Green Bay Ecosystem Model: Development & Prelim Calibration w/Management Implications

Ed Verhamme, Dan Rucinski, Joseph V. DePinto, Derek Schlea Todd Redder, LimnoTech
Ann Arbor, MI
Shelby LaBuhn, Val Klump, Hector Bravo, Sajad Ahmad Hamidi
University of Wisconsin Milwaukee
Why Model?

• Incorporates fundamental physics, chemistry, and biology from research on Green Bay.

• Integrates observations from many types of sampling programs. Fills in spatial and temporal gaps. Brings “life” to stationary grab sample data.

• Identifies key processes and cause-effect relationships

• Deals with complex interactions. Powerful hypothesis testing tool.

• Helps project how system will respond under possible future outcomes (e.g. load reductions)

• Makes you look smart
Modeling Framework: GBEM

Loads and Forcing Functions

Hydrodynamic - EFDC

Hydrodynamics

Temperature

Sediment Transport

A2EM

Water Column

Nutrients

Oxygen, Phyto & Zoo

Dreissenid

Cladophora*

Sediment

Nutrients, SOD, Diagenesis

Initial Conditions
Phosphorus Cycling in GBEM

Dissolved Organic Phosphorus (RDOP/LDOP) → Mineralization → Soluble Reactive Phosphorus (SRP)

Particulate Organic Phosphorus (RPOP/LPOP) → Hydrolysis → Dissolved Organic Phosphorus (RDOP/LDOP)

Soluble Reactive Phosphorus (SRP) → Algal P → Particulate Inorganic P (sorbed to NVSS)

Mineralization → Soluble Reactive Phosphorus (SRP)

Water Column

Diagenesis of POP

Sediment Bed

Depletion

Growth

Deposition

V_s, V_r
- 4,000 horizontal cells
- Up to 10 vertical layers
- 25,300 simulation cells
- 200 m to 2 km length
- Avg of 500 m length
Forcings

- **Hydrodynamic model**
 - Exchange driven by a separate Lake Michigan model
 - Atmospheric inputs from Green Bay meteorological station

- **Tributary**
 - Flows transfer from hydrodynamic model
 - Nutrient and ion concentrations for Fox River from NEW Water monitoring program and USGS River monitoring
 - Other tribs sourced from USGS Menominee River data
TP Load

![Bar chart showing annual TP load from 2011 to 2013 for different regions: Fox, Menominee, Oconto, Peshtigo, Duck, and GBMSD. The chart indicates a decrease in TP load from 2011 to 2013.]
TP Load

Annual TP Load Distribution (metric tons)

- Fox: 630.7 metric tons
- Menominee: 70.6 metric tons
- Oconto: 39.4 metric tons
- Peshtigo: 39.4 metric tons
- Duck: 12.2 metric tons
- GBMSD: 6.1 metric tons
Calibration Datasets

“It takes a village...”

• NEW Water
 • Continuous monitoring near Entrance Light, ~30 min intervals
 Temp, oxygen, conductivity
 • Grab samples at 12-18 sites, biweekly
 Phosphorus, nitrogen, suspended solids, Chl-a, secchi

• UWM
 • Continuous monitoring, GLOS buoy, ~30 minute intervals
 Temp, oxygen, conductivity, turbidity, temp profile
 • Sonde profiles at 20-30 sites, monthly
 Temp, oxygen, conductivity, turbidity
Miles: 14.00, Pool 1 (I=37, J=80, K=10) Stations: 1701, 1702, 1703, 60, 60

Average DO (mg/L)

2011

Date/Time

Outer (60)

Outer (65)

Outer (72)
WinModel® Overview

- **Multiple sub-models**
- **Temporal aggregation**
- **Animate through time/space**
- **Spatial & temporal profile plots**
- **Compare multiple scenarios or variables**
- **View different spatial profiles**
- **Interactive GIS visualization**
- **Monitoring data by source / program**
- **Export results to Excel, graphics to Word**
- 4,000 horizontal cells
- Up to 10 vertical layers
- 25,300 simulation cells
- 200 m to 2 km length
- Avg of 500 m length
Center “slice” down axis of Green Bay

Aug 2, 2011

Aug 8, 2011
Dissolved Oxygen, bottom water layer (mg/L)

- < 1.00000
- 1.00000 - 2.0000
- 2.0000 - 3.0000
- 3.0000 - 4.0000
- 4.0000 - 5.0000
- 5.0000 - 6.0000
- 6.0000 - 7.0000
- 7.0000 - 8.0000
- 8.0000 - 9.0000
- >= 9.0000

Date: 08/02/2011
Dissolved Oxygen (bottom) (mg/L)

Date:
07/01/2011
Management Implications

- Example Management Scenarios (P, N, and C conc.)
 - 25% Tributary reduction
 - 50% Tributary reduction
 - 75% Tributary reduction
 - 100% Tributary reduction
 - 25% Tributary increase
 - 2 deg C temp increase
 - 50% Tributary reduction w/ 50% sediment reduction

- Direct link from tributary concentrations to in-lake end points
- Helps to differentiate key processes and response times
Miles: 4.00, Pool 1 (I=19, J=30, K=1) Stations: 26, 26

2011

Total Phosphorus (mg-P/L)

- RCA (Baseline)
- RCA (S1-25% Load Reduction)
- RCA (S2-50% Load Reduction)
- RCA (S3-75% Load Reduction)
- RCA (S4-100% Load Reduction)
Miles: 4.00, Pool 1 (I=19, J=30, K=1) Stations: 26, 26

Chlorophyll-a (µg/L)

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>RCA (Baseline)</th>
<th>RCA (S1-25% Load Reduction)</th>
<th>RCA (S2-50% Load Reduction)</th>
<th>RCA (S3-75% Load Reduction)</th>
<th>RCA (S4-100% Load Reduction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Miles: 15.00, Pool 1 (I=40, J=86, K=10) Stations: 63, 63

Dissolved Oxygen (mg/L)

2011

Apr May Jun Jul Aug Sep Oct Nov

RCA (Baseline) RCA (S1-25% Load Reduction) RCA (S2-50% Load Reduction) RCA (S3-75% Load Reduction) RCA (S4-100% Load Reduction)
WinModel-MAT Interface

A2EM/RCA Water Quality Modeling Framework

- Build Scenario
- Visualize Mass Balance
- Visualize MAT
- Visualize Scenarios
- Model: RCA
- Project: GBHYP
- Data Folder (click to change): 'D:\data\XO\LTI_Projects\GBHYP\WinModel'
- About WinModel
- Exit
Annual Metric Comparison Between Scenarios

WinModel.NET Management Analysis Tool

Annual Metrics Metric Comparison Statistics (Chart) Load Distribution Summary Table Calculation Zone Map Exit

Select Scenarios
- Baseline
- S1-25% Load Reduction
- S2-50% Load Reduction
- S3-75% Load Reduction
- S4-100% Load Reduction
- S5-25% Load Increase
- S6-2C Temp Increase
- S7-50% Load and Sed Red

Selections
- Metric: Chlorophyll-a: summer avg (ug/l)
- Location/Zone: Inner Bay

Annual Metric Comparison

- Baseline
- S1-25% Load Reduction
- S2-50% Load Reduction
- S3-75% Load Reduction
- S4-100% Load Reduction
- S5-25% Load Increase
- S6-2C Temp Increase
- S7-50% Load and Sed Red

Chlorophyll-a: summer avg (ug/l)

Criterion

- 2010
- 2011
- 2012
- 2013
- 2014
1:1 Comparison Between Separate Metrics
User-Define Statistics (Aggregation/Time Period)

Average of May - August Model Output

- Baseline
- S2-50% Load Reduction
- S3-75% Load Reduction