tr>
<tr>
<td>1877</td>
<td>1,580,000</td>
<td>5,980,000</td>
<td>4.00</td>
</tr>
<tr>
<td>1878</td>
<td>1,800,000</td>
<td>6,900,000</td>
<td>4.00</td>
</tr>
<tr>
<td>1879</td>
<td>1,994,240</td>
<td>7,976,960</td>
<td>4.00</td>
</tr>
<tr>
<td>1880</td>
<td>1,992,190</td>
<td>7,972,560</td>
<td>4.00</td>
</tr>
<tr>
<td>1881</td>
<td>1,580,000</td>
<td>5,980,000</td>
<td>4.00</td>
</tr>
<tr>
<td>1882</td>
<td>1,800,000</td>
<td>6,900,000</td>
<td>4.00</td>
</tr>
<tr>
<td>1883</td>
<td>1,994,240</td>
<td>7,976,960</td>
<td>4.00</td>
</tr>
<tr>
<td>1884</td>
<td>1,992,190</td>
<td>7,972,560</td>
<td>4.00</td>
</tr>
<tr>
<td>1885</td>
<td>1,580,000</td>
<td>5,980,000</td>
<td>4.00</td>
</tr>
<tr>
<td>1886</td>
<td>1,800,000</td>
<td>6,900,000</td>
<td>4.00</td>
</tr>
<tr>
<td>1887</td>
<td>1,994,240</td>
<td>7,976,960</td>
<td>4.00</td>
</tr>
<tr>
<td>1888</td>
<td>1,992,190</td>
<td>7,972,560</td>
<td>4.00</td>
</tr>
<tr>
<td>1889</td>
<td>1,580,000</td>
<td>5,980,000</td>
<td>4.00</td>
</tr>
<tr>
<td>1890</td>
<td>1,800,000</td>
<td>6,900,000</td>
<td>4.00</td>
</tr>
<tr>
<td>1891</td>
<td>1,994,240</td>
<td>7,976,960</td>
<td>4.00</td>
</tr>
</tbody>
</table>

The rich portion.—The richness of the ore mined when the shafts were less than 2,000 feet is shown by the fact that the average yield of refined copper per ton of ore treated in 1874 was 4.28% and in 1875, 4.30%. Probably about one per cent was lost in milling, so the actual content of copper in the ore was over five per cent. Some years later the product was still richer, the output for 1880 yielding 4.75 pounds refined copper per ton from 334,343 tons. The figures indicate that the decrease in contents with increasing depth was by no means a gradual one. For the 12 years 1875-1886 the yield varied from 4.17 to 4.75 per cent. If records for production from the main ore body for subsequent years were available it could be shown that the rich ore continued to much greater depth than the lowest openings which existed in 1886. The yearly record beginning in 1887 shows a much lower average in grade of ore produced; but this was due largely to the fact that in that year began the large production from the lower grade ore opened by the South Hecla shafts.

For a number of years no public statement of production was made. The yield fell off with depth and with lateral extension of the openings. The southern Calumet shafts passed on through the rich ground which pitches to the north. The northern Calumet shaft after being for many hundred feet in lean ore entered the rich shoot and continued in it to below the 57th level. Below this lean ore was again encountered. No separate record for the rich shoot is available. The average yield became lower until it is now less than 1.5 per cent. The company has during the past few years published figures showing the quantity and copper yield of ore mined.

Rich ore at depth.—That the lode was in places rich at considerable depth is shown also by the following table of results obtained at the Tamarack mine in years 1886-1893. The stope maps show that there was remarkable continuity of pay ore.

Supt. John Daniell says in his 1886 report on the Tamarack mine, "The extensive development of the conglomerate in the neighboring (Calumet and Hecla) mine had shown its unimpaired productiveness, down to a depth corresponding to our first level." This was at a point fully 1,000 feet north of the Tamarack No. 1 shaft.

### Chemical composition of the conglomerate

Dr. Lane has published from information furnished by Mr. J. B. Cooper, the following analyses of slime overflow from trough classifiers between stamp-heads and jigs taken at the Calumet mill, September, 1906. It cannot fairly be taken as a sample of the conglomerate but nevertheless gives some idea of its composition.

<table>
<thead>
<tr>
<th>Year</th>
<th>Tons of ore</th>
<th>Refined copper produced</th>
<th>Yield per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1885</td>
<td>1,058,000</td>
<td>79,427,877</td>
<td>5.56</td>
</tr>
<tr>
<td>1889</td>
<td>1,000,000</td>
<td>68,282,084</td>
<td>6.85</td>
</tr>
<tr>
<td>1891</td>
<td>1,058,000</td>
<td>58,719,000</td>
<td>5.51</td>
</tr>
<tr>
<td>1893</td>
<td>1,058,000</td>
<td>58,493,000</td>
<td>5.51</td>
</tr>
</tbody>
</table>

The rich portion.—The richness of the ore mined when the shafts were less than 2,000 feet is shown by the fact that the average yield of refined copper per ton of ore treated in 1874 was 4.28% and in 1875, 4.30%. Probably about one per cent was lost in milling, so the actual content of copper in the ore was over five per cent. Some years later the product was still richer, the output for 1880 yielding 4.75 pounds refined copper per ton from 334,343 tons. The figures indicate that the decrease in contents with increasing depth was by no means a gradual one. For the 12 years 1875-1886 the yield varied from 4.17 to 4.75 per cent. If records for production from the main ore body for subsequent years were available it could be shown that the rich ore continued to much greater depth than the lowest openings which existed in 1886. The yearly record beginning in 1887 shows a much lower average in grade of ore produced; but this was due largely to the fact that in that year began the large production from the lower grade ore opened by the South Hecla shafts.
C. Rominger's description of the conglomerate.—C. Rominger describes* the Calumet lode in his report on the Keweenaw Group 1885.

*The conglomerate belt of the Calumet and Hecla mine averages a width from 12 to 25 feet; its dip varies from 36 to 39 degrees to the northwest. Fully two miles of the length of the belt are on this mining property; the deepest shafts following the inclination of the belt are 2,700 feet long, which makes a vertical depth of about 2,068 feet below the surface. On the entire extension of the property, the conglomerate belt has very few barren spots, and the rock is, without selection, sent to the stamp mills where it yields about five per cent of washed metal; portions of the rock are much richer, as high as thirty per cent in metal. The product of the mines during the last three or four years was about 16,000 tons of ingot copper annually.

*The conglomerate of the Calumet and Hecla mine is reddish brown colored, hard and compact; locally composed of rather large, rounded pebbles, but the main mass consists of smaller pebbles with many little-worn angular rock fragments among them. The interstitial material consists of smaller arenaceous particles held together by siliceous and calcareous cement; the copper in the rock occupies mainly these interstitial spaces between the pebbles, and is sometimes replacing the cement altogether.

*The union of these fragmental masses is very firm, a stroke of a hammer does not sever their connection, but breaks the mass straight across the pebbles, which, with the exception of a small proportion of diabasic and amygdaloidal boulders are all of porphyritic nature but quite variable in molecular structure. A large portion of them consists of a reddish brown, compact, homogeneous, silico-feldspathic substance, with smooth, conchoidal fracture. Others inclose within the same aphanitic ground mass well formed, large crystals of feldspar, of red or whitish color; in still others, which are often more abundant than the others, the dark reddish colored, compact groundmass incloses, besides feldspar crystals, a great number of rounded transparent, colorless grains of quartz which, on fractures, gives a blackish reflex. Other pebbles have none of the amorphous ground mass; they consist of a granite-like agglomeration of interwoven red feldspar crystals, with scarcely any other component, or else this same crystalline, feldspathic rock mass contains copiously interspersed quartz grains, besides scattered blackish colored molecules which sometimes are recognizable as altered hornblende crystals or as biotite scales, but often are a shapeless, earthy-looking remnant of a decomposed mineral, not to be determined. These rocks could, with propriety, be classed with granite, but they are allied with the before mentioned porphyries by transitory forms which are not completely crystalline, but have a scanty interstitial ground mass analogous to the ground mass of the porphyritic kind.

*I have stated above that the copper occupies, in the conglomerate, the interstitial spaces between the pebbles and often takes the place of the previously existing arenaceous cement. Rarely the copper had a chance to enter the substance of the pebbles through capillary fissures imperceptible to the eyes before the pebble is fractured, but sometimes the same altering influences which remove the interstitial arenaceous material, replacing it by calcspar, epidote and copper, affected also the larger pebbles; they made them first porous and discolored and finally changed them into an epidotic mass permeated with a spongeous skeleton of copper in association with more or less calcspar. Such altered pebbles some of them as large as a man's head, quite frequently occur at the Calumet mine, and also sometimes in the conglomerate of the Albany and Boston mine. In some instances the copper has almost entirely replaced the material of such pebbles and forms solid, ponderous masses in the shape of the pebble, other times the change was not perfect, and the spongeous copper skeleton inclosed, within its cavities yet unaltered crystals of orthoclase and quartz grains enveloped by a mealy chloritic and epidotic crust.

*Prof. Pumpelly first gave notice of the occurrence of such copper masses in pebble form and suggested their paramorphic origin by replacement of the material of the decomposing porphyry pebbles.

*The conglomerate of the Calumet mines frequently incloses seams of a fine-grained, well laminated sandrock, exhibiting ripple marks on the surface of its layers, and locally such beds are richly impregnated with copper. Like in all the sandrocks of the Keweenaw group, the feldspar grains overbalance the quartzose grains in the rock mass. The hanging of the Calumet conglomerate is a dark colored, finegrained diabase, which, like the above mentioned diabase belt in the Tamarack shaft, 500 feet below the surface, has a jointed structure, with the cleavage seams coated over with a soft, chlorite-like mineral in slickenside fashion, holding between themselves sheets of copper from the thickness of tissue paper to that of a knife blade and sometimes six or eight inches square; likewise are cloudy patches in the solid mass of the diabase disseminated with an abundance of scaly molecules of copper, but the miner considers the amount of metal too small to pay any attention to its collection. In association with the compact, diabase in the hanging, amygdaloidal rock masses occur, whose amygdules formed of calcspar, laumonite, quartz and delessite, often contain a considerable amount of copper.

---

Analysis of Calumet Conglomerate Slime.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of ignition</td>
<td>5.63%</td>
</tr>
<tr>
<td>SiO₂</td>
<td>55.08</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>9.04</td>
</tr>
<tr>
<td>Al₂O₃ (+ traces of T₂O₃)</td>
<td>15.41</td>
</tr>
<tr>
<td>CaO</td>
<td>7.02</td>
</tr>
<tr>
<td>MgO</td>
<td>2.49</td>
</tr>
<tr>
<td>Cl</td>
<td>0.18</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.94</td>
</tr>
<tr>
<td>Cu (possibly with some oxide)</td>
<td>1.70</td>
</tr>
<tr>
<td>K₂O and Na₂O</td>
<td>Not determined.</td>
</tr>
</tbody>
</table>

Total: 100.00%
"I have previously mentioned that the Calumet conglomerate thins out and is almost destitute of copper in its extension south of the Osceola mine, and soon after entirely disappears. The same is the case in its extension northeast of the Calumet mine, on the Schoolcraft mining property, where extensive work has been done in this belt, but the large burrows of waste rock, in which no copper can be detected, show that the Calumet mine struck an extraordinary rich spot and that locally this belt is almost barren of the metal. The work in this conglomerate on the Schoolcraft mine was long since suspended, but on the Osceola amygdaloid belt, which likewise intersects the property, mining has been continued until late. Farther to the northeast the continuation of the Calumet conglomerate belt has been traced only for a short distance; it was found to be much narrower and poor in copper."


Replacement of pebbles by copper.—Dr. Pumpelly thus describes* the replacement of conglomerate pebbles by chlorite and copper.

"Among the pebbles in the Calumet conglomerate there is a variety of quartz porphyry, with a brown, compact, almost jaspery matrix, which only glazes slightly before the blowpipe. In this paste there are numerous grains of dark quartz 1-20 to 1-4 inch in diameter, and often more frequent crystals of flesh-red feldspar, apparently orthoclase—1-10 to 7-10 inch in length.

"It not rarely happens, that in these flesh-red crystals there appear dirty green portions exhibiting the twin-striation of a triclinic variety. The feldspar is hard and brilliant, but is nevertheless no longer intact; under the glass the crystals appear cavernous, ten per cent or more of the substance being gone. This is the character of this porphyry in the freshest pebbles.

"I have before me a pebble four inches in diameter, broken through the middle. It was the same variety of porphyry I have just described—the same brown matrix, with the same grains of quartz, and the same large crystals of orthoclase, often enclosing crystals of triclinic feldspar. But this pebble carries on its face the history of an extreme change. In the interior, where it is freshest, the matrix, still of the same brown color, has become so soft as to be easily scratched with the point of a needle. The quartz grains are highly fissured, and the surfaces of the fissures are covered with a soft, light-green magnesian mineral. The feldspar, although it still resists the point of the steel needle, has generally lost its glance, and has an almost earthy fracture; it is lighter colored, and tends to spotted dirty-red and white. In places, specks of chlorite are visible in the holes in the altered feldspar, and the cleavage planes often glisten with flakes of copper. As we go farther from the middle of the specimen toward the original surface of the pebble, the matrix becomes much softer, though still with brown color and brown streak, and then changes to a soft, green, chloritic mineral, which whitens before the blowpipe, and fuses on the edges to a gray glass. A little farther from the center there is no longer a trace of the porphyry matrix; it is altered wholly to chlorite. The feldspar crystals are somewhat more altered here than they are in the middle of the pebble, but the quartz grains seem to have been in part replaced by chlorite. The change to chlorite is accompanied throughout by the presence of a large amount of copper. While in the interior of the pebble, the flakes of copper are confined to the cleavage planes of the feldspar, and the porphyry matrix exhibits scarcely a trace of the metal, the chlorite which has replaced the matrix contains in different parts of the specimen from 10 to 60 per cent, by weight, of copper.


Figure 8. Central mine, Keweenaw county, Michigan. Vertical section through east vein.

"In another pebble of the same porphyry, not only is the original matrix gone, but the usurping chlorite has been almost, if not wholly replaced by copper; and we have as the remarkable result a quartz-porphyry, whose crystals of feldspar and grains of quartz lie in a matrix of metallic copper. There is still a very small amount of chlorite present, but it seems to have come from the change of the feldspar crystals and quartz grains.
"In other pebbles of the same quartz-porphyry, containing, perhaps, less quartz, the alteration seems to have taken a somewhat different direction, or at least the result before us is different. In the interior of the pebble, the matrix is of a darker and dirtier brown than in the previous cases, which may be due to the presence of manganese in the alteration-product. Going from the middle, the brown color changes rather abruptly to a dirty greenish-gray; the material also becomes softer, but it is earthy, with an earthy odor, and gritty to the touch. The change seems here to be in the direction of kaolinization.

"The entire pebble is permeated with minute shining threads and plates of carbonate of lime. The lighter-colored portion contains considerable copper, while nearer the surface of the pebble it is largely replaced by that metal. Pebbles showing the various alterations described above are by no means rare. Many of them, from one inch to one foot in diameter, are found every day.

CENTRAL MINE VEIN.

C. L. Lawton's description.—Chas. L. Lawton says* of the copper deposits at the Central mine, the mine being at the time, 1885, over 2,000 feet deep.

"It is in a fissure vein, crossing the formation south of the greenstone and extends vertically down, the bottom being 2,160 feet below the surface. It is a small mine, there is only one hoisting shaft—No. 2, and the copper bearing ground, which has a gradual pitch to the south, is now all south of the shaft—No. 2. The mine looks about the same as it has heretofore; there is no change whatever. The small conglomerate belt, which has been worked downward north of No. 4, has been abandoned, the belt no longer proving productive. The mining work is all confined to the copper shoot, which has, practically, afforded all the mineral that the mine has produced. The vein is continuous, sometimes only a ribbon of vein matter, which widens to eight feet to ten feet in width and contains the masses of copper; the most copper is found in the widest portions of the vein. When the vein matter is soft and spongy it is found to lack productiveness; a firm, hard vein yields the most copper.


"The man engine is down to the 22d level. They open very little in advance of the stoping. In 1885 the total cubic fathoms of ground broken in the mine was 2,800, yielding 770 pounds of refined copper to the cubic fathom. Pretty rich ground, certainly."

Production and variation in values with depth.—Following are the statistics of copper production for each year of operation. In a general way the yield for successive years shows character of change in values with depths. The "slide" at the top of the Kearsarge conglomerate was encountered in sinking below the 29th level. Below the "slide" the vein was found to be 240 feet west and to be lean though well defined and carrying some copper.

<table>
<thead>
<tr>
<th>Year</th>
<th>Tons ore stamped</th>
<th>Pounds refined copper produced</th>
<th>Yield, per cent refined copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1886</td>
<td>41,340</td>
<td>1,867,300</td>
<td>20.8</td>
</tr>
<tr>
<td>1887</td>
<td>39,240</td>
<td>1,814,500</td>
<td>20.7</td>
</tr>
<tr>
<td>1888</td>
<td>41,240</td>
<td>1,837,000</td>
<td>20.5</td>
</tr>
<tr>
<td>1889</td>
<td>39,940</td>
<td>1,863,000</td>
<td>20.8</td>
</tr>
<tr>
<td>1890</td>
<td>40,840</td>
<td>1,877,000</td>
<td>21.4</td>
</tr>
</tbody>
</table>

FOREST LODGE.

The Forest lode is the productive amygdaloid of the Victoria mine in Ontonagon County. The ore occurs in a thick shattered bed of ophite, the copper being partly in amygdaloid and partly in dull altered trap. On some levels the lode is in three parts, referred to by Mr. Schacht, formerly engineer at the mine, as main, hanging and foot parts.

The hanging wall is characterized by remarkable "cups" or shallow circular depressions. These depressions are numerous and make the horizon an easily recognizable one. The depressions are not deep but the term "cup" is commonly used for them. In drifting, this "cup"-marked hanging has often served as a good guide in following the lode, though occasionally there is ore above instead of below it. The ore does not commonly extend to the cup-marked hanging, but is separated from it by one or two feet of dense trap known as the "cab." This "cab" has thin leaf copper in its numerous fractures, but seldom contains good values. It breaks off readily with the lode and thus adds a lot of waste which must be sorted out.

As a rule the ore bodies are small and separated by much poor ground. The most productive ground shows a pitch to the west. The bed dips northwest at an angle varying from 61° at surface to 55° at the 15th level.

The ore mined in the past two years yielded between nine and ten pounds refined copper per ton. That this low grade material could be treated is due to the ownership of power rights on the Ontonagon River. Air
is compressed by the fall of water, and mine and mill are operated at low cost.

**HANCOCK LODES.**

Several lodes have been opened up at the Hancock mine and others are now being tested. At No. 1 shaft there are three lodes known as No. 1, No. 2 and No. 3. At the new or No. 2 shaft there are three lodes which have been numbered No. 4, No. 5 and No. 6. Another lode has been found recently east of, that is below, No. 3.

*The No. 3 lode* is a chocolate brown amygdaloid spotted with numerous amygdules, many of which are chlorite. The rock is much altered, has a dull earthy appearance and is rather soft. The lode as mined averages about eight feet in thickness. It dips at about 45° to the northwest. The stopes are remarkably regular, the hanging wall being easily followed though frequently displaced for a few feet by faulting. Much of the copper in the ore is in the amygdules, and often enclosed in chlorite. During 1911 there was mined and treated from this lode 41,449 tons ore which yielded 18.21 pounds copper per ton. The quantity blocked out however, is not large.

*The No. 4 lode*, where cut in No. 2 shaft at a depth of 3,105 feet is a brownish gray amygdaloid. There are very numerous amygdules and many of them are quartz. Most of the other amygdules are calcite. Both quartz and calcite are often greenish in appearance owing to the presence of chlorite scales and occasional epidote grains. Many of the fracture faces of the rock are coated with quartz and calcite. On some there are fine scales of copper. Most of the copper is in the amygdules with the calcite and quartz; but some is in grains scattered through the matrix of the rock and some in seams of calcite and quartz. The lode where cut showed a thickness of seven or eight feet of good ore.

The No. 4 lode where opened by crosscut at the 34th level has quite a different appearance from that in the shaft. In the crosscut there is a thick bed of coarsely grained red colored trap which at some distance from the top shows an altered zone, of greenish color, containing much copper. This altered zone shows numerous light colored veins, many of which run about parallel to the bedding. The veins show some calcite and quartz; but much of the vein material is prehnite. The rock enclosing the veins has evidently been much altered and is impregnated with secondary quartz. In the veins and in the altered rock native copper occurs in numerous forms, part coarse and heavy, part fine and part mere scales coating fracture surfaces.

**Footwall trap.**—Microscopic examination of specimens taken from the red trap below the lode show feldspar particles which are much altered, dull and red stained. The secondary aggregate is partly sericite and shows occasional grains of epidote. In some cases grains of native copper occur in the altered feldspar. The green chloritic mineral is partly ordinary chlorite showing pale green absorption colors and very low interference colors, but part of it is better crystallized and shows bright interference colors like delessite. Epidote occurs in distinctly colored and pleochroic yellowish grains. Magnetite occurs partly in large grains and partly as aggregates of very small grains. Some of the black iron ore has skeletal form of ilmenite and is surrounded by white opaque substance like leucoxene. Quartz occurs with the patches of green minerals and also in several crooked veinlets. Some copper occurs in the quartz but more of it in the other minerals on either side of the quartz veinlets. Throughout the rock there is much red semi-opaque material that is probably iron oxide. It occurs abundantly around the black grains and more finely disseminated through the feldspars, giving them their red color.

*The lode.*—The lode is a decidedly green colored chloritic altered portion of the red trap, containing...
Prehnite veins.—In the red trap there occur several prehnite veins, carrying copper. The veins exposed in the crosscut are roughly parallel to the lode. A specimen of one of these veins examined microscopically, shows the wall rock to change suddenly from the coarse crystalline trap described above to a finely granular semi-opaque aggregate of greenish gray particles spotted with small grains of black and red iron oxides. A vein one-half inch thick shows clear colorless prehnite enclosing large and small, ragged and regular grains of copper. Part of the prehnite is a very fine granular aggregate from which radiate large crystals. The granular aggregate contains much fine copper while the clear coarsely crystalline prehnite contains few but much larger grains of copper. While microscopic examination shows that there has been some change in the wall rock at the immediate contact, the vein is in reality very distinctly marked off from the rock and to the naked eye appears as a simple filling in a fissure in the coarse trap. The reaction, with the wall rock has been comparatively slight.

One section showing a prehnite vein enclosed by wall rock has the prehnite crystallized in large plates and grown out at right angles to the walls. The prehnite, encloses numerous coarse grains of copper in the middle portion and fine grains at the edge. Between rock and clear prehnite is a zone of semi-opaque granular prehnite containing numerous grains and strings of copper. In the midst of this semi-opaque aggregate are several clear grains of calcite.

**INDIANA LODE.**

This is a deposit located by diamond drilling on the Indiana property in Ontonagon County. Little is yet known of the extent of the deposit, but as several rich cores were obtained a shaft has been sunk 1,500 feet to permit of its investigation.

The lode is peculiar in that the copper occurs in felsite. Previously these light colored siliceous rocks had not been known to contain copper and the developments here are consequently of more than ordinary interest. The felsite from which the richest copper bearing cores were obtained is a very dense rock of light color. Generally it shows reddish tones, but in places it is pale yellowish-green from abundance of epidote. Much of it has a pale flesh color. In places the felsite is fairly fresh looking, but frequently it shows signs of much alteration. Calcite and epidote are abundant in the copper bearing portions. In places the rock is finely brecciated, the fragments being cemented with calcite. In practically all the drill cores there are very numerous joints and fractures and the mine openings thus far made show the same character. The rock is hard to drill and breaks up into very small pieces when blasted.

In a short drift at the 600 foot level at the Indiana mine copper was found at the bottom of a felsite mass at the contact with a soft, dull brown colored melaphyre. Several masses of copper were found in the felsite, which at the contact is very much altered and contains abundant calcite.

Near the bottom of a second mass of felsite the shaft went through 30 feet of green stained felsite said to assay 22 pounds copper to the ton in the form of carbonate of copper. The carbonate, with some silicate, occurs as minute veinlets and patches in the dense felsite.

**ISLE ROYALE LODE.**

General character.—The Isle Royale lode is an amygdaloid worked extensively at the Isle Royale mine. What is supposed to be a continuation of the lode was unsuccessfully opened up at several points by the Arcadian Mining Company north of Portage Lake.
Further south the Winona is, in Dr. Lane's opinion, on the same lode.

**Figure 11.** Map showing mines on Isle Royale and Quincy lodes.

At the Isle Royale mine the lode has commonly a gray, greenish or brownish ground mass which is rather distinctly though finely grained. In this are scattered amygdules composed of many species of minerals. Common among these are calcite, quartz, epidote, chlorite, prehnite and laumonite. Cracks in the rock have in most cases been filled with chlorite, laumonite or thompsonite. Much of the ore is spotted green with chlorite and epidote. The rock is fairly hard, but not so hard as the Kearsarge.

The rock has the composition of an olivine diabase. It is somewhat mottled like the ophites, but contains a rather high percentage of feldspar. Dr. Lane calls it feldspathic-ophite.

The ore thus far mined is low grade, but better results are being obtained now than in former years and the copper is being extracted at a good profit. For the years 1908 to 1911, the yield was 13.8, 14.3, 14.5, 16.5 pounds refined copper per ton. It was estimated in 1911 that the mine would produce 435,600,000 pounds of copper from ore averaging 14 pounds per ton. Mr. J. R. Finlay, for the State Tax Commission in 1911 estimated that it would produce 112,000,000 pounds copper from above the 4,000 foot level.

At the northern end of the Isle Royale property the lode strikes S. 38° W. and dips to the N. W. at an angle of 58°. Towards the south the lode curves westward to S. 58° W. Above the lode there is a similar deposit known as the Grand Portage. This has been mined for short distances at the old workings and is now being opened up again by crosscuts from the main workings. Where recently opened up at a point 700 feet north of No. 2 shaft at the 29th level the Grand Portage was cut at a distance of 125 feet from the Isle Royale lode. It proved to be 62 feet wide with good ore on hanging and foot sides separated by lean ground.

In the Isle Royale the copper is more irregularly distributed than in most of the other productive lodes, occurring in patches of various shapes separated by lean or barren ground. The lode is therefore commonly referred to as "bunchy."

---

**T. Macfarlane's description.**—Thos. Macfarlane in 1866 said of the Grand Portage lode. "About 260 feet west of the 'Isle Royale vein' occurs the bed upon which the Grand Portage mine is situated. The color of the matrix is light green, thus differing greatly from the beds hitherto described (Pewabic and South Pewabic). It has an uneven earthy fracture, and is uncrystraline, with small white spots here and there through it. It is fusible and gives water when heated in a glass tube. The amygdules are all of a dark green color, and frequently consist exclusively of delessite. Quite as frequently, however, they consist of that mineral with a kernal of quartz, or much more rarely, of calcspar. The copper is found oftener in the amygdules than in the matrix. As in other beds, larger aggregations of crystalline minerals occur, in which quartz generally preponderates, associated with calcspar, prehnite and native copper. Specks of native silver sometimes occur in this veinstone. The strike of the bed is N. 40° E. and the dip 52° north-westward."

---

**KEARSARGE LODE.**

**General character.**—The Kearsarge lode is the copper-bearing amygdaoaloidal upper portion of a bed of porphyritic melaphyre. Near the lode the bed is commonly a dark gray or brownish rock with large phenocrysts of feldspar, usually labradorite. This rock is commonly called by Dr. Lane and others, a labradorite porphyrite. Its porphyritic character is very pronounced wherever the lode has been opened, and it has served as a good horizon marker. The lower part of the bed shows numerous porphyritic crystals in a ground mass which has an ordinary ophite texture.

The lode itself is commonly a brownish amygadaloid showing numerous and large amygdules of calcite, quartz, red feldspar and green epidote in a dull, dense and fairly soft ground mass. In places the lode is greenish in color, containing much epidote and quartz, and is then quite hard. Some copper occurs in amygdules and may be a simple filling, but most of it is in irregular forms and has evidently replaced the rock.

As mined, the Kearsarge appears to be a remarkably uniform lode about 10 to 14 feet thick. The openings however, often give an incorrect idea of the distribution of the copper, as it is by no means so regular as the stope maps indicate. Compared with some of the other lodes, the Kearsarge is a very uniform bed and has, on some properties, been mined continuously for practically
the same thickness: from level to level. It is none the less true, however, that the lode varies considerably in thickness and the regularity of opening frequently indicates simply that the ore has not been always followed as closely as it might have been. In some places the openings are in barren rock and in others the full thickness of ore has not been broken. There are many and often very good reasons for this method of mining. It is mentioned here in order to call attention to the fact that the copper is much more irregularly distributed than some of the mine openings indicate. During the year 1912 at the South Kearsarge mine about 300,000 tons of ore was mined from deposits in the footwall and the company's president says in his report—"This rock (ore) consisted in part of vein matter which extended back into the footwall, and in part of foot trap which was found to contain copper. This rock can be mined cheaply, and it is hoped that a large part of the old stopes can be worked over in this way." It is not thought that all the mines on the lode have left as much ore in the foot as has the South Kearsarge, but it is frequently found in cleaning stopes of all broken ore that much copper has been left in irregular deposits in the foot. When this is broken out the Kearsarge will probably be found to more closely resemble the other amygdaloid lodes, though still by far the most regular and continuous amygdaloid.

**Extent of lode.**—The Kearsarge lode has been traced by mining operations, test pits and drill holes for a remarkable length. Dr. Lane says* of its character:

"For the 32 miles that the Kearsarge lode has been followed the large phenocrysts persist, sharply distinct from the ground mass and from each other, but very little agglomerated. * * * The porphyritic trap which is the foot of the Kearsarge lode is an ophite, but the mottling does not show close to the margin. * * * It is in some places one heavy bed 100 to over 200 feet thick. On top of this will be the well marked cupriferous amygdaloid which is the Kearsarge lode and then there will be no difficulty in identification. But this is not everywhere so. In places it will be broken up into successive gushes, each with its own amygdaloid and decrease of grain due to cooling. Besides this there may be irregular streaks of amygdaloid in the bottom of the trap. * * * At the Cliff mine the distance from the Kearsarge to the Wolverine sandstone was about 90 feet and the Kearsarge foot was thick and characteristic." At the Ojibway according to Dr. L. L. Hubbard, the trap is about 35 feet thick.

Dr. Lane states that the Kearsarge lode is clearly identifiable at the Mandan and well defined in the Manitou. It has been located at the Central and Miskwabik properties. It is being explored at the Ojibway and has been opened at the Gratiot and Seneca. It is being extensively mined at the Mohawk, Alouez, Ahmeek, North Kearsarge, Wolverine, South Kearsarge and Centennial mines. It is being opened up at one shaft on Calumet and Hecla and at one shaft on the Laurium property. At the La Salle two shafts have recently been put in shape for production. On the southern part of the La Salle property, according to Dr. Lane the Kearsarge shows a number of amygdaloids which are presumably overlapping gushes of the one flow. Dr. Hubbard, from observations at the Ojibway, believes that there was a marked geological internal between the foot-trap and later flows, although they are of similar character. Of its southern extension Dr. Lane says;† "The Kearsarge lode is, I think, also identifiable in the Rhode Island, Franklin and Arcadian sections. Beyond to the south I have not yet been able to identify it, which is the more strange since it is of good thickness at the Arcadian and it ought to be exposed somewhere between Houghton and Hurontown where I have made careful search at its horizon without identifying the peculiar and characteristic trap., though exposures are frequent."


**Distribution of copper.**—To some extent the copper in the Kearsarge is distributed in courses or shoots, but the richer parts are as a rule of very irregular shape and better, though poorly, described as patches. Within these patches the copper is scattered in numerous smaller patches and streaks more or less separated by barren or low grade rock. Frequently the whole face of a stope shows no ore, but the rock is all broken to expose the ore beyond. At the Wolverine, which is a small property located on one of the richest portions of the Kearsarge lode, some of the stopes which were abandoned on account of the very poor showing on the face have been subsequently reopened and good ore found suddenly after cutting through a few feet of barren ground. It is frequently noticed that the ore contains more water than does the barren rock and in the openings it is regarded as a good sign when the face is wet. It is common experience to break into good ore close to such a face. Captain Pollard stated that in poor ground a wet drift has proven a good indication of good ore above the drift.

**Parallel lodes.**—Above and below the Kearsarge, there are other amygdaloids which carry some copper. These have been opened in a few cases by crosscuts from the main lode and have yielded a little copper but have, as a rule, not yet proven rich enough to pay for mining.

**Masses.**—The Kearsarge lode has yielded considerable mass copper, but the masses are not commonly over a few tons in weight. At the Wolverine, according to Captain Pollard, masses of two or three tons have been not infrequently mined, but none are met with so large as to require cutting. At the Mohawk and Ahmeek, as already stated, considerably larger masses have been encountered and cut up, but most of these were from fissure veins crossing the lode and not from the lode proper.

**Two Lodes at North Kearsarge.**—From the early reports it appears that in places at the North Kearsarge
mine there are two lodes and numerous displacements were encountered.

Supt. John Daniell in his report on the operations at North Kearsarge mine in 1887 says:

"Development has shown that overlying the lode on which we commenced operations and usually distant 30 to 40 feet from it, there is another bed of amygdaloid from three to four feet wide, occasionally wider. This last runs in nearly a straight course, while the main lode, very irregular in size, takes a very circuitous course, sometimes approaching the west lode very closely, and again leaving a well-defined trap between. At more than one point we have found in cross-cutting from one bed to the other, that the intervening material is wholly amygdaloid, leading to the inference that both should be taken as one lode. At 5th level, No. 1 shaft, this is especially the case, but I cannot say that I am settled in opinion as to its correctness. Should this prove to be so, our chances of finding heavy deposits of copper in depth would be good. We look to early developments at 6th level to throw light on the question."

Supt. John Daniell says further in his 1888 report:

"From all we see during the past year there is no doubt but that the two amygdaloids referred to in last report are separate lodes, each continuing its course. The eastern one, on which most of our work is done, continues as irregular in course in the deeper levels as was before noted. The number of crossings and faults that we encounter, which invariably throw the lode, are in excess of anything seen in the district, and have much to do with the disturbed character of the ground we meet with. The influence of some of these should grow less as we get deeper."

Dr. Hubbard has observed that at the Ojibway mine there are two lodes, very much as above described; but with a probable modification as described in his paper before the L. S. Mining Institute, Houghton, 1912.

C. Rominger's description.—C. Rominger says† of the lode where it was opened at the Wolverine mine:

"This belt is unusually rich in copper. It is a dark purplish brown rock, with dull earthy fracture, harder or softer, much shattered into fragments, which are recemted into seams of calc spar and of orthoclase in association with quartz, epidote and delessite. The amygdules are filled with laumontite, epidote, delessite and calc spar, usually several of them associated; in some parts of the rock the amygdules consist nearly all of a dark green amorphous serpentine-like mineral. Much of the amygdaloidal belt is transformed into a light green porous epidote rock, which principally carries the copper in ponderous hackly masses, so called barrel-copper. Near the surface the copper is much oxidized, coated over with red oxide, malachite and azurite. The same amygdaloid belt is laid open by numerous test-pits in the adjoining Kearsarge property.

"The foot-wall of the amygdaloid is a coarsely crystalline, dark colored diabase belt, about 100 feet wide."

In 1911 Mr. J. R. Finlay estimated the future production of the five leading mines on the Kearsarge lode would be 63,600,000 tons ore containing 986,000,000 pounds copper.


LAKE LODE.

General character.—The Lake lode is a wide amygdaloid opened at the Lake mine in Ontonagon County. Where first found and developed it has a strike of nearly due north, but subsequent development has proved that it curves to the west and near the South Lake boundary it strikes almost due west. Diamond drill holes on the latter property indicate that it there also strikes westerly and dips to the south.

At the No. 1 shaft of the Lake mine the lode dips to the west at an angle of about 34°. The South Lake drill cores, as interpreted by Dr. Hubbard, indicate the dip there to be southward at an angle of about 55°. The general strike of beds in the properties further west is northeast and the dip northwest. It is probable that the discordance in structure has been partly brought about by extensive faulting along a zone traversing the South Lake property. One of the drill holes traversed broken ground here and this is possibly the location of a fault, or more likely a series of faults.

The lode is a brown amygdaloid spotted with amygdules of chlorite; calcite and other minerals. The ground mass is poorly crystalline, but deeper in the bed the rock has the characters typical of ophites. The mottling is fairly distinct on the footwall, which is an ophite spotted with dark green chlorite giving it a pseudo-amygdaloidal character.

The copper is irregularly distributed along the lode, rich and wide portions alternating with stretches of poor ground. Some of the richer portions have been cut out for a width of 40 to 60 feet and should yield much good ore. The value of the lower grade portions is not yet
very definitely known as the amount of stoping is as yet inconsiderable.

East lode.—About 100 feet east of the Lake lode there is another copper bearing amygdaloid known as the East lode. This is narrow, often only four or five feet thick, but is in places rich and occasionally there is a thickness of 10 feet of good ore. It is commonly greenish in color, partly from epidote but chiefly from abundance of a dull earthy green substance or green earth, and chlorite. The east lode follows the curves of the main lode, thus indicating that the structure as shown by the mine openings holds for a considerable thickness. The Lake lode is fairly easily treated. It is soft and yields copper of good quality.

MASS MINE LODES.

At the Mass mine there are four parallel lodes a short distance apart which have been worked at various times. These are, in ascending order the Evergreen, Ogima, Butler and Knowlton. The Butler has recently been extensively opened and is the chief producer. The Evergreen ranks second as a producer. The Ogima and Knowlton are not being worked at present.

The Evergreen lode is a greenish amygdaloid which contains copper in irregularly distributed deposits. The ore is often rich and masses are common in the lode, but as a rule there is much barren rock between the good portions. Continuous stopes of any considerable size are uncommon. It has yielded much copper, but mostly from "bunches" or "pockets."

The Butler lode is an amygdaloid of peculiar reddish color, having abundant crystals of red feldspar, along with the more common minerals in the amygdules. The lode has been traced and opened up at intervals for several miles in Ontonagon County. It was mined by several of the old companies; but at present only at the Mass mine. The Butler is a wide bed containing ore at several horizons. At the Mass mine the bed is almost 350 feet wide with ore on the foot and hanging and in some places near the middle. The foot-wall lode is the main ore body and is known as the "Butler Vein." It averages about 10 feet but widens out in places to 30 feet. Frequently ore is followed up in irregular deposits in the hanging and in parts of the mine there are branches which have been followed and found to connect again with the main lode at some distance along the level or up in the stope. In other cases ore makes down into the foot and gives copper ground continuously down into the Ogima lode. Where the two lodes are close together, wide deposits of good ore have been mined, the copper continuing from one lode to the other. In some cases in following copper without reference to character of the lode the miners have run in continuous good ore from the Butler into the Ogima lode.

The Ogima lode is comparatively dense and shows only occasional amygdules and is frequently referred to as a "trap" lode. It is a fine grained gray melaphyre spotted with epidote and chlorite. The copper occurs commonly in small grains or "shots" and masses are rarely found. Much of the lode seems dense and poor, but in places it is well mineralized and may in the future be profitably worked.

The Knowlton lode is a reddish amygdaloid resembling the Butler. Some large stopes were made in it years ago, but it is at present not a productive lode.

MICHIGAN MINE LODES.

At the Michigan mine several lodes have been worked. The chief producer was the Minesota vein elsewhere described but ore has also been taken from other veins and amygdaloids in its vicinity. The Branch and Contact veins and the Calico, North and South amygdaloids have contributed to the output. Some exploratory work has also been done on the Evergreen series of lodes now being worked further east at the Mass mine.

At the Michigan there has evidently been much fissuring. The main line of fracturing was along the bedding planes instead of across them as in Keweenaw County. From these main fissures, others of minor importance cut across the formation and in the mine these cross fissures were often found to contain ore. Some account of these is given under the heading Minesota lode.

MINESOTA LODE.

General character.—The Minesota lode is a vein rather than a bed. It strikes with the formation in which it occurs, but dips somewhat steeper and so gradually changes in horizon. The vein material is of greenish color, being chiefly made up of epidote, quartz and calcite. Copper occurs more largely in masses than it does in most of the lodes. Comparatively little of the copper produced was from stamp rock. The lode has
been pretty well worked out and abandoned by the mining companies. For the past few years tributors have been doing some mining in the upper levels at the Michigan mine, especially on what is known as the Branch vein.

The first workings were on what is known as the "Minesota" vein which lies immediately above a bed of conglomerate known as the "Minesota conglomerate." From this the "Branch vein" diverges at a small angle cutting the upper beds, including an amygdaloid known as the Calico lode. Owing to the slight divergence between the vein and the Calico amygdaloid, the latter was the wall rock for a considerable distance and much of, it was well mineralized and was profitably worked.

Figure 16. Ground plan sketch showing the relative position of Minesota conglomerate, Minesota vein, north vein of Minesota, and the calico amygdaloid.

C. L. Lawton's description.—Chas. L. Lawton describing the deposit worked at the National mine says:*

"The old mine is in a vein of contact that outcrops along the side of the southerly slope of the bluff, and which is contained between an underlying conglomerate and the overlying trap; the gangue of this vein is chiefly quartz, calc-spar and epidote, and has afforded, in times past, many fine specimens of all these minerals. It is usually known as the conglomerate vein, and sometimes it is incorrectly supposed that the conglomerate yielded the copper; but the copper was invariably the product of the vein. Sometimes the vein matter penetrated into the conglomerate, and masses of copper were obtained in such places; but not otherwise was copper found in the conglomerate. A prominent feature of the old mine was what was called the counter vein, a branch of the main vein, which extended diagonally, northwesterly, across the formation to intersect an amygdaloid belt that is situated 140 feet north of the conglomerate and runs parallel with it. This counter vein was also productive in copper, and especially so along its lines of intersection with the main vein and with the amygdaloid. In the vicinity of these lines of intersection, in the upper levels, were found the richest portions of the mine."

In another report Mr. Lawton gives further description of the lode as opened at the National and Minesota mines. He says:†

"The belts embraced within the limits of the workings of these mines are first, sandstone 40 feet wide; overlying this is a bed of conglomerate 30 or 40 feet wide, and upon this is a belt of trap 140 feet in width; but below the conglomerate and this trap is a belt of vein matter—

generally assumed to be a contact vein—having a variable width of from perhaps six feet to 15 feet wide. Overlying the trap is a belt of amygdaloid varying also from six feet to upwards in width, sometimes also making out into large pockets; this was called the north vein and was never much worked, as it is a stamp lode, though affording some mass copper and barrel work. So far as opened by the old company in former years it afforded some rich ground, about three feet wide along the foot wall, and thence to the hanging it was lean. Some of this foot wall part of the lode was very rich; 300 tons of it were stamped which yielded three per cent copper; a larger portion, which included the body of the lode, yielded a little under two per cent; these facts I got from Capt. Chynoweth who was an officer of the National at the mine for 25 years.

"Running through the trap from the conglomerate to the north vein are frequent fissures and in these and in their vicinity in the main vein the bulk of the copper was found. Especially was this true of a diagonal fissure that extends through the trap to the amygdaloid west of No. 2 shaft. This was found to be very rich in copper in all the levels; as it dips at a less angle than the formation it tends to intersect the conglomerate vein and in this line of intersection, it is probable, much copper may be found; the work now is towards reaching this result. This fissure was first found by a crosscut, at right angles to the formation, and was thought to be an independent vein, but upon following it in both directions it intersected the main lodes; other fissures, of less importance, also yielded copper in considerable quantity. The conglomerate does not hold any copper; masses of copper were sometimes found in the conglomerate where an opening or fissure in the conglomerate had become filled with vein matter. One of these openings extended through the conglomerate to the sandstone and was very productive in copper, in fact was almost completely filled with pure metal. It was in a fissure in the conglomerate that a 500-ton mass of pure copper was found in 1857, probably the largest native mass of copper ever discovered."

"The property (Minesota) is crossed by the same belts heretofore described and the formation is the same as in the National. Seventy per cent of the product of the Minesota mine was mass copper, the remainder, small pieces—‘barrel work,’ with a very few per cent of stamp copper.

"It was a wonderful deposit. Sometimes the only work was to cut up the masses of pure metal and hoist them to the surface. In places the stopes were nearly all copper.

"The map of the mine in Report Com. Min. Stat. Mich., 1885, p. 206 shows only the workings on the south vein—the conglomerate vein—as in the National; but lying north of this, between it and the amygdaloid, was a fissure vein running also east and west, but finally terminating in a cross-fissure to the west and intersecting the conglomerate vein to the east. In this longitudinal fissure the mine was first opened and
worked before the fact of the existence of the other lodes had been ascertained. The National Company began on the conglomerate vein, and when they found that they were not working in the same vein as the Minesota people, they cross-cutted to find it, and came into a diagonal vein, as previously described. This middle vein in the Minesota mine lies north of the blank space shown on the section of the mine between No. 4 and No. 10 shafts. It dipped at a less angle than the conglomerate vein, and finally intersected it in the line indicated as the margin of the blank space on the map. Along this line of intersection of the conglomerate and the middle vein was the most productive ground found in the mine.*


G. D. Emmerson’s report.—The character of the ore mined is indicated by the description of Mr. Geo. D. Emmerson of conditions at the property in 1857. He says:*

"It was against the established rule that a vein could lie between two kinds of rock so dissimilar as trap and conglomerate."  †† †† "But they are finding immense masses of copper in the conglomerate under the vein. A few days ago this was showing in the most marked manner in several points. In the 20 fathom level, east of No. 5 shaft, in the south lode, the regular sheet of copper had been taken from the foot wall, and the yield at this point had been very great. The masses were from 12 to 18 inches thick. Strings of copper were cut off that seemed to branch into the conglomerate. These were followed and led immediately to very large masses, some of which were of the thickest copper ever before taken from the mine. One piece which was cut off presented a face of bright copper cut by the chisel three feet and nine inches in thickness. It was so thick that it could not be handled in the mine without again dividing longitudinally, or splitting. Thus the mass showed two flat surfaces, at right angles with each other, of bright copper cut by the chisel. This point in the mine has been extremely productive. Some 200 tons of large masses have been taken out of the conglomerate under the lode, besides the enormous yield of the vein itself overlying it. In one place the copper extended into the conglomerate as far as 16 feet south of the foot wall.

"An occurrence of copper in all respects similar is found to the west of No. 5 under the adit level. Besides the masses in the regular vein, which was also extremely rich at this point, they had taken only 40 or 50 tons out of the conglomerate, the foot wall was perfect as in the other case, and strings leading into the conglomerate were quite small, and very slightly attached. But by trifling labor they uncovered a series of masses going up and down, with an eastward indication, for the height of 70 or 80 feet and going out of sight both above and below. It was at once apparent that they had something very valuable, but they had no conception of the immense thing which a few days’ work disclosed. At one convenient point they broke away behind the copper so as to get in a sand blast of five or six kegs of powder. They stripped the mass further and again fired without result. Again they fired nine kegs of powder and the mass remained unmoved. Bucking the rock around for a considerable distance 18 kegs of powder were shot off without effect, and again, 22 kegs, and the copper entirely undisturbed at any point. After further clearing, 25 kegs were shot off under the copper, and it was thought with some effect. But a final blast of 30 kegs, or 750 pounds, was securely tamped beneath the mass and fired. As soon as the smoke cleared away, a mass of copper 45 feet long and three to five feet in thickness, apparently very pure and which will probably weigh 300 tons had been shot out and was ready for cutting up. The blast had torn the immense body from its bed without exhibiting a sign of breaking or bending in any place, so great was its thickness and strength. It was torn off from other masses which still remain in the solid rock. About 100 feet to the east from this is another large mass which several parties are exposing, and from present appearances, it may exceed in size the last named one. These are near the point of the great counter lode from which 300 to 400 tons of copper have been taken; and the ground in the vicinity has unquestionably yielded the greatest amount of mineral ever taken from the earth in the same space. Its occurrence has been in three distinct forms: 1. In the counter lode; 2, in the regular vein; and 3, in the conglomerate rock under the vein.

"At No. 2 shaft they are sinking below the 60 fathom level, and are experiencing great difficulty in getting through the copper which they encounter. It was feared that they would be compelled to turn the shaft entirely out of the vein to enable them to sink. There are 1,000 tons of copper in sight—much of it ready for cutting."


Large masses.—A further extract, dated March 7, 1857, says: "There is now in the Minesota mine, between the adit and the 10-fathom level, a single detached mass of apparently pure metallic copper, which is some 45 feet in length, and in the thickest part as much as eight or nine feet in thickness. It contains probably more than 500 tons of pure metal, and is worth, as it lies, more than $150,000."

Mr. Wright further describes this mass as follows:

"This is believed to have been the largest complete mass of native copper ever discovered. The exact weight was not ascertained, but enough of it was weighed to ascertain that the total would not fall short of 500 tons. Its greatest length was 46 feet, and its greatest breadth, 18½ feet; greatest thickness, 8½ feet. The main width was 12½ feet, and the main thickness four feet. It took 20 men 15 months to remove it from out the rock. Some of the cut faces measured 16 square feet. The cutting up afforded 27 tons of copper chips."

(While the large mass described by Mr. Wright is often referred to as the largest mass mined, a still larger one of 520 tons is reported to have been taken out at the
Phoenix mine. An enormous mass discovered recently at the Trimountain will probably prove still larger.)

The common occurrence of masses is illustrated by the following: figures of production of the several classes of ore.

<table>
<thead>
<tr>
<th>Copper Production of Minisota Mine, 1857-1869.</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>1857</td>
</tr>
<tr>
<td>1858</td>
</tr>
<tr>
<td>1859</td>
</tr>
</tbody>
</table>

This does not show the character of the ore very faithfully as stamped rock was neglected while rich masses were plentiful. It serves however to indicate that the relative proportion of masses was much larger than in other lodes.

**NONEUCH LODE.**

**General character.**—The Nonesuch lode is a cupriferous bed occurring in the Upper Keweenaw in Ontonagon County. The bed carries native copper and chalcocite in small particles filling spaces between and sometimes forming a coating on the sand grains. The rock is a rather coarse sediment varying from sandstone to conglomerate. Much of it is a medium grained, gray colored sandstone, in part fairly hard, but as a rule not strongly cemented. It is very easily drilled and broken, but the rather flat dip increases cost of handling ore in the stopes. At the White Pine mine the dip varies from 18° to 35°. At the Nonesuch it is steeper than at the White Pine.

**At Nonesuch mine.**—Until recently the most extensive workings on the lode were at the Nonesuch mine. Good ore was found, but considerable difficulty was experienced in concentrating it, on account of the fineness of the copper. This difficulty was overcome and the lode was tested to determine the extent of the ore body and the grade of ore. It is stated that good values were found, but it was not proved that there was much ore available.

**At White Pine mine.**—During the past few years promising results have been obtained at the White Pine mine. Here two beds known as the "First lode" and "Second lode" have been opened and found to be well mineralized. The beds are gray sandstone like that at the Nonesuch mine and are in places heavily loaded with copper and chalcocite. The First or Upper lode is the better. The beds average about six feet in thickness, varying from four to six feet. They lie parallel and close together, being separated by about five feet of dark colored slate. The hanging wall bed of the Upper lode is a thick bed of similar black slate. The foot wall of the lower lode is red sandstone, at a depth of about 40 feet below the lode contains numerous pebbles. This conglomerate phase is fairly persistent and forms a good horizon marker.

It has been found that the lodes are much faulted. In many cases these faults, of the normal type, have allowed blocks to drop in such a way as to increase the apparent dip. In one place faulting of this character has brought the upper lode almost exactly into line with the lower lode.

**R. D. Irving’s description.**—Dr. R. D. Irving has described* the ore bearing rock at the Nonesuch mine. He says: "At the Nonesuch mine, S. E. ¼ Sec. 1, T. 51, R. 43 West, the shale is seen with a thickness of over 200 feet, trending N. 45° 50° E., and dipping S. E. 28°. Near the base of the shale is the sandstone seam, four feet thick, worked at the Nonesuch mine for its copper. This rock is a dark greenish-gray, fine-grained sandstone, which in the thin section is seen to be composed in some measure of basic detritus, along with porphyry detritus, and numerous single quartzes. The basic detritus appears in the shape of much decomposed red and green-stained particles, showing both feldspathic and augitic ingredients. A good deal of magnetite is present, and native copper is very abundant, for the most part clustered around the magnetite particles. In a few places secondary calcite lies between the grains. Beneath the copper-bearing sandstone there come a few feet of shale, also carrying some copper, and beneath this some two and a half feet of a light-gray sandstone, harder than usual, beneath which again is the great sandstone layer previously described.

"The seam just mentioned as occurring at this junction has been traced for a number of miles in the valley of Iron River, and is the one which has attracted so much attention in this region for the silver it contains. Under the microscope it is seen to differ from the Nonesuch copper sandstone, and, indeed, from the rock of the shale belt generally, in that it contains some water-deposited (secondary) quartz between the grains, which consist, as usual, of mingled porphyry and basic detritus and quartz particles. Calcite has also been deposited more or less plentifully in the interstices of the grains, and in some sections is the only indurating material."

*Monograph V. U. S. G. S., p. 221.

**OSCEOLA LODE.**

**General character.**—The Osceola is an amygdaloid which has been mined extensively by the Osceola, Calumet and Hecla and Tamarack mining companies. On these properties it has been worked for a length of over three miles, openings extending completely across the Calumet and Hecla property and over a mile south on the Osceola. Further north the lode has been explored by the Centennial and Wolverine companies, and further south by the La Salle company, but operations on these properties were unsuccessful.

The lode underlies and runs parallel to about 400 feet east of the Calumet conglomerate striking N. 33° E. and dipping at the surface at Calumet at an angle of 38°. The workings on C. and H. property are as yet...
comparatively shallow, but the lode has been opened at
greater depth by crosscuts from the conglomerate lode,
and has been worked at considerable depth by the
Tamarack Mining Company. The deepest shafts in the
lode itself are No. 5 and No. 6 Osceola which are
respectively 4,623 feet and 4,592 feet deep. The
deepest shaft on C. and H. property is 3,232 feet deep.

![Figure 17. Osceola amygdaloid lode.](image)

The lode is a brown amygdaloid spotted and streaked
with calcite. Most of the amygdules are calcite. The
ground mass is softer than that of most lodes, and has
commonly a dull and almost earthy appearance. It is
easily crushed by the steam stamps and wears the
stamp shoes much less than does the ore from most of
the other lodes. Below the lode the rock becomes more
crystalline in character and shows the mottling typical of
the ophites.

**Hanging and foot parts.**—The Osceola lode varies in
width and is in places very wide. The ore comes from
two horizons known as hanging and foot parts. The
chief and most regularly shaped and continuous ore
body is the upper part of the bed. This hanging wall lode
averages about nine feet in thickness and is fairly
persistent and well defined. Below it there is commonly
dense brown melaphyre succeeded by more amygdaloid
in which are irregularly shaped ore bodies. These foot
wall deposits are often richer and thicker than the
hanging wall ore bodies, but they are of more pockety
character and do not persist so regularly with strike and
dip. In some places foot and hanging portions are
continuous and there the lode is very wide, often 40 to
100 feet. More commonly there is 10 to 20 feet of so-
called "vein trap" separating them. The amygdaloid
encloses numerous lenticular masses of dense trap.
Often a bar of trap runs across the amygdaloid and it
has been frequently noticed that the rock on either side
of such bars is unusually rich in copper. The copper in
the lode shows up rather conspicuously and in good ore
can be readily detected by the naked eye. A fairly
satisfactory selection is made before breaking the ore
and little sorting of broken rock is done underground.
Some waste is sorted out at surface and with other poor
rock sent down into the mine again to be used in filling
stopes.

**Future production.**—In 1911 Mr. J. R. Finlay estimated
the future yield of the Osceola lode on Calumet and
Hecla property at 23,000,000 tons, yielding 330,000,000
pounds copper. There will also be a large output by the
Osceola Mining Company and a small output by the
Tamarack Company.

**C. Rominger's description.**—C. Rominger says* of the
Osceola amygdaloid:

"The Osceola amygdaloid belt is about 35 feet wide; it
dips in conformity with the other strata at an angle of 40°
to the northwest; its color is reddish brown, dull, earthy;
part of it is soft, porous, other parts hard, compact; its
amygdules are principally filled with calcspar, delessite,
prehnite and epidote; sometimes also with quartz,
datolite, etc. The copper in the rock is mostly found in a
network of fissure seams traversing the amygdaloid belt
in association with calcspar, prehnite, datolite, quartz
and epidote, filling the interstices between these
minerals in hackly masses of smaller or larger size;
sometimes the copper is found in druse cavities in very
perfect, but rather small crystals; the spar crystals of
such druses usually are bright red colored, being
penetrated with an abundance of minute scales of
copper.

"The datolite, which in the Portage Lake mines occurs
only in amorphous porcelain-like concretionary masses,
is here found in large crystals of pale greenish milky
color, but rarely obtainable with free ends, as the
crystals are densely agglomerated and enveloped with
calcspar and prehnite.

"The hanging of the Osceola is a dark, blackish colored,
fine-grained diabase, which incloses in its linear fissures
sheets of copper, and is locally throughout its entire
mass impregnated with minute scales of copper. Thin
sections exhibit a large proportion of olivine grains in its
composition, besides the ordinary constituents,
plagioclase, augite, magnetite and interstitial masses of
the green chlorite or serpentinite-like mineral, which
likewise fills distant globular amygdules."

"In the hanging of the conglomerate belt at the Osceola
location, a dark, fine-grained compact diabase belt
occurs, which incloses irregular amygdaloidal rock
masses rich in copper, most of it in coarser lumps— so
called barrel work. They use the old shaft in the
conglomerate belt to come to this rock belt and work it to
advantage.

"The compact and the amygdaloidal rock are both olivine
bearing; the copper is principally found in fissure seams
associated with calcspar, prehnite and dark red
orthoclase."

---


**C. L. Lawton's description.**—Chas. L. Lawton says* of
the Osceola lode as opened at the Osceola mine in
1885:

"The lode possesses every degree of irregularity, and
there is so much dead ground that the mine has had to
be very largely opened in order to secure the product that has annually been made and the work has been done in a most effectual and economical manner. The misfortune in the Osceola mine is that the best ground is in the north end; the levels in this end are constantly shortening as the mine deepens. This is due to the fact that the Calumet and Hecla joins it on the north, and that the line of division of the properties, up to which the workings closely reach, bears north, 39° east, while the dip of the mine averages about 39° northwesterly, thus the boundary cuts diagonally across the lode, shortening it on the Osceola and lengthening it on the C. and H. The reverse is the case at the south end of the property, where the company has plenty of room to extend, but unfortunately the ground has not proved as productive in that direction. However there are signs of improvement; the south end is certainly better in the bottom than it has been heretofore."

"On the Osceola amygdaloid we have drifted south of No. 1 crosscut, 14th level, 231 feet. At 15th level we have drifted south 172.7 and north 18 feet. In quality it has been irregular, but showing copper enough to indicate that it will pay to stop. At 14th level we have stope 490 fathoms of ground, the lode averaging 11 feet wide and affording a good grade of stamp rock, with an occasional piece of barrel work."

Chemical composition of Osceola lode.—Dr. Lane has published in his recent monograph the following analysis furnished by Mr. J. B. Cooper, of slime overflows from the trough classifiers between stamp-heads and jigs treating Osceola amygdaloid ore.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss on ignition</td>
<td>7.89%</td>
</tr>
<tr>
<td>SiO₂</td>
<td>41.31</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>12.90</td>
</tr>
<tr>
<td>Al₂O₃ (+ Trace TiO₂)</td>
<td>22.46</td>
</tr>
<tr>
<td>CaO</td>
<td>11.08</td>
</tr>
<tr>
<td>MgO</td>
<td>4.67</td>
</tr>
<tr>
<td>Cl</td>
<td>0.11</td>
</tr>
<tr>
<td>SO₃</td>
<td>Trace</td>
</tr>
<tr>
<td>Cu</td>
<td>0.14</td>
</tr>
<tr>
<td>Na₂O and K₂O</td>
<td>Not determined</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>99.96%</strong></td>
</tr>
</tbody>
</table>

Occurrence of the copper.—The copper occurs to some extent as a filling in cavities, but most of it has evidently replaced the rock, and forms irregularly defined masses, large and small. The larger masses are more abundant than in most of the lodes. While most of the copper is found in the main amygdaloidal parts of the bed, a large quantity is also mined from irregularly defined portions of the footwall trap. The lodes are crossed by a number of persistent calcite veins, but these are usually barren and in parts of the lode that are poor.

The distribution of copper in the lodes is very irregular and in stoping it is a common occurrence in fairly good ground to frequently expose a large face of very lean or barren rock. This is necessarily broken to get at the ore beyond and lowers the average yield per ton. Some of the waste, however, is sorted out underground and used in filling the stopes.
At the Quincy mine, the main lode is on the average about 10 feet thick, varying from three feet to 15 feet. The inclination, as with most of the lodes, becomes less with depth, being near the surface about 54° and in the lower workings, over a mile down on the slope, about 40°. In places in the northern part of the mine the dip at the low levels is about 38°.

At the Franklin Junior mine the lode being mined is about eight feet thick. Exploration has proven the existence here also of parallel lodes, but these have not yet been extensively opened. The yield at the Franklin Junior has been considerably lower than at the Quincy, but the recently opened lower levels show fairly good ore. The dip of the lode varies from 49° near surface to about 43° at the 32d level. At the Franklin there is a very characteristic hanging wall trap, unusually dark colored and dense.

The lodes strike N. 30° E. and at the Quincy are opened for a distance of about three miles. Between the northernmost Quincy shaft and the Franklin there is a long stretch of unknown ground which will doubtless be sometime explored. The Quincy first confined operations largely to one lode, but subsequently by exploratory crosscuts developed the others and has for years kept a diamond drill in operation probing foot and hanging walls.

Rich portion.—The best large body of ore at the Quincy appears to have been a portion of the "East" lode about 1,800 feet long and 300 feet wide, pitching southward from the 25th level 800 feet north of No. 2 shaft to the 36th level 300 feet south of No. 4 shaft. During the period that this section was being mined the yield was over two per cent and in 1882 when much of the ore was coming from the 25th to the 30th level the yield was 3.13 per cent. The 25th and 26th levels north of No. 2 shaft were exceptionally rich. At the shaft the best ore was at the 30th level, and further south it was deeper.

Present average.—At present and for some years past the ore mined has averaged about 16 pounds per ton. The lower yield is due largely to the lode being much less rich, but partly also to the fact that improved mining methods make it possible to remove profitably some very low grade ore.

Future production.—In 1911, for the State Tax Commission, Mr. J. R. Finlay estimated that Quincy mine would produce about 200,000,000 pounds more copper. The probable production of Franklin Junior and Hancock mines cannot be estimated yet. The area to be mined on these properties is large but the yield per ton at the Franklin has so far been low and the Hancock exploration is not yet far advanced.

T. Macfarlane’s description.—Thomas Macfarlane of the Canadian Geological Survey, who examined the copper mines in 1865, thus described* the Pewabic lode and its wall rocks:

"It has a thickness of about 12 feet, and in places resembles the rock which constitutes the foot wall of the mines, into which it seems to graduate. In its characteristic varieties it differs, however, completely from that rock. It is a reddish-brown or chocolate colored uncrystalline rock, with amygdaloidal structure, and uneven, almost earthy fracture. The matrix sometimes contains some small amygdules, which are not always completely filled, and thus render the rock porous. The matrix is fusible to a black slightly magnetic glass. It is in places impregnated with grains of metallic copper, from the minutest size to those having a diameter of a tenth of an inch. Those of a larger size generally project from the matrix into the amygdules or form rounded particles lying entirely within these cavities, and filling them. The copper is here accompanied by a mineral of a light green color, very soft, and separable from the rock as a green powder. It is probably a variety of green earth. Some of the amygdules are altogether filled with it, in which case it frequently contains small isolated grains of metallic copper. Sometimes calc spar is found along with the green earth, the two minerals generally occupying separate parts of the cavity. Very frequently the green mineral merely lines the cavities and the rest is filled with calc spar."


Production.
The Pewabic lode had yielded at the Quincy in 1911 about 600,000,000 pounds of copper. In 1912 the Quincy mine produced 20,634,800 pounds and the Frank in Junior 1,710,651 pounds. If the yield per ton proves satisfactory the latter mine will show a much larger production in a few years. At the Quincy the southern workings are nearing the boundary, but the central and northern parts of the property have a long future before them.
"The foregoing description is of a specimen of the bed exceedingly rich in copper. At other places the matrix is more compact and darker colored, and the amygdules are exclusively filled with calcspat, without any enclosing film of green earth. Sometimes quartz, delessite, laumontite and prehnite occur, filling the cavities. In many parts of the bed large irregular patches and veins of calcspat are seen, through which, and through the adjoining rock, run large irregular masses of copper, frequently weighing several tons, with which small quantities of native silver are associated. Epidote is also often met with in the bed, generally unconnected with the amygdules and forming small irregular masses in the chocolate-colored rock."

"The rock which underlies the copper-bearing bed of the Quincy mine, is distinctly amygdaloidal [pseud-amygdaloidal?] The matrix is fine-grained but it is crystalline, and is seen to consist of different constituents. Its color is dark reddish grey, and it is fusible to a black glass. The cavities, which seldom exceed the size of a pea, are filled with what appears to be the same chloritic mineral which occurs as a constituent in the rock above described. The specific gravity of the rock, including the amygdules, is 2.78."

Mr. Macfarlane analyzed the rock and found it to consist essentially of labradorite and delessite (a variety of chlorite). He states of the hanging-wall rock that "It is a fine-grained mixture of reddish-gray feldspar, and dark green delessite, the former predominating. In this mixture larger crystals of feldspar, and larger rounded grains of the ferruginous chlorite are occasionally discernible. Its specific gravity is 2.83."

Mr. Macfarlane says* further concerning the lode.

"The width of the bed is from 6 to 30 feet and the average thickness 10 feet. According to the general experience at the mine, the thicker the bed the richer is the rock in copper. About two-thirds of the area of the bed is removed as remunerative, the other third, although it may contain some copper, is left standing, as unworthy of excavation. The amount of ingot copper yielded by the ground actually removed in 1864 was 562 pounds per cubic fathom. Assuming the specific gravity

of the rock of the lode to be 2.7, it thus yielded 1.4 per cent. Of course the copper was unequally distributed through the rock and the true percentage would be at many places above, and at others below that just mentioned."

**Mass copper.** — Mr. C. E. Wright says† of the occurrence of mass copper at the Quincy mine:

"The largest mass ever found in the mine is now being cut up in the 170-fathom level, about 50 feet north of No. 2 shaft, and will weigh about 20 tons. The masses usually found are not to exceed five tons in weight. The product is about 40 per cent mass and barrel work and 60 per cent stamp rock."

**C. E. Wright's description.** — Mr. Wright says‡ of this lode as it was known at the Quincy in 1881, where it had then been opened to a depth of 2,200 feet:

"The Pewabic lode, as developed in the Quincy, is a broad belt, 200 or more feet in width, through which runs a bunchy deposit or a series of connected deposits of amygdaloid; laterally, in the foot and hanging are also pockets of amygdaloid, which, when worked, are reached by cross-cuts from the main drifts. Altogether these make up the belt. The main lode is tolerably well defined and is followed, and the diamond drill, which for years has been employed in the mine, discovers the lateral pockets, many of which prove greatly productive in copper. They are sometimes in the foot, and as frequently in the hanging side. Nearly 300 borings have been made in the mine with the diamond drill, having an average length of 120 feet."

In another report Mr. Wright says§:

"The Quincy mine is in the same lode with the Pewabic and the Franklin, but it differs materially from either of them in some important features that redound greatly to the advantage of the Quincy. The chief of these peculiarities are the so-called east and west branches which are found in the Quincy mine, and from which so great a portion of the product comes. They have been mainly found with the diamond drill and do not seem to occur in the mines west of the Quincy. The ground plan of the levels from the 80th down, show the main branch flanked by these laterals. Of these the east branch—the line of pockets found from the foot-wall—is by far the best. These lateral pockets, those which are the best, are from 60 to 100 feet from the main branch, and sometimes they prove very rich. The westerly pockets, or west branch, do not produce so well. The amygdaloid is harder, more "trappy," too much so to pay to work. Some of the pockets which make up the east branch are 200 to 300 feet in length, and all good stoping vein matter."

---

Early workings at Franklin mine.—At the old Franklin mine the testing for east and west lodes met for some time with little success, but a valuable deposit was opened up in 1888 at the 30th level. Supt. J. Vivian describes this lode in his report. He says:*

"From time to time, for the last four or five years we have been exploring each side of the main lode with a diamond drill without the least success until July last, when we discovered, at the 30th level, 47 feet east of the main lode, an amygdaloid, 20 feet wide, bearing stamp and barrel copper in paying quantities. The ore has been opened to a depth of 288 feet, which has exposed some good stoping ground for at least 200 feet in length. The last eighty feet opened is not showing anything of value. In sinking a winze from the 30th to the 31st level some very rich stamp and barrel copper was met with. At the 31st level this lode has been opened out with a crosscut which has shown it to be copper-bearing for fifteen feet in width. Some good stamp rock and some barrel copper is being taken out at this point daily. At the 29th level this lode has been intersected with a crosscut, and opened on its line 128 feet. On the whole it is less productive than it is in the levels below, but some portions of it will afford some fair stamp rock, and will doubtless pay to stope. There is a large amount of ground ready for stoping on this lode that will yield in ingot copper above the average of the main lode."

*Rept. 1888, p. 52.

Variations in yield.—The yield of refined copper per ton of ore mined at the Quincy in the years 1870-1881 is given in the following table from Chas. E. Wright’s report for 1881.

<table>
<thead>
<tr>
<th>Year</th>
<th>Tons of ore mined in Quincy mine (tons)</th>
<th>Tons of ore mined in Quincy mine (tons)</th>
<th>Tons of ore concentrate mined (tons)</th>
<th>Tons of ore concentrate mined (tons)</th>
<th>Tons of high-grade ore concentrate mined (tons)</th>
<th>Tons of high-grade ore concentrate mined (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1870</td>
<td>86</td>
<td>55.907</td>
<td>1.472</td>
<td>2.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1871</td>
<td>96</td>
<td>59.770</td>
<td>1.370</td>
<td>2.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1872</td>
<td>100</td>
<td>60.928</td>
<td>1.382</td>
<td>2.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1873</td>
<td>77</td>
<td>63.272</td>
<td>1.464</td>
<td>2.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1874</td>
<td>58</td>
<td>67.112</td>
<td>1.726</td>
<td>4.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1875</td>
<td>46</td>
<td>70.561</td>
<td>1.717</td>
<td>9.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1876</td>
<td>65.23</td>
<td>74.717</td>
<td>1.795</td>
<td>2.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1877</td>
<td>65.73</td>
<td>73.305</td>
<td>1.346</td>
<td>2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1878</td>
<td>70.25</td>
<td>92.909</td>
<td>1.308</td>
<td>2.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1879</td>
<td>59.5</td>
<td>89.878</td>
<td>1.098</td>
<td>1.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1880</td>
<td>83.5</td>
<td>84.426</td>
<td>2.395</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1881</td>
<td>314.25</td>
<td>98.369</td>
<td>3.066.5</td>
<td>3.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The figures for this period show that a fairly uniform grade of ore was being stamped. In the years 1861-1869, the average yield varied, from 2.03 to 2.96 per cent, being lowest in 1862 and 1868. For the whole period of 21 years therefore, the yield was fairly uniform. In view of the richness of the ore mined in 1881 it is noteworthy that the mine was then 2,200 feet deep on the slope of the lode, and practically all of the ore was coming from below the 1,000 foot level.

For several years following the encountering of rich ore at depth the grade of ore mined continued high. As may be seen from the following table the period 1881-1891 was the best in the early history of the mine. Later, the rich ore body having been worked out, the grade fell off again and for the past five years the yield has been only about 16 pounds copper per ton.

Change in grade with depth.—The change in character with depth is shown by the following table. In general the ore came from deeper levels each year, but there were other causes of variation in yield as will be noted in column headed remarks. The data are taken from the annual reports. The figures for succeeding years have not been made public.

### YIELD OF QUINCY MINE ORE, 1864-1893.

<table>
<thead>
<tr>
<th>Year</th>
<th>Average yield of copper per ton of ore mined</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1864</td>
<td>562 pounds</td>
<td></td>
</tr>
<tr>
<td>1865</td>
<td>601 pounds</td>
<td></td>
</tr>
<tr>
<td>1866</td>
<td>631 pounds</td>
<td></td>
</tr>
<tr>
<td>1867</td>
<td>526 pounds</td>
<td></td>
</tr>
<tr>
<td>1868</td>
<td>627 pounds</td>
<td></td>
</tr>
<tr>
<td>1869</td>
<td>226 pounds</td>
<td></td>
</tr>
<tr>
<td>1870</td>
<td>235 pounds</td>
<td></td>
</tr>
<tr>
<td>1871</td>
<td>441 pounds</td>
<td></td>
</tr>
<tr>
<td>1872</td>
<td>501 pounds</td>
<td></td>
</tr>
<tr>
<td>1873</td>
<td>437 pounds</td>
<td></td>
</tr>
<tr>
<td>1874</td>
<td>377 pounds</td>
<td></td>
</tr>
<tr>
<td>1875</td>
<td>485 pounds</td>
<td></td>
</tr>
<tr>
<td>1876</td>
<td>507 pounds</td>
<td></td>
</tr>
<tr>
<td>1877</td>
<td>574 pounds</td>
<td></td>
</tr>
<tr>
<td>1878</td>
<td>677 pounds</td>
<td></td>
</tr>
<tr>
<td>1879</td>
<td>507 pounds</td>
<td></td>
</tr>
<tr>
<td>1880</td>
<td>676 pounds</td>
<td></td>
</tr>
<tr>
<td>1881</td>
<td>706 pounds</td>
<td></td>
</tr>
</tbody>
</table>

The data are taken from the annual reports. The figures for succeeding years have not been made public.

Change in grade with depth.—The change in character with depth is shown by the following table. In general the ore came from deeper levels each year, but there were other causes of variation in yield as will be noted in column headed remarks. The data are taken from the annual reports. The figures for succeeding years have not been made public.

### Figure 21. Stope map showing extent of workings at Quincy mine in 1893.
In considering the above figures it should be borne in mind that the amount of rock discarded varied. In 1880 about 20 per cent of the rock broken was discarded. However, the figures show fairly well the variation with depth.

At greater depth the ore is leaner; but the writer has no figures to show how much leaner. It is doubtful whether there are any records to show the yield of copper from the section of the lode immediately under that which had been mined in 1893. In subsequent years the workings were extended far to the north and the lowering in grade that one might deduce from inspection of the annual statement is an exaggerated one. Poorer ore was, however, encountered at lower levels as well as north and south.

**PHOENIX MINE VEIN.**

Chas. L. Lawton quotes the following figures showing yield of copper from the Phoenix mine vein for successive years:

<table>
<thead>
<tr>
<th>Year</th>
<th>Total ground broken (fathoms)</th>
<th>Copper per fathom broken (pounds)</th>
<th>Per cent. copper in rock broken.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1872</td>
<td>965.80</td>
<td>362</td>
<td>0.0022</td>
</tr>
<tr>
<td>1873</td>
<td>1,486.65</td>
<td>441</td>
<td>0.0092</td>
</tr>
<tr>
<td>1874</td>
<td>1,355.63</td>
<td>393</td>
<td>0.0093</td>
</tr>
<tr>
<td>1875</td>
<td>2,169.76</td>
<td>593</td>
<td>0.0276</td>
</tr>
<tr>
<td>1876</td>
<td>2,393.45</td>
<td>644</td>
<td>0.0268</td>
</tr>
<tr>
<td>1877</td>
<td>2,709.51</td>
<td>512</td>
<td>0.0192</td>
</tr>
<tr>
<td>1878</td>
<td>2,274.52</td>
<td>558</td>
<td>0.0243</td>
</tr>
<tr>
<td>1879</td>
<td>1,920.51</td>
<td>524</td>
<td>0.0277</td>
</tr>
<tr>
<td>1880</td>
<td>1,850.40</td>
<td>559</td>
<td>0.0302</td>
</tr>
<tr>
<td>1881</td>
<td>1,860.60</td>
<td>536</td>
<td>0.0290</td>
</tr>
<tr>
<td>1882</td>
<td>1,490.60</td>
<td>346</td>
<td>0.0232</td>
</tr>
<tr>
<td>1883</td>
<td>1,268.82</td>
<td>409</td>
<td>0.0331</td>
</tr>
<tr>
<td>1884</td>
<td>1,196.92</td>
<td>420</td>
<td>0.0354</td>
</tr>
</tbody>
</table>

**SUPERIOR LODGE.**

The Superior mine lodes are comparatively rich and are being mined very profitably. The main lode is quite thick; but the ore bodies so far developed are not of great length. At present the mine is regarded as a one-shaft producer.

Much of the Superior lode is a dense reddish brown rock seamed with calcite. In the dark colored rock there are numerous light colored streaks and patches and in these much of the copper occurs. Thin sections of the brown rock are almost opaque, showing very numerous black grains and red dust, probably iron oxides, and large patches of nonmetallic semi-opaque light colored aggregates stained with red iron oxide. Between these patches are clear grains of quartz. In places the semi-opaque aggregates show a finely matted structure possibly due originally to feldspar laths now altered to calcite, etc. The aggregate when treated with HCl effervescs readily and is evidently largely made up of granular calcite.

The pale colored streaks and patches seem to have formed by alteration starting at joints or minor cracks in the rock. In several cases a string of copper runs down the middle of the aggregate in the position of the original joint. The microscope shows in very thin sections that calcite is the chief constituent. Thicker sections are semi-opaque and resemble sections of the red rock except for the absence of black and red iron oxides.

Other specimens of the lode show a rock with dense brown colored ground mass enclosing remarkably numerous amygdules that are mostly quartz and calcite. One section shows numerous calcite vein-lets in one of which are several elongated grains of copper. On either side of the veinlet are several large copper grains in rock which has evidently been altered and is largely made up of very fine granules of quartz and feldspar. In the part containing most copper the well rounded amygdules are lacking, but the amygdules closest to these much altered portions contain some small copper grains. The copper bearing portion of the section is much lighter in color than is the main mass of the rock. One section shows numerous light colored bands in a part without amygdules and down the middle of the light bands is a rib of copper. Irregular light colored patches near these bands enclose occasional grains of copper. Many of the specimens are traversed by thin calcite veins. One section of the brown rock shows a remarkable rounded plagioclase crystal which has the appearance of being corroded. It has been broken and the fracture sealed with quartz.

One section shows a calcite veinlet traversing a distinctly amygadaloid portion of the rock. The veinlet contains several elongated grains of copper. On either side of the veinlet the rock is much fissured and altered and contains grains of copper. Further away the rock is less altered and shows no copper.

Specimens of ore from the Houghton mine are remarkably similar to those from the Superior mine and it
is probably the same lode. A dull brown or greenish rock containing much calcite and enclosing numerous or few amygdules of calcite and quartz is the common type. A section of the greenish ground mass seems to be largely chlorite and calcite with numerous opaque non-metallic particles. The amygdules of quartz and calcite enclose numerous very small grains of copper. One amygdule shows a border, of clear quartz without copper enclosing a dull aggregate of calcite containing several grains of copper. Other amygdules show grains of copper in clear quartz.

Dr. Hubbard calls attention to the evidence of fracturing having preceded the deposition of copper. He states that at the Houghton mine another lode, east of the Superior lode, shows brecciation on a large scale with subsequent deposition of copper.

## SUPERIOR WEST LODE.

This is partly brown and red, partly grey and green colored. Both types contain abundant calcite and quartz. The brown rock has very numerous areas, amygdules and irregular fillings, that are largely composed of brick-red feldspar. In many cases the filling is nearly all feldspar; but more commonly the feldspar occurs as a red border enclosing coarsely crystalline quartz or calcite. Yellow-green epidote is the chief constituent of several amygdules. Scattered irregularly through the brown rock are patches of a dull dark green serpentinous or chloritic substance.

The grey ore shows a dense grey rock containing numerous amygdules which are chiefly calcite, and enclosing patches of a soft light green serpentine-like substance which is studded with native copper.

Thin sections of the brown ore show a dense ground mass with numerous grains and patches of red and black opaque minerals. The black occurs as metallic grains and is probably magnetite. The red is not in well defined grains and is probably secondary hematite. Feldspar occurs in lath-like shapes as in the diabases. There are grains of copper in this ground mass, some isolated and some in ill defined veinlets of quartz, chlorite, etc. The secondary red feldspar is much decomposed and is stained with red iron oxide. It appears to be orthoclase. One feldspar crystal encloses numerous microscopic grains of copper. With the quartz in amygdules and veinlets there are small green crystals which show the properties of delessite. The delessite in some cases occurs as nested aggregates enclosed in coarse quartz grains, in other cases the green crystals form the border and project from the brown ground mass out into the clear quartz. In each case the quartz is younger than the delessite. One amygdule shows a border of yellowish epidote enclosing quartz, delessite and calcite. Several amygdules are composed of a pale green chloritic aggregate. In a clear quartz veinlet copper occurs both as isolated grains and in string-like forms.

## WINONA LODE.

The Winona lode is the productive amygdaloid of the Winona mine. According to Dr. Lane it is probably a continuation of the Isle Royale lode. It is low grade and has not yet been very successfully worked, but has been recently opened up for production on a larger scale and may soon prove profitable if good prices are obtained for the metal. Much of the copper is unusually fine and is not readily saved by the concentrating apparatus. For 1911 and 1912 the yield was about 13 pounds per ton. It is hoped that a better yield can be profitably obtained by finer grinding.

The ore contains a very high percentage of epidote and is almost all of green color. Copper occurs frequently in fine particles in quartz and calcite.

The lode averages about 24 feet in width, but in places is 30 feet wide. It is easily distinguished from the darker colored trap hanging, but owing to the readiness with which the latter breaks a good deal of waste is mined with the ore. Above the lode and parallel to it there is a well defined fissure which has a soft clay filling and which is evidently a surface along which much movement has taken place. This slipping plane is in places just above the lode, but is sometimes 10 feet back in the hanging. That portion of the hanging trap under the slip is naturally heavy ground and falls easily after exposure to the air.

![Figure 22. Section at Winona mine (after Lane).](image)
The lode dips at somewhat less than 70°. The shafts are inclined at 70°, but extension of the workings has shown that the lode is not quite as steep as this. The strike is N. 58° E. and the dip S. W.

PRODUCTION OF THE SEVERAL LODGES IN 1912.

<table>
<thead>
<tr>
<th>Lodge</th>
<th>Production in 1912</th>
<th>Value Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calumet &amp; Hecla Lodge</td>
<td>1,716,000</td>
<td>$51,955.245</td>
</tr>
<tr>
<td>Tammany Lodge</td>
<td>421,885</td>
<td>$7,908.745</td>
</tr>
<tr>
<td>Osekia Lodge</td>
<td>1,604,400</td>
<td>$15,012.199</td>
</tr>
<tr>
<td>Osekia Mine</td>
<td>115,811</td>
<td>$1,479.842</td>
</tr>
<tr>
<td>Keweenaw Lodge</td>
<td>106,571</td>
<td>$1,724.338</td>
</tr>
<tr>
<td>Osekia (North Keweenaw)</td>
<td>418,865</td>
<td>$8,323.523</td>
</tr>
<tr>
<td>Webster Mine (1911-1912)</td>
<td>531,006</td>
<td>$9,966.960</td>
</tr>
<tr>
<td>Osekia South Keweenaw Mine</td>
<td>622,281</td>
<td>$8,601.729</td>
</tr>
<tr>
<td>Abnocks Mine</td>
<td>353,418</td>
<td>$5,765.455</td>
</tr>
<tr>
<td>Mecaw Mine</td>
<td>632,880</td>
<td>$10,415.750</td>
</tr>
<tr>
<td>Osekia 8th Mine</td>
<td>109,050</td>
<td>$2,288.985</td>
</tr>
<tr>
<td>Prebannock Lodge</td>
<td>1,309,253</td>
<td>$20,634.800</td>
</tr>
<tr>
<td>Franklin Mine</td>
<td>175,482</td>
<td>$2,719.451</td>
</tr>
<tr>
<td>Lake Superior Lodge</td>
<td>531,105</td>
<td>$8,186.557</td>
</tr>
<tr>
<td>Superior Lodge</td>
<td>172,392</td>
<td>$2,601.074</td>
</tr>
<tr>
<td>Baltic Lodge</td>
<td>622,885</td>
<td>$11,372.500</td>
</tr>
<tr>
<td>Travelling Lodge</td>
<td>536,486</td>
<td>$8,636.265</td>
</tr>
<tr>
<td>Champion Lodge</td>
<td>700,380</td>
<td>$17,225.198</td>
</tr>
<tr>
<td>Winona Lodge</td>
<td>161,148</td>
<td>$3,007.297</td>
</tr>
<tr>
<td>Lake Alpine Lodge</td>
<td>132,841</td>
<td>$2,045.006</td>
</tr>
<tr>
<td>Black Bear Grove Lodge</td>
<td>131,955</td>
<td>$1,224.911</td>
</tr>
</tbody>
</table>

PRODUCTION OF MICHIGAN COPPER DEPOSITS IN 1912

CHAPTER VI. ORIGIN OF THE DEPOSITS.

VIEWS OF GEOLOGISTS.

Many geologists have discussed the origin of the Michigan copper deposits. It is proposed here to summarize what has been written and then briefly to present the writers' views. The descriptions and deductions made by Dr. R. Pumpelly are especially worthy of study. Both are remarkable for clearness and accuracy.

Dr. R. Pumpelly from his studies drew among others the following conclusions: "1. The chlorite of the melaphyre, and consequently the distinctive character of that rock, is due to the alteration of hornblende or pyroxene. This seems to have been the first step toward the production of melaphyre proper. Laumontite, which we find alike in the beds containing the least and in those containing the most chlorite, and occurring both diffused and concentrated in seams, appears to have been formed either contemporaneously with the chlorite, or as the next step in the process.

2. In the fissure-veins of Keweenaw County, laumontite is most abundant near and under the "Greenstone," as in the north end of the Central Mine. Here the great body of overlying rock is one in which the hornblende has undergone but little change.

3. The next step appears to have been the individualization, in the amygdaloidal cavities, of non-alkaline silicates, viz.: Laumontite, prehnite, epidote respectively, according as the conditions favored the formation of one or the other of these.

4. In the fissure-veins of Keweenaw County, prehnite is the most abundant silicate found in depth, i.e., below the 80 or 90 fathom level. The alkaline silicates are found chiefly in the upper levels.

5. Following the non-alkaline silicates comes the individualization of quartz in these cavities.

6. Perhaps we may be warranted in considering these minerals, together with the lime of the calcite that more rarely occurs in this portion of the series, as chiefly due to the decomposition of the pyroxenic ingredient of the rock.


*So far as we may infer from the tabulated results, the concentration of copper in the amygdaloidal cavities does not appear to have begun till after the formation of the quartz.

*In this part of the series falls also the formation of a chloritic or green-earth mineral, which in some mariner has displaced prehnite, quartz, calcite, and with which copper, when present, appears to stand in intimate relation. Subsequently to this came the individualization of the alkaline silicates, viz., analcite, apophyllite, orthoclase. Here also seems to belong the formation of datolite.

*The alkaline silicates represent the period of decomposition of the labradorite ingredient of the original rock, and when they occur in the mass of the rock (as distinguished from veins), it is only where the alteration of the rock has proceeded so far that the amygdaloidal form has merged into the brecciated through the enlargement and union of the cavities.

*In the fissure veins of Keweenaw County, the alkaline silicates, as before stated, abound in the upper levels, and are rare in depth; in other words, they are abundant in that zone of the veins which lies between walls of those portions of the beds of melaphyr in which we should look for the most advanced stages of alteration in the components of the melaphyr, supposing such alteration to be due to the action of descending solutions.

*The fact that calcite occurs at almost every step in the paragenetic series, and forms one of the most common of the secondary minerals, is proof that carbonic acid was very generally present throughout the whole period of metamorphism; it was probably the chief mediating
agent in the processes, without being sufficiently abundant to prevent the formation of silicates.

"II. The change of pyroxene to chlorite, as illustrated on an immense scale in the formation of the melaphyr, and the displacement of feldspar and quartz—quartz-porphry—by chlorite, as exhibited in pebbles of the conglomerate, point to an extremely important line of investigation for the chemical geologist. The alteration of the pebbles appears to have followed two different directions according to the ruling conditions, viz., either toward chlorite or toward kaolinization; and as the result of the latter process is impregnated with calcite, while the result of the former is free from carbonates, it would seem that the direction was determined by the presence or relative freedom from free carbonic acid. The deposition of calcite, if formed from the acid carbonate, would set free sufficient carbonic acid to prevent the formation of silicates of iron and magnesia.

"III. Copper, wherever we can detect it with the eye, has already gone through a partial concentration. The presence of this metal in minute quantity in the sandstones of Lake Superior, is made evident by the stains of carbonate which form on the cliffs of the 'Pictured Rocks.'

"It has also been found in the form of thin sheets of native copper occupying thin vertical fissures in the cliffs of Lower Silurian sandstone on the lake shore north of the Huron mountains. It is found here and there in the less amygdaloidal melaphyr in minute specks and impregnations, or even in a more concentrated form, as thin sheets occupying the joint-cracks. These occurrences increase in frequency in proportion as the rock is more amygdaloidal; in other words, the copper is more concentrated in those portions of the beds where the chemical change has been greatest. Where the rock has not passed beyond the strictly amygdaloidal stage, the copper occurs in the amygdules, traversing these in flakes, or coating them in a film of greater or less thickness, to such an extent as to form from one-fourth per cent to three per cent by weight, of the rock over considerable areas. Finally, in those beds where the metamorphism has proceeded to such an extent as to wholly replace large portions of the amygdaloid by secondary minerals, epidote, calcite, quartz, chlorite, laumontite, etc., there the copper occurs in masses of many pounds, and sometimes of several tons weight, and in forms equalled in their irregularity only by those of the masses of secondary minerals accompanying the metal.

"In each and all of these positions we find that the deposition of the copper took place subsequently to the decomposition and removal of a portion of the rocks, and subsequently to the deposition of laumontite, epidote, prehnite, and quartz, where these accompany it. In all this we have direct evidence of the movement of some salt of copper in wet solution, and the concentration of the metal by accumulating deposition in places where the precipitating agent existed.

"In the fissure-veins of Keweenaw County, the widening of the vein is frequently due to 'splicing,' i. e., a portion of the wall rock became detached and split by countless small cracks having a general parallelism to the main vein. Thus, instead of forming a solid 'horse of ground,' it consists of myriads of small and large lenses of often wholly decomposed rock, surrounded by films and seams of chlorite, laumontite, calcite and clay. These places are often the home of large 'masses' of copper, which then also have a spliced structure. Where the masses occur in a gangue of calcite, they are not spliced, but have a solid texture and the most irregular shapes. These facts point, perhaps, toward the formation of 'masses' by replacement.

"According to Mr. Pietrie, the superintended of the Central mine (fissure-vein), where a 'horse' occurs in the vein, the regular vein filling follows the foot-wall side of the 'horse,' and the younger fissure on the hanging-wall side is filled with calcspar and mass-copper. The foot-wall branch contains (like the regular filling elsewhere) prehnite, one of the earlier-formed minerals."

Dr. R. Pumpelly says further with reference to the origin of the copper deposits:

"The position of the metallic copper in the paragenetic series shows it to have been deposited after the non-alkaline silicates and before the formation of the alkaline silicates, i. e., after those minerals which resulted from the decomposition of the pyroxenic constituents of the rock, and before those which were formed by the destruction of the feldspar. Now this is what we should expect if we suppose the pyroxenic rock to have been altered to its present condition under the cooperation of water carrying carbonic acid and some free oxygen, because the oxygen must have been employed in oxidizing the carbonate of iron resulting from the decomposition of the pyroxene;

†The oxidation of the sulphuret of copper could not, therefore, take place until the pyroxene had so far disappeared as to leave a relative excess of oxygen as compared with the amount of ferrous salts exposed to a higher oxidation. Throughout its deposits the copper exhibits a decidedly intimate connection with delessite, epidote, and green-earth silicates, containing a considerable percentage of peroxide of iron as a more or less essential constituent; while among the other silicates, viz., analcite, laumontite, datolite, prehnite, only the last named, which alone seems subject to a considerable replacement of its alumina by ferric oxide, is especially favored by copper. This association is so invariable and so intimate that one is forced to the conclusion that there exists a close genetic relation between the metallic state of the copper and the ferric condition of the iron oxide in the associated silicates; that the higher oxidation of the iron was effected through the reduction of the oxide of copper and at the expense of the oxygen of the latter.

"As regards the green-earth and that variety of chlorite or delessite which is intimately associated with the copper, they either immediately follow the copper in point of age or are contemporaneous with it, and they
may be looked upon as having been formed under the influence of this reduction. Where copper is associated with prehnite it is invariably younger than the latter, a fact which would seem at first glance to oppose the supposition that there is any relation between the peroxide of iron in the zeolite and the deposition of the copper. But we have seen that prehnite undergoes a change to delessite; we find these pseudomorphs in every state of the process from the first green discoloration on the cleavage planes to the amygdules of delessite, with prehnite structure. Now, may we not consider the presence of iron in prehnite generally to be due to a beginning change, and the deposition of native copper in the Lake Superior prehnites to be partially or wholly correlated with the higher oxidation of the iron?

"In at least very many instances, if not in all, the deposition of the copper has been a result of a process of displacement of pre-existing minerals. In some rare instances the metal retains the form of its more or less remote predecessor, as in the pseudomorphs after some mineral (clay?) after laumontite.

"Nowhere is this displacement more apparent than in the cupriferous conglomerates. In these, the cement is the home of the metal, and in some places, as in portions of the Hecla and Calumet mines, it is wholly replaced by it; copper forming 20 to 50 per cent., by weight, of the rock. In these instances, either chlorite or epidote is associated with the copper as minerals formed since the deposition of the conglomerate, while calcite very frequently replaces the cement in barren portions of the bed.

"The cement of the conglomerate is of the same materials as the pebbles in a more comminuted form. The displacement of the whole mass of quartz porphyry in large pebbles by chlorite and copper described above, is probably an illustration of the manner in which the cement was displaced on a more extended scale."

"The means by which the copper was concentrated and deposited as native copper, instead of occurring in the form of the usual copper ores, is an interesting and unsolved problem that awaits the attention of the chemist who is willing to give his time and thought to the subject, although Pumpelly advocates the idea that the principal agent is the oxide of iron. To this I would add that the ferrous oxide of the magnetite and of the unindividualized magma of the vesicular layers, has also been concerned in this reaction."

M. E. Wadsworth in a paper presented at the Lake Superior Meeting of the American Institute of Mining Engineers in 1897 considers the copper to have been derived from the volcanic rocks by percolating waters. He says:†

"From the fact that the copper is generally found most abundantly under the heavy lava flows, and associated with minerals evidently the product of the decomposed lavas, it appears probable that the copper was once finely disseminated through the lavas, and has since been concentrated by waters percolating through them. This view is advocated by Muller, Bauermann, Marvine and myself, while a similar view has been advanced by S. F. Emmons to account for the origin and concentration of the Leadville ore-deposits."

He says of the deposition of the metal:

"The source and the cause of the arrest of the copper which was carried in with the altering waters are other and more difficult questions. Its home has commonly been regarded as being within the mass of the trappean flows themselves, with which it is supposed to have come to the surface. Another view is that it was originally deposited in a sulphuretted form along with the detrital members of the series, from which it was subsequently leached, partly in the shape of a sulphate, but principally as a carbonate and silicate. The latter is the view which Pumpelly has elaborated;* to whom also is due the credit of having advanced the only satisfactory view as to the cause of arrest of the copper in the places where it is now found. He has shown the existence of an intimate relation between the precipitation of the copper and the peroxidation of the ferrous oxide of the augitic constituent of the basic rocks; a relation so constant as to render irresistible the conclusion that in this ferrous oxide is to be found the precipitating agent of the copper. To this I would add that the ferrous oxide of the magnetite and of the unindividualized magma of the vesicular layers, has also been concerned in this reaction."
the extension of the copper from one flow down into another as a continuous mass."

*C. R. Van Hise in his paper on "Some Principles Controlling Deposition of Ores" discusses the Michigan deposits as an example of ore bodies which have remained practically unchanged since their first concentration. He says:*

"We have now seen that the zone of fracture is searched by the percolating waters; that metalliferous materials taken into solution by the downward and lateral moving waters are carried to the trunk channels of underground circulation, that in these trunk channels the metalliferous materials are precipitated in various ways. Thus a first concentration, by descending waters giving sulphurets and metals of some of the elements, is fully accounted for.

"In some cases the deposits thus produced are sufficiently rich, so that they are of economic importance. In these cases, which undoubtedly exist, but which perhaps are less numerous than one might at first think, a concentration by ascending waters has been sufficient.

"A conspicuous illustration of ore-deposits of this class which may be mentioned are the metallic copper deposits of the Lake Superior region. The copper was in all probability reduced and precipitated directly as metallic copper from upward moving cupriferous solutions. The reducing agents were the ferrous compounds in the solid form. In part as magnetite and as solutions derived from the iron-bearing silicates. When the copper was precipitated, the iron was changed into the ferric condition.† It is well known that metallic copper once formed is but slowly affected by the oxidizing action. Oxidation has in fact, occurred in the Lake Superior region, but from the facts now to be observed, not to an important extent. An oxidized belt may have formed in pre-glacial times, but if so, it was swept away by glacial erosion, and sufficient time has not since elapsed to form another. The ore-deposits now worked, have apparently remained practically unchanged since the time of their first concentration. In this fact we have the explanation of the great richness of these deposits to extraordinary depths."

*C. R. Van Hise in his paper on "Some Principles Controlling Deposition of Ores" says‡ of the Michigan copper deposits:

"A still clearer case of precipitation resulting from the influence of the wall rock is the well known occurrence of metallic copper about grains of magnetite and in the openings of sandstones, conglomerates and amygdaloid of Keweenaw Point. Where the copper is about the magnetite, it seems perfectly clear that the protoxide of iron in the magnetite was the reducing agent which precipitated the metallic copper. The metallic copper between the particles was doubtless precipitated by ferrous solutions furnished by the wall-rocks, which in many cases are basic volcanics."*

*Trans. A. I. M. E., Genesis of Ore Deposits, p. 353.
†Trans. A. I. M. E., Genesis of Ore Deposits, 1901, pp. 606-608.
‡Trans. A. I. M. E., Vol. XXVII, 1897, pp. 694-695. Also stated in Dr. Wadsworth's report, M. G. S., 1891.

Franz Posepny in his well known treatise on "The Genesis of Ore Deposits" says* of the origin of the Michigan copper deposits:

"Some of the attempted explanations assume, in my opinion correctly, as the cause of the first ore-depositions, the action of hot springs—in which connection it is only to be emphasized that these thermal effects occurred long after the intrusion of the eruptive flows between the sedimentary strata, so that the ores were brought, not by or in the eruptives themselves, but by the later springs, from great depths and perhaps from considerable distances. This explanation, applicable to all the deposits, suits also the exceptional case cited by R. D. Irving, namely, the Nonesuch copper-bed in the sandstone of Porcupine Mountain, far from an eruptive outflow."*

Waldemar Lindgren in a paper† entitled "Metasomatic Processes in Fissure Veins, says of the Michigan copper deposits which he discusses under the heading of Zeolitic Copper Veins:

"The copper-deposits of Michigan are in part fissure veins cutting across the beds of melaphyre and other basic igneous rocks as common in that district. It is true, however, that the ore bodies of the large mines are not to be considered as fissure-veins, but rather as beds or strata along which copper has been deposited by a process of replacement."*

He summarizes the descriptions and theoretical deductions of Raphael Pumpelly and B. D. Irving and states in conclusion:

"Especially remarkable is the series of replacements which, as shown by Pumpelly, has taken place in these veins. Prehnite is pseudomorphic after plagioclase; and many amygdaloids are largely prehnitized. The prehnite is again replaced by orthoclase; and finally, the latter may change into epidote and quartz. Sericite is absent.

"These copper-bearing veins are clearly very different from the majority of fissure-veins, and have been formed under very different conditions—in fact, probably not by the thermal waters. Of other classes, the orthoclase-albite-zeolite veins of the Alps are most closely related; while a certain slight resemblance also exists to the propylitic veins, emphasized by the chloritic alteration and the presence of orthoclase."

*Trans. A. I. M. E., 1901, p. 145.
†Trans. A. I. M. E., Genesis of Ore Deposits, 1901, pp. 606-608.
Dr. Lindgren in his recently published book on Mineral Deposits discusses the origin of the native copper and of the zeolites which occur with the copper in basic lavas. He points out that of all the occurrences of zeolites the most abundant and conspicuous is that in the blowholes of volcanic flows, and states that in many occurrences it can be shown that the zeolites formed as the last phase of consolidation of a magma. He discredits the frequently made statement that zeolites are formed as the result of leaching by surface waters and says:

"Zeolites are manifestly unstable in the zone of weathering and must have been formed at some depth. Of late years the opinion has been gaining ground that zeolitization, in basic volcanic rocks is distinctly connected with the cooling processes and in fact should be regarded as an after effect of volcanism, their deposition taking place in the still hot rocks."

He believes, with Knopf, that any theory accounting satisfactorily for the zeolites will also account for the copper. He believes that the copper was first present in the rocks as a silicate and says:

"Following Lane, I believe that waters of seas or lakes, mingling with the exhalations from the magma, decomposed the copper silicate contained in the pyroxenes, and that the resulting chlorides of iron and copper were decomposed by silicates or carbonates of calcium, with the formation of native copper, ferric oxide, and calcium chloride."

J. H. L. Vogt—It is interesting to note that J. H. L. Vogt who argues in favor of the theory of magmatic origin of many ore deposits, considers the Michigan copper as a deposition from underground waters as described by Van Hise. He says in his paper* on "Problems in the Geology of Ore Deposits."

"That the ore-deposits first mentioned above, viz., the titanic iron-ores in gabbro, the chromite-occurrences in peridotites, the nickel-pyrrohotite deposits in gabbro, etc. were formed by magmatic extraction, I think I have scientifically proved beyond doubt; and I believe that the magmatic-extraction theory advanced for the cassiterite and apatite-veins is in its main proposition correct. For the ore-deposits subsequently considered—the contact-deposits, the pyritic deposits, the gold-veins, silver-lead veins, copper-ore veins, etc.—the views here offered become confessedly more and more hypothetical. But they have much in their favor; and even if, following in particular the French observers, I have ascribed to magmatic-extraction too great a significance, I believe, nevertheless, that the hypothesis is worthy of thorough scientific discussion.

"At the same time, I wish to add emphatically that, beyond doubt, numerous ore-deposits may have been formed by the action of underground waters, so comprehensively investigated and described by Van Hise; e. g., many deposits of iron and manganese-ores; the veins of nickel silicate (garnierite); pretty certainly also the native copper of Lake Superior; and many other occurrences."


H. L. Smyth, in a paper presented at Harvard University in 1896, discussed the origin of the Keweenaw Point deposits and a summary of his paper has been published in Science, February, 1896, p. 251. He points out that from the consideration of the conditions of formation of the separate flows, with their subordinate intercalated conglomerates, it is probable that each flow after consolidation was immediately subjected to the action of meteoric waters. "Afterwards by slow subsidence, each bed would eventually sink beneath their reach. . . . Afterwards came the northerly and northwesterly tilting, and the formation and filling of the fissures, and the impregnation and partial replacement of the amygdaloids and conglomerates. The new minerals of this period are sharply separated from the alteration product of the first (which they often replace) by their richness in alkalies, and the presence of flourine and boron. The two periods, therefore, are far separated in time as well as by the character of the chemical agents at work and do not, as Pumpelly supposed, represent a continuous march of alteration." Prof. Smyth concludes that neither Pumpelly’s view, that the copper had been brought down from the sandstones of the upper division of the series, nor Wadsworth’s, that it had come from the lava flows themselves, is probable. On the other hand, the mineral associates of the copper, the time of formation and, in the case of the veins, the evident arrest of the copper-bearing solutions below the relatively impervious greenstone, all point to a deep-seated source and to ascending solutions as the transporting agent. As to the precipitating agent, Smyth does not accept the view that it was electrolytic in its nature, because the deposition was manifestly accompanied in so many cases by the chemical destruction of the cathode. He concludes that in spite of lack of confirmation by laboratory experiment, no theory so well explains the invariable deposition of copper to great depths as Pumpelly’s viz., that it was effected by the reduction of copper salts by the ferrous oxide in the universally present chlorite.

J. F. Kemp has summarized and commented on some of the published views on the origin of the deposits as follows:*

"The original source of the copper was thought by the earlier investigators to be in the eruptive rocks themselves, and that with them it had come in some form to the surface, and had been subsequently concentrated in the cavities. Pumpelly has referred it to copper sulphides distributed through the sedimentary, as well as the massive rocks from which the circulating waters have leached it out as carbonate, silicate and sulphate. Although the traps are said by Irving to be devoid of copper, except as a secondary introduction, it would be interesting to test their basic minerals for the metal in a large way, as has been so successfully done by Sandberger on other rocks. It is probable that these may be its source."
"Irving states that the coarse basic gabbros of the system contain chalcopyrite, but they do not occur near the productive mines. The electro-chemical hypothesis of deposition was earliest advocated (Foster and Whitney), and on account of the electrolytic properties of the two metals copper and silver, at first thought, it seems to be a reasonable explanation. Still, the unsatisfactory character of all experiments made in other regions to detect such action militates against it. Pumpelly, however, has worked out an explanation much more likely to be the true one. He found, on studying the mineralogical changes which have taken place in the rocks, that the alteration had been very thorough, and that it had involved a most interesting series of minerals, which are now chiefly manifested in the cavity fillings. It is to be appreciated, as has been especially well shown by the recent detailed geological sections of L. L. Hubbard,* that in the productive region, the Keweenawan rocks consist of a vast series of basic lava flows, with a few of more acidic types, and with occasional intercalated conglomerates. H. L. Smyth† has also emphasized the fact that these successive lava sheets must have remained for protracted periods after their outpourings, exposed to the atmospheric agents, and to weathering, before they sank beneath the sea, and were buried under the conglomerates. As a matter of observation, the upper portions of the sheets are notably more cellular and decomposed than are the lower. Two kinds of amygdaloids were indeed recognized by Pumpelly,‡ brown ones, or true amygdaloids, in which the alteration was excessive, and which were probably derived from cellular lava sheets; and green ones, or pseudo-amygdauloids, which are hard and dense, and probably owe their apparent amygdulites to the decomposition of pyroxene, olivine or feldspar crystals. Pumpelly traces out the following series of minerals. The first to develop was chlorite. Either contemporaneously with the chlorite or next after it, laumontite, a hydrated basic silicate of calcium and aluminum resulted. Laumontite, prehnite and epidote, all non-alkaline silicates, next segregated in the cavities, and were followed by quartz. They are thought to correspond to the decay of the pyroxenic minerals in the lavas. The copper manifestly came in after this, and its deposition seems to have proceeded along with the formation of a green chloritic mineral, or green-earth, which has displaced the prehnite, quartz and calcite of the earlier stages. Calcite, it should be added, marks almost every stage of the paragenesis. Presumably the reducing action produced by the oxidation of FeO to Fe₂O₃ in the production of the chloritic 'green-earth,' caused the reduction and precipitation of the copper from some aqueous solution of sulphate, carbonate or silicate. After all this had occurred a quite different series of minerals (except that calcite continued to form) was introduced, which are characteristically alkaline silicates. Analcite, apophyllite, datolite, and last, of all orthoclase, are the chief members. Pumpelly regards them as produced by the alteration of the feldspars of the basalts, and in a continuous succession of changes following those just cited, but H. L. Smyth advances the view that they and the copper came in after the tilting and faulting of the strata, and probably in uprising solutions along the fissures, which are illustrated in the vein mines. He remarks that apophyllite contains fluorine, and datolite boron, and that the mineralization of the fissure veins is often extended in lateral enrichments, where the fissures cut porous beds. Pumpelly specially favored the overlying sandstones and descending solutions as sources of the copper. Wadsworth gives a resume of all the views advanced up to 1880** and himself favors a derivation by leaching of the neighboring and overlying trap.

"As stated in mentioning the great ore-shoots above, the circulations must have followed the general lines indicated, by them, so that it is evident that the rich currents were of limited extent. The anomalous condition presents itself of native copper, a mineral that is usually characteristic of the oxidized zone of deposits of sulphides, extending to great depths below the ground-water level.

"It is natural to raise the query as to the possible passage of the native copper into sulphides in depth, but there is as yet no evidence of this change. Any minerals in the nature of sulphides are extraordinarily rare. A little whitneyite and domeykite (copper arsenides) and chalcocite occur in the amygdaloid, formerly worked at the Huron mine; chalcocite has been found in the Bohemian Mountains and in the Copper Falls mine. Native copper changes to chalcocite 90 feet down in the Mamasuren mine, near the Sault (L. L. Hubbard). A pocket of malachite, the black oxide, was opened in the early days at Copper Harbor.

*Ore Deposits of United States and Canada, pp. 209-211.
†Science, February 14, 1896, p. 251.

Van Hise, Leith and Steidtmann.—A brief statement of the views of several geologists who have discussed the origin of the ores is given by Van Hise, Leith and Steidtmann in Monograph No. 52, pp. 580-581. They say:

"Irving, Wadsworth, and nearly all other geologists who have studied the copper-bearing rocks believe that the source of the copper was in the basic igneous rocks, and that so far as it was derived from the sediments, its ultimate source was still the basic igneous rocks, because the sediments came from those rocks. This belief is founded principally on the uniform and close association of copper with the basic igneous rocks and the known existence of copper sulphides minutely
disseminated through some of the coarser igneous rocks. The source, of the copper was believed by Pumpelly\(^3\) to be the overlying sediments.

"Smyth\(^4\) believed that the ores did not come from the adjacent wall rocks but from a deep-seated source, the nature of which does not appear from this report.

"The conditions and agents under which the copper has been taken from the adjacent rocks and concentrated have been variously interpreted. Irving\(^5\), Pumpelly\(^6\), Wadsworth,\(^7\) Lane\(^8\), and others have been inclined more or less strongly to the theory of concentration under the direct downward movement of meteoric waters. Pumpelly has also implied that concentration may have occurred when sediments were still below sea level. Lane\(^9\) has suggested that the waters were sale waters of the type now found in the deep copper mines and that they represent fossil sea waters or fossil desert waters, which in the tilting of the series have migrated downward. Van Hise\(^10\) has argued that while meteoric waters have done the work, it has been during their upward escape after a long underground course. Smyth assigned the first concentration of the ores to ascending solutions from a deep-seated source not specified."

---

\(^1\)Ibid. pp. 425-426.


\(^5\)Irving, R. D., op. cit., pp. 419-426.


\(^8\)Lane, A. C. The theory of copper deposition; Am. Geologist, Vol. 34, 1904, pp. 297-309.


**Messrs. Van Hise, Leith and Steidtmann** outline their own hypothesis of origin as follows:

"The copper ores are characteristically associated with basic igneous rocks. The source of the copper-bearing solutions lies in these igneous rocks. The original copper-bearing solutions were not. These solutions may be partly direct contributions of juvenile water from the magma, partly the result of the action of meteoric waters on crystallized hot rocks."

Van Hise, Leith and Steidtmann believe\(^*\) that the original deposition of the copper was limited mainly to middle Keweenawan time, or, if not, at least to the cooling period of the igneous rocks of that time. They consider some of the gangue minerals to be hot-water deposits and state that the wall rock alterations associated with the ores seem to be such as are characteristic of hot water rather than meteoric solutions. They believe that part of the copper was deposited soon after the extrusion of the associated igneous rocks, but that much of the deposition of the copper followed the folding and deformation of the Keweenawan rocks, which accompanied and immediately followed the deposition of the Keweenawan series. They discuss the source of the thermal solutions, pointing out that the localization of the deposits in time and place seems to be something more characteristic of highly concentrated magmatic solutions than of a universally acting agent like meteoric waters working down from the surface, but that the juvenile waters were naturally more or less mixed with meteoric waters.

They say\(^†\) in conclusion on this point:

"On the whole the evidence is taken to point to a probable original concentration of copper by hot solutions largely of juvenile contribution but more or less mixed, necessarily, with meteoric waters and a later working over of the deposits by water dominantly of meteoric source. In any case there is a high degree of probability that the associated basic igneous rocks are the source of the copper deposits. The doubt arises only as to the manner of their derivation from these wall rocks—whether they are due to the escape of solutions of a juvenile nature before or during the crystallization of the lavas, or whether on the breaking up of the crystalized rocks by katamorphic alterations the minute portions of copper they contained were concentrated in the deposits."

---

\(^*\)Monograph No. 52, U. S. G. S., p. 582.

\(^†\)Monograph No. 52, U. S. G. S., p. 587.

In the same report Van Hise, Leith and Steidtmann discuss the chemistry of deposition of the ore and advance\(^‡\) the following hypothesis:

"Hot solutions containing copper chlorides, boron, and fluorine compounds, CO\(_2\), and possibly other magmatic emanations entered the porous parts of the formations, where they began the work of deposition and the solution and replacement of the wall rock. Hot solutions, in general, remove lime and soda with great rapidity. Pressure and CO\(_2\) alone could cause the solution of alumina.\(^§\) In general, there would be a tendency for the decomposition of all minerals in the wall rocks, and a consequent enrichment of the solutions in the constituents taken out of the wall rocks. However, as Lane\(^*\) suggests, the calcium silicate and sodium silicate in the solution would tend to keep magnesia out of solution. These processes would tend to develop chlorite by replacement and to keep magnesia permanently out of the solution. In general, chlorite is
the most stable mineral from which magnesia assumes in the presence of hot solutions.† The first step in the cycle of deposition thus accounted for left the solution rich in lime, iron, and aluminum silicates. Changing conditions, perhaps, of concentration, heat, and pressure brought about the saturation of these constituents, and a generation of laumontite, prehnite, and epidote followed the development of chlorite. Silica became insoluble in this solution after the deposition of the lime-aluminum silicates, which resulted in the precipitation of quartz. The individualization of quartz was followed by the deposition of copper. It is suggested that the solutions were relatively rich in alkalies, probably the carbonates and chlorides both, when the period of copper deposition began, for the deposition of copper accompanied the solution of quartz and was followed by the deposition of alkaline silicates. Under these conditions copper-bearing solutions reacting with the ferrous silicates of the wall rock and perhaps with ferrous salts in solution in presence of alkaline carbonates caused the precipitation of copper. It is furthermore suggested that the deposition of calcite, coeval with the deposition of copper, was due to the interaction of alkaline carbonate and calcium chloride. As calcium chloride is a solvent of copper, its precipitation as a carbonate would give additional impetus to the precipitation of copper."

‡U. S. G. S. Mono. No. 52, p. 589-590.
*Lane, A. C., Econ. Geology, Vol. 4, 1909, p. 166.

R. Beck and W. H. Weed conclude‡ that:

"Genetically these deposits are best explicable by the assumption of a lateral secretion of the copper ores, which were originally finely distributed in the melaphyre. The only enigma is, why the resecretion and concentration took the form of native copper."

Frank F. Grout in a paper§ on Keweenaw Copper Deposits of Minnesota shows that the copper occurs very commonly in the Keweenawan lavas. In the specimens examined he found that the more altered ores contained less copper than the fresh types, and he states that the copper occurs in the form of an insoluble silicate rather than as sulphide or native metal. Of the several types of lavas he considers the mottled melaphyres (ophites) to be specially favorable, stating that they furnish not only a high per cent of the copper, but more ferrous iron for a reducing agent than the other types. He gives the following analyses:

<table>
<thead>
<tr>
<th>Per cent copper.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Haekley diabase, Pia City, Minn., very fresh</td>
</tr>
<tr>
<td>2. Haekley diabase, Crooked Creek, Minn., average alteration</td>
</tr>
<tr>
<td>3. Haekley diabase, McDermott Creek, Minn., extreme alteration</td>
</tr>
<tr>
<td>4. Mottled diabase, Taylors Falls, Minn.</td>
</tr>
<tr>
<td>5. Haekley diabase, Crooked Creek, Minn.</td>
</tr>
<tr>
<td>6. Conchoidal diabase, Crooked Creek, Minn.</td>
</tr>
</tbody>
</table>

A. C. Lane has, in his monograph on the Keweenawan Series, summed up a number of facts bearing on the question of origin of the deposits. He calls attention* to:

"1. The dissemination of copper in small quantities throughout the formation. The average from several thousand feet of drilling at the dark-Montreal was 0.02 per cent. Hardly a single amygdaloid fails to carry less than .02 per cent copper, and when the copper content reaches .50 per cent it is nearly an ore.

2. The occurrence of native copper in similar formations of red rock associated with salt waters and lavas elsewhere—notably the New Jersey Triassic, in the Bolivian Puca sandstone, in Nova Scotia, around Oberstein in the Nahe melaphyre region, and in Alaska.

3. The general absence of native copper outside the Keweenawan, in the Lake Superior region but—

4. Native copper has been found in iron ores (generally thought to be formed by the action of downward working waters) in a few places.†

5. The water in the formation is of three kinds.
   a. At and near the surface, soft and fresh with sodium in quantities more than sufficient to combine with the chlorine
   b. At some distance (generally 500 to 2,000 feet, before it attracts attention, unless especially sought), the chlorine is higher and the water is charged with common salt. The line between the two classes of waters is often quite sharp.
   c. At great depths a strong solution of calcium chloride containing some copper.

6. The middle water (b) often contains more salt than it could possibly have were it a mixture of a and c.

7. The lines between the different kinds of waters are not regular, yet the lowest water probably always comes within two or three thousand feet.

8. The amygdaloids seem, other things being equal, to contain rather stronger (more saline) water than the conglomerates.

9. An unequally heated solution corresponding in composition to mine water (c) will precipitate copper on the same minerals, prehnite, datolite, etc. on which it occurs in the mines, as Fernekes has shown.

10. The traps contain combustible gasses, as R. T. Chamberlain has shown.

11. Certain beds are abnormally high in copper for many miles.
12. Copper often replaces chlorite, and in the Calumet and Hecla pebbles chlorite replaces felsite, and the copper the chlorite.

13. Copper may even replace vein quartz.

14. Copper is formed generally after those minerals which are the products of alteration and contain lime, and before those secondary minerals which are the products of alteration and contain soda and potash.

15. Therefore, at the time the copper formed the mine water might have lost lime but could not have lost sodium. The rock might have lost both.

16. The Calumet and Hecla lode averages less rich (very rich in spots) near the surface, attains its greatest richness at a certain depth say about 2,000 feet, and then gradually decreases in richness.

17. The silver occurs more abundantly in the upper levels."

He then states: "The conclusion to which these facts have forced me is that the copper was in the Keweenawan formation as a whole, before being introduced into the particular places where we find it and that, the deposits have gathered together by migration of the particles known as ions in the chloride solution, just as in the formation of electrolytic copper in an electrolytic bath the copper goes toward the electro negative pole and the more electro positive or alkaline parts of the solution, and as in Fernekes' experiments, toward the hotter parts of the solution."

Dr. Lane in concluding his remarks on the formation of the copper says:* "It will be seen that my studies have led to no radical change in the views as to the origin of copper expressed by me in annual report for 1903 and by Wadsworth in the Transactions of the American Institute of Mining Engineers (XXVII p. 669) and by Pumpelly earlier.

"Copper should then be looked for not merely along pervious lines but near pervious lines, with a strong tendency to appear in hanging and foot and the mineral crest or richest part of a lode will be in the salt water belt, adjacent, either to right, left or below where the downward absorption has gone deeply."

He concludes from his results that the conditions under which the oxidation of ferrous salts may result in the deposition of copper are those which obtain, in underground waters and that the theory of Pumpelly and others based on paragenetic relations is thus fully sustained by chemical evidence.

H. N. Stokes.—Among the experimental investigations on solutions containing copper, those described in a paper† by Mr. H. N. Stokes are also of a nature to corroborate the views of Pumpelly. Stokes devised a simple apparatus to illustrate the behavior of hot ascending solutions. In the lower and warmer part the reaction between the mineral or metal and the solution was brought about, while in the upper cooler part the reaction was reversed, with deposition of the metal. The apparatus was filled with a solution of ferrous sulphate and cupric sulphate and the lower limb heated at 200° C. After an hour a crystalline deposit of copper was observed in the upper limb, and after 20 hours there was an abundant crystallization of copper. Hematite was deposited in the lower limb.

The reactions are represented by the equations.

\[ 2 \text{CuSO}_4 + 2 \text{FeSO}_4 = \text{Cu}_2 \text{SO}_4 + \text{Fe}_2 (\text{SO}_4)_3, \text{Cu}_2 \text{SO}_4 = \text{Cu} + \text{CuSO}_4. \]

The fact that a solution saturated with cuprous sulphate will deposit metallic copper on cooling, as represented in the second equation, had been previously shown by several investigators as stated by Mr. Stokes.


DEPOSITION OF COPPER FROM CHLORIDE SOLUTIONS.

G. Fernekes.—Having in view the fact that the copper mine waters are essentially chlorides with only traces of sulphates, Gustave Fernekes carried out experiments to determine whether copper would be deposited from chloride solutions in the same way as Dr. Stokes had found copper to be precipitated from copper sulphate solution by means of ferric sulphate. In the preliminary experiments, carried out according to the method of Stokes, no copper was precipitated. This failure to precipitate copper from chloride solution Dr. Fernekes attributed to the fact that metallic copper is soluble in hot dilute hydrochloric acid whereas dilute sulphuric acid which was set free in Stokes' experiments has absolutely no effect upon the copper. The reactions which take place are—

1. \[ 2 \text{FeSl}_2 + 2 \text{Cu} \text{Cl}_2 = \text{Cu}_2 \text{Cl}_2 + 2 \text{Fe} \text{Cl}_3. \]
2. \[ 2 \text{Fe} \text{Cl}_3 + 2 \text{Cu} \text{Cl} = 2 \text{Cu} + 2 \text{Fe} \text{Cl}_3. \]
3. \[ \text{Fe} \text{Cl}_3 + 2 \text{H}_2\text{O} = \text{Fe} (\text{OH})_2 \text{Cl} + 2 \text{HCl}. \]
Reaction three takes place at high temperatures and fairly dilute solutions.

Having determined that copper is deposited only when the acid liberated in this reaction is neutralized, Dr. Fernekess then added some of the minerals common in the ores and repeated the experiments. He found that in the presence of prehnite or datolite, copper is deposited. As these minerals are very common in the ores, the experiment has very important significance. Dr. Fernekes’ description, as given in Economic Geology Vol. II, p. 581 is as follows:

“To make the precipitation of copper possible according to the above reactions, the hydrochloric acid must be constantly neutralized. This neutralization can be brought about by the carbonates or silicates of calcium and sodium. Calcium hydroxid was first tried, then calcium carbonate and finally calcium silicate in the form of the mineral wollastonite. The experiments were successful, the copper being deposited in from ten to fifteen minutes heating at 200° C.

“Complete precipitation required a somewhat longer time. It is evident that the more soluble the neutralizing mineral is in hydrochloric acid the more efficient it is for rapid neutralization and consequent precipitation of the copper. It also seems probable that we would be able to obtain crystalline copper more readily if a slower neutralization took place than in the above experiments where in fact the copper came down in a fluffy condition.

“At this point Dr. Lane suggested the following minerals, common in this region, which may have taken part in the neutralization of the free acid; labradorite, prehnite, laumontite, datolite, analcite and pectolite. Of these minerals the first there were present in the rocks before the copper deposits were formed and the last three are closely associated with the metal. The first four minerals were tried but positive results were obtained only with prehnite and datolite. Since the conditions of the experiments, as finally carried out, were slightly different from those described by Stokes, it may be well to mention a few of the modifications introduced. Instead of employing a metal bath as did Stokes, an ordinary sand bath was used. The thermometer was placed alongside of the sealed tube containing the solutions. As explosions are not frequent this arrangement is perfectly satisfactory. The total length of the tubes employed was also greater, being about eighteen inches. The upper limb of the tube was surrounded by a water jacket. The temperature of the lower limb ranged from 200° C. to 280° C. The material was introduced into the tube in the following order; first about five grams of the neutralizing mineral, finely ground and freed from possible admixture of copper by treatment with nitric acid; then 0.2 grams of copper chloride; and finally a solution of ferrous chloride, containing an excess over that required to precipitate all of the copper. A few crystals of potassium bromide were also added. The solution which was always slightly acid, due to the ferrous chloride, was then almost neutralized by the action of sodium carbonate, filled to the top with water and sealed.

"In the case of prehnite, perfect circulation of the liquid about the mineral continued for about five hours when heated to 200° C. At the end of this time the basic iron salt formed in the reaction covered the small surface of the exposed prehnite to the height of two to three centimeters and consequently further action proceeded very slowly. Occasional cooling of the lower limb of the tube was therefore resorted to and by this means the solution was drawn back into the mineral, constantly exposing new surfaces. The tubes were heated intermittently for ten hours during the day. The heat was removed in the evening and again applied the next morning. After heating the solution and prehnite in this manner for five days an explosion took place at about 250° C. A portion of the side of the tube about five centimeters from the bottom was blown off, leaving a fairly hard cake underneath. On examining this cake of mineral with a small hand lens, it was found to be interspersed with shiny particles of crystalline copper. A few chemical tests were made. The particles were soluble in nitric acid with the evolution of brown fumes. They were insoluble in dilute hydrochloric acid, which fact distinguished them from cuprous oxide, and they precipitated metallic silver from neutral silver nitrate solution. The prehnite had become much darkened and the particles of the mineral were stained red in places with iron oxide.

"Datolite was acted upon in a similar manner for six days, at the end of which time minute crystals of copper could be detected throughout the mass of the mineral. Experiments with laumontite and labradorite have up to the present time been unsuccessful."
In the conglomerates most of the copper occurs in the matrix, but some in the pebbles.

The deposits are confined to the Keweenaw series and all but one of the important ones are in the lower part, which is very largely igneous.

Most of the workable deposits are amygdaloids, but the richest of all is the Calumet conglomerate which is interbedded with volcanic rocks.

Many of the deposits have thick and relatively impervious traps overlying them.

The amygdaloid lodes are parts of thick beds, mostly ophiolites. The lode rock seldom has a fresh crystalline appearance and is commonly a dull brownish or greenish mass of secondary minerals containing amygdules, seams and shapeless masses of calcite, quartz, epidote, delessite, and chlorite.

A consideration of these and other facts and a study of the literature leads the writer to the following conclusions:

The copper and the Keweenawan igneous rocks had a common origin. Two hypotheses present themselves: (1) the copper was deposited with the rock constituents, as silicate or other minerals, and subsequently dissolved and reprecipitated in the lodes as native copper, and (2) the copper was never so disseminated through the rocks and the native copper is essentially a primary deposit from solutions which accompanied and followed the extrusion of lava.

Abundance of chlorides in the mine waters indicates that the native copper was deposited from a chloride solution rather than from a sulphate solution. Sulphides are rare in the copper deposits and sulphates are only very occasionally found and it is therefore unlikely that sulphur was an abundant constituent of the solutions from which copper was deposited.

The copper is essentially a replacement deposit. Some has doubtless simply filled cavities in the porous rocks; but most of it has taken the place of other minerals which were decomposed and reprecipitated.

This replacement is not to be regarded as a secondary concentration long after the formation of the Keweenawan rocks, but rather as a result of reactions which took place while the rocks were still hot, though solid and fractured. The deposits are of Keweenawan age. The occurrence of the same minerals with the native copper is remarkably characteristic of all the deposits and leads directly to the conclusion of a common origin for the copper of all the lodes, conglomerate beds, amygdaloid beds and fissure veins alike, as suggested by Pumpelly, Irving and Wadsworth.

Almost invariably there occur with copper the following minerals: Chlorite, epidote, calcite, quartz, prehnite and hematite. These, as Pumpelly has shown have, like the copper, replaced other minerals, and their formation was doubtless due in part at least to the copper-bearing solutions. Their constituents were for the most part present in the rocks in which they are now found and they are to be regarded as secondary minerals formed by the action of ordinary meteoric solutions but by solutions partly of magmatic origin containing considerable copper and probably hot.

The deposition of the copper as native metal was probably due to reactions similar to those of Stokers experiments with sulphate solutions; but from chloride solutions in presence of a neutralizing mineral as in Fernkes’ experiments. The abundance of ferrous iron in the minerals in the original rocks and of ferric iron in the altered rocks indicates clearly the presence of an efficient reducing agent as suggested by Pumpelly.

There is very little evidence in favor of the view that the deposits were formed by meteoric waters.

Because in many districts native copper occurs near the surface of sulphide deposits under such conditions that it is believed to have resulted from oxidation of sulphides, some geologists express the opinion that the native copper of the Michigan deposits has been formed as a secondary product by the oxidation of sulphides. In the opinion of the author there is no good reason to believe that the copper was first formed as a sulphide or that the copper was formed from any other mineral by meteoric waters near the surface.

Because numerous investigators have found that copper is a very common constituent of the Keweenawan rocks and occurs in small quantities in nearly all localities there is some reason to believe that there may be some copper present in the silicates, probably in the pyroxenes. Analyses of numerous specimens of so called "fresh" Keweenawan rocks have shown copper to be almost universally present. It does not follow that the copper is present in the silicates, however, as it is just as probably present as native copper. It is folly to assume that because native copper is not visible to the naked eye that it is not present.

The numerous Keweenawan rocks examined by the writer are all more or less altered. Some are called "fresh" because they appear comparatively little altered. It is merely a matter of degree.

The author is therefore of the opinion that while the copper may be present in the form of a silicate it is just as probably present as microscopic particles of the native metal.

To state that the copper was first present as a silicate therefore only results in bringing into the question another unknown. There are unknowns enough already. The simpler hypothesis is by the author regarded as the better one. Of the two hypotheses (1) and (2) mentioned early in this discussion the author prefers (2) that the native copper is essentially a primary deposit from solutions which accompanied and followed the extrusion of the lava. The rocks were certainly fractured and
possibly tilted before deposition of native copper ceased. It is possible that very little deposition took place before the rocks were extensively fractured.

It has been frequently stated that the ore bodies become gradually lower in grade with depth and that this points to formation of the deposits by descending waters. Before any useful deductions regarding the deposition of the copper can be made from the falling off in values with depth it is necessary to consider the facts more carefully. It is true that the ore now being mined at great depth is much leaner than that mined at some higher levels; but reference to descriptions of the various lodes will convince the reader of the inaccuracy of the general statements of gradual decrease with depth. The richer portions have terminated at some depth of course; but they terminate laterally in just the same way. There is no marked difference between the falling off in values with increase in depth and the falling off in values that is found in extending the openings laterally. Because some of the lodes are being mined for several miles it must not be imagined that the ore bodies are continuous. Rich and poor ground alternate. At and near the surface the lodes have been tested at intervals and the richer minable portions discovered. There is unfortunately no similar means of locating any ore bodies which may lie at some distance below the present mine openings. The statement that the deep openings on the most productive lodes are in much leaner ore than was mined years ago is unfortunately only too true. It is not however a characteristic peculiar to depth alone. It is one that has taken longer to determine for depth than for length.

There is a remarkable similarity between the ore from near the surface and ore from depths of several thousand feet. Minor differences are noted, disintegration and some weathering has taken place near the surface. It is common experience that the lodes for the first few hundred feet are rather softer and more fractured than at greater depth. Yet the peculiar feature is that the ore is essentially the same; the same minerals occurring in the same way.

This uniformity in the character of the ore leads the writer to the conclusion that little change has taken place in the distribution of the copper since the deposits were first formed in Keweenawan time. The formation has been further tilted and faulted since deposition of copper ceased, and some secondary deposits have filled the later fractures formed; but the ore bodies themselves have been little changed. The lodes and enclosing rocks have been weathered and then glaciated. There is no reason to believe that the formation of the ore bodies has been in any way dependent on the present surface. The latter is the result of changes which took place long after the formation of the ore deposits.

Summary of Author’s Conclusion as to Origin of the Copper Deposits

The native copper deposits were formed in Keweenawan time and have been but slightly altered since.

The native copper and the Keweenawan igneous rocks had a common origin.

The native copper is essentially a primary deposit from solutions which accompanied and followed the extrusion of lava.

Deposition took place while the rocks were still hot; but after they were fractured.

As pointed out by Dr. Hubbard, fracturing along or nearly along the bedding planes had occurred before deposition of copper ceased and possibly before any considerable deposition had taken place. The fracturing of the rocks was an important factor in determining the nature of the deposits, the fractures affording continuous channels for movement of solutions.

The deposits are replacement deposits.

The native copper was probably precipitated from a chloride solution.

The richer parts of lodes bear no definite relation to the present surface, their origin being quite independent of this surface.

(In many cases it has been found that the richest parts of lodes are neither near the surface nor at the lowest openings yet made. In the two lodes that have been mined at greatest depth, the Calumet conglomerate and the Pewabic amygdaloid, very rich ore occurred at depths of 1,000 to 3,000 feet.)

The ore now being mined from some of the lodes at great depth is much leaner than that which was mined some years ago near the surface; but the change in grade with depth is quite similar to change in grade laterally and there is no good reason to believe that it is due to deposition from descending solutions rather than to solutions moving in any other direction.*

*For discussion of methods of prospecting and developing the copper deposits and mining, concentrating, smelting, and refining the ores see Mineral Resources of Michigan, 1911, Publication 8, Geological Series 6, Michigan Geological and Biological Survey.
THE COPPER INDUSTRY IN 1914.
WALTER E. HOPPER.

GENERAL REVIEW.

The year 1914 will long be remembered as a most trying one for both operators and employees. The unusual conditions of labor and market caused most serious concern, and necessitated the most careful consideration of operations by the managers.

During the first four months of the year production was low and costs were high, due to the strike conditions and to the inexperienced labor underground. During the last five months of the year production was again greatly curtailed, owing to the European war. With a few exceptions, the total costs for the year were generally lower than those of the year 1913. The production was higher than the previous year but lower than the years immediately preceding 1913. According to the U. S. Geological Survey, the production of copper in Michigan during 1914 was 158,009,748 pounds, as compared with 155,715,286 in 1913. The average price received for copper sold, however, was much lower than in previous years, and the profits were, therefore, generally reduced. Very few dividends were paid during the year.

At the beginning of the year the copper country was still in the midst of the general strike called by the Western Federation of Miners July 23, 1913. In spite of this fact, however, most of the larger producers were operating, but on a smaller scale, and with inefficient labor underground. On January 6 there were about 8,724 men employed underground, as compared with about 13,514 before the strike.

Sunday, April 12, 1914, marked the official end of the long strike, when a general vote taken throughout the district expressed the desire of the majority of the men to return to work. The conclusion of the strike was received with general rejoicing throughout the copper country. There was a rush of men to the mines seeking their old positions, forces were increased as soon as possible, and the old spirit of satisfaction and good times again prevailed among the men. It would be impossible to even estimate the cost of the strike to the men, the mining companies, the state, the county, the townships, the villages and the workmen of the country. It is safe to say, that the figure would be between five and ten million dollars.

Following the end of the strike, a spirit of confidence and optimism existed throughout the district, and all efforts were made to make the year 1914 a more successful one than 1913, when higher costs and lower production prevailed. Production was gradually increased; many of the mines were producing normally by May and June, and a maximum production was reached in July. Several of the properties in the exploration stage resumed operations in May.

Scarcity of suitable labor was keenly felt by the mining companies during the year 1912, and it has been estimated that when the strike was called, the various mines were operating with about 1,500 men short of normal force. However, immediately following the official end of the strike, the labor situation was much improved by a continuous influx of skilled labor. The unsettled conditions and curtailment of forces in the iron mines of Michigan and Minnesota sent hundreds of excellent miners to the copper districts. The mining companies took advantage of this opportunity, with the result that in the latter part of May, the mines were employing the largest working forces in the history of the district. This large working force naturally meant a great increase in the production of the mines and a corresponding reduction of costs.

When the general strike was called in 1913, the number of men employed on surface and underground at the various mines totaled about 14,250. On July 23, 1914, one year later, the same mines had in their employ about 16,505 men, showing an increase of about 2,255. The number of men employed at smaller exploration properties and those mines not included in the above, brought the total up to about 17,205. This was the largest number of men ever employed in the copper country. Not only was the total payroll higher than at any time previously in the history of the district, but the average individual pay-check was larger than ever before. New records of production were made at several mines, and all the companies were striving to set a new record for the production of refined copper before the end of the year.

This happy state of optimism and apparent prosperity was interrupted early in August by the European war. At first it was thought by a few optimists that a great demand for American copper for war purposes would be created by a general war. It was soon realized, however, that a European war would prevent the exporting of American copper, and when they considered the fact that over 50 per cent of the American output is exported, the operators realized that the war would have a serious effect on the American copper industry.

The general curtailment of production in the western districts was followed in Michigan by the closing of the Winona mine August 6. That this action was necessitated was deeply regretted by the people of the copper country, in view of the fact that successful experiments had recently been completed with a new regrinding machine and a leaching process was also under consideration. The Mass mine at about the same time reduced its working force. With no market for the copper produced, curtailment was an absolute necessity in the Michigan district. The following day the Hancock mine, operating on borrowed capital, suspended all operations. This property had just reached a point where it was paying expenses. The Tamarack mine suspended all work at its two operating shafts.
A number of properties in the exploration and development stage were forced to suspend operations. These forced shut-downs were most unfortunate because, in many cases, they came at a time when the properties had reached the most hopeful stage of development. With a large amount of refined copper on hand and practically no market, the Baltic, Champion and Trimountain mines of the Copper Range Consolidated, on August 15 went on half time schedule. The mines reopened September 1, and operated day and night shifts until September 15, when they closed again until October 1. On September 1 wages were reduced from eight to ten per cent, and the salaries of all officials at the mines and eastern offices were cut 25 per cent.

Beginning September 1, all the mines, mills and smelters of the Calumet and Hecla Mining Company went on a three-quarter time schedule, and the rate of wages existing immediately prior to May 1, 1912, when an increase of ten per cent was given the men, became effective. A reduction of 15 per cent in the pay of the officers and all those not affected by the increase of May 1, 1912, was made. A similar reduction was also made in the pay of all officers and employees of the eastern offices.

The Quincy Mining Company reduced the working force and put into effect a 12½ per cent reduction of wages and salaries of all employees and officials of the company.

The Mohawk and the Wolverine were the only mines in the district which continued to operate full time during the latter part of the year. This was because the product of these mines is used almost entirely by domestic consumers.

In view of the unsettled conditions of the copper market in this country, and the interruption of the company's business with foreign customers, the directors of the Calumet and Hecla Mining Company decided not to declare the usual quarterly dividend September 1. The Calumet and Hecla began paying dividends in 1871, and during the long period of 43 years, only once had the company found it necessary to pass its dividend. In May, 1884, because of the low price of copper and the delays in the sale of the mine products, no dividend was paid. Since 1901 the C. & H. has paid quarterly dividends and two payments had already been made in 1914. The general feeling of the people of the copper country was, that under the conditions of reduced wages and half time, the passing of the dividend was the only fair and proper thing to do.

With the closing of the stock exchanges in Boston and New York, the local brokerage offices in Houghton and Calumet were closed.

The first of September the American production was being curtailed about 45 per cent. Domestic buying was active and about half the normal amount of copper was being exported, in spite of the war conditions. The production of copper was about equal to the consumption. Exports to England were chiefly the filling of old contracts or shipments on consignment.

Difficulties encountered in shipping copper resulted in a decrease of exports. The interception of vessels for Italy and Scandanavia, and the seizures of copper cargoes by Great Britain the latter part of October resulted in very light shipments and a marked falling off in copper exports. The Copper Country Commercial Club sent a formal letter of protest against this action of Great Britain to Secretary Bryan at Washington. Copper producers and commercial clubs in all copper producing districts in the United States also sent similar letters of protest. The total amount of copper seized and detained by Great Britain was about 45,000,000 pounds.

The curtailment of production at the mines and the refineres, the decrease in domestic demand and the difficulty of exportation had a marked effect upon the copper market and the price of copper, which in turn, determines profit and loss in the Michigan district. The copper market opened in January at 14.55 cents. About the middle of February the price stood at 14.65 cents, the highest point of the year. The last of July the price dropped to about 12½ cents and in August the market went to pieces. On November 1 the price was about 11.15 cents but a buying movement carried it up to about 13.2 in December. The market closed in New York at the end of the year at about 12.70 cents.

The price received by the Calumet and Hecla Mining Company varied from 12 cents to 15½ cents. On December 31 it was about 13¾ cents.

During the last two months in the year there was an increase in the business and buying of the domestic manufacturers which resulted in an unusual and unexpected domestic demand for refined copper at the Michigan smelters. About the middle of November the largest shipment of refined copper ever made from the Michigan district was taken to Buffalo by the Mutual Transit Co.'s steamer North Star. The cargo totaled 9,000,000 pounds, and included consignments from the Calumet and Hecla dock on Torch Lake, the smelter dock at Dollar Bay and the Quincy and Copper Range docks on Portage Lake. With the close of navigation on the Great Lakes, the copper country docks were cleared of all copper on hand. The last shipments of the season were made December 1, when two large cargoes left for Buffalo. All available metal was shipped and the cleanup during November was most unusual. The vessels carried copper that was smelted even on the day of sailing.

Full wire service with Boston, New York and Chicago was resumed early in December when the Boston stock exchange reopened for business.

During the latter part of the year, the copper country was visited by several serious disasters. On December 18 one of the boilers at the No. 3 shaft of the North Kearsarge mine of the Osceola Consolidated exploded. The boiler house was almost completely wrecked, the fireman killed and the No. 3 shaft put out of commission.
CONSTRUCTION WORK.

Construction work during the year 1914 was restricted practically to the period from May to August. Strike conditions existed during the first few months and costs were high. The unusual conditions of the copper market, owing to the European war, made it necessary to reduce expenses as much as possible and early in August all construction was discontinued throughout the district.

Work at the White Pine was continued and $195,929.84 was expended for construction at the mine. For details of this work see report of White Pine Copper Co.

Ground was broken for the foundations of the recrushing plant at the Tamarack mill in the summer. The foundations were completed and the steel work erected before the end of the year. The Osceola Consolidated expended $21,109.17 for new construction at all branches. Of this amount about $6,700 was for stamp-mill reconstruction, including elevation of railroad tracks and enlargement of boiler plant. At the Osceola branch $6,765.97 was expended for the erection of a new rock-house at No. 3 shaft, the rebuilding of the boiler house and grading for railroad tracks to the rock and boiler houses. At the North Kearsarge branch $7,627.79 was expended. Of this amount $1,667.50 was for the equipment of No. 1 rock-house and collar-house. The change-house at No. 1 shaft was practically rebuilt and new equipment was installed at the pumping station at Kearsarge dam.

The Isle Royale paid out $34,858.55 in preparation for reopening No. 1 shaft, in building a boiler house at No. 5 shaft, and in installing an electrically driven plunger pump at the Huron dam pumping station.

Ahmeek expended $229,663.45 for construction, which included the installation of a low-pressure steam turbine, 46 Wilfley tables, eight Hardinge mills and foundations for two stamps at the stamp-mill.

The Calumet and Hecla continued the work in the new recrushing plant; the installation of the machinery in the large dredge was finished, and ground was broken for the large leaching plant.

The Copper Range Consolidated continued the improvements at the stamp-mills and underground, and the improvements at the Centennial-Allouez mill were practically finished.

Mohawk spent for construction $15,155.34. Several improvements were made at the stamp-mill and additional equipment installed at the shafts and rock-houses.

At the Quincy construction, equipment and betterment expense was maintained as low as possible. During the year $57,190.41 was spent for the recovery of the shafts and levels damaged by air blasts and $21,487.19 was expended in work towards preventing these damages.

MINE CASUALTIES.

The report of the Houghton county mine inspector showed a total of 29 casualties for the year ending September 30, 1914. This county includes, besides numerous properties being developed, the mines of the Calumet & Hecla, Copper Range Consolidated, Quincy, Winona, Superior, Isle Royale, Hancock, Franklin, Osceola, Kearsarge and Centennial. The largest number of casualties was four at the Baltic. The reports of the inspector since 1888 to date show that the highest percentage of accidents was in 1895, when, with 7,249 men employed, there were 44 fatalities. During that year, however, 30 men were suffocated at the Osceola. The percentage for 1914 was 0.0022 with 12,954 men employed. The only year which shows a better percentage is 1899, when, with 13,057 men employed, 27 accidents occurred, giving a percentage of 0.0021. The report of the inspector of Keweenaw county showed four mine fatalities during the year.

SANITARY CONDITIONS.

An inspection of the sanitary conditions of the communities of the copper country by Robert Olsen and Joseph Bolton, of the U. S. Public Health Service, was completed about the first of November. Almost perfect conditions were found in the mining centers of the district, and there is no doubt that the living conditions in the Michigan copper country are far better than in the average mining district.

THE COPPER HANDBOOK.

"The Copper Handbook" will no longer be published in the Michigan copper districts. This well known publication on copper was founded in 1900 by the late Horace J. Stevens, of Houghton, and was published annually by him until his death in April, 1912. About a year later, rights of the book were sold to Walter Harvey Weed. Mr. Weed, as owner and editor, opened an office...
in Houghton and published the 1914 edition. It was feared at the time of the sale that Mr. Weed would not maintain an office in Houghton for any length of time. However, the news of the removal of the publication office to New York was received with much regret by the people of the copper country. Mr. Weed desired to hand all his business interests from one New York office, and the Houghton office of "The Copper Handbook" was closed about December 1.

THE DOUGLASS HOUGHTON MEMORIAL.

Upon a hill overlooking the waters of Lake Superior where they touch the shore of Keweenaw Point at Eagle River, there now stands an impressive and permanent monument to the memory of Douglass Houghton, scientist, explorer and Michigan's first State Geologist. The monument, erected through the efforts of the Keweenaw Historical Society, was dedicated October 10, 1914. It stands upon a triangular piece of land deeded to the Keweenaw Historical Society by the Cliff Mining Co. The base of the monument is composed of about 175 pieces of characteristic rocks of the copper and iron country. Upon the base rests a large mass of the Keweenawan greenstone, imbedded in which is a tablet, made of Lake Superior copper, with a relief reproduction of the painting of Houghton by Bradish. Houghton is seen standing on a rocky shore with a geological pick in his hand and his dog Meme at his feet.

DETAILS OF OPERATIONS OF THE MINING COMPANIES IN 1914.

Ahmeek Mining Company.

Mine location: Ahmeek, Keweenaw county.
General Manager: James MacNaughton.
Superintendent: S. Russell Smith.
Controlled by the Calumet & Hecla Mining Co.

During the first few months of the year, the Ahmeek was gradually recovering from the effects of the strike. Early in August, owing to the European war, all extraordinary work was stopped and expenses were cut to the lowest possible point. For details of the general curtailment of September 1, see report of Calumet & Hecla Mining Co.

No sinking was done in any of the four shafts during the year 1914. All openings in No. 1 shaft have shown ground of average quality. To the south of the shaft there is a disturbed area due to a mohawkite seam, but President Agassiz reports that the ground opened between this and the North Kearsarge and Allouez boundaries is looking very well.

At the No. 2 shaft drift stoping was started about the middle of March. All openings show average values. President Agassiz reports that the mass copper fissure north of the shaft has been opened up for a distance of 500 feet on the 10th level, 262 feet on the 11th level, 211 feet on the 13th level, 212 feet on the 14th level and 27 feet on the 15th level, and has been reached on the 17th level, where it is as rich as at any point exposed before.

At shafts Nos. 3 and 4 construction was practically completed in May and the new equipment went into operation June 1. President Agassiz reports that all openings in both shafts show ground of average quality for this end of the mine. All operations were suspended August 6.

In shafts Nos. 2 and 3 mules are being used for tramming with very satisfactory results.

At the stamp-mill a low pressure steam turbine was put in place and completed except for electric connections. All floors and foundations for two stamps were finished; 46 Wilfley tables were installed on the main floor; eight of the 12 Hardinge conical tube mills and the anvil and stamp mortar for one of the two steam stamps were installed. All outside launders, trestles, mineral tracks, etc., were completed. All work on this addition and its equipment, however, was discontinued on August 6th.

During the year 590,694 tons of rock was hoisted and only 175 tons (0.03 per cent) was discarded in the rock-house. The company was able to pay $200,000 in dividends.

Algomah Mining Company.

Mine location: Lake Mine, Ontonagon county.
Superintendent: Thomas Bennett.

No mining was done on the property during the year 1914. A shipment of 74,560 pounds of selected ore, taken out during the sinking of the shaft, was made to the Michigan Smelter. No difficulty was found in treating it in the regular furnaces and the shipment yielded 18 per cent copper. Shaft sinking will be resumed in the spring of 1915.

Allouez Mining Company.

Mine location: Allouez, Keweenaw county.
General Manager: James MacNaughton.
Superintendent: F. W. Ridley.
Controlled by the Calumet & Hecla Mining Co.

During the first four months of the year production was low and costs were high, due to the strike conditions and to the inexperienced labor underground. Production, however, was gradually increased, reaching a maximum in July. For general curtailment of operations due to European war, see report of Calumet & Hecla Mining Co.

Openings in the upper levels of No. 1 shaft have been fully up to the average but the lower levels have developed ground somewhat leaner. Developments in No. 2 shaft have been up to average quality. Very little work was done on surface during the year.

Allouez produced during the year 6,056,548 pounds of refined copper from 354,457 tons of ore treated, an
average of 17.09 pounds per ton. Assets were increased during the year by $114,530.43.

Baltic Mining Company.
Mine location: Baltic, Houghton county.
General Manager: F. W. Denton.
Superintendent: Albert Mendelsohn.
Controlled by the Copper Range Consolidated Co.

Normal conditions of operation were reached in June. Two months of full production were followed by another reduction of output caused by the European war. Beginning with August, all employees and departments were put on half time schedule, working for half of each month and shutting down completely for the other half. During the time when the mine was not operating, necessary repair work was done in the shafts.

Improvement was found in the ground opened at the bottom of No. 3 shaft. The developments in No. 2 shaft are in good ground. Considerable stoping ground was found in explorations on the west lode at No. 5 shaft.

The use of waste stamp sand for filling stopes in the mine was begun in August, and during the year 17,670 yards was run into the stopes tributary to No. 2 shaft. This practice has been found very successful, not only in reducing the cost of filling stopes, but also in permitting more rapid and systematic work.

Baltic produced 7,001,945 pounds of refined copper at a yield of 21.59 pounds per ton stamped. The profit per pound was 2.21 cents.

Calumet & Hecla Mining Company.
Mine location: Calumet, Houghton county.
General Manager: James MacNaughton.
Superintendent: John Knox.

During the first four months of the year production was low and costs were high, due to the strike conditions and to inexperienced labor underground. Production, however, was gradually increased, reaching a maximum in July. The unusual conditions of the copper market due to the European war, and the uncertainty of being able to sell the copper produced, made it necessary for the company to curtail production and to reduce expenses as much as possible. On September 1, wages were reduced about ten per cent, or to the rates existing previous to May, 1912, salaries of all officers and employees in both the mine and eastern offices were reduced 15 per cent, and the mine operated on a three-quarters time basis.

During the year 1914 there was produced 53,691,562 pounds of copper from 2,592,462 tons of ore treated, an average of 20.70 pounds per ton. The total cost per pound was 11.35 cents and the price received for copper sold was 14.01 cents per pound.

The conglomerate lode yielded 37,996,045 pounds of copper, an average of 26.38 pounds per ton, at a total cost per pound of 10.42 cents. About 35 drills are at work removing shaft pillars and cleaning up arches and backs of old stopes. Little change has been found in the character of the openings in the Hecla and South Hecla branches.

The openings on the Osceola lode show about the same grade of ore as in the year 1913 and the product secured from foot wall stopes was about 34 per cent of the entire tonnage.

The No. 21 shaft operating on the Kearsarge lode, was closed down July 23, 1913 and no work has been done on this lode since that date.

At the Manitou-Frontenac Branch the only work done during the year was the diamond drilling of 31 feet on hole No. 27, which completed the cross section on the northwest quarter of Section 17, T. 57 N, R. 31 W. No values were developed.

At the St. Louis branch no work of any kind was done during 1914.

At the stamp-mills 16 of the tube mills in the new No. 2 recrushing plant were started in July. All further work on the installation of the equipment was stopped August 1. An interesting comparison of the efficiency and cost of operating the new No. 2 recrushing plant with the old No. 1 plant is as follows:

<table>
<thead>
<tr>
<th></th>
<th>No. 1 Plant</th>
<th>No. 2 Plant</th>
<th>Both Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons coarse tailings crushed</td>
<td>351.959</td>
<td>75.030</td>
<td>427.559</td>
</tr>
<tr>
<td>Pounds per ton in material treated</td>
<td>11.52</td>
<td>11.54</td>
<td>11.53</td>
</tr>
<tr>
<td>Pounds copper saved per ton</td>
<td>8.74</td>
<td>4.59</td>
<td>3.89</td>
</tr>
<tr>
<td>Pounds copper produced</td>
<td>3,316.704</td>
<td>347.865</td>
<td>1,664.565</td>
</tr>
<tr>
<td>Cost per pound, excluding smelting and rolling</td>
<td>7.36c</td>
<td>5.66c</td>
<td>7.02c</td>
</tr>
</tbody>
</table>

The installation of the machinery in the large dredge was finished, the dredge was tested and the management reports that it met the guarantees and requirements fully. Plans were completed for a large leaching plant to treat the tailings from the recrushing plants; ground was broken and contracts for the steel for building and tanks were let, but on account of the unusual copper market all work was discontinued in August.

All operations have been discontinued at the Buffalo works and the entire product of the mine is now being smelted at the Hubbell works. The new electrolytic plant is working at full capacity of about 65,000,000 pounds per year.

During the year 1914 the C. & H. paid only two dividends, amounting to $1,000,000 and received from the Ahmeek and Osceola companies in dividends $245,322. Dividends received exceeded interest paid on C. & H. notes by $78,962. The expenditures of the aid fund during the year amounted to $36,016.48.

Centennial Copper Mining Company.
Mine location: Calumet, Houghton county.
General Manager: James MacNaughton.
Superintendent: F. W. Ridley.
Controlled by the Calumet & Hecla Mining Co.
The operations for the Centennial for the year 1914 show a decrease in assets for the year of $3,213.09.

No development or stoping was done in the vicinity of No. 1 shaft. Openings to the north of No. 2 shaft showed average ground for the first nine months of the year but were lean the latter part of the year, with the exception of the 34th drift.

This decrease in copper contents and the unusual condition of the market made it impossible to operate at a profit and further reduction in costs was necessary. The first of December a system of full time work with lower wages was put in force. This plan meant larger monthly earnings to the men and a reduction of costs to the company. The Centennial suffered the same curtailment September 1 as the other C. & H. subsidiary companies. For details see report of Calumet & Hecla Mining Co.

During the year 2,287,130 pounds of refined copper was produced from 138,136 tons of ore treated, an average of 16.56 pounds per ton. The total cost per pound of refined copper was 12.56 and the price received was 12.111 cents.

**Champion Copper Company.**

Mine location: Painesdale, Houghton county.
General Manager: F. W. Denton.
Controlled by Copper Range Consolidated Company and St. Mary’s Mineral Land Company.

During the first part of the year there was a reduction in output due to the strike. From August in the end of the year the mine produced only half time. Considerable repair work was done in the shafts during the shut-downs.

Fire destroyed one of the old wooden change-houses located near "D" shaft. General manager Denton states that plans have been made for a new, large, modern, fireproof building which will accommodate both "V" and "E" shafts.

A special spur track and concrete loading bin were constructed at the mill to facilitate collecting and loading waste stamp sand. During the year, 84,090 cubic yards of stamp sand was run into the mine for filling stopes. Underground electric locomotives are proving profitable. Two more were added during the year and several more will be put into service in 1915.

Development was far ahead of production and openings were not pushed at the usual rate during the year. No shaft sinking was done. The number of pounds of refined copper produced was 15,807,206, and the yield of copper per ton stamped was 25.71 pounds. The total cost per pound was 9.21 cents and the profit per pound 4.17 cents.

**Cliff Mining Company.**

Location of property: Keweenaw county.
General Manager: James MacNaughton.
Controlled by the Calumet & Hecla Mining Co.

Balance of assets was reduced by $9,938.22 during 1914.

No work was done at the temporary shaft. Three drill holes were put down in order to complete the exploration from the Kearsarge amygdaloid to the most easterly part of the company's lands. In two holes the rock was so badly broken that definite correlation with other holes was impossible. The third hole at a depth of 638 feet reached the boundary of the property and was continued to a depth of 1,155 feet by the Tamarack Mining Co. on its property. President Agassiz reports that very little copper was disclosed by this work.

**Contact Copper Company.**

Location of property: Elm River, Houghton county.
Superintendent: George S. Goodale.

Owing to strike conditions in Michigan, general business conditions everywhere, and the European war, only a small amount was paid on account of the assessment of 50 cents per share called in April, 1914. Since no contract for diamond drilling could be safely made until the treasury was sufficiently supplied with funds to warrant it, no work was done on the property during the year 1914.

Superintendent G. S. Goodale states that practically all of the 2,360 acres of the property lie within the copper-bearing zone of Houghton county. He further states that "the property possesses a maximum distance along the strike of the formations of nearly 17,000 feet and a horizontal transverse distance, at right angles to the strike, of nearly 12,000 feet. The formations, so far as determined, have an average dip of about 60 degrees from the horizontal, which affords a mineral acreage of about twice the surface acreage. The property includes the horizons of practically all the mineralized formations of the district lying between the eastern sandstone and the so-called Ashbed series of Keweenaw Point."

President H. F. Fay points out to the stockholders that additional systematic drilling should be done on certain portions of the lands which have already been partially examined. Between the depths of 1,590 feet and 1,621 feet, Contact drill hole No. 5 disclosed a copper-bearing amygdaloid, lying between two conglomerates; which corresponds approximately with the indicated position of the extension of the so-called No. 8 Wyandot lode. This extension should pass through the eastern part of the Contact lands and would underlie the whole property, thus making available a maximum tonnage favorable for commercial exploitation. It is intended to determine the value of this formation by drilling one or more additional holes parallel to the No. 5 drill hole. This, however, cannot be undertaken until the stockholders have paid their assessment in sufficient amounts to warrant
contracting for the work. When work was suspended for lack of funds, there remained over 3,000 feet of drilling to complete the first cross-section of the property.

President Fay states that through a timber contract the company will be relieved from paying most of its taxes in Michigan for the present. There is also a considerable stock of machinery and mining supplies in possession of the company, which can be sold whenever opportunity offers or will be available when active mining operations are undertaken.

Copper Range Consolidated Company.

Mine office: Painesdale, Houghton county.
General Manager: F. W. Denton.

Controls Copper Range Co., Baltic Mining Co., Trimountain Mining Co.; and Atlantic Mining Co., and owns half of Champion Copper Co.

The production and profits for 1914 were far below the normal. The effects of the strike greatly reduced production during the first part of the year. Normal output was not reached until July. The output increased from a yearly rate of 17,086,309 pounds in January to 30,792,612 pounds in July. The European war again necessitated a reduction of production which was effected by working the first half of each month and remaining idle for the last half. The Copper Range Consolidated was one of the first companies to curtail production, the first shut-down occurring August 15th. The August output was one-half that of July and this curtailment continued for the remainder of the year.

When work was resumed September 1 wages were reduced from eight to ten per cent; the salaries of all officials at the mines and eastern offices were cut 25 per cent and all these reductions continued through the remainder of the year. By this method the output was reduced without disturbance to the organization, and operations were carried on normally during the working periods. The cost of production, however, was greatly increased by the expense of maintenance and repair work during the idle periods. All expenditures are charged to cost of copper.

On January 1, 1915, the Copper Range Consolidated opened a sales office at 32 Broadway, N. Y., with Mr. W. Parsons Todd as manager of copper sales. Since 1906 the United Metals Selling Co., of New York, had acted as selling agent for the company. The selling commission was one per cent and the average yearly commission paid was $55,000. It was felt that the company could handle the sale of its product direct to the trade at less cost and at the same time could get in closer touch with the requirements of its customers.

The use of raises in mining has been continued and the use of stamp sand for filling in the mines has increased with profitable results. The number of electric locomotives for underground tramping was increased. President Paine states that "the physical conditions at all the mines are good and assure a successful and profitable future. Due to various improvements in underground work and in milling, it is expected that the yield of copper per ton will be materially higher in the future, and if this expectation is realized, it will result in a lower cost per pound."

Franklin Mining Company.

Mine location: Demmon, Houghton county.
Superintendent: Enoch Henderson.

The only production during the year 1914 came from the test stamping of 7,324 tons of rock taken from the new openings on the Allouez conglomerate at the 32d level. President Edwards states that the results of this test, taken in connection with the general appearance of the openings since made, warrant the belief that the lode can be mined at a profit. Regular production will probably begin about the middle of May, 1915.

A small compressor was installed in No. 1 shaft-house and other changes made to permit the economical operation of a number of drills. One drill was put into operation the latter part of January in the foot wall cross-cut on the 32d level. Other drills were added until six were in operation. The crosscut on the 32d level was advanced 927 feet easterly to the first amygdaloid under the Houghton conglomerate. Besides the Allouez conglomerate and the Houghton conglomerate, six amygdaloid beds were cut in this crosscut.

Superintendent Henderson states that three of these amygdaloids were barren, two carried copper in small quantities and one showed mineral and vein matter worthy of further development. The Calumet & Hecla conglomerate should be reached in April, 1915.

Drifting on the Allouez conglomerate at the 32d level was begun about the middle of March. A great deal of interest was shown in the openings in the Allouez conglomerate which were made for the purpose of determining the value of the lode as a whole, without selection in mining or discard from the rock broken. The drifts were cut as wide as the hanging would permit and for the first four mill-runs, all rock broken was sent to the mill. A small quantity of rock was discarded in the rock-house from the last mill-run. Superintendent Henderson reports the results of stamping as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Tons rock</th>
<th>Pounds of copper</th>
<th>Pounds of copper per ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 5, 1914</td>
<td>906</td>
<td>25,220</td>
<td>27.95</td>
</tr>
<tr>
<td>April 20, 1914</td>
<td>1,052</td>
<td>31,540</td>
<td>30.02</td>
</tr>
<tr>
<td>May 10, 1914</td>
<td>1,138</td>
<td>33,027</td>
<td>29.24</td>
</tr>
<tr>
<td>June 10, 1914</td>
<td>2,105</td>
<td>40,983</td>
<td>19.86</td>
</tr>
<tr>
<td>August 26, 1914</td>
<td>2,247</td>
<td>41,807</td>
<td>18.80</td>
</tr>
</tbody>
</table>

Tons averaged four pounds per ton.

Hancock Consolidated Mining Company.

Mine location: Hancock, Houghton county.
General Manager: John L. Harris.
The Hancock, operating on borrowed money, was greatly retarded in development work by the strike and the European war. During the year a total of 2,300 feet of drifting was done at six levels on veins intersected at depth in the No. 2 shaft. Stoping was done at four levels on the No. 3 lode, at three levels on the No. 4 lode, at two levels on the No. 8 lode and at two levels on the No. 9 lode.

The rock from this development work was stamped by The Lake Milling, Smelting & Refining Co., and yielded 488,678 pounds of refined copper which was sold at 13.389 cents per pound.

During the year the directors found it necessary, in order to carry on operations, to borrow $164,000 from eastern bankers.

With the exception of keeping the mine free of water, all mining operations were suspended August 8th for the balance of the year. General Manager Harris reports that the physical condition of the property is such that mining operations can be resumed at any time.

Houghton Copper Company.

Mine location: North of the Superior Mine, Houghton county.
Superintendent: R. R. Seeber.

Operations were resumed with one shift on January 13th. The sinking of the winze below the 820 foot level was continued for a depth of 102 feet. The 620 foot level was extended north 383 feet and showed an occasional bunch of good copper ground but generally was rather poor. A 70 foot crosscut was driven to the hanging. The 1,020 foot level was extended 397 feet to the south and 334 feet to the north of the winze, and superintendent Seeber reports that some very good copper ground was encountered on both sides.

A railroad spur will be run to the property in the spring which will enable a mill test to be made of the rock pile of 7,500 tons which has accumulated from the development work. All operations were discontinued on September 15th.

Isle Royale Copper Company.

General Manager, James MacNaughton.
Superintendent: James E. Richards.
Controlled by the Calumet & Hecla Mining Co.

Production was very much restricted by scarcity of labor during the first third of the year and it was not until June that production reached normal. As a Calumet & Hecla subsidiary, Isle Royale suffered the same general curtailment on September 1st as the Calumet & Hecla. For details see report of Calumet & Hecla Mining Co.

The operations for 1914 show an increase in assets of $24,374.12. From 474,349 tons of ore treated, 6,601,235 pounds of refined copper was produced, an average of 13.9 pounds per ton. The total cost per pound refined copper was 13.05 cents and the price received was 13.16 cents per pound.

In May retimbering of the old No. 1 shaft was started. The timber in this shaft was destroyed by fire on December 18, 1903 and since that time no work has been done in the vicinity. The shaft was started in the Isle Royale lode and is bottomed at 1,614 feet from surface. The greater part of the production was mined from the west lode by means of crosscuts on the 9th to the 15th levels. There is broken ore in many of the stopes and some of it can be recovered.

The management decided to reopen the No. 1 shaft and to resume sinking in order to explore and mine the West lode, especially in the Montezuma ground. In August the shaft had been retimbered to 15 feet below the 8th level when all work was discontinued owing to the European war.
 Practically all of the ground opened by drifts south of the No. 2 shaft on the Isle Royale lode was of inferior quality. The water in the old Huron mine was lowered to a point below the 14th level of this shaft and the level was extended to the Huron workings.

About 50 per cent of the ground opened by drifts on the West lode to the north of No. 2 shaft was of stoping quality. The drifts on the 26th and 29th levels passed through the corner of the Montezuma property for several hundred feet and both showed average copper ground. At the Nos. 4, 5 and 6 shafts a total of 6,960 feet of drifting was done, about 70 per cent of which was in copper ground of stoping quality. No work was done at No. 7 shaft but the management is contemplating the resumption of work at this point.

For transporting 191,597 tons of Superior ore at seven cents a ton, $13,411.79 was received. This reduced the cost of transporting Isle Royale ore over its own tracks to 3.83 cents per ton.

On the night of December 24th the stamp-mill was completely destroyed by fire. The mill and its contents were insured for $100,000, but the loss will exceed the insurance by from $30,000 to $50,000. The management hopes to have the new mill ready for operation by June 1, 1915. Until the new mill is finished, Isle Royale ore will be stamped at the Centennial-Alouez and Tamarack mills.

Keweenaw Copper Company.
Mine location: Near Phoenix, Keweenaw county.
General Manager: W. J. Uren.

This company owns nearly all of the outstanding stock of the Phoenix Consolidated Copper Company, over five-sixths of the outstanding stock of the Meadow Mining Company, and a majority of the outstanding stock of the Humboldt Copper Company. The shares in above companies were obtained by purchase or by exchange for shares of the Keweenaw Copper Co. The mineral lands of these companies are contiguous and it is essential that these lands be explored and developed by the organization to secure economical results.

Diamond drilling along the strike of the Ashbed lode was continued until May 28, 1914. President T. F. Cole reports that enough advance information to enable the management to concentrate their efforts toward the development of a mine was secured.

No work was done on the lands of the Humboldt Copper Company during 1914. For other exploratory work see reports of Phoenix Consolidated Copper Company and Meadow Mining Company.

Lake Milling, Smelting & Refining Company.
Seven of the eight boilers in the new boiler house are in commission. The wash of No. 1 head is being remodeled, and 1,000 feet of tailing-launder was completed for heads Nos. 2 and 3.

Because of the increase in production of Superior, Isle Royale, Allouez and Centennial, stamping facilities at the mill became congested in May. The remodeling of the two heads in the little Tamarack mill was completed in June and some Allouez and Centennial ore was sent to that mill. When the Isle Royale mill was destroyed late in December all the Isle Royale ore was sent to the Point mill. This necessitated another change by which the Allouez ore was handled in the little Tamarack mill and the Centennial product by the Osceola Consolidated Mining Co. By this arrangement the Allouez and Centennial companies saved in freight rate six cents a ton.

During the year 9,685 tons were stamped for the Winona Copper Company and 4,777 tons for the Franklin Mining Co.

On September 1 the mill went on a three-quarters time schedule and a reduction in wages corresponding to that of the Calumet & Hecla mines went into effect.

La Salle Copper Company.
Mine location: South of Osceola, Houghton county.
General Manager: James MacNaughton.
Controlled by the Calumet & Hecla Mining Company.

During the year 1914 the La Salle produced 540,731 pounds of refined copper from 45,509 tons of ore treated, an average of 11.88 pounds per ton. The price received for copper sold was 12.797 cents and the balance of assets was further reduced by $48,668.30.

At No. 1 shaft some stoping was done and a larger hoist was about to be installed when the mine was closed down.

The operations at No. 2 shaft consisted of stoping on the 12th level, drifting on levels below the 12th and sinking the shaft. The management reports that the openings were generally in fair copper ground on the north side of the shaft and at the 17th, or lowest level, copper ground was beginning to show on the south side also.

The mine was closed down early in August on account of the European war. Pumping has been continued and the water has not been allowed to rise above the 13th level in either shaft. The management has planned to resume operations in the early summer of 1915.

Mass Consolidated Mining Company.
Mine location: Mass, Ontonagon county.
Superintendent: E. W. Walker.

Operations were resumed on a small scale the latter part of February. Normal operating conditions were reached in May. The low price of copper caused by the European war made it impossible for the Mass to operate successfully. Since expenses would be greater if the mine were closed than the loss when running, the management decided to continue operations, retain their organization and give work to their employees.
More development work was done during 1914 than in 1913 and an appreciable amount has been added to the ore reserves. The estimated "Butler" ore reserves December 31, 1913 were 824,196 tons; reserves added during 1914 were 439,179 tons, making a total of 1,263,375 tons. During 1914, 151,620 tons were extracted, leaving estimated "Butler" ore reserves December 31, 1914, 1,111,755 tons.

Superintendent Walker states that so far it has been impossible to estimate the ore reserves in the Evergreen and other lodes with any degree of accuracy, but that the Evergreen has and will continue to produce a considerable tonnage of stamp rock in addition to a large part of the mass copper produced by the mine. The Evergreen, Ogima and Knowlton lodes produced in 1914, 57,734 tons of ore.

President Linnell reports that during the past few years the company has been putting excessive expenditures into development but that from now on mining will be done on a larger scale and the proportional expense of development cost will be considerably less per pound of copper produced. The president further reports that the "Butler" lode in both "B" and "C" shafts is increasing in width with depth and is showing a material increase in copper contents.

Mayflower Mining Company.

Location of property: East of Kearsarge and Wolverine mines, Houghton county.
Superintendent: George S. Goodale.

Further exploration of the property by diamond drilling was continued during the year 1914. Two diamond drills were used in holes Nos. 35 to 41 inclusive, and a total of 10,304 feet was drilled during the year. The overburden in these holes varies from 5 to 28 feet.

Holes 36 to 40 are in the northeast quarter of section 8 and were drilled to extend the investigations northward, along the strike of the formations. Holes 35, 39 and 41 are in the southwest quarter of the same section and were drilled to explore the ground to the west of the earlier drilling.

Superintendent Goodale states that holes 34 and 37, which make up a transverse vertical section across the formations, indicate a much disturbed condition of the rocks due to faulting and crushing. Holes 36, 38 and 40 show that the lower beds have undergone repeated and in some places, pronounced disturbance. Holes 35 and 39 indicate faulting of considerable magnitude, but do not show the generally unfavorable conditions found in the northern part of the property. The last hole was located farther west and should intersect the Mayflower lode much deeper than encountered elsewhere.

Meadow Mining Company.

Location of property: Adjoins Phoenix Consolidated Copper Co., Keweenaw county.

Three diamond drill holes were bored through a portion of the hanging wall and across the Ashbed lode.

President Thomas Hoatson reports that two of these holes intersected the copper-bearing part of the lode at 489 feet and 364 feet respectively from the surface. The third hole cut the same formation at 713 feet from surface and disclosed vein matter of good width with good values in both the upper and lower portions of the amygdaloidal flow.

Mohawk Mining Company.

Mine location: Mohawk, Keweenaw county.

During the year 1914 Mohawk produced 11,094,859 pounds of refined copper at a total cost per pound of 8.23 cents. A dividend of $100,000 was paid August 15th, and the strike expense for the year was $23,685.77.

Following the strike, limited operations were begun in December, 1913 but it was not until May, 1914 that normal production was started. The Mohawk continued normal production throughout the year and was one of the two producing mines in the district which did not curtail operations because of the war.

Mohawk is now operating six shafts. The mine is equipped with 90 "Ingersoll Leyner" drilling machines and also with jack hammers and stopers. It is the intention of the management to close down permanently No. 3 shaft. Blocks, pillars and foot rock of value that cannot, without much extra expense, be reached in later years from No. 2 and No. 4 shafts are being removed. Considerable mass and heavy copper were obtained during this work. Test crosscuts into the foot and hanging on the 7th level did not show any values.

There was expended for construction $15,155.34. Plans for a new rock-house at No. 5 shaft are now under way. At the stamp-mill considerable expense was incurred in keeping the intake cleared from ice and debris. In order to maintain an open channel for slimes through the stamp sand, a reinforced concrete tunnel, 314 feet long, three feet wide, and five and a half feet high inside with 330 feet of retaining walls was constructed. Four additional Wilfley concentrating tables were installed in the mill to handle slimes.

Naumkeag Copper Company.

Mine Location: Houghton, Houghton county.
Superintendent: Sidney S. Lang.

Exploration was continued by means of crosscuts and drifts and some fairly good copper was found in several of the openings.

At the beginning of the year the Dakotah Heights adit had been driven east a distance of 245 feet and had encountered a lode which contained copper, and which was presumed to be the foot wall bed of the Quincy-
Pewabic series. An electrically driven compressor and an electrically operated hoist were installed at the mouth of the adit to raise the rock sufficiently high to form a dump.

Drifting was done north and south on what the management believes to be the Old Pewabic lode, and the result of this work has indicated a lode from six to eight feet wide, showing some copper throughout a length of 700 feet, the best showing being confined to the 325 feet south of the main adit.

President J. P. Channing reports that "it cannot be said that the lode developed is as yet one of commercial value, but certainly the showing is sufficiently good to warrant the continuance of development work."

New Arcadian Copper Company.
Mine location: East of Quincy mine, Houghton county.
General Manager: Robert H. Shields.

Although the operations during 1914 were greatly curtailed by the war, the development work continued to show good results.

The work during the year was confined to the development of the New Arcadian lode and consisted of sinking the shaft to the 900 foot level, crosscutting east to expose the lode on two levels, drifting on the lode at four levels and extending a crosscut east beyond the lode at the 900 foot level.

Engineer Fesing states that the showing of the lode on the 900 foot level will compare favorably with any amygdaloid in the district. A number of good looking amygdaloids were found in the east crosscut. Stopping was done on the various levels and a stock-pile of about 2,500 tons has been accumulated. Arrangements have been made with the Franklin Mining Company for a mill test of this rock and the first shipment to the Franklin mill will be made early in May, 1915.

New Baltic Copper Company.
Location of property: East of Franklin mine, Houghton county.
General Manager: Robert H. Shields.

No active mining operations was carried on during the year 1914 because of the unfavorable industrial conditions and in order to await the results of the development work on the adjoining New Arcadian property.

The very favorable results of the development work at the New Arcadian have a most important bearing on the New Baltic. All the north openings on the New Arcadian are in good copper ground and the drift on the 250 foot level is now less than 200 feet from the boundary between the two properties. Engineer Fesing states that the New Arcadian lode traverses the New Baltic property with a workable length of about 4,000 feet and that it could be worked to a depth of about 3,700 feet at its deepest portion. This would give the New Baltic approximately 170 acres on the lode and about 5,000,000 tons of recoverable rock.

The management intends to expose the New Arcadian lode from the surface at different points by means of pits and cross-trenches as soon as weather conditions will permit in 1915.

North Lake Mining Company.
Mine location: Lake Mine, Ontonagon county.
General Manager: R. M. Edwards.
Superintendent: Thomas Bennett.

Work was resumed in May and the unwatering of the shaft begun. The crosscut at the 300 foot level was continued in order to cut the extension of the lodes being developed on the South Lake property.

At 210 feet from the shaft the crosscut passed through No. 8 conglomerate, which point in the crosscut corresponds with the hanging of No. 8 conglomerate cut at a depth of 570 feet in the South Lake shaft. Since this point should be about 550 feet horizontally from the first of the South Lake lodes, the management expected to cut the first of these lodes by the crosscut at about 760 feet from the shaft. However, at 730 feet the crosscut broke through into the overburden. It then became necessary to build a concrete dam at the end of the crosscut to hold back the clay overburden and to sink an inclined winze to a greater depth, before going ahead with the crosscut. The winze was sunk 200 feet on an incline of 30 degrees and crosscutting was resumed at the 400 foot level.

In addition to the work now going on, general manager Edwards recommends that future exploration of the property should include the sinking of the shaft to at least 800 feet and the driving of a crosscut east at that depth to cut the lodes which diamond drilling has shown lie in that direction.

Old Colony Copper Company.
Location of property: Calumet, Houghton county.
Superintendent: George S. Goodale.

All work during the year was confined to the extension of the diamond drill investigations of the Mayflower lode. Two drills were employed continuously in eight holes and a total of 12,774 feet of drilling was done during the year ending November 19th. This is slightly greater than the total footage of the preceding year. Superintendent Goodale states that "in places a high degree of mineralization was shown, some of the rock being thoroughly impregnated with fine copper."

It was necessary to extend several holes to a much greater depth to secure information regarding fault movements. This work has been done under the direction of Consulting Engineer A. L. Dickerman, and the later drill holes are proving his theory regarding these movements.
President Fay reports that although the operations for the year have covered a much wider area, the results are considered satisfactory, both in increased footage drilled and the fact that every hole has shown persistent mineralization.

**Osceola Consolidated Mining Company.**

Mine locations: Osceola, Kearsarge and Tamarack, Houghton county.
General Manager: James MacNaughton.
Superintendent: Frank H. Haller.

During 1914 the balance of assets was increased by $64,136.25, and the company paid out in dividends $288,450. A total of 1,108,447 tons of ore was stamped, yielding 14,970,737 pounds of refined copper, an average of 13.5 pounds per ton.

Osceola Branch:

Mill tests of rock from No. 5 shaft made in June and July showed the rock to carry less than ten pounds to the ton and a number of the poorer stopes were abandoned. The extreme south workings of No. 6 shaft showed a gradual improvement all the year and are now in very good ore. The management decided to reopen No. 3 shaft in order to mine the large amount of foot wall rock near the shaft. A new rock-house was erected in July. Early in August all construction work was stopped and underground work at No. 5 shaft was discontinued. For general curtailment of September 1 see report of Calumet & Hecla Mining Co.

In order to prevent a loss from operations at this branch, on December 1 a system of full time with lower wages was put in force. The cost per pound, excluding mill construction, was 15.07 cents.

North Kearsarge Branch:

By the first of May production was normal, the repairing of No. 1 shaft was nearly finished and the lower workings unwatered. At this branch $7,627.79 was expended for new construction. No. 1 shaft was about ready for operation early in August when all construction work was discontinued and in October this shaft was completely shut down.

In the latter part of December the boiler house building at No. 3 shaft was wrecked and operations were stopped. No. 1 shaft was then put in shape and plans made to resume production as soon as possible. Considerable repairing was necessary so no hoisting was done in 1914. The cost per pound at the North Kearsarge branch was 11.62 cents.

South Kearsarge Branch:

Only a small amount of development work was done at this branch during 1914. Operations were restricted chiefly to straight stoping and foot wall work. President Agassiz reports that the stopes of No. 2 shaft are rather lean and that the recovery of copper per ton of ore treated from now on to the end of this branch’s productive life will probably be a decreasing factor.

A total of 6,303,000 pounds of copper was produced at an average of 16.23 pounds per ton. The cost per pound was 7.92 cents.

**Phoenix Consolidated Copper Company.**

Mine location: Near Phoenix, Keweenaw county.
General Manager: W. J. Uren.

Exploration by diamond drilling was continued along the strike of the Ashbed lode for about 3,300 feet, approximately to the boundary line between the Phoenix and Meadow properties. Five holes, totaling 2,785 feet, were drilled through the lode and general manager Uren states that nearly all of them gave fair to good copper values in the cores. This work furnished much valuable information as to the dip of the lode at depth and the desirable location for another shaft, which President Cole reports should be started in the spring of 1915, or as soon thereafter as a mill test of rock from No. 1 shaft shall prove the rock to be commercially valuable.

The No. 1 shaft was reopened and enlarged down to the third level which was the bottom of the old workings. This work was completed during April and since that time, sinking has continued steadily, showing fair copper values. The shaft was sunk a total of 758 feet and 2,010 feet of drifting was done. The total depth of the shaft was 878 feet at the end of the year. General Manager Uren states that the drifts on the 3rd, 4th, 5th and 6th levels east and west showed fair to good copper values.

For drainage purposes the "Armstrong" fissure vein adit level was reopened from its mouth at the bed of Eagle River for a distance of 581 feet. Additional equipment was installed at the power plant at No. 1 shaft and Leyner one-man drills were put in use. A small pumping plant was completed on the bank of Eagle River and dwellings for employees and machine and carpenter shops at Phoenix were repaired.

**Quincy Mining Company.**

Mine location: Hancock, Houghton county.
General Manager: Charles L. Lawton.

During the year 1914 the operations of the Quincy were seriously effected by the strike, air blasts and the European war. During the first six months the company did not operate at a profit and later in the summer the European war necessitated a reduction of the working force, as well as 12½ per cent reduction of wages and salaries of all employees and officers of the company. During the last two months of the year the price of copper improved and Quincy was able to sell copper which had accumulated and resumed payment of quarterly dividends which were discontinued during the strike.

Late in March a number of heavy air blasts occurred with extensive falls of rock. It may be interesting to engineers
to read of the consequences of these air blasts and the means employed to prevent them as stated by general manager Charles L. Lawton:

"On March 25th, air blasts occurred throughout the mine and continued intermittently for a week or ten days. As a consequence, various crosscuts and drifts were crushed and closed up. No. 6 shaft timbers were seriously crushed between the 51st and 58th, levels, and No. 2 shaft was crushed and closed between the 40th and 50th levels.

"About 500 feet of the crushed section of No. 2 shaft had to be entirely recovered and retimbered at an expense nearly as great as that of sinking a new shaft. In the remaining portion of the damaged shaft, about half of the timbers were replaced.

"Below the 50th level, the shaft was not damaged by the air blasts, though the crosscuts at the 57th, 64th, 65th and 66th levels were entirely closed, and the levels north were badly crushed.

"It was necessary to employ a considerable force of men for several months to renew and repair a large proportion of the timbers in the crushed section of No. 6 shaft, and to strengthen it by filling the old adjacent stopes with rock, while keeping the shaft in constant operation, in reopening crosscuts and drifts that were crushed and in reopening and retimbering No. 2 shaft. Thus the cost of production was increased very much during the months following the air blasts, especially because of the loss of three months' product from No. 2 shaft, and consequently the impossibility of operating the mine, railroad and stamp-mills as economically at about 65 per cent of capacity.

"In earlier days, when air blasts were little understood, it was the custom to stope out the lode irrespective of the shaft. If the lode was rich in copper it was stoped out close over or under the shaft: where the shaft was in the lode, the latter was stoped right up to the shaft without leaving shaft pillars. Going through the upper portions of No. 2 and No. 6 shafts, is like going down through open stopes; with practically no pillars left to protect the shafts. It was in the lower part of these sections that the caving and crushing took place, with such serious results.

"For several years there has been a rigid adherence to the policy of leaving increasingly larger shaft pillars as the shafts are sunk, in order to sustain the litho-static pressure about the shafts. The air blasts have never caused any damage to these sections of the shafts. At the present bottom of the mine, these pillars are being left two hundred feet each side of the shaft.

"Air blasts have continued with more or less frequency since July, though they have not damaged or retarded the work to any great extent. There were but three fatal accidents during the year, involving less than one-fourth of one per cent of the working force.

"In order to meet the air blasts and prevent as far as possible the damages caused by them, as fast as the mining in each stope is finished, the bottom of the stope along the back of the level is filled with poor rock, constituting what is termed 'rib work.' Experience has taught that these rock packs are the most effective means yet employed to lessen the damage caused by air blasts.

"After a careful investigation and study of the effects of the series of air blasts that occurred in 1906, rib work was employed for the first time throughout what were then the lower workings of the mine to combat the damages caused by these disturbances. For a number of years, these rock packs proved effective, until the series of 1909. Again careful investigation and study readily showed that the rib work was along proper lines, but had not been carried far enough. Therefore, the packs were made deeper in the stopes—that is, doubled in size. For a still longer period of time these rock packs proved sufficient, until March 25th, 1914, when another series of air blasts occurred. For the third time it has been shown that the rock packs proved to be the best means of limiting such damage.

"In order, however, that the highest effectiveness possible may be secured within the limits of profitable mining at the greater depths, this rib work should be still further strengthened. It is estimated that the voids in the rock give it a shrinkage of about 20 per cent at the present depth of the mine. In order to lessen this shrinkage and strengthen the rib work, the question of filling the voids in the rock with bank sand, stamp sand, or crushed rock, is receiving serious consideration, inasmuch as provisions must be made for better and stronger supports to the back of each level, as fast as stopping is finished. This must be done so as to avoid extended crushing, and thus guard the safety of the employees, minimize the losses and expenses caused by air blasts, and make permanent the mine's future operations with depth."

Throughout the year, the eight-hour work day has been in force in the mine and stamp-mills. This has necessitated the adjustment of the entire operations of the mine, in order to maintain the same output in the shorter number of hours. The mine was fully equipped with the light weight one-man hammer drilling machines in April. General Manager Lawton states that the upper levels of the mine contain many thousands of tons of lower grade ore in narrow lodes, which can be profitably mined with the lighter drilling machines. Development work was continued underground and all shafts were sinking throughout the year. An interesting fact is that the bottom drifts and stopes are showing an increase in copper contents. No. 9 shaft was not operated during the year for the sake of economy.

The new daily card system of time keeping has been improved, now includes the stamp-mills and is proving very satisfactory. At the beginning of each shaft the miners are provided with individual pocket carbide-retainers for mine lighting. These cans hold just enough carbide for a shift's work and waste is thus prevented. Small pocket lubricating oil cans have been provided for
miners or machine runners and hold just enough oil for a shift's work of the drilling machine.Regular classes in First Aid Instruction have been held by the medical staff throughout the year and each successful graduate is given a certificate. As a result of this work a large decrease in the compound fracture accidents and in the percentage of infection in all accident cases have been very marked. A rigid physical examination by the medical staff is required of all applicants for positions with the company.

At the smelter the costs were high in the first six months of the year but by strict economy, improvement, and reduction of wages, about the same costs as in the previous year were maintained. The eight-hour work day went into effect at the smelter July 1st.

Smith Explorations.

As a result of the favorable development work at the White Pine, further explorations to the west on the Nonesuch formation were started about November 1st. The exploratory work was done in Section 7, T. 50 N., R. 43 W. and Section 12, T. 50 N., R. 44 W., about eight miles west of the White Pine.

Mr. Fred Close is in charge of the exploration work and Mr. A. E. Seaman is acting as consulting geologist. Mr. Close states that at the end of January, 1915, some test-pitting has been done, a shaft had been sunk 70 feet, a crosscut made into the formation for 40 feet and 15 feet of drifting done.

The results obtained were very favorable and extensive diamond drilling will be done in the spring of 1915.

South Lake Mining Company.


Work was resumed in April and total openings of 1,952 feet were made during the year. The shaft was unwatered and sunk from 537 feet to 626 feet. At the 600 foot level a crosscut was driven 19 feet northwest and 1,379 feet southeast, at an average rate of better than 200 feet per month for the entire distance. This crosscut was made to explore that portion of the property in which four distinct copper bearing horizons, dipping to the south, were found by diamond drilling several years ago. The dip at the shaft is northerly and at 900 feet from the shaft the dip was found to be distinctly southerly. At the end of the year two of the copper bearing horizons dipping south had been cut in the crosscut; these have been called No. 4 south and No. 3 south. The section through shaft and crosscuts suggests the possibility that No. 4 south may be the same as No. 3 north, and No. 3 south the same as No. 1 north, as they lie approximately the same distance above No. 8 conglomerate. The 600 foot level crosscut will be extended and drifting will be pushed on the different lodes.

On the 300 foot level the crosscut was extended to the No. 1 lode and the No. 3 lode and both were opened east and west by drifts. General Manager Edwards states that all the lodes mentioned carry copper. No. 4 south where cut by crosscut and No. 3 north as far as opened, being particularly good looking.

A considerable stockpile has accumulated from the drifting on Nos. 1 and 3 north and arrangements for stamping will probably be made in the near future.

St. Mary's Mineral Land Company.

Agent: F. W. Nichols, Houghton.

No sales of mineral land were made during the year. The real property of the company at the close of the year consisted of 93,032.69 acres, besides the mineral rights to 14,112.96 additional acres.

During the year the company paid in assessments to the Winona Copper Company $56,778, to the Mayflower Mining Company $25,000 and to the Old Colony Copper Company $80.

The St. Mary's company owns shares of stock in the following companies: Champion Copper Co., Hancock Consolidated Mining Co., La Salle Copper Co., Pacific Copper Co., Copper Range Consolidated Co., Winona Copper Co., Old Colony Copper Co., Mayflower Mining Co., Ojibway Mining Co., North Lake Mining Co., Franklin Mining Co., Houghton Copper Co., Naumkeag Copper Co. and the Douglas Copper Co.

Superior Copper Company.

Mine location: South of Isle Royale, Houghton county. General Manager: James MacNaughton. Superintendent: Ocha Potter. Controlled by the Calumet & Hecla Mining Company.

The Superior increased its balance of assets in 1914 by $23,175.75. A total of 3,217,635 pounds of refined copper was produced at 16.79 pounds per ton. The total cost per pound was 12.43 cents.

At the No. 1 shaft the 18th and 19th levels south on the West lode continued in fairly good copper-bearing ground. On the 18th level at 1,400 feet south of the shaft about 120 feet of stoping ground was opened. The 19th level north developed nothing of value. On the Superior lode at No. 1 shaft no new copper-bearing ground was opened. At No. 2 shaft both the West lode and the Superior lode were barren at the points opened.

As a Calumet & Hecla subsidiary, the Superior suffered the general curtailment of September 1st. For details see report of Calumet & Hecla Mining Co.

Tamarack Mining Company.

Mine location: Calumet, Houghton county. General Manager: James MacNaughton.
Superintendent: John T. Been.
Controlled by the Calumet & Hecla Mining Co.

The operations of the Tamarack for the year 1914 resulted in a decrease in assets of $174,944.97. A total of 1,074,808 pounds of refined copper was produced at a total cost per pound of 29.08 cents. The copper was sold at 12.80 cents per pound.

No mining was done at No. 2 shaft during the year. In June all tram cars, engines, pumps, drills and haulage ropes were removed from the workings. No. 3 shaft was remodeled where it passes through the crushed ground. Early in the spring the drifts and stopes were repaired and hoisting began May 18th. At No. 5 shaft hoisting began May 11th. Being a high cost mine, the Tamarack early in August was closed down.

In March diamond drilling was started to continue the cross-section carried by the Cliff Mining Co. to the boundary of the Tamarack lands. Five holes were drilled and President Agassiz reports that in all of the holes a very little copper was found scattered throughout the formation, but not sufficient to warrant further exploration. All drilling was discontinued early in August.

The Tamarack was one of the few companies to continue construction work during the last quarter of the year. During the summer ground was broken for the foundations of the recrushing plant. The foundations were completed and all the steel work erected before the end of the year. When completed the plant will contain 32 Hardinge conical mills and 92 Wilfley tables.

This new mill is being built for the purpose of treating the old stamp sand in Torch Lake. Until the dredge is ready for operation part of the recrushing mill equipment will be installed to treat the tailings from the conglomerate mine. The cost of the recrushing plant will be provided by the $230,000 the company will receive for the sale of its mill to the Lake Milling, Smelting & Refining Co.

**Trimountain Mining Company.**

Mine location: Trimountain, Houghton county.
General Manager: F. W. Denton.
Superintendent: Richard Bowden.
Controlled by the Copper Range Consolidated Co.

During the year 1914 Trimountain produced 227,251 tons of ore which yielded 5,048,306 pounds of refined copper, giving 18.21 pounds per ton. The total cost per pound was 12.21 cents and the price received per pound was 13.38 cents.

Operations were effected by the strike during the first third of the year and from August the mine was worked during the first half of each month only. Extraordinary expenditures amounted to $12,674.93, covering completion of regrinding equipment and renewals at stamp-mill.

General manager Denton reports as follows: "Openings made during year showed average values. The property is in excellent condition and improved results are assured under favorable conditions."

**Victoria Copper Mining Company.**

Mine location: Victoria, Ontonagon county.
Superintendent: George Hooper.

In 1914 Victoria produced 1,486,242 pounds of refined copper, an increase of 57,549 pounds over the production of any previous year. However, the low price received for copper during the last half of the year, owing to the unsettled business conditions and the European war, resulted in a loss from mining operations of $30,388.

Considerable development work was done and very good results obtained. A small diamond drill has been used in the mine to locate the lode when lost and to prove its width and value. A large amount of poor rock was sorted out and stored underground, especially in the lower levels. No operations were carried on at No. 6 shaft during the year.

Superintendent Hooper states that the copper from the lower levels is coarser and the stopes opened have given good results. He further states that the results obtained from the lower levels and the excellent ground shown in the shaft between the 25th and 26th levels certainly warrant the further opening of all lower levels in the mine.

The power plant was short of water during the latter part of the year and its deficiency of power made it necessary to reduce operations to one shift, thus curtailing production and adding to costs.

Extensive general repairs have been made at the stamp-mill. A compressed air locomotive for underground haulage was purchased during the year but is not yet in use. Considerable repairing was done to dwellings.

On February 1 all men employed in the mine and stamp-mill and hoisting engineers were put on an eight-hour shift and all other surface men on a nine-hour shift. This change raised the cost of production somewhat. On September 1 a general reduction in wages of 15 per cent was made.

With higher prices and ordinary condition of water supply, the Victoria should operate at a fair profit.

**White Pine Copper Company.**

Mine location: Porcupine Mountain District, Ontonagon county.
General Manager: James MacNaughton.
Superintendent: Thomas H. Wilcox.
Controlled by the Calumet & Hecla Mining Company.

Development work was carried on without interruption throughout the year. President Agassiz reports that the openings on the first level west of the No. 2 shaft have been rather poor. The 2nd level east of No. 4 shaft is badly faulted but shows good values when in the lode.
The 2nd and 3rd levels west of No. 3 shaft are in fair ground and between shafts Nos. 3 and 4 are very good. The drifts on the 4th level east of Nos. 3 and 4 shafts are good as far as opened. A total of 8,000 tons of ore was hoisted, increasing the stockpile to about 28,000 tons.

Considerable construction work was done at the shafts and stamp-mill during the year. Permanent hoists are being installed at shafts Nos. 3 and 4. A boiler house to furnish power for both hoists has been built and the boilers are being put in. No. 3 permanent shaft-house is built and foundations for No. 4 are in place. The trestle connecting the two shafts with the crushing plant is being erected.

At the stamp-mill the coarse crushing plant, conveyor, mill, boiler and power house are closed in and installation of machinery is underway. The management plans to have the mill in operation May 1, 1915.

The operations for the year 1914 show an excess of expenses over receipts of $128,479.42 and the balance of liabilities was increased to $134,559.74.

Winona Copper Company.
Mine location: Winona, Houghton county.
Superintendent: R. R. Seeber.

During the first few months of the year conditions at the Winona were gradually approaching normal and by July the company had reached the maximum output in its history.

A great deal of attention was being paid to the regrinding department and President Paine reports that this department in the mill was aiding materially in the saving of the finely disseminated copper in the ore and the cost of producing copper was slowly working down month by month when the European war broke out. For detailed results of the Hardinge mill regrinding department for the year see statistical tables.

As a result of the war operations were suspended on August 6th. In October a tributary arrangement was made with mining captain Broan and about 40 former employees and on October 15th production was resumed by the leaders from certain stopes on the 3rd, 4th and 5th levels of No. 3 shaft. The results of this arrangement proved very satisfactory to the miners and to the company. A total of 9,685 tons of ore was stamped at the Centennial-Allouez mill up to the end of the year.

The only construction work done during the year was in connection with the experimental work on the Shields Classifier and the Lovett Grinding Machine.

Wolverine Copper Mining Company.
Mine location: Kearsarge, Houghton county.

The mine was closed on July 23, 1913 by the strike and no work was done until November 12, 1913, when, with a force of 20 men, underground operations were resumed. Shipments of ore increased slowly and normal production was reached in April, 1914. The normal production was maintained throughout the year and the Wolverine was one of the very few mines which did not suffer by the general curtailment caused by the European war. A total of 3,435,459 pounds of refined copper was produced during the year ending July 1, 1914, at an average of 18.86 pounds per ton stamped.

Blocks of ground left in the older workings with copper contents below the average of new openings are being stoped and the ore selected on various levels tributary to shafts Nos. 3 and 4. A total of 6,020 tons, or 3.2 per cent, of waste rock was hoisted during the year. This reduction in waste is due in part to careful selection underground and also to the fact that little sinking and no crosscutting was done during the year. Little regular drifting and stoping was undertaken for several months after hoisting began and about 60 per cent of the rock hoisted was obtained in cleaning up and blasting out the lode along the foot in old stopes. "Jack hammer" machines are used in cutting out the lode along the foot and the mine has been equipped throughout with improved drilling machines. At the mill a six foot Hardinge mill has replaced the Chilean mill.

Wyandot Copper Company.
Mine location: Winona, Houghton county.
Superintendent: Frank L. Van Orden.

The Wyandot carried on actual mining work for only five months during the year 1914. Owing to the general business depression resulting from the war, all mining operations and development work were suspended September 1st.

During the year the winze was sunk from the 815 foot level to the 915 foot level and drifting was begun at the latter depth, about July 1. Superintendent Van Orden states that "in sinking the winze from the 815 to the 915 foot level, well mineralized vein matter was encountered 30 feet above the 915 foot level which continued, and still shows, in the sump in the bottom of the winze." He further states as follows:

"The southwest drift was driven 65 feet in splendid vein matter, the first 25 feet of which carried excellent copper values while the remainder of the distance driven, 40 feet, while showing a decrease in values, showed fair values until the time work was suspended.

"The northeast drift was driven 63 feet and showed intermittent values. The breasts of both drifts showed values at the time work was suspended."

In order to furnish the married men employment during the fall and winter months, about 350,000 feet of mixed timber was logged and sold.

President Ashley Watson reports the following: "The Wyandot lode, which we are now developing, and which averages 28 feet in width, lies in the Baltic lode horizon,
some 2,300 feet east of the Winona lode, and there is little doubt that the latter lode (Winona) is the Isle Royale lode, as No. 8 conglomerate underlies both, and can be traced from Portage Lake to and beyond the Lake mine. Other beds of conglomerate occur in such manner as to make it difficult to correlate them. However, we do know from the general location of the Wyandot lode, that we are working in the horizon where we might expect to develop the Baltic lode, and some of the local mining men do not hesitate to say that the Wyandot lode is the Baltic lode."

The prospects of developing a commercial lode appear very promising at the present time.
Plate I A. Algomah lode, Algomah mine, Ontonagon county. Photomicrograph X 10. This is a very vesicular portion of the lode. Some of the black areas are melaconite, others the dark brown ground mass of the rock. The veinlet and some of the irregular areas are chrysocolla.

Plate I B. Butler lode, Mass mine, Ontonagon county. Photomicrograph X 10. This microscopic section shows a fine textured ground mass and amygdules. The latter are chiefly composed of red feldspar, quartz and calcite. The dark red and stained semi-opaque feldspar forms the outer part of the amygdule. The clear transparent calcite and quartz were deposited after the feldspar and filled the central part of the cavities. The copper in this section occurs in fine grained ground mass and not in the amygdules.

Plate II A. Baltic lode, Baltic mine. Photomicrograph X 10. This thin section shows fine grained rock with very few cavities. It illustrates the texture of a large portion of the Baltic lode.

Plate II B. Baltic lode. Photomicrograph X 8, this section shows the vesicular portion of the Baltic lode and a veinlet of calcite. A considerable portion of the copper is in rock which has been fractured and later cemented with calcite and other minerals. Copper occurs in fracture fillings but more largely in the altered rock near the fractures.

Plate III A. Calumet conglomerate, Calumet and Hecla mine. Photomicrograph X 12, this is a typical section of the quartz porphyry of the calumet conglomerate showing numerous clear crystals of quartz in a nearly opaque felsite ground mass. The quartz porphyry pebbles contain such numerous red particles that the ground mass is transparent only in very thin sections.
Plate III. B. Calumet conglomerate. Photomicrograph X 8.
The conglomerate is made up largely of fragments of quartz porphyry but the rock contains so many minute red particles that it is nearly opaque in thin section. The clear transparent areas are quartz.

Plate IV. A. Hancock No. 3 lode, Hancock mine.
Photomicrograph X 10. This lode is a typical amygdaloid. The amygdules in this particular section are composed of chlorite, quartz and calcite. Most of the semi-opaque chlorite has been deposited earlier than the clear transparent quartz and calcite.

Plate IV. B. Hancock lode No. 4, 34th level. Photomicrograph X 8. This section shows veinlets of calcite in a nearly opaque rock which is an altered porphyrite.

Plate V. A. Hancock lode. Photomicrograph. This section shows native copper in rather large particles along the middle of a vein of prehnite. Copper occurs also in small particles in the rock on either side of the vein.

Plate V. B. Photomicrograph X 9, this section shows mode of occurrence of native copper (black) in datolite (white). (rings are air bubbles in the balsam on which the section is mounted).
Franklin Junior mine.

The datolite of the Franklin mine is a white variety. It occurs frequently as rounded masses several inches in diameter. The central part of these masses is often free from copper. Near the outer edge, however, numerous small particles of copper of irregular shape, as shown in this halftone, are generally found.
Plate VI. A. Felsite, Indiana mine, Ontonagon county. Photomicrograph X 10. The felsite is semi-opaque owing to the abundance of dark red colored particles. Severe fracturing is indicated by numerous veinlets of colored minerals which have filled the fractures.

Plate VI. B. Isle Royale lode, Isle Royale mine. Photomicrograph X 8. This section shows a fine textured rock with no amygdules. A considerable portion of the ore has this texture. Other parts are quite vesicular.

Plate VII. A. Kearsarge lode, Mohawk mine. Photomicrograph X 8. This section shows a rather distinctly crystallized porphyritic rock. The specimen was taken near the foot wall of the lode.

Plate VII. B. Isle Royale lode, Isle Royale mine. Photomicrograph X 10. This section shows large amygdules and a very fine grained ground mass. The semi-opaque mineral in the amygdules is epidote. The clear colorless mineral is quartz. In two cases the epidote forms the margin; in the others it is irregularly inter-grown with quartz.

Plate VIII. A. Lake lode, Lake mine. Photomicrograph X 12. This section shows both amygdules and porphyritic feldspar crystals in an opaque ground mass. The amygdules show clear transparent quartz and calcite and semi-transparent chlorite.

Plate VIII. B. Lake lode. Photomicrograph X 10. This section shows a pseudo-amygadaloidal portion of the lode. The clear transparent areas are chiefly pale green chlorite. The ground mass is distinctly crystalline.
Plate IX. A. Nonesuch sandstone, White Pine mine. Photomicrograph X 10. This section shows a fine grained conglomeratic rock. The colorless pebbles are quartz. The large grains are felsite and melaphyre. Some of the small opaque particles are native copper.

Plate IX. B. Nonesuch sandstone. White Pine mine. This section shows a fine grained sedimentary rock composed chiefly of clear colorless grains of quartz and dark colored rock particles. Some of the opaque particles are native copper and some are magnetite.

Plate X. A. Pewabic lode, Quincy mine. Photomicrograph X 8. Prehnite is very abundant in the ore at the Quincy mine. This section shows numerous amygdules of prehnite in the opaque ground mass. Some of the opaque particles in the prehnite are native copper.

Plate X. B. Pewabic lode, Franklin Junior mine. Photomicrograph X 10. This section shows a true amygdaloidal portion of the lode. Crystals of delessite (semi-opaque) appear at the border of clear transparent quartz which is the chief constituent of the amygdules in this section.

Plate XI. A. Pewabic lode, Quincy mine. Photomicrograph X 10. This section shows a pseudo-amygdaloidal portion of the lode from near the footwall. The large transparent patches are secondary chlorite. They have not the character of true amygdules.

Plate XI. B. Pewabic lode, Quincy mine. Photomicrograph X 8. Native copper in prehnite. This is a portion of the lode which has been largely replaced by prehnite (white in photograph). In the white prehnite are several irregular particles of copper. The main dark colored part of the section is altered rock containing particles of native copper.
Plate XII. A. Kearsarge lode, Wolverine mine. Photomicrograph X 10. This section shows a typical amygdaloid with numerous large amygdules. The clear colorless mineral is quartz. The semi-opaque crystals near the edge of the amygdules are epidote.

Plate XII. B. Superior lode, Houghton mine. Photomicrograph X 10. This section shows coarse particles of native copper in large amygdules. In the dark ground mass there are numerous fine particles of metal. The lack of crystalline structure in the ground mass is noteworthy.

Plate XIII. A. Superior lode, Superior mine. Photomicrograph X 12. The copper in this section is in very small particles scattered through a fine grained rock.

Plate XIII. B. Superior lode, Superior mine. Photomicrograph X 10. This is a remarkably vesicular copper bearing rock. The amygdules are chiefly calcite. The opaque ground mass is made up of a confused aggregate of particles too small for identification.

Plate XIV. A. Superior lode, Superior mine. Photomicrograph X 10. This is a dull brown massive rock showing no copper to the naked eye. Numerous small grains of copper are, however, readily observed under the microscope. The original texture of the rock has been obscured by secondary alteration.

Plate XIV. B. Superior lode, Superior mine. Photomicrograph X 10. This section shows a very vesicular rock. Amygdules are chiefly calcite and contain little copper. Native copper occurs abundantly in very small particles in the dark ground mass.
Plate XV. A. Allouez conglomerate, Franklin junior mine.

Plate XV. B. Calumet conglomerate, Tamarack mine.

Plate XV. C. Ophite, weathered and fresh surfaces. Fresh fracture surface at left.

Plate XVI. A. Copper shells from calumet conglomerate.

Plate XVI. B. Mass copper, Ahmeek mine.

Plate XVI. C. Sandstone overlain by trap, Eagle River.

Plate XVI. D. Exposure of trap bed, Houghton.

Plate XVII. A. Domeykite vein. Isle Royale mine.

Plate XVII. B. Mass copper and fissured country rock, Ahmeek mine.
Plate XVII. C. Mass copper, Michigan smelter.

Plate XVIII. A. Foundations of the tamarack recrushing plant and the stamp sand in Torch Lake.

Plate XVIII. B. The large dredge for hoisting the Calumet and Hecla stamp sand from Torch Lake.