INTERIM RESPONSE CONSTRUCTION SUMMARY REPORT FOR ABANDONED CONTAINER REMOVAL

ABANDONED MINING WASTES – TORCH LAKE NON-SUPERFUND SITE CHLL HUBBELL PROCESSING AREA – SMELTER PROPERTY HOUGHTON COUNTY, MICHIGAN SITE ID# 31000098

DECEMBER 2017
PREPARED FOR:

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY

REMEDIATION & REDEVELOPMENT DIVISION

CALUMET FIELD OFFICE

CALUMET, MICHIGAN

TABLE OF CONTENTS Interim Response Construction Summary Report for Abandoned Container Removal Site ID: 31000098 Houghton County, Michigan

SECTION:		PAGE NO.:
1.0 INT 1.7 1.2	,	1
2.0 OB	BJECTIVE AND SCOPE OF WORK	3
3.0 INT	TERIM RESPONSE ACTIVITIES	3
4.0 SU	IMMARY AND CONCLUSIONS	3
5.0 RE	COMMENDATIONS	3
FIGURES Figure 1 Figure 2	Project Location Map Abandoned Container Location Map – Hubbell Processing Area Smelter Property	
APPENDIC	CES	
Appendix A Appendix D Appendix D Appendix E Appendix F Appendix G Appendix H	Purchase Order Smelter Drum Interim Response Scope of Work Soil Erosion and Sedimentation Control Permit and Release Joint Permit Application Permit and Notice of Completion Removed Abandoned Container Inventory Waste Management Records	

1.0 INTRODUCTION

The Mannik & Smith Group, Inc. (MSG) has prepared this *Interim Response Construction Summary Report (CSR)* for Abandoned Container Removal as part of the Abandoned Mining Wastes – Torch Lake non-Superfund Site (Project) http://www.michigan.gov/deq/0,4561,7-135-3311_4109_9846_76560---,00.html (Site ID: 31000098). This CSR summarizes the abandoned container interim response (IR) completed at the Calumet & Hecla Lake Linden Operations Area (CHLL) Hubbell Processing Area Smelter property. The IR entailed the removal and disposal of abandoned containers. The partially buried abandoned containers were protruding from beneath the U.S. Environmental Protection Agency (EPA) installed cap near the Torch Lake shoreline in Hubbell, Houghton County, Michigan. This CSR was prepared in accordance with the *Indefinite Scope Indefinite Delivery (ISID) Discretionary Proposal for FS and Remedial Action Activities* (24 February 2016) prepared by MSG in response to a request from the Michigan Department of Environmental Quality (DEQ), Remediation and Redevelopment Division (RRD), Calumet Field Office under MSG's 2015 Environmental Services ISID Contract Number 00538 with the State of Michigan.

1.1 Project Location

The Project area is located along the shoreline and in Torch Lake, Houghton County, Michigan. Due to the complex nature and very large area RRD subdivided the Project into study areas based on past use and known issues. Depicted on *Figure 1*, *Project Location Map* are the CHLL and Calumet & Hecla Tamarack City (CHTC) areas and their respective former industrial operations.

Centralized around Calumet & Hecla's copper mining and processing operations near Lake Linden and Hubbell, Michigan, the CHLL consists of approximately 155 acres of land extending approximately two miles along the shoreline of Torch Lake and incorporates over 40 different parcels with multiple property owners.

The CHLL Hubbell Processing Area is located between Lake Linden and Hubbell along the southeast side of Highway M-26 and is comprised of three mining era industrial properties including the Hubbell Coal Dock and Mineral Building that are vacant, and the Hubbell Smelter that is the location of an operating industrial facility. The Hubbell Processing Area is bordered by residential (single-family residences and an apartment complex), commercial (restaurant and retail business), and industrial (sand and gravel pit, construction company, and manufacturing) land uses, and Torch Lake.

The IR for abandoned container removal was limited to the Smelter property shoreline area in the Hubbell Processing Area. *Figure 2, Abandoned Container Location Map – Hubbell Processing Area Smelter Property* depicts features and the former location of removed abandoned containers.

1.2 Project Background

Copper mining was extensive in the Keweenaw and formed the backbone of the regional economy and society. Copper ore milling and smelting operations conducted from the mid-1860s to the 1960s, included the importation, reprocessing, and smelting of various scrap metals in the later years of operation. Consistent with past industrial practices, Torch Lake served as dumping grounds for virtually all mining industry related waste products produced, including tailings, slag, and various chemicals. It is estimated that at least 20 percent of Torch Lake's volume was filled with tailings and other waste products.

The environmental legacy resulting from over 100 years of mining and reclamation led to Torch Lake and its western shoreline to be designated as a Superfund site by the United States Environmental Protection Agency (EPA) https://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0503034 and a Great Lakes Area of Concern (AOC) under the U.S./Canada Great Lakes Water Quality Agreement https://www.epa.gov/torch-lake-aoc. The EPA undertook cleanup activities to address some of the byproducts of the mining industry while others were not addressed or left to recover through natural processes.

1

Environmental impairments within Torch Lake and along the shoreline resulting from historical mining era industrial operations:

- Present potential exposure risk to human and ecological receptors;
- Limit the recovery of the Torch Lake ecosystem;
- Create uncertainty over safe and beneficial reuse of the land; and,
- Prevent delisting of Torch Lake as an AOC due to Beneficial Use Impairments (BUIs) related to
 restrictions on fish and wildlife consumption because of the on-going presence of polychlorinated
 biphenyls (PCBs) in fish and degradation of benthos because of metals contaminated sediments.

PCBs are of particular concern in Torch Lake sediments, surface water, and submerged abandoned container contents, as well as in upland soil, waste, residual processing materials (RPM), and abandoned container contents in former industrial areas along the shoreline as they serve as a continuing source of PCBs into the environment.

The DEQ Project is addressing some of the remaining concerns in Houghton County not addressed by the EPA. The Project concerns involve groundwater, surface water, sediments, and "upland" media. Known or suspected problems which are being evaluated include: an unidentified, significant in-lake and/or terrestrial source of PCBs; uncharacterized waste deposits and >750 uncharacterized drums on the lake bottom; slag; landfills; industrial ruins; coal storage areas; underground storage tanks (USTs); RPM; asbestos containing materials (ACM); and any other waste materials identified during future investigations.

From 2014 through 2017, RRD conducted Site Investigation (SI) activities and confirmed the remaining concerns in the Project area involve groundwater, surface water, sediments, "upland" media, seeps, RPM, and abandoned containers. Priority concerns which were evaluated and deemed to require IRs include: significant terrestrial and in-lake sources of PCBs; ACM; RPM; abandoned mining era containers; seeps; limited areas of soil in which there are Direct Contact Criteria and Particulate Soil Inhalation Criteria exceedances; and, physical hazards.

Analytical results of one surface water sample collected near a deteriorated, partially buried abandoned container containing PCB waste protruding from beneath the EPA-installed cap along the Smelter property shoreline contained Total PCB concentrations above applicable regulatory criteria. The container contents were subject to disturbance from wave action. Analytical results from semi-permeable membrane device (SPMD) sampling indicate the presence of PCBs throughout Torch Lake. Of note, the greatest SPMD PCB concentration was detected in the SPMD sample collected just off shore of the Hubbell Processing Area. Immediately off shore of the Smelter property is an area of sediments and submerged abandoned containers that have been identified as an ongoing in-lake source of PCBs, contributing to the Michigan Department of Human Health Services (MDHHS) fish consumption guideline for total PCBs in Torch Lake fish.

In the case of the CHLL Hubbell Processing Area Smelter property shoreline, the identified risks from abandoned mining era containers posed potential threats to human and ecological receptors, including but not limited to human health risks in the event of direct contact with affected media and inhalation of particulates; physical hazards; erosion and deposition of PCB-contaminated wastes into Torch Lake; and direct discharge of PCB-contaminated abandoned container contents into Torch Lake.

Based on these conditions the Upper Peninsula RRD staff prepared an Emergency Procurement Action Form included in *Appendix A, Emergency Procurement Action Form*. Upon authorization, RRD staff completed an IR that removed and disposed of abandoned mining era containers to mitigate potential risks to human health and the environment.

2.0 OBJECTIVE AND SCOPE OF WORK

The objective of the IR was to remove and dispose of partially buried abandoned mining era containers protruding from beneath the EPA installed cap near the Torch Lake shoreline, test pit in anomalous areas identified by the DEQ Geological Services Unit, and subsequent replacement/repair of any disturbed areas to meet EPA capping standards adjacent to the CHLL Hubbell Processing Area Smelter property to mitigate potential risks to human health and the environment. To meet this objective MSG developed a Trade Contractor (TC) scope of work and assisted DEQ with soliciting bids in accordance with DEQ RRD Emergency Funding and Procurement Procedures.

3.0 INTERIM RESPONSE ACTIVITIES

MSG supported the DEQ RRD in the procurement and oversight of a TC during implementation of the IR. The TC selected and retained by the State of Michigan was UP Environmental Services (UPES) of Bark River, Michigan. Refer to *Appendix B, Purchase Order*. UPES completed the work in accordance with the TC procurement package included in *Appendix C, Smelter Drum Removal Interim Response Scope of Work* during July 2017 at a cost of \$50,830.00 (\$8,880.00 less than the purchase order amount).

Due to the proximity of the work to Torch Lake a Part 91, Soil Erosion and Sedimentation Control (SESC) Permit included in *Appendix D, Soil Erosion and Sedimentation Control Permit*, was required. Due to the nearshore work considered regulated under Part 301, a Joint Permit Application was submitted and a permit obtained, which is included in *Appendix E, Joint Permit*. Note that the U.S. Army Corps of Engineers (USACE) did not require the permit since the work is located within the footprint of the Torch Lake Superfund site and the actions were within the DEQ's scope of long-term monitoring; however, the DEQ Water Resources Division proceeded with permit issuance. *Appendix F, Removed Abandoned Container Inventory* details the 10 abandoned containers removed, including containers discovered during test pitting. Based on analytical testing and an evaluation of waste disposal methods:

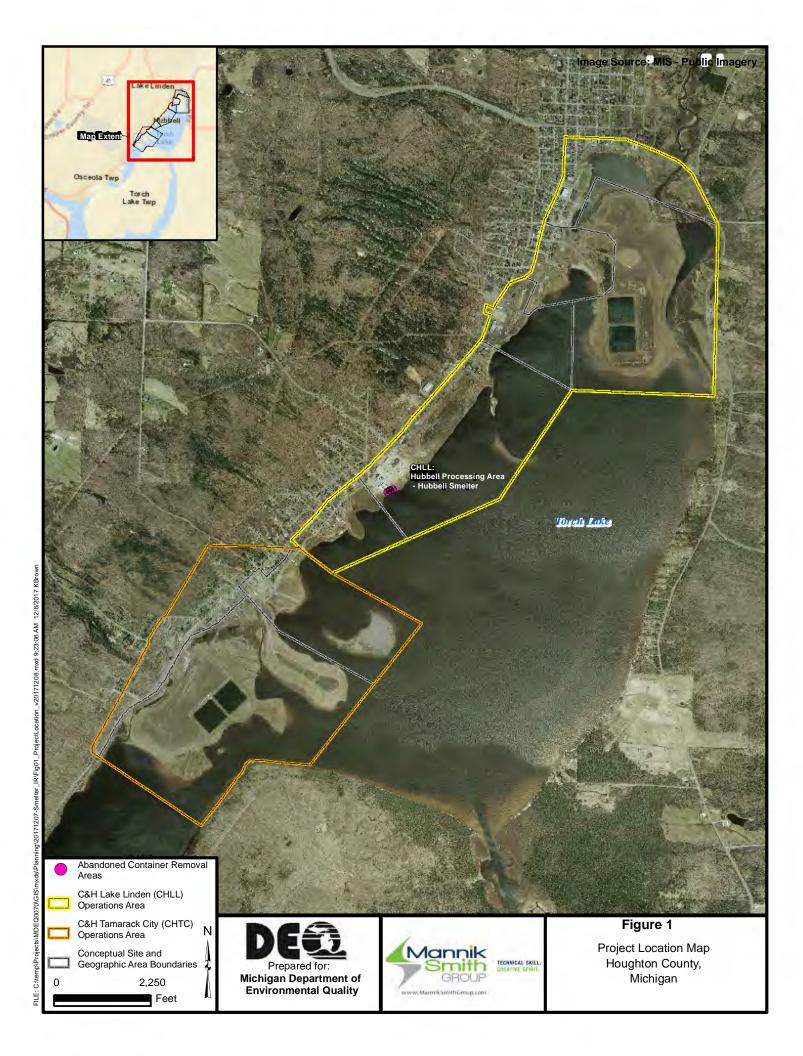
- 4 of the containers were disposed of as solid hazardous wastes based on the levels of lead;
- 4 of the containers were disposed of as a non-hazardous solid waste;
- 1 of the drums was determined to be empty and was recycled; and,
- 1 of the drums contained copper wiring and electric motors, and was recycled.

The contents of the drums were unknown, but based on field observations, drum contents appeared to include, but were not limited to, hardened masses of granular materials in some cases embedded with copper wire and other metallic debris. CONT-010 also included a whitish-sludge, similar to that observed in submerged drums in deeper water just offshore of the Hubbell Processing Area. All eight of the drums with contents contained Total PCBs. Documentation of abandoned container disposal is included in *Appendix G, Waste Management Records*. Photographs of the IR operations are included in *Appendix H, Photographic Log*.

4.0 SUMMARY AND CONCLUSIONS

Completed Abandoned Container IR operations within the CHLL Hubbell Processing Area Smelter property shoreline included test pitting; characterization, transportation, and disposal of 10 abandoned containers; and restoration in accordance with EPA capping standards for the Torch Lake Superfund site.

The completed IR operations met the objective of abandoned container removal to mitigate potential risks to human health and the environment.


5.0 RECOMMENDATIONS

MSG has the following recommendations:

 Conduct characterization, transportation, and disposal of any additional abandoned containers identified during future Project SI or IR activities.

•	Proper management of the Hubbell Proc PCB source area inclusive of surface was continuing source of contamination include	ater, sediments, and submerge	ed drum contents as they serve as a

APPENDIX A Emergency Procurement Action Form

EMERGENCY PROCUREMENT ACTION FORM

Site Name: Abandoned Mining Wastes County: Houghton

Index: 44251 PCA: 30872 Project #: 456990

ERD Staff Contact: Amy Keranen Date of Emergency: September 2016

Site Description: The "Abandoned Mining Wastes- Hubbell Smelter Drum Removal" site within the Abandoned Mining Wastes (AMW) project involves a stretch of shoreline in Hubbell where drums containing characteristically hazardous waste concentrations of lead, and PCBs were buried beneath the cap at the Torch Lake Superfund shoreline. These drums have been deteriorated and eroded by wave action over the decades and are now releasing their contents into Torch Lake. Waste characterization samples collected from within these drums in September 2016 show there to be concentrations of lead which exceed TCLP hazardous waste limits and PCBs which exceed criteria protective of human and aquatic health.

Failure to undertake emergency response actions will allow for the on-going release of contaminants into Torch Lake and continued presence in areas accessible to the public.

Cause of Emergency: Buried drums of waste materials left behind after the mining & reclamation era are present at the shoreline and are subject to wave action washing their contents into the surface waters of Torch Lake, contributing to fish consumption advisories in Torch Lake. Shoreline drum contents also exceed human direct contact criteria.

Specific Threats: Concentrations of contaminants exceeding ecological screening levels and threshold effect concentrations as well as residential and non-residential direct contact and particulate soil inhalation criteria are present in locations accessible to human direct contact and are leaching into the soils, groundwater and surface waters at Torch Lake.

Action Taken: Because of the imminent threat the emergency procurement process is being utilized to contract removal of the shoreline drums. Specifications have been developed and a Pre-Bid Meeting was conducted September 15, 2016 to obtain firm bids for the work.

Additional Information:

4 bids were obtained on October 28, 2016 and evaluated. Based on the evaluation, it is recommended that the bid be awarded to **UP Environmental Services** for \$59,170.00

Their address is:

UP Environmental Services, Inc., attn.: Wayne Stenberg

P.O. Box 127

Bark River, MI 49807 (906)466-9900

Funding Source: CMI Funds: SWQIF Funds: \$59,170.00

Authorized by:

Responsible Party: none identified

Cost Recovery:

APPENDIX B Purchase Order

STATE OF MICHIGAN

	2		į.	PAGE : 1					
FORM DMB-287 (REV 11/94)	PURCHAS	E ORDER	PURCHASE ORDER NUMBER	761P7700119					
REQUESTING DEPARTMENT OR .	AGENCY : RD	- CONTRACTS I	ENVIRONMENTAL QU						
	CON	STITUTION HALI	, 4TH FLOOR						
	525	TATE OF TATALE CAN	MI 48	२ ९२२					
CONTACT: TRACEY CURTIS 517 284-5083 EXT:	DELIVERY REQU 12/02/16	JIRED AGENCY RE 76120100	EF # REQ NO. 761R7700203	ORDER DATE 12/02/16					
U P ENVIRONMENTAL SERVICE P O BOX 127 BARK RIVER M	S INC	CASH DISC	COUNT : NET 30 DA	AYS					
P O BOX 127 BARK RIVER M	I 49807-0127	FREIGHT CAF	RRIER :						
		F.	O.B. : DELIVERE	D					
		VENDOR PHONE							
SHIP TO: MICHIGAN DEPT OF ENVIRONM	TATEL OF THE	BILL TO:	OF ENVIRONMENTA	I. OUALTT					
CALUMET FIELD OFFICE - RR	D	REMEDIATION A	ND REDEVELOPMENT	DÍVISIO					
EC105 II C 41		ADMINISTRATION	N 5TH FLOOR SOUT	H TOWER					
CALUMET FIELD OFFICE - RR 55195 U.S. 41 CALUMET MI	49913	LANSING	MI 489	09-7926					
ITEM COMMODITY ID QU COMMODITY NAME/SPECIFICAT	ANTITY UNITIONS	UNIT PRIC	E TOTAL PRIC	E 					
1 912-68	1.00 EA	59,710.000	59,710.	00					
MANAGEMENT, CONSTRU	CTION #								
FURNISH ALL LABOR, REMOVE, CHARACTERIZ SHORELINE DRUMS CON LEAD AT THE ABANDON SHORELINE SITE #310	E AND PROPERI TAINING UNACCIED MINING WAS	LY DISPOSE OF : CEPTABLE CONCE	PARIALLY SUBMERG NTRATIONS OF PCB	ed 'S AND					
PM: A. KERANEN									
GRAND TOTAL			59,710.	00					
ADDITIONAL REQUIREMENTS :									
AUTHORITY: ACT 431			ED. PENALTY: F	AILURE TO					
DELIVER MAY RESULT	' IN CANCELLA	rion of order	OR CONTRACT.						
AUTHORI	AUTHORIZED SIGNATURE								

STATE OF MICHIGAN

FORM DMB-287 PURCHASE ORDER PURCHASE ORDER NUMBER 761P7700119

ACCOUNTING INFORMATION:
SX AGY Y INDEX PCA COBJ AOBJ GRANT PH PROJ PH AG1 AG2 AG3 TOTAL
01 761 4 44251 30872 6127 45699000 59710.00

PENALTY: FAILURE TO DELIVER MAY RESULT IN CANCELLATION OF ORDER OR CONTRACT

--- END OF DOCUMENT ---

Scope of Work and Bid Table Hubbell Smelter Drum Removal Interim Response

Abandoned Mining Wastes – Torch Lake Non-Superfund Site

The Michigan Department of Environmental Quality (MDEQ) has identified the presence of several drums along the Torch Lake shoreline at the former Hubbell Smelter property associated with the Abandoned Mining Wastes – Torch Lake Non-Superfund Site (Project). To reduce potential risks to the public and the environment, MDEQ is seeking cost estimates to remove and properly dispose the drums.

Figure 1 depicts the location. **Figure 2** depicts the known drum locations along with existing sample results for characterization and health and safety planning purposes. MDEQ will be collecting additional sampling data in September 2016 and this data will be provided via Addendum prior to bids being due. **Table 1** provides information on known containers. This Scope of Work (SOW) also includes test pit excavation within the "Lake Shore Work Area" on **Figure 2** proximal to the known drums in response to anomalies identified during a recent geophysical survey and replacement/repair of any disturbed areas to meet capping standards implemented by the United States Environmental Protection Agency (USEPA) along the shore of Torch Lake.

Permits

Due to the proximity of Torch Lake, soil erosion and sedimentation control (SESC) best management practices must be applied and a SESC permit (acquired by the Contractor) is required. Refer to:

- http://www.houghtoncounty.net/directory-drain-commissioner.php; and,
- http://www.houghtoncounty.net/docs/SESC Email Att.pdf.

MDEQ is in the process of securing a Joint Permit for the drum removal activities since they are occurring within and on the shore of Torch Lake. A copy of the permit will be provided to the Contractor once it is issued.

Work Element Details

Removal and disposal as referenced in the attached Bid Table shall consist of the following:

- Waste profiling and disposal facility coordination and acceptance.
- Excavation of whole and/or partial containers and their contents, over-packing, bulking of containers, hand and/or mechanical pick-up of whole and/or partial containers and their contents, retrieval of containers from shallow water, dewatering, and any other means and methods required to safely retrieve containers (and their contents if not empty) and prepare them for shipping for disposal. All securely re-packaged containers and their contents shall be staged inside the perimeter fence between the time of retrieval and sampling for characterization and when they are ultimately picked up for disposal. Securely re-packaged means contained in new steel DOT drums, contained in over-pack

drums, or contained in a tightly covered roll-off box that is free of holes or other compromises from which contents could escape.

- Transportation of properly packaged, labeled, and placarded containers and their contents (as may be applicable) to proper disposal facilities, including all manifests.
- Disposal of hazardous and non-hazardous containers and provision to MDEQ of fully executed manifests and any other disposal documentation as may be appropriate (such as scale receipts, destruction records, etc.).

Riprap placement will be required in removal areas as part of restoration. Riprap shall have an average size (D_{50}) of 12-inches and be angular to subrounded. It shall be free of dirt, clay, fines, slag, and vegetation. The least dimension of a rock shall not be less than one-third the largest dimension. Individual rocks shall be dense, sound, and free from cracks, seams, and other defects that could result in accelerated weathering. Per Natural Resources Conservation Service (NRCS) specifications, the riprap shall have a gradation that falls within the following percentages:

Size (Weight, lbs)	Percent Passing
24-inches (1007.8)	100
18-inches (425.2)	60-100
12-inches (125.9)	30-50
3-inches (2)	5-25
#4 sieve	0-5

(The size and weight of rock pieces are based on 50% cubical and 50% spherical, with a specific gravity of 2.65.)

Riprap shall be placed in a manner that is reasonably homogenous with larger rock uniformly distributed and in contact with one another and the smaller rocks filling the voids between the larger rocks. Some hand placement may be required. As previously identified by NRCS, acceptable sources for riprap, assuming gradation requirements are met, include the waste rock pile at the Quincy Mine, Hancock, Michigan, the waste rock pile at the Baltic Mine, Baltic, Michigan, the waste rock pile at Dodgeville, Michigan, or the waste rock pile at Allouez, Michigan.

Areas that require reseeding shall be seeded with the following mixture:

- 10 lbs./ac. red clover
- 25 lbs./ac. creeping red fescue
- 5 lbs./ac. vernal alfalfa (legume seed shall be inoculated)
- 5 lbs./ac white dutch clover
- 10 lbs./ac. perennial rye grass
- 5 lbs./ac. sweet clover
- 15/lbs./ac. orchard grass

The seed mixture may be adjusted depending on when the work occurs (i.e. dormant seeding for the winter).

Access, Coordination, Notifications, Health and Safety

MDEQ has secured written access to the property where the work will occur. The Contractor shall provide MDEQ and/or its designated agent at least two weeks notice before (each) mobilization with the exception of picking up characterized containers for transportation to a disposal facility, which will require one-week notice. Work hours shall be between 7:00 a.m. and 5:00 p.m. local time.

The MDEQ shall be provided all waste characterization and disposal documents for review and approval at least two business days in advance of when they are needed. MDEQ will sign all disposal documents as the waste generator.

The Contractor is responsible for compliance with all State and Federal health and safety, transportation, and disposal regulations. This also includes work practices and engineering controls to prevent contaminant release and potential exposure to site workers, the public, and the environment.

40-hour Hazardous Waste Operations and Emergency Response (HAZWOPER) training is required for all on-site persons that may encounter contaminated media. A summary of existing data for the work location is provided in **Figure 2**. The Contractor is responsible for their own health and safety, including compliance with 29 Code of Federal Regulations (CFR) Part 1910 and 29 CFR Part 1926.

All Contractor employees that will be working on the property are required to attend an approximately one-hour long safety training conducted by Koppers, Inc. (Koppers) who operates on the property. Koppers may also require the Contractor to provide company insurance and other information using the form in **Attachment A** prior to conducting any on-location work. The personal protective equipment (PPE) required to attend the Pre-Bid Meeting and to work on Koppers' property includes the following:

- Safety-toe boots;
- Hard hat;
- Safety glasses;
- Long pants (no shorts); and,
- Long sleeve shirts.

Refer to **Attachment B** for Conditions for Emergency Bids that will apply to the work. In addition, the selected Contractor must supply the following written information within five business days after receiving a telephone authorization from the MDEQ district Project Manager to start the work:

- Copy of Certificate of Awardability, for contracts over \$100,000.
- Proof of 40-hour hazardous waste safety training for on-site personnel.

The Contractor's invoice(s) shall be submitted to the invoicing address on the Purchase Order as well as a copy to Amy Keranen the MDEQ Project Manager at 55195 US-41, Calumet, MI 49913. Invoices shall include a breakdown of charges by Work Item from the Bid Table and disposal documentation must be provided prior to the invoice(s) being processed for payment.

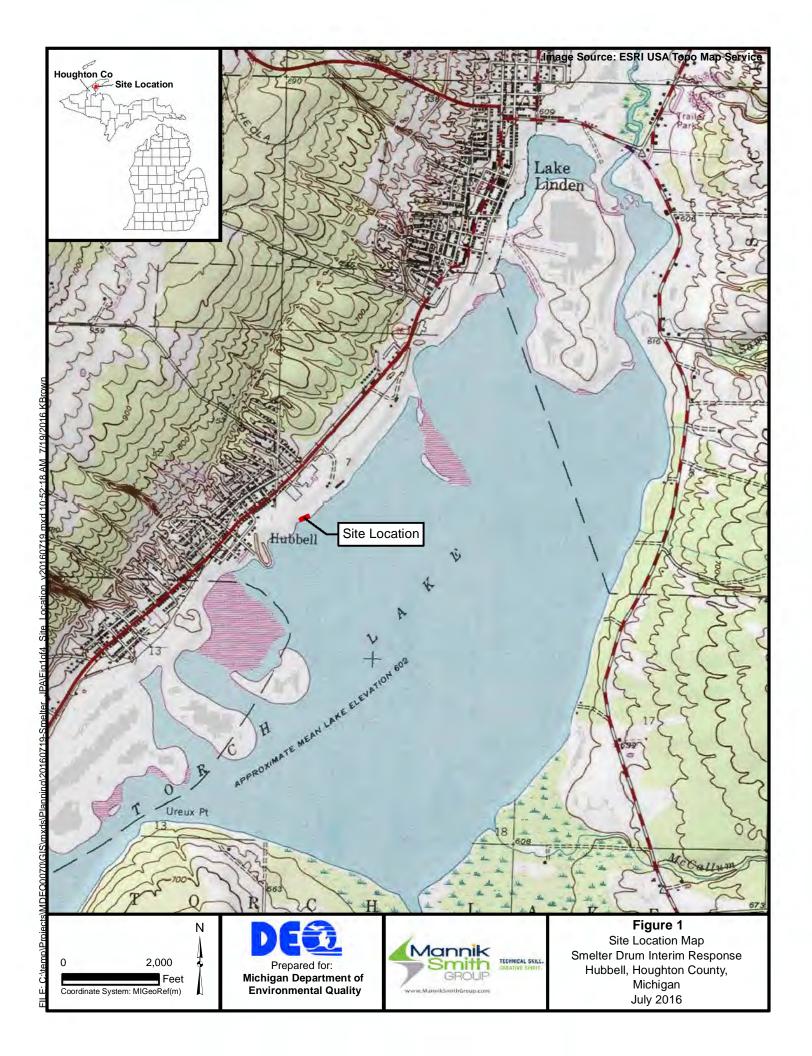
Schedule:

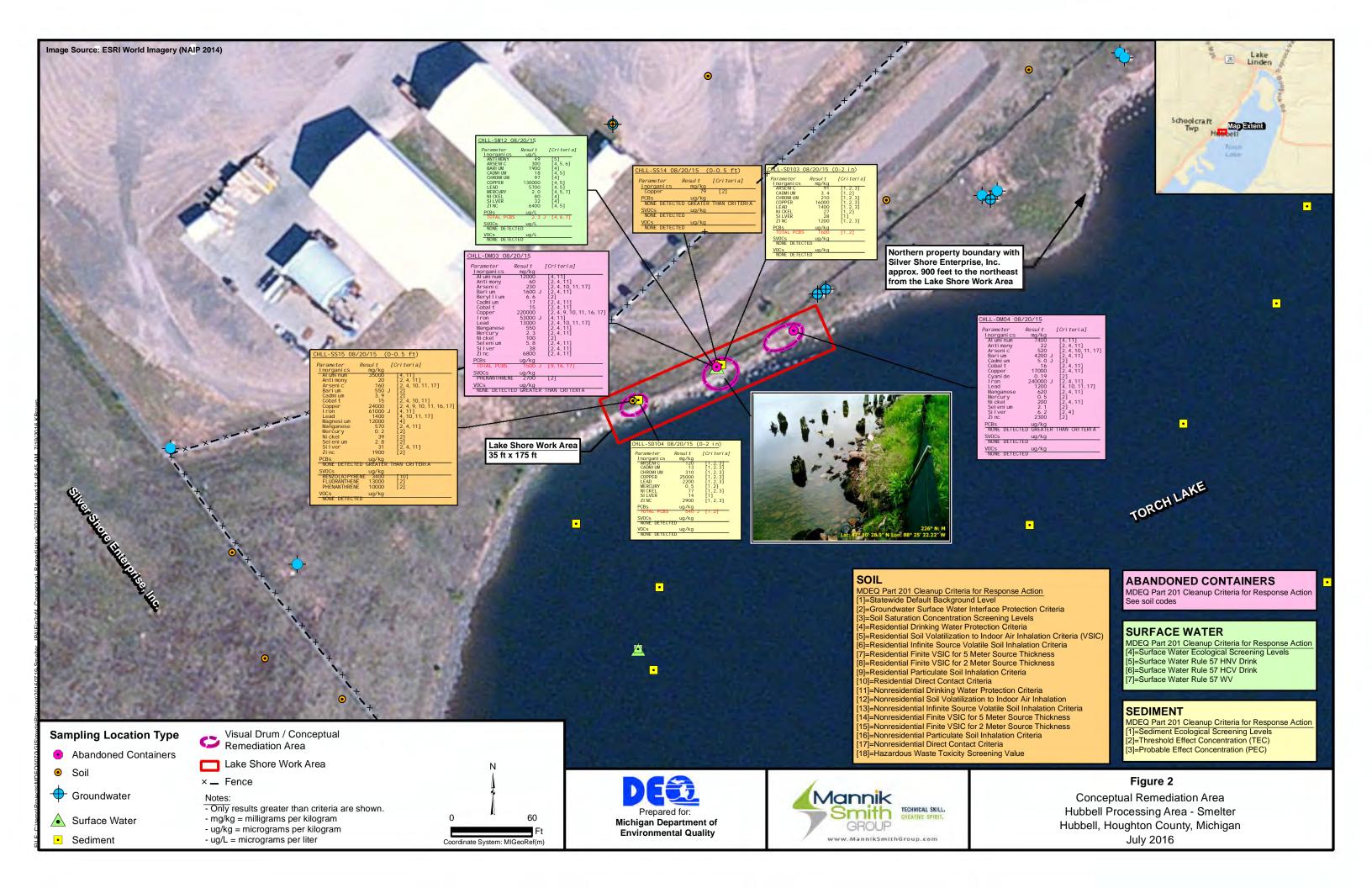
- 15 September 2016 Pre-Bid Meeting/Walkover at the location
- 12 October 2016 Bids due at 5:00 p.m. local time via electronic mail
- 17 October 2016 Award work (tentative)
- 24 October 2016 Issue Purchase Order (tentative)
- Fall 2016/Spring 2017 Drum removal work shall occur after receipt of the Joint Permit at a time mutually agreeable to the Contractor, MDEQ, and Koppers.
- No on-site work shall occur on weekends or government holidays without prior written approval.

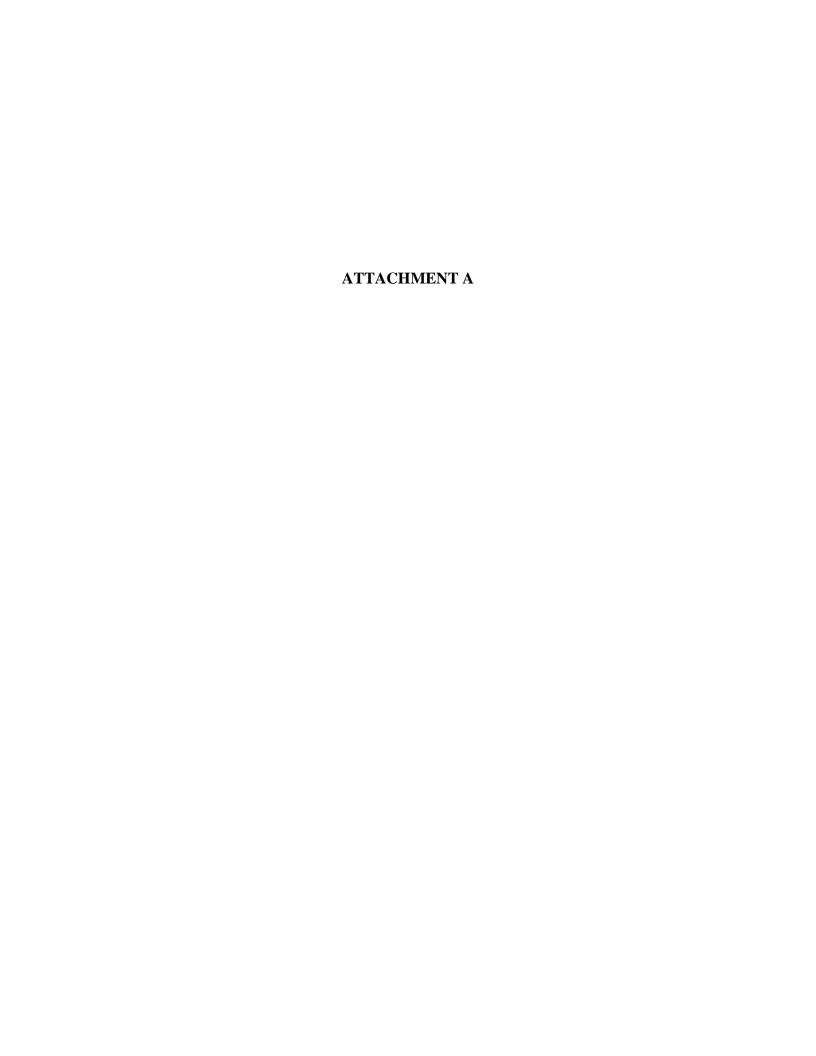
The following tasks comprise the Scope of Work. Quantities shown are estimated for bid comparison purposes. Actual quantities may be more or less than the estimated value. Unit rates will be paid for the actual work performed. Fully executed disposal documentation will be required for payment of "remove and dispose" Work Items. Bids shall remain valid through 31 October 2017. If the Contractor intends to use Waste Management for disposal, please coordinate with Mr. Dan Roddan at droddan1@wm.com / 920-539-1167 for project-specific rates.

W	ork Item		Contractor Quote
1.	Obtain a SESC Permit. In	stall, maintain, and ultimately remove silt	
	fence and/or other measur	res when the disturbed areas have been	
	stabilized and the permit i	s released.	\$
	F		7
2.	Mobilization and demobil	lization of all materials, tools, labor, and	
		aracterize containers and contents for	
	disposal acceptance, cond	uct test pitting, retrieve and contain drums	
	and their contents, and sta	ige securely repackaged containers and their	
	contents inside the perime	eter fence. Note – this is only for the mobiliz	cation
	-	s, labor, and equipment. The actual	
		rieval, test pitting, and packaging are itemiz	ed
	below on a unit rate basis		\$
3.	Conduct test-pitting withi	n the "Lake Shore Work Area" on Figure 2	
	after removal and contain	ment of known visible drums. This includes	
	replacement and compact	ion of existing soil into the excavated area(s).
	Any drums located during	g test pitting will be addressed under the belo	OW
	Work Items.	Unit rate per hour = \$	\$
		1	(assuming 4 hours)
4.	Waste characterization sa	mpling (per container) and analysis as may	(,
		acility acceptance (including payment of	
		Unit rate each = \$	\$
	•		(assuming 5 drums)
5.		ource Conservation and Recovery Act	
	(RCRA) empty drum.	Unit rate each = \$	\$
			(assuming 2 drums)
6.	Remove and dispose char	acteristically non-hazardous container.	
		Unit rate each = \$	\$
_			(assuming 2 drums)
/.		acteristically hazardous container (due to	ф
	metals content).	Unit rate each = \$	\$(assuming 1 drum)
Ω	D		(assuming 1 drum)
8.	-	n containing non-Toxic Substances	
		lated material with polychlorinated ation less than 50 parts per million (ppm).	
	orphenyi (FCB) concentra	Unit rate each = \$	¢
			\$(assuming 1 drum)
			Page 5 o

Scope of Work and Bid Table Hubbell Smelter Drum Removal Interim Response


9.	Remove and dispose drum containing non-TSCA regulated materia with PCB concentration greater than 50 ppm.	ıl
	Unit rate each = \$	\$
		(assuming 1 drum)
10.	Riprap placement to backfill drum removal and excavation areas	
	within and on the shoreline of Torch Lake. The Contractor shall	\$
	assume 10 tons of riprap meeting the requirements on page 2 of 6.	\$
11.	Site restoration including provision of 6-inches compacted thickness andy loam soil that is free of large roots and rocks and is suitable to vigorous grass growth over all excavation areas. Assume up to 65 in-place cubic yards to cap the Lake Shore Work Area. Any other capped areas that are compromised by the work shall similarly receadditional sandy loam soil such that the compacted cap thickness resix-inches. Soil placement areas and any other areas with significant disturbance from equipment tracking shall be seeded and mulched with 100% biodegradable straw mulch blankets. All other previous vegetated areas disturbed by the work shall be seeded and receive I mulch placement. Equipment tracks shall be raked out. Hydroseedi may be substituted for loose mulch and blankets.	for vive emains nt ly oose
12	Drawinianal allowance for activities situations and/or wests stream	
12.	Provisional allowance for activities, situations, and/or waste stream not included above. Payment under the Provisional Allowance will	
	based on rates agreed upon prior to conducting the work and receip	
	provided.	\$ <u>10,000.00</u>
	TOTAL	¢
	TOTAL	Ψ
ъ.		
В10	lder Company Name:	
Re	presented by (print):	
Ad	dress:	
Te	lephone Number:	
Da	te Submitted:	
Sig	nature:	
Est	imated Duration to Complete the Work:	
Pro	pposed Disposal Facilities:	
Ad	dendum(s) Received (Date):	




Table 1
Abandoned Drum Summary
Hubbell Processing Area
C&H Lake Linden Operations
Houghton County, Michigan

									П		Wast	e Chara	acteriza	tion					Avai	lable La	aborato	ry Ana	lyses				
Container Number	Container Identification	Sample / Inspection Date	Property Identification Number	Laboratory Work Order Number	Longitude	Latitude	Container Description	Notes	Container Intact?	Container Empty?	Hazardous Waste	Non-TSCA PCB Waste	RCRA Empty Drum	Unknown - Requires Characterization if Not Empty	TCLP VOCs	TCLP SVOCs	Reactive Sulfide	Reactive Cyanide	pH Paint Filter	Flash Point	VOCs	PNAs	Metals PCBs	Hexavalent Chromium	Chloride and Sulfate	Cyanide	DRO/ORO
Aban	ndoned Containers - Hubbell Smelte						the second second second second			_		-	_				-	1		_			_	_	-	_	_
1	SUBMERGED DRUM	8/20/2015	014-307-001-50	1508213	-88.42264007	47.17453117	An intact submerged drum observed in approximately 1 foot of water	Drum sampling location CHLL-DM04 is representative of the contents of the submerged drum identified during reconnaissance activities.	Yes	No				Х							х	х	х х	i		х	
2	SUBMERGED DRUM CONTENTS	8/20/2015	014-307-001-50	1508213	-88.422866627	47.174452345		Drum sampling location CHLL-DM03 is representative of the contents of the submerged drum identified during reconnaissance activities.	No	No				Х							х	х	х х			х	
3,4	DRUMS	08/19/14 and 07/01/15	014-307-001-50	NA	-88.422872653	47.174452769	Two submerged drums observed in approximately 1 foot of water. One drum observed protruding from the shoreline.	Surface soil location CHLL-SS14-0-6" is representative of environmental conditions in the vicinity of the reconnaissance location.	No	Unk				х													
5	SUBMERGED DRUM	08/19/14 and 07/01/15	014-307-001-50	NA	-88.423122590	47.174373113	An intact submerged drum observed in approximately 1 foot of water	Surface soil location CHLL-SS15-0-6" is representative of environmental conditions in the vicinity of the reconnaissance location.	Yes	Unk				Х													

Koppers Inc.
Scope:
Document No.:
Revision No.:
Effective Date:

Page 1 of 4

US K-PUR-44-FORM-1

1 11/04/2014

Written by:

Heath Huschak Marion Malus

PURCHASING Contractor Qualification Questionnaire/Survey

Koppers is committed to providing a safe workplace for employees, contractors and the general public. As an RC14001 compliant company Koppers has specific safety, health, environmental and security (SH&E) expectations of all contractors. **Koppers SH&E Policy** consists of **Compliance** with all applicable federal, state, and local SH&E laws, regulations, and with other requirements to which Koppers subscribes; **Pollution Prevention** in order to preserve the environment for the health, productivity, and enjoyment of future generations; **Protection of People** through the management of product, process and other safety risks; **Continuous Improvement** of our safety, health and environmental systems and performance; and **Communication** regarding our business operations and potential risks, both internally and externally.

To qualify to perform on-site work. Koppers contractors must provide the following information and agree to obtain the following information from all subcontractors utilized and provide it upon request. Company Name: Contractor Qualification on File Yes \Box No \Box Valid Until Contractor Representative: Phone: Statement of Work (SOW) Brief Description of Tasks and Associated SH&E Implications. Check all Project Specific Aspects which apply from the list below: **ENVIRONMENTAL ASPECTS SAFETY ASPECTS TRAINING** Asbestos Abatement **Pinch Points** Air Pollutant Emissions Fire/Explosion Environmental Noise/Light Hazardous Energy Radiation Exposure **Confined Space** П **Pollution** (L.O.T.O.) Manual Material Potential Spill/Release Sharp Object Exposure Hazwoper Handling Struck by Vehicles or Waste Generation Noise Exposure Welding Equipment Personnel Exposure: Waste Water/Storm Water Trip/Slip/Fall Conditions Personnel Exposure: Use of Reactive Heat Stress/Hypothermia Chemical Personnel Exposure: Working at Heights Ingestion Personnel Exposure: Inhalation

PURCHASING Contractor Qualification Questionnaire/Survey

Koppers Inc.
Document No.:

K-PUR-44-FORM-1

Revision No.: Effective Date:

11/04/2014

Page 2 of 4

Em	nergency Contact/s	Safety Coordinator:	Phone:	
1.	List any chemica	als or equipment to be used on-sit	e (attach applicable SDS)	
2.	List any additiona	al SHE aspects pertaining to this	work that we did not include above	
the	e right to verify, ins derstand that activ	pect/audit our activities and those	ument is true and correct. I also understance of our Suppliers/Contractors with regarmaintenance contracts may require subset of make this determination.	ds to our on-site activities. I further
Sig	gnature of Contrac	tor's Representative		Date:
Co	mpany Name			
Co	mmercial Qualific	cation:		
1.		ousiness with Koppers in the past	2	Yes □ No □
١.	-			
•				
2.	•	below best describes your busin		
	Electrical	∐ Trackv		
	Piping	☐ Concre		
Ш	Insulation	☐ Genera	al Construction	
3.		pers will be based on the Terms a lease check here if you agree to the	nd Conditions listed at http://www.koppenese Terms and Conditions.	ers.com/pages/doing-business-
4.	Please check he	re that you agree with Koppers pa	ayment terms of net 45 days. \Box	
5.	Do you have any	registered minority status?		Yes □ No □
	a. Type	b	. Date of expiration on your certification	on
6.		the following with your current in	surance information:	
	Date	Employers Liability Amount	Commercial General Liability Amt.	Automobile Liability Amount
			The state of the s	
				<u> </u>
7.	Are you RC1400	1 certified and have you impleme	nted comparable management system o	qualifications? Yes 🗌 No 🗌
	List Qualification	S:		

Koppers Inc.

Document No.: K-PUR-44-FORM-1

Document Inc..

Revision No.: 1

11/04/2014

Page 3 of 4

If RC14001 or comparable management system you do NOT have to complete the remainder of the form

8.	In th	ne table below, provide the three most recent full years of history for the area or region	n to which this c	uestio	nnaiı	е ар	plies
ı	ITEM	DESCRIPTION	20 2	20		20_	_
	Α	Interstate Experience Modification Rate (EMR)					
	В	Total Recordable Incident Rate					
	С	Days Away Incident Rate					
		Using the OSHA #300 logs from the facility providing labor, please docu	ment the follow	/ing:			
	D	Number of Injuries and Illnesses					
	Е	Number of Lost Workday Cases					
	F	Number of Injury Related Fatalities					
	G	Total Number of Employees					
	Н	Employee Hours Worked Per Year (If unknown use # employees x 2080)					
		*(B) Rate = D x 200,000 / H	200,000 / H				
9.		s your company experienced any work-related fatalities in the last three years?		Yes		No	
	, .						
10.	Has	s your company experienced any OSHA, EPA (federal or state) or DOT violations in la	ast three years?	Yes		No	_
	If ye	es, describe and detail corrective measures taken:					
GE	NER	AL					_
11.	Doe	es your company have a written safety and health program?		Yes		No	
12.	Does your company have a written Hazard Communication Program?						
13.	Doe	es your company use subcontractors?		Yes		No	
	If ye	es, do you qualify subcontractors based on their ability to address SHE requirements	?	Yes		No	
	a.	Do you verify the meet regulatory requirements?		Yes		No	
	b.	Do you have a formal contractor safety program?		Yes		No	
14.	Are	all documents pertaining to this questionnaire available for auditing?		Yes		No	
	If N	o, please explain:					

PURCHASING Contractor Qualification Questionnaire/Survey

Koppers Inc.Document No.: K-PUR-44-FORM-1

Revision No.: Effective Date:

11/04/2014

Page 4 of 4

15. Indicate the circumstances in v	vhich your company's employees may	be subject to sub	stance abuse sc	reening.				
☐ Employment	☐ Probable Cause		Periodic					
Random	☐ Post-Accident		Other					
16. Does your company have a po	Yes □ No □							
17. Does your company conduct jo	obsite safety inspections?			Yes □ No □				
TRAINING								
18. Please respond to the following	g items with "Yes. No. or NA".							
Programs/Training	Reference Source	Frequency of training for individual employees	Individual employee training documented Yes/No/NA					
Asbestos Abatement	OSHA 29 CFR 1926-1101							
Confined Space Entry	OSHA 29 CFR 1910.146(g)							
Cranes	OSHA 29 CFR 1926.1400							
Electric Power Gen, Tran, Dist.	OSHA CFR 29 1910.269							
Electrical Safety	OSHA 29 CFR 126.400							
Emergency Action Plan	OSHA 29 CFR 126.35							
Excavations	OSHA 29 CFR 1926.651							
Fall Protection	OSHA 29 CFR 1926.500							
First Aid/CPR	OSHA 29 CFR 1926.23							
Forklifts	OSHA 29 CFR 1910.178(1)							
Hazard Communication	OSHA 29 CFR 1910.1200(h)							
HAZWOPER	OSHA 20 CFR 1926.65							
Hearing Protection	OSHA 29 CFR 1926.101							
Fire Protection & Prevention	OSHA 29 CFR 1926.150							
Lockout/Tagout	OSHA 29 CFR 1910.147 (c)(7)							
Personal Protective Equipment	OSHA 29 CFR 1926.95							
Respiratory Protection	OSHA 29 CFR 1926.103							
Welding and Burning	OSHA 29 CFR 1926.350							
Scaffolding	OSHA 29 CFR 1926.451							
Please send this completed form to: Fax:								
Email:								
Koppers Use Only								
Reviewed by: Date:								
☐ Approve ☐ Reject ☐ Conditional Approval								
Justification for Conditional/Reject:								

Remediation and Redevelopment Division Department of Environmental Quality Conditions for Emergency Bids

Printed under the authority of the Natural Resources and Environmental Protection Act, PA 451, February 1995, as amended

By your response to the Department of Environmental Quality request for bids on the	
site, the contractor agrees to provide all labor, materials, equipment, tools	and
services required to complete the work and comply with the following conditions:	

- 1. INSURANCE: No work connected with this contract shall be started until the contractor has submitted evidence that (a) all workers are insured to protect him/her from claims for damages for personal injury or death which may arise from operations under this contract and that (b) he/she is covered by Property Damage Insurance in the amount of \$100,000 and Public Liability Insurance in the amount of \$100,000-\$300,000. All of the above insurances shall be maintained until final payment is made. The contractor shall assume full responsibility for any damage which may result from any cause including fire or other casualty until completion of the contract and final payment. Any casualties shall not relieve the contractor from performing the contract.
- 2. EMPLOYEES AND SUPERINTENDENT: Contractor shall enforce good order among his/her employees and shall not employ on the work site any disorderly, intemperate, or unfit person or anyone not skilled in the work assigned to him/her. Contractor or a competent person having authority to act for him/her shall be at the work site at all times.
- **3. PROTECTION**: Contractor shall properly protect all new and existing work from damage. Proper safety provisions shall be made at all times for the protection of all persons.
- **4. ROYALTIES, PATENTS, NOTICES, AND FEES**: Contractor shall give all notices and pay all royalties, building permits, and fees. He/she shall defend all suits or claims for infringement of any patent rights and shall save the state harmless from loss on account thereof. He/she shall comply with all laws, ordinances, and codes applicable to any portion of the work.
- 5. EXAMINATION OF PREMISES: Bidder shall familiarize himself/herself with local conditions affecting the job. He/she shall take his/her own measurements and be responsible for the correctness of same. Bidder shall be held to have made such examinations and no allowances will be made in his/her behalf by reason of error or omission on his/her part. If any part of the contractor's work depends upon existing work for proper results or the work of another contractor, the contractor shall notify the Department before commencing work of any defects that will affect the results. Failure to so notify will constitute his/her acceptance of the conditions.
- **6. OTHER CONTRACTS**: The state may let other contracts in connection with the work and the contractor shall properly connect and coordinate his/her work with the work of such other contractors. The state shall not be liable for any damages or increased costs occasioned by the failure of other contractors to execute their work as may be anticipated by these documents.
- 7. PAYMENT: Payment for the work will be made in one sum upon completion of the work. When applying for payment, the contractor shall submit a statement based upon an itemized schedule. The work will not be considered complete until the work has been finally accepted by the Department of Environmental Quality and the contractor has furnished satisfactory evidence that all payrolls and other indebtedness connected with the work have been paid.

- **8. REGULATIONS:** The contractor shall comply with all authorities having jurisdiction over the work. This includes all applicable federal, state, and local laws, ordinances, rules and regulations.
- **9. PREVAILING WAGES.** The contractor shall comply with Michigan's Prevailing Wage Act, MCL 408.551 et seg. Shall ensure that all employees covered by this act are compensated at a rate not less than those established by the Michigan Department of Consumer and Industry Service as Prevailing Wage and Fringe Benefit rates.

The contractor shall secure all construction permits necessary for proper execution of the work prior to starting work on the project. All fees for securing the permits shall be paid by the contractor, including all inspection costs which may be legally assessed by the Bureau of Construction Codes in accordance with authority granted under 1980 PA 371. All work shall be executed in accordance with the state of Michigan's Construction Codes. If the contractor performs any work knowing it to be contrary to the state of Michigan's Construction Codes, the contractor shall assume full responsibility and shall bear all attributable costs.

The contractor shall conform to the provisions of the Michigan Right to Know law, 1986 PA 80 and all other applicable state and federal health and safety regulations, including U.S. Occupational Safety and Health Administration (29 CFR 1910).

The contractor shall follow all state and federal laws and regulations that govern the handling, transportation, and disposal of material and waste that are deemed part of the work and shall use licensed personnel were appropriate.

DTMB-0414 (R 1/15)

STATE OF MICHIGAN
Department of Technology, Management and Budget
State Facilities Administration
3111 W. St. Joseph Street
Lansing, Michigan 48917

Date Issued: 12 October 2016

Index No(s): NA File No: NA

Department: MDEQ-RRD

Project Name: Abandoned Mining

Wastes Torch Lake Non-Superfund Site

Subject: Clarification to Scope of Work

Bid Opening Date: 28 October 2016

ADDENDUM NO. 1

TO: All Bidders

SUBJECT: Hubbell Smelter Drum Removal Interim Response

INTENT:

This Addendum No. 1 is issued to revise the Bid Opening Date, adjust quantities to align with discussions during the Pre-Bid Meeting walkover, clarify the scope of work by answering questions, and provide analysis results and Prevailing Wage Rates. This Addendum No. 1 consists of one page and five attachments including Attachment A – Sign In Sheet, Attachment B – Revised Bid Table, Attachment C – Prevailing Wages, Attachment D – Answers to Questions, and Attachment E – Analysis Summary Tables

and Lab Report.

Item 1 – Revised Bid Opening Date: The Bid Opening Date is revised to October 28, 2016 at 5:00 pm Eastern Daylight Time (EDT). Bids shall be submitted via electronic mail to Mr. Jed Chrestensen of The Mannik Smith Group, Inc. at JChrestensen@manniksmithgroup.com and Ms. Amy Keranen of MDEQ at keranena@michigan.gov.

Item 2 – Bid Table Amendment: The quantities for Work Items 3, 5, 6, and 7 in the Bid Table have been revised and the description for Work Item 8 has been revised. A revised Bid Table is provided in Attachment B.

Item 3 – Deadline for Questions: The deadline for submitting questions is October 19, 2016 at 5:00 pm EDT.

Item 4 – Answers to Questions: Several questions have been posed by Bidders. Please refer to Attachment D for answers and clarifications.

Item 5 – Addition of Seeding Guarantee: The revised Bid Table in Attachment B includes a one year guarantee for the vegetative cover. Refer to the revised Bid Table for details.

ACKNOWLEDGEMENT: This Addendum must be acknowledged by the bidder in the space provided at the bottom of the Bid Table for submission of a valid bid. The changes and information shall become part of the contract documents.

ATTACHMENT A PRE-BID MEETING SIGN-IN SHEET

MEETING ATTENDANCE RECORD

DEPARTMENT OF TECHNOLOGY, MANAGEMENT AND BUDGET

State Facilities Administration Design and Construction Division

PROJECT DESCRIPTION/LOCATION HUBBELL SMELTED DRUM REMOVAL	INTERIM RESPONSE	9-15-16
INDEX NUMBER FILE NUMB		TIME
MEETING PLACE		13100
HUBBELL PARK PAVILION		
PLEASE PRINT YOUR NAME	FIRM YOU REPRESENT	TELEPHONE NUMBER AND EMAIL ADDRESS
Terrylleering	135	989239419
		Theering @ JSSM/ Col
Jed Chrostenson	Mannik + Smith Group	906-487-7452 Schiestensen @ manniksmith groupe. 262 328 7443
JOSH MCCOLLUM	CLEAN HAMBORS	Mccollin, jositua Geleanhort
Laura Bonen	BeB Contracting	nahonen@ notmail con
Kurt Pass	Northern Al	231-342-3735 HET A ALCO
Chris Gendron	U.P. Environmental Services	Chris@upenvisonmental.com
Jeff Binkley	MANNIK SMith Grays	I GINKII NO MONINSKIMITADI DI DI
Amy Keranen	MDER	906-387-0389 Keranenac michigan g

ATTACHMENT B REVISED BID TABLE

The following tasks comprise the Scope of Work. Quantities shown are estimated for bid comparison purposes. Actual quantities may be more or less than the estimated value. Unit rates will be paid for the actual work performed. Fully executed disposal documentation will be required for payment of "remove and dispose" Work Items. Bids shall remain valid through 31 October 2017. If the Contractor intends to use Waste Management for disposal, please coordinate with Mr. Dan Roddan at droddan1@wm.com / 920-539-1167 for project-specific rates.

W	ork Item	Contractor Quote
1.	Obtain a SESC Permit. Install, maintain, and ultimately remove silt fence and/or other measures when the disturbed areas have been	
	stabilized and the permit is released.	\$
2.	Mobilization and demobilization of all materials, tools, labor, and equivalent required to characterize containers and contents for disposal acceptance conduct test pitting, retrieve and contain drums and their contents, and	ee,
	securely repackaged containers and their contents inside the perimeter Note – this is only for the mobilization of required materials, tools, lab	fence.
	equipment. The actual drum characterization, retrieval, test pitting, and packaging are itemized below on a unit rate basis.	d \$
3.	Conduct test-pitting within the "Lake Shore Work Area" on Figure 2 after removal and containment of known visible drums. This includes replacement and compaction of existing soil into the excavated area(s) Any drums located during test pitting will be addressed under the belowork Items. Unit rate per hour = \$	w \$
4.	Waste characterization sampling (per container) and analysis as may be required for disposal facility acceptance (including payment of analysis fees). Unit rate each = \$	(assuming 12 hours)
5.	Remove and dispose Resource Conservation and Recovery Act (RCRA) empty drum. Unit rate each = \$	(assuming 5 drums) \$
6.	Remove and dispose characteristically non-hazardous container. Unit rate each = \$	(assuming 5 drums) \$
7.	Remove and dispose characteristically hazardous container (due to metals content) that is not exempt from RCRA Subtitle C. Unit rate each = \$	(assuming 1 drum)
8.	Remove and dispose characteristically hazardous container (due to metals content) that is exempt from RCRA Subtitle C per 40 CFR 261.4(b)(7). Unit rate each = \$	(assuming 2 drums) \$
9.	Remove and dispose drum containing non-Toxic Substances Control Act (TSCA) regulated material with polychlorinated biphenyl (PCB) concentration less than 50 parts per million (ppm). Unit rate each = \$	(assuming 1 drum)
		(assuming 1 drum)

Scope of Work and Revised Bid Table Hubbell Smelter Drum Removal Interim Response

10. Riprap placement to backfill drum removal and excavation area within and on the shoreline of Torch Lake. The Contractor shall assume 10 tons of riprap meeting the requirements on page 2 of	
11. Site restoration including provision of 6-inches compacted thick loam soil that is free of large roots and rocks and is suitable for grass growth over all excavation areas. Assume up to 65 in-plac to cap the Lake Shore Work Area. Any other capped areas that a compromised by the work shall similarly receive additional sand soil such that the compacted cap thickness remains six-inches. Splacement areas and any other areas with significant disturbance equipment tracking shall be seeded and mulched with 100% bio straw mulch blankets. All other previously vegetated areas disturbance work shall be seeded and receive loose mulch placement. Equip shall be raked out. Hydroseeding may be substituted for loose mand blankets. Guarantee vegetative cover for 1 year*.	vigorous e cubic yards are dy loam oil e from degradable arbed by the ment tracks
12. Provisional allowance for activities, situations, and/or waste streenot included above. Payment under the Provisional Allowance was based on rates agreed upon prior to conducting the work and recoprovided.	vill be
TOTAL	\$
Bidder Company Name:	
Represented by (print):	
Address:	
Telephone Number:	
Date Submitted:	
Signature:	
Estimated Duration to Complete the Work:	
Proposed Disposal Facilities:	
Addendum(s) Received (Date):	

^{* =} Seeded areas will be accepted when a full uniform stand of grass has become established and maintained for one year. A satisfactory stand of grass is defined as no bare spots larger than one square foot and not more than 10 percent of the area with bare spots larger than 3-inches by 3-inches. 80% of the line item amount will be paid upon completion of seeding with the balance upon acceptance after the following growing season or within one year, whichever occurs first.

ATTACHMENT C PREVAILING WAGES

Wage and Hour Division PO Box 30476 Lansing, MI 48909 517-284-7800

Informational Sheet: Prevailing Wages on State Projects

REQUIREMENTS OF THE PREVAILING WAGES ON STATE PROJECTS ACT, PUBLIC ACT 166 OF 1965

The State of Michigan determines prevailing rates pursuant to the Prevailing Wages on State Projects Act, Public Act 166 of 1965, as amended. The purpose of establishing prevailing rates is to provide minimum rates of pay that must be paid to workers on construction projects for which the state or a school district is the contracting agent and which is financed or financially supported by the state. By law, prevailing rates are compiled from the rates contained in collectively bargained agreements which cover the locations of the state projects. The official prevailing rate schedule provides an hourly rate which includes wage and fringe benefit totals for designated construction mechanic classifications. The overtime rates also include wage and fringe benefit totals. Please pay special attention to the overtime and premium pay requirements. Prevailing wage is satisfied when wages plus fringe benefits paid to a worker are equal to or greater than the required rate.

State of Michigan responsibilities under the law:

The department establishes the prevailing rate for each classification of construction mechanic requested by a
contracting agent prior to contracts being let out for bid on a state project.

Contracting agent responsibilities under the law:

- If a contract is not awarded or construction does not start within 90 days of the date of the issuance of rates, a redetermination of rates must be requested by the contracting agent.
- Rates for classifications needed but not provided on the Prevailing Rate Schedule, must be obtained prior to contracts being let out for bid on a state project.
- The contracting agent, by written notice to the contractor and the sureties of the contractor known to the contracting
 agent, may terminate the contractor's right to proceed with that part of the contract, for which less than the prevailing
 rates have been or will be paid, and may proceed to complete the contract by separate agreement with another
 contractor or otherwise, and the original contractor and his sureties shall be liable to the contracting agent for any
 excess costs occasioned thereby.

Contractor responsibilities under the law:

- Every contractor and subcontractor shall keep posted on the construction site, in a conspicuous place, a copy of all prevailing rates prescribed in a contract.
- Every contractor and subcontractor shall keep an accurate record showing the name and occupation of and the actual
 wages and benefits paid to each construction mechanic employed by him in connection including certified payroll, as
 used in the industry, with said contract. This record shall be available for reasonable inspection by the contracting
 agent or the department.
- Each contractor or subcontractor is separately liable for the payment of the prevailing rate to its employees.
- The prime contractor is responsible for advising all subcontractors of the requirement to pay the prevailing rate prior to commencement of work.
- The prime contractor is secondarily liable for payment of prevailing rates that are not paid by a subcontractor.
- A construction mechanic *shall only* be paid the apprentice rate if registered with the United States Department of Labor, Bureau of Apprenticeship and Training and the rate is included in the contract.

Enforcement:

A person who has information of an alleged prevailing wage violation on a state project may file a complaint with the State of Michigan. The department will investigate and attempt to resolve the complaint informally. During the course of an investigation, if the requested records and posting certification are not made available in compliance with Section 5 of Act 166, the investigation will be concluded and a referral to the Office of Attorney General for civil action will be made. The Office of Attorney General will pursue costs and fees associated with a lawsuit if filing is necessary to obtain records.

(05/16) Page 1 of 1

STATE OF MICHIGAN

Wage and Hour Division PO Box 30476 Lansing, MI 48909 517-284-7800

Informational Sheet: Prevailing Wages on State Projects

General Information Regarding Fringe Benefits

Certain fringe benefits may be credited toward the payment of the Prevailing Wage Rate:

- If a fringe benefit is paid directly to a construction mechanic
- o If a fringe benefit contribution or payment is made on behalf of a construction mechanic
- If a fringe benefit, which may be provided to a construction mechanic, is pursuant to a written contract or policy
- o If a fringe benefit is paid into a fund, for a construction mechanic

When a fringe benefit is not paid by an hourly rate, the hourly credit will be calculated based on the annual value of the fringe benefit divided by 2080 hours per year (52 weeks @ 40 hours per week).

The following is an example of the types of fringe benefits allowed and how an hourly credit is calculated:

Vacation Dental insurance Vision insurance Health insurance Life insurance Tuition Bonus 401k Employer Contribution	40 hours X \$14.00 per hour = \$560/2080 = \$31.07 monthly premium X 12 mos. = \$372.84 /2080 = \$5.38 monthly premium X 12 mos. = \$64.56/2080 = \$230.00 monthly premium X 12 mos. = \$2,760.00/2080 = \$27.04 monthly premium X 12 mos. = \$324.48/2080 = \$500.00 annual cost/2080 = 4 quarterly bonus/year x \$250 = \$1000.00/2080 = \$2000.00 total annual contribution/2080 =	\$.27 \$.18 \$.03 \$1.33 \$.16 \$.24 \$.48 \$.96
Total Hourly Credit		— \$3.65

Other examples of the types of fringe benefits allowed:

- Sick pay
- Holiday pay
- Accidental Death & Dismemberment insurance premiums

The following are examples of items that will not be credited toward the payment of the Prevailing Wage Rate

- Legally required payments, such as:
 - Unemployment Insurance payments
 - Workers' Compensation Insurance payments
 - FICA (Social Security contributions, Medicare contributions)
- o Reimbursable expenses, such as:
 - Clothing allowance or reimbursement
 - Uniform allowance or reimbursement
 - Gas allowance or reimbursement
 - Travel time or payment
 - Meals or lodging allowance or reimbursement
 - Per diem allowance or payment
- Other payments to or on behalf of a construction mechanic that are not wages or fringe benefits, such as:
 - Industry advancement funds
 - Financial or material loans

(05/16) Page 1 of 1

OVERTIME PROVISIONS for MICHIGAN PREVAILING WAGE RATE COMMERCIAL SCHEDULE

Overtime is represented as a nine character code. Each character represents a certain period of time after the first 8
hours Monday thru Friday.

	Monday thru Friday	Saturday	Sunday & Holidays	Four 10s
First 8 Hours		4		
9th Hour	1	5	8	
10th Hour	2	6		9
Over 10 hours	3	7		

Overtime for Monday thru Friday after 8 hours:

the 1st character is for time worked in the 9th hour (8.1 - 9 hours)

the 2nd character is for time worked in the 10th hour (9.1 - 10 hours)

the 3rd character is for time worked beyond the 10th hour (10.1 and beyond)

Overtime on Saturday:

the 4th character is for time worked in the first 8 hours on Saturday (0 - 8 hours)

the 5th character is for time worked in the 9th hour on Saturday (8.1 - 9 hours)

the 6th character is for time worked in the 10th hour (9.1 - 10 hours)

the 7th character is for time worked beyond the 10th hour (10.01 and beyond)

Overtime on Sundays & Holidays

The 8th character is for time worked on Sunday or on a holiday

Four Ten Hour Days

The 9th character indicates if an optional 4-day 10-hour per day workweek can be worked **between Monday and** Friday without paying overtime after 8 hours worked, unless otherwise noted in the rate schedule. To utilize a 4 ten workweek, notice is required from the employer to employee prior to the start of work on the project.

- 2. Overtime Indicators Used in the Overtime Provision:
 - H means TIME AND ONE-HALF due
 - X means TIME AND ONE-HALF due after 40 HOURS worked
 - D means DOUBLE PAY due
 - Y means YES an optional 4-day 10-hour per day workweek can be worked without paying overtime after 8 hours worked
 - N means NO an optional 4-day 10-hour per day workweek *can not* be worked without paying overtime after 8 hours worked

3. EXAMPLES:

HHHHHHDN - This example shows that the 1½ rate must be used for time worked after 8 hours Monday thru Friday (characters 1 - 3); for all hours worked on Saturday, 1½ rate is due (characters 4 - 7). Work done on Sundays or holidays must be paid double time (character 8). The N (character 9) indicates that 4 ten-hour days is not an acceptable workweek at regular pay.

XXXHHHHDY - This example shows that the $1\frac{1}{2}$ rate must be used for time worked after 40 hours are worked Monday thru Friday (characters 1-3); for hours worked on Saturday, $1\frac{1}{2}$ rate is due (characters 4 – 7). Work done on Sundays or holidays must be paid double time (character 8). The Y (character 9) indicates that 4 ten-hour days is an acceptable alternative workweek.

ENGINEERS - CLASSES OF EQUIPMENT LIST

UNDERGROUND ENGINEERS

CLASS I

Backfiller Tamper, Backhoe, Batch Plant Operator, Clam-Shell, Concrete Paver (2 drums or larger), Conveyor Loader (Euclid type), Crane (crawler, truck type or pile driving), Dozer, Dragline, Elevating Grader, End Loader, Gradall (and similar type machine), Grader, Power Shovel, Roller (asphalt), Scraper (self propelled or tractor drawn), Side Broom Tractor (type D-4 or larger), Slope Paver, Trencher (over 8' digging capacity), Well Drilling Rig, Mechanic, Slip Form Paver, Hydro Excavator.

CLASS II

Boom Truck (power swing type boom), Crusher, Hoist, Pump (1 or more 6" discharge or larger gas or diesel powered by generator of 300 amps or more, inclusive of generator), Side Boom Tractor (smaller than type D-4 or equivalent), Tractor (pneu-tired, other than backhoe or front end loader), Trencher (8' digging capacity and smaller), Vac Truck.

CLASS III

Air Compressors (600 cfm or larger), Air Compressors (2 or more less than 600 cfm), Boom Truck (non-swinging, non-powered type boom), Concrete Breaker (self-propelled or truck mounted, includes compressor), Concrete Paver (1 drum, or larger), Elevator (other than passenger), Maintenance Man, Mechanic Helper, Pump (2 or more 4" up to 6" discharge, gas or diesel powered, excluding submersible pump), Pumpcrete Machine (and similar equipment), Wagon Drill Machine, Welding Machine or Generator (2 or more 300 amp or larger, gas or diesel powered).

CLASS IV

Boiler, Concrete Saw (40HP or over), Curing Machine (self-propelled), Farm Tractor (w/attachment), Finishing Machine (concrete), Firemen, Hydraulic Pipe Pushing Machine, Mulching Equipment, Oiler (2 or more up to 4", exclude submersible), Pumps (2 or more up to 4" discharge if used 3 hrs or more a day-gas or diesel powered, excluding submersible pumps), Roller (other than asphalt), Stump Remover, Vibrating Compaction Equipment (6' wide or over), Trencher (service) Sweeper (Wayne type and similar equipment), Water Wagon, Extend-a-Boom Forklift.

HAZARDOUS WASTE ABATEMENT ENGINEERS

CLASS I

Backhoe, Batch Plant Operator, Clamshell, Concrete Breaker when attached to hoe, Concrete Cleaning Decontamination Machine Operator, Concrete Pump, Concrete Paver, Crusher, Dozer, Elevating Grader, Endloader, Farm Tractor (90 h.p. and higher), Gradall, Grader, Heavy Equipment Robotics Operator, Hydro Excavator, Loader, Pug Mill, Pumpcrete Machines, Pump Trucks, Roller, Scraper (self-propelled or tractor drawn), Side Boom Tractor, Slip Form Paver, Slope Paver, Trencher, Ultra High Pressure Waterjet Cutting Tool System Operator, Vactors, Vacuum Blasting Machine Operator, Vertical Lifting Hoist, Vibrating Compaction Equipment (self-propelled), and Well Drilling Rig.

CLASS II

Air Compressor, Concrete Breaker when not attached to hoe, Elevator, End Dumps, Equipment Decontamination Operator, Farm Tractor (less than 90 h.p.), Forklift, Generator, Heater, Mulcher, Pigs (Portable Reagent Storage Tanks), Power Screens, Pumps (water), Stationary Compressed Air Plant, Sweeper, Water Wagon and Welding Machine.

State of Michigan

WHPWRequest@michigan.gov Official Request #: 1155

Requestor: MDEQ

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit excavation, container removal & disposal

Project Number: 761/16108.SAR

Houghton County

Official 2016 Prevailing Wage Rates for State Funded Projects

10/7/2016 Issue Date:

1/5/2017

Contract must i	be awarded b	y:	1/5/2017			
	Page 1	of 26				
Classification Name Description	:=======	Last Updated	Straight Ti Hourly	me and Half	a Double Time	Overtime Provision
Asbestos & Lead Abatement Laborer						
Asbestos & Lead Abatement Laborer 4 ten hour days @ straight time allowed Monday-Saturday, must be consecutive	MLDC		\$41.25	\$55.00	\$68.75 H	HHXXXXDY
		9/16/2016				
Asbestos & Lead Abatement, Hazardous	Material Hai	ndler				
Asbestos and Lead Abatement, Hazardous Material Handler	AS207		\$40.75	\$54.25	\$67.75 H	H H X X X X D Y
4 ten hour days @ straight time allowed Monday-Saturday, must be consecutive						
		10/30/2015				
Boilermaker						
Boilermaker	BO169		\$54.70	¢01 ∩0	¢107.45 U	ннннннрү
DOILEITHANEI	DO 104	2/17/2015	Ф 54.70	φο 1.08	φ107.43 Π	

Boilermaker	BO169		\$54.70	\$81.08	\$107.45 H H H H H H D Y	
		2/17/2015				
	Apprentice Rates:					
	1st 6 months		\$40.31	\$59.49	\$78.67	
	2nd 6 months		\$41.45	\$61.21	\$80.95	
	3rd 6 months		\$42.57	\$62.88	\$83.19	
	4th 6 months		\$43.69	\$64.57	\$85.43	
	5th 6 months		\$44.81	\$66.24	\$87.67	
	6th 6 months		\$48.63	\$72.50	\$96.36	
	7th 6 months		\$49.32	\$73.01	\$96.69	

Official Rate Schedule Official Request #: 1155

8th 6 months

Every contractor and subcontractor shall keep posted Requestor: MDEQ

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates

\$51.58 \$76.40 \$101.21

prescribed in a contract.

Project Number: 761/16108.SAR County: Houghton

Page 1 of 26

Issue Date: 10/7/2016

Contract must be awarded by: 1/5/2017

Page 2 of 26

Classification Name Description		Last Updated	Straight Ti Hourly	me and a Half		Overtime Provision ====
Bricklayer						
Marble, Tile and Terrazzo Finisher	BR6		\$36.55	\$45.79	\$55.03 H H [XHHDDY
Make up day allowed comment		6/2/2014				
Four 10s allowed Monday-Thurs. Mak	e up days: Friday & Saturda	ay.				
Bricklayer, stone mason, moisaic wo plasterer, tuck pointer, pointer, caull			\$42.71	\$55.03	\$67.35 X X H	H X X H H D Y
Make up day allowed comment Saturday All time over 12 hours pr day - double		6/2/2014				
	Apprentice Rates:					
	0 - 749 hours		\$32.85	\$40.24	\$47.63	
	750 - 1499 hours		\$34.09	\$42.10	\$50.11	
	1500 - 2249 hours		\$35.32	\$43.95	\$52.57	
	2250 - 2999 hours		\$36.55	\$45.79	\$55.03	
	3000 - 3749 hours		\$37.78	\$47.63	\$57.49	
	3750 - 4499 hours		\$39.01	\$49.48	\$59.95	
	4500 - 5249 hours		\$40.25	\$51.34	\$62.43	
	5250 - 6000 hours		\$41.48	\$53.19	\$64.89	
Marble, Tile and Terrazzo Layer Make up day allowed comment	BR6TL	6/2/2014	\$42.71	\$55.03	\$67.35 H H [XHHDDY

Four 10s allowed Monday-Thurs. Make up days: Friday & Saturday.

Official Rate Schedule Official Request #: 1155 Requestor: MDEQ Every contractor and subcontractor shall keep posted

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy of all prevailing wage and fringe benefit rates prescribed in a contract.

Project Number: 761/16108.SAR

County: Houghton

Page 2 of 26

Issue Date:

10/7/2016

Contract must be awarded by: 1/5/2017

Page 3 of 26

		rayes	01 20				
Classification Name Description			Last Updated	Straight Ti Hourly	Half	a Double Time	Overtime Provision ======
Carpenter							
Carpenter, Drywall Taper & Finishe Make up day allowed comment Saturday	er, & Floor	CA1510-C	7/26/2016	\$42.75	\$54.46	\$66.17 X	X H X X H H D Y
	Apprentice I	Rates:					
	1st 6 months			\$33.38	\$40.41	\$47.43	
	2nd 6 months	3		\$34.55	\$42.16	\$49.77	
	3rd 6 months	;		\$35.72	\$43.91	\$52.11	
	4th 6 months			\$36.90	\$45.69	\$54.47	
	5th 6 months			\$38.07	\$47.44	\$56.81	
	6th 6 months			\$39.24	\$49.19	\$59.15	
	7th 6 months			\$40.41	\$50.95	\$61.49	
	8th 6 months			\$41.58	\$52.71	\$63.83	
Pile driver Make up day allowed comment		CA1510-P	7/26/2016	\$42.95	\$54.76	\$66.57 X	X H X X H H D Y
Saturday							
	Apprentice I						
	1st 6 months			\$33.50	\$40.59	\$47.67	
	2nd 6 months			\$34.68	\$42.35	\$50.03	
	3rd 6 months	i		\$35.86	\$44.13	\$52.39	
	4th 6 months			\$37.05	\$45.91	\$54.77	
	5th 6 months			\$38.23	\$47.68	\$57.13	
	6th 6 months			\$39.41	\$49.45	\$59.49	
	7th 6 months			\$40.59	\$51.22	\$61.85	
	8th 6 months			\$41.77	\$52.99	\$64.21	

Official Rate Schedule Official Request #: 1155 Requestor: MDEQ Every contractor and subcontractor shall keep posted

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates

Project Number: 761/16108.SAR prescribed in a contract. County: Houghton

Page 3 of 26

Issue Date: 10/7/2016

Contract must be awarded by: 1/5/2017

Page 4 of 26

Classification Name Description	_	Last Updated	Straight Ti Hourly	me and a Half	Double Time	Overtime Provision
Cement Mason		=======	=======		======	=====
Cement Mason	BR6-CM		\$42.71	\$55.03	\$67.35 H	HDXHHDDY
Make up day allowed comment	DIVO-OW	6/2/2014	Ψ-Ζ.7 1	ψ55.05	ψ07.55 11	
	lake up days: Friday and Satu					
·	Apprentice Rates:	•				
	0 - 749 hours		\$34.09	\$42.10	\$50.11	
	750 - 1499 hours		\$35.32	\$43.95	\$52.57	
	1500 - 2249 hours		\$36.55	\$45.79	\$55.03	
	2250 - 2999 hours		\$37.78	\$47.63	\$57.49	
	3000 - 3749 hours		\$39.01	\$49.48	\$59.95	
	3750 - 4500 hours		\$40.25	\$51.34	\$62.43	
Cement Mason	PL16-16		\$33.04	\$43.99	\$54.93 H	нннннру
Four 10s allowed Monday-Thursda						
or Saturday inclement weather m						
Saturday hours for inclement wea						
shall be paid straight rate unless of worked.	over 40 nours					
Make up day allowed comment		8/18/2016				
Friday or Saturday for inclement wea						
	Apprentice Rates:					
	1st year		\$25.38	\$32.49	\$39.61	
	2nd year		\$27.57	\$35.78	\$43.99	
	3rd year		\$29.76	\$39.07	\$48.37	

Official Rate Schedule Official Request #: 1155

Every contractor and subcontractor shall keep posted Requestor: MDEQ Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy of all prevailing wage and fringe benefit rates

Project Number: 761/16108.SAR prescribed in a contract.

County: Houghton

Issue Date: 10/7/2016

Contract must be awarded by: 1/5/2017

Page 5 of 26

<u>Classification</u> ame Description		Last Updated	Straight Ti Hourly	me and a Half	Double Time	Overtime Provision
lectrician						====
Sound and Communications Technician 4 10 hour days allowed M-Th	n EC-10	70	\$36.60	\$47.73	\$58.85 H H	HHHHHD
Make up day allowed comment		8/26/2016				
Friday for inclement weather or holidays	Apprentice Rates:					
	1st Period		\$27.70	\$34.37	\$41.04	
	2nd Period		\$29.93	\$37.72	\$45.50	
	3rd Period		\$31.04	\$39.38	\$47.72	
	4th Period		\$32.15	\$41.04	\$49.94	
	5th Period		\$33.27	\$42.73	\$52.18	
	6th Period		\$34.38	\$44.40	\$54.40	
Inside wireman for work above \$160,0	00 EC-90	6z2H	\$51.23	\$68.06	\$84.90 H H	ннннр
A 4 ten schedule may be worked if 4 consecutive days, M-Th						
Make up day allowed comment Friday		8/30/2016				
	Apprentice Rates:					
	2nd period indenture	ed before 10/12/15	\$32.77	\$43.20	\$53.63	
	3rd period indenture	d before 10/12/15	\$36.26	\$48.44	\$60.61	
	4th period indenture	d before 10/12/15	\$39.73	\$53.64	\$67.55	
	5th period indenture	d before 10/12/15	\$41.47	\$56.25	\$71.03	
	6th period indenture	d before 10/12/15	\$43.21	\$58.86	\$74.51	
	1st period indentured	d after 10/12/15	\$25.83	\$32.79	\$39.75	
	2nd period indenture	ed after 10/12/15	\$27.56	\$35.39	\$43.21	
	3rd period indenture	d after 10/12/15	\$31.04	\$40.60	\$50.17	
	4th period indenture	d after 10/12/15	\$34.52	\$45.83	\$57.13	
	5th period indenture	d after 10/12/15	\$37.99	\$51.03	\$64.07	
	6th period indentured	d after 10/12/15	\$41.47	\$56.25	\$71.03	

Official Request #: 1155 Requestor: MDEQ

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit

Every contractor and subcontractor shall keep posted pit on the construction site, in a conspicuous place, a copy of all prevailing wage and fringe benefit rates

prescribed in a contract.

Project Number: 761/16108.SAR County: Houghton

Official Rate Schedule

Issue Date:

10/7/2016

1/5/2017 Contract must be awarded by:

Page 6 of 26

<u>Classification</u> Name Description	Last Updated	Straight Time a Hourly Ha		Overtime Provision
Inside wireman for work below 160,00 A 4 ten schedule may be worked if 4 consecutive days, M-Th		\$48.94 \$6 ₄	4.63 \$80.32	 Н Н Н Н Н Н Н D Y
Make up day allowed comment Friday	8/30/2016			
·	Apprentice Rates:			
	1st period indentured before 10/12/15	\$29.30 \$3	8.00 \$46.69	
	2nd period indentured before 10/12/15	\$32.77 \$43	3.20 \$53.63	
	3rd period indentured before 10/12/15	\$36.26 \$4	8.44 \$60.61	
	4th period indentured before 10/12/15	\$39.73 \$5	3.64 \$67.55	
	5th period indentured before 10/12/15	\$41.47 \$50	6.25 \$71.03	
	6th period indentured before 10/12/15	\$43.21 \$5	8.86 \$74.51	
	1st period indentured after 10/12/15	\$25.83 \$32	2.79 \$39.75	
	2nd period indentured after 10/12/15	\$27.56 \$3	5.39 \$43.21	
	3rd period indentured after 10/12/15	\$31.04 \$40	0.60 \$50.17	
	4th period indentured after 10/12/15	\$34.52 \$4	5.83 \$57.13	
	5th period indentured after 10/12/15	\$37.99 \$5	1.03 \$64.07	
	6th period indentured after 10/12/15	\$41.47 \$50	6.25 \$71.03	
Elevator Constructor				
Elevator Constructor Mechanic comment	EL-85 4/8/2013	\$70.77	\$116.32	D
4 tens allowed M-TH	Apprentice Rates:			
	1st year	\$50.27	\$75.32	
	2nd year	\$54.83	\$84.44	
	3rd year	\$57.10	\$88.98	
	4th year	\$61.66	\$98.10	
	, 500	ψ01.00	ψου. 10	

Official Request #: 1155

Official Rate Schedule

Requestor: MDEQ **Eve**Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit Every contractor and subcontractor shall keep posted pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates prescribed in a contract.

Project Number: 761/16108.SAR County: Houghton

Issue Date: 10/7/2016

Contract must be awarded by: 1/5/2017

Page 7 of 26

<u>Classification</u> Name Description		Last Updated	Straight Ti Hourly	me and a	a Double Overtime Time Provision	
Glazier					=======	
Glazier	GL-826		\$44.78	\$60.87	\$76.95 H H H H H H D) Y
4 tens allowed on consecutive days						
		6/3/2016				
	Apprentice Rates:					
	1st 6 months		\$31.91	\$41.57	\$51.21	
	2nd 6 months		\$33.52	\$43.98	\$54.43	
	3rd 6 months		\$35.12	\$46.38	\$57.63	
	4th 6 months		\$36.74	\$48.81	\$60.87	
	5th 6 months		\$38.35	\$51.22	\$64.09	
	6th 6 months		\$39.96	\$53.64	\$67.31	
	7th 6 months		\$41.57	\$56.05	\$70.53	
	8th 6 months		\$43.17	\$58.45	\$73.73	
Heat and Frost Insulator						
Heat and Frost Insulator Make up day allowed	AS127	11/3/2014	\$42.97	\$55.93	\$68.89 H H H H D D D D) Y
	Apprentice Rates:					
	1st year		\$30.01	\$36.49	\$42.97	
	2nd year		\$32.60	\$40.37	\$48.15	
	3rd year		\$35.19	\$44.26	\$53.33	
	4th year		\$37.79	\$48.16	\$58.53	
Spray Insulation	AS25S	6/2/2016	\$25.29	\$36.51	хххнннн	1 N

Official Request #: 1155

Official Rate Schedule

Requestor: MDEQ Every contractor and subcontractor shall keep posted

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates

prescribed in a contract.

Project Number: 761/16108.SAR County: Statewide

Page 7 of 26

Issue Date: 10/7/2016

Contract must be awarded by: 1/5/2017

Page 8 of 26

Torworker For work over \$10 million: Structural, IR-8-A S50.07 S69.76 S89.45 H H D H D D D D D D D D D D D D D D D	<u>Classification</u> Jame Description	. age	Last Updated	Straight Ti Hourly	me and a	Double Time	Overtime Provision
Ornamental, Machinery Rigger & Reinforcing Ironworker; installation of sheet metal siding A 4-10 work week allowed Monday thru Thursday. Friday may be used as a make-up day. Hours in excess of 40 must be paid time and one half. 9/29/2014 Make up day allowed 9/29/2014 Apprentice Rates:	ronworker						
Thursday. Friday may be used as a make-up day. Hours in excess of 40 must be paid time and one half. Make up day allowed Apprentice Rates: 0 - 1,000 hours	Ornamental, Machinery Rigger	& Reinforcing		\$50.07	\$69.76	\$89.45 H	HDHDDDY
Apprentice Rates: 0 - 1,000 hours \$25.39 \$37.75 \$50.11 1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$44.29 \$59.04 \$75.15 6,001 - 7,000 hours \$44.22 \$60.98 \$77.75 For work under \$10 Million: Structural, IR-8-B Ornamental, Machinery Rigger & Reinforcing Ironworker; pre-engineered metal buildings A 4-10 work week allowed Monday thru Thursday. Friday may be used as a make-up day. Hours in excess of 40 must be paid time and one half. Make up day allowed \$729/2014 Apprentice Rates: 0-1,000 hours \$25.39 \$37.75 \$50.11 1,001 - 2,000 hours \$39.01 \$53.17 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$40.31 \$55.12 \$69.93 575.15	Thursday. Friday may be use day. Hours in excess of 40 m	ed as a make-up					
0 - 1,000 hours \$25.39 \$37.75 \$50.11 1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$44.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$44.29 \$59.04 \$75.15 6,001 - 7,000 hours \$44.22 \$60.98 \$77.75 For work under \$10 Million: Structural, R-8-B Ornamental, Machinery Rigger & Reinforcing Ironworker; pre-engineered metal buildings A 4-10 work week allowed Monday thru Thursday. Friday may be used as a make-up day. Hours in excess of 40 must be paid time and one half. Make up day allowed 9/29/2014 Apprentice Rates: 0-1,000 hours \$25.39 \$37.75 \$50.11 1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15	Make up day allowed		9/29/2014				
1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15 For work under \$10 Million: Structural, R.8-B Ornamental, Machinery Rigger & Reinforcing Ironworker; pre-engineered metal buildings A 4-10 work week allowed Monday thru Thursday. Friday may be used as a make-up day. Hours in excess of 40 must be paid time and one half. Make up day allowed Apprentice Rates: 0-1,000 hours \$25.39 \$37.75 \$50.11 1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15		Apprentice Rates:					
2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 \$,001 - 4,000 hours \$40.31 \$55.12 \$69.93 \$,001 - 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 \$,001 - 6,000 hours \$42.92 \$59.04 \$75.15 \$,001 - 7,000 hours \$44.22 \$60.98 \$77.75 \$,001 - 7,000 hours \$44.22 \$60.98 \$77.75 \$,001 - 7,000 hours \$44.22 \$60.98 \$77.75 \$,001 - 7,000 hours \$46.73 \$64.76 \$82.79 H H D H D D D D D D D D D D D D D D D		0 - 1,000 hours		\$25.39	\$37.75	\$50.11	
3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 \$4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 \$5,001 - 6,000 hours \$42.92 \$59.04 \$75.15 \$6,001 - 7,000 hours \$44.22 \$60.98 \$77.75 \$72.53 \$60.91 - 7,000 hours \$44.22 \$60.98 \$77.75 \$72.53 \$60.91 \$77.75 \$72.53 \$72.53 \$72.55 \$70.91 \$72.55 \$72.55 \$70.91 \$72.55 \$72.55 \$70.91 \$72.55 \$72.55 \$70.91 \$72.55 \$72.55 \$70		1,001 - 2,000 hours		\$37.71	\$51.22	\$64.73	
4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15 6,001 - 7,000 hours \$44.22 \$60.98 \$77.75 For work under \$10 Million: Structural, IR-8-B Ornamental, Machinery Rigger & Reinforcing Ironworker; pre-engineered metal buildings A 4-10 work week allowed Monday thru Thursday. Friday may be used as a make-up day. Hours in excess of 40 must be paid time and one half. Make up day allowed 9/29/2014 Apprentice Rates: 0-1,000 hours \$25.39 \$37.75 \$50.11 1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15		2,001 - 3,000 hours		\$39.01	\$53.17	\$67.33	
5,001 - 6,000 hours \$42.92 \$59.04 \$75.15 6,001 - 7,000 hours \$44.22 \$60.98 \$77.75 For work under \$10 Million: Structural, IR-8-B Ornamental, Machinery Rigger & Reinforcing Ironworker; pre-engineered metal buildings A 4-10 work week allowed Monday thru Thursday. Friday may be used as a make-up day. Hours in excess of 40 must be paid time and one half. Make up day allowed 9/29/2014 Apprentice Rates: 0-1,000 hours \$25.39 \$37.75 \$50.11 1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15		3,001 - 4,000 hours		\$40.31	\$55.12	\$69.93	
For work under \$10 Million: Structural, IR-8-B		4,001 - 5,000 hours		\$41.61	\$57.07	\$72.53	
For work under \$10 Million: Structural, Ornamental, Machinery Rigger & Reinforcing Ironworker; pre-engineered metal buildings A 4-10 work week allowed Monday thru Thursday. Friday may be used as a make-up day. Hours in excess of 40 must be paid time and one half. Make up day allowed Apprentice Rates: 0-1,000 hours 1,001 - 2,000 hours 2,001 - 3,000 hours 3,301 \$53.17 \$50.11 4,001 - 5,000 hours 4,001 - 5,000 hours 5,001 - 6,000 hours 441.61 \$57.07 \$72.53 5,001 - 6,000 hours 42.92 \$59.04 \$75.15		5,001 - 6,000 hours		\$42.92	\$59.04	\$75.15	
Ornamental, Machinery Rigger & Reinforcing Ironworker; pre-engineered metal buildings A 4-10 work week allowed Monday thru Thursday. Friday may be used as a make-up day. Hours in excess of 40 must be paid time and one half. Make up day allowed Apprentice Rates: 0-1,000 hours 9/29/2014 Apprentice Rates: 1,001 - 2,000 hours \$25.39 \$37.75 \$50.11 1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15		6,001 - 7,000 hours		\$44.22	\$60.98	\$77.75	
Thursday. Friday may be used as a make-up day. Hours in excess of 40 must be paid time and one half. Make up day allowed Apprentice Rates: 0-1,000 hours 1,001 - 2,000 hours 2,001 - 3,000 hours 337.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15	Ornamental, Machinery Rigger	⁻ & Reinforcing		\$46.73	\$64.76	\$82.79 H	ч о о о о н о н
Apprentice Rates: 0-1,000 hours \$25.39 \$37.75 \$50.11 1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15	Thursday. Friday may be use day. Hours in excess of 40 m	ed as a make-up					
0-1,000 hours \$25.39 \$37.75 \$50.11 1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15	Make up day allowed		9/29/2014				
1,001 - 2,000 hours \$37.71 \$51.22 \$64.73 2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15		Apprentice Rates:					
2,001 - 3,000 hours \$39.01 \$53.17 \$67.33 3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15		0-1,000 hours		\$25.39	\$37.75	\$50.11	
3,001 - 4,000 hours \$40.31 \$55.12 \$69.93 4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15		1,001 - 2,000 hours		\$37.71	\$51.22	\$64.73	
4,001 - 5,000 hours \$41.61 \$57.07 \$72.53 5,001 - 6,000 hours \$42.92 \$59.04 \$75.15		2,001 - 3,000 hours		\$39.01	\$53.17	\$67.33	
5,001 - 6,000 hours \$42.92 \$59.04 \$75.15		3,001 - 4,000 hours		\$40.31	\$55.12	\$69.93	
		4,001 - 5,000 hours		\$41.61	\$57.07	\$72.53	
6,001 - 7,000 hours \$44.22 \$60.98 \$77.75		5,001 - 6,000 hours		\$42.92	\$59.04	\$75.15	
		6,001 - 7,000 hours		\$44.22	\$60.98	\$77.75	

Official Request #: 1155

Official Rate Schedule

Requestor: MDEQ Every contractor and subcontractor shall keep posted

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates

Project Number: 761/16108.SAR prescribed in a contract.

County: Houghton

Page 8 of 26

Issue Date: 10/7/2016

Contract must be awarded by:

Page 9 of 26

1/5/2017

		rage 9	UI 20				
<u>Cla</u> Name	ssification Description		Last Updated	Straight Ti	me and a Half	Double Time	Overtime Provision
=====			======================================	=======	:======	=======	======
Labor	er						
buildi and s stree rate rodm cuttir chipp cuttir mixel concr	s A Laborer - construction laborer on ing and heavy construction work, storm, sanitary sewers on all construction sites and its which are not included in the road builder s, tool crib attendant, civil engineer helper, ian, oxi-gun operator, propane or acetyleneing torch operator, motor driven buggies, bing hammers, tamping machines, greening, sand blasters, mason tenders, mortar rs, marterial mixers, vibrator operators, rete mixers, laborers with concrete crew, r to pour, including pour time from trucks.	L1329-B-A		\$33.71	\$43.89	\$54.07 X	X X X X X X X X X Y
			5/4/2016				
	Apprentice F	Rates:					
	0 - 1,000 hou	rs		\$28.62	\$36.25	\$43.89	
	1,001 - 2,000	hours		\$29.64	\$37.79	\$45.93	
	2,001 - 3,000	hours		\$30.66	\$39.31	\$47.97	
	3,001 - 4,000	hours		\$32.69	\$42.36	\$52.03	
blaste	B Laborer - Cement gun nozzleman, ers, miners, drillers, buster operators, layers Il non-metallic pipe	L1329-B-B	5/4/2016	\$34.13	\$44.52	\$54.91 X	$X\;X\;X\;X\;X\;X\;D\;Y$
Class	C Laborer - caisson worker & airtrack	L1329-B-C	5/4/2016	\$34.49	\$45.06	\$55.63 X	$X\;X\;X\;X\;X\;X\;X\;D\;Y$
Clas	s E Laborer - digester, tanks & kilns	L1329-B-D	5/4/2016	\$35.85	\$47.10	\$58.35 X	X

Official Request #: 1155

Official Rate Schedule

Requestor: MDEQ Every contractor and subcontractor shall keep posted Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates Project Number: 761/16108.SAR prescribed in a contract.

County: Houghton

Page 9 of 26

Issue Date: 10/7/2016

Contract must be awarded by: 1/5/2017

Page 10 of 26

Classification Name Description	Last Updated	Straight Ti Hourly	me and a Half	Double Time	Overtime Provision
Laborer - Hazardous					
Class A - performing work in conjunction with site preparation and other preliminary work prior to actual removal, handling, or containment of hazardous waste substances not requiring use of personal protective equipment required by state or federal regulations; or a laborer performing work in conjunction with the removal, handling, or containment of hazardous waste substances when use of personal protective equipment level "D" is required.	A.	\$32.91	\$46.37	\$59.82 H	нннннрү
Make up day allowed comment 4 10s allowed M-Th or T-F; inclement weather makeup day Friday Apprentice Rates:	11/7/2014				
0-1,000 work hours		\$27.93	\$38.90	\$49.86	
1,001-2,000 work hours		\$28.93	\$40.40	\$51.86	
2,001-3,000 work hours		\$29.92	\$41.88	\$53.84	
3,001-4,000 work hours		\$31.91	\$44.86	\$57.82	
Class B - performing work in conjunction with the removal, handling, or containment of hazardous waste substances when the use of personal protective equipment levels "A", "B" or "C" is required.	3	\$33.91	\$47.87	\$61.82 H	нннннрү
Make up day allowed comment 4 10s allowed M-Th or T-F; inclement weather makeup day Friday Apprentice Rates:	11/7/2014				
0-1,000 work hours		\$28.68	\$40.02	\$51.36	
1,001-2,000 work hours		\$29.73	\$41.60	\$53.46	
2,001-3,000 work hours		\$30.77	\$43.16	\$55.54	
3,001-4,000 work hours		\$32.86	\$46.29	\$59.72	

Official Rate Schedule Official Request #: 1155

Every contractor and subcontractor shall keep posted Requestor: MDEQ on the construction site, in a conspicuous place, a copy Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit

of all prevailing wage and fringe benefit rates

Project Number: 761/16108.SAR prescribed in a contract.

County: Houghton

Issue Date:

10/7/2016

Contract must be awarded by: 1/5/2017

Page 11 of 26

Overtime Provision
====
X
X X X X X D
X X X X X D

Official Rate Schedule Official Request #: 1155

Every contractor and subcontractor shall keep posted Requestor: MDEQ Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates

prescribed in a contract.

Project Number: 761/16108.SAR County: Houghton

Issue Date: 10/7/2016

Contract must be awarded by: 1/5/2017

Page 12 of 26

		raye 12	UI 20				
Cla Name	assification Description		Last Updated	Straight Ti Hourly	me and a Half	Double Time	Overtime Provision
bush botto car p form labo conv tool welc pea tend man vibra wag	s III - Air tool operator (jack hammer man, a hammer man and grinding man), first om man, second bottom man, cage tender, ousher, carrier man, concrete man, concrete man, concrete repair man, cement invert rer, cement finisher, concrete shoveler, reyor man, floor man, gasoline and electric operator, gunnite man, grout operator, er, heading dinky man, inside lock tender, gravel operator, pump man, outside lock er, scaffold man, top signal man, switch, track man, tugger man, utility man, ator man, winch operator, pipe jacking man, gon drill and air track operator and concrete operator (under 40 h.p.).	LAUCT-Z2-3		\$35.86	\$47.36	\$58.85 X X	XXXXXDY
			10/30/2014				
	Apprentice	Rates:					
	0-1,000 wor	k hours		\$30.66	\$39.56	\$48.45	
	1,001-2,000	work hours		\$31.70	\$41.12	\$50.53	
	2,001-3,000	work hours		\$32.74	\$42.68	\$52.61	
	3,001-4,000	work hours		\$34.82	\$45.80	\$56.77	
brac	s IV - Tunnel, shaft and caisson mucker, er man, liner plate man, long haul dinky er and well point man.	LAUCT-Z2-4		\$36.02	\$47.60	\$59.17 X X	X X X X X X D Y
	·		10/30/2014				
	Apprentice	Rates:					
	0-1,000 wor	k hours		\$30.78	\$39.74	\$48.69	
	1,001-2,000	work hours		\$31.83	\$41.32	\$50.79	
	2,001-3,000	work hours		\$32.88	\$42.89	\$52.89	

Official Request #: 1155 Official Rate Schedule

Requestor: MDEQ Every contractor and subcontractor shall keep posted
Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

\$34.97

\$46.02 \$57.07

of all prevailing wage and fringe benefit rates
Project Number: 761/16108.SAR prescribed in a contract.

Number: 761/16108.SAR prescribed in a contract County: Houghton

3,001-4,000 work hours

Issue Date:

10/7/2016

Contract must be awarded by: 1/5/2017

Page 13 of 26

Classification Name Description		Last Updated	Straight Tir Hourly	ne and a Half	Time	Overtime Provision
Class V - Tunnel, shaft and caisson miner, drill runner, keyboard operator, power knife operator, reinforced steel or mesh man (e.g. wire mesh, steel mats, dowel bars)	LAUCT-Z2-5		\$36.28	\$47.99		X
		10/30/2014				
Apprentice Rat	tes:					
0-1,000 work ho	ours		\$30.98	\$40.04	\$49.09	
1,001-2,000 wor	rk hours		\$32.04	\$41.63	\$51.21	
2,001-3,000 wor	rk hours		\$33.10	\$43.22	\$53.33	
3,001-4,000 wor	rk hours		\$35.22	\$46.40	\$57.57	
Class VI - Dynamite man and powder man.	LAUCT-Z2-6	10/30/2014	\$36.59	\$48.45	\$60.31 X	X
Apprentice Rat	tes:					
0-1,000 work ho	ours		\$31.21	\$40.38	\$49.55	
1,001-2,000 wor	rk hours		\$32.28	\$41.99	\$51.69	
2,001-3,000 wor	rk hours		\$33.36	\$43.61	\$53.85	
3,001-4,000 wor	rk hours		\$35.51	\$46.84	\$58.15	
Class VII - Restoration laborer, seeding, sodding, planting, cutting, mulching and topsoil grading and the restoration of property such as replacing mail boxes, wood chips, planter boxes and flagstones.	LAUCT-Z2-7		\$28.86	\$36.86	\$44.85 X	X
		10/30/2014				
Apprentice Rat	tes:					
0-1,000 work ho	ours		\$25.41	\$31.68	\$37.95	
1,001-2,000 wor	rk hours		\$26.10	\$32.72	\$39.33	
2,001-3,000 wor	rk hours		\$26.79	\$33.76	\$40.71	
3,001-4,000 wor	rk hours		\$28.17	\$35.82	\$43.47	

Official Rate Schedule Official Request #: 1155

Every contractor and subcontractor shall keep posted Requestor: MDEQ Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates

prescribed in a contract.

Project Number: 761/16108.SAR County: Houghton

Page 13 of 26

Issue Date: 10/7/2016

1/5/2017 Contract must be awarded by:

Page 14 of 26

Clas	sification	Last	Straight	Time and	a Double	Overtime
Name	Description	Updated	Hourly	Half	Time	Provision

LLAN-Z2-A

LLAN-Z2-B

Landscape Laborer

Landscape Specialist includes air, gas, and diesel equipment operator, skidsteer (or equivalent), lawn sprinkler installer on landscaping work where seeding, sodding, planting, cutting, trimming, backfilling, rough grading or maintenance of landscape projects occurs. Sundays paid at time & one half. Holidays paid at double time.

10/13/2015

\$28.25

\$24.05

\$63.50

\$39.04

\$49.82 X X H X X X H D Y

\$32.74 \$41.42 X X H X X X H D Y

Skilled Landscape Laborer: small power tool operator, lawn sprinkler installers' tender, material mover, truck driver on when seeding, sodding, planting, cutting, trimming, backfilling, rough grading or maintaining of landscape projects occurs Sundays paid at time & one half. Holidays paid

at double time.

10/13/2015

Operating Engineer - DIVER

Diver/Wet Tender/Tender/Rov Pilot/Rov Tender GLF D \$52.80 \$79.20 \$105.60 H H H H H H H D N

4/2/2014

Operating Engineer - Marine Construction

Diver/Wet Tender, Engineer (hydraulic dredge) GLF-1 \$84.85 \$104.70 X X H H H H H D Y \$65.00

Make up day allowed 2/12/2014

Subdivision of county all Great Lakes, islands therein, & connecting & tributary waters

Crane/Backhoe Operator, 70 ton or over Tug Operator, Mechanic/Welder, Assistant Engineer (hydraulic dredge), Leverman (hydraulic dredge),

Diver Tender

Holiday pay = \$120.80 per hour, wages &

Make up day allowed 2/12/2014

Subdivision of county All Great Lakes, islands therein, & connecting & tributary waters

Official Request #: 1155

Requestor: MDEQ Every contractor and subcontractor shall keep posted on the construction site, in a conspicuous place, a copy Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit

of all prevailing wage and fringe benefit rates

Project Number: 761/16108.SAR prescribed in a contract.

GLF-2

County: Statewide

Page 14 of 26

Official Rate Schedule

\$82.60 \$101.70 X X H H H H H D Y

Issue Date:

10/7/2016

1/5/2017 Contract must be awarded by:

Page 15 of 26

Straight Time and a Double Overtime Classification Last Updated Name Description Hourly Half Time Provision

Friction, Lattice Boom or Crane License GLF-2B \$64.50 \$84.10 \$103.70 X X H H H H H D Y

Certification

Holiday pay = \$123.30

Make up day allowed 2/12/2014

Subdivision of county All Great Lakes, islands, therein, & connecting & tributary waters

Deck Equipment Operator, Machineryman, GLF-3 \$59.30 \$76.30 \$93.30 X X H H H H H D Y Maintenance of Crane (over 50 ton capacity) or

Backhoe (115,000 lbs or more), Tug/Launch Operator, Loader, Dozer on Barge, Deck Machinery

Holiday pay = \$110.30 per hour, wages &

Make up day allowed 2/12/2014

Subdivision of county All Great Lakes, islands therein, & connecting & tributary waters

Deck Equipment Operator, GLF-4 \$53.60 \$67.75 \$81.90 X X H H H H H D Y

(Machineryman/Fireman), (4 equipment units or more), Off Road Trucks, Deck Hand, Tug Engineer, & Crane Maintenance 50 ton capacity and under or Backhoe 115,000 lbs or less, Assistant Tug Operator

Holiday pay = \$96.05 per hour, wages & fringes

Make up day allowed 2/12/2014

Subdivision of county All Great Lakes, islands therein, & connecting & tributary waters

Operating Engineer General Construction & Underground

Crane 120' boom & jib EN-324UP-120GU \$51.45 \$65.86 \$80.26 X X H H H H H D N

> comment 5/24/2016

Double time after 12 hours Mon-Sat

Crane 140' boom & jib EN-324UP-140GU \$51.70 \$66.23 \$80.76 X X H H H H H D N

> comment 5/24/2016

Double time after 12 hours Mon-Sat

Crane with 400' or longer main boom & jib EN-324UP-400GU \$54.40 \$70.28 \$86.17 X X H H H H H D N

> comment 5/24/2016

Double time after 12 hours Mon-Sat

Official Rate Schedule Official Request #: 1155

Every contractor and subcontractor shall keep posted Requestor: MDEQ

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates

Project Number: 761/16108.SAR prescribed in a contract.

County: Houghton

Page 15 of 26

Issue Date:

10/7/2016

Contract must be awarded by: 1/5/2017

Page 16 of 26

Classification Name Description			Last Updated	Straight Ti Hourly	me and a	a Double Time	Overtime Provision
Class A- Regular equipment opera dozer, front end loader, pumpcret crete, job mechanic, welder, conci excavator, milling & pulverizing m scraper (self-propelled & tractor d	e, squeeze rete pump, achines, &	EN-324UP-AG	:U	\$50.95	\$65.11	\$79.26 <i>)</i>	 (
comment Double time after 12 hours Mon-Sat			5/24/2016				
Double time after 12 flours Worl-Sat	Apprentice F	Rates:					
	1st 6 months			\$40.71	\$50.62	\$60.53	
	2nd 6 months			\$42.12	\$52.74	\$63.35	
	3rd 6 months			\$43.54	\$54.87	\$66.19	
	4th 6 months			\$44.96	\$57.00	\$69.03	
	5th 6 months			\$46.37	\$59.11	\$71.85	
	6th 6 months			\$47.79	\$61.24	\$74.69	
Class B- Air-Trac Drill, boom truck concrete mixers, material hoist an pumps 6" and over, beltcrete, swe machine, trencher, head grease m well points and freeze systems comment Double time after 12 hours Mon-Sat	d tugger, eping	EN-324UP-BG	5/24/2016	\$47.70	\$60.23	\$72.76 >	(X H H H H H D N
Class C- Fork Truck, air compressor concrete saw, farm tractor(withou generator, guard post driver, mu machines, pumps under 6", weldir comment Double time after 12 hours Mon-Sat	t attachments), ching	EN-324UP-CG	SU 5/24/2016	\$47.12	\$59.36	\$71.60 >	(X H H H H H D N
Class D- Oiler, fireman, heater ope concrete breaker, elevators (other passenger), end dump & skid stee comment Double time after 12 hours Mon-Sat	than	EN-324UP-DG	5/24/2016	\$46.18	\$57.95	\$69.72 >	(X H H H H H D N
Crane 220' boom & jib comment Double time after 12 hours Mon-Sat		EN-324UP-GU	J 5/24/2016	\$51.95	\$66.61	\$81.26 >	(X H H H H H D N

Official Rate Schedule Official Request #: 1155 Every contractor and subcontractor shall keep posted

Requestor: MDEQ Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates prescribed in a contract.

Project Number: 761/16108.SAR

County: Houghton

Page 16 of 26

Issue Date: 10/7/2016

Contract must be awarded by: 1/5/2017

Page 17 of 26

	rage I/ OI 20				
Classification Name Description	Last Updated	Straight Time a Hourly Ha		Overtime Provision	
Mechanic w/ truck & tools comment Double time after 12 hours Mon-Sat	EN-324UP-MGU 5/24/2016	\$52.45 \$6	7.36 \$82.26 X X	 (
Operating Engineer Steel Work					
Crane 120' boom & jib comment Double time after 12 hours Mon-Sat	EN-324UP-120S 5/24/2016	\$51.85 \$66	6.46 \$81.06 X X	(ннннн р ү	
Crane 140' boom & jib comment Double time after 12 hours Mon-Sat	EN-324UP-140S 7/8/2015	\$52.10 \$66	6.83 \$81.56 X X	(
Crane 220' boom & jib comment Double time after 12 hours Mon-Sat	EN-324UP-220S 5/24/2016	\$52.35 \$6	7.21 \$82.06 X X	(ннннн р ү	
Crane with 300' boom & jib Make up day allowed comment Double time after 12 hours Mon-Sat	EN-324UP-300S 5/24/2016	\$54.07 \$69	9.79 \$85.50 X X	(ннннн р ү	
Crane with 400' boom & jib Make up day allowed comment Double time after 12 hours Mon-Sat	EN-324UP-400S 5/24/2016	\$55.79 \$72	2.37 \$88.95 X X	(н н н н н	
Compressor, Welder & Forklift comment Double time after 12 hours Mon-Sat	EN-324UP-CWS 5/24/2016	\$48.10 \$60	0.83 \$73.56 X X	(н н н н н	
Mechanic w/ truck & tools comment Double time after 12 hours Mon-Sat	EN-324UP-MS 5/24/2016	\$52.85 \$63	7.96 \$83.06 X X	(
Oiler & Fireman comment Double time after 12 hours Mon-Sat	EN-324UP-OFS 5/24/2016	\$46.80 \$58	8.88 \$70.96 X X	(ннннн р ү	

Official Rate Schedule Official Request #: 1155

Requestor: MDEQ Eve Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit

Every contractor and subcontractor shall keep posted pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates prescribed in a contract.

Project Number: 761/16108.SAR

County: Houghton

Page 17 of 26

Issue Date:

10/7/2016

1/5/2017 Contract must be awarded by:

Page 18 of 26

		i age io	01 20				
Cla Name	assification Description		Last Updated	Straight Ti Hourly	me and a Half	Time	Overtime Provision
Oper	ator	EN-324UP-OS	;	\$51.35	\$65.71		 Х Н Н Н Н В Ү
	comment		5/24/2016				
Dou	uble time after 12 hours Mon-Sat						
		Apprentice Rates:					
		1st 6 months		\$40.99	\$51.04	\$61.09	
		2nd 6 months		\$42.26	\$52.95	\$63.63	
		3rd 6 months		\$43.87	\$55.36	\$66.85	
		4th 6 months		\$45.29	\$57.49	\$69.69	
		5th 6 months		\$46.73	\$59.65	\$72.57	
		6th 6 months		\$48.17	\$61.81	\$75.45	
Painte	er						
Pain	ter	PT-1011	7/17/2015	\$31.25	\$41.01	\$50.76 H	HHHHHDN
		Apprentice Rates:					
		1st 1000 hours		\$23.45	\$29.30	\$35.16	
		2nd 1000 hours		\$24.42	\$30.76	\$37.10	
		3rd 1000 hours		\$25.40	\$32.23	\$39.06	
		4th 1000 hours		\$26.37	\$33.68	\$41.00	
		5th 1000 hours		\$27.35	\$35.16	\$42.96	
		6th 1000 hours		\$28.32	\$36.61	\$44.90	
		7th 1000 hours		\$29.30	\$38.08	\$46.86	
		8th 1000 hours		\$30.27	\$39.54	\$48.80	

Official Request #: 1155 Requestor: MDEQ

Every contractor and subcontractor shall keep posted

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy of all prevailing wage and fringe benefit rates

prescribed in a contract.

Project Number: 761/16108.SAR

County: Houghton

Page 18 of 26

Official Rate Schedule

Issue Date: 10/7/2016

1/5/2017 Contract must be awarded by:

Page 19 of 26

		Page 19	01 20				
<u>Classification</u> Name Description			Last Updated	Straight Ti Hourly	me and a Half	Time	Overtime Provision
Bridge Painter (under 30 feet)		PT-1011B	8/28/2015	\$35.89	\$47.97		 H H H H H D N
	Apprentice	Rates:					
	1st 1,000 ho	ours		\$26.23	\$33.48	\$40.72	
	2nd 1,000 h	ours		\$27.44	\$35.29	\$43.14	
	3rd 1,000 ho	ours		\$28.64	\$37.09	\$45.54	
	4th 1,000 ho	ours		\$29.85	\$38.90	\$47.96	
	5th 1,000 ho	ours		\$31.06	\$40.72	\$50.38	
	6th 1,000 ho	ours		\$32.27	\$42.54	\$52.80	
	7th 1,000 ho	ours		\$33.48	\$44.35	\$55.22	
	8th 1,000 ho	ours		\$34.68	\$46.15	\$57.62	
Drywall Finisher, Soundproofing, & Plu Component Applicator	ıral	PT-1011-DF		\$37.67	\$50.64	\$63.60 H H	H H H H H D N
			7/17/2015				
	Apprentice	Rates:					
	2nd 1,000 h	ours		\$28.59	\$37.02	\$45.44	
	3rd 1,000 ho	ours		\$29.89	\$38.96	\$48.04	
	4th 1,000 ho	ours		\$31.19	\$40.92	\$50.64	
	5th 1,000 ho	ours		\$32.48	\$42.85	\$53.22	
	6th 1,000 ho	ours		\$33.78	\$44.80	\$55.82	
	7th 1,000 ho	ours		\$35.08	\$46.75	\$58.42	
	8th 1,000 ho	ours		\$36.37	\$48.68	\$61.00	
Pipe and Manhole Rehab							
General Laborer for rehab work or not cleaning and cctv work-top man, scaff CCTV assistant, jetter-vac assistant		TM247		\$28.20	\$38.20	Н	1
.,			4/17/2015				
Tap cutter/CCTV Tech/Grout Equipme Operator: unit driver and operator of grouting equipment and tap cutting eq	CCTV;	TM247-2		\$32.70	\$44.95	Н	1
growing equipment and tap cutting et	191110111		4/17/2015				

4/17/2015

Official Request #: 1155

Official Rate Schedule

Every contractor and subcontractor shall keep posted Requestor: MDEQ

on the construction site, in a conspicuous place, a copy of all prevailing wage and fringe benefit rates Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit

Project Number: 761/16108.SAR prescribed in a contract.

County: Statewide

Page 19 of 26

Issue Date: 10/7/2016

1/5/2017 Contract must be awarded by:

Page 20 of 26

Classification Name Description	- ugo _o	Last Updated	Straight Ti Hourly	me and a	a Double Overtime Time Provision
CCTV Technician/Combo Unit Operator: unit driver and operator of cctv unit or combo unit connection with normal cleaning and televising work			\$31.45	\$43.07	ннннннн
		4/17/2015			
Boiler Operator: unit driver and operator of steam/water heater units and all ancillary equipment associated	TM247-4		\$33.20	\$45.70	ннннннн
equipment associated		4/17/2015			
Combo Unit driver & Jetter-Vac Operator	TM247-5	4/17/2015	\$33.20	\$45.70	ннннннн
Pipe Bursting & Slip-lining Equipment Operator	TM247-6	4/17/2015	\$34.20	\$47.20	ннннннн
Plasterer					
Plasterer	PL16UP	10/23/2012	\$38.71	\$51.63	\$64.54 H H H H H H D N
Apprenti	ice Rates:				
1st year			\$29.67	\$38.06	\$46.46
2nd year			\$32.25	\$41.94	\$51.62
3rd year			\$34.84	\$45.82	\$56.80

Official Request #: 1155 Official Rate Schedule

Requestor: MDEQ Every contractor and subcontractor shall keep posted Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy of all prevailing wage and fringe benefit rates

Project Number: 761/16108.SAR prescribed in a contract.

County: Houghton

Page 20 of 26

Issue Date: 10/7/2016

Contract must be awarded by: 1/5/2017

Page 21 of 26

		raye zi bi zo						
Classification Name Description			Last Updated	Straight Ti Hourly	me and a	Time	Overtime Provision	
Plumber & Pipefitter								
Plumber & Pipefitter 4 ten hour days may be worke Thursday	ed only Monday-	PL-111		\$47.61	\$71.42	\$95.22 H	H H H H H D Y	
Make up day allowed			7/30/2009					
	Apprentice Ra	ates:						
	1st 6 months			\$23.96	\$35.94	\$47.92		
	2nd 6 months			\$25.44	\$38.16	\$50.88		
	3rd 6 months			\$35.32	\$52.98	\$70.64		
	4th 6 months			\$36.65	\$54.98	\$73.30		
	5th 6 months			\$37.99	\$56.98	\$75.98		
	6th 6 months			\$39.47	\$59.20	\$78.94		
	7th 6 months			\$40.80	\$61.20	\$81.60		
	8th 6 months			\$42.13	\$63.20	\$84.26		
	9th 6 months			\$43.46	\$65.19	\$86.92		
Roofer								
Commercial Roofer		RO-149-UP		\$28.23	\$36.56	\$44.88 X	X X X X X X D Y	
Make up day allowed			4/17/2015					
	Apprentice Ra	ates:						
	Apprentice 1			\$20.84	\$25.96	\$31.08		
	Apprentice 2			\$21.67	\$27.17	\$32.67		
	Apprentice 3			\$22.48	\$28.37	\$34.26		
	Apprentice 4			\$23.29	\$29.56	\$35.82		
	Apprentice 5			\$24.09	\$30.72	\$37.36		
	Apprentice 6			\$24.90	\$31.91	\$38.93		
Sewer Relining								
Class I-Operator of audio visu including remote in-ground cu equipment used in conjunction	itter and other	SR-I		\$43.66	\$59.01	\$74.36 H	H H H H H D N	
			11/24/2015					

11/24/2015

Official Request #: 1155 Official Rate Schedule

Requestor: MDEQ Every contractor and subcontractor shall keep posted

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates

Project Number: 761/16108.SAR prescribed in a contract.

County: Statewide

Page 21 of 26

Issue Date: 10

10/7/2016

Contract must be awarded by: 1/5/2017

Page 22 of 26

<u>Clas</u> Name	sification Description		Last Updated	Straight Ti Hourly	me and a Half	Double Time	Overtime Provision
Class II-Operator of hot water heaters and SR-II circulation system; water jetters; and vacuum and mechanical debris removal systems and those assisting.		SR-II		\$42.13	\$56.72	\$71.30 H	 H H H H H H D N
	·		11/24/2015				
Sheet I	Metal Worker						
	Metal Worker allowed as consecutive days, M-Th	shm-7-5		\$51.59	\$65.60	\$79.60 H	H H H D D D D Y
	e up day allowed comment		11/5/2015				
Frida	y Apprentice	Rates:					
	1st 6 month	ns		\$27.84	\$34.14	\$40.44	
	2nd 6 mont	hs		\$29.88	\$36.88	\$43.88	
	3rd 6 month	ns		\$31.93	\$39.64	\$47.34	
	4th 6 month	ns		\$33.96	\$42.37	\$50.77	
	5th 6 month	ns		\$36.01	\$45.12	\$54.22	
	6th 6 month	ns		\$38.05	\$47.86	\$57.66	
	7th 6 month	ns		\$40.09	\$50.60	\$61.10	
	8th 6 month	ns		\$42.13	\$53.34	\$64.54	

Official Request #: 1155 Official Rate Schedule

Requestor: MDEQ Every contractor and subcontractor shall keep posted
Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy

of all prevailing wage and fringe benefit rates

Project Number: 761/16108.SAR prescribed in a contract.

County: Houghton

Page 22 of 26

Issue Date: 10

10/7/2016

Contract must be awarded by: 1/5/2017

Page 23 of 26

		raye za	01 20				
Classification Name Description			Last Updated	Straight Ti Hourly	me and Half	a Double Time	Overtime Provision ======
Sprinkler Fitter							
Sprinkler Fitter		SP 669		\$51.64	\$68.45	\$85.26 H	H H H H H D Y
Make up day allowed			6/24/2016				
	Apprentice	Rates:					
	Class 1			\$23.03	\$30.60	\$38.16	
	Class 2			\$24.71	\$33.12	\$41.52	
	Class 3			\$34.01	\$43.26	\$52.50	
	Class 4			\$35.69	\$45.78	\$55.86	
	Class 5			\$37.62	\$48.55	\$59.47	
	Class 6			\$39.30	\$51.07	\$62.83	
	Class 8			\$42.67	\$56.12	\$69.57	
	Class 9			\$44.35	\$58.64	\$72.93	
	Class 10			\$46.03	\$61.16	\$76.29	
	Class 7			\$40.99	\$53.60	\$66.21	
Γruck Driver							
of all trucks of 8 cubic yd ca	apacity or over	TM-RB2	6/7/2016	\$44.10	\$48.81	Н	нннннн
of all trucks of 8 cubic yard (except dump trucks of 8 cu over, tandem axle trucks, tr euclid type equipment, dou	ubic yard capacity or ransit mix and semis,	TM-RB2A		\$44.00	\$48.66	Н	ннннннн
boys)			6/7/2016				
on euclid type equipment		TM-RB2B		\$44.25	\$49.04	Н	ннннннн
21 1-1			6/7/2016				

Official Request #: 1155 Official Rate Schedule

Requestor: MDEQ

Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit

on the construction site, in a conspicuous place, a copy

of all provedling wasterness and friends have fit retreased.

of all prevailing wage and fringe benefit rates
Project Number: 761/16108.SAR prescribed in a contract.

County: Houghton

Page 23 of 26

Issue Date: 10/7/2016

Contract must be awarded by: 1/5/2017

Page 24 of 26

<u>Classification</u> Name Description		Last Updated	Straight Ti Hourly	me and a Half	Double Time	Overtime Provision
Underground Laborer Open Cut, Class I						
Construction Laborer	LAUC-Z5-1	10/30/2014	\$32.75	\$42.68	\$52.61 X	X X X X X X D '
Apprentice	Rates:					
0-1,000 wo	rk hours		\$28.35	\$36.08	\$43.81	
1,001-2,00	0 work hours		\$29.23	\$37.40	\$45.57	
2,001-3,00	0 work hours		\$30.11	\$38.72	\$47.33	
3,001-4,00	0 work hours		\$31.87	\$41.36	\$50.85	
Jnderground Laborer Open Cut, Class II						
Mortar and material mixer, concrete form man, signal man, well point man, manhole, headwall and catch basin builder, guard rail builders, headwall, seawall, breakwall, dock builder and fence erector.	LAUC-Z5-2		\$32.89	\$42.89	\$52.89 X	X X X X X X D '
		10/30/2014				
Apprentice	e Rates:					
0-1,000 wo	rk hours		\$28.46	\$36.25	\$44.03	
1,001-2,00	0 work hours		\$29.34	\$37.57	\$45.79	
2,001-3,00	0 work hours		\$30.23	\$38.90	\$47.57	
3,001-4,00	0 work hours		\$32.00	\$41.56	\$51.11	
Underground Laborer Open Cut, Class III						
Air, gasoline and electric tool operator, vibrator operator, drillers, pump man, tar kettle operator bracers, rodder, reinforced steel or mesh man (e.g. wire mesh, steel mats, dowel bars, etc.), cement finisher, welder, pipe jacking and boring man, wagon drill and air track operator and concrete saw operator (under 40 h.p.), windlass and tugger man, and directional boring man.			\$33.02	\$43.09	\$53.15 X	X X X X X X D
		10/30/2014				
Apprentice						
0-1,000 wo	rk hours		\$28.56	\$36.40	\$44.23	
1,001-2,000	0 work hours		\$29.45	\$37.74	\$46.01	
2,001-3,00	0 work hours		\$30.34	\$39.07	\$47.79	
3,001-4,000	0 work hours		\$32.13	\$41.76	\$51.37	

Official Rate Schedule Official Request #: 1155

Every contractor and subcontractor shall keep posted Requestor: MDEQ on the construction site, in a conspicuous place, a copy of all prevailing wage and fringe benefit rates Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit

Project Number: 761/16108.SAR County: Houghton prescribed in a contract.

Page 24 of 26

Issue Date: 10/7/2016

1/5/2017 Contract must be awarded by:

Page 25 of 26

<u>Classification</u> lame Description		raye 23	Last Updated	Straight Ti	me and a Half	a Double Time	Overtime Provision
=======================================		======	=======		======	=======	=====
Inderground Laborer Open C	ut, Class IV						
Trench or excavating grade man.	!	LAUC-Z5-4	10/30/2014	\$33.07	\$43.16	\$53.25 X >	XXXXXXDY
	Apprentice Rat	tes:					
	0-1,000 work ho	ours		\$28.59	\$36.44	\$44.29	
	1,001-2,000 wo	rk hours		\$29.49	\$37.80	\$46.09	
	2,001-3,000 wo	rk hours		\$30.38	\$39.13	\$47.87	
	3,001-4,000 wo	rk hours		\$32.17	\$41.82	\$51.45	
Inderground Laborer Open C	ut, Class V						
Pipe Layer	I	LAUC-Z5-5	10/30/2014	\$33.12	\$43.24	\$53.35 X >	X
	Apprentice Ra	tes:					
	0-1,000 work ho	ours		\$28.63	\$36.50	\$44.37	
	1,001-2,000 wo	rk hours		\$29.53	\$37.86	\$46.17	
	2,001-3,000 wo	rk hours		\$30.43	\$39.20	\$47.97	
	3,001-4,000 wo	rk hours		\$32.22	\$41.89	\$51.55	
Inderground Laborer Open C	ut, Class VI						
Grouting man, top man assistant, television operations and all other connection with closed circuit tele inspection, pipe cleaning and pipe & the installation and repair of warpipe and appurtenances.	operations in vision e relining work	LAUC-Z5-6		\$30.50	\$39.31	\$48.11 X >	(
			10/30/2014				
	Apprentice Ra	tes:					
	0-1,000 work ho	ours		\$26.66	\$33.55	\$40.43	
	1,001-2,000 wo	rk hours		\$27.43	\$34.70	\$41.97	
	2,001-3,000 wo	rk hours		\$28.20	\$35.86	\$43.51	
	3,001-4,000 wo	rk hours		\$29.73	\$38.16	\$46.57	

Official Rate Schedule Official Request #: 1155

Every contractor and subcontractor shall keep posted pit on the construction site, in a conspicuous place, a copy Requestor: MDEQ Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit of all prevailing wage and fringe benefit rates prescribed in a contract.

Project Number: 761/16108.SAR

County: Houghton

Page 25 of 26

Issue Date: 10/7/2016

1/5/2017 Contract must be awarded by:

Page 26 of 26

Cla Name	ssification Description			Last Updated 	Straight Tin Hourly	ne and a Half	Double Time	Overtime Provision
Under	ground Laborer Open Cut, (Class VII						
cuttir resto	oration laborer, seeding, sodding ng, mulching and topsoil grading ration of property such as replac s, wood chips, planter boxes, flag	and the ing mail	AUC-Z5-7		\$28.61	\$36.47	\$44.33 X X	X
				10/30/2014				
		Apprentice Rate	es:					
		0-1,000 work hou	urs		\$25.25	\$31.44	\$37.61	
		1,001-2,000 work	k hours		\$25.92	\$32.44	\$38.95	
		2,001-3,000 work	k hours		\$26.59	\$33.44	\$40.29	
		3,001-4,000 worl	k hours		\$27.94	\$35.47	\$42.99	

Official Rate Schedule

Requestor: MDEQ Every contractor and subcontractor shall keep posted Project Description: Abandoned mining waste-Torch Lake nonsuperfund site test pit on the construction site, in a conspicuous place, a copy of all prevailing wage and fringe benefit rates prescribed in a contract.

Project Number: 761/16108.SAR

County: Houghton

Official Request #: 1155

Page 26 of 26

ATTACHMENT D ANSWERS TO QUESTIONS

ATTACHMENT D

ANSWERS TO QUESTIONS

Q: Can you send us a copy of the pre bid meeting sign in sheet?

A: Yes, refer to Attachment A.

Q: What is the deadline for questions?

A: The deadline for questions is Wednesday October 19, 2016 at 5:00 pm EDT.

Q: When do you expect the lab results to be completed? Will you send these out prior to the bid opening?

A: The results have been received, tabulated, and are provided in Attachment D. Note that the CHLL-WC02-0-6 sample was collected as a composite of the material from the visible drum spilled contents and/or surrounding soils. The data does not represent individual container contents. Based on the results, the Contractor will be required to sample individual containers and/or spilled contents for disposal acceptance.

Q: Will the bid opening be extended?

A: Yes, refer to the Addendum No. 1 text.

Q: When is this work expected to take place?

A: The work shall take place in the spring of 2017 once the seasonal frost law restrictions have been removed, at a time mutually agreeable to the Contractor and MDEQ.

Q: How deep is the maximum depth of the test pitting?

A: The anticipated maximum depth of test pitting is 6-feet below the existing ground surface. The furthest drum from shore on the lake bottom is assumed to be no more than 8-feet from the bank.

Q: Can you provide us with a copy of the prevailing wages for this project?

A: Yes, refer to Attachment C.

Q: Is a sediment curtain required? If so how long and what type?

A: Yes. Given the possibility of wind and waves, a Type 2 silt curtain is required. The proposed work area is approximately 180 feet in length plus additional length will be needed to curve the ends back in to shore.

Q: What is required for equipment decontamination?

A: The Contractor shall decontaminate and power wash their tools and equipment at the Site to remove adhered contaminated material and stamp sands/tailings/slag so that no material leaves the Site on tools or equipment or is left upon the clean soil cap. Decontamination shall be performed in such a manner that solid material removed from equipment is deposited back in the excavation area and not left on the clean soil cap. Decontamination water that is free of detergents or other cleaning additives may be applied to the ground surface at the Site.

Q: Can we cut down trees that are in the way?

A: Yes, trees may be cut off if necessary, leaving stumps in the ground. Replanting is not required. The Contractor shall remove as few trees as possible.

Q: Can we drive through the storm water basin?

A: No. Koppers' storm water basin shall be protected from damage.

Q: Instead of the entrance we used for the Pre-Bid Meeting walkover, can we use as an alternate access route through the Koppers truck entrance and make a temporary opening in the fence to get to the work area?

A: Yes. Given the shorter distance across the EPA Superfund cap to the work area, Contractors will be <u>required</u> to use this route for access. Koppers requires the temporary fence opening to be secured at the end of each work day and the fence to be fully restored to existing or better conditions at the completion of the work. It is imperative that the Kopper's facility remain secure. The existing requirement to repair any damage from traversing the EPA Superfund cap remains.

Q: Do we need to use wood stakes for the mulch blankets?

A: Yes.

Q: Where is the nearest boat launch?

A: The nearest boat launch is at the park in Hubbell where we held the Pre-Bid Meeting prior to driving to the respective site locations for walkovers. There is also a larger boat launch in Lake Linden.

Q: What pay item is the re-packaging of containers to be included in?

A: Per the scope of work, it is part of removal and disposal of each container, which are Work Items 6 through 9.

Q: How many 55 gallon drums, 85 gallon overpacks, or roll off containers are we required to provide?

A: Contractors should plan to drum or overpack each intact container or area of container contents (if the remains are just a carcass with spilled contents) that are removed from the work area. It is recommended that Contractors be prepared with at least five 55-gallon steel DOT drums and five 85-gallon overpack drums.

ATTACHMENT E ANALYSIS SUMMARY TABLES AND LAB REPORT

TABLE 1 Sample Analytical Summary - Waste Characterization Abandoned Minig Wastes - Torch Lake Non-Superfund Site

Г	Station Name ield Sample ID	CHLL-WC02 CHLL-WC02-0-6 TCLP	
г	ieiu Sairipie ID	1609985-03	
	Lab Sample ID	1609985-04	Hazardous Waste Toxicity Value
	Sample Date	9/12/2016	Toxiony Value
Ob a sectoral Name	Unit		
Chemical Name	Unit	Result	
TCLP Inorganics - Metals ARSENIC	ma/l	< 0.05 U	5.0
BARIUM	mg/l	< 0.05 U	100.0
CADMIUM	mg/l	0.16	1.0
CHROMIUM	mg/l	< 0.05 U	5.0
COPPER	mg/l	120	5.0
LEAD	mg/l	78	5.0
MERCURY	mg/l	< 0.002 U	0.2
SELENIUM	mg/l	< 0.05 U	1.0
SILVER	mg/l	< 0.05 U	5.0
ZINC	mg/l	30	3.0
TCLP Organics - Pesticides	mg/i	30	
gamma-BHC (Lindane)	ug/l	< 0.05 U	400
Chlordane, Technical	ug/l	< 2.5 U	30
Endrin	ug/i	< 0.1 U	20
Heptachlor	ug/i	< 0.1 U	8.00
Heptachlor epoxide	ug/i	< 0.05 U	8.00
Methoxychlor	ug/I	< 0.2 U	10,000
Toxaphene	ug/l	< 10 U	500
TCLP Organics - Herbicides	ug/i	(100	300
2,4,5-TP (Silvex)	ug/l	< 5 U	1,000
2.4-D	ug/l	< 5 U	10,000
TCLP Organics - SVOCs	ug/i	730	10,000
m-Cresol	ug/I	< 100 U	200,000
n-Cresol	ug/l	< 100 U	200,000
p-Cresol	ug/l	< 100 U	200,000
2,4-DINITROTOLUENE	ug/l	< 100 U	130
HEXACHLORO-1,3-BUTADIENE	ug/l	< 100 U	500
HEXACHLOROBENZENE	ug/l	< 100 U	130
HEXACHLOROETHANE (SVOC)	ug/l	< 100 U	3.000
NITROBENZENE	ug/l	< 100 U	2,000
PENTACHLOROPHENOL	ug/l	< 100 U	100,000
PYRIDINE	ug/l	< 200 U	5,000
2,4,5-TRICHLOROPHENOL	ug/l	< 100 U	400,000
2,4,6-TRICHLOROPHENOL	ug/l	< 100 U	2,000
TCLP Organics - VOCs			
BENZENE	ug/l	< 20 U	500
2-BUTANONE (MEK)	ug/l	< 100 U	200,000
CARBON TETRACHLORIDE	ug/l	< 20 U	500
CHLOROBENZENE	ug/l	< 20 U	100,000
CHLOROFORM	ug/l	< 20 U	6,000
1,1-DICHLOROETHYLENE	ug/l	< 20 U	700
1,2-DICHLOROETHANE	ug/l	< 20 U	500
1,4-DICHLOROBENZENE	ug/l	< 100 U	7,500
TETRACHLOROETHYLENE	ug/l	< 20 U	700
TRICHLOROETHYLENE	ug/l	< 20 U	500
VINYL CHLORIDE	ug/l	< 20 U	200
Other - Waste Characteristics			
PERCENT MOISTURE	%	20	-
pH	S.U.	7.2	-
FLASHPOINT/IGNITABILITY	Deg F	>200	-
FREE LIQUIDS	-	Absent	-
CYANIDE, REACTIVE	mg/kg-dry	<120 U	-
SULFIDE, REACTIVE	mg/kg-dry	< 120 U	

Hazardous Waste Toxicity Screening values from Title 40 of the *Code of Federal Regulations*, Chapter 1, Section 261.20-24

-- = No value listed % = Percent

SVOC = Semi-volatile organic compound TCLP = Toxicity Charateristic Leaching Procedure

ID = Identification J = The concentration is an approximate value mg/L = Milligram per liter

U = Analyte analyzed for but not detected above reported sample ug/L = microgram per liter

TABLE 2 Sample Analytical Summary - Waste Material Abandoned Minig Wastes - Torch Lake Non-Superfund Site

	Station Name	CHLL-WC02							
	Field Sample ID		Residential Drinking	Groundwater	Residential		Nonresidential	Nonresidential	Nonresidential
	Lab Sample ID	1609985-04	Water Protection	Surface Water Interface Protection	Particulate Soil	Residential Direct Contact Criteria	Drinking Water	Particulate Soil	Direct Contact
	Sample Date	9/12/2016	Criteria	Criteria	Inhalation Criteria		Protection Criteria	Inhalation Criteria	Criteria
Chemical Name	Units	Result							
Inorganics - Metals (Totals)									
ARSENIC	mg/kg	150	4.6	4.6	720	7.6	4.6	910	37
BARIUM	mg/kg	850	1,300 (G)	130	330,000	37,000	1,300	150,000	130,000
CADMIUM	mg/kg	54	6.0	1.6 (G,X)	1,700	550	6.0	2,200	2,100
CHROMIUM	mg/kg	130	1,000,000 (D,H)	1,200,000 (G,H,X)	330,000 (H)	790,000 (H)	1,000,000 (D,H)	150,000 (H)	1,000,000 (D,H)
COPPER	mg/kg	29,000	5,800	32 (G)	130,000	20,000	5,800	59,000	73,000
LEAD	mg/kg	8,600	700	1,900 (G,X)	100,000	400	700	44,000	900 (DD)
MERCURY	mg/kg	0.97	1.7 (Z)	0.13 (B, Z)	20000 (Z)	160 (Z)	1.7 (Z)	8800 (Z)	580 (Z)
ZINC	mg/kg	4,100	2,400	62 (G)	ID	170,000	5,000	ID	630,000
Organics - Pesticides (Totals)	12								
PESTICIDES WERE ALL NON-DETECT									
Organics - Herbicides (Totals)									
2,4,5-TP (Silvex)	ug/kg	7.8	3,600	2,200	ID	1,700,000	3,600	ID	5,500,000
Organics - SVOCs (Totals)									
ANTHRACENE	ug/kg	280	41,000	ID	6.7E+10	2.3E+08	41,000	2.9E+10	7.3E+08
BENZO(A)PYRENE	ug/kg	640	NLL	NLL	1,500,000 (Q)	2,000 (Q)	NLL	1,900,000 (Q)	8,000 (Q)
BENZO(B)FLUORANTHENE	ug/kg	1200	NLL	NLL	ID	20,000 (Q)	NLL	ID	80,000 (Q)
BENZO(G,H,I)PERYLENE	ug/kg	360	NLL	NLL	8E+08 (Q)	2,500,000 (Q)	NLL	3.5E+08	7,000,000 (Q)
BENZO(K)FLUORANTHENE	ug/kg	440	NLL	NLL	ID	200,000 (Q)	NLL	ID	800,000 (Q)
CHRYSENE	ug/kg	640	NLL	NLL	ID	2,000,000 (Q)	NLL	ID	8,000,000 (Q)
DI-N-BUTYLPHTHALATE	ug/kg	700	960,000 (C)	11,000	3.3E+09	2.7E+07 (C)	2,700,000 (C)	1.5E+09	8.7E+07 (C)
FLUORANTHENE	ug/kg	1400	730,000	5,500	9.3E+09	4.6E+07	730,000	4.1E+09	1.3E+08
INDENO(1,2,3-CD)PYRENE	ug/kg	440	NLL	NLL	ID	20,000	NLL	ID	80,000
PHENANTHRENE	ug/kg	860	56,000	2,100	6,700,000	1,600,000	160,000	2,900,000	5,200,000
PYRENE	ug/kg	1100	480,000	ID	6.7E+09	2.9E+07	480,000	2.9E+09	8.4E+07
Organics - VOCs (Totals)									
2-METHYLNAPHTHALENE (VOC)	ug/kg	130	57,000	4,200	6.70E+08	8,100,000	170,000	2.9E+08	2.6E+07
METHYLENE CHLORIDE	ug/kg	130	100	30,000 (X)	6.60E+09	1.30E+06	100	8.30E+09	5.8E+06 (C)
NAPHTHALENE (VOC)	ug/kg	110	35,000	730	2E+08	1.6E+07	100,000	8.8E+07	5.2E+07
TETRACHLOROETHYLENE	ug/kg	< 30 U	100	1,200 (X)	2.70E+09	2.0E+05 (C)	100	1.20E+09	9.3E+05 (C)
TOLUENE	ug/kg	38	16,000 (I)	5,400 (I)	2.7E+10 (I)	5E+07 (C,I)	16,000 (I)	1.2E+10 (I)	1.6E+08 (C,I)
Organics - PCBs (Totals)									
AROCLOR-1254	ug/kg	1800	NA NA	NA	NA	NA	NA	NA	NA
Total PCBs (J,T)	ug/kg	1,800	NLL	NLL	5,200,000 (J)	1,000 (J,T)	NLL	6,500,000 (J)	1,000 (J,T)

Note: Analytical and Criteria Footnotes are included on the last page of the table.

TABLE 2

Sample Analytical Summary - Waste Material Abandoned Minig Wastes - Torch Lake Non-Superfund Site

Table Footnotes:

- MDEQ Part 201 residential and non-residential generic cleanup criteria and screening levels criteria were originally promulgated December 21, 2002 within the Administrative Rules for Part 201, Environmental Resources and Environmental Protection Act, 1994 PA 451, as amended. This table reflects revisions to the criteria pursuant to the December 2010 Part 201 amendments and new criteria consistent with the provisions of R299.5706a.Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. Release Date: December 30, 2013.
- Only detected analytes are listed Gray rows indicate requested analyses. If no analytes are listed below a gray row then all analytes of that group were either not analyzed or not detected. ND indicates that one or more analyte of that goup was tested and not detected and a -- indicates not analyzed.
- Bold values are concentrations detected above the laboratory reporting limit.
- Shaded values indicate analyte concentration exceed applicable criteria. Color presented is the criteria with the highest value that was exceeded:

Residential Drinking Water Protection Criteria

Groundwater Surface Water Interface Protection Criteria

Residential Particulate Soil Inhalation Criteria

Residential Direct Contact Criteria

Nonresidential Drinking Water Protection Criteria

onresidential Particulate Soil Inhalation Criteria

Nonresidential Direct Contact Criteri

-- = Not analyzed/Not Reported

bgs = Below ground surface

mg/kg = Milligrams per kilogram.

PCBs = Polychlorinated biphenyls

SVOC = Semi-volatile organic compound

ug/kg = Micrograms per kilogram

VOC = Volatile organic compound

Criteria Footnotes

ID = Insufficient data to develop criterion.

NA = A criterion or value is not available

NLL = Hazardous substance is not likely to leach under most soil conditions.

NLV = Hazardous substance is not likely to volatilize under most conditions.

- (B) = Background, as defined in R 299.1(b), may be substituted if higher than the calculated cleanup criterion. Background levels may be less than criteria for some inorganic compounds.
- (C) = The criterion developed under R 299.20 to R 299.26 exceeds the chemical- specific soil saturation screening level (Csat). The person proposing or implementing response activity shall document whether additional response activity is required to control free-phase liquids or NAPL to protect against risks associated with free-phase liquids by using methods appropriate for the free-phase liquids present. Development of a site-specific Csat or methods presented in R 299.22(R), and R 299.26(8) may be conducted for the relevant exposure pathways.
- (D) = Calculated criterion exceeds 100 percent, hence it is reduced to 100 percent or 1.0E+9 parts per billion (ppb).
- (DD) = Hazardous substance causes developmental effects. Residential direct contact criteria are protective of both prenatal and postnatal exposure. Nonresidential direct contact criteria are protective for a pregnant adult receptor.
- (G) = Groundwater surface water interface (GSI) criterion depends on the pH or water hardness, or both, of the receiving surface water. The final chronic value (FCV) for the protection of aquatic life shall be calculated based on the pH or hardness of the receiving surface water. Where water hardness exceeds 400 mg CaCO3/L, use 400 mg CaCO3/L, tor the FCV calculation. The FCV formula provides values in units of ug/L or ppb. The generic GSI criterion is the lesser of the calculated FCV, the wildlife value (WV), and the surface water human non-drinking water value (HNDV). The soil GSI protection criteria for these hazardous substances are the greater of the 20 times the GSI criterion or the GSI soil-water partition values using the GSI criterio developed with the procedure described in this footnote. A spreadsheet that may be used to calculate GSI and GSI protection criteria for (G)-footnoted hazardous substances is available on the Department of Environmental Quality (DEQ) internet web site.
- (H) = Valence-specific chromium data (Cr III and Cr VI) shall be compared to the corresponding valence-specific cleanup criteria. If both Cr III and Cr VI are present in groundwater, the total concentration of both cannot exceed the drinking water criterion of 100 ug/L. If analytical data are provided for total chromium only, they shall be compared to the cleanup criteria for Cr VI. Cr III soil cleanup criterion of drinking water can only be used at sites where groundwater is prevented from being used as a public water supply, currently and in the future, through an approved land or resource use restriction.
- (I) = Hazardous substance may exhibit the characteristic of ignitability as defined in 40 C.F.R. §261.21 (revised as of July 1, 2001), which is adopted by reference in these rules and is available for inspection at the DEQ, 525 West Allegan Street, Lansing, Michigan. Copies of the regulation may be purchased, at a cost as of the time of adoption of these rules of \$45, from the Superintendent of documents, Government Printing Office, Washington, DC 20401 (stock number 869-044-00155-1), or from the DEQ, Remediation and Redevelopment Division (RRD), 525 West Allegan Street, Lansing, Michigan 48933, at cost.
- (J) = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations shall be added together for comparison to criteria.
- (Q) = Criteria for carcinogenic polycyclic aromatic hydrocarbons were developed using relative potential potencies to benzo(a)pyrene.
- (T) = Refer to the federal Toxic Substances Control Act (TSCA), 40 C.F.R. §761, Subpart D and 40 C.F.R. §761, Subpart G, to determine the applicability of TSCA cleanup standards. Subpart D and Subpart G of 40 C.F.R. §761 (July 1, 2001) are adopted by reference in these rules and are available for inspection at the DEQ, S25 West Allegan Street, Lansing, Michigan. Copies of the regulations may be purchased, at a cost as of the time of adoption of these rules of \$55, from the Superintendent of Documents, Government Printing Office, Washington, DC 20401, or from the DEQ, RRD, 525 West Allegan Street, Lansing, Michigan 48933, at cost. Alternatives to compliance with the TSCA standards listed below are possible under 40 C.F.R. §761 Subpart D. New releases may be subject to the standards identified in 40 C.F.R. §761, Subpart G. Use Part 201 soil direct contact cleanup criteria in the published table if TSCA standards are not applicable.
- (X) = The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source. (See R 299.49 Footnotes for generic cleanup criteria tables for additional information.)
- (Z) = Mercury is typically measured as total mercury. The generic cleanup criteria, however, are based on data for different species of mercury. Specifically, data for elemental mercury, chemical abstract service (CAS) number 7439976, serve as the basis for the soil volatilization to indoor air criteria, groundwater volatilization to indoor air, and soil inhalation criteria. Data for methyl mercury, CAS number 22967926, serve as the basis for the GSI criterion; and data for mercuric chloride, CAS number 7487947, serve as the basis for the drinking water, groundwater contact, soil direct contact, and the groundwater protection criteria. Comparison to criteria shall be based on species-specific analytical data only if sufficient facility characterization has been conducted to rule out the presence of other species of mercury.

Laboratory Footnotes

J = Estimated result

ND = Not detected

U = Analyte analyzed for but not detected above the reported sample reporting limit.

28-Sep-2016

Amy Keranen
Michigan Dept.of Environmental Quality
3350 N. Martin Luther King Jr. Blvd.
Building #44, 3rd Floor
Lansing, MI 48906

Re: Abandoned Mining Wastes - Torch Lake Work Order: 1609985

Dear Amy,

ALS Environmental received 4 samples on 17-Sep-2016 08:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

Sample results are compliant with NELAP standard requirements and QC results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Electronically approved by: Alex Csaszar

Alex Csaszar Project Manager TABORATOR

Certificate No: MI: 0022

Report of Laboratory Analysis

ADDRESS 3352 128th Avenue Holland, Michigan 49424-9263 | PHONE (616) 399-6070 | FAX (616) 399-6185

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Enuironmental 💹

Date: 28-Sep-16

Client: Michigan Dept.of Environmental Quality
Project: Abandoned Mining Wastes - Torch Lake

Work Order: 1609985

Work Order Sample Summary

Lab Samp II	Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
1609985-01	CHTC-WC01-0-6 TCLP	Tclp Extract		9/10/2016 14:28	9/17/2016 08:00	
1609985-02	CHTC-WC01-0-6	Waste		9/10/2016 14:28	9/17/2016 08:00	
1609985-03	CHLL-WC02-0-6 TCLP	Tclp Extract		9/12/2016 13:54	9/17/2016 08:00	
1609985-04	CHLL-WC02-0-6	Waste		9/12/2016 13:54	9/17/2016 08:00	

Date: 28-Sep-16

Client: Michigan Dept.of Environmental Quality **Project:** Abandoned Mining Wastes - Torch Lake

Work Order:

Case Narrative 1609985

Samples for the above noted Work Order were received on 09/17/2016. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting.

With the following exceptions, all sample analyses achieved analytical criteria.

Volatile Organics:

Batch 91663, Method VOC 8260 S, Sample 1609985-02B: This sample ran at dilution due to an extremely foamy matrix.

Batch 91663, Method VOC_8260_S, Sample LCS-91663: The LCS recoveries were above the upper control limits for 1,2-Dibromoethane and Methyl iodide. All sample results in the batch were non-detect. No qualification is necessary for these analytes.

Extractable Organics:

Batch 91791, Method PEST_8081_S, Sample 1609985-04A: The reporting limit is elevated due to dilution needed to eliminate matrix-related interference for this analyte: Pesticides -Sample required dilution due to the yellow color of the sample extract.

Batch 91791, Method PEST_8081_S, Sample 1609985-04A: The reporting limit is elevated due to dilution needed to eliminate matrix-related interference for this analyte.

Metals:

No other deviations or anomalies were noted.

Wet Chemistry:

No other deviations or anomalies were noted.

Date: 28-Sep-16

Client: Michigan Dept.of Environmental Quality
Project: Abandoned Mining Wastes - Torch Lake

QUALIFIERS,
ACRONIZATES

Project: Abandoned Mining Wastes - Torch Lake
WorkOrder: 1609985

ACRONYMS, UNITS

Qualifier	Description
*	Value exceeds Regulatory Limit
a	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R S	RPD above laboratory control limit
S U	Spike Recovery outside laboratory control limits Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or
	reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
E	EPA
SW	SW-846 Update III
Units Reported	Description
% of sample	Percent of Sample
°F	Degrees Fahrenheit
$\mu g/Kg$	Micrograms per Kilogram
$\mu g/Kg$ -dry	Micrograms per Kilogram Dry Weight
μg/L	Micrograms per Liter
mg/Kg	Milligrams per Kilogram
mg/Kg-dry	Milligrams per Kilogram Dry Weight
mg/L	Milligrams per Liter

Date: 28-Sep-16

none

s.u.

Standard Units

Date: 28-Sep-16

Collection Date: 9/10/2016 02:28 PM

Client: Michigan Dept.of Environmental Quality

Project:Abandoned Mining Wastes - Torch LakeWork Order:1609985Sample ID:CHTC-WC01-0-6 TCLPLab ID:1609985-01

Date: 28-Sep-16

Matrix: TCLP EXTRACT

Report Dilution Result **Date Analyzed Analyses** Limit Qual Units **Factor** Prep: SW8151M / 9/22/16 **TCLP HERBICIDES** SW8151 Analyst: KYM 2,4,5-TP (Silvex) ND 5.0 µg/L 9/22/2016 08:32 PM 2,4-D ND 5.0 1 9/22/2016 08:32 PM µg/L Surr: DCAA 30.8 30-150 %REC 1 9/22/2016 08:32 PM **TCLP PESTICIDES** SW8081 Analyst: BLM 5 Chlordane, Technical ND 12 μg/L 9/23/2016 11:59 PM 0.50 5 Endrin ND µg/L 9/23/2016 11:59 PM gamma-BHC (Lindane) ND 0.25 µg/L 5 9/23/2016 11:59 PM Heptachlor ND 0.25 µg/L 5 9/23/2016 11:59 PM Heptachlor epoxide ND 0.25 μg/L 5 9/23/2016 11:59 PM Methoxychlor ND 1.0 µg/L 5 9/23/2016 11:59 PM 5 Toxaphene ND 50 9/23/2016 11:59 PM µg/L Surr: Decachlorobiphenyl 55.0 42-119 %REC 5 9/23/2016 11:59 PM %REC 5 Surr: Tetrachloro-m-xylene 75.0 32-104 9/23/2016 11:59 PM **TCLP MERCURY BY CVAA** SW7470A Prep: SW7470 / 9/21/16 Analyst: LR ND 0.0020 9/21/2016 08:41 PM Mercury mg/L TCLP METALS ANALYSIS BY ICP-MS SW6020A Prep: SW3005A / 9/22/16 Analyst: ML Arsenic ND 0.050 9/23/2016 02:47 AM mg/L **Barium** 0.085 0.050 mg/L 1 9/23/2016 02:47 AM Cadmium ND 0.0020 mg/L 1 9/23/2016 02:47 AM Chromium ND 0.050 mg/L 1 9/23/2016 02:47 AM 0.24 Copper 0.050 mg/L 9/23/2016 02:47 AM Lead 0.077 0.050 mg/L 9/23/2016 02:47 AM ND Selenium 0.050 mg/L 1 9/23/2016 02:47 AM Silver 0.050 9/23/2016 02:47 AM ND mg/L 1 Zinc ND 9/23/2016 02:47 AM 0.10 mg/L Prep: SW3510 / 9/21/16 **TCLP SEMI-VOLATILE ORGANICS** SW8270D Analyst: RM 1,4-Dichlorobenzene ND 100 µg/L 9/23/2016 06:24 AM 2,4,5-Trichlorophenol ND 100 1 9/23/2016 06:24 AM µg/L 2,4,6-Trichlorophenol ND 100 µg/L 1 9/23/2016 06:24 AM 2.4-Dinitrotoluene NΠ 100 μg/L 1 9/23/2016 06:24 AM Hexachloro-1,3-butadiene ND 100 9/23/2016 06:24 AM µg/L 9/23/2016 06:24 AM Hexachlorobenzene ND 100 µg/L Hexachloroethane ND 100 µg/L 9/23/2016 06:24 AM m-Cresol ND µg/L 9/23/2016 06:24 AM 100 1 Nitrobenzene ND 100 µg/L 1 9/23/2016 06:24 AM ND 9/23/2016 06:24 AM o-Cresol 100 µg/L 1 p-Cresol ND 100 1 9/23/2016 06:24 AM µg/L

Client: Michigan Dept.of Environmental Quality

Project: Abandoned Mining Wastes - Torch Lake Work Order: 1609985

 Sample ID:
 CHTC-WC01-0-6 TCLP
 Lab ID:
 1609985-01

 Collection Date:
 9/10/2016 02:28 PM
 Matrix:
 TCLP EXTRACT

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Pentachlorophenol	ND		100	μg/L	1	9/23/2016 06:24 AM
Pyridine	ND		200	μg/L	1	9/23/2016 06:24 AM
Surr: 2,4,6-Tribromophenol	76.5		38-115	%REC	1	9/23/2016 06:24 AM
Surr: 2-Fluorobiphenyl	68.0		32-100	%REC	1	9/23/2016 06:24 AM
Surr: 2-Fluorophenol	35.9		22-59	%REC	1	9/23/2016 06:24 AM
Surr: 4-Terphenyl-d14	69.1		23-112	%REC	1	9/23/2016 06:24 AM
Surr: Nitrobenzene-d5	57.4		31-93	%REC	1	9/23/2016 06:24 AM
Surr: Phenol-d6	22.5		13-36	%REC	1	9/23/2016 06:24 AM
TCLP VOLATILE ORGANICS			SW826	0B	Leachate: SW1311 / 9/20/16	Analyst: AK
1,1-Dichloroethene	ND		20	μg/L	20	9/21/2016 07:11 PM
1,2-Dichloroethane	ND		20	μg/L	20	9/21/2016 07:11 PM
2-Butanone	ND		100	μg/L	20	9/21/2016 07:11 PM
Benzene	39		20	μg/L	20	9/21/2016 07:11 PM
Carbon tetrachloride	ND		20	μg/L	20	9/21/2016 07:11 PM
Chlorobenzene	ND		20	μg/L	20	9/21/2016 07:11 PM
Chloroform	ND		20	μg/L	20	9/21/2016 07:11 PM
Tetrachloroethene	ND		20	μg/L	20	9/21/2016 07:11 PM
Trichloroethene	ND		20	μg/L	20	9/21/2016 07:11 PM
Vinyl chloride	ND		20	μg/L	20	9/21/2016 07:11 PM
Surr: 1,2-Dichloroethane-d4	96.4		70-130	%REC	20	9/21/2016 07:11 PM
Surr: 4-Bromofluorobenzene	94.0		70-130	%REC	20	9/21/2016 07:11 PM
Surr: Dibromofluoromethane	90.2		70-130	%REC	20	9/21/2016 07:11 PM
Surr: Toluene-d8	97.1		70-130	%REC	20	9/21/2016 07:11 PM

Date: 28-Sep-16

Client: Michigan Dept.of Environmental Quality

Project:Abandoned Mining Wastes - Torch LakeWork Order:1609985Sample ID:CHTC-WC01-0-6Lab ID:1609985-02Collection Date:9/10/2016 02:28 PMMatrix:WASTE

Date: 28-Sep-16

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
HERBICIDES			SW815	1	Prep: SW8151M / 9/19/16	Analyst: KYM
2,4,5-T	ND		2.0	μg/Kg-dry	1	9/22/2016 07:06 AM
2,4,5-TP (Silvex)	ND		2.0	μg/Kg-dry	1	9/22/2016 07:06 AM
2,4-D	ND		2.0	μg/Kg-dry	1	9/22/2016 07:06 AM
Surr: DCAA	27.6		10-150	%REC	1	9/22/2016 07:06 AM
PCBS			SW8082	2		Analyst: EB
Aroclor 1016	ND		1.3	mg/Kg-dry	1	9/27/2016 01:56 AM
Aroclor 1221	ND		1.3	mg/Kg-dry	1	9/27/2016 01:56 AM
Aroclor 1232	ND		1.3	mg/Kg-dry	1	9/27/2016 01:56 AM
Aroclor 1242	ND		1.3	mg/Kg-dry	1	9/27/2016 01:56 AM
Aroclor 1248	ND		1.3	mg/Kg-dry	1	9/27/2016 01:56 AM
Aroclor 1254	ND		1.3	mg/Kg-dry	1	9/27/2016 01:56 AM
Aroclor 1260	ND		1.3	mg/Kg-dry	1	9/27/2016 01:56 AM
Surr: Decachlorobiphenyl	126		40-140	%REC	1	9/27/2016 01:56 AM
Surr: Tetrachloro-m-xylene	134		40-140	%REC	1	9/27/2016 01:56 AM
PESTICIDES			SW808	1	Prep: SW3580 / 9/27/16	Analyst: BLM
4,4´-DDD	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
4,4´-DDE	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
4,4´-DDT	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Aldrin	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
alpha-BHC	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
alpha-Chlordane	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
beta-BHC	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Chlordane, Technical	ND		33	μg/Kg-dry	1	9/27/2016 02:07 PM
delta-BHC	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Dieldrin	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Endosulfan I	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Endosulfan II	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Endosulfan sulfate	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Endrin	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Endrin aldehyde	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Endrin ketone	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
gamma-BHC (Lindane)	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
gamma-Chlordane	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Heptachlor	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Heptachlor epoxide	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Methoxychlor	ND		13	μg/Kg-dry	1	9/27/2016 02:07 PM
Toxaphene	ND		78	μg/Kg-dry	1	9/27/2016 02:07 PM
Surr: Decachlorobiphenyl	96.0		30-145	%REC	1	9/27/2016 02:07 PM

Client: Michigan Dept.of Environmental Quality

Project:Abandoned Mining Wastes - Torch LakeWork Order:1609985Sample ID:CHTC-WC01-0-6Lab ID:1609985-02Collection Date:9/10/2016 02:28 PMMatrix:WASTE

Date: 28-Sep-16

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: Tetrachloro-m-xylene	78.0		25-140	%REC	1	9/27/2016 02:07 PM
MERCURY BY CVAA			SW747	1B	Prep: SW7471 / 9/25/16	Analyst: LR
Mercury	ND		0.021	mg/Kg-dry	1	9/25/2016 10:54 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3050B / 9/23/16	Analyst: ML
Arsenic	ND		5.1	mg/Kg-dry	10	9/23/2016 10:46 PM
Barium	19		5.1	mg/Kg-dry	10	9/23/2016 10:46 PM
Cadmium	ND		2.1	mg/Kg-dry	10	9/23/2016 10:46 PM
Chromium	ND		5.1	mg/Kg-dry	10	9/23/2016 10:46 PM
Lead	ND		5.1	mg/Kg-dry	10	9/23/2016 10:46 PM
Selenium	ND		5.1	mg/Kg-dry	10	9/23/2016 10:46 PM
Silver	ND		5.1	mg/Kg-dry	10	9/23/2016 10:46 PM
SEMI-VOLATILE ORGANIC COMPOUND	S		SW846	8270D	Prep: SW3580 / 9/23/16	Analyst: RS
1,1`-Biphenyl	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2,2`-Oxybis(1-chloropropane)	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2,4,5-Trichlorophenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2,4,6-Trichlorophenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2,4-Dichlorophenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2,4-Dimethylphenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2,4-Dinitrophenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2,4-Dinitrotoluene	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2,6-Dichlorophenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2-Chloronaphthalene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
2-Chlorophenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2-Methylnaphthalene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
2-Methylphenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2-Nitroaniline	ND		100	mg/Kg	10	9/25/2016 03:34 PM
2-Nitrophenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
3&4-Methylphenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
3,3'-Dichlorobenzidine	ND		500	mg/Kg	10	9/25/2016 03:34 PM
3-Nitroaniline	ND		100	mg/Kg	10	9/25/2016 03:34 PM
4,6-Dinitro-2-methylphenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
4-Bromophenyl phenyl ether	ND		100	mg/Kg	10	9/25/2016 03:34 PM
4-Chloro-3-methylphenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
4-Chloroaniline	ND		100	mg/Kg	10	9/25/2016 03:34 PM
4-Chlorophenyl phenyl ether	ND		100	mg/Kg	10	9/25/2016 03:34 PM
4-Nitroaniline	ND		100	mg/Kg	10	9/25/2016 03:34 PM
4-Nitrophenol	ND		500	mg/Kg	10	9/25/2016 03:34 PM
Acenaphthene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Acenaphthylene	ND		10	mg/Kg	10	9/25/2016 03:34 PM

Client: Michigan Dept.of Environmental Quality

Project:Abandoned Mining Wastes - Torch LakeWork Order:1609985Sample ID:CHTC-WC01-0-6Lab ID:1609985-02

Date: 28-Sep-16

Collection Date: 9/10/2016 02:28 PM Matrix: WASTE

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Acetophenone	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Anthracene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Atrazine	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Benzaldehyde	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Benzo(a)anthracene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Benzo(a)pyrene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Benzo(b)fluoranthene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Benzo(g,h,i)perylene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Benzo(k)fluoranthene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Bis(2-chloroethoxy)methane	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Bis(2-chloroethyl)ether	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Bis(2-ethylhexyl)phthalate	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Butyl benzyl phthalate	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Caprolactam	ND		500	mg/Kg	10	9/25/2016 03:34 PM
Carbazole	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Chrysene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Dibenzo(a,h)anthracene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Dibenzofuran	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Diethyl phthalate	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Dimethyl phthalate	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Di-n-butyl phthalate	48,000		2,500	mg/Kg	250	9/25/2016 04:01 PM
Di-n-octyl phthalate	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Fluoranthene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Fluorene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Hexachlorobenzene	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Hexachlorobutadiene	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Hexachlorocyclopentadiene	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Hexachloroethane	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Indeno(1,2,3-cd)pyrene	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Isophorone	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Naphthalene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Nitrobenzene	ND		100	mg/Kg	10	9/25/2016 03:34 PM
N-Nitrosodimethylamine	ND		100	mg/Kg	10	9/25/2016 03:34 PM
N-Nitrosodi-n-propylamine	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Pentachlorophenol	ND		500	mg/Kg	10	9/25/2016 03:34 PM
Phenanthrene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Phenol	ND		100	mg/Kg	10	9/25/2016 03:34 PM
Pyrene	ND		10	mg/Kg	10	9/25/2016 03:34 PM
Surr: 2,4,6-Tribromophenol	0		38-115	%REC	10	9/25/2016 03:34 PM
Surr: 2-Fluorobiphenyl	0		32-100	%REC	10	9/25/2016 03:34 PM

Client: Michigan Dept.of Environmental Quality

 Project:
 Abandoned Mining Wastes - Torch Lake
 Work Order:
 1609985

 Sample ID:
 CHTC-WC01-0-6
 Lab ID:
 1609985-02

 Collection Date:
 9/10/2016 02:28 PM
 Matrix:
 WASTE

Date: 28-Sep-16

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 2-Fluorophenol	0		22-59	%REC	10	9/25/2016 03:34 PM
Surr: 4-Terphenyl-d14	0		23-112	%REC	10	9/25/2016 03:34 PM
Surr: Nitrobenzene-d5	0		31-93	%REC	10	9/25/2016 03:34 PM
Surr: Phenol-d6	0		13-36	%REC	10	9/25/2016 03:34 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep: SW5035 / 9/20/16	Analyst: LSY
1,1,1,2-Tetrachloroethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,1,1-Trichloroethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,1,2,2-Tetrachloroethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,1,2-Trichloroethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,1,2-Trichlorotrifluoroethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,1-Dichloroethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,1-Dichloroethene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,2,3-Trichloropropane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,2,4-Trichlorobenzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,2,4-Trimethylbenzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,2-Dibromo-3-chloropropane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,2-Dibromoethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,2-Dichlorobenzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,2-Dichloroethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,2-Dichloropropane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,3,5-Trimethylbenzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,3-Dichlorobenzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
1,4-Dichlorobenzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
2-Butanone	ND		63,000	μg/Kg	100	9/25/2016 01:13 AM
2-Hexanone	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
2-Methylnaphthalene	ND		32,000	μg/Kg	100	9/25/2016 01:13 AM
4-Methyl-2-pentanone	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Acetone	ND		32,000	μg/Kg	100	9/25/2016 01:13 AM
Acrylonitrile	ND		32,000	μg/Kg	100	9/25/2016 01:13 AM
Benzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Bromochloromethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Bromodichloromethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Bromoform	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Bromomethane	ND		24,000	μg/Kg	100	9/25/2016 01:13 AM
Carbon disulfide	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Carbon tetrachloride	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Chlorobenzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Chloroethane	ND		32,000	μg/Kg	100	9/25/2016 01:13 AM
Chloroform	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Chloromethane	ND		32,000	μg/Kg	100	9/25/2016 01:13 AM

Client: Michigan Dept.of Environmental Quality

Project:Abandoned Mining Wastes - Torch LakeWork Order:1609985Sample ID:CHTC-WC01-0-6Lab ID:1609985-02

Date: 28-Sep-16

Collection Date: 9/10/2016 02:28 PM Matrix: WASTE

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
cis-1,2-Dichloroethene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
cis-1,3-Dichloropropene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Dibromochloromethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Dibromomethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Dichlorodifluoromethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Diethyl ether	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Ethylbenzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Hexachloroethane	ND		32,000	μg/Kg	100	9/25/2016 01:13 AM
Isopropylbenzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
m,p-Xylene	ND		19,000	μg/Kg	100	9/25/2016 01:13 AM
Methyl iodide	ND		24,000	μg/Kg	100	9/25/2016 01:13 AM
Methyl tert-butyl ether	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Methylene chloride	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Naphthalene	ND		32,000	μg/Kg	100	9/25/2016 01:13 AM
n-Propylbenzene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
o-Xylene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Styrene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Tetrachloroethene	27,000		9,500	μg/Kg	100	9/25/2016 01:13 AM
Toluene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
trans-1,2-Dichloroethene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
trans-1,3-Dichloropropene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
trans-1,4-Dichloro-2-butene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Trichloroethene	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Trichlorofluoromethane	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Vinyl acetate	ND		79,000	μg/Kg	100	9/25/2016 01:13 AM
Vinyl chloride	ND		9,500	μg/Kg	100	9/25/2016 01:13 AM
Xylenes, Total	ND		28,000	μg/Kg	100	9/25/2016 01:13 AM
Surr: 1,2-Dichloroethane-d4	100		70-130	%REC	100	9/25/2016 01:13 AM
Surr: 4-Bromofluorobenzene	97.0		70-130	%REC	100	9/25/2016 01:13 AM
Surr: Dibromofluoromethane	95.2		70-130	%REC	100	9/25/2016 01:13 AM
Surr: Toluene-d8	99.8		70-130	%REC	100	9/25/2016 01:13 AM
CYANIDE, REACTIVE			SW7.3.	3.2		Analyst: EE
Cyanide, Reactive	ND		130	mg/Kg-dry	1	9/23/2016 01:00 PM
FLASHPOINT/IGNITABILITY ANALYSIS			SW101	0A		Analyst: STP
Flashpoint/Ignitability	>200			°F	1	9/20/2016 10:47 AM
PAINT FILTER (FREE LIQUIDS)			SW909	_		Analyst: KF
Free Liquids	Absent			none	1	9/20/2016 10:34 AM
MOISTURE			SW355	0C		Analyst: LW

Client: Michigan Dept.of Environmental Quality

 Project:
 Abandoned Mining Wastes - Torch Lake
 Work Order:
 1609985

 Sample ID:
 CHTC-WC01-0-6
 Lab ID:
 1609985-02

 Collection Date:
 9/10/2016 02:28 PM
 Matrix:
 WASTE

Analyses	Result Qua	Report I Limit Units	Dilution Factor	Date Analyzed
Moisture	24	0.050 % of san	nple 1	9/22/2016 01:50 PM
PH		SW9045D	Prep: EXTRACT /	9/17/16 Analyst: EDL
рН	3.0	s.u.	1	9/17/2016 03:30 PM
SULFIDE, REACTIVE		SW7.3.4.2		Analyst: EE
Sulfide, Reactive	ND	130 mg/Kg-dr	ry 1	9/23/2016 01:00 PM

Date: 28-Sep-16

Collection Date: 9/12/2016 01:54 PM

Client: Michigan Dept.of Environmental Quality

Project:Abandoned Mining Wastes - Torch LakeWork Order: 1609985Sample ID:CHLL-WC02-0-6 TCLPLab ID: 1609985-03

Date: 28-Sep-16

Matrix: TCLP EXTRACT

Report Dilution Result **Analyses** Limit **Date Analyzed** Qual Units **Factor** Prep: SW8151M / 9/22/16 **TCLP HERBICIDES** SW8151 Analyst: KYM 2,4,5-TP (Silvex) ND 5.0 µg/L 9/22/2016 08:51 PM 2,4-D ND 5.0 1 9/22/2016 08:51 PM µg/L Surr: DCAA 30.8 30-150 %REC 1 9/22/2016 08:51 PM **TCLP PESTICIDES** SW8081 Analyst: BLM Chlordane, Technical ND 2.5 μg/L 1 9/24/2016 12:35 AM Endrin ND 0.10 µg/L 1 9/24/2016 12:35 AM gamma-BHC (Lindane) ND 0.050 µg/L 1 9/24/2016 12:35 AM Heptachlor ND 0.050 µg/L 9/24/2016 12:35 AM Heptachlor epoxide ND 0.050 μg/L 9/24/2016 12:35 AM Methoxychlor ND 0.20 µg/L 9/24/2016 12:35 AM 9/24/2016 12:35 AM Toxaphene ND 10 µg/L Surr: Decachlorobiphenyl 68.0 42-119 %REC 9/24/2016 12:35 AM %REC Surr: Tetrachloro-m-xylene 55.0 32-104 9/24/2016 12:35 AM **TCLP MERCURY BY CVAA** SW7470A Prep: SW7470 / 9/21/16 Analyst: LR ND 0.0020 9/21/2016 08:44 PM Mercury mg/L TCLP METALS ANALYSIS BY ICP-MS SW6020A Prep: SW3005A / 9/22/16 Analyst: ML Arsenic ND 0.050 9/23/2016 02:53 AM mg/L **Barium** 4.8 0.050 mg/L 1 9/23/2016 02:53 AM 9/23/2016 02:53 AM Cadmium 0.16 0.0020 mg/L 1 Chromium ND 0.050 mg/L 1 9/23/2016 02:53 AM 0.50 Copper 120 mg/L 10 9/23/2016 11:52 AM Lead 78 0.50 mg/L 10 9/23/2016 11:52 AM ND 0.050 Selenium mg/L 1 9/23/2016 02:53 AM Silver ND 0.050 9/23/2016 02:53 AM mg/L 1 10 9/23/2016 11:52 AM Zinc 30 mg/L 1.0 Prep: SW3510 / 9/21/16 **TCLP SEMI-VOLATILE ORGANICS** SW8270D Analyst: RM 1,4-Dichlorobenzene ND 100 µg/L 1 9/23/2016 06:44 AM 2,4,5-Trichlorophenol ND 100 1 9/23/2016 06:44 AM µg/L 2,4,6-Trichlorophenol ND 100 µg/L 1 9/23/2016 06:44 AM 2.4-Dinitrotoluene NΠ 100 μg/L 1 9/23/2016 06:44 AM Hexachloro-1,3-butadiene ND 100 9/23/2016 06:44 AM µg/L Hexachlorobenzene ND 100 9/23/2016 06:44 AM µg/L Hexachloroethane ND 100 µg/L 9/23/2016 06:44 AM m-Cresol ND µg/L 9/23/2016 06:44 AM 100 1 Nitrobenzene ND 100 µg/L 1 9/23/2016 06:44 AM ND 9/23/2016 06:44 AM o-Cresol 100 µg/L 1 p-Cresol ND 100 1 9/23/2016 06:44 AM µg/L

Client: Michigan Dept.of Environmental Quality

Project: Abandoned Mining Wastes - Torch Lake **Work Order:** 1609985

Sample ID: CHLL-WC02-0-6 TCLP **Lab ID:** 1609985-03

Collection Date: 9/12/2016 01:54 PM Matrix: TCLP EXTRACT

Date: 28-Sep-16

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Pentachlorophenol	ND		100	μg/L	1	9/23/2016 06:44 AM
Pyridine	ND		200	μg/L	1	9/23/2016 06:44 AM
Surr: 2,4,6-Tribromophenol	76.6		38-115	%REC	1	9/23/2016 06:44 AM
Surr: 2-Fluorobiphenyl	65.6		32-100	%REC	1	9/23/2016 06:44 AM
Surr: 2-Fluorophenol	40.4		22-59	%REC	1	9/23/2016 06:44 AM
Surr: 4-Terphenyl-d14	75.5		23-112	%REC	1	9/23/2016 06:44 AM
Surr: Nitrobenzene-d5	60.1		31-93	%REC	1	9/23/2016 06:44 AM
Surr: Phenol-d6	23.7		13-36	%REC	1	9/23/2016 06:44 AM
TCLP VOLATILE ORGANICS			SW826	0B	Leachate: SW1311 / 9/20/16	Analyst: AK
1,1-Dichloroethene	ND		20	μg/L	20	9/21/2016 07:37 PM
1,2-Dichloroethane	ND		20	μg/L	20	9/21/2016 07:37 PM
2-Butanone	ND		100	μg/L	20	9/21/2016 07:37 PM
Benzene	ND		20	μg/L	20	9/21/2016 07:37 PM
Carbon tetrachloride	ND		20	μg/L	20	9/21/2016 07:37 PM
Chlorobenzene	ND		20	μg/L	20	9/21/2016 07:37 PM
Chloroform	ND		20	μg/L	20	9/21/2016 07:37 PM
Tetrachloroethene	ND		20	μg/L	20	9/21/2016 07:37 PM
Trichloroethene	ND		20	μg/L	20	9/21/2016 07:37 PM
Vinyl chloride	ND		20	μg/L	20	9/21/2016 07:37 PM
Surr: 1,2-Dichloroethane-d4	95.6		70-130	%REC	20	9/21/2016 07:37 PM
Surr: 4-Bromofluorobenzene	96.6		70-130	%REC	20	9/21/2016 07:37 PM
Surr: Dibromofluoromethane	92.0		70-130	%REC	20	9/21/2016 07:37 PM
Surr: Toluene-d8	97.8		70-130	%REC	20	9/21/2016 07:37 PM

Collection Date: 9/12/2016 01:54 PM

Client: Michigan Dept.of Environmental Quality

Project:Abandoned Mining Wastes - Torch LakeWork Order:1609985Sample ID:CHLL-WC02-0-6Lab ID:1609985-04

Date: 28-Sep-16

Matrix: WASTE

Report Dilution Result **Analyses** Limit **Date Analyzed** Units Qual **Factor HERBICIDES** SW8151 Prep: SW8151M / 9/19/16 Analyst: KYM 2,4,5-T ND 1.2 µg/Kg-dry 9/22/2016 07:25 AM 2,4,5-TP (Silvex) 1 9/22/2016 07:25 AM 7.8 1.2 µg/Kg-dry 2,4-D ND 1.2 µg/Kg-dry 1 9/22/2016 07:25 AM Surr: DCAA 34 4 10-150 %REC 9/22/2016 07:25 AM Prep: SW3546 / 9/26/16 **PCBS** SW8082 Analyst: EB Aroclor 1016 ND 110 µg/Kg-dry 9/26/2016 11:00 PM Aroclor 1221 ND 110 μg/Kg-dry 1 9/26/2016 11:00 PM Aroclor 1232 ND 110 µg/Kg-dry 1 9/26/2016 11:00 PM Aroclor 1242 ND μg/Kg-dry 1 9/26/2016 11:00 PM 110 Aroclor 1248 ND 110 1 9/26/2016 11:00 PM µg/Kg-dry 1 9/26/2016 11:00 PM Aroclor 1254 1,800 110 µg/Kg-dry Aroclor 1260 ND 110 µg/Kg-dry 9/26/2016 11:00 PM Surr: Decachlorobiphenyl 75.1 40-140 %REC 9/26/2016 11:00 PM 1 Surr: Tetrachloro-m-xylene 79.1 45-124 %REC 9/26/2016 11:00 PM **PESTICIDES** SW8081 Prep: SW3546 / 9/22/16 Analyst: BLM 4,4´-DDD ND 150 µg/Kg-dry 10 9/25/2016 11:55 PM 4,4'-DDE 10 ND 150 µg/Kg-dry 9/25/2016 11:55 PM 4,4'-DDT ND 150 μg/Kg-dry 10 9/25/2016 11:55 PM Aldrin ND 150 µg/Kg-dry 10 9/25/2016 11:55 PM alpha-BHC ND 150 µg/Kg-dry 10 9/25/2016 11:55 PM alpha-Chlordane ND 150 μg/Kg-dry 10 9/25/2016 11:55 PM beta-BHC 150 10 9/25/2016 11:55 PM ND µg/Kg-dry Chlordane, Technical ND 370 10 9/25/2016 11:55 PM µg/Kg-dry delta-BHC ND 150 µg/Kg-dry 10 9/25/2016 11:55 PM Dieldrin ND 150 μg/Kg-dry 10 9/25/2016 11:55 PM Endosulfan I ND 150 μg/Kg-dry 10 9/25/2016 11:55 PM Endosulfan II ND 150 10 9/25/2016 11:55 PM μg/Kg-dry Endosulfan sulfate ND 150 μg/Kg-dry 10 9/25/2016 11:55 PM Endrin ND 150 μg/Kg-dry 10 9/25/2016 11:55 PM Endrin aldehyde ND 150 µg/Kg-dry 10 9/25/2016 11:55 PM Endrin ketone ND 10 9/25/2016 11:55 PM 150 μg/Kg-dry gamma-BHC (Lindane) ND 10 9/25/2016 11:55 PM 150 µg/Kg-dry ND 9/25/2016 11:55 PM gamma-Chlordane 150 10 μg/Kg-dry Heptachlor ND 150 µg/Kg-dry 10 9/25/2016 11:55 PM Heptachlor epoxide ND 10 150 μg/Kg-dry 9/25/2016 11:55 PM Methoxychlor ND 150 µg/Kg-dry 10 9/25/2016 11:55 PM Toxaphene ND 890 μg/Kg-dry 10 9/25/2016 11:55 PM Surr: Decachlorobiphenyl 100 45-135 %REC 10 9/25/2016 11:55 PM

Client: Michigan Dept.of Environmental Quality

 Project:
 Abandoned Mining Wastes - Torch Lake
 Work Order:
 1609985

 Sample ID:
 CHLL-WC02-0-6
 Lab ID:
 1609985-04

 Collection Date:
 9/12/2016 01:54 PM
 Matrix:
 WASTE

Date: 28-Sep-16

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: Tetrachloro-m-xylene	90.1		45-124	%REC	10	9/25/2016 11:55 PM
MERCURY BY CVAA			SW747	1B	Prep: SW7471 / 9/25/16	Analyst: LR
Mercury	0.97		0.21	mg/Kg-dry	10	9/27/2016 10:25 AM
METALS BY ICP-MS			SW602	0A	Prep: SW3050B / 9/23/16	Analyst: ML
Arsenic	150		41	mg/Kg-dry	100	9/23/2016 10:53 PM
Barium	850		41	mg/Kg-dry	100	9/23/2016 10:53 PM
Cadmium	54		17	mg/Kg-dry	100	9/23/2016 10:53 PM
Chromium	130		41	mg/Kg-dry	100	9/23/2016 10:53 PM
Copper	29,000		410	mg/Kg-dry	1000	9/24/2016 11:01 PM
Lead	8,600		41	mg/Kg-dry	100	9/23/2016 10:53 PM
Selenium	ND		41	mg/Kg-dry	100	9/23/2016 10:53 PM
Silver	ND		41	mg/Kg-dry	100	9/23/2016 10:53 PM
Zinc	4,100		83	mg/Kg-dry	100	9/23/2016 10:53 PM
SEMI-VOLATILE ORGANIC COMPOU	JNDS		SW846	8270D	Prep: SW3546 / 9/22/16	Analyst: RS
1,1`-Biphenyl	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2,2`-Oxybis(1-chloropropane)	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2,4,5-Trichlorophenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2,4,6-Trichlorophenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2,4-Dichlorophenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2,4-Dimethylphenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2,4-Dinitrophenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2,4-Dinitrotoluene	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2,6-Dinitrotoluene	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2-Chloronaphthalene	ND		80	μg/Kg-dry	5	9/26/2016 11:38 PM
2-Chlorophenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2-Methylnaphthalene	430		80	μg/Kg-dry	5	9/26/2016 11:38 PM
2-Methylphenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2-Nitroaniline	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
2-Nitrophenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
3&4-Methylphenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
3,3´-Dichlorobenzidine	ND		2,000	μg/Kg-dry	5	9/26/2016 11:38 PM
3-Nitroaniline	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
4,6-Dinitro-2-methylphenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
4-Bromophenyl phenyl ether	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
4-Chloro-3-methylphenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
4-Chloroaniline	ND		800	μg/Kg-dry	5	9/26/2016 11:38 PM
4-Chlorophenyl phenyl ether	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
4-Nitroaniline	ND		2,000	μg/Kg-dry	5	9/26/2016 11:38 PM
4-Nitrophenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM

Client: Michigan Dept.of Environmental Quality

Project:Abandoned Mining Wastes - Torch LakeWork Order:1609985Sample ID:CHLL-WC02-0-6Lab ID:1609985-04Collection Date:9/12/2016 01:54 PMMatrix:WASTE

Date: 28-Sep-16

Acenaphthene ND 80 μg/kg-dry 5 9/26/2016 11:38 PM Acenaphthylene ND 80 μg/kg-dry 5 9/26/2016 11:38 PM Acetophenone ND 400 μg/kg-dry 5 9/26/2016 11:38 PM Anthracene 280 80 μg/kg-dry 5 9/26/2016 11:38 PM Antrazine ND 400 μg/kg-dry 5 9/26/2016 11:38 PM Benza(alphthe ND 80 μg/kg-dry 5 9/26/2016 11:38 PM Benza(alphtracene 710 80 μg/kg-dry 5 9/26/2016 11:38 PM Benza(alphtracene 1,200 80 μg/kg-dry 5 9/26/2016 11:38 PM Benza(alphtroathene 1,200 80 μg/kg-dry 5 9/26/2016 11:38 PM Benza(alphtroathene 300 80 μg/kg-dry 5 9/26/2016 11:38 PM Benza(blancethoxy)methane ND 400 μg/kg-dry 5 9/26/2016 11:38 PM Bisi(2-eth)trocethoxy)methane ND 400 μg/kg-	Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Acetophenone ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Antracene 280 80 µg/Kg-dry 5 9/26/2016 11:38 PM Antrazine ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Benzadjehyde ND 800 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(a)pyrene 640 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(g)h.i)perylene 360 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(g)h.i)perylene 360 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(g)h.i)perylene 360 80 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethy)ether ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethy)ether ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethy)ether ND 400	Acenaphthene	ND		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Anthracene 280 80 µg/Kg-dry 5 9/26/2016 11:38 PM Altrazine ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Benzaldehyde ND 800 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(a)anthracene 710 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(a)pyerene 640 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(g), i)perylene 360 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(k)(fluoranthene 440 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(k)(fluoranthene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethxy)/nethane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethxy)/phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethxy)/phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Carbazole ND 400	Acenaphthylene	ND		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Atrazine ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Benzaldehyde ND 800 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(a)anthracene 710 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(a)anthracene 640 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(a)hulpranthene 1,200 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(g)h.i)perylene 360 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(g)h.i)perylene 360 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(g)h.i)perylene 440 80 µg/Kg-dry 5 9/26/2016 11:38 PM Benzo(lyhluoranthene 440 80 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Carbazole ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Dibenzolatam ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM	Acetophenone	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Benzaldehyde ND 800 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(a)anthracene 710 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(a)pyrene 640 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(b)fluoranthene 1,200 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(g/thurorathene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethyl)either ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Butyl benzyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Chrysene 640 <td>Anthracene</td> <td>280</td> <td></td> <td>80</td> <td>μg/Kg-dry</td> <td>5</td> <td>9/26/2016 11:38 PM</td>	Anthracene	280		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Benzo(a)anthracene 710 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(a)pyrene 640 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(b)fluoranthene 1,200 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(k)fluoranthene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethyl)ether ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chlyhexyl)phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Chrysene 640 80 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene <	Atrazine	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Benzo(a)pyrene 640 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(b)fluoranthene 1,200 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(g,h,i)perylene 360 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(k)fluoranthene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethy)lethralate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethy)lethralate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Butyl benzyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Chrysene 640 80 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzola, hjanthracene ND 40 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzolutura <	Benzaldehyde	ND		800	μg/Kg-dry	5	9/26/2016 11:38 PM
Benzo(b)fluoranthene 1,200 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(g,h,)perylene 360 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(k)fluoranthene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethy)lether ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-ethylhexyl)phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-ethylhexyl)phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Carbazole ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Carbazole ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene ND 80 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene ND 40 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene	Benzo(a)anthracene	710		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Benzo(g,h,l)perylene 360 80 μg/Kg-dry 5 9/26/2016 11:38 PM Benzo(k)fluoranthene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethxy)methane ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethyl)ether ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-ethylhexyl)phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Butyl benzyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Butyl benzyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Carbazole ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Chrysene 640 80 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene ND 80 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(aranthalate ND 80 μg/Kg-dry 5 9/26/2016 11:38 PM Diethyl phthalate ND	Benzo(a)pyrene	640		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Benzo(k)fluoranthene 440 80 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chloroethoxy)methane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Bis(2-chlynexyl)phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Butyl benzyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Carpolactam ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Carbazole ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Chrysene 640 80 µg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene ND 80 µg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene ND	Benzo(b)fluoranthene	1,200		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Bis(2-chloroethoxy)methane	Benzo(g,h,i)perylene	360		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Bis(2-chloroethyl)ether	Benzo(k)fluoranthene	440		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Bis(2-ethylhexyl)phthalate	Bis(2-chloroethoxy)methane	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Butyl benzyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Caprolactam ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Carbazole ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Chrysene 640 80 µg/Kg-dry 5 9/26/2016 11:38 PM Dibenzofuran ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Dibenzofuran ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Diethyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Fluorene 1,400 80 µg/Kg-dry 5 9/26/2016 11:38 PM Fluorene ND 400 µg/Kg-dry 5	Bis(2-chloroethyl)ether	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Caprolactam ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Carbazole ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Chrysene 640 80 µg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene ND 80 µg/Kg-dry 5 9/26/2016 11:38 PM Dibenzofuran ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Dibenzofuran ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Dienthyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/Kg-dry <td>Bis(2-ethylhexyl)phthalate</td> <td>ND</td> <td></td> <td>400</td> <td>μg/Kg-dry</td> <td>5</td> <td>9/26/2016 11:38 PM</td>	Bis(2-ethylhexyl)phthalate	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Carbazole ND 400 µg/kg-dry 5 9/26/2016 11:38 PM Chrysene 640 80 µg/kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene ND 80 µg/kg-dry 5 9/26/2016 11:38 PM Dibenzofuran ND 400 µg/kg-dry 5 9/26/2016 11:38 PM Diethyl phthalate ND 400 µg/kg-dry 5 9/26/2016 11:38 PM Dimethyl phthalate ND 400 µg/kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 µg/kg-dry 5 9/26/2016 11:38 PM Pin-n-octyl phthalate ND 400 µg/kg-dry 5 9/26/2016 11:38 PM Pin-n-octyl phthalate ND 400 µg/kg-dry 5 9/26/2016 11:38 PM Pin-n-octyl phthalate ND 400 µg/kg-dry 5 9/26/2016 11:38 PM Pin-n-octyl phthalate ND 80	Butyl benzyl phthalate	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Chrysene 640 80 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzo(a,h)anthracene ND 80 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzofuran ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Dienbyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pilorene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobenzene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400	Caprolactam	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Dibenzo(a,h)anthracene ND 80 μg/Kg-dry 5 9/26/2016 11:38 PM Dibenzofuran ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Dientyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate 700 400 μg/Kg-dry 5 9/26/2016 11:38 PM Di-n-octyl phthalate ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Piuoranthene 1,400 80 μg/Kg-dry 5 9/26/2016 11:38 PM Fluoranthene 1,400 80 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobenzene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobutadiene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 8	Carbazole	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Dibenzofuran ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Diethyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Dimethyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate 700 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-octyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Piuoranthene 1,400 80 µg/Kg-dry 5 9/26/2016 11:38 PM Fluoranthene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Fluoranthene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobenzene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobutadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 80	Chrysene	640		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Diethyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Dimethyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate 700 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-octyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Fluoranthene 1,400 80 µg/Kg-dry 5 9/26/2016 11:38 PM Fluorene ND 80 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobenzene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobutadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocethane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 80 µg/Kg-dry 5 9/26/2016 11:38 PM Naphthalene 350 80	Dibenzo(a,h)anthracene	ND		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Dimethyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-butyl phthalate 700 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-octyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Fluoranthene 1,400 80 µg/Kg-dry 5 9/26/2016 11:38 PM Fluorene ND 80 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobenzene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobutadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 80 µg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene ND	Dibenzofuran	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Di-n-butyl phthalate 700 400 µg/Kg-dry 5 9/26/2016 11:38 PM Di-n-octyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Fluoranthene 1,400 80 µg/Kg-dry 5 9/26/2016 11:38 PM Fluorene ND 80 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobenzene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobutadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocethane ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 80 µg/Kg-dry 5 9/26/2016 11:38 PM Isophorone ND 2,000 µg/Kg-dry 5 9/26/2016 11:38 PM Naphthalene 350 80 µg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrobenzene ND 2,000 µg/	Diethyl phthalate	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Di-n-octyl phthalate ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Fluoranthene 1,400 80 µg/Kg-dry 5 9/26/2016 11:38 PM Fluorene ND 80 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobenzene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobutadiene ND 400 µg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 2,000 µg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 80 µg/Kg-dry 5 9/26/2016 11:38 PM Isophorone ND	Dimethyl phthalate	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Fluoranthene 1,400 80 μg/Kg-dry 5 9/26/2016 11:38 PM Fluorene ND 80 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobenzene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM Isophorone ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrobenzene ND </td <td>Di-n-butyl phthalate</td> <td>700</td> <td></td> <td>400</td> <td>μg/Kg-dry</td> <td>5</td> <td>9/26/2016 11:38 PM</td>	Di-n-butyl phthalate	700		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Fluorene ND 80 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobenzene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobutadiene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocethane ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Isophorone ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM Naphthalene 350 80 μg/Kg-dry 5 9/26/2016 11:38 PM Nitrobenzene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodimethylamine ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400	Di-n-octyl phthalate	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Hexachlorobenzene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorobutadiene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachloroethane ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Isophorone ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM Naphthalene 350 80 μg/Kg-dry 5 9/26/2016 11:38 PM Nitrobenzene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodimethylamine ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400	Fluoranthene	1,400		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Hexachlorobutadiene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachloroethane ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Isophorone ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM Naphthalene 350 80 μg/Kg-dry 5 9/26/2016 11:38 PM Nitrobenzene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodimethylamine ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenanthrene 860 80 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400	Fluorene	ND		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Hexachlorocyclopentadiene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Hexachlorocyclopentadiene ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Isophorone ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM Naphthalene 350 80 μg/Kg-dry 5 9/26/2016 11:38 PM Nitrobenzene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodimethylamine ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	Hexachlorobenzene	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Hexachloroethane ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Indeno(1,2,3-cd)pyrene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Isophorone ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM Naphthalene 350 80 μg/Kg-dry 5 9/26/2016 11:38 PM Nitrobenzene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodimethylamine ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	Hexachlorobutadiene	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Indeno(1,2,3-cd)pyrene 440 80 μg/Kg-dry 5 9/26/2016 11:38 PM Isophorone ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM Naphthalene 350 80 μg/Kg-dry 5 9/26/2016 11:38 PM Nitrobenzene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodimethylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenanthrene 860 80 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	Hexachlorocyclopentadiene	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Isophorone ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM Naphthalene 350 80 μg/Kg-dry 5 9/26/2016 11:38 PM Nitrobenzene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodimethylamine ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	Hexachloroethane	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Naphthalene 350 80 μg/Kg-dry 5 9/26/2016 11:38 PM Nitrobenzene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodimethylamine ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenanthrene 860 80 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	Indeno(1,2,3-cd)pyrene	440		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Nitrobenzene ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodimethylamine ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenanthrene 860 80 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	Isophorone	ND		2,000	μg/Kg-dry	5	9/26/2016 11:38 PM
N-Nitrosodimethylamine ND 2,000 μg/Kg-dry 5 9/26/2016 11:38 PM N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenanthrene 860 80 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	Naphthalene	350		80	μg/Kg-dry	5	9/26/2016 11:38 PM
N-Nitrosodi-n-propylamine ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenanthrene 860 80 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	Nitrobenzene	ND		2,000	μg/Kg-dry	5	9/26/2016 11:38 PM
Pentachlorophenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM Phenanthrene 860 80 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	N-Nitrosodimethylamine	ND		2,000	μg/Kg-dry	5	9/26/2016 11:38 PM
Phenanthrene 860 80 μg/Kg-dry 5 9/26/2016 11:38 PM Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	N-Nitrosodi-n-propylamine	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
Phenol ND 400 μg/Kg-dry 5 9/26/2016 11:38 PM	Pentachlorophenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
	Phenanthrene	860		80	μg/Kg-dry	5	9/26/2016 11:38 PM
Pyrene 1,100 80 μg/Kg-dry 5 9/26/2016 11:38 PM	Phenol	ND		400	μg/Kg-dry	5	9/26/2016 11:38 PM
	Pyrene	1,100		80	μg/Kg-dry	5	9/26/2016 11:38 PM

Client: Michigan Dept.of Environmental Quality

Project:Abandoned Mining Wastes - Torch LakeWork Order:1609985Sample ID:CHLL-WC02-0-6Lab ID:1609985-04Collection Date:9/12/2016 01:54 PMMatrix:WASTE

Date: 28-Sep-16

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 2,4,6-Tribromophenol	102		34-140	%REC	5	9/26/2016 11:38 PM
Surr: 2-Fluorobiphenyl	77.1		12-100	%REC	5	9/26/2016 11:38 PM
Surr: 2-Fluorophenol	70.7		33-117	%REC	5	9/26/2016 11:38 PM
Surr: 4-Terphenyl-d14	92.2		25-137	%REC	5	9/26/2016 11:38 PM
Surr: Nitrobenzene-d5	70.6		37-107	%REC	5	9/26/2016 11:38 PM
Surr: Phenol-d6	68.1		40-106	%REC	5	9/26/2016 11:38 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep: SW5035 / 9/20/16	Analyst: LSY
1,1,1,2-Tetrachloroethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,1,1-Trichloroethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,1,2,2-Tetrachloroethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,1,2-Trichloroethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,1,2-Trichlorotrifluoroethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,1-Dichloroethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,1-Dichloroethene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,2,3-Trichloropropane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,2,4-Trichlorobenzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,2,4-Trimethylbenzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,2-Dibromo-3-chloropropane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,2-Dibromoethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,2-Dichlorobenzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,2-Dichloroethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,2-Dichloropropane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,3,5-Trimethylbenzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,3-Dichlorobenzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
1,4-Dichlorobenzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
2-Butanone	ND		200	μg/Kg	1	9/24/2016 09:30 PM
2-Hexanone	ND		30	μg/Kg	1	9/24/2016 09:30 PM
2-Methylnaphthalene	130		100	μg/Kg	1	9/24/2016 09:30 PM
4-Methyl-2-pentanone	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Acetone	ND		100	μg/Kg	1	9/24/2016 09:30 PM
Acrylonitrile	ND		100	μg/Kg	1	9/24/2016 09:30 PM
Benzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Bromochloromethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Bromodichloromethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Bromoform	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Bromomethane	ND		75	μg/Kg	1	9/24/2016 09:30 PM
Carbon disulfide	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Carbon tetrachloride	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Chlorobenzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Chloroethane	ND		100	μg/Kg	1	9/24/2016 09:30 PM

Client: Michigan Dept.of Environmental Quality

Project:Abandoned Mining Wastes - Torch LakeWork Order:1609985Sample ID:CHLL-WC02-0-6Lab ID:1609985-04Collection Date:9/12/2016 01:54 PMMatrix:WASTE

Date: 28-Sep-16

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Chloroform	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Chloromethane	ND		100	μg/Kg	1	9/24/2016 09:30 PM
cis-1,2-Dichloroethene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
cis-1,3-Dichloropropene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Dibromochloromethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Dibromomethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Dichlorodifluoromethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Diethyl ether	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Ethylbenzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Hexachloroethane	ND		100	μg/Kg	1	9/24/2016 09:30 PM
Isopropylbenzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
m,p-Xylene	ND		60	μg/Kg	1	9/24/2016 09:30 PM
Methyl iodide	ND		75	μg/Kg	1	9/24/2016 09:30 PM
Methyl tert-butyl ether	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Methylene chloride	130		30	μg/Kg	1	9/24/2016 09:30 PM
Naphthalene	110		100	μg/Kg	1	9/24/2016 09:30 PM
n-Propylbenzene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
o-Xylene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Styrene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Tetrachloroethene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Toluene	38		30	μg/Kg	1	9/24/2016 09:30 PM
trans-1,2-Dichloroethene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
trans-1,3-Dichloropropene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
trans-1,4-Dichloro-2-butene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Trichloroethene	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Trichlorofluoromethane	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Vinyl acetate	ND		250	μg/Kg	1	9/24/2016 09:30 PM
Vinyl chloride	ND		30	μg/Kg	1	9/24/2016 09:30 PM
Xylenes, Total	ND		90	μg/Kg	1	9/24/2016 09:30 PM
Surr: 1,2-Dichloroethane-d4	105		70-130	%REC	1	9/24/2016 09:30 PM
Surr: 4-Bromofluorobenzene	96.7		70-130	%REC	1	9/24/2016 09:30 PM
Surr: Dibromofluoromethane	95.5		70-130	%REC	1	9/24/2016 09:30 PM
Surr: Toluene-d8	97.8		70-130	%REC	1	9/24/2016 09:30 PM
CYANIDE, REACTIVE			SW7.3.			Analyst: EE
Cyanide, Reactive	ND		120	mg/Kg-dry	/ 1	9/23/2016 01:00 PM
FLASHPOINT/IGNITABILITY ANALYSIS Flashpoint/Ignitability	>200		SW101	0A °F	1	Analyst: STP 9/20/2016 10:47 AM
PAINT FILTER (FREE LIQUIDS) Free Liquids	Absent		SW909	5B none	1	Analyst: KF 9/20/2016 10:34 AM

Client: Michigan Dept.of Environmental Quality

Project: Abandoned Mining Wastes - Torch Lake Work Order: 1609985

 Sample ID:
 CHLL-WC02-0-6
 Lab ID:
 1609985-04

 Collection Date:
 9/12/2016 01:54 PM
 Matrix:
 WASTE

Analyses	Result Qual	Report Limit Units	Dilution Factor	Date Analyzed
MOISTURE Moisture	20	SW3550C 0.050 % of sam	nple 1	Analyst: LW 9/23/2016 07:00 PM
PH pH	7.2	SW9045D s.u.	Prep: EXTRACT / 1	9/17/16 Analyst: EDL 9/17/2016 03:30 PM
SULFIDE, REACTIVE Sulfide, Reactive	ND	SW7.3.4.2 120 mg/Kg-dr	ry 1	Analyst: EE 9/23/2016 01:00 PM

Date: 28-Sep-16

Client: Michigan Dept.of Environmental Quality

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Date: 28-Sep-16 **QC BATCH REPORT**

Batch ID: 91556	Instrument ID GC7		Metho	d: SW815	51						
MBLK	Sample ID: HBLKS1-91556-91556				ι	Jnits: µg/l	(g	Analys	is Date: 9	9/20/2016 1	2:32 PI
Client ID:	Run ID:	GC7_1	60919C		Se	eqNo: 404	1673	Prep Date: 9/19	9/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
2,4,5-T	ND	1.0									
2,4,5-TP (Silvex)	ND	1.0									
2,4-D	ND	1.0									
Surr: DCAA	10.7	0	50		0	21.4	10-150	0			
LCS	Sample ID: HLCSDS1-91556-9155	6			ι	Jnits: µg/l	(g	Analys	is Date: 9	9/20/2016 0	1:49 PN
Client ID:	Run ID:	GC7_1	60919C		Se	eqNo: 404	1675	Prep Date: 9/19	9/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
2,4,5-T	1.379	0.98	4.924		0	28	10-150	0			
2,4,5-TP (Silvex)	2.167	0.98	4.924		0	44	10-150	0			
2,4-D	13.1	0.98	49.24		0	26.6	10-130	0			
Surr: DCAA	14.08	0	49.24		0	28.6	10-150	0			
LCS	Sample ID: HLCSDS1-91556-9155	6			ι	Jnits: µg/l	(g	Analys	is Date: 9	9/20/2016 0	2:08 PN
Client ID:	Run ID:	GC7_1	60919C		Se	eqNo: 404	1676	Prep Date: 9/19	9/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
2,4,5-T	0.8864	0.98	4.924		0	18	10-150	1.379	()	J
2,4,5-TP (Silvex)	2.364	0.98	4.924		0	48	10-150	2.167	()	
2,4-D	10.83	0.98	49.24		0	22	10-130	13.1	()	
Surr: DCAA	11.82	0	49.24		0	24	10-150	14.08	(9	
MS	Sample ID: 1609939-05A MS				ι	Jnits: µg/l	(g	Analys	is Date: 9	9/20/2016 0	2:27 PN
Client ID:	Run ID:	GC7_1	60919C		Se	eqNo: 404	1677	Prep Date: 9/19	9/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
2,4,5-T	1.479	0.99	4.93		0	30	10-150	0			
2,4,5-TP (Silvex)	2.465	0.99	4.93		0	50	10-150	0			
2,4-D	23.67	0.99	49.3		0	48	10-130	0			
Surr: DCAA	13.31	0	49.3		0	27	10-150				

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91556 Instrument ID GC7 Method: SW8151

MSD	Sample ID: 1609939-	05A MSD				l	Jnits: µg/k	(g	Analysi	s Date: 9/	20/2016 0	2:46 PM
Client ID:		Run ID	: GC7_1	60919C		Se	eqNo: 404	1678	Prep Date: 9/19	/2016	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
2,4,5-T		1.588	0.99	4.962		0	32	10-150	1.479	7.08	50	
2,4,5-TP (Silvex)		2.382	0.99	4.962		0	48	10-150	2.465	3.45	50	
2,4-D		31.65	0.99	49.62		0	63.8	10-130	23.67	28.9	50	
Surr: DCAA		15.88	0	49.62		0	32	10-150	13.31	17.6	50	

The following samples were analyzed in this batch:

1609985-02A 1609985-04A

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91705A	Instrument ID GC12		Metho	d: SW80 8	31					
MBLK S	ample ID: PBLKW1-91705-	91705A			ι	Jnits: µg/L		Analysis Date	9/23/2016	11:23 PN
Client ID:	Ru	un ID: GC12 _	160923A		Se	qNo: 404	6881	Prep Date: 9/22/2016	DF: 1	
				SPK Ref			Control	RPD Ref	RPD	
Analyte	Resu	lt PQL	SPK Val	Value		%REC	Limit	Value %RP	D Limit	Qual
Chlordane, Technical	N	D 0.50								
Endrin	N	D 0.020								
gamma-BHC (Lindane)	N	D 0.010								
Heptachlor	N	D 0.010								
Heptachlor epoxide	N	D 0.010								
Methoxychlor	N	D 0.040								
Toxaphene	N	D 2.0								
Surr: Decachlorobiph	enyl 0.06	8 0	0.1		0	68	42-119	0		
Surr: Tetrachloro-m-x	rylene 0.05	i4 0	0.1		0	54	32-104	0		
LCS S	ample ID: PLCSW1-91705-	91705A			ι	Jnits: µg/L	-	Analysis Date	9/23/2016	11:41 PN
Client ID:	Ru	un ID: GC12 _	160923A		Se	qNo: 404	6882	Prep Date: 9/22/2016	DF: 1	
Analyte	Resu	ılt PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value %RP	RPD D Limit	Qual
-	0.07				_		00.400			_
Endrin		*	0.1		0	77 55	39-123	0		
gamma-BHC (Lindane)	0.05		0.1		0	55	32-114	0		
Heptachlor	0.0		0.1		0	40	34-112	0		
Heptachlor epoxide	0.06		0.1		0	63	36-109	0		
Methoxychlor			0.1		0	79 7 0	44-133	0		
Surr: Decachlorobiph		•	0.1		0	70 50	42-119	0		
Surr: Tetrachloro-m-x	rylene 0.05	6 0	0.1		0	56	32-104	0		_
MS S	ample ID: 1609985-01A MS				ι	Jnits: µg/L	-	Analysis Date	9/24/2016	12:17 AN
Client ID: CHTC-WC01	-0-6 TCLP Ru	un ID: GC12_	160923A		Se	qNo: 404 6	6884	Prep Date: 9/22/2016	DF: 5	
Analyte	Resu	lt PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value %RP	RPD Limit	Qual
Endrin	0.3	5 0.50	0.5		0	70	39-123	0		J
gamma-BHC (Lindane)	0.47		0.5		0	95	32-114			•
Heptachlor	0.27		0.5		0	55	34-112			_
Heptachlor epoxide	0.27		0.5		0	55	36-109	0		
Methoxychlor	0.		0.5		0	60	44-133			.J
Surr: Decachlorobiph			0.5		0	50	42-119			ŭ
Surr: Tetrachloro-m-x	•		0.5		-		32-104			

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91705A Instrument ID GC12 Method: SW8081

DUP Sam	ple ID: 1609985-03A DU	P			ı	Jnits: µg/L	-	Analys	sis Date:	9/24/2016	12:52 AN
Client ID: CHLL-WC02-0-6	TCLP R	un ID: GC1	2_160923A		Se	eqNo: 404 0	6886	Prep Date: 9/2	2/2016	DF: 1	
Analyte	Resu	ılt PQ	L SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chlordane, Technical	N	D 2.	5 0		0	0	0-0	()	0 20	
Endrin	N	D 0.1	0 0		0	0	0-0	()	0 20	
gamma-BHC (Lindane)	N	D 0.05	0 0		0	0	0-0	()	0 20	
Heptachlor	N	D 0.05	0 0		0	0	0-0	()	0 20	
Heptachlor epoxide	N	D 0.05	0 0		0	0	0-0	()	0 20	
Methoxychlor	N	D 0.2	0 0		0	0	0-0	()	0 20	
Toxaphene	N	D 1	0 0		0	0	0-0	()	0 20	
Surr: Decachlorobipheny	0.	.3	0.5		0	60	42-119	0.34	12.	.5 20	
Surr: Tetrachloro-m-xyle	ne 0.2	27	0 0.5		0	54	32-104	0.275	5 1.8	33 20	

The following samples were analyzed in this batch:

1609985-01A 1609985-03A

Work Order: 1609985

1009903

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91707	Instrument ID GC7		Metho	d: SW815	1						
MBLK	Sample ID: HBLKW1-91707-917 0)7			U	Inits: µg/L	•	Analys	is Date: 9/	22/2016 0	6:56 PM
Client ID:	Run ID	: GC7_1	60922A		Se	qNo: 404 2	2757	Prep Date: 9/22	2/2016	DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
2,4,5-TP (Silvex)	ND	5.0									
2,4-D	ND	5.0									
Surr: DCAA	15	0	50		0	30	30-150	0			
LCS	Sample ID: HLCSW1-91707-9170	7			U	Inits: µg/L		Analys	is Date: 9/	22/2016 0	7:16 PM
Client ID:	Run ID	: GC7_1	60922A		Se	qNo: 404	2758	Prep Date: 9/22	2/2016	DF: 1	
Analyta	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte											Quai
2,4,5-TP (Silvex)	8.7	5.0	10		0	87	50-150	0			
2,4-D Surr: DCAA	95.8 <i>15.</i> 2	5.0 0	100 <i>50</i>		0	95.8 <i>30.4</i>	50-150 30-150	0			
	Operate ID 40004040 004 NO									200/00/10 0	
MS Olicat ID:	Sample ID: 16091019-02A MS	. 007 4				Inits: µg/L		_	is Date: 9/		7:35 PIVI
Client ID:	Run IL): GC7_1	60922A		Se	qNo: 404 2	2759	Prep Date: 9/22	2/2016	DF: 1	
				SPK Ref			Control Limit	RPD Ref Value	0/000	RPD	Qual
Analyte	Result	PQL	SPK Val	Value		%REC			%RPD	Limit	- Quui
Analyte 2,4,5-TP (Silvex)	Result 9.5	PQL 5.0	SPK Val		0	%REC 95	50-150	0			Quai
					0			0			- Quai
2,4,5-TP (Silvex)	9.5	5.0	10			95	50-150				- Quai
2,4,5-TP (Silvex) 2,4-D	9.5 108.3	5.0	10 100		0	95 108	50-150 50-150 <i>30-150</i>	0			
2,4,5-TP (Silvex) 2,4-D Surr: DCAA	9.5 108.3 15.1 Sample ID: 16091019-02A MSD	5.0	10 100 <i>50</i>		0 0	95 108 30.2	50-150 50-150 30-150	0	is Date: 9/		
2,4,5-TP (Silvex) 2,4-D Surr: DCAA	9.5 108.3 15.1 Sample ID: 16091019-02A MSD	5.0 5.0 0	10 100 <i>50</i>	Value	0 0	95 108 30.2 Inits: µg/L	50-150 50-150 30-150 2760	0 0 Analys Prep Date: 9/22 RPD Ref	is Date: 9/	22/2016 0 DF: 1 RPD	
2,4,5-TP (Silvex) 2,4-D Surr: DCAA	9.5 108.3 15.1 Sample ID: 16091019-02A MSD	5.0 5.0 0	10 100 <i>50</i>	Value	0 0	95 108 30.2 Inits: µg/L	50-150 50-150 30-150	0 0 Analys Prep Date: 9/22	is Date: 9/	22/2016 0 DF: 1	
2,4,5-TP (Silvex) 2,4-D Surr: DCAA MSD Client ID:	9.5 108.3 15.1 Sample ID: 16091019-02A MSD Run ID	5.0 5.0 0 0: GC7_1 0	10 100 50 60922A	Value	0 0	95 108 30.2 Inits: µg/L qNo: 404	50-150 50-150 30-150 2760	0 0 Analys Prep Date: 9/22 RPD Ref	is Date: 9/ 2/2016	22/2016 0 DF: 1 RPD	7:54 PM
2,4,5-TP (Silvex) 2,4-D Surr: DCAA MSD Client ID: Analyte	9.5 108.3 15.1 Sample ID: 16091019-02A MSD Run ID	5.0 5.0 0 0: GC7_1 (10 100 50 60922A SPK Val	Value	0 0 U See	95 108 30.2 Inits: µg/L qNo: 4042	50-150 50-150 30-150	0 Analys Prep Date: 9/22 RPD Ref Value	is Date: 9/ 2 /2016 %RPD	22/2016 0 DF: 1 RPD Limit	7:54 PM

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

MBLK S	ample ID: PBLKS1-91791-91791				Unite	s: µg/K	(a	Analı	rsis Date	9/25/2016	00.56 PN
							_	·			09.30 FN
Client ID:	Run ID:	GC12_1	60925A		SeqNo	o: 4047	7974	Prep Date: 9/2	22/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%	REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
4,4´-DDD	ND	10									
4,4´-DDE	ND	10									
4,4'-DDT	ND	10									
Aldrin	ND	10									
alpha-BHC	ND	10									
alpha-Chlordane	ND	10									
beta-BHC	ND	10									
Chlordane, Technical	ND	25									
delta-BHC	ND	10									
Dieldrin	ND	10									
Endosulfan I	ND	10									
Endosulfan II	ND	10									
Endosulfan sulfate	ND	10									
Endrin	ND	10									
Endrin aldehyde	ND	10									
Endrin ketone	ND	10									
gamma-BHC (Lindane)	ND	10									
gamma-Chlordane	ND	10									
Heptachlor	ND	10									
Heptachlor epoxide	ND	10									
Methoxychlor	ND	10									
Toxaphene	ND	60									
Surr: Decachlorobiphe	enyl 29.33	0	33.3		0	88.1	45-135		0		
Surr: Tetrachloro-m-x	ylene 25	0	33.3		0	75.1	45-124		0		

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91791 Instrument ID GC12 Method: SW8081

Batch ID: 91791	Instrument ID GC12		ivietno	d: SW808	51						
LCS Sa	mple ID: PLCSS1-91791-91791				L	Jnits: µg/k	(g	Analysis Da	ite: 9	/25/2016 1	10:13 PI
Client ID:	Run ID:	GC12_	160925A		Se	qNo: 404 7	7975	Prep Date: 9/22/201	6	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value %F	RPD	RPD Limit	Qual
4,4´-DDD	23	10	33.33		0	69	30-135	0			
4,4´-DDE	23.67	10	33.33		0	71	70-125	0			
4,4´-DDT	26.33	10	33.33		0	79	45-140	0			
Aldrin	23	10	33.33		0	69	45-140	0			
alpha-BHC	22.33	10	33.33		0	67	60-125	0			
alpha-Chlordane	23.33	10	33.33		0	70	50-150	0			
beta-BHC	23	10	33.33		0	69	60-125	0			
delta-BHC	23	10	33.33		0	69	55-130	0			
Dieldrin	23.33	10	33.33		0	70	65-125	0			
Endosulfan I	23.67	10	33.33		0	71	15-135	0			
Endosulfan II	23.33	10	33.33		0	70	35-140	0			
Endosulfan sulfate	23	10	33.33		0	69	60-135	0			
Endrin	27.67	10	33.33		0	83	60-135	0			
Endrin aldehyde	22	10	33.33		0	66	35-145	0			
Endrin ketone	23.33	10	33.33		0	70	50-150	0			
gamma-BHC (Lindane)	22.67	10	33.33		0	68	60-125	0			
gamma-Chlordane	20.67	10	33.33		0	62	50-150	0			
Heptachlor	24.33	10	33.33		0	73	50-140	0			
Heptachlor epoxide	23.67	10	33.33		0	71	65-130	0			
Methoxychlor	26.67	10	33.33		0	80	55-145	0			
Surr: Decachlorobiphe	nyl 28	0	33.3		0	84.1	45-135	0			
Surr: Tetrachloro-m-xy	lene 25	0	33.3		0	75.1	45-124	0			

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91791 Instrument ID GC12 Method: SW8081

Batch ID: 91791	Instrument ID GC12		Metho	d: SW8081	1					
MS Sam	ple ID: 16091132-02C MS				U	nits: µg/k	(g	Analysis Date	e: 9/25/2016	10:49 PI
Client ID:	Run ID:	GC12_	160925A		Sec	No: 404 7	7977	Prep Date: 9/22/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value %RF	RPD Limit	Qual
4,4´-DDD	26.47	9.6	31.89		0	83	30-135	0		
4,4´-DDE	28.06	9.6	31.89		0	88	70-125	0		
4,4´-DDT	31.25	9.6	31.89		0	98	45-140	0		
Aldrin	27.11	9.6	31.89		0	85	45-140	0		
alpha-BHC	26.79	9.6	31.89		0	84	60-125	0		
alpha-Chlordane	27.11	9.6	31.89		0	85	50-150	0		
beta-BHC	27.11	9.6	31.89		0	85	60-125	0		
delta-BHC	28.38	9.6	31.89		0	89	55-130	0		
Dieldrin	27.43	9.6	31.89		0	86	65-125	0		
Endosulfan I	27.74	9.6	31.89		0	87	15-135	0		
Endosulfan II	26.79	9.6	31.89		0	84	35-140	0		
Endosulfan sulfate	26.15	9.6	31.89		0	82	60-135	0		
Endrin	34.44	9.6	31.89		0	108	60-135	0		
Endrin aldehyde	21.69	9.6	31.89		0	68	35-145	0		
Endrin ketone	25.51	9.6	31.89		0	80	50-150	0		
gamma-BHC (Lindane)	27.11	9.6	31.89		0	85	60-125	0		
gamma-Chlordane	23.92	9.6	31.89		0	75	50-150	0		
Heptachlor	29.02	9.6	31.89		0	91	50-140	0		
Heptachlor epoxide	27.43	9.6	31.89		0	86	65-130	0		
Methoxychlor	29.98	9.6	31.89		0	94	55-145	0		
Surr: Decachlorobipheny	/l 27.74	0	31.86		0	87.1	45-135	0		
Surr: Tetrachloro-m-xyle	ne 28.7	0	31.86		0	90.1	45-124	0		

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91791 Instrument ID GC12 Method: SW8081

MSD S	ample ID: 16091132-02C MSD				L	Jnits: µg/k	(g	Analysi	is Date: 9/	25/2016 1	1:05 P
Client ID:	Run ID:	GC12_	160925A		Se	qNo: 404 7	7978	Prep Date: 9/22	2/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
4,4´-DDD	22.26	9.8	32.73		0	68	30-135	26.47	17.3	35	
4,4´-DDE	22.91	9.8	32.73		0	70	70-125	28.06	20.2	35	
4,4´-DDT	25.53	9.8	32.73		0	78	45-140	31.25	20.1	35	
Aldrin	21.28	9.8	32.73		0	65	45-140	27.11	24.1	35	
alpha-BHC	20.62	9.8	32.73		0	63	60-125	26.79	26	35	
alpha-Chlordane	22.26	9.8	32.73		0	68	50-150	27.11	19.6	35	
beta-BHC	21.93	9.8	32.73		0	67	60-125	27.11	21.1	35	
delta-BHC	22.59	9.8	32.73		0	69	55-130	28.38	22.7	35	
Dieldrin	22.26	9.8	32.73		0	68	65-125	27.43	20.8	35	
Endosulfan I	22.59	9.8	32.73		0	69	15-135	27.74	20.5	35	
Endosulfan II	22.26	9.8	32.73		0	68	35-140	26.79	18.5	35	
Endosulfan sulfate	21.93	9.8	32.73		0	67	60-135	26.15	17.5	35	_
Endrin	27.82	9.8	32.73		0	85	60-135	34.44	21.3	35	
Endrin aldehyde	18.33	9.8	32.73		0	56	35-145	21.69	16.8	35	
Endrin ketone	21.6	9.8	32.73		0	66	50-150	25.51	16.6	35	
gamma-BHC (Lindane)	20.95	9.8	32.73		0	64	60-125	27.11	25.6	35	
gamma-Chlordane	19.97	9.8	32.73		0	61	50-150	23.92	18	35	
Heptachlor	22.59	9.8	32.73		0	69	50-140	29.02	24.9	35	
Heptachlor epoxide	22.26	9.8	32.73		0	68	65-130	27.43	20.8	35	
Methoxychlor	25.53	9.8	32.73		0	78	55-145	29.98	16	35	
Surr: Decachlorobiphe	enyl 24.55	0	32.7		0	75.1	45-135	27.74	12.2	35	
Surr: Tetrachloro-m-x	vlene 21.93	0	32.7		0	67.1	45-124	28.7	26.7	35	

The following samples were analyzed in this batch:

1609985-04A

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91892 Instrument ID GC14 Method: SW8082 **MBLK** Sample ID: PBLKS1-91892-91892 Units: µg/Kg Analysis Date: 9/26/2016 10:58 AM Prep Date: 9/26/2016 Client ID: Run ID: GC14 160926A SeqNo: 4047782 DF: 1 **RPD** SPK Ref RPD Ref Control Value Limit Value Limit Analyte Result **PQL** SPK Val %REC %RPD Qual ND Aroclor 1016 83 ND Aroclor 1221 83 ND Aroclor 1232 83 ND 83 Aroclor 1242 ND 83 Aroclor 1248 Aroclor 1254 ND 83 Aroclor 1260 ND 83 29 Surr: Decachlorobiphenyl 0 33.3 0 87.1 40-140 0 29.33 Surr: Tetrachloro-m-xylene 0 33.3 0 88.1 45-124 n LCS Units: µg/Kg Sample ID: PLCSS1-91892-91892 Analysis Date: 9/26/2016 11:16 AM Client ID: Run ID: GC14_160926A SeqNo: 4047783 Prep Date: 9/26/2016 DF: 1 SPK Ref RPD Ref **RPD** Control Limit Value Limit Value %RPD %REC Qual Analyte Result **PQL** SPK Val 948.3 0 0 Aroclor 1016 83 833 114 50-130 882.3 Aroclor 1260 83 833 0 106 50-130 0 30.33 Surr: Decachlorobiphenyl 0 33.3 0 91.1 40-140 0 30 Surr: Tetrachloro-m-xylene 0 33.3 0 90.1 45-124 0 MS Sample ID: 16091086-27B MS Units: µg/Kg Analysis Date: 9/26/2016 10:25 PM Client ID: Run ID: GC14_160926A SeqNo: 4049472 Prep Date: 9/26/2016 DF: 1 SPK Ref RPD Ref RPD Control Value Value Limit Limit %REC %RPD Qual Result **PQL** SPK Val Analyte 962 Aroclor 1016 82 0 40-140 0 823.3 117 Aroclor 1260 881.3 82 823.3 0 107 40-140 0 30.31 Surr: Decachlorobiphenyl 0 32.91 0 92.1 40-140 0 29.98 0 0 45-124 0 Surr: Tetrachloro-m-xylene 32.91 91.1 MSD Sample ID: 16091086-27B MSD Units: µg/Kg Analysis Date: 9/26/2016 10:42 PM Client ID: Run ID: GC14_160926A SeqNo: 4049475 Prep Date: 9/26/2016 DF: 1 RPD SPK Ref RPD Ref Control Value Limit Value Limit %REC Result **PQL** SPK Val %RPD Qual Analyte 904 Aroclor 1016 80 801.6 0 113 40-140 962 6.22 50 849.1 0 Aroclor 1260 80 801.6 3.72 50 106 40-140 881.3 29.51 Surr: Decachlorobiphenyl 0 32.05 0 92.1 40-140 30.31 2.67 50 28.87 Surr: Tetrachloro-m-xylene 0 32.05 0 90.1 45-124 29.98 3.77 50 The following samples were analyzed in this batch: 1609985-04A

See Qualifiers Page for a list of Qualifiers and their explanation.

Note:

QC Page: 10 of 46

QC BATCH REPORT Work Order: 1609985 **Project:** Abandoned Mining Wastes - Torch Lake

Batch ID: 91927A	Instrument ID GC	14		Metho	d: SW80 8	32						
MBLK	Sample ID: MBLK-9192	27-91927A				ι	Jnits: mg/l	K g	Analy	sis Date: \$	9/26/2016 0	1:01 PM
Client ID:		Run ID	: GC14_1	60926A		Se	eqNo: 4047	901	Prep Date: 9/2	26/2016	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aroclor 1016		ND	1.0									
Aroclor 1221		ND	1.0									
Aroclor 1232		ND	1.0									
Aroclor 1242		ND	1.0									
Aroclor 1248		ND	1.0									
Aroclor 1254		ND	1.0									
Aroclor 1260		ND	1.0									
Surr: Decachlorol	biphenyl	1.01	0	1		0	101	50-130	(0		
Surr: Tetrachloro-	-m-xylene	1.05	0	1		0	105	50-130		0		
LCS	Sample ID: LCS-91927	-91927A				ι	Jnits: mg/l	Кg	Analy	sis Date: \$	9/26/2016 0	1:19 PM
Client ID:		Run ID	: GC14_1	60926A		Se	eqNo: 4047	902	Prep Date: 9/2	26/2016	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aroclor 1016		57.94	1.0	50		0	116	50-130	(0		
Aroclor 1260		55.12	1.0	50		0	110	50-130		0		
Surr: Decachlorol	biphenyl	1.14	0	1		0	114	50-130		0		
Surr: Tetrachloro-	-m-xylene	1.11	0	1		0	111	50-130	(0		

The following samples were analyzed in this batch:

1609985-02A

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 92007	Instrument ID GC12		Method	: SW808	1					
MBLK	Sample ID: MBLK-92007-92007				Units: µg/l	K g	Analy	sis Date: 9	9/27/2016	01:31 PN
Client ID:	Run ID:	GC12_1	160927A		SeqNo: 405 2	2918	Prep Date: 9/2	27/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
4,4´-DDD	ND	0.20								
4,4´-DDE	ND	0.20								
4,4´-DDT	ND	0.20								
Aldrin	ND	0.20								
alpha-BHC	ND	0.20								
alpha-Chlordane	ND	0.20								
beta-BHC	ND	0.20								
Chlordane, Technical	ND	25								
delta-BHC	ND	0.20								
Dieldrin	ND	0.20								
Endosulfan I	ND	0.20								
Endosulfan II	ND	0.20								
Endosulfan sulfate	ND	0.20								
Endrin	ND	0.20								
Endrin aldehyde	ND	0.20								
Endrin ketone	ND	0.20								
gamma-BHC (Lindane	e) ND	0.20								
gamma-Chlordane	ND	0.20								
Heptachlor	ND	0.20								
Heptachlor epoxide	ND	0.20								
Methoxychlor	ND	0.40								
Toxaphene	ND	25								
Surr: Decachlorobip	phenyl 1210	0	1000		0 121	30-135	. (0		
Surr: Tetrachloro-m	-xylene 1140	0	1000		0 114	25-140		0		

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 92007 Instrument ID GC12 Method: SW8081

LCS S	ample ID: LCS-92007-92007				L	Jnits: µg/k	(g	Analys	s Date: 9	9/27/2016 0)1:49 P
Client ID:	Run ID	: GC12_	160927A		Se	qNo: 405 2	2919	Prep Date: 9/27	/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
4,4´-DDD	970	0.20	1000		0	97	25-150	0			
4,4´-DDE	970 950	0.20	1000		0	97 95	35-140	_			
*	1010							0			-
4,4´-DDT	910	0.20 0.20	1000 1000		0	101	45-140	0			
Aldrin	840				0	91	25-140	0			-
alpha-BHC	930	0.20	1000		0	84	60-130	0			
alpha-Chlordane		0.20	1000		0	93	50-150	0			_
beta-BHC	880 890	0.20	1000		0	88	65-125	0			
delta-BHC		0.20	1000		0	89	45-135	0			-
Dieldrin	950	0.20	1000		0	95	60-130	0			
Endosulfan I	950	0.20	1000		0	95	50-110	0			
Endosulfan II	970	0.20	1000		0	97	30-130	0			
Endosulfan sulfate	930	0.20	1000		0	93	55-135	0			_
Endrin	1020	0.20	1000		0	102	55-135	0			
Endrin aldehyde	970	0.20	1000		0	97	55-135	0			
Endrin ketone	1070	0.20	1000		0	107	50-150	0			
gamma-BHC (Lindane)	890	0.20	1000		0	89	25-135	0			
gamma-Chlordane	780	0.20	1000		0	78	50-150	0			
Heptachlor	910	0.20	1000		0	91	40-130	0			
Heptachlor epoxide	990	0.20	1000		0	99	60-130	0			
Methoxychlor	1060	0.40	1000		0	106	55-150	0			
Surr: Decachlorobiph	enyl 1190	0	1000		0	119	30-135	0			
Surr: Tetrachloro-m-x	vlene 940	0	1000		0	94	25-140	0			

The following samples were analyzed in this batch:

1609985-02A

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91744	Instrument ID HG1		Method	d: SW747	OA					
MBLK	Sample ID: MBLK-91744-91744	1			Units: mg/	L	Analys	is Date: 9	9/21/2016 0	7:42 PM
Client ID:	Run	ID: HG1_	160921A		SeqNo: 404 6	0347	Prep Date: 9/21	I/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	ND	0.00020								
LCS	Sample ID: LCS-91744-91744				Units: mg/	L	Analys	is Date: 9	9/21/2016 0	7:45 PM
Client ID:	Run	ID: HG1 _	160921A		SeqNo: 404 6	0348	Prep Date: 9/21	1/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.00203	0.00020	0.002		0 102	80-120	0			
MS	Sample ID: 16091011-02CMS				Units: mg/	L	Analys	is Date: 9	9/21/2016 0	8:10 PM
Client ID:	Run	ID: HG1_	160921A		SeqNo: 404 6	0382	Prep Date: 9/21	1/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.00192	0.00020	0.002	-0.00000	96.4	75-125	0			
MSD	Sample ID: 16091011-02CMSD				Units: mg/	L	Analys	is Date: 9	9/21/2016 0	8:13 PM
Client ID:	Run	ID: HG1 _	160921A		SeqNo: 404 6	0383	Prep Date: 9/21	1/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.00194	0.00020	0.002	-0.00000	08 97.4	75-125	0.00192	1.04	4 20	
The following sam	ples were analyzed in this batch:	: 1	609985-01A	16	09985-03A					

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91897	Instrument ID HG1		Method	l: SW747	'1B					
MBLK	Sample ID: MBLK-91897-91897				Units: mg	/Kg	Analys	is Date:	9/25/2016 0	9:35 PM
Client ID:	Run ID	: HG 1_	_160925A		SeqNo: 404	16247	Prep Date: 9/25	5/2016	DF: 1	
Analyte	Result	PQI	_ SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	ND	0.020)							
LCS	Sample ID: LCS-91897-91897				Units: mg	/Kg	Analys	is Date:	9/25/2016 0	9:45 PM
Client ID:	Run ID	: HG 1_	_160925A		SeqNo: 404	46255	Prep Date: 9/25	5/2016	DF: 1	
Analyte	Result	PQI	_ SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.175	0.020	0.1665		0 105	80-120	0			
MS	Sample ID: 16091127-01CMS				Units: mg	/Kg	Analys	is Date:	9/25/2016 1	0:06 PM
Client ID:	Run ID	: HG1_	_160925A		SeqNo: 40 4	16271	Prep Date: 9/25	5/2016	DF: 1	
Analyte	Result	PQI	_ SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.1453	0.014	4 0.1199	0.0185	54 106	75-125	0			
MSD	Sample ID: 16091127-01CMSD				Units: mg	/Kg	Analys	is Date:	9/25/2016 1	0:08 PM
Client ID:	Run ID	: HG1_	_160925A		SeqNo: 404	16273	Prep Date: 9/25	5/2016	DF: 1	
Analyte	Result	PQI	_ SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.1483	0.014	1 0.1199	0.0185	54 108	75-125	0.1453	2.0	4 35	
The following sam	ples were analyzed in this batch:		1609985-02A	16	09985-04A					

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91776	Instrument ID ICPMS2		Method	: SW602	0А						
MBLK	Sample ID: MBLK-91776-91776				L	Jnits: mg/	L	Analys	sis Date: 9	/22/2016 1	11:01 PN
Client ID:	Run II	D: ICPMS	2_160922A		Se	qNo: 404 2	2051	Prep Date: 9/2	2/2016	DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Arsenic	ND	0.0050									
Barium	ND	0.0050									
Cadmium	ND	0.0020									
Chromium	ND	0.0050									
Copper	ND	0.0050									
Lead	ND	0.0050									
Selenium	ND	0.0050									
Silver	ND	0.0050									
Zinc	ND	0.010									
LCS	Sample ID: LCS-91776-91776				L	Jnits: mg/	L	Analys	sis Date: 9	/22/2016 1	1:07 PM
Client ID:	Run II	D: ICPMS	2_160922A		Se	qNo: 404 2	2052	Prep Date: 9/2	2/2016	DF: 1	
				SPK Ref			Control	RPD Ref		RPD Limit	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Arsenic	0.09845	0.0050	0.1		0	98.4	80-120	0			
Barium	0.09226	0.0050	0.1		0	92.3	80-120	0			
Cadmium	0.09393	0.0020	0.1		0	93.9	80-120	O			
Chromium	0.09353	0.0050	0.1		0	93.5	80-120	0			
Copper	0.09475	0.0050	0.1		0	94.8	80-120	O			
Lead	0.09289	0.0050	0.1		0	92.9	80-120	0	ı		
Selenium	0.0962	0.0050	0.1		0	96.2	80-120	0	ı		
Silver	0.08014	0.0050	0.1		0	80.1	80-120	0			
Zinc	0.09607	0.010	0.1		0	96.1	80-120	0			
MS	Sample ID: 16091127-02CMS				L	Jnits: mg/	L	Analys	sis Date: 9	/23/2016 1	12:44 AN
Client ID:	Run II	D: ICPMS	2_160922A		Se	qNo: 404 2	2069	Prep Date: 9/2	2/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	0.096	0.0050	0.1	-0.000286	8	96.3	75-125	0			
Barium	0.1766	0.0050	0.1	0.0820)4	94.6	75-125	0			
Cadmium	0.09059	0.0020	0.1	0.000188	31	90.4	75-125	O			
Chromium	0.08892	0.0050	0.1	0.0000308	37	88.9	75-125	0			
Copper	0.08904	0.0050	0.1	0.00176	67	87.3	75-125	O			
Lead	0.09363	0.0050	0.1	0.00012	24	93.5	75-125	0			
Selenium	0.09289	0.0050	0.1	0.000792	28	92.1	75-125	0			
Silver	0.07408	0.0050	0.1	-2.336E-0)5	74.1	75-125	0			S
Zinc	0.09387	0.010	0.1	0.00801	2	85.9	75-125	O			

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91776 Instrument ID ICPMS2 Method: SW6020A

MSD	Sample ID: 16091127-02CMSD				Units: mg/	L	Analysi	s Date: 9/	23/2016 1	2:49 AN
Client ID:	Run II	D: ICPMS	2_160922A	S	eqNo: 404 2	2070	Prep Date: 9/22	/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	0.09923	0.0050	0.1	-0.0002868	99.5	75-125	0.096	3.31	20	
Barium	0.1768	0.0050	0.1	0.08204	94.8	75-125	0.1766	0.113	20	
Cadmium	0.09297	0.0020	0.1	0.0001881	92.8	75-125	0.09059	2.59	20	
Chromium	0.09181	0.0050	0.1	0.00003087	91.8	75-125	0.08892	3.2	20	
Copper	0.09058	0.0050	0.1	0.001767	88.8	75-125	0.08904	1.71	20	
Lead	0.09614	0.0050	0.1	0.000124	96	75-125	0.09363	2.65	20	
Selenium	0.0953	0.0050	0.1	0.0007928	94.5	75-125	0.09289	2.56	20	
Silver	0.07555	0.0050	0.1	-2.336E-05	75.6	75-125	0.07408	1.96	20	
Zinc	0.09426	0.010	0.1	0.008012	86.2	75-125	0.09387	0.415	20	

The following samples were analyzed in this batch:

1609985-01A

1609985-03A

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91843	Instrument ID ICPMS1		Method	d: SW602	20A						
MBLK	Sample ID: MBLK-91843-91843				U	Jnits: mg/	Kg	Analys	sis Date: 9	/23/2016 0	7:46 PN
Client ID:	Run ID	: ICPMS1	I_160923A		Se	qNo: 404	1877	Prep Date: 9/2	3/2016	DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Arsenic	ND	0.25									
Barium	ND	0.25									
Cadmium	0.01472	0.10									J
Chromium	0.01666	0.25									J
Copper	ND	0.25									
Lead	ND	0.25									
Selenium	ND	0.25									
Silver	ND	0.25									
Zinc	ND	0.50									
LCS	Sample ID: LCS-91843-91843				U	Jnits: mg/	Kg	Analys	sis Date: 9	/23/2016 0	7:52 PN
Client ID:	Run ID	: ICPMS1	I_160923A		Se	qNo: 404	1878	Prep Date: 9/2	3/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	4.562	0.25	5		0	91.2	80-120	()		
Barium	4.57	0.25	5		0	91.4	80-120	C			
Cadmium	4.526	0.10	5		0	90.5	80-120	C			
Chromium	4.678	0.25	5		0	93.6	80-120	C)		
Copper	4.58	0.25	5		0	91.6	80-120	C)		
Lead	4.57	0.25	5		0	91.4	80-120	C)		
Selenium	4.506	0.25	5		0	90.1	80-120	C)		
Silver	4.708	0.25	5		0	94.2	80-120	C)		
Zinc	4.492	0.50	5		0	89.8	80-120	C			
MS	Sample ID: 16091317-02AMS				U	Jnits: mg/	Kg	Analys	sis Date: 9	/23/2016 0	9:19 PN
Client ID:	Run ID	: ICPMS1	I_160923A		Se	qNo: 404	1892	Prep Date: 9/2	3/2016	DF: 4	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Arsenic	7.895	1.5	7.74	0.376	63	97.1	75-125	C)		
Barium	10.55	1.5	7.74	2.78	33	100	75-125	()		
Cadmium	7.567	0.62	7.74	0.0439	96	97.2	75-125	C			
Chromium	8.412	1.5	7.74	0.95	16	96.4	75-125	C)		
Copper	8.031	1.5	7.74	0.695	55	94.8	75-125	C)		
Lead	8.923	1.5	7.74	1.54	16	95.3	75-125	C			
Selenium	7.307	1.5	7.74	0.18	59	92	75-125	C)		
Silver	7.585	1.5	7.74	0.00784	11	97.9	75-125	C			
Zinc	11.5	3.1	7.74	3.9	95	97.5	75-125	C			

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

QC BATCH REPORT

Batch ID: 91843	Instrument ID ICPMS1		Method	: SW6020A	<u>.</u>					
MSD	Sample ID: 16091317-02AMSD				Units: mg/	Kg	Analysi	s Date: 9/	23/2016 0	9:25 PM
Client ID:	Run ID	ICPMS	1_160923A	Se	eqNo: 404	4893	Prep Date: 9/23	/2016	DF: 4	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	8.534	1.5	7.716	0.3763	106	75-125	7.895	7.78	20	
Barium	11.34	1.5	7.716	2.783	111	75-125	10.55	7.17	20	
Cadmium	7.932	0.62	7.716	0.04396	102	75-125	7.567	4.72	20	
Chromium	9.022	1.5	7.716	0.9516	105	75-125	8.412	7	20	
Copper	8.556	1.5	7.716	0.6955	102	75-125	8.031	6.33	20	
Lead	9.343	1.5	7.716	1.546	101	75-125	8.923	4.6	20	
Selenium	7.744	1.5	7.716	0.1859	98	75-125	7.307	5.81	20	
Silver	8.062	1.5	7.716	0.007841	104	75-125	7.585	6.09	20	
Zinc	11.92	3.1	7.716	3.95	103	75-125	11.5	3.65	20	
The following sam	ples were analyzed in this batch:	16	609985-02A	1609	985-04A					

Note:

Work Order: 1609985

Client:

Project: Abandoned Mining Wastes - Torch Lake

QC BATCH REPORT

MBLK	Sample ID: SBLK	N1-91700-9170	10			- 1	Jnits: µg/L		Analy	rsis Date: 9	/22/2016 [,]	Ι1·በበ ΔΝ
Client ID:	Campic IB. OBLIVE			4000004							DF: 1	11.00 A
Client ID:		Run IL	: SVIVISS	_160922A		Se	qNo: 404 ;	3335	Prep Date: 9/2	21/2016	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,4-Dichlorobenzene		ND	5.0									
2,4,5-Trichloropheno		ND	5.0									
2,4,6-Trichloropheno		ND	5.0									
2,4-Dinitrotoluene		ND	5.0									
Hexachloro-1,3-buta	diene	ND	5.0									
Hexachlorobenzene		ND	5.0									
Hexachloroethane		ND	5.0									
m-Cresol		ND	5.0									
Nitrobenzene		ND	5.0									
o-Cresol		ND	5.0									
p-Cresol		ND	5.0									
Pentachlorophenol		ND	5.0									
Pyridine		ND	10									
Surr: 2,4,6-Tribron	nophenol	29.17	0	50		0	58.3	38-115		0		
Surr: 2-Fluorobiph	enyl	28.78	0	50		0	57.6	32-100		0		
Surr: 2-Fluorophei	nol	19.02	0	50		0	38	22-59		0		
Surr: 4-Terphenyl-	d14	36.96	0	50		0	73.9	23-112		0		
Surr: Nitrobenzene	e-d5	26.82	0	50		0	53.6	31-93		0		
Surr: Phenol-d6		10.01	0	50		0	20	13-36		0		

Campio ib. OL	30111 317 00 317 0	•			Oo. µg,	_	rinaryolo Bato.		
Client ID:	Run ID	: SVMS4	_160923A	S	eqNo: 404	8258	Prep Date: 9/21/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value %RPD	RPD Limit	Qual
1,4-Dichlorobenzene	13.42	5.0	20	0	67.1	30-110	0		
2,4,5-Trichlorophenol	15.41	5.0	20	0	77	50-110	0		
2,4,6-Trichlorophenol	16.47	5.0	20	0	82.4	50-115	0		
2,4-Dinitrotoluene	18.54	5.0	20	0	92.7	50-120	0		
Hexachloro-1,3-butadiene	14.35	5.0	20	0	71.8	25-105	0		
Hexachlorobenzene	14.47	5.0	20	0	72.4	50-110	0		
Hexachloroethane	13.25	5.0	20	0	66.2	30-95	0		
Nitrobenzene	14.7	5.0	20	0	73.5	45-110	0		
o-Cresol	11.64	5.0	20	0	58.2	40-110	0		
Pentachlorophenol	14.82	5.0	20	0	74.1	40-115	0		
Pyridine	6.5	10	20	0	32.5	10-71	0		J
Surr: 2,4,6-Tribromophenol	36.47	0	50	0	72.9	38-115	0		
Surr: 2-Fluorobiphenyl	36.72	0	50	0	73.4	32-100	0		
Surr: 2-Fluorophenol	19.16	0	50	0	38.3	22-59	0		
Surr: 4-Terphenyl-d14	36.22	0	50	0	72.4	23-112	0		
Surr: Nitrobenzene-d5	33.74	0	50	0	67.5	31-93	0		
Surr: Phenol-d6	13.28	0	50	0	26.6	13-36	0		

See Qualifiers Page for a list of Qualifiers and their explanation.

Note:

Work Order: 1609985

Abandoned Mining Wastes - Torch Lake **Project:**

Batch ID: 91700	Instrument II	SVMS5		Method	: SW827	'0D						
MS	Sample ID: 16091	019-02A MS				ι	Jnits: µg/L	-	Analys	is Date:	9/22/2016 (02:18 PM
Client ID:		Run ID	SVMS5	_160922A		Se	qNo: 404	3337	Prep Date: 9/21	/2016	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dichlorobenzene)	178.6	100	400		0	44.6	30-110	0			
2,4,5-Trichloropheno	ol	280.4	100	400		0	70.1	50-110	0			
2,4,6-Trichloropheno	ol	241.2	100	400		0	60.3	50-115	0			
2,4-Dinitrotoluene		303.2	100	400		0	75.8	50-120	0			
Hexachloro-1,3-buta	diene	181.2	100	400		0	45.3	25-105	0			
Hexachlorobenzene		274	100	400		0	68.5	50-110	0			
Hexachloroethane		173.6	100	400		0	43.4	30-95	0			
m-Cresol		192.4	100	400		0	48.1	30-110	0			
Nitrobenzene		219.2	100	400		0	54.8	45-110	0			
o-Cresol		194	100	400		0	48.5	40-110	0			
p-Cresol		192	100	400		0	48	30-110	0			
Pentachlorophenol		288.8	100	400		0	72.2	40-115	0			
Pyridine		122.6	200	400		0	30.6	10-80	0			J
Surr: 2,4,6-Tribror	mophenol	680.8	0	1000		0	68.1	38-115	0			
Surr: 2-Fluorobiph	nenyl	618.6	0	1000		0	61.9	32-100	0			
Surr: 2-Fluorophe	nol	309	0	1000		0	30.9	22-59	0			
Surr: 4-Terphenyl	-d14	753.6	0	1000		0	75.4	23-112	0			
Surr: Nitrobenzen	e-d5	520.6	0	1000		0	52.1	31-93	0			
Surr: Phenol-d6		190.2	0	1000		0	19	13-36	0			

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91700 Instrument ID SVMS5 Method: SW8270D

MSD Sample ID: 160	91019-02A MSD				Units: µg/L	•	Analysi	is Date: 9/	22/2016 0	2:42 PN
Client ID:	Run ID	: SVMS5	_160922A	S	eqNo: 404 :	3338	Prep Date: 9/21	/2016	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dichlorobenzene	256	100	400	0	64	30-110	178.6	35.6	30	R
2,4,5-Trichlorophenol	297	100	400	0	74.2	50-110	280.4	5.75	30	
2,4,6-Trichlorophenol	260.4	100	400	0	65.1	50-115	241.2	7.66	30	
2,4-Dinitrotoluene	311.8	100	400	0	78	50-120	303.2	2.8	30	
Hexachloro-1,3-butadiene	249.8	100	400	0	62.4	25-105	181.2	31.8	30	R
Hexachlorobenzene	271.6	100	400	0	67.9	50-110	274	0.88	30	
Hexachloroethane	271.4	100	400	0	67.8	30-95	173.6	44	30	R
m-Cresol	222	100	400	0	55.5	30-110	192.4	14.3	30	
Nitrobenzene	262.4	100	400	0	65.6	45-110	219.2	17.9	30	
o-Cresol	238.6	100	400	0	59.6	40-110	194	20.6	30	
p-Cresol	222.4	100	400	0	55.6	30-110	192	14.7	30	
Pentachlorophenol	294.4	100	400	0	73.6	40-115	288.8	1.92	30	
Pyridine	124.2	200	400	0	31	10-80	122.6	0	30	J
Surr: 2,4,6-Tribromophenol	698.2	0	1000	0	69.8	38-115	680.8	2.52	0	
Surr: 2-Fluorobiphenyl	707.4	0	1000	0	70.7	32-100	618.6	13.4	0	
Surr: 2-Fluorophenol	404.4	0	1000	0	40.4	22-59	309	26.7	0	
Surr: 4-Terphenyl-d14	744.6	0	1000	0	74.5	23-112	753.6	1.2	0	
Surr: Nitrobenzene-d5	626.2	0	1000	0	62.6	31-93	520.6	18.4	0	
Surr: Phenol-d6	243.4	0	1000	0	24.3	13-36	190.2	24.5	0	

The following samples were analyzed in this batch:

1609985-01A 1609985-03A

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91739	Instrument ID	O V IVI O O		ivietno	d: SW846	02/UD					
MBLK	Sample ID: SBLKS	1-91739-91739)			Units: µg/l	Kg	Analy	sis Date: 9	/22/2016 1	0:14 Al
Client ID:		Run ID	: SVMS5	_160922A		SeqNo: 404	2976	Prep Date: 9/2	22/2016	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
				3		70.1.2.0			70.1.1		
1,1`-Biphenyl		ND	66								
2,2`-Oxybis(1-chlo		ND	66								-
2,4,5-Trichlorophe		ND	66								
2,4,6-Trichlorophe		ND	66								-
2,4-Dichloropheno		ND	66								
2,4-Dimethylpheno	ol	ND	66								
2,4-Dinitrophenol		ND	66								
2,4-Dinitrotoluene		ND	66								
2,6-Dinitrotoluene		ND	66								
2-Chloronaphthale	ene	ND	13								
2-Chlorophenol		ND	66								
2-Methylnaphthale	ene	ND	13								_
2-Methylphenol		ND	66								
2-Nitroaniline		ND	66								
2-Nitrophenol		ND	66								
3&4-Methylphenol	<u> </u>	ND	66								
3,3´-Dichlorobenzi	idine	ND	330								
3-Nitroaniline		ND	66								
4,6-Dinitro-2-meth	ylphenol	ND	66								
4-Bromophenyl ph	nenyl ether	ND	66								
4-Chloro-3-methyl	phenol	ND	66								
4-Chloroaniline		ND	130								
4-Chlorophenyl ph	nenyl ether	ND	66								
4-Nitroaniline		ND	330								
4-Nitrophenol		ND	66								
Acenaphthene		ND	13								
Acenaphthylene		ND	13								
Acetophenone		ND	66								
Anthracene		ND	13								
Atrazine		ND	66								
Benzaldehyde		ND	130								
Benzo(a)anthrace	ne	ND	13								
Benzo(a)pyrene		ND	13								
Benzo(b)fluoranth	ene	ND	13								
Benzo(g,h,i)peryle		ND	13								
Benzo(k)fluoranth	ene	ND	13								
Bis(2-chloroethox)		ND	66								
Bis(2-chloroethyl)		ND	66								
Bis(2-ethylhexyl)p		ND	66								
Butyl benzyl phtha		ND	66								
Caprolactam		ND	66								
Carbazole		ND	66								

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91739	Instrument ID SVMS5		Method:	SW846 8270	D			
Chrysene	ND	13						
Dibenzo(a,h)anthracene	ND	13						
Dibenzofuran	ND	66						
Diethyl phthalate	ND	66						
Dimethyl phthalate	ND	66						
Di-n-butyl phthalate	ND	66						
Di-n-octyl phthalate	ND	66						
Fluoranthene	ND	13						
Fluorene	ND	13						
Hexachlorobenzene	ND	66						
Hexachlorobutadiene	ND	66						
Hexachlorocyclopentadiene	e ND	66						
Hexachloroethane	ND	66						
Indeno(1,2,3-cd)pyrene	ND	13						
Isophorone	ND	330						
Naphthalene	ND	13						
Nitrobenzene	ND	330						
N-Nitrosodimethylamine	ND	330						
N-Nitrosodi-n-propylamine	ND	66						
Pentachlorophenol	ND	66						
Phenanthrene	ND	13						
Phenol	ND	66						
Pyrene	ND	13						
Surr: 2,4,6-Tribromopher	nol 2110	0	3333	0	63.3	34-140	0	
Surr: 2-Fluorobiphenyl	2513	0	3333	0	75.4	12-100	0	
Surr: 2-Fluorophenol	2643	0	3333	0	79.3	33-117	0	
Surr: 4-Terphenyl-d14	2763	0	3333	0	82.9	25-137	0	
Surr: Nitrobenzene-d5	2239	0	3333	0	67.2	37-107	0	
Surr: Phenol-d6	2287	0	3333	0	68.6	40-106	0	

QC BATCH REPORT

Client: Michigan Dept.of Environmental Quality

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91739 Instrument ID SVMS5 Method: SW846 8270D

LCS	Sample ID: SLC	SS1-91739-91739				L	Inits: µg/k	(g	Analysi	s Date: 9	9/26/2016 0	4:18 P
Client ID:		Run ID:	SVMS4	_160926A		Se	qNo: 404	8265	Prep Date: 9/22	/2016	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1`-Biphenyl		1013	66	1333		0	75.9	30-120	0			
2,2`-Oxybis(1-chl		986.7	66	1333		0	74	20-115	0			
2,4,5-Trichloroph		1009	66	1333		0	75.7	50-110	0			
2,4,6-Trichloroph		1055	66	1333		0	79.1	45-110	0			
2,4-Dichlorophen		922.7	66	1333		0	69.2	45-110	0			
2,4-Dimethylpher		858	66	1333		0	64.3	30-105	0			
2,4-Dinitrophenol		522	66	1333		0	39.1	15-130	0			
2,4-Dinitrotoluene	е	1246	66	1333		0	93.4	50-115	0			
2,6-Dinitrotoluene		1007	66	1333		0	75.5	50-110	0			
2-Chloronaphtha	lene	992	13	1333		0	74.4	45-105	0			
2-Chlorophenol		950.7	66	1333		0	71.3	45-105	0			
2-Methylnaphtha	lene	992.7	13	1333		0	74.4	45-105	0			
2-Methylphenol		960	66	1333		0	72	40-105	0			
2-Nitroaniline		950.7	66	1333		0	71.3	45-120	0			
2-Nitrophenol		976.7	66	1333		0	73.2	40-110	0			
3&4-Methylpheno	ol	858.7	66	1333		0	64.4	40-105	0			
3,3'-Dichloroben:	zidine	1108	330	1333		0	83.1	30-120	0			
3-Nitroaniline		899.3	66	1333		0	67.4	25-150	0			
4,6-Dinitro-2-met	thylphenol	1166	66	1333		0	87.4	40-130	0			
4-Bromophenyl p	henyl ether	1102	66	1333		0	82.6	45-115	0			
4-Chloro-3-methy	ylphenol	1003	66	1333		0	75.2	45-115	0			
4-Chloroaniline		975.3	130	1333		0	73.1	15-110	0			
4-Chlorophenyl p	henyl ether	1085	66	1333		0	81.4	45-110	0			
4-Nitroaniline		706	330	1333		0	52.9	35-150	0			
4-Nitrophenol		1175	66	1333		0	88.1	15-140	0			
Acenaphthene		1005	13	1333		0	75.3	45-110	0			
Acenaphthylene		1149	13	1333		0	86.1	45-105	0			
Acetophenone		969.3	66	1333		0	72.7	30-120	0			
Anthracene		1140	13	1333		0	85.5	55-105	0			
Atrazine		1363	66	1333		0	102	30-120	0			
Benzaldehyde		436	130	1333		0	32.7	30-120	0			
Benzo(a)anthrac	ene	1122	13	1333		0	84.1	50-110	0			
Benzo(a)pyrene		1196	13	1333		0	89.7	50-110	0			
Benzo(b)fluorantl	hene	1222	13	1333		0	91.6	45-115	0			
Benzo(g,h,i)peryl		1215	13	1333		0	91.1	40-125	0			
Benzo(k)fluorantl		1164	13	1333		0	87.3	45-115	0			
Bis(2-chloroethox		960.7	66	1333		0	72	45-110	0			
Bis(2-chloroethyl	* *	1075	66	1333		0	80.6	40-105	0			
Bis(2-ethylhexyl)		1205	66	1333		0	90.3	45-125	0			
Butyl benzyl phth		1091	66	1333		0	81.8	50-125	0			
Caprolactam		858	66	1333		0	64.3	30-120	0			
Carbazole		1083	66	1333		0	81.2	50-150	0			

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91739	Instrument ID SVMS5		Method:	SW846 827	0D			
Chrysene	1153	13	1333	0	86.4	55-110	0	
Dibenzo(a,h)anthracene	1173	13	1333	0	87.9	40-125	0	
Dibenzofuran	1011	66	1333	0	75.8	50-105	0	
Diethyl phthalate	1105	66	1333	0	82.8	50-115	0	
Dimethyl phthalate	1071	66	1333	0	80.3	50-110	0	
Di-n-butyl phthalate	1223	66	1333	0	91.7	55-110	0	
Di-n-octyl phthalate	1129	66	1333	0	84.7	40-130	0	
Fluoranthene	1171	13	1333	0	87.8	55-115	0	
Fluorene	1045	13	1333	0	78.4	50-110	0	
Hexachlorobenzene	1115	66	1333	0	83.6	45-120	0	
Hexachlorobutadiene	1070	66	1333	0	80.2	40-115	0	
Hexachlorocyclopentadiene	1298	66	1333	0	97.3	40-115	0	
Hexachloroethane	1072	66	1333	0	80.4	35-110	0	
Indeno(1,2,3-cd)pyrene	1265	13	1333	0	94.9	40-120	0	
Isophorone	999.3	330	1333	0	74.9	45-110	0	
Naphthalene	989.3	13	1333	0	74.2	40-105	0	
Nitrobenzene	1016	330	1333	0	76.2	40-115	0	
N-Nitrosodimethylamine	954.7	330	1333	0	71.6	20-115	0	
N-Nitrosodi-n-propylamine	1019	66	1333	0	76.4	40-115	0	
Pentachlorophenol	1007	66	1333	0	75.5	25-120	0	
Phenanthrene	1089	13	1333	0	81.7	50-110	0	
Phenol	888.7	66	1333	0	66.6	40-100	0	
Pyrene	1117	13	1333	0	83.7	45-125	0	
Surr: 2,4,6-Tribromophene	ol 2734	0	3333	0	82	34-140	0	
Surr: 2-Fluorobiphenyl	2503	0	3333	0	75.1	12-100	0	
Surr: 2-Fluorophenol	2149	0	3333	0	64.5	33-117	0	
Surr: 4-Terphenyl-d14	2638	0	3333	0	79.1	25-137	0	
Surr: Nitrobenzene-d5	2334	0	3333	0	70	37-107	0	
Surr: Phenol-d6	2175	0	3333	0	65.3	40-106	0	

QC BATCH REPORT

Client: Michigan Dept.of Environmental Quality

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91739 Instrument ID SVMS5 Method: SW846 8270D

MS	Sample ID: 16099	41-17A MS				L	Jnits: µg/k	(g	Analysis Da	te: 9/	22/2016 0	1:09 P
Client ID:		Run ID	: SVMS5	_160922A		Se	qNo: 404 2	2980	Prep Date: 9/22/201	6	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value %R	RPD	RPD Limit	Qua
1,1`-Biphenyl		1037	62	1260		0	82.3	30-120	0			
2,4,5-Trichloroph	aanal	998.9	62	1260		0	79.2	50-120	0			
2,4,5-Trichloroph 2,4,6-Trichloroph		913.2	62	1260		0	72.4	45-110	0			-
2,4,0-Themologi 2,4-Dichloropher		911.9	62	1260		0	72.4	45-110	0			
2,4-Dichioropher 2,4-Dimethylphe		647.8	62	1260		0	51.4	30-105	0			-
2,4-Dimetriyipne 2,4-Dinitropheno		562.1	62	1260		0	44.6	15-130	0			
2,4-Dinitropheno 2,4-Dinitrotoluen		1052	62	1260		0	83.4	50-115	0			-
2,4-Dinitrotoluen 2,6-Dinitrotoluen		1052	62	1260		0	83.4	50-110	0			
2,0-Dirillololuen 2-Chloronaphtha		1043	13	1260		0	82.7	45-105	0			-
•	alene	1043	62	1260			81.9					
2-Chlorophenol	alono	986.9	13	1260		0		45-105 45-105	0			
2-Methylnaphtha 2 Methylphonol	alei le	986.9 898.7	13 62	1260 1260		0	78.3	45-105 40 105	0			
2-Methylphenol 2-Nitroaniline		979.3	62			0	71.3 77.7	40-105	0			-
		979.3 955.4		1260				45-120	_			
2-Nitrophenol	-l	966.7	62	1260		0	75.8	40-110	0			
3&4-Methylphen		983.7	62	1260		0	76.7	40-105	0			
3,3'-Dichloroben	nzidine	713.4	320	1260		0	78	30-120	0			
3-Nitroaniline	4. 1. 1.		62	1260		0	56.6	25-150	0			
I,6-Dinitro-2-me		959.2	62	1260		0	76.1	40-130	0			
1-Bromophenyl p		974.3	62	1260		0	77.3	45-115	0			
1-Chloro-3-meth	yiphenoi	971.8	62	1260		0	77.1	45-115	0			-
1-Chloroaniline		1097	130	1260		0	87	15-110	0			
4-Chlorophenyl p	phenyl ether	1056	62	1260		0	83.8	45-110	0			-
1-Nitroaniline		827.5	320	1260		0	65.6	35-150	0			
1-Nitrophenol		819.9	62	1260		0	65	15-140	0			
Acenaphthene		1031	13	1260		0	81.8	45-110	0			
Acenaphthylene		1199	13	1260		0	95.1	45-105	0			
Acetophenone		1151	62	1260		0	91.3	30-120	0			
Anthracene		1120	13	1260		0	88.9	55-105	0			-
Atrazine		1364	62	1260		0	108	30-120	0			
Benzaldehyde		545.8	130	1260		0	43.3	30-120	0			_
Benzo(a)anthrac		1047	13	1260		0	83	50-110				
Benzo(a)pyrene		1065	13	1260		0	84.5	50-110				
Benzo(b)fluorant		984.4	13	1260		0	78.1	45-115	0			
Benzo(g,h,i)pery		1107	13	1260		0	87.8	40-125	0			
Benzo(k)fluorant		1152	13	1260		0	91.4	45-115	0			
Bis(2-chloroetho		1039	62	1260		0	82.4	45-110	0			
Bis(2-chloroethy	l)ether	1177	62	1260		0	93.3	40-105	0			
3is(2-ethylhexyl)	phthalate	1138	62	1260		0	90.2	45-125	0			
Butyl benzyl phth	halate	1051	62	1260		0	83.4	50-125	0			
Caprolactam		983.1	62	1260		0	78	30-120	0			
Carbazole		1098	62	1260		0	87.1	50-150	0			
Chrysene		1165	13	1260		0	92.4	55-110	0			

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91739	Instrument ID SVMS5		Method:	SW846 827	0D		
Dibenzo(a,h)anthracene	1098	13	1260	0	87.1	40-125	0
Dibenzofuran	1067	62	1260	0	84.6	50-105	0
Diethyl phthalate	1146	62	1260	0	90.9	50-115	0
Dimethyl phthalate	1109	62	1260	0	87.9	50-110	0
Di-n-butyl phthalate	1153	62	1260	0	91.5	55-110	0
Di-n-octyl phthalate	1030	62	1260	0	81.7	40-130	0
Fluoranthene	1098	13	1260	0	87.1	55-115	0
Fluorene	1063	13	1260	0	84.3	50-110	0
Hexachlorobenzene	969.9	62	1260	0	76.9	45-120	0
Hexachlorobutadiene	955.4	62	1260	0	75.8	40-115	0
Hexachlorocyclopentadiene	1126	62	1260	0	89.3	40-115	0
Hexachloroethane	1093	62	1260	0	86.7	35-110	0
Indeno(1,2,3-cd)pyrene	1244	13	1260	0	98.7	40-120	0
Isophorone	1095	320	1260	0	86.8	45-110	0
Naphthalene	977.4	13	1260	0	77.5	40-105	0
Nitrobenzene	971.8	320	1260	0	77.1	40-115	0
N-Nitrosodimethylamine	955.4	320	1260	0	75.8	20-115	0
N-Nitrosodi-n-propylamine	1182	62	1260	0	93.8	40-115	0
Pentachlorophenol	989.4	62	1260	0	78.5	25-120	0
Phenanthrene	1060	13	1260	0	84.1	50-110	0
Phenol	835	62	1260	0	66.2	40-100	0
Pyrene	1089	13	1260	0	86.4	45-125	0
Surr: 2,4,6-Tribromophen	ol 2406	0	3151	0	76.4	34-140	0
Surr: 2-Fluorobiphenyl	2616	0	3151	0	83	12-100	0
Surr: 2-Fluorophenol	2565	0	3151	0	81.4	33-117	0
Surr: 4-Terphenyl-d14	2620	0	3151	0	83.2	25-137	0
Surr: Nitrobenzene-d5	2395	0	3151	0	76	37-107	0
Surr: Phenol-d6	2467	0	3151	0	78.3	40-106	0

QC BATCH REPORT

Client: Michigan Dept.of Environmental Quality

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91739 Instrument ID SVMS5 Method: SW846 8270D

MSD	Sample ID: 1609	941-17A MSD				Ĺ	Jnits: µg/k	(g	Anaiysi	s Date: 9/	22/2016 0	1:32 P
Client ID:		Run ID	SVMS5	_160922A		Se	qNo: 404 2	2981	Prep Date: 9/22	/2016	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qua
1,1`-Biphenyl		1118	65	1321		0	84.6	30-120	1037	7.51	30	
2,4,5-Trichloroph	enol	1136	65	1321		0	86	50-110	998.9	12.9	30	
2,4,6-Trichloroph	enol	972.9	65	1321		0	73.6	45-110	913.2	6.34	30	
2,4-Dichlorophen	ol	1011	65	1321		0	76.5	45-110	911.9	10.3	30	
2,4-Dimethylpher	nol	673.7	65	1321		0	51	30-105	647.8	3.91	30	
2,4-Dinitrophenol		788.6	65	1321		0	59.7	15-130	562.1	33.5	30	R
2,4-Dinitrotoluene	9	1143	65	1321		0	86.5	50-115	1052	8.28	30	
2,6-Dinitrotoluene	9	1143	65	1321		0	86.5	50-110	1052	8.28	30	
2-Chloronaphthal	ene	1122	13	1321		0	84.9	45-105	1043	7.32	30	
2-Chlorophenol		1116	65	1321		0	84.5	45-105	1033	7.76	30	
2-Methylnaphthal	ene	1097	13	1321		0	83	45-105	986.9	10.6	30	
2-Methylphenol		967	65	1321		0	73.2	40-105	898.7	7.32	30	
2-Nitroaniline		1038	65	1321		0	78.5	45-120	979.3	5.78	30	
2-Nitrophenol		1072	65	1321		0	81.1	40-110	955.4	11.5	30	
3&4-Methylpheno	ol	1042	65	1321		0	78.8	40-105	966.7	7.46	30	
3,3´-Dichlorobenz	zidine	974.9	330	1321		0	73.8	30-120	983.7	0.903	30	
3-Nitroaniline		761.6	65	1321		0	57.6	25-110	713.4	6.53	30	
1,6-Dinitro-2-metl	hvlphenol	1088	65	1321		0	82.3	40-130	959.2	12.6	30	
4-Bromophenyl p		1032	65	1321		0	78.1	45-115	974.3	5.79	30	
4-Chloro-3-methy	·	1049	65	1321		0	79.4	45-115	971.8	7.63	30	
4-Chloroaniline		1219	130	1321		0	92.3	15-110	1097	10.5	30	
4-Chlorophenyl p	henvl ether	1127	65	1321		0	85.3	45-110	1056	6.53	30	
4-Nitroaniline		895	330	1321		0	67.7	35-150	827.5	7.84	30	
4-Nitrophenol		893	65	1321		0	67.6	15-140	819.9	8.54	30	
Acenaphthene		1118	13	1321		0	84.6	45-110	1031	8.06	30	
Acenaphthylene		1278	13	1321		0	96.7	45-105	1199	6.36	30	
Acetophenone		1260	65	1321		0	95.3	30-120	1151	8.98	30	
Anthracene		1188	13	1321		0	89.9	55-105	1120	5.87	30	
Atrazine		1472	65	1321		0	111	30-120	1364	7.61	30	
Benzaldehyde		642	130	1321		0	48.6	30-120	545.8	16.2	30	
Benzo(a)anthrace	ene	1114	13	1321		0	84.3	50-110	1047	6.25	30	
Benzo(a)pyrene		1128	13	1321		0	85.4	50-110	1065	5.75	30	
Benzo(a)pyrene Benzo(b)fluoranth	nene	1014	13	1321		0	76.7	45-115		2.95	30	
Benzo(g,h,i)peryl		1184	13	1321		0	89.6	40-125	1107	6.72	30	
Benzo(k)fluoranth		1228	13	1321		0	92.9	45-115	1152	6.38	30	
Bis(2-chloroethox		1143	65	1321		0	86.5	45-110	1039	9.55	30	
Bis(2-chloroethyl)		1273	65	1321		0	96.3	40-105	1177	7.86	30	
Bis(2-ethylhexyl)p		1208	65	1321		0	91.4	45-125	1138	6.02	30	
Butyl benzyl phth		1129	65	1321		0	85.4	50-125	1051	7.12	30	
Sutyi berizyi pritri Caprolactam	aiai c	1077	65	1321		0	81.5	30-125	983.1	9.08	30	-
Carbazole		1171	65	1321		0	88.6	50-120	1098	6.4	30	
Carbazole Chrysene		1233	13	1321		0	93.3	55-110	1165	5.72	30	

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91739	Instrument ID SVMS5		Method:	SW846 8270	D					
Dibenzo(a,h)anthracene	1205	13	1321	0	91.2	40-125	1098	9.29	30	
Dibenzofuran	1134	65	1321	0	85.8	50-105	1067	6.1	30	
Diethyl phthalate	1241	65	1321	0	93.9	50-115	1146	7.99	30	
Dimethyl phthalate	1187	65	1321	0	89.8	50-110	1109	6.83	30	
Di-n-butyl phthalate	1238	65	1321	0	93.7	55-110	1153	7.12	30	
Di-n-octyl phthalate	1087	65	1321	0	82.2	40-130	1030	5.3	30	
Fluoranthene	1170	13	1321	0	88.5	55-115	1098	6.35	30	
Fluorene	1140	13	1321	0	86.3	50-110	1063	6.98	30	
Hexachlorobenzene	1040	65	1321	0	78.7	45-120	969.9	6.94	30	
Hexachlorobutadiene	1077	65	1321	0	81.5	40-115	955.4	11.9	30	
Hexachlorocyclopentadiene	1296	65	1321	0	98.1	40-115	1126	14.1	30	
Hexachloroethane	1220	65	1321	0	92.3	35-110	1093	11	30	
Indeno(1,2,3-cd)pyrene	811.8	13	1321	0	61.4	40-120	1244	42.1	30	R
Isophorone	1209	330	1321	0	91.5	45-110	1095	9.9	30	
Naphthalene	1100	13	1321	0	83.2	40-105	977.4	11.8	30	
Nitrobenzene	1079	330	1321	0	81.7	40-115	971.8	10.5	30	
N-Nitrosodimethylamine	1085	330	1321	0	82.1	20-115	955.4	12.7	30	
N-Nitrosodi-n-propylamine	1287	65	1321	0	97.4	40-115	1182	8.51	30	
Pentachlorophenol	1059	65	1321	0	80.1	25-120	989.4	6.77	30	
Phenanthrene	1127	13	1321	0	85.3	50-110	1060	6.11	30	
Phenol	931.3	65	1321	0	70.5	40-100	835	10.9	30	
Pyrene	1172	13	1321	0	88.7	45-125	1089	7.32	30	
Surr: 2,4,6-Tribromophen	ool 2512	0	3303	0	76.1	34-140	2406	4.3	40	
Surr: 2-Fluorobiphenyl	2758	0	3303	0	83.5	12-100	2616	5.3	40	
Surr: 2-Fluorophenol	2686	0	3303	0	81.3	33-117	2565	4.6	40	
Surr: 4-Terphenyl-d14	2736	0	3303	0	82.9	25-137	2620	4.33	40	
Surr: Nitrobenzene-d5	2632	0	3303	0	79.7	37-107	2395	9.42	40	
Surr: Phenol-d6	2678	0	3303	0	81.1	40-106	2467	8.21	40	

The following samples were analyzed in this batch:

1609985-04A

Work Order: 1609985

Client:

Project: Abandoned Mining Wastes - Torch Lake

QC BATCH REPORT

Batch ID: 91663	Instrument ID VI				d: SW82 6						
MBLK	Sample ID: MBLK-916	663-91663				Units: µg/l	Kg-dry	Analy	sis Date: 9	/20/2016	10:38 PI
Client ID:		Run ID	: VMS7_	160920B		SeqNo: 403	8211	Prep Date: 9/2	20/2016	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
			I QL	Si K vai		/orceo			701K1 D		Quui
1,1,1,2-Tetrachloro	ethane	ND	30								
1,1,1-Trichloroetha	ne	ND	30								
1,1,2,2-Tetrachloro	ethane	ND	30								
1,1,2-Trichloroetha		ND	30								
1,1,2-Trichlorotriflu	oroethane	ND	30								
1,1-Dichloroethane		ND	30								
1,1-Dichloroethene		ND	30								
1,2,3-Trichloroprop	ane	ND	30								
1,2,4-Trichlorobenz		ND	30								
1,2,4-Trimethylben		ND	30								
1,2-Dibromo-3-chlo		ND	30								
1,2-Dibromoethane		ND	30								
1,2-Dichlorobenzer	ne	ND	30								
1,2-Dichloroethane	•	ND	30								
1,2-Dichloropropan	e	ND	30								
1,3,5-Trimethylben	zene	ND	30								
1,3-Dichlorobenzer	ne	ND	30								
1,4-Dichlorobenzer	ne	ND	30								
2-Butanone		ND	200								
2-Hexanone		ND	30								
2-Methylnaphthaler	ne	ND	100								
4-Methyl-2-pentano	one	ND	30								
Acetone		ND	100								
Acrylonitrile		ND	100								
Benzene		ND	30								
Bromochlorometha	ne	ND	30								
Bromodichlorometh	nane	ND	30								
Bromoform		ND	30								
Bromomethane		ND	75								
Carbon disulfide		ND	30								
Carbon tetrachlorid	le	ND	30								
Chlorobenzene		ND	30								
Chloroethane		ND	100								
Chloroform		ND	30								
Chloromethane		ND	100								
cis-1,2-Dichloroeth	ene	ND	30								
cis-1,3-Dichloropro	pene	ND	30								
Dibromochlorometh	nane	ND	30								
Dibromomethane		ND	30								
Dichlorodifluorome	thane	ND	30								
Diethyl ether		ND	30								
Ethylbenzene		ND	30								

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91663	Instrument ID VMS7		Method:	SW8260B				
Hexachloroethane	ND	100						
Isopropylbenzene	ND	30						
m,p-Xylene	ND	60						
Methyl iodide	ND	75						
Methyl tert-butyl ether	ND	30						
Methylene chloride	ND	30						
Naphthalene	ND	100						
n-Propylbenzene	ND	30						
o-Xylene	ND	30						
Styrene	ND	30						
Tetrachloroethene	ND	30						
Toluene	ND	30						
trans-1,2-Dichloroethene	ND	30						
trans-1,3-Dichloropropene	ND	30						
trans-1,4-Dichloro-2-butene	ND	30						
Trichloroethene	ND	30						
Trichlorofluoromethane	ND	30						
Vinyl acetate	ND	250						
Vinyl chloride	ND	30						
Xylenes, Total	ND	90						
Surr: 1,2-Dichloroethane-	d4 990	0	1000	0	99	70-130	0	
Surr: 4-Bromofluorobenze	ene 963	0	1000	0	96.3	70-130	0	
Surr: Dibromofluorometha	ane 901.5	0	1000	0	90.2	70-130	0	
Surr: Toluene-d8	1005	0	1000	0	100	70-130	0	

QC BATCH REPORT

Client: Michigan Dept.of Environmental Quality

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91663 Instrument ID VMS7 Method: SW8260B

LCS	Sample ID: LCS-9	91663-91663				U	Inits: µg/k	(g-ary	Anaiys	is Date: 9	/20/2016 (U9:29 PN
Client ID:		Run ID	: VMS7_	160920B		Sec	qNo: 403 8	3210	Prep Date: 9/20	0/2016	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloro	ethane	923.5	30	1000		0	92.4	75-125	0			
1,1,1-Trichloroethar	ne	953	30	1000		0	95.3	70-135	0			
1,1,2,2-Tetrachloro	ethane	952.5	30	1000		0	95.2	55-130	0			
1,1,2-Trichloroethar	ne	932.5	30	1000		0	93.2	60-125	0			
1,1-Dichloroethane		976	30	1000		0	97.6	75-125	0			
1,1-Dichloroethene		1000	30	1000		0	100	65-135	0			
1,2,3-Trichloropropa	ane	935.5	30	1000		0	93.6	65-130	0			
1,2,4-Trichlorobenz	rene	923.5	30	1000		0	92.4	65-130	0			
1,2,4-Trimethylbenz	zene	924	30	1000		0	92.4	65-135	0			
1,2-Dibromo-3-chlo	ropropane	855.5	30	1000		0	85.6	40-135	0			
1,2-Dibromoethane	:	1688	30	1000		0	169	75-125	0			S
1,2-Dichlorobenzen	ne	951.5	30	1000		0	95.2	75-120	0			
1,2-Dichloroethane		911.5	30	1000		0	91.2	70-135	0			
1,2-Dichloropropan	е	923	30	1000		0	92.3	70-120	0			
1,3,5-Trimethylbenz	zene	951.5	30	1000		0	95.2	65-135	0			
,3-Dichlorobenzen	ne	955	30	1000		0	95.5	70-125	0			
1,4-Dichlorobenzen	ne	927	30	1000		0	92.7	70-125	0			
2-Butanone		1066	200	1000		0	107	30-160	0			
2-Hexanone		987	30	1000		0	98.7	45-145	0			
4-Methyl-2-pentano	one	1165	30	1000		0	116	74-176	0			
Acetone		1124	100	1000		0	112	20-160	0			
Acrylonitrile		979.5	100	1000		0	98	70-135	0			
Benzene		949	30	1000		0	94.9	75-125	0			
Bromochlorometha	ne	974	30	1000		0	97.4	70-125	0			
Bromodichlorometh	nane	899	30	1000		0	89.9	70-130	0			
Bromoform		785	30	1000		0	78.5	55-135	0			
Bromomethane		905	75	1000		0	90.5	30-160	0			
Carbon disulfide		931	30	1000		0	93.1	45-160	0			
Carbon tetrachlorid	le	967	30	1000		0	96.7	65-135	0			
Chlorobenzene		917.5	30	1000		0	91.8	75-125	0			
Chloroethane		981.5	100	1000		0	98.2	40-155	0			
Chloroform		962.5	30	1000		0	96.2	70-125	0			
Chloromethane		862.5	100	1000		0	86.2	50-130	0			
cis-1,2-Dichloroethe	ene	926	30	1000		0	92.6	65-125	0			
cis-1,3-Dichloroprop	pene	919	30	1000		0	91.9	70-125	0			
Dibromochlorometh		789	30	1000		0	78.9	65-135	0			
Dibromomethane		953.5	30	1000		0	95.4	75-130	0			
Dichlorodifluoromet	thane	643.5	30	1000		0	64.4	35-135	0			
Ethylbenzene		957.5	30	1000		0	95.8	75-125	0			
Hexachloroethane		777.5	100	1000		0	77.8	53-112	0			
Isopropylbenzene		947.5	30	1000		0	94.8	75-130	0			
m,p-Xylene		1896	60	2000		0	94.8	80-125	0			

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91663	Instrument ID VMS7		Method	SW8260B				
Methyl iodide	1562	75	1000	0	156	64-145	0	S
Methyl tert-butyl ether	1033	30	1000	0	103	75-125	0	
Methylene chloride	1052	30	1000	0	105	55-145	0	
Naphthalene	959.5	100	1000	0	96	40-140	0	
n-Propylbenzene	932.5	30	1000	0	93.2	65-135	0	
o-Xylene	954.5	30	1000	0	95.4	75-125	0	
Styrene	981.5	30	1000	0	98.2	75-125	0	
Tetrachloroethene	1116	30	1000	0	112	64-140	0	
Toluene	952.5	30	1000	0	95.2	70-125	0	
trans-1,2-Dichloroethene	969	30	1000	0	96.9	65-135	0	
trans-1,3-Dichloropropene	896.5	30	1000	0	89.6	65-125	0	
trans-1,4-Dichloro-2-butene	767.5	30	1000	0	76.8	62-112	0	
Trichloroethene	928	30	1000	0	92.8	75-125	0	
Trichlorofluoromethane	895.5	30	1000	0	89.6	25-185	0	
Vinyl chloride	896.5	30	1000	0	89.6	60-125	0	
Xylenes, Total	2850	90	3000	0	95	75-125	0	
Surr: 1,2-Dichloroethane-c	1018	0	1000	0	102	70-130	0	
Surr: 4-Bromofluorobenze	ne 998.5	0	1000	0	99.8	70-130	0	
Surr: Dibromofluorometha	ne 1020	0	1000	0	102	70-130	0	
Surr: Toluene-d8	996	0	1000	0	99.6	70-130	0	

QC BATCH REPORT

Client: Michigan Dept.of Environmental Quality

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91663 Instrument ID VMS7 Method: SW8260B

MS	Sample ID: 16099	87-12A MS				Uı	nits: µg/k	(g-dry	Analys	is Date: 9	/24/2016 (06:00 AN
Client ID:		Run ID	: VMS7_	160923B		Sec	No: 404	4264	Prep Date: 9/20	0/2016	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloro	ethane	1027	40	1326		0	77.5	75-125	0			
1,1,1-Trichloroetha	ine	1150	40	1326	(0	86.8	70-135	0			
1,1,2,2-Tetrachloro	ethane	636.9	40	1326		0	48	55-130	0			S
1,1,2-Trichloroetha	ine	1092	40	1326		0	82.4	60-125	0			
1,1-Dichloroethane		1298	40	1326		0	97.9	75-125	0			
1,1-Dichloroethene)	1382	40	1326		0	104	65-135	0			
1,2,3-Trichloroprop	pane	1067	40	1326		0	80.5	65-130	0			
1,2,4-Trichlorobenz	zene	1168	40	1326	(0	88.1	65-130	0			
1,2,4-Trimethylben	zene	1271	40	1326		0	95.9	65-135	0			
1,2-Dibromo-3-chlo	oropropane	729.7	40	1326		0	55	40-135	0			
1,2-Dibromoethane	e	1854	40	1326		0	140	75-125	0			S
1,2-Dichlorobenzer	ne	1150	40	1326	(0	86.8	75-120	0			
1,2-Dichloroethane	•	1172	40	1326	(0	88.4	70-135	0			
1,2-Dichloropropan	ne	1165	40	1326	(0	87.8	70-120	0			
1,3,5-Trimethylben	zene	1218	40	1326	(0	91.8	65-135	0			
1,3-Dichlorobenzer	ne	1165	40	1326	(0	87.9	70-125	0			
1,4-Dichlorobenzer	ne	1143	40	1326		0	86.2	70-125	0			
2-Butanone		2083	270	1326	(0	157	30-160	0			
2-Hexanone		1582	40	1326	(0	119	45-145	0			
4-Methyl-2-pentand	one	1204	40	1326		0	90.8	74-176	0			
Acetone		3169	130	1326	(0	239	20-160	0			S
Acrylonitrile		1212	130	1326	(0	91.4	70-135	0			
Benzene		1202	40	1326		0	90.6	75-125	0			
Bromochlorometha	ine	1288	40	1326		0	97.2	70-125	0			
Bromodichlorometh	hane	1026	40	1326	(0	77.4	70-130	0			
Bromoform		720.5	40	1326		0	54.4	55-135	0			s
Bromomethane		381.1	99	1326		0	28.8	30-160	0			S
Carbon disulfide		1002	40	1326		0	75.6	45-160	0			
Carbon tetrachlorid	de	1141	40	1326		0	86.1	65-135	0			
Chlorobenzene		1154	40	1326		0	87	75-125	0			
Chloroethane		1086	130	1326		0	81.9	40-155	0			
Chloroform		1239	40	1326		0	93.5	70-125	0			
Chloromethane		1197	130	1326		0	90.3	50-130	0			
cis-1,2-Dichloroeth	ene	1210	40	1326	1	0	91.2	65-125	0			
cis-1,3-Dichloropro	pene	1023	40	1326		0	77.2	70-125	0			
Dibromochlorometl	hane	808.6	40	1326		0	61	65-135	0			S
Dibromomethane		1171	40	1326		0	88.4	75-130	0			
Dichlorodifluorome	thane	907.4	40	1326		0	68.4	35-135	0			
Ethylbenzene		1229	40	1326		0	92.7	75-125	0			
Hexachloroethane		873.6	130	1326		0	65.9	53-112	0			
sopropylbenzene		1205	40	1326		0	90.9	75-130	0			
m,p-Xylene		2497	80	2651		0	94.2	80-125	0			

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91663	Instrument ID VMS7		Method	SW8260B			
Methyl iodide	896.8	99	1326	0	67.6	30-105	0
Methyl tert-butyl ether	1314	40	1326	0	99.1	75-125	0
Methylene chloride	1306	40	1326	0	98.5	55-145	0
Naphthalene	1055	130	1326	0	79.6	40-140	0
n-Propylbenzene	1210	40	1326	0	91.2	65-135	0
o-Xylene	1221	40	1326	0	92.1	75-125	0
Styrene	1187	40	1326	0	89.6	75-125	0
Tetrachloroethene	2326	40	1326	1047	96.4	64-140	0
Toluene	1202	40	1326	0	90.7	70-125	0
trans-1,2-Dichloroethene	1286	40	1326	0	97	65-135	0
trans-1,3-Dichloropropene	920.6	40	1326	0	69.4	65-125	0
trans-1,4-Dichloro-2-butene	736.4	40	1326	0	55.6	45-86	0
Trichloroethene	1463	40	1326	0	110	75-125	0
Trichlorofluoromethane	1188	40	1326	0	89.6	25-185	0
Vinyl chloride	1175	40	1326	0	88.6	60-125	0
Xylenes, Total	3718	120	3977	0	93.5	75-125	0
Surr: 1,2-Dichloroethane-	-d4 1408	0	1326	0	106	70-130	0
Surr: 4-Bromofluorobenze	ene 1323	0	1326	0	99.8	70-130	0
Surr: Dibromofluorometha	ane 1290	0	1326	0	97.4	70-130	0
Surr: Toluene-d8	1324	0	1326	0	99.9	70-130	0

QC BATCH REPORT

Client: Michigan Dept.of Environmental Quality

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: 91663 Instrument ID VMS7 Method: SW8260B

MSD	Sample ID: 1609	987-12A MSD				Uı	nits: µg/k	g-dry		s Date: 9/	24/2016 0	v:23 AN
Client ID:		Run ID	: VMS7_	160923B		Seq	No: 404	1265	Prep Date: 9/20	/2016	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	. U					^		75.405	4007		00	
1,1,1,2-Tetrachloroe		1040	40	1326		0	78.4	75-125	1027	1.22	30	
1,1,1-Trichloroethar		1153	40	1326		0	87	70-135	1150	0.23	30	_
1,1,2,2-Tetrachloroe		562.7	40	1326		0	42.4	55-130	636.9	12.4	30	S
1,1,2-Trichloroethar		1118	40	1326		0	84.4	60-125	1092	2.4	30	-
1,1-Dichloroethane		1269 1341	40	1326		0	95.8	75-125	1298	2.22	30	
1,1-Dichloroethene			40	1326		0	101	65-135	1382	3.02	30	-
1,2,3-Trichloropropa		1052 1112	40	1326		0	79.4	65-130	1067	1.44	30	
1,2,4-Trichlorobenz		1180	40	1326		0	83.9	65-130	1168	4.88	30	
1,2,4-Trimethylbenz			40	1326		0	89	65-135	1271	7.46	30	
1,2-Dibromo-3-chlo		780.1 1910	40	1326		0	58.8	40-135	729.7	6.67	30	_
1,2-Dibromoethane			40	1326		0	144	75-125	1854	2.92	30	S
1,2-Dichlorobenzen		1149	40	1326		0	86.7	75-120	1150	0.0577	30	-
1,2-Dichloroethane		1165	40	1326		0	87.9	70-135	1172	0.624	30	
1,2-Dichloropropand		1176 1198	40	1326		0	88.8	70-120	1165	1.02	30	
1,3,5-Trimethylbenz		1165	40	1326		0	90.4	65-135	1218	1.59	30	
1,3-Dichlorobenzen		1131	40	1326		0	87.8	70-125	1165	0.0569	30	
1,4-Dichlorobenzen	ie	2037	40	1326		0	85.4	70-125	1143	0.991	30	
2-Butanone		1514	270	1326		0	154	30-160	2083	2.25	30	
2-Hexanone		1223	40	1326		0	114	45-145	1582	4.37	30	
4-Methyl-2-pentano	one	3024	40	1326		0	92.2	74-176	1204	1.58	30	
Acetone		1229	130	1326		0	228	20-160	3169	4.69	30	S
Acrylonitrile		1196	130	1326		0	92.7	70-135	1212	1.36	30	
Benzene Bramaablaramatha		1269	40	1326		0	90.2	75-125	1202	0.442	30	
Bromochloromethar Bromodichlorometh		1024	40	1326 1326		0	95.7 77.2	70-125 70-130	1288 1026	0.194	30	
Bromoform	lane	758.2										
Bromomethane		292.3	40 99	1326 1326		0	57.2 22	55-135 30-160	720.5 381.1	5.11 26.4	30	S
Carbon disulfide		1009	40	1326		0	76.2	45-160	1002	0.725	30	3
Carbon disdilide Carbon tetrachloride	^	1151	40	1326		0	86.8	65-135	1141	0.723	30	
Chlorobenzene	C	1159	40	1326		0	87.4	75-125	1154	0.458	30	
Chloroethane		1048	130	1326		0	79	40-155	1086	3.54	30	
Chloroform		1240	40	1326		0	93.6	70-125	1239	0.0535	30	
Chloromethane		1185	130	1326		0	89.4	50-130	1197	0.0333	30	-
cis-1,2-Dichloroethe	ene	1200	40	1326		0	90.6	65-125	1210	0.77	30	
cis-1,2-Dichloroprop		1025	40	1326		0	77.3	70-125	1023	0.129	30	
Dibromochlorometh		830.5	40	1326		0	62.6	65-135	808.6	2.67	30	S
Dibromomethane		1161	40	1326		0	87.6	75-130	1171	0.853	30	
Dichlorodifluoromet	hane	794	40	1326		0	59.9	35-135	907.4	13.3	30	
Ethylbenzene		1236	40	1326		0	93.2	75-125	1229	0.592	30	
Hexachloroethane		859.6	130	1326		0	64.8	53-112	873.6	1.61	30	
Isopropylbenzene		1221	40	1326		0	92.1	75-130	1205	1.31	30	
m,p-Xylene		2441	80	2651		0	92.1	80-125	2497	2.28	30	

See Qualifiers Page for a list of Qualifiers and their explanation.

Note:

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

QC BATCH REPORT

Batch ID: 91663	Instrument ID VMS7		Method:	SW8260B						
Methyl iodide	1197	99	1326	0	90.3	30-105	896.8	28.7	30	
Methyl tert-butyl ether	1304	40	1326	0	98.4	75-125	1314	0.709	30	
Methylene chloride	1274	40	1326	0	96.1	55-145	1306	2.47	30	
Naphthalene	1062	130	1326	0	80.1	40-140	1055	0.626	30	
n-Propylbenzene	1206	40	1326	0	91	65-135	1210	0.274	30	
o-Xylene	1217	40	1326	0	91.8	75-125	1221	0.326	30	
Styrene	1227	40	1326	0	92.6	75-125	1187	3.29	30	
Tetrachloroethene	2732	40	1326	1047	127	64-140	2326	16.1	30	
Toluene	1240	40	1326	0	93.6	70-125	1202	3.09	30	
trans-1,2-Dichloroethene	1265	40	1326	0	95.4	65-135	1286	1.61	30	
trans-1,3-Dichloropropene	977.6	40	1326	0	73.8	65-125	920.6	6.01	30	
trans-1,4-Dichloro-2-butene	729.1	40	1326	0	55	45-86	736.4	0.995	30	
Trichloroethene	1528	40	1326	0	115	75-125	1463	4.34	30	
Trichlorofluoromethane	1150	40	1326	0	86.8	25-185	1188	3.29	30	
Vinyl chloride	1123	40	1326	0	84.7	60-125	1175	4.56	30	
Xylenes, Total	3658	120	3977	0	92	75-125	3718	1.64	30	
Surr: 1,2-Dichloroethane-d	14 1376	0	1326	0	104	70-130	1408	2.33	30	
Surr: 4-Bromofluorobenzei	ne 1349	0	1326	0	102	70-130	1323	1.98	30	
Surr: Dibromofluoromethal	ne 1274	0	1326	0	96.1	70-130	1290	1.29	30	
Surr: Toluene-d8	1335	0	1326	0	101	70-130	1324	0.798	30	

The following samples were analyzed in this batch:

1609985-02B 1609985-04B

Work Order: 1609985

Project:

Abandoned Mining Wastes - Torch Lake

Batch ID: R196197A	Instrument ID VMS6	6		Metho	d: SW826	60B					
MBLK	Sample ID: VBLKW1-160	921-R196	6197A			Units: µg/L		Analy	sis Date: 9	/21/2016 ()2:24 PM
Client ID:		Run ID:	VMS6_	160921A		SeqNo: 403 9	9170	Prep Date:		DF: 1	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1-Dichloroethene		ND	1.0								
1,2-Dichloroethane		ND	1.0								
2-Butanone		ND	5.0								
Benzene		ND	1.0								
Carbon tetrachloride		ND	1.0								
Chlorobenzene		ND	1.0								
Chloroform		ND	1.0								
Tetrachloroethene		ND	1.0								
Trichloroethene		ND	1.0								
Vinyl chloride		ND	1.0								
Surr: 1,2-Dichloroet	hane-d4	19.31	0	20		0 96.6	75-120		0		
Surr: 4-Bromofluoro	benzene	18.97	0	20		0 94.8	80-110		0		
Surr: Dibromofluoro	methane	19	0	20		0 95	85-115		0		
Surr: Toluene-d8		19.59	0	20		0 98	85-110	1	0		

LCS S	ample ID: VLCSW1-16092	21-R1961	97A			U	nits: µg/L		Ana	lysis I	Date: 9/	/21/2016 (1:31 PN
Client ID:		Run ID: V	'MS6_1	60921A		Sec	qNo: 403 9	169	Prep Date:			DF: 1	
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	9,	%RPD	RPD Limit	Qual
1,1-Dichloroethene	20	.97	1.0	20		0	105	70-145		0			
1,2-Dichloroethane	18	.33	1.0	20		0	91.6	78-125		0			
2-Butanone	18	.05	5.0	20		0	90.2	55-150		0			
Benzene	20	.15	1.0	20		0	101	85-125		0			
Carbon tetrachloride	17	.15	1.0	20		0	85.8	65-140		0			
Chlorobenzene	19	.13	1.0	20		0	95.6	80-120		0			
Chloroform	19	.44	1.0	20		0	97.2	80-130		0			
Tetrachloroethene	20	.03	1.0	20		0	100	77-138		0			
Trichloroethene	19	.75	1.0	20		0	98.8	84-130		0			
Vinyl chloride	16	.59	1.0	20		0	83	50-136		0			
Surr: 1,2-Dichloroetha	ane-d4 1	9.4	0	20		0	97	75-120		0			
Surr: 4-Bromofluorobe	enzene 19	.78	0	20		0	98.9	80-110		0			
Surr: Dibromofluorom	nethane 20	0.03	0	20		0	100	85-115		0			
Surr: Toluene-d8	19	.95	0	20		0	99.8	85-110		0			

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

QC BATCH REPORT

Batch ID: R196197A	Instrument ID VN	IS6		Metho	d: SW8260B	1					
MS	Sample ID: 16091057-	D1A MS				Units: µg/L		Analy	/sis Date: 9	/21/2016 1	11:05 PM
Client ID:		Run I	: VMS6_	160921A	S	eqNo: 404	0256	Prep Date:		DF: 20	00
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1-Dichloroethene		4450	200	4000	0	111	70-145		0		
1,2-Dichloroethane		3636	200	4000	0	90.9	78-125		0		
2-Butanone		5834	1,000	4000	2458	84.4	55-150		0		
Benzene		4060	200	4000	0	102	85-125		0		
Carbon tetrachloride		3562	200	4000	0	89	65-140		0		
Chlorobenzene		3840	200	4000	0	96	80-120		0		
Chloroform		3818	200	4000	0	95.4	80-130		0		
Tetrachloroethene		4186	200	4000	0	105	77-138		0		
Trichloroethene		4076	200	4000	0	102	84-130		0		
Vinyl chloride		3630	200	4000	0	90.8	50-136		0		
Surr: 1,2-Dichloro	ethane-d4	3916	0	4000	0	97.9	75-120		0		
Surr: 4-Bromofluo	robenzene	4030	0	4000	0	101	80-110		0		
Surr: Dibromofluo	romethane	3960	0	4000	0	99	85-115		0		
Surr: Toluene-d8		3988	0	4000	0	99.7	85-110		0		

MSD Sa	ample ID: 16091057-01A MSD				Jnits: µg/l	-	Analysi	is Date: 9/	21/2016 1	1:32 PM
Client ID:	Run	ID: VMS6_	160921A	Se	eqNo: 404	0257	Prep Date:		DF: 20	0
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1-Dichloroethene	4478	200	4000	0	112	70-145	4450	0.627	30	
1,2-Dichloroethane	3760	200	4000	0	94	78-125	3636	3.35	30	
2-Butanone	6230	1,000	4000	2458	94.3	55-150	5834	6.56	30	
Benzene	4182	200	4000	0	105	85-125	4060	2.96	30	
Carbon tetrachloride	3786	200	4000	0	94.6	65-140	3562	6.1	30	
Chlorobenzene	3862	200	4000	0	96.6	80-120	3840	0.571	30	
Chloroform	3866	200	4000	0	96.6	80-130	3818	1.25	30	
Tetrachloroethene	4238	200	4000	0	106	77-138	4186	1.23	30	
Trichloroethene	4114	200	4000	0	103	84-130	4076	0.928	30	
Vinyl chloride	3764	200	4000	0	94.1	50-136	3630	3.62	30	
Surr: 1,2-Dichloroetha	ne-d4 3942	0	4000	0	98.6	75-120	3916	0.662	30	
Surr: 4-Bromofluorobe	nzene 3974	0	4000	0	99.4	80-110	4030	1.4	30	
Surr: Dibromofluorome	ethane 4018	0	4000	0	100	85-115	3960	1.45	30	
Surr: Toluene-d8	4008	0	4000	0	100	85-110	3988	0.5	30	

The following samples were analyzed in this batch:

1609985-01B

1609985-03B

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC Page: 40 of 46

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

	7.46	0	0		0	0	0-0	7.15	4.24	20	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Client ID: CHLL-W	C02-0-6 Run II	D: WETCH	IEM_16091	7E	Sec	No: 403	1392	Prep Date: 9/1	7/2016	DF: 1	
DUP	Sample ID: 1609985-04A DUP				U	nits: s.u.		Analys	sis Date: 9/	17/2016 0	3:30 PM
рН	8.26	0	0		0	0	0-0	8.41	1.8	20	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Client ID:	Run II	D: WETCH	IEM_16091	7E	Sec	No: 403	1386	Prep Date: 9/1	7/2016	DF: 1	
DUP	Sample ID: 1609827-01B DUP				U	nits: s.u.		Analys	sis Date: 9/	17/2016 0	3:30 PM
рН	4.02	0	4		0	100	90-110	C			
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Client ID:	Run II	D: WETCH	IEM_16091	7E	Sec	qNo: 403 ′	1378	Prep Date: 9/1	7/2016	DF: 1	
LCS	Sample ID: LCS-91542-91542				U	nits: s.u.		Analys	sis Date: 9/	17/2016 0	3:30 PM

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: R196107	Instrument ID WETC	HEM		Method	d: SW101	0A							
LCS	Sample ID: LCS-R196107-	·R196107				Uı	nits: ° F		Ana	lysis Date	9/20/2	016 10:	47 AM
Client ID:	Run ID: WETCHEM_160			EM_160920	0920H SeqNo: 4035890				Prep Date:	D	F: 1		
Analyte	Re	esult	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RF	RP D Lim		Qual
Flashpoint/Ignitability	,	83	0	81		0	102	97-103		0			
DUP	Sample ID: 16091054-01A	DUP				Units: °F		Ana	lysis Date	e: 9/20/2	016 10:	47 AN	
Client ID:	Run ID: WETCHEM_160920H				Н	SeqNo: 4035892			Prep Date:		_	DF: 1	
						000	1110. 7031	3092	Prep Date.		ט		
Analyte		esult	PQL	SPK Val	SPK Ref Value	360	%REC	Control Limit	RPD Ref Value	%RF	RP	D	Qual
Analyte Flashpoint/Ignitability	Re			_	SPK Ref	0		Control	RPD Ref	%RF	RP	D	Qual

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

Batch ID: R196402	Instrument ID MOIST		Metho	d: SW355	0C							
MBLK	Sample ID: WBLKS-R196402		Units: % of sample			Analysis Date: 9/22/2016 01:50 PM						
Client ID:	Run II		SeqNo: 4043077			Prep Date:	DF: 1					
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Moisture	ND	0.050										
LCS	Sample ID: LCS-R196402					nits: % o	f sample	Analysis Date: 9/22/2016 01:50 PM				
Client ID:	Run II		SeqNo: 4043076			Prep Date: DF: 1						
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Moisture	100	0.050	100		0	100	99.5-100.	.5 0				
DUP	Sample ID: 16091251-01B DUP					Units: % of sample			Analysis Date: 9/22/2016 01:50 PM			
Client ID:	Run II	D: MOIST		SeqNo: 4043063			Prep Date:		DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Moisture	64.14	0.050	0		0	0		64.11	0.0468	20		
DUP	Sample ID: 1609994-02B DUP					nits: % o	f sample	Analysis Date: 9/22/2016 01:50 PM				
Client ID:	Run ID: MOIST_160922B				SeqNo: 4043072			Prep Date:	Date: DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Moisture	7.84	0.050	0		0	0		8.52	7	20	<u> </u>	

Client: Michigan Dept.of Environmental Quality

Work Order: 1609985

Project:

Abandoned Mining Wastes - Torch Lake

QC BATCH REPORT

Sulfide, Reactive	1584	100	2149		0	73.7	60-120		0		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Client ID:	Run ID:	WETCH	HEM_16092	3H	Seq	No: 404 3	3915	Prep Date:		DF: 1	
LCS	Sample ID: LCS-R196437-R19643	7			Uı	nits: mg/ l	Kg	Ana	ysis Date:	9/23/2016	01:00 PM
Sulfide, Reactive	ND	100									
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Client ID:	Run ID:	WETCH	HEM_16092	3H	Seq	No: 404 3	3914	Prep Date:		DF: 1	
MBLK	Sample ID: MB-R196437-R196437				Uı	nits: mg/ l	Kg	Ana	ysis Date:	9/23/2016	01:00 PN
Batch ID: R196437	Instrument ID WETCHEM		Method	d: SW7.3	.4.2						

Client: Michigan Dept.of Environmental Quality

Work Order: 1609985

Project: Abandoned Mining Wastes - Torch Lake

QC BATCH REPORT

Batch ID: R196438	Instrument ID WETCHEM		Method	: SW7.3	.3.2						
MBLK	Sample ID: MB-R196438-R196438	3			ι	Jnits: mg/ l	Kg	Anal	ysis Date: 9	/23/2016 ()1:00 PM
Client ID:	Run ID	WETCI	HEM_160923	ВІ	Se	qNo: 404 3	3959	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Reactive	ND	100									
LCS	Sample ID: LCS-R196438-R19643	8			ι	Jnits: mg/ l	Kg	Anal	lysis Date: 9	/23/2016 (1:00 PM
Client ID:	Run ID	WETC	HEM_160923	BI	Se	qNo: 404 3	3960	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Reactive	124.8	100	125		0	99.8	75-125		0		
MS	Sample ID: 1609985-04A MS				ι	Jnits: mg/ l	Kg	Ana	ysis Date: 9	/23/2016 ()1:00 PM
Client ID: CHLL-WC	C02-0-6 Run ID:	WETCI	HEM_160923	BI	Se	qNo: 404 3	3965	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Reactive	233.9	100	250		0	93.6	50-150		0		
MSD	Sample ID: 1609985-04A MSD				ι	Jnits: mg/ l	Kg	Ana	ysis Date: 9	/23/2016 (1:00 PM
Client ID: CHLL-WC	C02-0-6 Run ID:	WETCI	HEM_160923	BI	Se	qNo: 404 3	3966	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Reactive	233.9	100	250		0	93.6	50-150	233	3.9 (35	
The following same	oles were analyzed in this batch:	10	609985-02A	16	099	985-04A					

Client: Michigan Dept.of Environmental Quality

Work Order: 1609985

Abandoned Mining Wastes - Torch Lake **Project:**

QC BATCH REPORT

Batch ID: R196465	Instrument ID MOIST		Method	d: SW35 5	0C						
MBLK	Sample ID: WBLKS-R196465				Un	its: % o	of sample	Analys	sis Date: 9,	/23/2016 0	7:00 PM
Client ID:	Run II	D: MOIS	ST_160923E		Seq	No: 404	4522	Prep Date:		DF: 1	
Analyte	Result	PQ	L SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	ND	0.05	0								
LCS	Sample ID: LCS-R196465				Un	its: % o	of sample	Analys	sis Date: 9/	/23/2016 0	7:00 PM
Client ID:	Run II	D: MOIS	ST_160923E		Seq	No: 404	4521	Prep Date:		DF: 1	
Analyte	Result	PQ	L SPK Val	SPK Ref Value	,	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	100	0.05	0 100		0	100	99.5-100	.5 ()		
DUP	Sample ID: 16091144-02A DUP				Un	its: % o	of sample	Analys	sis Date: 9/	/23/2016 0	7:00 PM
Client ID:	Run II	D: MOIS	ST_160923E		Seq	No: 404	4509	Prep Date:		DF: 1	
Analyte	Result	PQ	L SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	14.74	0.05	0 0		0	0		14.74	1 0	20	
DUP	Sample ID: 1609985-04A DUP				Un	its: % o	of sample	Analys	sis Date: 9,	/23/2016 0	7:00 PM
Client ID: CHLL-WC	02-0-6 Run II	D: MOIS	ST_160923E		Seq	No: 404	4520	Prep Date:		DF: 1	
Analyte	Result	PQ	L SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	19.49	0.05	0 0		0	0		19.53	0.205	20	
The following samp	les were analyzed in this batch:		1609985-04A								

ALS Environmental
10450 Stancliff Rd. #210
Houston, Texas 77099
(Tel) 281.530.5656
(Fax) 281.530.5887

Chain of Custody Form

					_
Page	<u>:1</u>	of	1_		
				1	

ALS Environmental
3352 128th Avenue
Holland, Michigan 49424
(Tel) 616.399.6070
(Fax) 616.399.6185

	•			ALS Projec	t Manager:					ALS W	ork Ord	ler#:	110.00	999	₹	
Customer Information		Prole	ct Inform	PARTY NEW TOTAL PROPERTY NAMED AND POSTED				Parar	A COLUMN TO A COLU	200	14-14-15 July 17-15		or An		ر ر سندن	100100
Purchase Order	Project N	ame Abando			rch Lake	A	TCLP V						V).1310	AIJOIA.	.`.`. `.	<u></u>
Work Order	Project Nun	nber 3100009	18		***	8										
Company Name Mannik & Smith Group	Bill To Comp	eny MDEQ-I	RRD	, <u> </u>		C	Sulfide, Reactive/SW7.3.4.2									
Sand Report To Jeff Binkley	lavelce /	Attn. Tracey	Curtis			Ď.	pH/SW	1045D								
200 Michigan St, Suite 705	Add	race		ith Floor Soi	ıth	E	Flashpo	int-Ign	itability	/ Analy	sis/SW	1010A				
		525 We	t Allegan (Street		F	PCBs/S	W8082								
City/State/Zip Hancock, MI 49930		/Zip Lansing			,	G	Moistur									
Phone 906-281-3404		one 517-284	-5176			H	Paint Fi									
DEC PM address keranena@michigan.gov	*********	Fax				: 1:	Total VOC/9250B-SVOC/9270D-PEST/9081-HERB/8151-Metals/6010C/7471B									
e-Mall Address Ibinkley@manniksmithgroup.com	accounting #	s 16 3110	0 29634 1	·		J.	NOTE	- POT	ENTL	ALLY	HIGH	CON	CENTI	RATIO	NS	
No. Sample Description	Date	Time	Matrix	Pres. Key Numbers	# Bottles	A	B	C	D		F	G	H			Hold
CHTC-WC01-0 6"	9-10-14	1428	waste		5	· x	Х	Х	Х	Х	Х	X	Х	Х		1.5.5.5.5
2 CHLL-WC02-0-6"	19-12-16	1354	waste		5	×	×	*	×	8	×	×	×	X		
第2 第	T							<u> </u>		"	· · ·		-	'\`		
XXX		 -			•	i		_	<u> </u>	 		 	 	 		\vdash
5 .	·			 				1.			 					
								 	 			·			<u> </u>	-
								-		 						
				1				 			 		 		•	
\$ 9 × 1	,			 				+-		 						-
10	 						- 1	 		 	1			i		
Sampler(s): Please Print & Sign	Ship	oment Metho	d: Turi		e in Busines 5 BD	s Day: □ 3	10 Page 15 Pag	П			1 BD	Re	l sults Di	ue Date		
Relinquished by: Date:	Time:	Received by:			Date:	Time:	Notes	•			14.		<u> </u>	1/17/1	- 1919 - 1	
Jul 9-14-16	9:09	Hole	and	1	9/14/16	૧૦વ	Re	col	zy (al	0:11		cabb	•	800		
Relinquished by: Date:	Time:	Reference La	Dornery!	1 AA	Date:	Time:	ALS	Cooler ID	Cool Tem		Packa		heck Bo		w) II: Raw	Data
Logged by (Laboratory). Data:	Time:	Checked by La	xofatory).				3 3 3 3	arina desarra	74		TRRP		· · · · E	·	evel IV	
	930						- N		Water Street Transport		Level 1	V: 5W84	6 Methods	s/CLP like		
											Other:		Page	e 69 of 7	0 .	
Preservative Key: 1-HCI 2-HNO ₃ 3-H ₃	SO ₄ 4-N	ΩH 5.N	1- C O	6-NaHS). 7 _0H	727	0.11	JAO N	ote• Ar	ıv chan	oes mu	et be m	ade in w			nnlac

ALS Group USA, Corp

Sample Receipt Checklist

Client Name: M	<u>IDEQ</u>				Date/Time	Received:	17-Sep-1	<u>00:80 8</u>		
Work Order: 10	<u>609985</u>				Received b	y:	MBB			
Checklist complete	ied by <u>Alex Csaszar</u>	17	7-Sep-16	<u>6</u> F	Reviewed by:	Alex Csa eSignature	ezar			17-Sep-16 Date
	waste Courier	'							'	
Shipping containe	er/cooler in good condition?		Yes	✓	No 🗌	Not Pres	sent 🗌			
Custody seals inta	act on shipping container/coole	r?	Yes		No 🗌	Not Pres	sent 🗹			
Custody seals inta	act on sample bottles?		Yes		No 🗌	Not Pres	sent 🗹			
Chain of custody p	present?		Yes	✓	No 🗌					
Chain of custody s	signed when relinquished and r	eceived?	Yes	✓	No 🗌					
Chain of custody a	agrees with sample labels?		Yes	✓	No 🗌					
Samples in proper	r container/bottle?		Yes	✓	No 🗌					
Sample containers	s intact?		Yes	✓	No 🗌					
Sufficient sample	volume for indicated test?		Yes	✓	No 🗌					
All samples receiv	ved within holding time?		Yes	✓	No 🗌					
Container/Temp B	Blank temperature in complianc	e?	Yes	✓	No 🗌					
Sample(s) receive Temperature(s)/Th			Yes 2.4 / 2		No C	SF	<u>R2</u>			
Cooler(s)/Kit(s):]		
	e(s) sent to storage:		9/17/1	6 10:0	0am No	No VOA vial	o oubmittod			
	s have zero headspace?		Yes Yes				s submitted			
pH adjusted? pH adjusted by:	table upon receipt?		Yes -		No ✓	N/A _				
Login Notes:										
g										
						- — — —				
						- — — — —				
Client Contacted:		Date Contacted:			Person	Contacted:				
Contacted By:		Regarding:								
Comments:										
CorrectiveAction:									RC Pa	ge 1 of 1

DTMB-0414 (R 1/15)

STATE OF MICHIGAN
Department of Technology, Management and Budget
State Facilities Administration
3111 W. St. Joseph Street

Date Issued: 21 October 2016

Index No(s): NA File No: NA

Department: MDEQ-RRD

Project Name: Abandoned Mining

Wastes Torch Lake Non-Superfund Site

Subject: Clarification to Scope of Work

Bid Opening Date: 28 October 2016

ADDENDUM NO. 2

TO: All Bidders

Lansing, Michigan 48917

SUBJECT: Hubbell Smelter Drum Removal Interim Response

INTENT: This Addendum No. 2 is issued to clarify the scope of work by answering questions.

This Addendum No. 2 consists of one page and one attachment including Attachment A

- Answers to Questions.

Item 1 – Answers to Questions: Several questions have been posed by Bidders. Please refer to Attachment A for answers and clarifications.

ACKNOWLEDGEMENT: This Addendum must be acknowledged by the bidder in the space provided at the bottom of the Bid Table for submission of a valid bid. The changes and information shall become part of the contract documents.

ATTACHMENT A ANSWERS TO QUESTIONS

ATTACHMENT A

ANSWERS TO QUESTIONS

Q: How deep is the water where the silt curtain needs to be installed?

A: The water depth is variable. If the Contactor installs the silt curtain landward or within the wood pilings the water depth appears to not exceed approximately six feet. The bottom drops off rapidly toward the outer edge and beyond the pilings to an unknown depth.

Q: How many feet of silt fence is required?

A: All areas of disturbed soils including the access route to the drum removal area (if soils are disturbed) once it leaves Koppers' improved gravel driveway must have silt fence installed along the downhill (lake) side. The required length of silt fence will depend on how large an area the Contractor disturbs. The Lake Shore Work Area on Figure 2 of the Scope of Work (SOW) is approximately 180 feet in length. A reasonable access route from Koppers' gravel driveway to the Lake Shore Work Area, using a temporary opening through the fence as discussed in Addendum No. 1, is approximately 240 feet in length. Therefore, rounding up, we estimate approximately 500 feet of silt fence may be required. This estimate does not relieve the Contractor from preparing their own estimate based on their intended means and methods of executing the work and ensuring that all areas of disturbed soils are bounded by silt fence to protect Torch Lake.

Q: Are we required to build a road to get to where the drums are located?

A: No. However, any damage to the EPA Superfund cap (rutting, vegetation removal/mortality, or disturbed soils) must be repaired such that a minimum of 6-inches compacted thickness of sandy loam soil is present, raked smooth, seeded, and mulched following the specifications in the SOW as amended.

Q: What pay item does the 5 steel drums and 5 over pack drums need to be included in?

A: Drums would be part of the Contractor's removal and disposal efforts as defined beginning toward the bottom of page 1 of the SOW. Therefore, they would be part of the unit rates for container disposal, which are Work Items 6 through 9 in the Revised Bid Table in Addendum No. 1.

Soil Erosion and Sedimentation Control Permit and Release

HOUGHTON COUNTY DRAIN COMMISSIONER

401 E. HOUGHTON AVENUE HOUGHTON, MI 49931

Phone (906) 482-4491 FAX (906) 482-7238 jpekkala@houghtoncounty.net

April 10, 2017

Rick Riedy UP Environmental Services, Inc. P.O. Box 127 1315 US Hwy 2 & 41 Bark River, MI 49807

RE: Soil Erosion and Sedimentation Control Permit No. 17-942-SE

Dear Mr. Riedy:

Enclosed, please find a Soil Erosion and Sedimentation Control (SESC) Permit for the proposed earth change at the location specified on the permit. The SESC Site Plan that was submitted has been approved and is on file at the Houghton County Drain Commissioner's Office. Please notify my office 48 hours prior to commencing the earth change.

If you have any questions, feel free to contact me.

Sincerely,

John Pekkala, Drain Commissioner

John Pekkala

County Enforcing Agent for

Soil Erosion and Sedimentation Control

COUNTY OF HOUGHTON SOIL EROSION AND SEDIMENTATION CONTROL PERMIT

(issued under the authority of part 91, Soil Erosion and Sedimentation Control, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended)

Permitee:	Michael Lahti, President	Ţī	Permit No.:	17-942-SE
	MSL Development, LLC	1	lssued:	04-10-17
Address:	913 Quincy Street	t	Expires:	04-10-18
			Extended:	
	Hancock, MI 49930			
On-Site Res	sponsible Person: Name:			
Company:	U.P. Environmental Services, Inc.	Telephone Number	(906)	466-9900
Permitted A	Activity:			
Excavate u	p to 4 CY of material to remove drums from ap	proximately 6 locatio	ns in and al	ong Torch Lake.
Place appro	eximately 1.5 CY of rip rap on bottom lands.			
Silt fence w	vill be used along the shoreline and silt curtain o	n Torch Lake.		·
Project Loc	ation: Town: 55N ; Range: 32W City or Township: Torch Lake Township	•	–	
	Address: 52430 Hwy. M-26/Duncan			
	PID # 31-014-307-001-50			
Permit Cor	nditions:			
1. The pe	ermitted activity shall be completed in accordance attached general and specific conditions.	ce with the approved	plans and s	pecifications
2. This po	ermit does not walve the necessity for obtaining	all other required fed	deral, state,	or local permits.
	see shall notify the permitting agency within one sek prior to the permit expiration data, whicheve		ng the permi	tted activity or
	John Peklala	(9	<u>06</u>) <u>482-4</u>	· · · · · · · · · · · · · · · · · · ·
	Permitting Agent		Tele	phone Number

THIS PERMIT MUST BE POSTED AT THE PROJECT SITE.

Permit Number:	17-942-SE

General Conditions:

In accordance with rule 1709 promulgated under the authority of part 91, Soil Erosion and Sedimentation Control, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, and in addition to the information on the attached plan(s) and special conditions, the following general conditions apply to the earth change authorized by this permit:

- Design, construct, and complete the earth change in a manner that limits the exposed area of disturbed land for the shortest period of time.
- Remove sediment caused by accelerated soil erosion from runoff water before it leaves the site of the earth change.
- Temporary or permanent control measures shall be designed and installed to convey water around, through, or from the earth change at a non-erosive velocity.
- Install temporary soil erosion and sedimentation control measures before or upon commencement of the earth change activity and maintain the measures on a daily basis. Remove temporary soil arosion and sedimentation control measures after permanent soil erosion measures are in place and the area is stabilized. (Stabilized means the establishment of vegetation or the proper placement, grading; or covering of soil to ensure its resistance to soil erosion, sliding, or other earth movement.)
- Complete permanent soil erosion control measures for the earth change within five calendar
 days after final grading or upon completion of the final earth change. If it is not possible to
 permanently stabilize the earth changes, then maintain temporary soil erosion and
 sedimentation control measures until permanent soil erosion control measures are in place
 and the area is stabilized.

SPECIFIC CONDITIONS

48 hours notice prior to earth	h change			
				
	 	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
				

SOIL EROSION AND SEDIMENTATION POLLUTION CONTROL APPLICATION

Part 91, P.A. 451 of 1994

Houghton County Drain Commissioner

401 E. Houghton Avenue

Houghton, MI 49931

(906) 482-4491

Permit Number/7-942-SE

Date Issued 4-10-17

Expiration Date 4-10-18

Permit Fee \$ 200.00

For Questions, please call: John Pekkala -Office (906) 482-4491

·				Home (9	06) 482-	070	65 R	eceipt	# 168427		
1. APPLICANT	(Please check	c if the a	applicant is th	e landowner o	r designated a	agent	t*) () La	ndowner () Designated Agent		
Name U. P. Envir	onmental	Serv	rices, Ir	nc.	Address P.O. Box 127/1315 US Hwy. 2 & 41						
City Bark River					State MI	Zij	p 49807	Area Cod 906-46	e/Telephone 6-9900		
2. LOCATION	Section 07	Town 55N	Range 32W	Lot No(s)	Townsh Torch		ke	Street Ad 52430 H	dress: lwy. M-26/Duncan Ave		
	11, MI ton Coun	ty					# or Atta		egal Description:		
3. PROPOSED EARTH CHANGE Project Type: () Residential () Industrial) Multi-Fa) Land Ba		() Commercial (X) Other		
								Size of Earth Change (Acres or Square Feet)			
Distance to Nearest Lake, Stream or Dain		V	-	(s) Affected	i:	- 4	Project St Date: May		Project Complete Date:May 19, 2017		
4. SOIL EROSION A (Note: Two (2) sets of c					ROL PLA	N					
Estimated Cost of Erosi Sedimentation Control 5				parer's Nan Riedy	ne and Tele	pho	one Numb		i Code 06) 466-9900		
5. PARTIES RESPON NAME:	SIBLE FO	R EA	RTH CHA	NGE: Prop	erty Owne	r of	Record (1	f not provide	ed in Box No.1 above)		
Address City State Zip Area Code/Telephone								Area Code/Telephone			
6. Name of Individual	Earth Chan	ge Company Name									
Address				City			State	Zip	Area Code/Telephone		

I (we) affirm that the above information is accurate and that I (we) will conduct the with Part 91, Soil Erosion and Sedimentation Control, of the Natural Resource and as amended, applicable local ordinances, and the documents accompanying this applicable.	Environmental Protection Act, 1994 PA 451,
Landowner's Signature	Date:
Designated Agents Signature*	Date: 4-6-17

^{*} Designated agent must have a written statement from landowner authorizing him/her to secure a permit in the landowner's name.

Jeff Binkley

From: Jeff Binkley

Sent: Thursday, October 05, 2017 11:01 AM

To: KERANENA@michigan.gov

Subject: Smelter Drum IR and Tamarack Sands Area Seep IR Soil Erosion and Sedimentation

Control Permits Closeout

Fyi – will be included in the IR reports as well.

For the smelter drum area we decided to leave the silt fence that UPES installed in place since we had simply replaced a section of Koppers existing silt fence.

From: Rick Riedy [mailto:rick@upenvironmental.com]

Sent: Thursday, October 05, 2017 11:31 AM

To: Jed Chrestensen < JChrestensen@manniksmithgroup.com>; Jeff Binkley < JBinkley@manniksmithgroup.com>

Cc: 'Wayne Stenberg' <wayne@stenbergs.us>

Subject: FW: Hubbell and Tamarack City Soil Erosion Applications

Jeff,

Here is the email from John that he closed out both soil erosion permits for Hubbell and Tamarack City.

We will send you the final invoices for this project.

Thanks,

Rick Riedy UP Environmental Services, Inc. Phone (906) 466-9900 Fax (906) 466-2641

From: John Pekkala [mailto:jpekkala@houghtoncounty.net]

Sent: Thursday, October 05, 2017 10:06 AM

To: Rick Riedy

Subject: Re: Hubbell and Tamarack City Soil Erosion Applications

Hi Rick,

I inspected both sites this morning October 5th and verified that they are adequately stabilized. I am closing out the SESC permit for each site. The permit number's are 17-942-SE and 17-943-SE

FYI - the silt fence has been removed at the Tamarack Sands site but not at the Hubbell site. The man gate was locked behind the Kopper's facility.

If you have any questions, please contact me.

Thanks,

John Pekkala, Drain Commissioner County Enforcing Agent for Soil Erosion and Sedimentation Control

Houghton, MI 49931 Phone: 906-482-4491 Fax: 906-482-7238
On Wed, Oct 4, 2017 at 3:23 PM, Rick Riedy < rick@upenvironmental.com > wrote:
Thanks!
Rick Riedy
UP Environmental Services, Inc.
Phone (906) 466-9900
Fax (906) 466-2641
From: John Pekkala [mailto:jpekkala@houghtoncounty.net] Sent: Wednesday, October 04, 2017 2:33 PM
To: Rick Riedy
Subject: Re: Hubbell and Tamarack City Soil Erosion Applications
Rick,
I plan to inspect both sites later today or tomorrow morning. I will email a response after the inspections.
John

401 E. Houghton Avenue

On Wed, Oct 4, 2017 at 8:54 AM, Rick Riedy < <u>rick@upenvironmental.com</u>> wrote:

John,
We are removing the silt fence today.
Please provide us with a closed out response as soon as you are able.
Thanks,
Rick Riedy
UP Environmental Services, Inc.
Phone (906) 466-9900
Fax (906) 466-2641
From: John Pekkala [mailto:jpekkala@houghtoncounty.net] Sent: Tuesday, October 03, 2017 4:40 PM
To: Rick Riedy Subject: Re: Hubbell and Tamarack City Soil Erosion Applications
Hi Rick,
Go ahead and tell your crew to remove the silt fence and both sites. I have a hearing all day tomorrow October 4th in my office. It's okay to call me though. I can do a final inspection at both sites this Thursday, assuming I can get through the gates. Let me know if you or anybody else needs a response from me that both SESC permits have been "closed out".

Thanks, John

Fax (906) 466-2641

John Pekkala, Drain Commissioner County Enforcing Agent for Soil Erosion and Sedimentation Control 401 E. Houghton Avenue Houghton, MI 49931 Phone: 906-482-4491 Fax: 906-482-7238 On Tue, Oct 3, 2017 at 10:39 AM, Rick Riedy < rick@upenvironmental.com > wrote: Hi John, I am requested that you do an inspection on this one and if it is ok we can close this project out. Our crew is working at MTU right now and would have time to remove any silt fence this afternoon or tomorrow if this is acceptable with you. I don't know what your work load is right now but I am asking. Thanks, **Rick Riedy** UP Environmental Services, Inc. Phone (906) 466-9900

From: John Pekkala [mailto:jpekkala@houghtoncounty.net] Sent: Wednesday, June 28, 2017 2:31 PM
To: Rick Riedy Subject: Re: Hubbell and Tamarack City Soil Erosion Applications
Hi Rick,
Thanks for letting me know the anticipated start date for the Hubbell project. I plan to contact you the week of July 10th for project status and site inspection.
Have a nice day.
John
On Wed, Jun 28, 2017 at 2:41 PM, Rick Riedy < rick@upenvironmental.com > wrote: John,
This SOIL EROSION CONTROL PERMIT 17-942-SE GOT POSTPONED DUE TO AREA WAS TOO WET. WE PLAND ON STARTING JULY 10, 2017.
AND TAMARACK PERMIT 17-943-SE WILL BE RIGHT AFTER WE COMPLETE THE HUBBLE ONE.
PLEASE LET ME KNOW IF THERE IS ANY THING ELSE THAT WE NEED TO DO.
Thanks,
Rick Riedy
UP Environmental Services, Inc.

Phone (906) 466-9900

Fax (906) 466-2641

From: Rick Riedy [mailto:rick@upenvironmental.com] Sent: Thursday, April 06, 2017 3:42 PM To: 'John Pekkala' Subject: RE: Hubbell and Tamarack City Soil Erosion Applications John, Attached are the signed electronic copies. The check for \$ 400 is being mailed out today. Thanks, **Rick Riedy** UP Environmental Services, Inc. Phone (906) 466-9900

From: John Pekkala [mailto:jpekkala@houghtoncounty.net]

Sent: Thursday, April 06, 2017 2:38 PM

To: Rick Riedy

Fax (906) 466-2641

Subject: Re: Hubbell and Tamarack City Soil Erosion Applications
An electronic copy is fine. I will mail the permits as soon as I receive the check.
Thanks, John
On Thu, Apr 6, 2017 at 3:11 PM, Rick Riedy < rick@upenvironmental.com > wrote:
John,
Do you need one original in the mail or can I sign and scan and email back to you and mail you the check?
Thanks,
Rick Riedy
UP Environmental Services, Inc.
Phone (906) 466-9900
Fax (906) 466-2641
From: John Pekkala [mailto:jpekkala@houghtoncounty.net]
Sent: Thursday, April 06, 2017 2:20 PM To: Jed Chrestensen Co: Right Biody: Koronon, Amy (DEC): Jeff Binkley.
Cc: Rick Riedy; Keranen, Amy (DEQ); Jeff Binkley Subject: Re: Hubbell and Tamarack City Soil Erosion Applications

Jed,

I totally missed the email that follows the expired access agreement. Sorry about that. I can accept that "undertake response activities" means including landowner authorization for contractors to sign permit applications. Please have your contractor(s) sign the application and submit the fee so I can issue the SESC permits.
Thanks,
John
On Thu, Apr 6, 2017 at 12:42 PM, Jed Chrestensen < <u>JChrestensen@manniksmithgroup.com</u> > wrote:
John,
The work is being conducted under the "undertake response activities" component of the access agreements. The work is being conducted by MDEQ and its contractors so we have been obtaining the permits and the contractors have been signing the applications. The Tamarack Sands access was extended through 2018 per the email that follows the original access agreement in the .pdf packet that was attached. Koppers and TLSWA are both aware of what we're planning and the schedule. Hopefully this answers your questions.
Thank you,
Jed
From: John Pekkala [mailto:jpekkala@houghtoncounty.net] Sent: Thursday, April 06, 2017 12:24 PM To: Rick Riedy < rick@upenvironmental.com >; Jed Chrestensen < JChrestensen@manniksmithgroup.com > Cc: Keranen, Amy (DEQ) < KERANENA@michigan.gov > Subject: Fwd: Hubbell and Tamarack City Soil Erosion Applications
Hi Rick & Jed,
It looks like the entry authorization has expired for the Tamarack City job. On both authorizations the landowners give consent to enter the property, but neither authorization says anything about who is authorized

to pull the SESC permit? Maybe you want to talk to Amy K. about this technicality. I know both landowners. I

don't think they really care who signs the SESC permit application. Do you want me to call them?

John
John Pekkala, Drain Commissioner
County Enforcing Agent for Soil Erosion and Sedimentation Control 401 E. Houghton Avenue Houghton, MI 49931 Phone: 906-482-4491
Fax: 906-482-7238
On Thu, Apr 6, 2017 at 9:03 AM, Rick Riedy < rick@upenvironmental.com > wrote: John and Jed,
Please review the Soil Erosion Applications for Hubbell and Tamarack City and let me know if there is anything else that you need.
Jed, can you sign this or do we sign this.
Thanks,

Rick Riedy

UP Environmental Services, Inc.

Phone (906) 466-9900

Fax (906) 466-2641

CONFIDENTIALITY NOTICE

The information contained in this communication and its attachment(s) is intended only for the use of the individual to whom it is addressed and may contain information that is privileged, confidential or exempt from disclosure. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is prohibited. If you have received this communication in error, please notify <a href="maintaing-notify-notified-wind-notify-notified-wind-notify-notified-wind-notify-notified-wind-notify-notified-wind-notify-notified-wind-notified-w

NOTICE OF AUTHORIZATION

Permit Number: WRP005678 Date Issued: January 13, 2017 Expiration Date: January 13, 2022

The Michigan Department of Environmental Quality, Water Resources Division, P.O. Box 30458, Lansing, Michigan 48909-7958, under provisions of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended; specifically:

☐ Part 31, Floodplain Regulatory Authority of the Water Resources Protection.
☐ Part 301, Inland Lakes and Streams.
☐ Part 303, Wetlands Protection.
☐ Part 315, Dam Safety.
☐ Part 323, Shorelands Protection and Management.
☐ Part 325, Great Lakes Submerged Lands.
☐ Part 353, Sand Dunes Protection and Management.

Authorized activity:

Excavate up to 4 cubic yards of material to remove drums from 6 locations in Torch Lake. Place approximately 1.5 cubic yards of riprap on Torch Lake bottomlands to fill voids in drum removal locations. All work shall be completed in accordance with the attached plans and specifications of this permit dated January 13, 2017.

To be conducted at property located in: Houghton County, Waterbody: Torch Lake Section 07, Town 55N, Range 32W, Torch Lake Township

Permittee:

MDEQ RRD 55195 US-41 North Calumet, MI 49913

Helana Nelson

Upper Peninsula District Office Water Resources Division

906-202-1507

This notice must be displayed at the site of work.

Laminating this notice or utilizing sheet protectors is recommended.

Please refer to the above permit number with any questions or concerns.

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY WATER RESOURCES DIVISION MINOR PROJECT PERMIT

Issued To:		
MDEQ RRD Attn: Amy Keranei 55195 US-41 North Calumet, MI 49913	า	
Permit No.: Submission No.: Site Name: Issued: Expires:		Duncan Avenue-Torch Lake Twp.
Resources Divisio	ig issued by the Michigan n, under the provisions o nended (NREPA); specific	Department of Environmental Quality (MDEQ), Water f the Natural Resources and Environmental Protection Act, cally:
🔀 Part 301, Inland	l Lakes and Streams	Part 323, Shorelands Protection and Management
🗌 Part 303, Wetla	nds Protection	Part 325, Great Lakes Submerged Lands
🔲 Part 315, Dam S	Safety	Part 353, Sand Dunes Protection and Management
🔲 Part 31, Water	Resources Protection (F	Floodplain Regulatory Authority)
requirements and	permit conditions, to:	ermittee assurance of adherence to State of Michigan
Authorized Activit	-V	
approximately 1. locations. All wo	5 cubic yards of riprap of	to remove drums from 6 locations in Torch Lake. Place on Torch Lake bottomlands to fill voids in drum removal accordance with the attached plans and specifications

Authorized Under Minor Permit Category: 5. Cleanup of Hazardous & Toxic Waste

Water Course Affected: Torch Lake

Property Location: Houghton County, Torch Lake Township, Town/Range/Section: 55N32W07

Authority granted by this permit is subject to the following limitations:

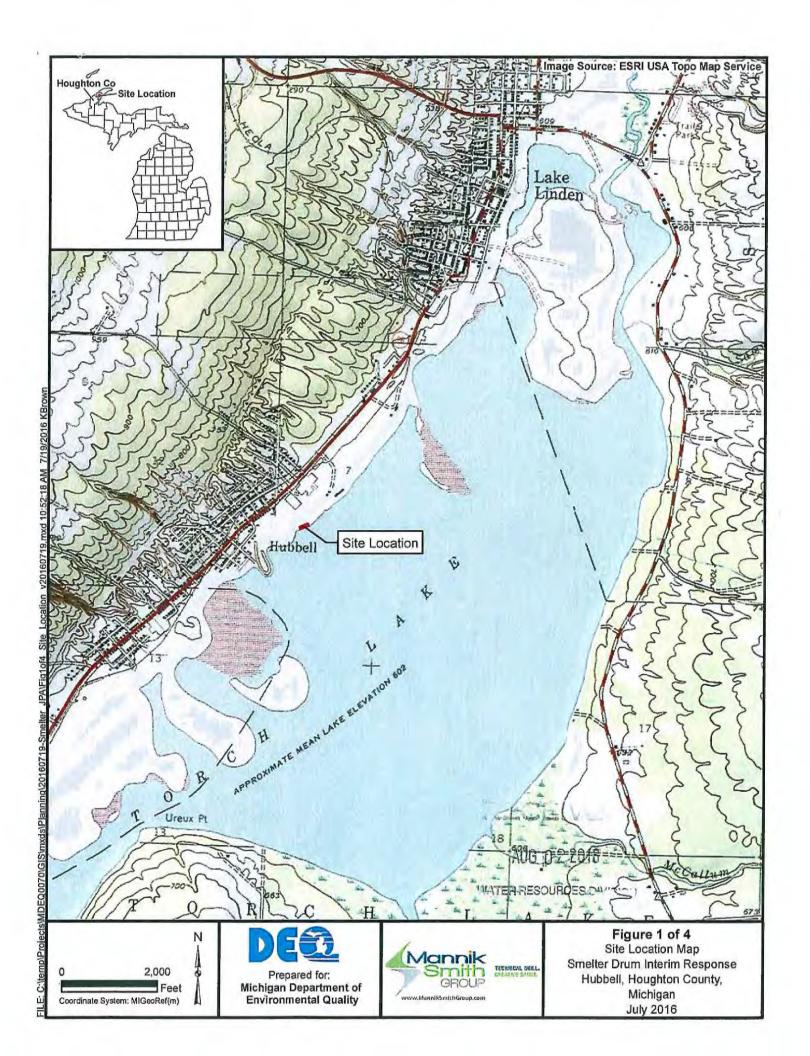
- A. Initiation of any work on the permitted project confirms the permittee's acceptance and agreement to comply with all terms and conditions of this permit.
- B. The permittee, in exercising the authority granted by this permit, shall not cause unlawful pollution as defined by Part 31 of the NREPA.
- C. This permit shall be kept at the site of the work and available for inspection at all times during the duration of the project or until its date of expiration.
- D. All work shall be completed in accordance with the approved plans and specifications submitted with the application and/or plans and specifications attached to this permit.
- E. No attempt shall be made by the permittee to forbid the full and free use by the public of public waters at or adjacent to the structure or work approved.

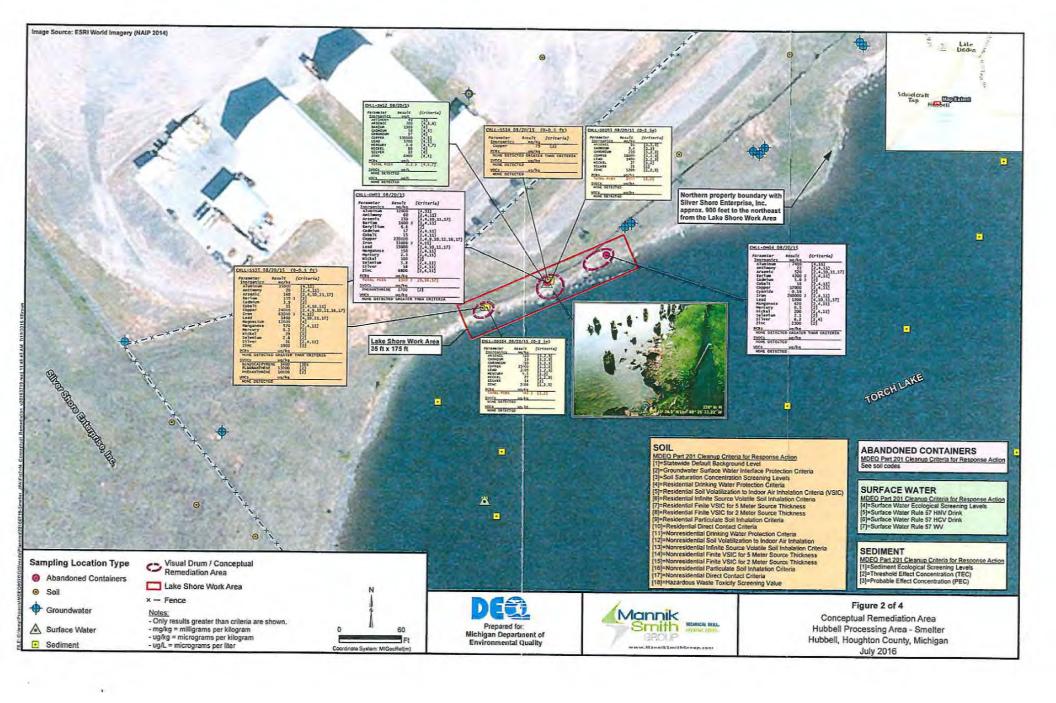
WRP5678

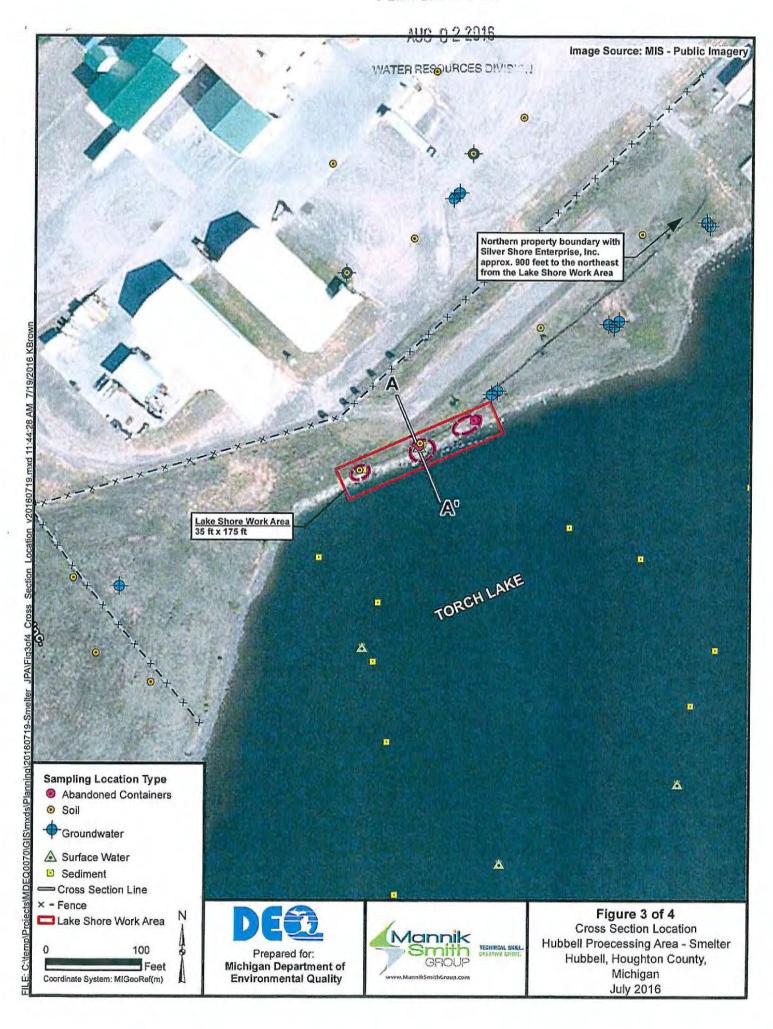
- F. It is made a requirement of this permit that the permittee give notice to public utilities in accordance with 2013 PA 174 (Act 174) and comply with each of the requirements of Act 174.
- G. This permit does not convey property rights in either real estate or material, nor does it authorize any injury to private property or invasion of public or private rights, nor does it waive the necessity of seeking federal assent, all local permits, or complying with other state statutes.
- H. This permit does not prejudice or limit the right of a riparian owner or other person to institute proceedings in any circuit court of this state when necessary to protect his rights.
- Permittee shall notify the MDEQ within one week after the completion of the activity authorized by this permit by completing and forwarding the attached preaddressed postcard to the office addressed thereon.
- J. This permit shall not be assigned or transferred without the written approval of the MDEQ.
- K. Failure to comply with conditions of this permit may subject the permittee to revocation of permit and criminal and/or civil action as cited by the specific state act, federal act, and/or rule under which this permit is granted.
- L. All dredged or excavated materials shall be disposed of in an upland site (outside of floodplains, unless exempt under Part 31 of the NREPA, and wetlands).
- M. In issuing this permit, the MDEQ has relied on the information and data that the permittee has provided in connection with the submitted application for permit. If, subsequent to the issuance of a permit, such information and data prove to be false, incomplete, or inaccurate, the MDEQ may modify, revoke, or suspend the permit, in whole or in part, in accordance with the new information.
- N. The permittee shall indemnify and hold harmless the State of Michigan and its departments, agencies, officials, employees, agents, and representatives for any and all claims or causes of action arising from acts or omissions of the permittee, or employees, agents, or representative of the permittee, undertaken in connection with this permit. The permittee's obligation to indemnify the State of Michigan applies only if the state: (1) provides the permittee or its designated representative written notice of the claim or cause of action within 30 days after it is received by the state, and (2) consents to the permittee's participation in the proceeding on the claim or cause of action. It does not apply to contested case proceedings under the Administrative Procedures Act, 1969 PA 306, as amended, challenging the permit. This permit shall not be construed as an indemnity by the State of Michigan for the benefit of the permittee or any other person.
- O. Noncompliance with these terms and conditions and/or the initiation of other regulated activities not specifically authorized shall be cause for the modification, suspension, or revocation of this permit, in whole or in part. Further, the MDEQ may initiate criminal and/or civil proceedings as may be deemed necessary to correct project deficiencies, protect natural resource values, and secure compliance with statutes.
- P. If any change or deviation from the permitted activity becomes necessary, the permittee shall request, in writing, a revision of the permitted activity from the MDEQ. Such revision request shall include complete documentation supporting the modification and revised plans detailing the proposed modification. Proposed modifications must be approved, in writing, by the MDEQ prior to being implemented.
- Q. This permit may be transferred to another person upon written approval of the MDEQ. The permittee must submit a written request to the MDEQ to transfer the permit to the new owner. The new owner must also submit a written request to the MDEQ to accept transfer. The new owner must agree, in writing, to accept all conditions of the permit. A single letter signed by both parties that includes all of the above information may be provided to the MDEQ. The MDEQ will review the request and, if approved, will provide written notification to the new owner.
- R. Prior to initiating permitted construction, the permittee is required to provide a copy of the permit to the contractor(s) for review. The property owner, contractor(s), and any agent involved in exercising the permit are held responsible to ensure that the project is constructed in accordance with all drawings and specifications. The contractor is required to provide a copy of the permit to all subcontractors doing work authorized by the permit.
- S. Construction must be undertaken and completed during the dry period of the wetland. If the area does not dry out, construction shall be done on equipment mats to prevent compaction of the soil.
- T. Authority granted by this permit does not waive permit requirements under Part 91, Soil Erosion and Sedimentation Control, of the NREPA, or the need to acquire applicable permits from the County Enforcing Agent (CEA).
- U. Authority granted by this permit does not waive permit requirements under the authority of Part 305, Natural Rivers, of the NREPA. A Natural Rivers Zoning Permit may be required for construction, land alteration, streambank stabilization, or vegetation removal along or near a natural river.
- V. The permittee is cautioned that grade changes resulting in increased runoff onto adjacent property is subject to civil damage litigation.
- W. Unless specifically stated in this permit, construction pads, haul roads, temporary structures, or other structural appurtenances to be placed in a wetland or on bottomland of the water body are not authorized and shall not be constructed unless authorized by a separate permit or permit revision granted in accordance with the applicable law.
- X. For projects with potential impacts to fish spawning or migration, no work shall occur within fish spawning or migration timelines (i.e., windows) unless otherwise approved in writing by the Michigan Department of Natural Resources, Fisheries Division.
- Y. Work to be done under authority of this permit is further subject to the following special instructions and specifications:

WRP5678

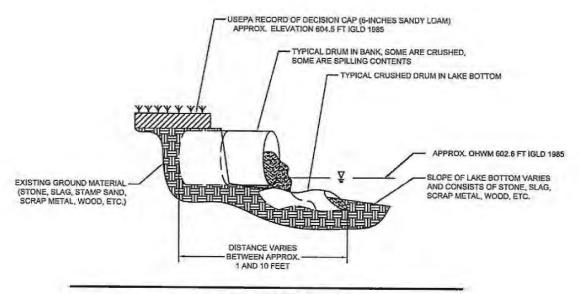
- Authority granted by this permit does not waive permit or program requirements under Part 91 of the NREPA or the need to acquire applicable permits from the CEA. To locate the Soil Erosion Program Administrator for your county, visit www.mi.gov/deqstormwater and select "Soil Erosion and Sedimentation Control Program" under "Related Links."
- 2. The authority to conduct the activity as authorized by this permit is granted solely under the provisions of the governing act as identified above. This permit does not convey, provide, or otherwise imply approval of any other governing act, ordinance, or regulation, nor does it waive the permittee's obligation to acquire any local, county, state, or federal approval or authorization necessary to conduct the activity.
- 3. No fill, excess soil, or other material shall be placed in any wetland or surface water area not specifically authorized by this permit, its plans, and specifications.
- This permit does not authorize or sanction work that has been completed in violation of applicable federal, state, or local statutes.
- 5. The permit placard shall be kept posted at the work site, in a prominent location at all times for the duration of the project, or until permit expiration.
- 6. This permit is being issued for the maximum time allowed and no extensions of this permit will be granted. Initiation of the construction work authorized by this permit indicates the permittee's acceptance of this condition. The permit, when signed by the MDEQ, will be for a five-year period beginning on the date of issuance. If the project is not completed by the expiration date, a new permit must be sought.
- 7. All fill shall consist of clean, washed rock or stone that is free of fines, other soil materials, any contaminants, or pollutants.
- 8. Prior to commencement of any dredging authorized by this permit, the entire dredged area shall be enclosed with a turbidity curtain to prevent off-site siltation. The turbidity curtain shall be installed to extend from the bed of the waterbody to a point above the existing water's surface. The turbidity curtain shall be maintained for the duration of the project and shall be left in place after completion of dredging until all disturbed sediments have settled.
- 9. No work or dredging within the water authorized by this permit is allowed from April 1 to July 1 due to critical spawning, migration, and/or recreational use periods.
- 10. All slurry resulting from any dewatering operation shall be discharged through a filter bag or pumped to a sump located away from wetlands and surface waters and allowed to filter through natural upland vegetation, gravel filters, or other engineered devices for a sufficient distance and/or period of time necessary to remove sediment or suspended particles. The discharge of slurry water resulting from the hydrodemolition of concrete is not allowed to enter a lake, stream, or wetland.
- 11. All dredge/excavated material shall be immediately placed into trucks or barges and taken to an approved upland disposal site. Placement of dredge/excavated material into open water, onto ice, or onto exposed bottomland is not authorized by this permit.
- 12. Drums shall be disposed of as hazardous waste in accordance with applicable federal, state, or local statutes.

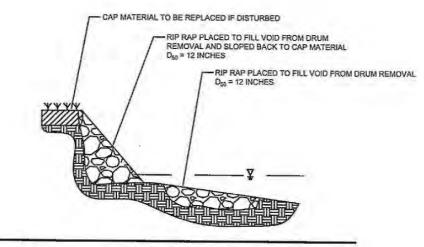

Issued By:


Helana Nelson


Upper Peninsula District Office Water Resources Division

906-202-1507


cc: Torch Lake Township Clerk Houghton County CEA



WATER RESOURCES DIVIDING

CROSS SECTION A - A' TYPICAL EXISTING CONDITIONS AT DRUM LOCATIONS

CROSS SECTION A - A' TYPICAL PROPOSED CONDITIONS

NOTES:

- ALL DIMENSIONS AND ELEVATIONS ARE APPROXIMATE.
- DRUM CONDITIONS AND LOCATIONS VARY, THE ABOVE IS A TYPICAL REPRESENTATION.

TECHNICAL SKILL. CREATIVE SPIRIT.

FIGURE 4 OF 4

CROSS SECTIONS

SMELTER DRUM INTERIM RESPONSE HUBBELL, HOUGHTON COUNTY, MICHIGAN JULY 2016

DATE	I
7/19/2016	Į

DRAWN BY JBC

DESIGNED BY PROJECT NO. JBC MDEQ0070

DEPARTMENT OF THE ARMY

DETROIT DISTRICT, CORPS OF ENGINEERS
MARQUETTE FIELD OFFICE

115 SOUTH LAKESHORE BOULEVARD, SUITE C
MARQUETTE, MICHIGAN 49855-4652

October 26, 2016

Engineering & Technical Services Regulatory Office File No. LRE-2016-00902-61

Amy Keranen
Michigan Department of Environmental Quality
Remediation and Redevelopment Division
55195 US-41 North
Calumet, Michigan 49913

Dear Ms. Keranen:

We have reviewed the application that you recently submitted for a proposed project at 52430 Highway M-26/Duncan Avenue, Hubbell, Houghton County, Michigan. During a recent telephone conversation, you confirmed that the proposed work is located in the Torch Lake Superfund site, and falls within the scope of long term monitoring, remediation, and management activities assumed by the Michigan Department of Environmental Quality's Remediation and Redevelopment Division. We have therefore determined that a Department of Army (DA) permit is not required for the work indicated on the enclosed plans, as activities undertaken entirely on a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site by authority of CERCLA as approved or required by EPA, are not required to obtain permits under Section 404 of the Clean Water Act or Section 10 of the Rivers and Harbors Act. EPA has determined, through ongoing reviews of the Torch Lake project, that "...response actions at the site are in accordance with the remedy selected by EPA...", (https://cumulis.epa.gov/supercpad/cursites/dsp_ssppSiteData1.cfm?id=0503034#Status; accessed October 26, 2016.)

Any construction activity other than shown on the plans you provided may render this review invalid. To fully document your proposed activity, we have made your application and copies of the enclosed plans a part of our permanent records.

The Corps of Engineers' authority to regulate certain activities on and adjacent to the property in question is found in Section 10 of the Rivers and Harbors Act (Section 10), and Section 404 of the Clean Water Act (Section 404).

Under Section 10, a Corps permit is required for any structures or work in navigable waters of the United States, such as the Keweenaw Waterway, to what is called the Ordinary High Water Mark (OHWM). In the Keweenaw Waterway, the OHWM extends to the elevation contour of 603.1', International Great Lakes Datum 1985. Additionally, a Section 10 permit is required for structures or work outside this limit if they affect the course, location, or condition of the waterbody as to its navigable capacity. Some typical examples of structures or work requiring Section 10 permits within this jurisdictional area include beach nourishment, boat ramps, breakwaters, bulkheads,

dredging, filling or discharging material such as sand, gravel or stones, groins and jetties, mooring buoys, piers (seasonal or permanent), placement of riprap for wave protection or streambank stabilization, boat hoists, pilings and construction of marina facilities.

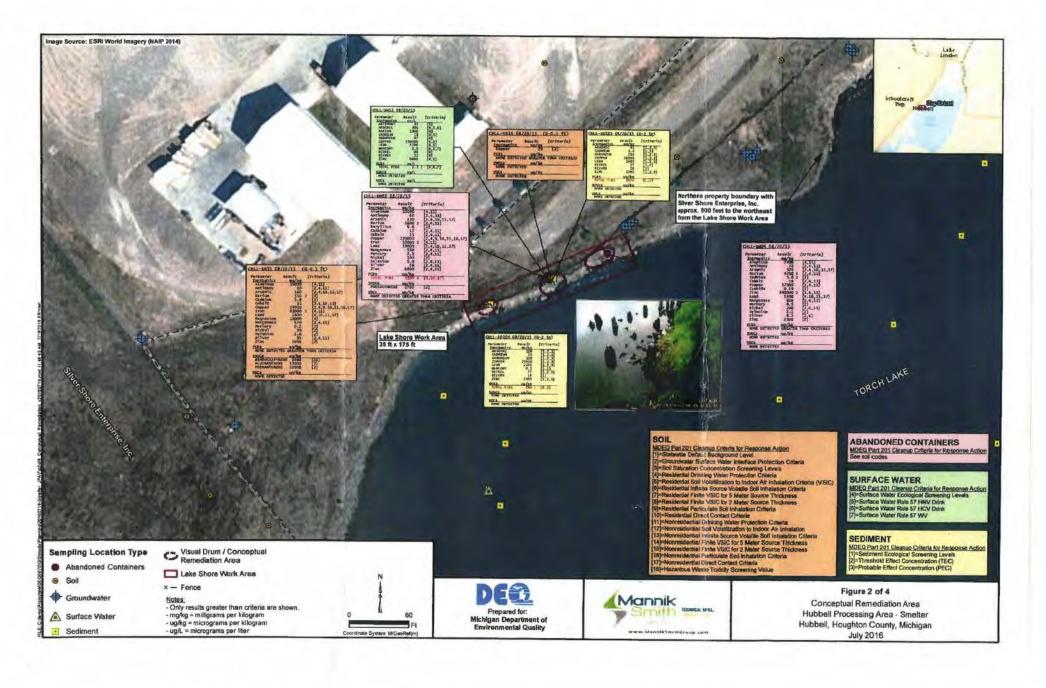
Section 404 requires a Corps permit for the discharge of dredged or fill material into navigable waters of the United States and in wetlands adjacent to those waters. The area of Corps jurisdiction under Section 404 extends to the OHWM, and to the upland boundary of any adjacent wetlands. Projects involving discharges typically include placement of fill material for homes and landscaping, impoundments, causeways, road fills, dams and dikes, riprap, groins, breakwaters, revetments, and beach nourishment. Section 404 also regulates discharges of dredged material incidental to certain activities such as grading, mechanized landclearing, ditching or other excavation activity, and the installation of certain pile-supported structures.

Should you have any questions, please contact me at the above address, by E-Mail at Jean.M.Battle2@usace.army.mil, or by telephone at 906-228-2833. In all communications, please refer to File Number LRE-2016-00902-61.

We are interested in your thoughts and opinions concerning your experience with the Detroit District, Corps of Engineers Regulatory Program. If you are interested in letting us know how we are doing, you can complete an electronic Customer Service Survey from our web site at: http://corpsmapu.usace.army.mil/cm_apex/f?p=136:4:0. Alternatively, you may contact us and request a paper copy of the survey that you may complete and return to us by mail or fax. Thank you for taking the time to complete the survey, we appreciate your feedback.

Sincerely,

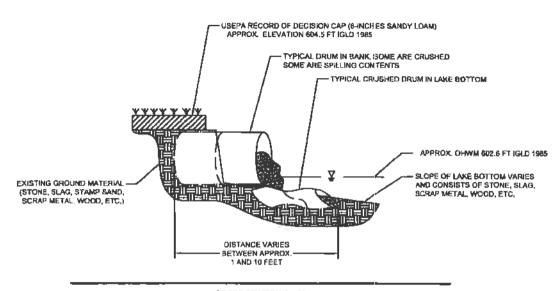
Jean Battle

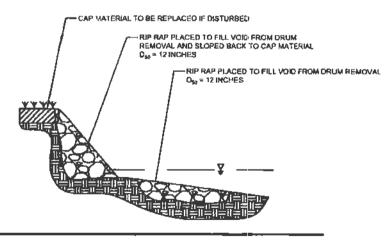

Regulatory Project Manager Marguette Field Office


Enclosure

Copy Furnished

The Mannick & Smith Group, Inc., J. Chrestensen MDEQ, L. Hansen (2HH-79K8-2XVQ)





1155 E.S.

ROES

CROSS SECTION A - A'
TYPICAL EXISTING CONDITIONS AT DRUM LOCATIONS

CROSS SECTION A - A'
TYPICAL PROPOSED CONDITIONS

NOTES:

- ALL DIMENSIONS AND ELEVATIONS ARE APPROXIMATE.
- DRUM CONDITIONS AND LOCATIONS VARY, THE ABOVE IS A TYPICAL REPRESENTATION.

FIGURE 4 OF 4

CROSS SECTIONS

SMELTER DRUM INTERIM RESPONSE Hubbell, Houghton County, Michigan July 2016

DATE	
DATE 7/19/2018	

DRAWN BY JBC VBC BY

PROJECT NO. MDEQ0070

WATER RESOURCES DIVISION
MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY
1504 WEST WASHINGTON STREET
MARQUETTE MI 49855-2141

վերի-իաիդ-վիոնդների կոնթումինեի վեն<mark>ակ</mark>

Michigan Department of Environmental Quality-Water Resources Division

NOTICE OF COMPLETION

I hereby give notice to the Michigan Department of Environmental Quality that the project, which was permitted under applicable statute provisions, has been completed.

PERMIT NUMBER

WRP 5678

PROJECT COMPLETION DATE

10/9/17

PERMITTEE'S SIGNATURE

COUNTY

Houghton

AREA CODE & TELEPHONE NUMBER

906.337.0389

Non-compliance with reporting requirements may result in monetary penalty.

Completion of this form is required under the authority of the applicable Parts of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended.

EQP 2731-1 (Rev. 7/2011)

2HH-79K8-2XVQ

APPENDIX F Removed Abandoned Container Inventory

Abandoned Mining Wastes – Torch Lake Non-Superfund Site ABANDONED CONTAINER REMOVAL INVENTORY

Table 1 **Abandoned Container Removal Summary** Hubbell Processing Area - Smelter Property C&H Lake Linden Operations Houghton County, Michigan

									П		W	aste Ch	naracteriz	zation	
Container Number	Container Identification	Sample / Inspection Date	Property Identification Number	Waste Characterization Laboratory Work Order Number	Longitude	Latitude	Container Description Notes		tainer	Container Empty?	izardous Wa	Non-Hazardous Waste	Polychlorina	RCRA Empty Drum	Recycled as Scrap Metal
Aban	doned Containers - Hubbell Process	sing Area - Smelter Prope	erty												
1	CHLL-DM04	8/20/2015	014-307-001-50	NA	-88.42264007	47.17453117	of water	During removal it was determined that CHLL-DM04 contained copper wire wrapping and electric motors. The drum and contents were recycled.	Yes	No					Х
2	CONT-002 (CHLL-DM03)	8/20/2015	014-307-001-50	1707480-08	-88.422866627	47.174452345	A drum carcass containing black solid material observed in approximately 1 foot of water	CHLL-DM03 was partially intact and contained black sludge-like, granular waste. The drum was over packed and characterized for waste disposal.	No	No	X		Х		
3	CONT-003	08/19/14 and 07/01/15	014-307-001-50	1707480-06	-88.422872653	47.174452769	Submerged drum observed in approximately 1 foot of water.	Partially intact drum with a hardened mass of waste. The drum was over packed and characterized for waste disposal.	No	No	x		Х		
4	CONT-004	08/19/14 and 07/01/15	014-307-001-50	1707480-04	-88.422872653		Submerged drum observed in approximately 1 foot of water. Protruding from the shoreline.	Partially intact drum with waste near center of test pit area. The drum was over packed and characterized for waste disposal.	No	No		х	х		
5	CONT-005	08/19/14, 07/01/15, and 7/11/17	014-307-001-50	NA	-88.423122590	47.174373113	An intact submerged drum observed in approximately 1 foot	During removal it appeared that the drum may have further degraded and shifted due to shoreline erosion since initial observation. Fragments of the drum were removed and recycled.	No	Yes				Х	Х
6	CONT-006	7/11/2017	014-307-001-50	1707480-02			A partially intact submorged drum	1/2 of an intact drum with a hardened mass of waste discovered just south of CHLL-DM03 during interim response activities. The drum was over packed and characterized for waste disposal.	No	No		Х	Х		
7	CONT-007	7/11/2017	014-307-001-50	1707480-05			A partially intact submorged drum	Partially intact drum with a hardened mass of waste with some embedded copper wire wrapping discovered 3 feet offshore of CHLL-DM04 during interim response activities. The drum was over packed and characterized for waste disposal.	No	No	Х		Х		
8	CONT-008	7/11/2017	014-307-001-50	1707480-07			A partially intact drum	Partially intact drum with a hardened mass of waste with some rebar discovered just south of CHLL-DM04 during test pitting. The drum was over packed and characterized for waste disposal.	No	No		x	х		
9	CONT-009	7/11/2017	014-307-001-50	1707480-03				Partially intact drum with waste a few feet inland of Container 8 discovered during test pitting. The drum was over packed and characterized for waste disposal.	No	No		х	Х		
10	CONT-010	7/11/2017	014-307-001-50	1707480-01			A partially intact drum	Partially intact drum with a hardened mass of granular, embedded copper wire wrap, and whitish-sludge waste (similar that observed in lake bottom drum content samples) discovered 3-5 feet inland of CHLL-DM03 during test pitting. The drum was over packed and characterized for waste disposal.	No	No	х		х		

APPENDIX G Waste Management Records

TRADEBE TREATMENT AND RECYCLING, LLC

Profile #	
Process Code	
the state of the s	

GENERATOR WASTE STREAM PROFILE SHEET Fax or email completed profile sheet to: TTR Fax: 219-397-6411 TTR NE: 203-238-6744 usa.approvals@tradebe.com GENERATOR INFORMATION: MAILING OR SITE ADDRESS CUSTOMER INFORMATION: USE CONTINUATION IF SITE & MAILING ADDRESSES ARE DIFFERENT Customer #: Generator #: Generator Name: MI DEPT of ENVIRONMENTAL QUALITY Customer Name: UP ENVIRONMENTAL SERVICES, INC. Generator Address: 55195 US-41 Customer Address: P.O. BOX 127 City: CALUMET City: BARK RIVER State: MI Zip: 49913 State: MI Contact Name: RICK RIEDY or WAYNE STENBERG AMY KERANEN Contact Name: Generator Phone: 906-337-0389 Customer Phone: 906-466-9900 Customer Fax: 906-466-2641 Generator Fax: Generator Email: KERANENA@michigan.gov Customer Email: rick@upenvironmental.com Generator USEPA/Federal ID # : MIK193755066 Customer Service/Sales Rep: Mike If no ID number is the Generator a "Conditionally Exempt Small Quantity Generator?" Yes X No Generator SIC (or NAIC) Code: Generator State ID # (If applicable): Please check if generator has "No Canada Disposal" policy Yes X No Please check if generator has "No Landfill" policy Yes X No B. WASTE STREAM INFORMATION: Generator's Waste Name: ABANDONED CONTAINERS Original Process Generating Waste: ABANDONED CONTAINER REMOVAL Is this waste exempt from RCRA regulation? Yes X No If "yes" explain or cite regulation on continuation (Example HHW, CESQG): Current method of disposal: Is this waste from a CERCLA cleanup site? Yes X No Waste determination was made by: X Testing Generator Knowledge (Attach analytical, MSDS, or other supporting documentation used for waste determination) Does the Waste have any of the following characteristics? Yes (if yes check all that apply) Organic Peroxide Dioxin or Suspect Water Reactive Air Reactive Oxidizer Hexachrome Infectious Waste Radioactive Chelating Agent Lachrymator Explosive Shock Sensitive Polymerizer Pyrophoric Inhalation Hazard, Zone GENERAL CHARACTERISTICS: Color: VARIES
Odor: PETROLE Physical state @ 70 F **Phases** BTU/Ib pH X <3000(Ex: water) <2 (Acid) __10.0-12.5 2.0-4.0 __>12.5 (Base) Odor: % liquid aerosol X single layer 2.0-4.0 None 3,000-5,000 100 % solid powder double layer X Mild X 4.0-10.0 % sludge other >2 layers 5,000-10,000 >10,000 (Ex: oil) Strong % debris how many? 100 to 139 F <73 F 140 to 200 F X >200 F Liquid Flashpoint: 73 to 99 F None % **Boiling Point** Specific Gravity: Total Halogens: Total Organic Carbon (TOC): Viscosity. D. CHEMICAL COMPOSITION: Total of Maximum concentration must be > or = to 100%. Constituents Min% Max% Min% Max% ppm See attached lab results for 010,007,003, and (100 100 Sludge Does the Waste contain any of the following? Yes X No If yes, Describe Metal: Metal Pieces: Yes X No Metal Powder or Flake: Nitrocellulose: Yes X No Sherps: Yes Yes X No Asbestos: (If yes, must be double bagged and wetted) Isocyanates: Reactive cyanide: (If yes, indicate level in ppm) Yes X No Range of reactive cyanide Yes X No Reactive sulfide: (If yes, Indicate level in ppm) Range of reactive sulfide 50-499 ppm PCBs: None X 0-49 ppm 500+ ppm (If waste contains PCBs, certification form is required) Does the waste contain Benzene? Yes X No

If yes, check all SIC codes that cover operations at your facility

2812 2813 2816 2819 2821 2822 2823 2824 2833 2834 2835 2836 2841 2842 2843 2844 2851 2865 2869 2873 2874 2875 2879 2891 2892 2893 2896 2898 2891 2999 3312 4953 4959 9511 If waste contains benzene and falls under one of the above SIC codes, Tradebe's benzene NESHAP form is required for each shipment

Yes

No

or waste streams being							
hases: Oil%	Water	% Interfa	ce%	Sediments _	% DNAI	PL%	
			and the second		_		
etroleum Suspected	Actual	Aqueous	Suspected	Actual	Aqueous	Suspected	Actual
hase Level	Level	Phase	Level	Level	Phase	Level	Level
CB		Copper			Cobalt		
alogens		Cadmium			Mercury		
olvents		Chromium			Arsenic		
rsenic		Lead			Barium		
admium		Nickel			Sulfides		
hromium		Silver			Cyanides		
ead		Zinc			Phenols		
		COD			Glycols		
		Iron			Selenium		
st Specific Solvents:							
OTHER WASTE STR	EAM INFORM	ATION:					
s the Waste subject to R Does the Waste contain a Does waste contain EPCI If yes list in Additional li Does this waste contain a of Homeland Security)? F. RCRA CHARACTER Is this a USEPA Hazardor Is this a Universal Waste Please list any characteris	any Class I or C RA 313 chemic information on any Chemicals of fyes please IZATION: us Waste as d per 40 CFR pa	Class II ozone-cals identified in Continuation Proof Interest lister list in Additional efined in 40 CF art 273?	depleting subs n 40 CFR 372. age. Id in 6 CFR Pa al Information	tances? 65? rt 27 Appendix A	4 (Department	Yı	es X No
If yes identify those che lease list any applicable	micals in Appe "F" or "K" code	endix I - Underl e:			68.7)	Y	es_X_No
If yes identify those che Please list any applicable Please list any state regulation S. SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If G	emicals in Appe	endix I - Underles EY: roximately how size in describe:	ying Hazardou many gallons gallons	? Bull Pla	k Solids(roll-ofi stic	f box, vacuum t	
If yes identify those che Please list any applicable Please list any applicable Please list any state regul S. SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If G X Drums (Specify size) s waste a combination pa	emicals in Appe "F" or "K" code "U" or "P" code lated codes:	CY: roximately how size in describe: 30 15 rum with inner	many gallons gallons Metal	? Bull Plastic	k Solids(roll-ofi stic Fiberboar	f box, vacuum b	es_X_No
If yes identify those che Please list any applicable Please list any applicable Please list any state regul S. SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If G X Drums (Specify size) s waste a combination pa	emicals in Apper "F" or "K" code "U" or "P" code lated codes: Separate Proper Apper Totes other, please of) X85 55 ackage (e.g. D mber of Units	CY: roximately how size in describe: 30 15 rum with inner	many gallons gallons Metal	Plastic skid with cases of	k Solids(roll-ofi stic Fiberboar	f box, vacuum t d oducts)Yo	oox, etc)
If yes identify those che lease list any applicable lease list any state regul SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If of Waste a combination pathipping Frequency: Nu	emicals in Apper "F" or "K" code "U" or "P" code lated codes; App. Totes other, please of) X85 55 ackage (e.g. D mber of Units	CY: roximately how size in describe: 30 15 rum with inner	many gallons gallons Metal containers or s	Plastic Skid with cases of Quarter	k Solids(roll-ofi stic Fiberboar	box, vacuum t d oducts)Y Other ONCE	oox, etc) esNo
If yes identify those che lease list any applicable lease list any state regul lease list any state regul S. SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If of X Drums (Specify size) s waste a combination pathipping Frequency: Nu	emicals in Apper "F" or "K" code "U" or "P" code lated codes; App. Totes other, please of) X85 55 ackage (e.g. D mber of Units RMATION of Transportal	CY: roximately how size in describe: 30 15 rum with inner Per	many gallons gallons Metal containers or Month	Plastic skid with cases of Quarter	k Solids(rolf-ofi stic Fiberboar of consumer pr Year X	f box, vacuum t d oducts)Y(Other ONCE	oox, etc) esNo
If yes identify those che lease list any applicable lease list any state regul lease list any state regul S. SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If of X Drums (Specify size) s waste a combination pathipping Frequency: Nu	emicals in Apper "F" or "K" code "U" or "P" code lated codes; App. Totes other, please of) X85 55 ackage (e.g. D mber of Units RMATION of Transportal	CY: roximately how size in describe: 30 15 rum with inner Per	many gallons gallons Metal containers or Month	Plastic skid with cases of Quarter	k Solids(rolf-ofi stic Fiberboar of consumer pr Year X	box, vacuum t d oducts)Y Other ONCE	oox, etc) esNo
If yes identify those che clease list any applicable clease list any state regul clease list any applicable cleas	emicals in Apper "F" or "K" code "U" or "P" code lated codes; Separate of Transportal FR 172.101 Ha	CY: roximately how size in describe: 30 15 rum with inner Per	many gallons gallons 5Metal containers or sMonth	Plastic Skid with cases of Quarter HAZAR	k Solids(roll-of stic Fiberboar of consumer pr Year X	f box, vacuum b d oducts) Yo Other ONCE	oox, etc) esNo
If yes identify those che lease list any applicable lease list any applicable lease list any state regul S. SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If of X. Drums (Specify size) s waste a combination pathipping Frequency: Nur I. DOT SHIPPING INFO Is this a U.S. Department hipping Name per 49 CF	emicals in Apper "F" or "K" code "U" or "P" code lated codes; Separate of Transportal FR 172.101 Ha	CY: roximately how size in describe: 30 15 rum with inner Per	many gallons gallons 5Metal containers or sMonth	Plastic skid with cases of Quarter	k Solids(roll-of stic Fiberboar of consumer pr Year X	d oducts) You Other ONCE	oox, etc) esNo
If yes identify those che lease list any applicable lease list any applicable lease list any state regul S. SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If County American Company (Specify size, as waste a combination pathipping Frequency: Number 1975 Number 19	emicals in Apper "F" or "K" code "U" or "P" code lated codes: September of Transportate RMATION of Transportate The public of Transportate	CY: roximately how size in describe: 30 _ 15 _ rum with inner Per tion (USDOT) H azardous Mater	many gallons gallons 5Metal containers or s _Month Hazardous Malials Table: Packing Gro	Plastic Skid with cases of Quarter HAZAR	k Solids(roll-of stic Fiberboar of consumer pr Year X	f box, vacuum to doducts) You Other ONCE	pox, etc) BSNo ResNo 17
If yes identify those che lease list any applicable lease list any applicable lease list any state regul SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If a X Drums (Specify size, waste a combination pa hipping Frequency: Nur DOT SHIPPING INFO Is this a U.S. Department hipping Name per 49 CF lazard Class or Division: echnical descriptors if re	emicals in Apper "F" or "K" code "U" or "P" code lated codes: September of Transportate RMATION of Transportate The public of Transportate	CY: roximately how size in describe: 30 _ 15 _ rum with inner Per tion (USDOT) H azardous Mater	many gallons gallons 5Metal containers or s _Month Hazardous Malials Table: Packing Gro	Plastic Skid with cases of Quarter HAZAR	k Solids(roll-of stic Fiberboar of consumer pr Year X	d oducts) You Other ONCE	pox, etc) BSNo ResNo 17
If yes identify those che lease list any applicable lease list any applicable lease list any state regul SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If County County (Specify size) waste a combination pathipping Frequency: Nur DOT SHIPPING INFO this a U.S. Department hipping Name per 49 CF azard Class or Division: echnical descriptors if re	emicals in Apper "F" or "K" code "U" or "P" code lated codes: September of Transportate RMATION of Transportate The public of Transportate	CY: roximately how size in describe: 30 _ 15 _ rum with inner Per tion (USDOT) H azardous Mater	many gallons gallons 5Metal containers or s _Month Hazardous Malials Table: Packing Gro	Plastic Skid with cases of Quarter HAZAR	k Solids(roll-of stic Fiberboar of consumer pr Year X	f box, vacuum to doducts) You Other ONCE	pox, etc) BSNo ResNo 17
If yes identify those che lease list any applicable lease list any applicable lease list any state regul S. SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If of X. Drums (Specify size) Swate a combination pathipping Frequency: Nur I. DOT SHIPPING INFO Sthis a U.S. Department Chipping Name per 49 CF Lazard Class or Division: Lechnical descriptors if resort Special Permit that in	emicals in Appe "F" or "K" code "U" or "P" code lated codes: SEREQUENT App Totes other, please of ackage (e.g. D mber of Units RMATION of Transportal FR 172.101 Ha 9 UN// equired: may apply (Inc.	CY: roximately how size in describe: 30 _ 15 _ rum with inner Per tion (USDOT) H azardous Mater	many gallons gallons 5Metal containers or s _Month Hazardous Malials Table: Packing Gro	Plastic Skid with cases of Quarter HAZAR	k Solids(roll-of stic Fiberboar of consumer pr Year X	f box, vacuum to doducts) You Other ONCE	pox, etc) esNo esNo 17
Please list any applicable Please list any applicable Please list any state regul S. SHIPPING VOLUME Bulk Liquid (tanker) Cubic Yard Boxes Skid Other If of X Drums (Specify size) Swaste a combination pashipping Frequency: Nu H. DOT SHIPPING INFO Is this a U.S. Department Shipping Name per 49 CF Hazard Class or Division: Fechnical descriptors if report Special Permit that in GENERATOR CERTII agree by affixing my authorized sign Composition or properties exist and it escribed herein shall in all respects bove and give Tradebe permission	emicals in Apper "F" or "K" code "U" or "P" code lated codes: & FREQUENT App Totes other, please of) X85 55 ackage (e.g. D mber of Units RMATION of Transportat FR 172.101 Ha g UN/I equired: may apply (Inc. FICATION: hal all known or susy be consistent with the document to make Keya we see	CY: roximately how size in describe: 30 15 rum with inner Per tion (USDOT) Hazardous Mater NA#: 3077	many gallons gallons gallons 5 Metal containers or something Month Hazardous Mailals Table: Packing Grogermit):	Plastic skid with cases of Quarter derial? HAZAR up: I II	k Solids(rott-offstic Fiberboar of consumer pr Year X DOUS WAST X III ERG #: RQ if I Inhalati curate and that no o	f box, vacuum to doducts) You ONCE X You SOLID, NOS equired: on Hazard: Zon	esNo
If yes identify those che lease list any applicable lease list any applicable lease list any state regulates list and list an	emicals in Apper "F" or "K" code "U" or "P" code lated codes; & FREQUENT App Totes other, please of) X85 55 ackage (e.g. D mber of Units RMATION of Transportal FR 172.101 Ha 9 UN/I equired; may apply (Incompleted in the completed in the com	CY: roximately how size in describe: 30 15 rum with inner Per tion (USDOT) Hazardous Mater NA #: 3077	many gallons gallons gallons 5 Metal containers or seminary gallons Facking Growth Packing Growth	Plastic skid with cases of Quarter terial? HAZAR up: _ I _ II tion is complete and achat all shipments refere ample provided to Tradam an authorized agent Title:	k Solids(rolf-ofistic Fiberboar f consumer pr Year X DOUS WAST RQ if inhalati curate and that no o	f box, vacuum to doducts)	esNo
If yes identify those che Please list any applicable Please list any applicable Please list any state regul Please list any applicable Please list any applicabl	emicals in Apper "F" or "K" code "U" or "P" code lated codes; & FREQUENT App Totes other, please of) X85 55 ackage (e.g. D mber of Units RMATION of Transportal FR 172.101 Ha 9 UN/I equired; may apply (Incompleted in the completed in the com	CY: roximately how size in describe: 30 15 rum with inner Per tion (USDOT) Hazardous Mater NA #: 3077	many gallons gallons gallons 5 Metal containers or seminary gallons Facking Growth Packing Growth	Plastic skid with cases of Quarter terial? HAZAR up: _ I _ II tion is complete and achat all shipments refere ample provided to Tradam an authorized agent Title:	k Solids(rolf-ofistic Fiberboar f consumer pr Year X DOUS WAST RQ if inhalati curate and that no o	f box, vacuum to doducts)	esNo
If yes identify those che lease list any applicable lease list any applicable lease list any state regulates list and list an	emicals in Apper "F" or "K" code "U" or "P" code lated codes; & FREQUENI App. Totes other, please of) X85 55 ackage (e.g. D mber of Units RMATION of Transportal FR 172.101 Ha 9 UN/I equired; may apply (Inc. FICATION: nature that I hereby of hal all known or susp be consistent with the and consent to make Kera Kera Please indicate	CY: roximately how size in describe: 30 15 rum with inner Per tion (USDOT) Hazardous Mater NA #: 3077	many gallons gallons gallons 5 Metal containers or seminary many gallons 5 Metal containers or seminary many gallons Packing Growth many gallons and attached descriptions and that it is projections and the projections are projections are projections.	Plastic skid with cases of Quarter terial? HAZAR up: _ _	Fiberboar Fiberboar f consumer pr Year X DOUS WAST RQ if inhalati curate and that no o encing the profile num elbe is representative of the generator.	f box, vacuum to doducts)	esNo
If yes identify those che lease list any applicable lease list any applicable lease list any state regul lease list any state lease list and lease lease lease last list and lease lease last list lease lease last list lease lease last list lease l	emicals in Apper "F" or "K" code "U" or "P" code lated codes; & FREQUENT App. Totes other, please of) X85 55 ackage (e.g. D mber of Units RMATION of Transportal FR 172.101 Ha 9 UN/I equired; may apply (Inc. FICATION: hall known or susp be consistent with the and consent to make Kera key Please indicate N	CY: roximately how size in describe: 30 15 rum with inner Per tion (USDOT) Hazardous Mater NA #: 3077	many gallons gallons gallons 5 Metal containers or seminary gallons Facking Growth gard attached description and attached descriptions and that it is the control of the	Plastic skid with cases of Quarter terial? HAZAR up: _ _	k Solids(rolf-ofistic Fiberboar f consumer pr Year X DOUS WAST RQ if Inhalati curate and that no o encing the profile num ebe is representative of the Generator.	f box, vacuum to doducts)	esNotes

×

TRADEBE TREATMENT AND RECYCLING, LLC

Profile	#		

GENERATOR WASTE STREAM PROFILE ADDITIONAL INFORMATION SHEET PLEASE PRINT IN INK OR TYPE

Site Address (if different from gene				
Site Name (if different from generator):		ONED MINING WASTES PROJECT-	-TORCH LAKE
Pick-up Address:		526	4 HIGHWAY M-26	
Additional Location Identification: City: HUBBELL State: MI	Zip: 49	9934		-
Contact Name: Amy Keranen	_ Zip	7534		
Contact Phone: 906-337-0389		_		
Contact Fax:	_			
Generator USEPA/Federal ID # (if dif	ferent than gen-	erators):	MIK193755066	
	3			
Facility Restrictions (if any):				
B. WASTE STREAM INFORMATIO				
Exemption: The waste described on (Cite regulation exempting waste fro		et is exemp	bt/excluded from RCRA regula	ation under:
(one regulation exampling made in				
D. CHEMICAL COMPOSITION CO	NTINUATION:	Total of N		t be > or = to 100%.
Constituents	Min% Max%	ppm	Constituents	Min% Max% ppm
			3/	
			-	
			*	
G. R.C.R.A. CHARACTERIZATION	ONTINUATI	ON:		
Additional characteristic codes (D00		te carries a	characteristic code, please o	heck all applicable Underlying
Hazardous Constituents in Appendix	CI:			
List additional F or K codes:				
List additional U or P codes:				
Additional State codes if required:				
-				
ADDITIONAL INFORMATION				
(Use this space to include any other	information abo	out this wa	ste)	

Tradebe Treatment and Recycling, LLC 4343 KENNEDY AVE; EAST CHICAGO, IN 46312

4343 KENNEDY AVE; EAST CHICAGO, IN 48312 Ph: 800-388-7242 / Fx: 219-397-6411 5485 VICTORY LANE; MILLINGTON, TN 38053 Ph: 888-724-6366 / Fx: 901-353-9471

PCB Certification

The Environmental Protection Agency published its "anti-dilution" provision 40 CFR 761.1(b), which effects the disposal of Polychlorinated Biphenyl (PCBs). The provision states: "No provision specifying a PCB concentration may be avoided as a result of any dilution, unless otherwise specifically provided". Thus, in general, materials are required to be disposed of according to their original concentration.

Waste Stream Number: (Please have a Company Representative who performs "waste determination" from where the waste was generated of totowing.) I,	Generator Nar Address: 52	ne: MI DEPT	of Environ	City:	Hu B	906 - 337- 038 8ELL State: MI
I, Any Keromen, am an authorized representative of the above in			m who norform		on" tom whee	n ho weste was concented cortify t
Generator. For the waste stream mentioned above I do hereby certify the following: The waste contains no PCB's. This has been verified by: Manufacturer's labeling Analytical (if verified by enalytical please attach) Contains intact NON-leaking TSCA Exempt ballasts The resulting PCB concentration (<50ppm) is not a result of dilution, or leaks and spills of PCB in concentratione equal to or greater than 50ppm. Therefore the waste <u>should not</u> be manage a TSCA waste. (Analytical must be provided to show current PCB levels) The containers of waste were generated from multiple sources, therefore only containers that in a concentration of >30ppm will be rejected to an alternate facility). The containers of waste were generated from a single source. Therefore all of the containers genome the same source (i.e. tank clean out) will be managed as TSCA waste regardless of the FThe TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.	1.					•
The waste contains no PCB's. This has been verified by: Manufacturer's labelingAnalytical (if verified by analytical please attach) Contains intact NON-leaking TSCA Exempt ballasts The resulting PCB concentration (<50ppm) is not a result of dilution, or leaks and spills of PCB in concentratione equal to or greater than 50ppm. Therefore the waste <u>should not</u> be managed a TSCA waste. (Analytical must be provided to show current PCB levels) The containers of waste were generated from multiple sources, therefore only containers that in a concentration of >30ppm will be rejected to an alternate facility). The containers of waste were generated from a single source. Therefore all of the containers generated from the same source (i.e. tank clean out) will be managed as TSCA waste regardless of the FThe TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.	I,A_	y Keranes	1	, am an autho	orized repre	senative of the above named
Manufacturer's labeling Analytical (If verified by enalytical please attach) Contains intact NON-leaking TSCA Exempt ballasts The resulting PCB concentration (<50ppm) is not a result of dilution, or leaks and spills of PCB in concentratione equal to or greater than 50ppm. Therefore the waste should not be managed a TSCA waste. (Analytical must be provided to show current PCB levels) The containers of waste were generated from multiple sources, therefore only containers that in a concentration of >30ppm are TSCA regulated. (Due to Tradebe's Policy containers that in a concentration of >30ppm will be rejected to an alternate facility). The containers of waste were generated from a single source. Therefore all of the containers generated from the same source (i.e. tank clean out) will be managed as TSCA waste regardless of the FThe TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.	Generator. Fo	(Print Name) or the waste stream i	mentioned al	oove I do hereby	certify the f	ollowing:
Manufacturer's labeling Analytical (If verified by enalytical please attach) Contains intact NON-leaking TSCA Exempt ballasts The resulting PCB concentration (<50ppm) is not a result of dilution, or leaks and spills of PCB in concentratione equal to or greater than 50ppm. Therefore the waste should not be manage a TSCA waste. (Analytical must be provided to show current PCB levels) The containers of waste were generated from multiple sources, therefore only containers that in a concentration of >30ppm are TSCA regulated. (Due to Tradebe's Policy containers that in a concentration of >30ppm will be rejected to an alternate facility). The containers of waste were generated from a single source. Therefore all of the containers g from the same source (i.e. tank clean out) will be managed as TSCA waste regardless of the FThe TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.	The weeks	containe so BCB's	This has be	on verified he		
Contains intact NON-leaking TSCA Exempt ballasts The resulting PCB concentration (<50ppm) is not a result of dilution, or leaks and spills of PCB in concentratione equal to or greater than 50ppm. Therefore the waste <u>should not</u> be managed a TSCA waste. (Analytical must be provided to show current PCB levels) The containers of waste were generated from multiple sources, therefore only containers that of PCBs greater or equal to 50ppm are TSCA regulated. (Due to Tradebe's Policy containers that in a concentration of >30ppm will be rejected to an alternate facility). The containers of waste were generated from a single source. Therefore all of the containers generated from a single source. Therefore all of the containers generated from the same source (i.e. tank clean out) will be managed as TSCA waste regardless of the FThe TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.	Man	ufacturer's labeling		•		
The resulting PCB concentration (<50ppm) is not a result of dilution, or leaks and spills of PCB in concentratione equal to or greater than 50ppm. Therefore the waste <u>should not</u> be managed a TSCA waste. (Analytical must be provided to show current PCB levels) The containers of waste were generated from multiple sources, therefore only containers that of PCBs greater or equal to 50ppm are TSCA regulated. (Due to Tradebe's Policy containers that in a concentration of >30ppm will be rejected to an alternate facility). The containers of waste were generated from a single source. Therefore all of the containers of from the same source (i.e. tank clean out) will be managed as TSCA waste regardless of the FThe TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.	Anal	ytical (If verified by a	analytical plei	ase attach)		
In concentratione equal to or greater than 50ppm. Therefore the waste <u>should not</u> be manage a TSCA waste. (Analytical must be provided to show current PCB levels) The containers of waste were generated from multiple sources, therefore only containers that of PCBs greater or equal to 50ppm are TSCA regulated. (Due to Tradebe's Policy containers that in a concentration of >30ppm will be rejected to an alternate facility). The containers of waste were generated from a single source. Therefore all of the containers generated from the same source (i.e. tank clean out) will be managed as TSCA waste regardless of the FThe TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.	Contains in	ntact NON-leaking 7	TSCA Exemp	ot ballasts		
a TSCA waste. (Analytical must be provided to show current PCB levels) The containers of waste were generated from multiple sources, therefore only containers that of PCBs greater or equal to 50ppm are TSCA regulated. (Due to Tradebe's Policy containers that in a concentration of >30ppm will be rejected to an alternate facility). The containers of waste were generated from a single source. Therefore all of the containers of from the same source. (i.e. tank clean out) will be managed as TSCA waste regardless of the FThe TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.	The result	ing PCB concentration	on (<50ppm) reater than 5	is not a result of	dilution, or	leaks and spills of PCBs
PCBs greater or equal to 50ppm are TSCA regulated. (Due to Tradebe's Policy containers that in a concentration of >30ppm will be rejected to an alternate facility). The containers of waste were generated from a single source. Therefore all of the containers g from the same source. (i.e. tank clean out) will be managed as TSCA waste regardless of the FThe TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.						
in a concentration of >30ppm will be rejected to an alternate facility). The containers of waste were generated from a single source. Therefore all of the containers g from the same source (i.e. tank clean out) will be managed as TSCA waste regardless of the FThe TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.						
from the same source (i.e. tank clean out) will be managed as TSCA waste regardless of the F The TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.						s Policy containers that conta
The TSCA containers will be rejected back to the generator or to an alternate facility. If the above choices do not describe your waste please use this space: This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatment.						
This document certifies that the above listed material(s) have been properly packaged in accordance to Tradebe Treatm						
	If the abov	e choices do not de:	scribe your w	aste please use	this space:	•
			<u> </u>	·	<u> </u>	
Recycling, LLC (Tradebe) policies and procedures. We further certify that the material(s) is/are stable for handling an						
transportation under normal conditions. As indicated by my signature below, the above listed company indemnifies Transportation under normal conditions.						
Treatment and Recycling, LLC and any disposal outlets used by Tradebe of any and all liability associated with the transportation, handling, and disposal of the materials listed above.		wycung, LLC ana any at	_		ny and all lial	vility associated with the
			the materials lis	ted above.		
Name (Print): Amy Keranen for MOED Title: Dro Jet man	transportation,ha	mdling, and disposal of t	radio	100	Title:	Drottet manage

Requested Facility: K & W LANDFILL	☐ Unsure Profile Number:				
☐ Multiple Generator Locations (Attach Locations) ☐ Request Certifications	ate of Disposal Renewal? Original Profile Number:				
A. GENERATOR INFORMATION (MATERIAL ORIGIN) 1. Generator Name: Michigan Depart. of Environmental Quality 2. Site Address: 52430 Highway M-26 (Duncan Avenue) (City, State, ZIP) Hubbell, MI 49934 3. County: Houghton	B. BILLING INFORMATION 1. Billing Name: UP Environmental Services, Inc. 2. Billing Address: P.O. Box 127 (City, State, ZIP) Bark River, MI 49807 3. Contact Name: Rick Riedy or Wayne Stenberg				
4. Contact Name: Amy Keranen	4. Email: rick@upenvironmental.com				
5. Email: KERANENA@michigan.gov	5. Phone: <u>906-466-9900</u> 6. Fax: <u>906-466-2641</u>				
6. Phone: 906-337-0389 7. Fax:	7. WM Hauled? ☐ Yes ☑ No				
8. Generator EPA ID:	8. P.O. Number: verbal Rick				
9. State ID: 🗹 N/A	9. Payment Method:				
C. MATERIAL INFORMATION 1. Common Name: Mon-Hezardous Waste Describe Process Generating Material: See Attached	D. REGULATORY INFORMATION 1. EPA Hazardous Waste?				
	2. State Hazardous Waste? ☐ Yes ☑ No				
Excavation of abandoned 55 gallon drums presently stored in 85 gallon drums.	Code: 3. Is this material non-hazardous due to Treatment, Delisting, or an Exclusion? Yes* No				
2. Material Composition and Contaminants:	4. Contains Underlying Hazardous Constituents? ☐ Yes* ☑ No				
1. NON-HAZARDOUS WASTE 0-100 %	5. From an industry regulated under Benzene NESHAP? ☐ Yes* ☑ No 6. Facility remediation subject to 40 CFR 63 GGGGG? ☐ Yes* ☑ No				
2.	7. CERCLA or State-mandated clean-up?				
3.	8. NRC or State-regulated radioactive or NORM waste? Yes* No				
4.	*If Yes, see Addendum (page 2) for additional questions and space.				
Total comp. must be equal to or greater than 100% ≥100%	9. Contains PCBs? → If Yes, answer a, b and c. ✓ Yes ☐ No				
3. State Waste Codes:	a. Regulated by 40 CFR 761? ☐ Yes ☑ No				
4. Color: Various	b. Remediation under 40 CFR 761.61 (a)? ☐ Yes ☑ No				
5. Physical State at 70°F: ☑ Solid ☐ Liquid ☐ Other:	c. Were PCB imported into the US?				
6. Free Liquid Range Percentage: to	10. Regulated and/or Untreated ☐ Yes ☑ No				
8. Strong Odor: Yes No Describe:	Medical/Infectious Waste? 11. Contains Asbestos?				
9. Flash Point: □ <140°F □ 140°-199°F Ø ≥200° □ N/A	→ If Yes: □ Non-Friable □ Non-Friable - Regulated □ Friable				
E. ANALYTICAL AND OTHER REPRESENTATIVE INFORMATION 1. Analytical attached Please identify applicable samples and/or lab reports:	F. SHIPPING AND DOT INFORMATION 1. ☑ One-Time Event ☐ Repeat Event/Ongoing Business 2. Estimated Quantity/Unit of Measure: Four				
Cont-006, Cont-009, Cont-004, Cont-008 in attached analytical data	☐ Tons ☐ Yards ☑ Drums ☐ Gallons ☐ Other:				
report.	3. Container Type and Size: 85 Gallons Overpack Steel Drums				
2. Other information attached (such as MSDS)? ☐ Yes	4. USDOT Proper Shipping Name: 💆 N/A				
2. Oale mornation attached (adenta mass):					
G. GENERATOR CERTIFICATION (PLEASE READ AND CERTIFY BY SIGNATURE) By signing this EZ Profile™ form, I hereby certify that all information submitted in this and all relevant information necessary for proper material characterization and to identify kno from a sample that is representative as defined in 40 CFR 261 – Appendix 1 or by using a in the process or new analytical) will be identified by the Generator and be disclosed to W	own and suspected hazards has been provided. Any analytical data attached was derived an equivalent method. All changes occurring in the character of the material (i.e., changes				
If I am an agent signing on behalf of the Generator, I have confirmed with the Generator that information contained in this Profile is accurate and complete.	Certification Signature —				
Name (Print): Amy Keranen DEQ Date: 7-25-17	G Variant				
Title: EQA - Project Mgn MDEO	Cy Kerane, DER				
Company: State of MT DEG					

EZ Profile™ Addendum

C. MATERIAL INFORMATION			
Describe Process Generating Material (Continued from page 1):	If more space is needed, please attac	n additiona	pages
Material Composition and Contaminants (Continued from page 1):	If more space is needed, please attac	additiona	Inanes
5.	ii more space is needed, please actac	Budiciona	pages
6.		1	
7.			
8.			_
9.			
	mposition must be equal to or greater than 100%	≥10	0%
D. REGULATORY INFORMATION			
Only questions with a "Yes" response in Section D on the EZ Profile™ fo	rm (page 1) need to be answered here.		
1. EPA Hazardous Waste			
a. Please list all USEPA listed and characteristic waste code numbers:			
b. Is the material subject to the Alternative Debris standards (40 CFR 268.4	512	☐ Yes	ON
c. Is the material subject to the Alternative Debits standards (40 CFR 268.49)?		☐ Yes	
d. Is the material exempt from Subpart CC Controls (40 CFR 264.1083)?	7 If res, complete question 4.	☐ Yes	-
→ If Yes, please check one of the following:		- 162	- N
	64 1092(5)(2) 25 (5)(4))		
☐ Waste meets LDR or treatment exemptions for organics (40 CFR 2			
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 			
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes:)(1)) – will require annual update.		
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: 3. For material that is Treated, Delisted, or Excluded → Please indicate the cat)(1)) – will require annual update. egory, below:		
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 26 	(1)) – will require annual update. egory, below: 51.4 → Specify Exclusion:		
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 26 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 	(1)) – will require annual update. egory, below: 51.4 → Specify Exclusion: Waste → If checked, complete question 4.		
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 26 	(1)) – will require annual update. egory, below: 51.4 → Specify Exclusion: Waste → If checked, complete question 4.		
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes:	egory, below: 61,4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents:		
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes:	egory, below: 51.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery		
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ 3. For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 20 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying Hazard	egory, below: 51.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery	☐ Yes	□ N
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ 3. For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 20 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying Hazard	egory, below: 51.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery		
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ 3. For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 20 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying Hazard	egory, below: 51.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery ire. If not, continue.	☐ Yes☐ Yes	D No
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ 3. For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 20 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying List a	egory, below: 51.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery ire. If not, continue.	☐ Yes☐ Yes☐ Mg ☐ ≥	ppmv 10 M
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 20 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying Hazardous	egory, below: 51.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery ire. If not, continue.	☐ Yes☐ Yes	ppmv 10 M
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ Ror material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 20 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying Hazardous	egory, below: 51.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery ire. If not, continue.	☐ Yes☐ Yes☐ Mg ☐ ≥☐ Yes☐ Yes☐	ppmv 10 Mg
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 26 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying Hazardous	egory, below: 61.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery ire. If not, continue.	☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes	PPMV 10 Mc
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 26 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying Hazardous 6. Underlying Hazardous Constituents → Please list all Underlying Hazardous 6. Industries regulated under Benzene NESHAP include petroleum refineries, chemia. Are you a TSDF? → If yes, please complete Benzene NESHAP questionna b. Does this material contain benzene? If yes, what is the flow weighted average concentration? What is your facility's current total annual benzene quantity in Megagrams d. Is this waste soil from a remediation? If yes, what is the benzene concentration in remediation waste? Does the waste contain >10% water/moisture? Has material been treated to remove 99% of the benzene or to achieve < 	egory, below: 61.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery ire. If not, continue.	☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes	ppmv 10 Mg ppmv no No
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 20 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying Hazardous	egory, below: 61.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery ire. If not, continue.	☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes	ppmv 10 Mg ppmv no No
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 20 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying Hazardous	egory, below: 61.4 → Specify Exclusion: Waste → If checked, complete question 4. Constituents: cal manufacturing plants, coke by-product recovery ire. If not, continue.	☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes	ppmv 10 M ppmv no No
 □ Waste meets LDR or treatment exemptions for organics (40 CFR 2 □ Waste contains VOCs that average <500 ppmw (CFR 264.1082(c) 2. State Hazardous Waste → Please list all state waste codes: □ For material that is Treated, Delisted, or Excluded → Please indicate the cat □ Delisted Hazardous Waste □ Excluded Waste under 40 CFR 20 □ Treated Hazardous Waste Debris □ Treated Characteristic Hazardous 4. Underlying Hazardous Constituents → Please list all Underlying Hazardous	egory, below: 51.4 → Specify Exclusion: 51.4 → Specify Exclusion: 52.4 Waste → If checked, complete question 4. 53.5 Constituents: 54.6 Constituents: 55.7 □ <1 Mg □ 1-9.95 56.9 □ value □ 1-9.95 57.0 □ value □ 1-9.95 58.0 □ value □ 1-9.95 59.0 □ value □ 1-9.95	☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes	PPMV 10 M

8. NRC or state regulated radioactive or NORM Waste → Please identify Isotopes and pCi/g: _

Additional Profile Information

	Profile Number: _	
C. MATERIAL INFORMATION		
Material Composition and Contaminants (Continued from page 2):	If more space is needed, please attach	additional pages.
10.		
11.		
12.		
13.		
14.	WW	
15.		
16.		
17.		
18.		
19.		
20.		
21.		
22.		
23.		
24.		
25. 26.		
27.		-
28.		
29.		
30.		
31.		
32.		
33.		
34		
35. 36. 37. 38.		
36.		
37.		
38.		
39.		1
39. 40.		
	Total composition must be equal to or greater than 100%	≥100%
D. REGULATORY INFORMATION 1. EPA Hazardous Waste a. Please list all USEPA listed and characteristic waste code number Page	s (Continued from page 2):	

MICHIGAN NON-HAZARDOUS WASTE PROFILE ADDENDUM

Profile Number

F. Michigan Addendum		1
1. Is this Waste to be solidified by WM prior to disposal into the landfill?	☐ Yes	□ No
2. Does this exhibit any of the reactivity characteristics as defined by MI Part 111 R 299.9212(3)?	☐ Yes	☐ No
3. Does this waste contain any RCRA herbicides or pesticides?	Yes	☐ No
4. Do you generate any regulated Hazardous Waste?	Yes	☐ No
If "Yes," do you have procedures in place to prevent Hazardous Waste from being mixed with this waste?	☐ Yes	☐ No
G. SOLVENTS <u>OR</u> PAINTS:		
☐ Not applicable, this waste does not contain any solvents or paints.		
What solvent(s), if any, are in use and for what purpose?		
If this waste is from a Paint Spray Booth, please explain in detail how the spray guns are cleaned and what is done w	rith that wast	te?
After a paint line and/or spray gun is cleaned, is the new paint purged through and disposed of separately?		
H. Complete this Section ONLY IF THIS WASTE IS PROPOSED FOR DISPOSAL AT WOODLAND	MEADOW	S
SPECIAL WASTE DECLARATION		
(Check below those Special Wastes that are proposed for disposal by Waste Management:)		
a. Waste from an industrial process.		
☐ b. Waste from a pollution control process.		
☐ c. Waste containing free liquids.		
d. Residue and debris from a cleanup of a spill of a chemical or commercial product or a waste listed in ac. and	ln. of this	form.
 e. Contaminated residuals, or articles from the cleanup of a facility generating, storing, treating or recycling or disposing of chemical substances, commercial products or wastes listed in ad., f or g of this form. 		
f. Any waste which is non-hazardous as a result of treatment pursuant to Subtitle C of the Resource Conservation (R.C.R.A.).	and Recovery	y Act
g. Chemical containing equipment removed from service, which the chemical composition and concentration are uncontaining equipment.	nknown.	
☐ h. Drums, or containers capable of holding greater than 25 gallons, whether empty, partially full or full.		
i. Friable or non-friable asbestos containing waste from building demolition or cleanup, including wallboard, wall coverings, pipe insulation, etc.	, ceiling or s	pray
j. Commercial products or chemicals which are off-specification, outdated, unused or banned. Outdated or off spetaminated food or beverage products in original consumer containers are not included in this category, unless a containers is restricted by applicable regulations.		
k. Treated or untreated medical waste. Any waste which was once capable, or is capable of inducing infection form source.	n a bio-medic	:al
L. Residue / sludges from septic tanks, food service grease traps, or wash waters and wastewaters from commercial private or public wastewater treatment facilities.	ıl laundries, a	ınd
m. Chemical containing equipment removed from service, in which the chemical concentrations are known (e.g., a cathode ray tubes, lab equipment, fluorescent lights, etc.)	cetylene tank	s,
n. Waste produced from the dismantling or demolition of industrial process equipment, or facilities contaminated the industrial process.	with chemica	ls from
 o. Incinerator ash generated at a Resource Recovery Facility. A facility which burns only non-hazardous household industrial and qualifies for the hazardous waste exclusion in 40CFR261.4(b). 	, commercial	or
p. Other, if not specified above.		
BY COMPLETING SECTION H., CUSTOMER WARRANTS THAT HE/SHE HAS DISCLOSED ALL OF THE TYPES OF SPECIAL TO BE DISPOSED BY WASTE MANAGEMENT	WASTE PROP	OSED

©2014 Waste Management Revised April 24, 2014

21-Jul-2017

Rick Riedy
U.P. Environmental Services, Inc.
P.O. Box 127
1315 US 2 & 41
Bark River, MI 49807

Re: CONT Work Order: 1707480

Dear Rick,

ALS Environmental received 16 samples on 12-Jul-2017 09:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 59.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Electronically approved by: Bill Carey

Bill Carey

Project Manager

Certificate No: MN 998501

Report of Laboratory Analysis

ADDRESS 3352 128th Ave Holland, Michigan 49424 | PHONE (616) 399-6070 | FAX (616) 399-6185 ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company ALS Group, USA

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

Project: CONT Work Order Sample Summary
Work Order: 1707480

Lab Samp II	Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	<u>Hold</u>
1707480-01	CONT-010	Soil		7/11/2017 13:30	7/12/2017 09:00	
1707480-02	CONT-006	Soil		7/11/2017 13:40	7/12/2017 09:00	
1707480-03	CONT-009	Soil		7/11/2017 13:50	7/12/2017 09:00	
1707480-04	CONT-004	Soil		7/11/2017 14:00	7/12/2017 09:00	
1707480-05	CONT-007	Soil		7/11/2017 14:10	7/12/2017 09:00	
1707480-06	CONT-003	Soil		7/11/2017 14:15	7/12/2017 09:00	
1707480-07	CONT-008	Soil		7/11/2017 14:20	7/12/2017 09:00	
1707480-08	CONT-002	Soil		7/11/2017 14:30	7/12/2017 09:00	
1707480-09	CONT-010 (TCLP)	Tclp Extract		7/11/2017 13:30	7/12/2017 09:00	
1707480-10	CONT-006 (TCLP)	Tclp Extract		7/11/2017 13:40	7/12/2017 09:00	
1707480-11	CONT-009 (TCLP)	Tclp Extract		7/11/2017 13:50	7/12/2017 09:00	
1707480-12	CONT-004 (TCLP)	Tclp Extract		7/11/2017 14:00	7/12/2017 09:00	
1707480-13	CONT-007 (TCLP)	Tclp Extract		7/11/2017 14:10	7/12/2017 09:00	
1707480-14	CONT-003 (TCLP)	Tclp Extract		7/11/2017 14:15	7/12/2017 09:00	
1707480-15	CONT-008 (TCLP)	Tclp Extract		7/11/2017 14:20	7/12/2017 09:00	
1707480-16	CONT-002 (TCLP)	Tclp Extract		7/11/2017 14:30	7/12/2017 09:00	

Qualifier	<u>Description</u>
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
О	Sample amount is > 4 times amount spiked
P	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U X	Analyzed but not detected above the MDL
Α	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
A	APHA Standard Methods
D	ASTM
E	EPA
SW	SW-846 Update III
Units Reported	
% of sample	Percent of Sample
°F	Degrees Fahrenheit
μg/Kg-dry	Micrograms per Kilogram Dry Weight
μg/L	Micrograms per Liter
mg/Kg-dry	Milligrams per Kilogram Dry Weight
mg/L none	Milligrams per Liter
s.u.	Standard Units

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

Project: CONT Case Narrative

Work Order: 1707480

Samples for the above noted Work Order were received on 7/12/2017. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Volatile Organics:

No other deviations or anomalies were noted.

Extractable Organics:

Batch 104494, Method PCBLVI_8082_S, Sample 1707480-08A: Low surrogate recovery due to sample matrix effects confirmed by re-extraction.

Batch 104546, Method TCBA_8270_S, Sample 1707480-13A MS: The MS recovery was above the upper control limit. The corresponding result in the parent sample may be biased high for this analyte: 2,4-Dinitrotoluene, m-Cresol, p-Cresol

Batch 104546, Method TCBA_8270_S, Sample 1707480-13A MSD: The MSD recovery was above the upper control limit. The corresponding result in the parent sample may be biased high for this analyte: m-Cresol, p-Cresol

Metals:

Batch 104506, Method TCICP_6010_S, Sample 1707480-13AMS: The MS recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Ba, Cu, Pb, Na, Zn

Batch 104506, Method TCICP_6010_S, Sample 1707480-13AMSD: The MSD recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Cu, Pb, Na

Client: U.P. Environmental Services, Inc.

Project: CONT Case Narrative Work Order: 1707480

Wet Chemistry:

No other deviations or anomalies were noted.

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-010
 Lab ID:
 1707480-01

 Collection Date:
 7/11/2017 01:30 PM
 Matrix:
 SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	Pre	ep: SW3546 7/14/17 10:37	Analyst: EB
Aroclor 1016	ND		80	μg/Kg-dry	1	7/16/2017 09:28 AM
Aroclor 1221	ND		80	μg/Kg-dry	1	7/16/2017 09:28 AM
Aroclor 1232	ND		80	μg/Kg-dry	1	7/16/2017 09:28 AM
Aroclor 1242	ND		80	μg/Kg-dry	1	7/16/2017 09:28 AM
Aroclor 1248	ND		80	μg/Kg-dry	1	7/16/2017 09:28 AM
Aroclor 1254	340		80	μg/Kg-dry	1	7/16/2017 09:28 AM
Aroclor 1260	310		80	μg/Kg-dry	1	7/16/2017 09:28 AM
Aroclor 1262	ND		80	μg/Kg-dry	1	7/16/2017 09:28 AM
Aroclor 1268	97		80	μg/Kg-dry	1	7/16/2017 09:28 AM
Surr: Decachlorobiphenyl	55.3		40-140	%REC	1	7/16/2017 09:28 AM
Surr: Tetrachloro-m-xylene	58.3		45-124	%REC	1	7/16/2017 09:28 AM
CYANIDE, REACTIVE			SW7.3.3	.2		Analyst: RZM
Cyanide, Reactive	ND		120	mg/Kg-dry	1	7/18/2017 10:30 AM
FLASHPOINT/IGNITABILITY ANALYSIS			SW1010	Α		Analyst: RZM
Flashpoint/Ignitability	>200		1.00	°F	1	7/18/2017 11:30 AM
PAINT FILTER (FREE LIQUIDS)			SW9095	В		Analyst: JB
Free Liquids	Absent			none	1	7/13/2017 01:30 PM
MOISTURE			SW3550	С		Analyst: SBR
Moisture	18		0.050	% of samp	ole 1	7/13/2017 04:14 PM
PH			SW9045	D Pre	ep: EXTRACT 7/13/17 14:46	Analyst: RZM
рН	7.85		0.100	s.u.	1	7/14/2017 10:45 AM
SULFIDE, REACTIVE			SW7.3.4	.2		Analyst: RZM
Sulfide, Reactive	ND		120	mg/Kg-dry	1	7/18/2017 09:05 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-006
 Lab ID:
 1707480-02

 Collection Date:
 7/11/2017 01:40 PM
 Matrix:
 SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	Pre	ep: SW3546 7/14/17 10:37	Analyst: EB
Aroclor 1016	ND		81	μg/Kg-dry	1	7/16/2017 09:43 AM
Aroclor 1221	ND		81	μg/Kg-dry	1	7/16/2017 09:43 AM
Aroclor 1232	ND		81	μg/Kg-dry	1	7/16/2017 09:43 AM
Aroclor 1242	ND		81	μg/Kg-dry	1	7/16/2017 09:43 AM
Aroclor 1248	ND		81	μg/Kg-dry	1	7/16/2017 09:43 AM
Aroclor 1254	320		81	μg/Kg-dry	1	7/16/2017 09:43 AM
Aroclor 1260	ND		81	μg/Kg-dry	1	7/16/2017 09:43 AM
Aroclor 1262	ND		81	μg/Kg-dry	1	7/16/2017 09:43 AM
Aroclor 1268	100		81	μg/Kg-dry	1	7/16/2017 09:43 AM
Surr: Decachlorobiphenyl	62.5		40-140	%REC	1	7/16/2017 09:43 AM
Surr: Tetrachloro-m-xylene	52.9		45-124	%REC	1	7/16/2017 09:43 AM
CYANIDE, REACTIVE			SW7.3.3	.2		Analyst: RZM
Cyanide, Reactive	ND		130	mg/Kg-dry	1	7/18/2017 10:30 AM
FLASHPOINT/IGNITABILITY ANALYSIS			SW1010	Α		Analyst: RZM
Flashpoint/Ignitability	>200		1.00	°F	1	7/18/2017 11:30 AM
PAINT FILTER (FREE LIQUIDS)			SW9095	В		Analyst: JB
Free Liquids	Absent			none	1	7/13/2017 01:30 PM
MOISTURE			SW3550	С		Analyst: SBR
Moisture	20		0.050	% of samp	ole 1	7/13/2017 04:14 PM
РН			SW9045	D Pre	ep: EXTRACT 7/13/17 14:46	Analyst: RZM
рН	8.13		0.100	s.u.	1	7/14/2017 10:45 AM
SULFIDE, REACTIVE			SW7.3.4	.2		Analyst: RZM
Sulfide, Reactive	ND		130	mg/Kg-dry	1	7/18/2017 09:05 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-009
 Lab ID:
 1707480-03

 Collection Date:
 7/11/2017 01:50 PM
 Matrix:
 SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	Pre	p: SW3546 7/14/17 10:37	Analyst: EB
Aroclor 1016	ND		95	μg/Kg-dry	1	7/16/2017 09:57 AM
Aroclor 1221	ND		95	μg/Kg-dry	1	7/16/2017 09:57 AM
Aroclor 1232	ND		95	μg/Kg-dry	1	7/16/2017 09:57 AM
Aroclor 1242	ND		95	μg/Kg-dry	1	7/16/2017 09:57 AM
Aroclor 1248	ND		95	μg/Kg-dry	1	7/16/2017 09:57 AM
Aroclor 1254	420		95	μg/Kg-dry	1	7/16/2017 09:57 AM
Aroclor 1260	230		95	μg/Kg-dry	1	7/16/2017 09:57 AM
Aroclor 1262	ND		95	μg/Kg-dry	1	7/16/2017 09:57 AM
Aroclor 1268	ND		95	μg/Kg-dry	1	7/16/2017 09:57 AM
Surr: Decachlorobiphenyl	50.6		40-140	%REC	1	7/16/2017 09:57 AM
Surr: Tetrachloro-m-xylene	51.5		45-124	%REC	1	7/16/2017 09:57 AM
CYANIDE, REACTIVE			SW7.3.3	.2		Analyst: RZM
Cyanide, Reactive	ND		140	mg/Kg-dry	1	7/18/2017 10:30 AM
FLASHPOINT/IGNITABILITY ANALYSIS			SW1010	Α		Analyst: RZM
Flashpoint/Ignitability	>200		1.00	°F	1	7/18/2017 11:30 AM
PAINT FILTER (FREE LIQUIDS)			SW9095	В		Analyst: JB
Free Liquids	Absent			none	1	7/13/2017 01:30 PM
MOISTURE			SW3550	С		Analyst: SBR
Moisture	31		0.050	% of samp	le 1	7/13/2017 04:14 PM
PH			SW9045	D Pre	p: EXTRACT 7/13/17 14:46	Analyst: RZM
рН	8.00		0.100	s.u.	1	7/14/2017 10:45 AM
SULFIDE, REACTIVE			SW7.3.4	.2		Analyst: RZM
Sulfide, Reactive	ND		140	mg/Kg-dry	1	7/18/2017 09:05 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-004
 Lab ID:
 1707480-04

 Collection Date:
 7/11/2017 02:00 PM
 Matrix:
 SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	Pre	p: SW3546 7/14/17 10:37	Analyst: EB
Aroclor 1016	ND		83	μg/Kg-dry	1	7/16/2017 10:11 AM
Aroclor 1221	ND		83	μg/Kg-dry	1	7/16/2017 10:11 AM
Aroclor 1232	ND		83	μg/Kg-dry	1	7/16/2017 10:11 AM
Aroclor 1242	ND		83	μg/Kg-dry	1	7/16/2017 10:11 AM
Aroclor 1248	ND		83	μg/Kg-dry	1	7/16/2017 10:11 AM
Aroclor 1254	310		83	μg/Kg-dry	1	7/16/2017 10:11 AM
Aroclor 1260	280		83	μg/Kg-dry	1	7/16/2017 10:11 AM
Aroclor 1262	ND		83	μg/Kg-dry	1	7/16/2017 10:11 AM
Aroclor 1268	93		83	μg/Kg-dry	1	7/16/2017 10:11 AM
Surr: Decachlorobiphenyl	52.9		40-140	%REC	1	7/16/2017 10:11 AM
Surr: Tetrachloro-m-xylene	61.2		45-124	%REC	1	7/16/2017 10:11 AM
CYANIDE, REACTIVE			SW7.3.3	.2		Analyst: RZM
Cyanide, Reactive	ND		130	mg/Kg-dry	1	7/18/2017 10:30 AM
FLASHPOINT/IGNITABILITY ANALYSIS			SW1010	Α		Analyst: RZM
Flashpoint/Ignitability	>200		1.00	°F	1	7/18/2017 11:30 AM
PAINT FILTER (FREE LIQUIDS)			SW9095	В		Analyst: JB
Free Liquids	Absent			none	1	7/13/2017 01:30 PM
MOISTURE			SW3550	С		Analyst: SBR
Moisture	20		0.050	% of samp	l e 1	7/13/2017 04:14 PM
PH			SW9045	D Pre	p: EXTRACT 7/13/17 14:46	Analyst: RZM
рН	8.17		0.100	s.u.	1	7/14/2017 10:45 AM
SULFIDE, REACTIVE			SW7.3.4	.2		Analyst: RZM
Sulfide, Reactive	ND		130	mg/Kg-dry	1	7/18/2017 09:05 AM

Date: 21-Jul-17

Sulfide, Reactive

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-007
 Lab ID:
 1707480-05

 Collection Date:
 7/11/2017 02:10 PM
 Matrix:
 SOIL

ND

Report Dilution Result **Analyses** Limit **Date Analyzed** Qual Units **Factor** Prep: SW3546 7/14/17 10:37 **PCBS** SW8082 Analyst: EB Aroclor 1016 ND 76 µg/Kg-dry 7/16/2017 10:26 AM Aroclor 1221 ND 76 μg/Kg-dry 1 7/16/2017 10:26 AM Aroclor 1232 ND 76 µg/Kg-dry 1 7/16/2017 10:26 AM ND Aroclor 1242 76 μg/Kg-dry 1 7/16/2017 10:26 AM Aroclor 1248 ND 76 μg/Kg-dry 7/16/2017 10:26 AM 76 1 Aroclor 1254 710 µg/Kg-dry 7/16/2017 10:26 AM Aroclor 1260 ND 76 7/16/2017 10:26 AM µg/Kg-dry Aroclor 1262 76 ND µg/Kg-dry 1 7/16/2017 10:26 AM 7/16/2017 10:26 AM Aroclor 1268 870 76 µg/Kg-dry 1 Surr: Decachlorobiphenyl 72.1 40-140 %REC 1 7/16/2017 10:26 AM Surr: Tetrachloro-m-xylene 56.0 45-124 %REC 1 7/16/2017 10:26 AM **CYANIDE, REACTIVE** SW7.3.3.2 Analyst: **RZM** Cyanide, Reactive ND 7/18/2017 10:30 AM 120 mg/Kg-dry 1 FLASHPOINT/IGNITABILITY ANALYSIS SW1010A Analyst: RZM Flashpoint/Ignitability >200 1.00 7/18/2017 11:30 AM **PAINT FILTER (FREE LIQUIDS)** SW9095B Analyst: JB Free Liquids **Absent** 1 7/13/2017 01:30 PM none MOISTURE SW3550C Analyst: SBR Moisture 0.050 7/13/2017 04:14 PM 15 % of sample 1 Prep: EXTRACT 7/13/17 14:46 PΗ SW9045D Analyst: RZM 8.62 0.100 7/14/2017 10:45 AM pН s.u. SULFIDE. REACTIVE SW7.3.4.2 Analyst: RZM

120

mg/Kg-dry

1

Date: 21-Jul-17

Note: See Qualifiers page for a list of qualifiers and their definitions.

7/18/2017 09:05 AM

Sulfide, Reactive

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-003
 Lab ID:
 1707480-06

 Collection Date:
 7/11/2017 02:15 PM
 Matrix:
 SOIL

ND

Report Dilution Result **Analyses** Limit **Date Analyzed** Qual Units **Factor** Prep: SW3546 7/14/17 10:37 **PCBS** SW8082 Analyst: EB Aroclor 1016 ND 83 µg/Kg-dry 7/16/2017 10:40 AM Aroclor 1221 ND 83 μg/Kg-dry 1 7/16/2017 10:40 AM Aroclor 1232 ND 83 µg/Kg-dry 1 7/16/2017 10:40 AM ND Aroclor 1242 83 μg/Kg-dry 1 7/16/2017 10:40 AM Aroclor 1248 ND 83 μg/Kg-dry 7/16/2017 10:40 AM 83 1 7/16/2017 10:40 AM Aroclor 1254 260 µg/Kg-dry Aroclor 1260 ND 83 7/16/2017 10:40 AM µg/Kg-dry Aroclor 1262 83 ND µg/Kg-dry 1 7/16/2017 10:40 AM 7/16/2017 10:40 AM Aroclor 1268 150 83 µg/Kg-dry 1 Surr: Decachlorobiphenyl 69.5 40-140 %REC 1 7/16/2017 10:40 AM Surr: Tetrachloro-m-xylene 59.3 45-124 %REC 1 7/16/2017 10:40 AM **CYANIDE, REACTIVE** SW7.3.3.2 Analyst: **RZM** Cyanide, Reactive ND 7/18/2017 10:30 AM 120 mg/Kg-dry 1 FLASHPOINT/IGNITABILITY ANALYSIS SW1010A Analyst: RZM Flashpoint/Ignitability >200 1.00 7/19/2017 10:00 AM **PAINT FILTER (FREE LIQUIDS)** SW9095B Analyst: JB Free Liquids **Absent** 1 7/13/2017 01:30 PM none MOISTURE SW3550C Analyst: SBR Moisture 20 0.050 7/13/2017 04:14 PM % of sample 1 Prep: EXTRACT 7/13/17 14:46 PΗ SW9045D Analyst: RZM 8.28 0.100 7/14/2017 10:45 AM pН s.u. SULFIDE, REACTIVE SW7.3.4.2 Analyst: RZM

120

mg/Kg-dry

1

Date: 21-Jul-17

Note: See Qualifiers page for a list of qualifiers and their definitions.

7/18/2017 09:05 AM

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-008
 Lab ID:
 1707480-07

 Collection Date:
 7/11/2017 02:20 PM
 Matrix:
 SOIL

Report Dilution Result **Analyses** Limit **Date Analyzed** Qual Units **Factor** Prep: SW3546 7/17/17 15:56 **PCBS** SW8082 Analyst: EB Aroclor 1016 ND 73 µg/Kg-dry 7/18/2017 11:29 PM Aroclor 1221 ND 73 μg/Kg-dry 1 7/18/2017 11:29 PM Aroclor 1232 ND 73 µg/Kg-dry 1 7/18/2017 11:29 PM Aroclor 1242 ND 73 μg/Kg-dry 1 7/18/2017 11:29 PM Aroclor 1248 ND 73 μg/Kg-dry 7/18/2017 11:29 PM 73 1 Aroclor 1254 99 µg/Kg-dry 7/18/2017 11:29 PM Aroclor 1260 ND 73 7/18/2017 11:29 PM µg/Kg-dry Aroclor 1262 73 ND µg/Kg-dry 1 7/18/2017 11:29 PM Aroclor 1268 73 7/18/2017 11:29 PM ND μg/Kg-dry 1 Surr: Decachlorobiphenyl 56.3 40-140 %REC 1 7/18/2017 11:29 PM Surr: Tetrachloro-m-xylene 62.6 45-124 %REC 1 7/18/2017 11:29 PM CYANIDE, REACTIVE SW7.3.3.2 Analyst: **RZM** Cyanide, Reactive ND 7/18/2017 10:30 AM 110 mg/Kg-dry 1 FLASHPOINT/IGNITABILITY ANALYSIS SW1010A Analyst: RZM Flashpoint/Ignitability >200 1.00 7/19/2017 10:00 AM **PAINT FILTER (FREE LIQUIDS)** SW9095B Analyst: JB Free Liquids **Absent** 1 7/13/2017 01:30 PM none MOISTURE SW3550C Analyst: SBR Moisture 0.050 7/13/2017 04:14 PM 9.8 % of sample 1 Prep: EXTRACT 7/13/17 14:46 PΗ SW9045D Analyst: RZM 4.92 0.100 7/14/2017 10:45 AM pН s.u. SULFIDE. REACTIVE SW7.3.4.2 Analyst: RZM Sulfide, Reactive ND 110 mg/Kg-dry 1 7/18/2017 09:05 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-002
 Lab ID:
 1707480-08

 Collection Date:
 7/11/2017 02:30 PM
 Matrix:
 SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
PCBS			SW8082	. Prep	p: SW3546 7/17/17 15:56	Analyst: EB
Aroclor 1016	ND		87	μg/Kg-dry	1	7/18/2017 11:44 PM
Aroclor 1221	ND		87	μg/Kg-dry	1	7/18/2017 11:44 PM
Aroclor 1232	ND		87	μg/Kg-dry	1	7/18/2017 11:44 PM
Aroclor 1242	ND		87	μg/Kg-dry	1	7/18/2017 11:44 PM
Aroclor 1248	ND		87	μg/Kg-dry	1	7/18/2017 11:44 PM
Aroclor 1254	960		87	μg/Kg-dry	1	7/18/2017 11:44 PM
Aroclor 1260	ND		87	μg/Kg-dry	1	7/18/2017 11:44 PM
Aroclor 1262	ND		87	μg/Kg-dry	1	7/18/2017 11:44 PM
Aroclor 1268	ND		87	μg/Kg-dry	1	7/18/2017 11:44 PM
Surr: Decachlorobiphenyl	32.2	S	40-140	%REC	1	7/18/2017 11:44 PM
Surr: Tetrachloro-m-xylene	23.0	S	45-124	%REC	1	7/18/2017 11:44 PM
CYANIDE, REACTIVE			SW7.3.3	3.2		Analyst: RZM
Cyanide, Reactive	ND		140	mg/Kg-dry	1	7/18/2017 10:30 AM
FLASHPOINT/IGNITABILITY ANALYSIS			SW1010	Α		Analyst: RZM
Flashpoint/Ignitability	>200		1.00	°F	1	7/19/2017 10:00 AM
PAINT FILTER (FREE LIQUIDS)			SW9095	В		Analyst: JB
Free Liquids	Absent			none	1	7/13/2017 01:30 PM
MOISTURE			SW3550	C		Analyst: SBR
Moisture	27		0.050	% of sampl	le 1	7/13/2017 04:14 PM
РН			SW9045	D Prep	p: EXTRACT 7/13/17 14:46	Analyst: RZM
рН	7.16		0.100	s.u.	1	7/14/2017 10:45 AM
SULFIDE, REACTIVE			SW7.3.4	.2		Analyst: RZM
Sulfide, Reactive	ND		140	mg/Kg-dry	1	7/18/2017 09:05 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-010 (TCLP)
 Lab ID:
 1707480-09

 Collection Date:
 7/11/2017 01:30 PM
 Matrix:
 TCLP EXTRACT

Date: 21-Jul-17

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TCLP MERCURY BY CVAA			SW747	0A	Prep: SW7470 7/14/17 12:34	Analyst: RSH
Mercury	ND		0.0020	mg/L	1	7/14/2017 02:53 PM
TCLP METALS ANALYSIS BY ICP			SW846	6010C	Prep: SW3005A 7/14/17 14:18	Analyst: LR
Arsenic	ND		0.050	mg/L	1	7/14/2017 06:35 PM
Barium	5.0		0.050	mg/L	1	7/14/2017 06:35 PM
Cadmium	0.14		0.10	mg/L	1	7/14/2017 06:35 PM
Chromium	ND		0.050	mg/L	1	7/14/2017 06:35 PM
Lead	8.3	*	0.050	mg/L	1	7/14/2017 06:35 PM
Selenium	ND		0.10	mg/L	1	7/14/2017 06:35 PM
Silver	ND		0.050	mg/L	1	7/14/2017 06:35 PM
TCLP SEMI-VOLATILE ORGANICS			SW827	0D	Prep: SW3510 7/14/17 16:19	Analyst: RM
1,4-Dichlorobenzene	ND		100	μg/L	1	7/15/2017 12:27 AM
2,4,5-Trichlorophenol	ND		100	μg/L	1	7/15/2017 12:27 AM
2,4,6-Trichlorophenol	ND		100	μg/L	1	7/15/2017 12:27 AM
2,4-Dinitrotoluene	ND		100	μg/L	1	7/15/2017 12:27 AM
Hexachloro-1.3-butadiene	ND		100	μg/L	1	7/15/2017 12:27 AM
Hexachlorobenzene	ND		100	μg/L	1	7/15/2017 12:27 AM
Hexachloroethane	ND		100	μg/L	1	7/15/2017 12:27 AM
m-Cresol	ND		100	μg/L	1	7/15/2017 12:27 AM
Nitrobenzene	ND		100	μg/L	1	7/15/2017 12:27 AM
o-Cresol	ND		100	μg/L	1	7/15/2017 12:27 AM
p-Cresol	ND		100	μg/L	1	7/15/2017 12:27 AM
Pentachlorophenol	ND		100	μg/L	1	7/15/2017 12:27 AM
Pyridine	ND		200	μg/L	1	7/15/2017 12:27 AM
Surr: 2,4,6-Tribromophenol	61.5		32-92	%REC	1	7/15/2017 12:27 AM
Surr: 2-Fluorobiphenyl	55.8		34-98	%REC	1	7/15/2017 12:27 AM
Surr: 2-Fluorophenol	41.0		23-55	%REC	1	7/15/2017 12:27 AM
Surr: 4-Terphenyl-d14	76.9		50-111	%REC	1	7/15/2017 12:27 AM
Surr: Nitrobenzene-d5	51.8		32-89	%REC	1	7/15/2017 12:27 AM
Surr: Phenol-d6	27.7		10-35	%REC	1	7/15/2017 12:27 AM
TCLP VOLATILE ORGANICS			SW826	0B	Leachate: SW1311 / 7/14/17	Analyst: BG
1,1-Dichloroethene	ND		20	μg/L	20	7/18/2017 07:01 AM
1,2-Dichloroethane	ND		20	μg/L	20	7/18/2017 07:01 AM
2-Butanone	ND		100	μg/L	20	7/18/2017 07:01 AM
Benzene	ND		20	μg/L	20	7/18/2017 07:01 AM
Carbon tetrachloride	ND		20	μg/L	20	7/18/2017 07:01 AM
Chlorobenzene	ND		20	μg/L	20	7/18/2017 07:01 AM
Chloroform	ND		20	μg/L	20	7/18/2017 07:01 AM

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-010 (TCLP)
 Lab ID:
 1707480-09

 Collection Date:
 7/11/2017 01:30 PM
 Matrix:
 TCLP EXTRACT

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND		20	μg/L	20	7/18/2017 07:01 AM
Trichloroethene	ND		20	μg/L	20	7/18/2017 07:01 AM
Vinyl chloride	ND		20	μg/L	20	7/18/2017 07:01 AM
Surr: 1,2-Dichloroethane-d4	106		70-130	%REC	20	7/18/2017 07:01 AM
Surr: 4-Bromofluorobenzene	105		70-130	%REC	20	7/18/2017 07:01 AM
Surr: Dibromofluoromethane	99.6		70-130	%REC	20	7/18/2017 07:01 AM
Surr: Toluene-d8	98.5		70-130	%REC	20	7/18/2017 07:01 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-006 (TCLP)
 Lab ID:
 1707480-10

 Collection Date:
 7/11/2017 01:40 PM
 Matrix:
 TCLP EXTRACT

Date: 21-Jul-17

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TCLP MERCURY BY CVAA			SW747	0A	Prep: SW7470 7/14/17 12:34	Analyst: RSH
Mercury	ND		0.0020	mg/L	1	7/14/2017 02:55 PM
TCLP METALS ANALYSIS BY ICP			SW846	6010C	Prep: SW3005A 7/14/17 14:18	Analyst: LR
Arsenic	ND		0.050	mg/L	1	7/14/2017 06:41 PM
Barium	5.4		0.050	mg/L	1	7/14/2017 06:41 PM
Cadmium	ND		0.10	mg/L	1	7/14/2017 06:41 PM
Chromium	ND		0.050	mg/L	1	7/14/2017 06:41 PM
Lead	3.5		0.050	mg/L	1	7/14/2017 06:41 PM
Selenium	ND		0.10	mg/L	1	7/14/2017 06:41 PM
Silver	ND		0.050	mg/L	1	7/14/2017 06:41 PM
TCLP SEMI-VOLATILE ORGANICS			SW827	0D	Prep: SW3510 7/14/17 16:19	Analyst: RM
1,4-Dichlorobenzene	ND		100	μg/L	1	7/15/2017 12:46 AM
2,4,5-Trichlorophenol	ND		100	μg/L	1	7/15/2017 12:46 AM
2,4,6-Trichlorophenol	ND		100	μg/L	1	7/15/2017 12:46 AM
2,4-Dinitrotoluene	ND		100	μg/L	1	7/15/2017 12:46 AM
Hexachloro-1.3-butadiene	ND		100	μg/L	1	7/15/2017 12:46 AM
Hexachlorobenzene	ND		100	μg/L	1	7/15/2017 12:46 AM
Hexachloroethane	ND		100	μg/L	1	7/15/2017 12:46 AM
m-Cresol	ND		100	μg/L	1	7/15/2017 12:46 AM
Nitrobenzene	ND		100	μg/L	1	7/15/2017 12:46 AM
o-Cresol	ND		100	μg/L	1	7/15/2017 12:46 AM
p-Cresol	ND		100	μg/L	1	7/15/2017 12:46 AM
Pentachlorophenol	ND		100	μg/L	1	7/15/2017 12:46 AM
Pyridine	ND		200	μg/L	1	7/15/2017 12:46 AM
Surr: 2,4,6-Tribromophenol	57.1		32-92	%REC	1	7/15/2017 12:46 AM
Surr: 2-Fluorobiphenyl	58.0		34-98	%REC	1	7/15/2017 12:46 AM
Surr: 2-Fluorophenol	40.4		23-55	%REC	1	7/15/2017 12:46 AM
Surr: 4-Terphenyl-d14	81.1		50-111	%REC	1	7/15/2017 12:46 AM
Surr: Nitrobenzene-d5	52.0		32-89	%REC	1	7/15/2017 12:46 AM
Surr: Phenol-d6	26.0		10-35	%REC	1	7/15/2017 12:46 AM
TCLP VOLATILE ORGANICS			SW826	0B	Leachate: SW1311 / 7/14/17	Analyst: BG
1,1-Dichloroethene	ND		20	μg/L	20	7/18/2017 07:28 AM
1,2-Dichloroethane	ND		20	μg/L	20	7/18/2017 07:28 AM
2-Butanone	ND		100	μg/L	20	7/18/2017 07:28 AM
Benzene	ND		20	μg/L	20	7/18/2017 07:28 AM
Carbon tetrachloride	ND		20	μg/L	20	7/18/2017 07:28 AM
Chlorobenzene	ND		20	μg/L	20	7/18/2017 07:28 AM
Chloroform	ND		20	μg/L	20	7/18/2017 07:28 AM

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-006 (TCLP)
 Lab ID:
 1707480-10

 Collection Date:
 7/11/2017 01:40 PM
 Matrix:
 TCLP EXTRACT

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND		20	μg/L	20	7/18/2017 07:28 AM
Trichloroethene	ND		20	μg/L	20	7/18/2017 07:28 AM
Vinyl chloride	ND		20	μg/L	20	7/18/2017 07:28 AM
Surr: 1,2-Dichloroethane-d4	107		70-130	%REC	20	7/18/2017 07:28 AM
Surr: 4-Bromofluorobenzene	103		70-130	%REC	20	7/18/2017 07:28 AM
Surr: Dibromofluoromethane	98.5		70-130	%REC	20	7/18/2017 07:28 AM
Surr: Toluene-d8	98.4		70-130	%REC	20	7/18/2017 07:28 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-009 (TCLP)
 Lab ID:
 1707480-11

 Collection Date:
 7/11/2017 01:50 PM
 Matrix:
 TCLP EXTRACT

Date: 21-Jul-17

TCLP METALS ANALYSIS BY ICP Arsenic Barium Cadmium Chromium Lead Selenium Silver TCLP SEMI-VOLATILE ORGANICS 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Mexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene O-Cresol P-Cresol	D . 1	SW747 0.0020 SW846 0.050 0.050	mg/L	Prep: SW7470 7/14/17 12:34 1 Prep: SW3005A 7/14/17 14:18	Analyst: RSH 7/14/2017 03:03 PM
TCLP METALS ANALYSIS BY ICP Arsenic N Barium O.2 Cadmium O.2 Chromium N Lead 2 Selenium N Silver N TCLP SEMI-VOLATILE ORGANICS 1,4-Dichlorobenzene N 2,4,5-Trichlorophenol N 2,4,6-Trichlorophenol N 2,4-Dinitrotoluene N Hexachloro-1,3-butadiene N Hexachlorobenzene N Hexachlorobenzene N Hexachlorobenzene N Hexachlorobenzene N Hexachlorobenzene N Hexachlorobenzene N Hexachloroethane N Mitrobenzene N Nitrobenzene N O-Cresol N N O-Cresol N N	D 0 88 D	SW846 0.050	6010C	·	7/14/2017 03:03 PM
Arsenic Barium Cadmium Chromium Lead Selenium Silver TCLP SEMI-VOLATILE ORGANICS 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachlorobenzene Modernic Modern	0 8 D .1	0.050		Prep: SW3005A 7/14/17 14:18	
Barium Cadmium Chromium Lead Selenium Silver TCLP SEMI-VOLATILE ORGANICS 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene O-Cresol p-Cresol	0 8 D .1		mg/L		Analyst: LR
Cadmium Chromium Lead Selenium Silver TCLP SEMI-VOLATILE ORGANICS 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene O-Cresol p-Cresol	28 D .1	0.050		1	7/14/2017 06:47 PM
Chromium Lead Selenium Silver TCLP SEMI-VOLATILE ORGANICS 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene O-Cresol p-Cresol	D . 1		mg/L	1	7/14/2017 06:47 PM
Lead Selenium Silver TCLP SEMI-VOLATILE ORGANICS 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4-G-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene O-Cresol p-Cresol	.1	0.10	mg/L	1	7/14/2017 06:47 PM
Selenium Silver TCLP SEMI-VOLATILE ORGANICS 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene O-Cresol p-Cresol		0.050	mg/L	1	7/14/2017 06:47 PM
Silver TCLP SEMI-VOLATILE ORGANICS 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene O-Cresol p-Cresol		0.050	mg/L	1	7/14/2017 06:47 PM
TCLP SEMI-VOLATILE ORGANICS 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene O-Cresol p-Cresol	D	0.10	mg/L	1	7/14/2017 06:47 PM
1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene O-Cresol p-Cresol	D	0.050	mg/L	1	7/14/2017 06:47 PM
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene O-Cresol p-Cresol		SW827	0D	Prep: SW3510 7/14/17 16:19	Analyst: RM
2,4,6-Trichlorophenol 2,4-Dinitrotoluene Note that the state of the st	D	100	μg/L	1	7/15/2017 01:05 AM
2,4-Dinitrotoluene Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene o-Cresol p-Cresol	D	100	μg/L	1	7/15/2017 01:05 AM
Hexachloro-1,3-butadiene Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene o-Cresol p-Cresol	D	100	μg/L	1	7/15/2017 01:05 AM
Hexachlorobenzene Hexachloroethane m-Cresol Nitrobenzene o-Cresol p-Cresol	D	100	μg/L	1	7/15/2017 01:05 AM
Hexachloroethane N m-Cresol N litrobenzene N o-Cresol N p-Cresol N	D	100	μg/L	1	7/15/2017 01:05 AM
m-Cresol Nitrobenzene NO-Cresol NO-C	D	100	μg/L	1	7/15/2017 01:05 AM
Nitrobenzene N o-Cresol N p-Cresol N	D	100	μg/L	1	7/15/2017 01:05 AM
o-Cresol N	D	100	μg/L	1	7/15/2017 01:05 AM
p-Cresol N	D	100	μg/L	1	7/15/2017 01:05 AM
•	D	100	μg/L	1	7/15/2017 01:05 AM
Pentachlorophenol N	D	100	μg/L	1	7/15/2017 01:05 AM
	D	100	μg/L	1	7/15/2017 01:05 AM
Pyridine	D	200	μg/L	1	7/15/2017 01:05 AM
Surr: 2,4,6-Tribromophenol 53	.8	32-92	%REC	1	7/15/2017 01:05 AM
Surr: 2-Fluorobiphenyl 48	.7	34-98	%REC	1	7/15/2017 01:05 AM
Surr: 2-Fluorophenol 37	6	23-55	%REC	1	7/15/2017 01:05 AM
Surr: 4-Terphenyl-d14 70	3	50-111	%REC	1	7/15/2017 01:05 AM
Surr: Nitrobenzene-d5 45	8	32-89	%REC	1	7/15/2017 01:05 AM
Surr: Phenol-d6 25	8	10-35	%REC	1	7/15/2017 01:05 AM
TCLP VOLATILE ORGANICS		SW826	0B	Leachate: SW1311 / 7/14/17	Analyst: BG
1,1-Dichloroethene	D	20	μg/L	20	7/18/2017 07:54 AM
1,2-Dichloroethane	D	20	μg/L	20	7/18/2017 07:54 AM
	D	100	μg/L	20	7/18/2017 07:54 AM
Benzene	D	20	μg/L	20	7/18/2017 07:54 AM
Carbon tetrachloride N	D	20	μg/L	20	7/18/2017 07:54 AM
Chlorobenzene	D	20	μg/L	20	7/18/2017 07:54 AM
Chloroform	D	20	μg/L	20	7/18/2017 07:54 AM

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-009 (TCLP)
 Lab ID:
 1707480-11

 Collection Date:
 7/11/2017 01:50 PM
 Matrix:
 TCLP EXTRACT

Report **Dilution Analyses** Result Limit **Date Analyzed** Qual Units **Factor** Tetrachloroethene ND 20 μg/L 20 7/18/2017 07:54 AM Trichloroethene 20 20 ND 7/18/2017 07:54 AM μg/L Vinyl chloride ND 20 μg/L 20 7/18/2017 07:54 AM 20 Surr: 1,2-Dichloroethane-d4 109 70-130 %REC 7/18/2017 07:54 AM Surr: 4-Bromofluorobenzene 104 70-130 %REC 20 7/18/2017 07:54 AM Surr: Dibromofluoromethane 20 7/18/2017 07:54 AM 98.5 70-130 %REC Surr: Toluene-d8 98.4 70-130 %REC 20 7/18/2017 07:54 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-004 (TCLP)
 Lab ID:
 1707480-12

 Collection Date:
 7/11/2017 02:00 PM
 Matrix:
 TCLP EXTRACT

Date: 21-Jul-17

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TCLP MERCURY BY CVAA			SW747	0A	Prep: SW7470 7/14/17 12:34	Analyst: RSH
Mercury	ND		0.0020	mg/L	1	7/14/2017 03:13 PM
TCLP METALS ANALYSIS BY ICP			SW846	6010C	Prep: SW3005A 7/14/17 14:18	Analyst: LR
Arsenic	ND		0.050	mg/L	1	7/14/2017 06:54 PM
Barium	6.4		0.050	mg/L	1	7/14/2017 06:54 PM
Cadmium	ND		0.10	mg/L	1	7/14/2017 06:54 PM
Chromium	ND		0.050	mg/L	1	7/14/2017 06:54 PM
Lead	0.86		0.050	mg/L	1	7/14/2017 06:54 PM
Selenium	ND		0.10	mg/L	1	7/14/2017 06:54 PM
Silver	ND		0.050	mg/L	1	7/14/2017 06:54 PM
TCLP SEMI-VOLATILE ORGANICS			SW827	0D	Prep: SW3510 7/14/17 16:19	Analyst: RM
1,4-Dichlorobenzene	ND		100	μg/L	1	7/15/2017 01:24 AM
2,4,5-Trichlorophenol	ND		100	μg/L	1	7/15/2017 01:24 AM
2,4,6-Trichlorophenol	ND		100	μg/L	1	7/15/2017 01:24 AM
2,4-Dinitrotoluene	ND		100	μg/L	1	7/15/2017 01:24 AM
Hexachloro-1,3-butadiene	ND		100	μg/L	1	7/15/2017 01:24 AM
Hexachlorobenzene	ND		100	μg/L	1	7/15/2017 01:24 AM
Hexachloroethane	ND		100	μg/L	1	7/15/2017 01:24 AM
m-Cresol	ND		100	μg/L	1	7/15/2017 01:24 AM
Nitrobenzene	ND		100	μg/L	1	7/15/2017 01:24 AM
o-Cresol	ND		100	μg/L	1	7/15/2017 01:24 AM
p-Cresol	ND		100	μg/L	1	7/15/2017 01:24 AM
Pentachlorophenol	ND		100	μg/L	1	7/15/2017 01:24 AM
Pyridine	ND		200	μg/L	1	7/15/2017 01:24 AM
Surr: 2,4,6-Tribromophenol	58.1		32-92	%REC	1	7/15/2017 01:24 AM
Surr: 2-Fluorobiphenyl	51.2		34-98	%REC	1	7/15/2017 01:24 AM
Surr: 2-Fluorophenol	39.5		23-55	%REC	1	7/15/2017 01:24 AM
Surr: 4-Terphenyl-d14	80.4		50-111	%REC	1	7/15/2017 01:24 AM
Surr: Nitrobenzene-d5	50.0		32-89	%REC	1	7/15/2017 01:24 AM
Surr: Phenol-d6	26.5		10-35	%REC	1	7/15/2017 01:24 AM
TCLP VOLATILE ORGANICS			SW826	0B	Leachate: SW1311 / 7/14/17	Analyst: BG
1,1-Dichloroethene	ND		20	μg/L	20	7/18/2017 08:21 AM
1,2-Dichloroethane	ND		20	μg/L	20	7/18/2017 08:21 AM
2-Butanone	ND		100	μg/L	20	7/18/2017 08:21 AM
Benzene	ND		20	μg/L	20	7/18/2017 08:21 AM
Carbon tetrachloride	ND		20	μg/L	20	7/18/2017 08:21 AM
Chlorobenzene	ND		20	μg/L	20	7/18/2017 08:21 AM
Chloroform	ND		20	μg/L	20	7/18/2017 08:21 AM

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-004 (TCLP)
 Lab ID:
 1707480-12

 Collection Date:
 7/11/2017 02:00 PM
 Matrix:
 TCLP EXTRACT

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND		20	μg/L	20	7/18/2017 08:21 AM
Trichloroethene	ND		20	μg/L	20	7/18/2017 08:21 AM
Vinyl chloride	ND		20	μg/L	20	7/18/2017 08:21 AM
Surr: 1,2-Dichloroethane-d4	105		70-130	%REC	20	7/18/2017 08:21 AM
Surr: 4-Bromofluorobenzene	103		70-130	%REC	20	7/18/2017 08:21 AM
Surr: Dibromofluoromethane	97.6		70-130	%REC	20	7/18/2017 08:21 AM
Surr: Toluene-d8	97.4		70-130	%REC	20	7/18/2017 08:21 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-007 (TCLP)
 Lab ID:
 1707480-13

 Collection Date:
 7/11/2017 02:10 PM
 Matrix:
 TCLP EXTRACT

Date: 21-Jul-17

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TCLP MERCURY BY CVAA	SW7470A		Prep: SW7470 7/17/17 12:21	Analyst: JJB		
Mercury	ND		0.0020	mg/L	1	7/18/2017 10:56 AM
TCLP METALS ANALYSIS BY ICP			SW846	6010C	Prep: SW3005A 7/17/17 14:30	Analyst: RH
Arsenic	ND		0.50	mg/L	1	7/17/2017 07:07 PM
Barium	9.5		0.050	mg/L	1	7/17/2017 07:07 PM
Cadmium	0.18		0.10	mg/L	1	7/17/2017 07:07 PM
Chromium	ND		0.050	mg/L	1	7/17/2017 07:07 PM
Lead	27	*	0.050	mg/L	1	7/17/2017 07:07 PM
Selenium	ND		0.10	mg/L	1	7/17/2017 07:07 PM
Silver	ND		0.050	mg/L	1	7/17/2017 07:07 PM
TCLP SEMI-VOLATILE ORGANICS			SW8270D		Prep: SW3510 7/18/17 16:47	Analyst: RM
1,4-Dichlorobenzene	ND		100	μg/L	1	7/19/2017 12:49 AM
2,4,5-Trichlorophenol	ND		100	μg/L	1	7/19/2017 12:49 AM
2,4,6-Trichlorophenol	ND		100	μg/L	1	7/19/2017 12:49 AM
2,4-Dinitrotoluene	ND		100	μg/L	1	7/19/2017 12:49 AM
Hexachloro-1,3-butadiene	ND		100	μg/L	1	7/19/2017 12:49 AM
Hexachlorobenzene	ND		100	μg/L	1	7/19/2017 12:49 AM
Hexachloroethane	ND		100	μg/L	1	7/19/2017 12:49 AM
m-Cresol	ND		100	μg/L	1	7/19/2017 12:49 AM
Nitrobenzene	ND		100	μg/L	1	7/19/2017 12:49 AM
o-Cresol	ND		100	μg/L	1	7/19/2017 12:49 AM
p-Cresol	ND		100	μg/L	1	7/19/2017 12:49 AM
Pentachlorophenol	ND		100	μg/L	1	7/19/2017 12:49 AM
Pyridine	ND		200	μg/L	1	7/19/2017 12:49 AM
Surr: 2,4,6-Tribromophenol	51.5		32-92	%REC	1	7/19/2017 12:49 AM
Surr: 2-Fluorobiphenyl	34.0		34-98	%REC	1	7/19/2017 12:49 AM
Surr: 2-Fluorophenol	32.5		23-55	%REC	1	7/19/2017 12:49 AM
Surr: 4-Terphenyl-d14	73.9		50-111	%REC	1	7/19/2017 12:49 AM
Surr: Nitrobenzene-d5	38.1		32-89	%REC	1	7/19/2017 12:49 AM
Surr: Phenol-d6	22.3		10-35	%REC	1	7/19/2017 12:49 AM
TCLP VOLATILE ORGANICS			SW826	0B	Leachate: SW1311 / 7/15/17	Analyst: BG
1,1-Dichloroethene	ND		20	μg/L	20	7/18/2017 08:47 AM
1,2-Dichloroethane	ND		20	μg/L	20	7/18/2017 08:47 AM
2-Butanone	ND		100	μg/L	20	7/18/2017 08:47 AM
Benzene	ND		20	μg/L	20	7/18/2017 08:47 AM
Carbon tetrachloride	ND		20	μg/L	20	7/18/2017 08:47 AM
Chlorobenzene	ND		20	μg/L	20	7/18/2017 08:47 AM
Chloroform	ND		20	μg/L	20	7/18/2017 08:47 AM

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-007 (TCLP)
 Lab ID:
 1707480-13

 Collection Date:
 7/11/2017 02:10 PM
 Matrix:
 TCLP EXTRACT

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND		20	μg/L	20	7/18/2017 08:47 AM
Trichloroethene	ND		20	μg/L	20	7/18/2017 08:47 AM
Vinyl chloride	ND		20	μg/L	20	7/18/2017 08:47 AM
Surr: 1,2-Dichloroethane-d4	105		70-130	%REC	20	7/18/2017 08:47 AM
Surr: 4-Bromofluorobenzene	101		70-130	%REC	20	7/18/2017 08:47 AM
Surr: Dibromofluoromethane	98.8		70-130	%REC	20	7/18/2017 08:47 AM
Surr: Toluene-d8	96.9		70-130	%REC	20	7/18/2017 08:47 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-003 (TCLP)
 Lab ID:
 1707480-14

 Collection Date:
 7/11/2017 02:15 PM
 Matrix:
 TCLP EXTRACT

Date: 21-Jul-17

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TCLP MERCURY BY CVAA			SW747	0A	Prep: SW7470 7/17/17 12:21	Analyst: JJB
Mercury	ND		0.0020	mg/L	1	7/18/2017 10:58 AM
TCLP METALS ANALYSIS BY ICP			SW846	6010C	Prep: SW3005A 7/17/17 14:30	Analyst: RH
Arsenic	ND		0.50	mg/L	1	7/17/2017 07:27 PM
Barium	7.1		0.050	mg/L	1	7/17/2017 07:27 PM
Cadmium	0.12		0.10	mg/L	1	7/17/2017 07:27 PM
Chromium	ND		0.050	mg/L	1	7/17/2017 07:27 PM
Lead	12	*	0.050	mg/L	1	7/17/2017 07:27 PM
Selenium	ND		0.10	mg/L	1	7/17/2017 07:27 PM
Silver	ND		0.050	mg/L	1	7/17/2017 07:27 PM
TCLP SEMI-VOLATILE ORGANICS			SW827	0D	Prep: SW3510 7/18/17 16:47	Analyst: RS
1,4-Dichlorobenzene	ND		100	μg/L	1	7/18/2017 07:38 PM
2,4,5-Trichlorophenol	ND		100	μg/L	1	7/18/2017 07:38 PM
2,4,6-Trichlorophenol	ND		100	μg/L	1	7/18/2017 07:38 PM
2,4-Dinitrotoluene	ND		100	μg/L	1	7/18/2017 07:38 PM
Hexachloro-1,3-butadiene	ND		100	μg/L	1	7/18/2017 07:38 PM
Hexachlorobenzene	ND		100	μg/L	1	7/18/2017 07:38 PM
Hexachloroethane	ND		100	μg/L	1	7/18/2017 07:38 PM
m-Cresol	ND		100	μg/L	1	7/18/2017 07:38 PM
Nitrobenzene	ND		100	μg/L	1	7/18/2017 07:38 PM
o-Cresol	ND		100	μg/L	1	7/18/2017 07:38 PM
p-Cresol	ND		100	μg/L	1	7/18/2017 07:38 PM
Pentachlorophenol	ND		100	μg/L	1	7/18/2017 07:38 PM
Pyridine	ND		200	μg/L	1	7/18/2017 07:38 PM
Surr: 2,4,6-Tribromophenol	52.5		32-92	%REC	1	7/18/2017 07:38 PM
Surr: 2-Fluorobiphenyl	56.8		34-98	%REC		7/18/2017 07:38 PM
Surr: 2-Fluorophenol	40.3		23-55	%REC	1	7/18/2017 07:38 PM
Surr: 4-Terphenyl-d14	79.9		50-111	%REC	1	7/18/2017 07:38 PM
Surr: Nitrobenzene-d5	50.6		32-89	%REC	1	7/18/2017 07:38 PM
Surr: Phenol-d6	22.7		10-35	%REC	1	7/18/2017 07:38 PM
TCLP VOLATILE ORGANICS			SW826	0B	Leachate: SW1311 / 7/15/17	Analyst: BG
1,1-Dichloroethene	ND		20	μg/L	20	7/18/2017 09:13 AM
1,2-Dichloroethane	ND		20	μg/L	20	7/18/2017 09:13 AM
2-Butanone	ND		100	μg/L	20	7/18/2017 09:13 AM
Benzene	ND		20	μg/L	20	7/18/2017 09:13 AM
Carbon tetrachloride	ND		20	μg/L	20	7/18/2017 09:13 AM
Chlorobenzene	ND		20	μg/L	20	7/18/2017 09:13 AM
Chloroform	ND		20	μg/L	20	7/18/2017 09:13 AM

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-003 (TCLP)
 Lab ID:
 1707480-14

 Collection Date:
 7/11/2017 02:15 PM
 Matrix:
 TCLP EXTRACT

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND		20	μg/L	20	7/18/2017 09:13 AM
Trichloroethene	ND		20	μg/L	20	7/18/2017 09:13 AM
Vinyl chloride	ND		20	μg/L	20	7/18/2017 09:13 AM
Surr: 1,2-Dichloroethane-d4	103		70-130	%REC	20	7/18/2017 09:13 AM
Surr: 4-Bromofluorobenzene	102		70-130	%REC	20	7/18/2017 09:13 AM
Surr: Dibromofluoromethane	97.9		70-130	%REC	20	7/18/2017 09:13 AM
Surr: Toluene-d8	99.0		70-130	%REC	20	7/18/2017 09:13 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-008 (TCLP)
 Lab ID:
 1707480-15

 Collection Date:
 7/11/2017 02:20 PM
 Matrix:
 TCLP EXTRACT

Date: 21-Jul-17

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TCLP MERCURY BY CVAA			SW747	'0A	Prep: SW7470 7/17/17 12:21	Analyst: JJB
Mercury	ND		0.0020	mg/L	1	7/18/2017 11:01 AM
TCLP METALS ANALYSIS BY ICP			SW846	6010C	Prep: SW3005A 7/17/17 14:30	Analyst: RH
Arsenic	ND		0.50	mg/L	1	7/17/2017 07:34 PM
Barium	0.24		0.050	mg/L	1	7/17/2017 07:34 PM
Cadmium	ND		0.10	mg/L	1	7/17/2017 07:34 PM
Chromium	ND		0.050	mg/L	1	7/17/2017 07:34 PM
Lead	ND		0.050	mg/L	1	7/17/2017 07:34 PM
Selenium	ND		0.10	mg/L	1	7/17/2017 07:34 PM
Silver	ND		0.050	mg/L	1	7/17/2017 07:34 PM
TCLP SEMI-VOLATILE ORGANICS			SW827	0D	Prep: SW3510 7/18/17 16:47	Analyst: RS
1,4-Dichlorobenzene	ND		100	μg/L	1	7/18/2017 08:01 PM
2,4,5-Trichlorophenol	ND		100	μg/L	1	7/18/2017 08:01 PM
2,4,6-Trichlorophenol	ND		100	μg/L	1	7/18/2017 08:01 PM
2,4-Dinitrotoluene	ND		100	μg/L	1	7/18/2017 08:01 PM
Hexachloro-1,3-butadiene	ND		100	μg/L	1	7/18/2017 08:01 PM
Hexachlorobenzene	ND		100	μg/L	1	7/18/2017 08:01 PM
Hexachloroethane	ND		100	μg/L	1	7/18/2017 08:01 PM
m-Cresol	ND		100	μg/L	1	7/18/2017 08:01 PM
Nitrobenzene	ND		100	μg/L	1	7/18/2017 08:01 PM
o-Cresol	ND		100	μg/L	1	7/18/2017 08:01 PM
p-Cresol	ND		100	μg/L	1	7/18/2017 08:01 PM
Pentachlorophenol	ND		100	μg/L	1	7/18/2017 08:01 PM
Pyridine	ND		200	μg/L	1	7/18/2017 08:01 PM
Surr: 2,4,6-Tribromophenol	46.6		32-92	%REC	1	7/18/2017 08:01 PM
Surr: 2-Fluorobiphenyl	45.4		34-98	%REC	1	7/18/2017 08:01 PM
Surr: 2-Fluorophenol	33.0		23-55	%REC	1	7/18/2017 08:01 PM
Surr: 4-Terphenyl-d14	87.0		50-111	%REC	1	7/18/2017 08:01 PM
Surr: Nitrobenzene-d5	40.8		32-89	%REC	1	7/18/2017 08:01 PM
Surr: Phenol-d6	18.4		10-35	%REC	1	7/18/2017 08:01 PM
TCLP VOLATILE ORGANICS			SW826	0B	Leachate: SW1311 / 7/15/17	Analyst: BG
1,1-Dichloroethene	ND		20	μg/L	20	7/19/2017 03:54 AM
1,2-Dichloroethane	ND		20	μg/L	20	7/19/2017 03:54 AM
2-Butanone	ND		100	μg/L	20	7/19/2017 03:54 AM
Benzene	ND		20	μg/L	20	7/19/2017 03:54 AM
Carbon tetrachloride	ND		20	μg/L	20	7/19/2017 03:54 AM
Chlorobenzene	ND		20	μg/L	20	7/19/2017 03:54 AM
Chloroform	ND		20	μg/L	20	7/19/2017 03:54 AM

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-008 (TCLP)
 Lab ID:
 1707480-15

 Collection Date:
 7/11/2017 02:20 PM
 Matrix:
 TCLP EXTRACT

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND		20	μg/L	20	7/19/2017 03:54 AM
Trichloroethene	ND		20	μg/L	20	7/19/2017 03:54 AM
Vinyl chloride	ND		20	μg/L	20	7/19/2017 03:54 AM
Surr: 1,2-Dichloroethane-d4	98.0		70-130	%REC	20	7/19/2017 03:54 AM
Surr: 4-Bromofluorobenzene	95.4		70-130	%REC	20	7/19/2017 03:54 AM
Surr: Dibromofluoromethane	100		70-130	%REC	20	7/19/2017 03:54 AM
Surr: Toluene-d8	92.1		70-130	%REC	20	7/19/2017 03:54 AM

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-002 (TCLP)
 Lab ID:
 1707480-16

 Collection Date:
 7/11/2017 02:30 PM
 Matrix:
 TCLP EXTRACT

Date: 21-Jul-17

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TCLP MERCURY BY CVAA			SW747	0A	Prep: SW7470 7/17/17 12:21	Analyst: JJB
Mercury	ND		0.0020	mg/L	1	7/18/2017 11:03 AM
TCLP METALS ANALYSIS BY ICP			SW846	6010C	Prep: SW3005A 7/17/17 14:30	Analyst: RH
Arsenic	ND		0.50	mg/L	1	7/17/2017 07:40 PM
Barium	2.7		0.050	mg/L	1	7/17/2017 07:40 PM
Cadmium	0.17		0.10	mg/L	1	7/17/2017 07:40 PM
Chromium	ND		0.050	mg/L	1	7/17/2017 07:40 PM
Lead	71	*	0.050	mg/L	1	7/17/2017 07:40 PM
Selenium	ND		0.10	mg/L	1	7/17/2017 07:40 PM
Silver	ND		0.050	mg/L	1	7/17/2017 07:40 PM
TCLP SEMI-VOLATILE ORGANICS			SW827	0D	Prep: SW3510 7/18/17 16:47	Analyst: RS
1,4-Dichlorobenzene	ND		100	μg/L	1	7/18/2017 08:24 PM
2,4,5-Trichlorophenol	ND		100	μg/L	1	7/18/2017 08:24 PM
2,4,6-Trichlorophenol	ND		100	μg/L	1	7/18/2017 08:24 PM
2,4-Dinitrotoluene	ND		100	μg/L	1	7/18/2017 08:24 PM
Hexachloro-1,3-butadiene	ND		100	μg/L	1	7/18/2017 08:24 PM
Hexachlorobenzene	ND		100	μg/L	1	7/18/2017 08:24 PM
Hexachloroethane	ND		100	μg/L	1	7/18/2017 08:24 PM
m-Cresol	ND		100	μg/L	1	7/18/2017 08:24 PM
Nitrobenzene	ND		100	μg/L	1	7/18/2017 08:24 PM
o-Cresol	ND		100	μg/L	1	7/18/2017 08:24 PM
p-Cresol	ND		100	μg/L	1	7/18/2017 08:24 PM
Pentachlorophenol	ND		100	μg/L	1	7/18/2017 08:24 PM
Pyridine	ND		200	μg/L	1	7/18/2017 08:24 PM
Surr: 2,4,6-Tribromophenol	53.1		32-92	%REC	1	7/18/2017 08:24 PM
Surr: 2-Fluorobiphenyl	49.4		34-98	%REC	1	7/18/2017 08:24 PM
Surr: 2-Fluorophenol	34.8		23-55	%REC	1	7/18/2017 08:24 PM
Surr: 4-Terphenyl-d14	86.3		50-111	%REC	1	7/18/2017 08:24 PM
Surr: Nitrobenzene-d5	44.5		32-89	%REC	1	7/18/2017 08:24 PM
Surr: Phenol-d6	18.9		10-35	%REC	1	7/18/2017 08:24 PM
TCLP VOLATILE ORGANICS			SW826	0B	Leachate: SW1311 / 7/15/17	Analyst: BG
1,1-Dichloroethene	ND		20	μg/L	20	7/19/2017 04:20 AM
1,2-Dichloroethane	ND		20	μg/L	20	7/19/2017 04:20 AM
2-Butanone	ND		100	μg/L	20	7/19/2017 04:20 AM
Benzene	ND		20	μg/L	20	7/19/2017 04:20 AM
Carbon tetrachloride	ND		20	μg/L	20	7/19/2017 04:20 AM
Chlorobenzene	ND		20	μg/L	20	7/19/2017 04:20 AM
Chloroform	ND		20	μg/L	20	7/19/2017 04:20 AM

Client: U.P. Environmental Services, Inc.

 Project:
 CONT
 Work Order:
 1707480

 Sample ID:
 CONT-002 (TCLP)
 Lab ID:
 1707480-16

 Collection Date:
 7/11/2017 02:30 PM
 Matrix:
 TCLP EXTRACT

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Tetrachloroethene	ND		20	μg/L	20	7/19/2017 04:20 AM
Trichloroethene	ND		20	μg/L	20	7/19/2017 04:20 AM
Vinyl chloride	ND		20	μg/L	20	7/19/2017 04:20 AM
Surr: 1,2-Dichloroethane-d4	97.7		70-130	%REC	20	7/19/2017 04:20 AM
Surr: 4-Bromofluorobenzene	95.0		70-130	%REC	20	7/19/2017 04:20 AM
Surr: Dibromofluoromethane	101		70-130	%REC	20	7/19/2017 04:20 AM
Surr: Toluene-d8	94.0		70-130	%REC	20	7/19/2017 04:20 AM

Date: 21-Jul-17

Date: 21-Jul-17

Client: U.P. Environmental Services, Inc.

Work Order: 1707480
Project: CONT

Batch ID: 104427	Instrument ID G	C14		Metho	d: SW808	32						
MBLK S	Sample ID: PBLKS1-	104427-104	427			L	Jnits: µg/k	(g	Analys	is Date: 7	/14/2017 0	1:33 PN
Client ID:		Run II): GC14 _	170713A		Se	qNo: 453 2	2118	Prep Date: 7/14	/2017	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Aroclor 1016		ND	67									
Aroclor 1221		ND	67									
Aroclor 1232		ND	67									
Aroclor 1242		ND	67									
Aroclor 1248		ND	67									
Aroclor 1254		ND	67									
Aroclor 1260		ND	67									
Aroclor 1262		ND	67									
Aroclor 1268		ND	67									
Surr: Decachlorobiph	nenyl	25.65	0	33.3		0	77	40-140	0			
Surr: Tetrachloro-m-	kylene	24.05	0	33.3		0	72.2	45-124	0			
LCS S	Sample ID: PLCSS1-104427-104427					ι	Jnits: µg/k	(g	Analys	is Date: 7	/14/2017 0	1:47 PN
Client ID:		Run II): GC14 _	170713A			qNo: 453 2	_	Prep Date: 7/14	DF: 1		
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Aroclor 1016		748.8	67	833		0	89.9	50-130	0			
Aroclor 1260		767.9	67	833		0	92.2	50-130	0			
Surr: Decachlorobiph	nenyl	25.09	0	33.3		0	75.3	40-140	0			
Surr: Tetrachloro-m-x	kylene	22.46	0	33.3		0	67.5	45-124	0			
MS S	Sample ID: 1707517-	05B MS				ι	Jnits: µg/k	(g	Analys	is Date: 7	/14/2017 0	2:16 PN
Client ID:		Run II): GC14 _	170713A		Se	qNo: 453 2	2122	Prep Date: 7/14	1/2017	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
•								40 445				
Aroclor 1016		745.2	65	813		0	91.7	40-140	0			
Aroclor 1260	,	794.4	65	813		0	97.7	40-140	0			
Surr: Decachlorobiph Surr: Tetrachloro-m-x	•	24.8	0	32.5 32.5		0	76.3 65.5	40-140 45-124				
				02.0						- D-1 =		
	Sample ID: 1707517-						Jnits: µg/k	_		is Date: 7		12:30 PM
Client ID:		Run II): GC14 _	GC14_170713A		Se	qNo: 453 2	2123	Prep Date: 7/14	/2017	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
								40.415	=:==			
Aroclor 1016		711	65	815.8		0	87.2	40-140	745.2	4.69		
Aroclor 1260	,	754.8	65	815.8		0	92.5	40-140	794.4	5.12		
Surr: Decachlorobiph		23.48	0	32.61		0	72	40-140		5.49		
Surr: Tetrachloro-m-x	rvlene	20.19	0	32.61		0	61.9	45-124	21.3	5.37	50	

Work Order: 1707480
Project: CONT

Batch ID: 104427	Instrument ID GC14	Method:	SW8082	
The following sample	es were analyzed in this batch:	1707480-01A	1707480-02A	1707480-03A
		1707480-04A	1707480-05A	1707480-06A

Work Order: 1707480
Project: CONT

Batch ID: 104494	Instrument ID 6	9C14		Metho	d: SW808	32							
MBLK	Sample ID: PBLKS1-	-104494-104	494			U	Jnits: µg/k	K g	Analysis Date: 7/18/2017 10				
Client ID:		Run ID	: GC14_	170719B		Se	qNo: 453	8020	Prep Date: 7/17	DF: 1			
					SPK Ref			Control	RPD Ref		RPD		
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual	
Aroclor 1016		ND	67										
Aroclor 1221		ND	67										
Aroclor 1232		ND	67										
Aroclor 1242		ND	67										
Aroclor 1248		ND	67										
Aroclor 1254		ND	67										
Aroclor 1260		ND	67										
Aroclor 1262		ND	67										
Aroclor 1268		ND	67										
Surr: Decachlorol	piphenyl	22.68	0	33.3		0	68.1	40-140	0				
Surr: Tetrachloro-		25.63	0	33.3		0	77	45-124	0				
LCS	Sample ID: PLCSS1-	-104494-104	194			U	Jnits: µg/k	 ζα	Analys	is Date: 7/	18/2017 1	0:32 PN	
Client ID:			: GC14_	170719B			qNo: 453	_	Prep Date: 7/17	DF: 1			
					SPK Ref			Control	RPD Ref		RPD		
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual	
						_		50.400					
Aroclor 1016		723.5	67	833		0	86.9	50-130	0				
Aroclor 1260	- San In a second	655	67	833		0	78.6	50-130	0				
Surr: Decachlorol		22.38 21.67	0	33.3		0	67.2	40-140					
Surr: Tetrachloro-	m-xylene 	21.07	0	33.3		0	65.1	45-124	0				
MS	Sample ID: 1707739-	-05A MS				U	Jnits: µg/k	〈 g	Analys	is Date: 7/	18/2017 1	1:01 PN	
Client ID:		Run ID	: GC14_	170719B		Se	qNo: 453	8023	Prep Date: 7/17	7/2017	DF: 1		
					SPK Ref			Control	RPD Ref		RPD		
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual	
Aroclor 1016		475.1	66	828.2		0	57.4	40-140	0				
Aroclor 1260		717.2	66	828.2		0	86.6	40-140	0				
Surr: Decachlorol	piphenvl	24.18	0	33.11		0	73	40-140					
Surr: Tetrachloro-		11.18	0	33.11		0	33.8	45-124				S	
MSD	Sample ID: 1707739 -	-054 MSD				L	Jnits: µg/k	(a	Analys	is Date: 7/	18/2017 1	1-15 PN	
Client ID:	Jap.0 15. 1101109-		Run ID: GC14_170719B				qNo: 453 ξ	_	Prep Date: 7/17		DF: 1		
- CJ.R. 12.		T COLL IE	. 5517_		SPK Ref	50	4. 10. 700	Control	RPD Ref	,=011	RPD		
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual	
Aroclor 1016		318.9	66	819.2		0	38.9	40-140	475.1	39.3	50	S	
Aroclor 1260		593.2	66	819.2		0	72.4	40-140	717.2		50		
	piphenyl	17.64	0	32.75		0	53.9	40-140			50		
Surr: Decachlorol													
		8.485	0	32.75		0	25.9	45-124	11.18	27.4	50	S	

Note:

Work Order: 1707480
Project: CONT

Aroclor 1016	Batch ID: 104646	Instrument ID GC1	14		Metho	d: SW808	32						
Analyte Result Polity Spik value Sp	MBLK	Sample ID: PBLKS1-104	4646-104	646			L	Jnits: µg/k	(g	Analysis Date: 7/19/2017			
Analyte Result PQL SPK Val Value %REC Limit Value %RPD Limit Qua Ancotor 1016 ND 67 Arcotor 1221 ND 67 Arcotor 1221 ND 67 Arcotor 1222 ND 67 Arcotor 1242 ND 67 Arcotor 1242 ND 67 Arcotor 1242 ND 67 Arcotor 1248 ND 67 Arcotor 1248 ND 67 Arcotor 1248 ND 67 Arcotor 1260 ND 67 Arcotor 1268 ND 67 Arcot	Client ID:		Run IE	D: GC14 _	170719C		Se	qNo: 454 0	0386	Prep Date: 7/19	DF: 1		
Analyte Result PQL SPK Val Value %REC Limit Value %RPD Limit Qua Ancotor 1016 ND 67 Arcotor 1221 ND 67 Arcotor 1221 ND 67 Arcotor 1222 ND 67 Arcotor 1242 ND 67 Arcotor 1242 ND 67 Arcotor 1242 ND 67 Arcotor 1248 ND 67 Arcotor 1248 ND 67 Arcotor 1248 ND 67 Arcotor 1260 ND 67 Arcotor 1268 ND 67 Arcot						SPK Ref			Control	RPD Ref		RPD	
Arcolor 1221 ND 67 Arcolor 1232 ND 67 Arcolor 1242 ND 67 Arcolor 1248 ND 67 Arcolor 1248 ND 67 Arcolor 1248 ND 67 Arcolor 1254 ND 67 Arcolor 1256 ND 67 Arcolor 1260 ND 67 Arcolor 1262 ND 67 Arcolor 1262 ND 67 Arcolor 1262 ND 67 Arcolor 1268 ND 67 Arcolor 1268 ND 67 Arcolor 1268 ND 67 Surr. Tetrachloro-m-xylene 24.02 0 33.3 0 72 40-140 0 0 LCS Sample ID: PLCSS1-104646-104645 Client ID: Run ID: GC14_170719C Arcolor 1260 ND 688.2 67 833 0 82.6 50-130 PRD Ref Nerbolishenyl 21.84 0 33.3 0 79 50-130 0 0 Arcolor 1260 ND 688.3 67 833 0 82.6 50-130 0 0 Surr. Decachlorobiphenyl 21.84 0 33.3 0 66.6 40-140 0 0 Arcolor 1260 ND 688.3 67 833 0 82.6 50-130 ND 0 Arcolor 1260 ND 688.3 67 833 0 82.6 50-130 ND 0 Arcolor 1260 ND 688.3 67 833 0 79 50-130 0 0 Surr. Tetrachloro-m-xylene 22.86 0 33.3 0 79 50-130 0 0 MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C Arcolor 1260 ND 688.2 67 880 ND 68.6 45-124 0 0 MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C Arcolor 1260 ND 688.2 67 ND 68.6 45-124 0 0 MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C Arcolor 1260 ND 688.2 68 ND 68.8 ND 88 ND 8	Analyte		Result	PQL	SPK Val			%REC			%RPD		Qual
Aroclor 1232 ND 67 Aroclor 1242 ND 67 Aroclor 1248 ND 67 Aroclor 1254 ND 67 Aroclor 1254 ND 67 Aroclor 1254 ND 67 Aroclor 1254 ND 67 Aroclor 1256 ND 67 Aroclor 1260 ND 67 Aroclor 1262 ND 67 Aroclor 1262 ND 67 Aroclor 1268 ND 67 Aroclor 1268 ND 67 Aroclor 1268 ND 67 Surr. Decachilorobiphenyl 23.99 0 33.3 0 72 40-140 0 Surr. Tetrachloro-m-xylene 24.02 0 33.3 0 72 40-140 0 Clent ID: Run ID: GC14_170719C SeqNo: 4540387 Prep Date: 7/19/2017 DF: 1 Aroclor 1260 688.2 67 833 0 82.6 50-130 0 Surr. Tetrachloro-m-xylene 22.86 0 33.3 0 79 50-130 0 Surr. Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 0 MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C SeqNo: 4540387 Prep Date: 7/19/2017 DF: 1 MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C SeqNo: 4540387 Prep Date: 7/19/2017 DF: 1 Aroclor 1260 658.3 67 833 0 79 50-130 0 0 Surr. Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 0 MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C SeqNo: 4540384 Prep Date: 7/19/2017 DF: 1 Aroclor 1260 522.9 64 801.8 0 71.3 40-140 0 Aroclor 1260 522.9 64 801.8 0 652 40-140 0 Aroclor 1260 522.9 64 801.8 0 652 40-140 0 Surr. Decachilorobiphenyl 71.7 8 0 32.05 0 53.6 40-140 0 MSD Sample ID: 1707617-16A MS Units: µg/Kg Arollor 106 671.8 64 801.8 0 71.3 40-140 0 MSD Sample ID: 1707617-16A MS Units: µg/Kg Arollor 1260 % RPD Ref Value % RPD Limit Que % RPD Climit	Aroclor 1016		ND	67									
Aroclor 1242 ND 67 Aroclor 1246 ND 67 Aroclor 1254 ND 67 Aroclor 1260 ND 67 Aroclor 1260 ND 67 Aroclor 1262 ND 67 Aroclor 1268 ND 67 Surr. Decachlorobiphenyl 23.99 0 33.3 0 72 40-140 0 0 Surr. Tetrachloro-m-xylene 24.02 0 33.3 0 72.1 45:124 0 0 LCS Sample ID: PLCSS1-104646-10464- Client ID: Run ID: GC14_170719C SeqNo: 45-038 Prep Date: 7/19/2017 11:21 Fe Aroclor 1260 S8.3 67 83.3 0 79 50-130 0 0 Aroclor 1260 688.2 67 83.3 0 79 50-130 0 0 Surr. Tetrachloro-m-xylene 22.86 0 33.3 0 6.86 40-140 0 0 Surr. Tetrachloro-m-xylene 22.86 0 33.3 0 6.86 40-140 0 0 Surr. Tetrachloro-m-xylene 22.86 0 33.3 0 6.86 40-140 0 0 Aroclor 1016 687.18 64 801.8 0 671.3 40-140 0 0 Aroclor 1016 571.8 64 801.8 0 65.2 40-140 0 0 0 Aroclor 1016 571.8 64 801.8 0 65.2 40-140 0 0 0 Aroclor 1016 571.8 64 801.8 0 65.2 40-140 0 0 0 Aroclor 1016 571.8 64 801.8 0 65.2 40-140 0 0 0 Aroclor 1016 571.8 64 801.8 0 65.2 40-140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			ND										
Aroclor 1248 ND 67 Aroclor 1254 ND 67 Aroclor 1256 ND 67 Aroclor 1260 ND 67 Aroclor 1262 ND 67 Aroclor 1262 ND 67 Aroclor 1268 ND 67 Aroclor 1268 ND 67 Sum: Decachlorobiphenyl 23.99 0 33.3 0 72 40-140 0 Sum: Tetrachloro-m-xylene 24.02 0 33.3 0 72.1 45-124 0 LCS Sample ID: PLCSS1-104646-10464€ Client ID: Run ID: GC14_170719C Analyte Result POL SPK Val S	Aroclor 1232		ND	67									
Arcolor 1254 ND 67 Arcolor 1260 ND 67 Arcolor 1262 ND 67 Arcolor 1268 ND 67 Surr. Decachlorobiphenyl 23.99 0 33.3 0 72 40-140 0 Surr. Tetrachloro-m-xylene 24.02 0 33.3 0 72.1 45-124 0 Client ID: Run ID: GC14_170719C Arcolor 1266 S8.2 67 83.3 0 82.6 50-130 0 RPD Ref Nanlyte Result PQL S98.3 0 68.6 45-124 0 MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C Arcolor 1260 S8.2 67 83.3 0 82.6 50-130 0 0 Arcolor 1260 F8.8 2 67 83.3 0 82.6 50-130 0 0 Arcolor 1260 F8.8 2 67 83.3 0 82.6 50-130 0 0 Arcolor 1260 F8.8 2 67 83.3 0 82.6 50-130 0 0 Arcolor 1260 F8.8 2 67 83.3 0 82.6 50-130 0 0 Arcolor 1260 F8.8 2 67 83.3 0 82.6 50-130 0 0 MS Sample ID: 1707617-16A MS Client ID: Surr. Tetrachloro-m-xylene 22.8 0 0 33.3 0 82.6 50-130 0 0 MS Sample ID: 1707617-16A MS Client ID: Run ID: GC14_170719C Result PQL SPK Val	Aroclor 1242		ND	67									
Arcolor 1260 ND 67 Arcolor 1262 ND 67 Arcolor 1268 ND 67 Surr: Decachlorobiphenyl 23.99 0 33.3 0 72.1 45-124 0 Surr: Decachlorobiphenyl 24.02 0 33.3 0 72.1 45-124 0 LCS Sample ID: PLCSS1-104646-104645	Aroclor 1248		ND	67									
Aroclor 1262 ND 67 Aroclor 1268 ND 67 Surr: Decachlorobiphenyl 23.99 0 33.3 0 72 40.14 0 0 LCS Sample ID: PLCSS1-104646-1046+5	Aroclor 1254		ND	67									
Arcolor 1268 ND 67 Surr. Decachlorobiphenyl 23.99 0 33.3 0 72 40-140 0 Surr. Tetrachloro-m-xylene 24.02 0 33.3 0 721 45-124 0 LCS Sample ID: PLCSS1-104646-104646 Client ID: Run ID: GC14_170719C SeqNo: 4540387 Prep Date: 7/19/2017 11:21 F. Client ID: Result PQL SPK Vall Units: µg/Kg Analysis Date: 7/19/2017 11:21 F. Analyte Result PQL SPK Vall Value Result PQL SPK Vall Value Result PQL SPK Vall Value Result PQL SPK Vall PQL SPK Vall Result PQL SPK Vall Result PQL SPK Vall PQL SPK Vall Result PQL	Aroclor 1260		ND	67									
Surr: Decachlorobiphenyl 23.99 0 33.3 0 72 40-140 0	Aroclor 1262		ND	67									
Client ID: Result PQL SPK Val Value SeqNo: 4540394 Prep Date: 7/19/2017 12:18 Analyte Result PQL SPK Val Value SeqNo: 4540387 Prep Date: 7/19/2017 12:18 Analyte Result PQL SPK Val Value SeqNo: 4540387 Prep Date: 7/19/2017 DF: 1 PREP Date	Aroclor 1268		ND	67									
Client ID: Run ID: GC14_170719C SeqNo: 4540387 Prep Date: 7/19/2017 11:21 F Client ID: Run ID: GC14_170719C SeqNo: 4540387 Prep Date: 7/19/2017 10:11 DF: 1 Client ID: SPK Ref SeqNo: 4540387 Prep Date: 7/19/2017 DF: 1 Client ID: SPK Ref SeqNo: 4540387 Prep Date: 7/19/2017 DF: 1 Client ID: SPK Ref SPK Ref SeqNo: 4540387 Prep Date: 7/19/2017 DF: 1 Client ID: SPK Ref SPK Ref SPK Ref SPK Ref SeqNo: 4540387 Prep Date: 7/19/2017 DF: 1 Client ID: SeqNo: 4540387 Prep Date: 7/19/2017 SeqNo: 4540387 SeqNo: 4540387 SeqNo: 4540387 Prep Date: 7/19/2017 SeqNo: 4540387 SeqN	Surr: Decachlorob	iphenyl	23.99	0	33.3		0	72	40-140	0			
Result PQL SPK Net SPK Net SeqNo: 4540387 Prep Date: 7/19/2017 DF: 1		· · ·	24.02		33.3		0	72.1	45-124	0			
Analyte Result PQL SPK Val Value %REC Limit Value %RPD Ref Value %RPD Limit Qual RPD Ref Value %RPD Ref Value %RPD Ref Value %RPD Ref Value %RPD RPD Ref Value %RPD RPD Ref Value %RPD RPD RPD RPD RPD RPD RPD RPD RPD RPD	LCS	Sample ID: PLCSS1-104	4646-104	646			L	Jnits: µg/k	(g	Analys	is Date: 7/	19/2017 1	1:21 PI
Analyte Result PQL SPK Val Value %REC Limit Value %RPD Limit Qual Arcolor 1016 688.2 67 833 0 82.6 50-130 0 0 Surr: Decachlorobiphenyl 21.84 0 33.3 0 65.6 40-140 0 Surr: Decachlorobiphenyl 22.86 0 33.3 0 68.6 45-124 0 Surr: Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr: Tetrachloro-m-xylene 22.86 0 Surr: Decachlorobiphenyl 21.84 0 Surr: Tetrachloro-m-xylene 22.86 0 Surr: Decachlorobiphenyl 21.84 0 Surr: Tetrachloro-m-xylene 22.86 0 Surr: SeqNo: 4540394 Prep Date: 7/19/2017 DF: 1 SeqNo: 4540395 Prep Date: 7/19/2017 DF: 1	Client ID:		Run I	D: GC14_	170719C		Se	qNo: 454 (0387	Prep Date: 7/19	9/2017	DF: 1	
Analyte Result PQL SPK Val Value %REC Limit Value %RPD Limit Qual Anoclor 1016 688.2 67 833 0 82.6 50-130 0 0 Surr. Decachlorobiphenyl 21.84 0 33.3 0 65.6 40-140 0 Surr. Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr. Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr. Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr. Tetrachloro-m-xylene 22.86 Surr. Tetrachloro-m-xylene Surr						SPK Ref			Control	RPD Ref		RPD	
Aroclor 1260 658.3 67 833 0 79 50-130 0 Surr: Decachlorobiphenyl 21.84 0 33.3 0 65.6 40-140 0 Surr: Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr: Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr: Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr: Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr: Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr: Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr: Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 Surr: Tetrachloro-m-xylene 8.6 801.8 0 71.3 40-140 0 Surr: Decachlorobiphenyl 17.18 0 32.05 0 53.6 40-140 0 Surr: Tetrachloro-m-xylene 18.6 0 32.05 0 58 45-124 0 Surr: Tetrachloro-m-xylene 18.6 0 32.05 0 58 45-124 0 Surr: Tetrachloro-m-xylene 18.6 0 32.05 0 58 45-124 0 Surr: Tetrachloro-m-xylene 18.6 0 32.05 SeqNo: 4540395 Prep Date: 7/19/2017 DF: 1 SeqNo: 4540395 Prep Date: 7/19/2	Analyte		Result	PQL	SPK Val			%REC			%RPD		Qual
Surr: Decachlorobiphenyl 21.84 0 33.3 0 65.6 40-140 0 Surr: Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0 MS Sample ID: 1707617-16A MS Units: µg/Kg Analysis Date: 7/20/2017 12:18 A Client ID: Result PQL SPK Val Value SPK Ref Value SPK Ref Value NREC Limit Value NRED Limit Quantum	Aroclor 1016		688.2	67	833		0	82.6	50-130	0			
Surr: Tetrachloro-m-xylene 22.86 0 33.3 0 68.6 45-124 0	Aroclor 1260		658.3	67	833		0	79	50-130	0			
MS Sample ID: 1707617-16A MS Units: μg/Kg Analysis Date: 7/20/2017 12:18 A Client ID: Run ID: GC14_170719C SeqNo: 4540394 Prep Date: 7/19/2017 DF: 1 Analyte Result PQL SPK Net Value Control NPD Ref Value RPD Ref NRPD RPD Limit Qual NRPD Aroclor 1016 571.8 64 801.8 0 71.3 40-140 0 0 Aroclor 1260 522.9 64 801.8 0 65.2 40-140 0 0 Surr: Decachlorobiphenyl 17.18 0 32.05 0 53.6 40-140 0 0 MSD Sample ID: 1707617-16A MSD Units: μg/Kg Analysis Date: 7/20/2017 12:33 A Analysis Dat	Surr: Decachlorob	iphenyl	21.84	0	33.3		0	65.6	40-140	0			
Client ID: Run ID: GC14_170719C SeqNo: 4540394 Prep Date: 7/19/2017 DF: 1	Surr: Tetrachloro-	m-xylene	22.86	0	33.3		0	68.6	45-124	0			
Analyte Result PQL SPK Val Value Val	MS	Sample ID: 1707617-16	A MS				L	Jnits: µg/k	(g	Analys	is Date: 7/	20/2017 1	2:18 Al
Analyte Result PQL SPK Val Value %REC Limit Value %RPD Limit Qualities Aroclor 1016 571.8 64 801.8 0 71.3 40-140 0 0 40-140 0 0 40-140 0 0 40-140 0 0 522.9 64 801.8 0 65.2 40-140 0 0 40-140 0 0 522.9 64 801.8 0 53.6 40-140 0 0 522.9 64 801.8 0 53.6 40-140 0 0 522.9 64 801.8 0 53.6 40-140 0 0 522.9 60 53.6 40-140 0 0 50 50 53.6 40-140 0 0 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	Client ID:		Run IE	D: GC14_	170719C		Se	qNo: 454 0	0394	Prep Date: 7/19	9/2017	DF: 1	
Aroclor 1016 571.8 64 801.8 0 71.3 40-140 0 Aroclor 1260 522.9 64 801.8 0 65.2 40-140 0 Surr: Decachlorobiphenyl 17.18 0 32.05 0 53.6 40-140 0 Surr: Tetrachloro-m-xylene 18.6 0 32.05 0 58 45-124 0 MSD Sample ID: 1707617-16A MSD Units: µg/Kg Analysis Date: 7/20/2017 12:33 A Client ID: SeqNo: 4540395 Prep Date: 7/19/2017 DF: 1 Analyte Result PQL SPK Val SPK Value %REC Limit Value %RPD Limit Qual Aroclor 1016 688.7 66 818.8 0 84.1 40-140 571.8 18.6 50 Aroclor 1260 634.8 66 818.8 0 77.5 40-140 522.9 19.3 50 Surr: Decachlorobiphenyl 19.11 0 32.73 0 58.4 40-140 17.18 10.6 50						SPK Ref			Control	RPD Ref		RPD	
Aroclor 1260 522.9 64 801.8 0 65.2 40-140 0 Surr: Decachlorobiphenyl 17.18 0 32.05 0 53.6 40-140 0 Surr: Tetrachloro-m-xylene 18.6 0 32.05 0 58 45-124 0 Surr: Tetrachloro-m-xylene 18.6 0 32.05 Surr: Pup/Kg Analysis Date: 7/20/2017 12:33 Analysis Date: 7/20/2017 12:33 Analysis Date: 7/20/2017 12:33 Analysis Date: 7/20/2017 12:33 Analysis Date: 7/20/2017 DF: 1 Analyte Result PQL SPK Val SPK Value REC Limit Value Republic Value Value Republic Value Value Republic Value Va	Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Aroclor 1260 522.9 64 801.8 0 65.2 40-140 0 Surr: Decachlorobiphenyl 17.18 0 32.05 0 53.6 40-140 0 Surr: Tetrachloro-m-xylene 18.6 0 32.05 0 58 45-124 0 Surr: Tetrachloro-m-xylene 18.6 0 32.05 Surr: Public Police	Aroclor 1016		571.8	64	801.8		0	71.3	40-140	n			
Surr: Decachlorobiphenyl 17.18 0 32.05 0 53.6 40-140 0 Surr: Tetrachloro-m-xylene 18.6 0 32.05 0 58 45-124 0 MSD Sample ID: 1707617-16A MSD Units: μg/Kg Analysis Date: 7/20/2017 12:33 A Client ID: Run ID: GC14_170719C SeqNo: 4540395 Prep Date: 7/19/2017 DF: 1 Analyte Result PQL SPK Val Value %REC Control Limit RPD Ref Value RPD Limit Quartimit Quarti													
Surr: Tetrachloro-m-xylene 18.6 0 32.05 0 58 45-124 0 MSD Sample ID: 1707617-16A MSD Units: μg/Kg Analysis Date: 7/20/2017 12:33 A Client ID: Run ID: GC14_170719C SeqNo: 4540395 Prep Date: 7/19/2017 DF: 1 Analyte Result PQL SPK Val Value %REC Control Limit RPD Ref Value RPD Limit Qual Aroclor 1016 688.7 66 818.8 0 84.1 40-140 571.8 18.6 50 Aroclor 1260 634.8 66 818.8 0 77.5 40-140 522.9 19.3 50 Surr: Decachlorobiphenyl 19.11 0 32.73 0 58.4 40-140 17.18 10.6 50		iphenvl											
Client ID: Run ID: GC14_170719C SeqNo: 4540395 Prep Date: 7/19/2017 DF: 1 Analyte Result PQL SPK Val Value %REC Limit Value %RPD Limit Qual Aroclor 1016 688.7 66 818.8 0 84.1 40-140 571.8 18.6 50 Aroclor 1260 634.8 66 818.8 0 77.5 40-140 522.9 19.3 50 Surr: Decachlorobiphenyl 19.11 0 32.73 0 58.4 40-140 17.18 10.6 50			18.6										
Client ID: Run ID: GC14_170719C SeqNo: 4540395 Prep Date: 7/19/2017 DF: 1 Analyte Result PQL SPK Val Value WREC Control Limit RPD Ref Value RPD Limit Qual Aroclor 1016 688.7 66 818.8 0 84.1 40-140 571.8 18.6 50 Aroclor 1260 634.8 66 818.8 0 77.5 40-140 522.9 19.3 50 Surr: Decachlorobiphenyl 19.11 0 32.73 0 58.4 40-140 17.18 10.6 50	MSD	Sample ID: 1707617-16	A MSD				L	Jnits: µg/k	(g	Analys	is Date: 7/	20/2017 1	2:33 AI
Analyte Result PQL SPK Val Value %REC Limit Value %RPD Limit Quality Aroclor 1016 688.7 66 818.8 0 84.1 40-140 571.8 18.6 50 Aroclor 1260 634.8 66 818.8 0 77.5 40-140 522.9 19.3 50 Surr: Decachlorobiphenyl 19.11 0 32.73 0 58.4 40-140 17.18 10.6 50	lient ID: Run ID: GC14_1		170719C				_						
Analyte Result PQL SPK Val Value %REC Limit Value %RPD Limit Quality Aroclor 1016 688.7 66 818.8 0 84.1 40-140 571.8 18.6 50 Aroclor 1260 634.8 66 818.8 0 77.5 40-140 522.9 19.3 50 Surr: Decachlorobiphenyl 19.11 0 32.73 0 58.4 40-140 17.18 10.6 50						SPK Ref			Control	RPN R≏f		RPD	
Aroclor 1260 634.8 66 818.8 0 77.5 40-140 522.9 19.3 50 Surr: Decachlorobiphenyl 19.11 0 32.73 0 58.4 40-140 17.18 10.6 50	Analyte		Result	PQL	SPK Val			%REC			%RPD		Qual
Surr: Decachlorobiphenyl 19.11 0 32.73 0 58.4 40-140 17.18 10.6 50	Aroclor 1016		688.7	66	818.8	·	0	84.1	40-140	571.8	18.6	50	
	Aroclor 1260		634.8	66	818.8		0	77.5	40-140	522.9	19.3	50	
	Surr: Decachlorob	iphenyl	19.11	0	32.73		0	58.4	40-140	17.18	10.6	50	
		·	20.24	0			0	61.8		18.6	8.48		

Note:

Work Order: 1707480
Project: CONT

Batch ID: 104448	Instrument ID H	G1		Method	d: SW747 0	0A					
MBLK	Sample ID: MBLK-10	4448-1044	148			Units: mg/	L	Analys	sis Date: 7	//14/2017 0	2:43 PM
Client ID:		Run	ID: HG1 _	170714A		SeqNo: 453 :	3180	Prep Date: 7/1	4/2017	DF: 1	
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury		ND	0.00020								
LCS	Sample ID: LCS-1044	148-104448	8			Units: mg/	L	Analys	sis Date: 7	/14/2017 0	2:45 PM
Client ID:		Run	ID: HG1 _	170714A		SeqNo: 453 :	3181	Prep Date: 7/1	4/2017	DF: 1	
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury		0.00195	0.00020	0.002		0 97.5	80-120	0	1		
MS	Sample ID: 1707480-10AMS					Units: mg/	L	Analys	sis Date: 7	/14/2017 0	2:58 PM
Client ID: CONT-006	06 (TCLP) Run ID		ID: HG1 _	170714A	4A SeqNo: 4533186			Prep Date: 7/1	DF: 1		
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury		0.0196	0.0020	0.02	-0.0001	5 98.8	75-125	0)		
MSD	Sample ID: 1707480 -	10AMSD				Units: mg/	L	Analys	sis Date: 7	/14/2017 0	3:00 PM
Client ID: CONT-006	6 (TCLP)	Run	ID: HG1 _	170714A		SeqNo: 453 :	3187	Prep Date: 7/1	4/2017	DF: 1	
Analyte		Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury		0.0196	0.0020	0.02	-0.0001	5 98.8	75-125	0.0196	() 20	

Work Order: 1707480
Project: CONT

Batch ID: 104505	Instrument ID HG1		Method	d: SW747	0A					
MBLK	Sample ID: MBLK-104505-1045	05			Units: mg/	L	Analys	sis Date: 7	/17/2017 0	1:53 PM
Client ID:	Run	ID: HG1_ 1	170717A		SeqNo: 453 4	4252	Prep Date: 7/1	7/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	ND	0.00020								
LCS	Sample ID: LCS-104505-10450 5	5			Units: mg/	L	Analys	sis Date: 7	/17/2017 0	1:55 PM
Client ID:	Run	ID: HG1_ 1	170717A		SeqNo: 453 4	4253	Prep Date: 7/1	7/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.00208	0.00020	0.002		0 104	80-120	0	1		
MS	Sample ID: 1707164-07AMS				Units: mg/	L	Analys	sis Date: 7	/17/2017 0	2:00 PM
Client ID:	Run	ID: HG1_ 1	170717A		SeqNo: 453 4	4255	Prep Date: 7/1	7/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.0221	0.0020	0.02	-0.0002	7 112	75-125	0	1		
MSD	Sample ID: 1707164-07AMSD				Units: mg/	<u> </u>	Analys	sis Date: 7	/17/2017 0	2:03 PM
Client ID:	Run	ID: HG1 _1	170717A		SeqNo: 453 4	4256	Prep Date: 7/1	7/2017	DF: 1	
			0.001	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte	Result	PQL	SPK Val		/01\LC			701 ti D		
Analyte Mercury	Result 0.0219	PQL 0.0020	0.02	-0.0002		75-125	0.0221		20	-

Work Order: 1707480
Project: CONT

Batch ID: 104444	Instrument ID ICP2		Method	: SW846	6010C						
MBLK	Sample ID: MBLK-104444-104	1444			Units:	mg/l	_	Analy	sis Date:	7/14/2017	06:15 P
Client ID:	Rur	n ID: ICP2_1	70714A		SeqNo:	4532	2994	Prep Date: 7/1	4/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%F	REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	ND	0.0050									
Barium	ND	0.0050									
Cadmium	ND										
Chromium	ND										
Lead	ND	0.0050									
Selenium	ND	0.010									
Silver	ND	0.0050									
LCS	Sample ID: LCS-104444-1044	44			Units:	mg/l	_	Analy	sis Date:	7/14/2017	06:22 P
Client ID:	Rur	n ID: ICP2_1	70714A		SeqNo:	4532	2995	Prep Date: 7/1	4/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	% F	REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
											_
Arsenic	0.1003		0.1			100	80-120)		
Barium	0.09949		0.1			9.5	80-120)		
Cadmium	0.1004		0.1			100	80-120)		_
Chromium	0.1019		0.1			102	80-120)		
Lead	0.1046		0.1			105	80-120)		
Selenium	0.09364		0.1			3.6	80-120)		
Silver	0.106	0.0050	0.1		0 1	106	80-120)		-
MS	Sample ID: 1707480-12AMS				Units:	mg/l	-	Analy	sis Date:	7/14/2017	07:00 P
Client ID: CONT-00	4 (TCLP) Rur	n ID: ICP2_1	70714A		SeqNo:	4533	3001	Prep Date: 7/1	4/2017	DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%F	REC	Limit	Value	%RPD	Limit	Qua
Arsenic	1.077	0.050	1	-0.00200	1 1	108	75-125)		
Barium	7.332	0.050	1	6.44	9 8	8.2	75-125)		0
Cadmium	1.118	0.10	1	0.0667	8 1	105	75-125	()		
Chromium	1.038	0.050	1	-0.00036	6 1	104	75-125	()		
Lead	1.874	0.050	1	0.858	8 1	102	75-125	()		
Selenium	0.9915	0.10	1	-0.00254	3 9	9.4	75-125	()		
Silver	1.072	0.050	1	-0.00344	_	108	75-125)		

Work Order: 1707480 Project: CONT QC BATCH REPORT

Lead Selenium		1.886 0.9696	0.050	1	0.8588 -0.002543	103 97.2	75-125 75-125		0.614 2.23	20 20	
Chromium		1.045	0.050	1	-0.000366	105	75-125	1.038	0.72	20	
Cadmium		1.126	0.10	1	0.06678	106	75-125	1.118	0.72	20	
Barium		7.371	0.050	1	6.449	92.2	75-125	7.332	0.54	20	0
Arsenic		1.083	0.050	1	-0.002001	109	75-125	1.077	0.619	20	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Client ID: CONT-004	4 (TCLP)	Run II	D: ICP2_1	70714A	Se	eqNo: 453 :	3002	Prep Date: 7/14	/2017	DF: 1	
MSD	Sample ID: 1707480	-12AMSD				Units: mg/	L	Analysi	s Date: 7/	14/2017 0	7:06 PM
Batch ID: 104444	Instrument ID I	CP2		Metho	d: SW846 60	10C					

The following samples were analyzed in this batch:

1707480-09A 1707480-12A 1707480-10A

1707480-11A

Work Order: 1707480
Project: CONT

Batch ID: 104506	Instrument ID ICP2		Method	: SW846	6010	C					
MBLK	Sample ID: MBLK-104495-1045	06			Un	its: mg/l	_	Analy	sis Date:	7/17/2017 ()6:23 PM
Client ID:	Run I	D: ICP2_1	70717A		Seql	No: 453 5	312	Prep Date: 7/1	7/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Allaryto			Of It val			701 KEO			701 CI D		
Arsenic	ND	0.0050									
Barium	ND	0.0050									
Cadmium	0.001781	0.010									J
Chromium	ND	0.0050									
Lead	ND	0.0050									
Selenium	ND	0.010									
Silver	ND	0.0050									
MBLK	Sample ID: MBLK-104506-1045	06			Un	its: mg/l		Analy	sis Date:	7/17/2017 (06:55 PN
Client ID:	Run I	D: ICP2_1	70717A		Seql	No: 453 5	317	Prep Date: 7/1	7/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Barium	ND	0.0050									
Cadmium	0.001779	0.010									J
Chromium	ND	0.0050									Ü
Lead	ND	0.0050									
Selenium	ND	0.010									
Silver	ND	0.0050									
	0 1 10 110 110 140 1500 1015					., .,			. 5 .	=/40/004=	
MBLK	Sample ID: MBLK-104506-1045					its: mg/l		-		7/18/2017 ()1:14 PN
Client ID:	Run I	D: ICP2_1	/0/18A		Seqi	No: 4536	378	Prep Date: 7/1	//201/	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	ND	0.0050									
LCS	Sample ID: LCS-104495-10450 6	;			Un	its: mg/l	_	Analy	sis Date:	7/17/2017 ()6:49 PI
Client ID:	Run I	D: ICP2_1	70717A		Seql	No: 453 5	316	Prep Date: 7/1	7/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
•											2001
Arsenic	0.1063	0.0050	0.1		0	106	80-120	(
Barium	0.1053	0.0050	0.1		0	105	80-120)		
Cadmium	0.1084	0.010	0.1		0	108	80-120	()		
Chromium	0.109	0.0050	0.1		0	109	80-120	(
Lead	0.1038	0.0050	0.1		0	104	80-120	()		
Selenium	0.09864	0.010	0.1		0	98.6	80-120	()		
Silver	0.1125	0.0050	0.1		0	113	80-120	()		

Work Order: 1707480
Project: CONT

Batch ID: 104506	Instrument ID ICP2		Method	SW846 60	10C					
LCS	Sample ID: LCS-104506-104506				Units: mg/	L	Analysi	s Date: 7/	17/2017 0	7:01 PM
Client ID:	Run I	D: ICP2_1	70717A	Se	eqNo: 453	5318	Prep Date: 7/17	/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	0.1067	0.0050	0.1	0	107	80-120	0			
Barium	0.1052	0.0050	0.1	0	105	80-120	0			
Cadmium	0.1088	0.010	0.1	0	109	80-120	0			
Chromium	0.1093	0.0050	0.1	0	109	80-120	0			
Lead	0.1034	0.0050	0.1	0	103	80-120	0			
Selenium	0.1009	0.010	0.1	0	101	80-120	0			
Silver	0.1127	0.0050	0.1	0	113	80-120	0			_
MS	Sample ID: 1707480-13AMS				Units: mg/	L	Analysi	s Date: 7/	17/2017 0	7:14 PN
Client ID: CONT-00	7 (TCLP) Run I	D: ICP2_1	70717A		eqNo: 453 !		Prep Date: 7/17	/2017	DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
Arsenic	1.154	0.050	1	0.01116	114	75-125	0			
Barium	10.17	0.050	1	9.478	69.5	75-125	0			SO
Cadmium	1.307	0.10	1	0.1831	112	75-125	0			
Chromium	1.111	0.050	1	-0.000886	111	75-125	0			
Lead	27.47	0.050	1	27.45	1.05	75-125	0			so
Selenium	1.045	0.10	1	-0.02069	107	75-125	0			
Silver	1.126	0.050	1	0.000996	112	75-125	0			
MSD	Sample ID: 1707480-13AMSD				Units: mg/	L	Analysi	s Date: 7/	17/2017 0	7:21 PI
Client ID: CONT-00	7 (TCLP) Run I	D: ICP2_1	70717A	Se	eqNo: 453	5321	Prep Date: 7/17	/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	1.143	0.050	1	0.01116	113	75-125	1.154	0.976	20	
Barium	10.33	0.050	1	9.478	85.2	75-125	10.17	1.53	20	0
Cadmium	1.292	0.10	1	0.1831	111	75-125	1.307	1.17	20	
Chromium	1.097	0.050	1	-0.000886	110	75-125	1.111	1.27	20	
Lead	27.91	0.050	1	27.45	45.3	75-125	27.47	1.6	20	SO
Selenium	1.032	0.10	1	-0.02069	105	75-125	1.045	1.32	20	
Silver	1.119	0.050	1	0.000996	112	75-125	1.126	0.547	20	
The following sam	ples were analyzed in this batch:		707480-13A 707480-16A	1707	480-14A	17	07480-15A			

Work Order: 1707480
Project: CONT

Batch ID: 104432	Instrument ID SVMS	88		Method:	SW827	0D						
MBLK	Sample ID: SBLKW1-104	432-1044	132			Units	s: µg/L		Analy	sis Date: 7	//14/2017 0	6:22 PM
Client ID:		Run ID:	SVMS8_	170714A		SeqNo	o: 4533	969	Prep Date: 7/	14/2017	DF: 1	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value	%	REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dichlorobenzene		ND	5.0									
2,4,5-Trichlorophenol		ND	5.0									
2,4,6-Trichlorophenol		ND	5.0									
2,4-Dinitrotoluene		ND	5.0									
Hexachloro-1,3-butad	iene	ND	5.0									
Hexachlorobenzene		ND	5.0									
Hexachloroethane		ND	5.0									
m-Cresol		ND	5.0									
Nitrobenzene		ND	5.0									
o-Cresol		ND	5.0									
p-Cresol		ND	5.0									
Pentachlorophenol		ND	5.0									
Pyridine		ND	10									
Surr: 2,4,6-Tribrom	ophenol 2	27.11	0	50		0	54.2	32-92		0		
Surr: 2-Fluorobiphe	enyl 2	28.22	0	50		0	56.4	34-98		0		
Surr: 2-Fluorophen	ol	20.2	0	50		0 -	40.4	23-55		0		
Surr: 4-Terphenyl-	114	11.04	0	50		0	82.1	50-111		0		
Surr: Nitrobenzene	-d5 2	26.92	0	50		0	53.8	32-89		0		
Surr: Phenol-d6		13.69	0	50		0 .	27.4	10-35		0		

Work Order: 1707480
Project: CONT

Batch ID: 104432	Instrument ID S	VMS8		Method:	SW827	0D						
LCS	Sample ID: SLCSW1-	104432-1044	132			U	Inits: µg/L		Analys	sis Date: 7	7/14/2017 0	6:41 PM
Client ID:		Run ID:	SVMS8_	_170714A		Se	qNo: 453 :	3971	Prep Date: 7/1	4/2017	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dichlorobenzene		13.05	5.0	20		0	65.2	26-96	C)		
2,4,5-Trichlorophenol		15.11	5.0	20		0	75.6	45-104	C	1		
2,4,6-Trichlorophenol		15.25	5.0	20		0	76.2	41-102	C			
2,4-Dinitrotoluene		16.15	5.0	20		0	80.8	52-106	C			
Hexachloro-1,3-butad	liene	13.1	5.0	20		0	65.5	21-99	C	1		
Hexachlorobenzene		15.01	5.0	20		0	75	52-104	C			
Hexachloroethane		12.86	5.0	20		0	64.3	19-99	C			
m-Cresol		11.51	5.0	20		0	57.6	31-81	C			
Nitrobenzene		13.64	5.0	20		0	68.2	41-101	C	l		
o-Cresol		14.08	5.0	20		0	70.4	32-87	C			
p-Cresol		11.51	5.0	20		0	57.6	31-81	C	1		
Pentachlorophenol		15.56	5.0	20		0	77.8	30-104		1		
Pyridine		8.35	10	20		0	41.8	11-60	C	ı		J
Surr: 2,4,6-Tribrom	nophenol	35.65	0	50		0	71.3	32-92	C)		
Surr: 2-Fluorobiphe	enyl	33.84	0	50		0	67.7	34-98	C)		
Surr: 2-Fluorophen	ool	22.22	0	50		0	44.4	23-55	C)		
Surr: 4-Terphenyl-	d14	40.26	0	50		0	80.5	50-111	C)		
Surr: Nitrobenzene	e-d5	31.39	0	50		0	62.8	32-89	C)		
Surr: Phenol-d6		16.29	0	50		0	32.6	10-35	C)		

Work Order: 1707480
Project: CONT

Batch ID: 104432	Instrument ID SVMS8	Method:	SW8270D
------------------	---------------------	---------	---------

MS	Sample ID: 1707	480-12A MS				U	nits: µg/L		Analys	is Date:	7/14/2017 0	7:00 PI
Client ID: CONT-004	4 (TCLP)	Run ID	SVMS8	_170714A		Sed	qNo: 453 :	3972	Prep Date: 7/1	4/2017	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dichlorobenzene	•	228.2	100	400	C	0	57	26-96	0			
2,4,5-Trichloropheno	ol	268.8	100	400	C	0	67.2	45-104	0			
2,4,6-Trichloropheno	ol	267.2	100	400	C	0	66.8	41-102	0			
2,4-Dinitrotoluene		264.8	100	400	C	0	66.2	52-106	0			
Hexachloro-1,3-buta	diene	241.8	100	400	C	0	60.4	21-99	0			
Hexachlorobenzene		292.6	100	400	C	0	73.2	52-104	0			
Hexachloroethane		232.6	100	400	C	0	58.2	19-99	0			
m-Cresol		192.8	100	400	C	0	48.2	31-81	0			
Nitrobenzene		241.6	100	400	C	0	60.4	41-101	0			
o-Cresol		239.4	100	400	C	0	59.8	32-87	0			
p-Cresol		192.8	100	400	C	0	48.2	31-81	0			
Pentachlorophenol		301.6	100	400	C	0	75.4	30-104	0			
Pyridine		118.6	200	400	C	0	29.6	11-60	0			J
Surr: 2,4,6-Tribror	mophenol	671	0	1000	C	0	67.1	32-92	0			
Surr: 2-Fluorobiph	nenyl	613.2	0	1000	C	0	61.3	34-98	0			
Surr: 2-Fluorophe	nol	390.6	0	1000	C	0	39.1	23-55	0			
Surr: 4-Terphenyl	-d14	846	0	1000	C	0	84.6	50-111	0			
Surr: Nitrobenzen	e-d5	554.2	0	1000	C	0	55.4	32-89	0			
Surr: Phenol-d6		265.4	0	1000	C	0	26.5	10-35	0			

Instrument ID SVMS8

Work Order: 1707480 Project: CONT

Batch ID: 104432

QC BATCH REPORT

MSD	Sample ID: 1707480-12	A MSD				U	Jnits: µg/L		Analysi	s Date: 7/	14/2017 0	7:20 PN
Client ID: CONT-004 (TCLP)	Run ID	SVMS8	_170714A		Se	qNo: 453 3	3974	Prep Date: 7/14	/2017	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dichlorobenzene		213.2	100	400		0	53.3	26-96	228.2	6.8	30	
2,4,5-Trichlorophenol		291	100	400		0	72.8	45-104	268.8	7.93	30	
2,4,6-Trichlorophenol		281	100	400		0	70.2	41-102	267.2	5.03	30	
2,4-Dinitrotoluene		308.4	100	400		0	77.1	52-106	264.8	15.2	30	
Hexachloro-1,3-butadie	ene	212.4	100	400		0	53.1	21-99	241.8	12.9	30	
Hexachlorobenzene		293.8	100	400		0	73.4	52-104	292.6	0.409	30	
Hexachloroethane		204.2	100	400		0	51	19-99	232.6	13	30	
m-Cresol		209.2	100	400		0	52.3	31-81	192.8	8.16	30	
Nitrobenzene		259.8	100	400		0	65	41-101	241.6	7.26	30	
o-Cresol		261.2	100	400		0	65.3	32-87	239.4	8.71	30	
p-Cresol		209.2	100	400		0	52.3	31-81	192.8	8.16	30	
Pentachlorophenol		317	100	400		0	79.2	30-104	301.6	4.98	30	
Pyridine		167.8	200	400		0	42	11-60	118.6	0	30	J
Surr: 2,4,6-Tribromo	phenol	675.8	0	1000		0	67.6	32-92	671	0.713	40	
Surr: 2-Fluorobipher	nyl	600.6	0	1000		0	60.1	34-98	613.2	2.08	40	
Surr: 2-Fluoropheno	ıl	418.6	0	1000		0	41.9	23-55	390.6	6.92	40	
Surr: 4-Terphenyl-d	14	862.6	0	1000		0	86.3	50-111	846	1.94	40	
Surr: Nitrobenzene-	d5	593.6	0	1000		0	59.4	32-89	554.2	6.87	40	
Surr: Phenol-d6		289.6	0	1000		0	29	10-35	265.4	8.72	40	

Method: SW8270D

The following samples were analyzed in this batch:

1707480-09A 1707480-10A 1707480-11A 1707480-12A

Work Order: 1707480
Project: CONT

Batch ID: 104546	Instrument ID SVMS8		Method	l: SW827	70D					
MBLK	Sample ID: SBLKW1-104546-	-104546			Units: µ	g/L	Analy	ysis Date: 7	//18/2017 1	10:54 PM
Client ID:	Ru	n ID: SVMS8	_170718A		SeqNo: 4	538577	Prep Date: 7/	18/2017	DF: 1	
Analyte	Resul	t PQL	SPK Val	SPK Ref Value	%RE	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dichlorobenzene	NE	5.0								
2,4,5-Trichlorophenol	NE	5.0								
2,4,6-Trichlorophenol	NE	5.0								
2,4-Dinitrotoluene	NE	5.0								
Hexachloro-1,3-butadie	ene NE	5.0								
Hexachlorobenzene	NE	5.0								
Hexachloroethane	NE	5.0								
m-Cresol	NE	5.0								
Nitrobenzene	NE	5.0								
o-Cresol	NE	5.0								
p-Cresol	NE	5.0								
Pentachlorophenol	NE	5.0								
Pyridine	NE	10								
Surr: 2,4,6-Tribromo	phenol 19.75	5 0	50		0 39.	5 32-92		0		
Surr: 2-Fluorobipher	nyl 16.78	3 0	50		0 33.	6 34-98	1	0		S
Surr: 2-Fluoropheno	13.00	6 0	50		0 26.	1 23-55		0		
Surr: 4-Terphenyl-d1	32.05	5 0	50		0 64.	1 50-11:	1	0		
Surr: Nitrobenzene-c	d5 17.3	3 0	50		0 34.	6 32-89		0		
Surr: Phenol-d6	9.43	3 0	50		0 18.	9 10-35		0		

Work Order: 1707480
Project: CONT

Batch ID: 104546	Instrument ID SVMS8		Method	SW8270	D				
LCS S	Sample ID: SLCSW1-104546-10	4546			Units: µg/L		Analysis Date:	7/18/2017 1	10:35 PM
Client ID:	Run I	D: SVMS8	_170718A	5	SeqNo: 453	8575	Prep Date: 7/18/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value %RPI	RPD Limit	Qual
1,4-Dichlorobenzene	5.64	5.0	10	0	56.4	26-96	0		
2,4,5-Trichlorophenol	7.44	5.0	10	0	74.4	45-104	0		
2,4,6-Trichlorophenol	7.81	5.0	10	0	78.1	41-102	0		
2,4-Dinitrotoluene	8.95	5.0	10	0	89.5	52-106	0		
Hexachloro-1,3-butadie	ne 5.27	5.0	10	0	52.7	21-99	0		
Hexachlorobenzene	9	5.0	10	0	90	52-104	0		
Hexachloroethane	5.35	5.0	10	0	53.5	19-99	0		
m-Cresol	7.45	5.0	10	0	74.5	31-81	0		
Nitrobenzene	6.9	5.0	10	0	69	41-101	0		
o-Cresol	7.63	5.0	10	0	76.3	32-87	0		
p-Cresol	7.45	5.0	10	0	74.5	31-81	0		
Pentachlorophenol	7.75	5.0	10	0	77.5	30-104	0		
Pyridine	4.5	10	10	0	45	11-60	0		J
Surr: 2,4,6-Tribromop	ohenol 23.81	0	50	0	47.6	32-92	0		
Surr: 2-Fluorobiphen	yl 17.82	0	50	0	35.6	34-98	0		
Surr: 2-Fluorophenol	13.29	0	50	0	26.6	23-55	0		
Surr: 4-Terphenyl-d1	4 27.64	0	50	0	55.3	50-111	0		
Surr: Nitrobenzene-d	5 16.92	0	50	0	33.8	32-89	0		
Surr: Phenol-d6	9.19	0	50	0	18.4	10-35	0		

Work Order: 1707480
Project: CONT

Batch ID: 104546	Instrument II	D SVMS8		Method:	SW827	'0D						
MS	Sample ID: 17074	80-13A MS				ι	Jnits: µg/L		Analys	sis Date: 7	//19/2017 ⁻	12:10 AM
Client ID: CONT-007	(TCLP)	Run ID	SVMS8	_170718A		Se	qNo: 453	8579	Prep Date: 7/1	8/2017	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dichlorobenzene		113.6	100	200		0	56.8	26-96	C)		
2,4,5-Trichlorophenol		166.6	100	200		0	83.3	45-104	C)		
2,4,6-Trichlorophenol		161.6	100	200		0	80.8	41-102	C)		
2,4-Dinitrotoluene		216.2	100	200		0	108	52-106	C)		S
Hexachloro-1,3-butadi	ene	100.4	100	200		0	50.2	21-99	C)		
Hexachlorobenzene		205	100	200		0	102	52-104	C)		
Hexachloroethane		104.4	100	200		0	52.2	19-99	C)		
m-Cresol		164.2	100	200		0	82.1	31-81	C			S
Nitrobenzene		140.4	100	200		0	70.2	41-101	C			
o-Cresol		165.6	100	200		0	82.8	32-87	C			
p-Cresol		164.2	100	200		0	82.1	31-81	C)		S
Pentachlorophenol		200.2	100	200		0	100	30-104	C)		
Pyridine		60.4	200	200		0	30.2	11-60	C)		J
Surr: 2,4,6-Tribromo	phenol	551.4	0	1000		0	55.1	32-92	C)		
Surr: 2-Fluorobiphe	nyl	361.2	0	1000		0	36.1	34-98	C)		
Surr: 2-Fluoropheno	ol	287.6	0	1000		0	28.8	23-55	C			
Surr: 4-Terphenyl-d	14	636.8	0	1000		0	63.7	50-111	C			
Surr: Nitrobenzene-	d5	343	0	1000		0	34.3	32-89	C			
Surr: Phenol-d6		213	0	1000		0	21.3	10-35	C)		

Work Order: 1707480 CONT **Project:**

QC BATCH REPORT

	les were analyzed in			′07480-13A		7480-14A		07480-15A			
Surr: Phenol-d6		209.6	0	1000	0	21	10-35	213	1.61	40	
Surr: Nitrobenzene	-d5	381.6	0	1000	0	38.2	32-89	343	10.7	40	
Surr: 4-Terphenyl-	d14	596.6	0	1000	0	59.7	50-111	636.8	6.52	40	
Surr: 2-Fluorophen	ol	298.2	0	1000	0	29.8	23-55	287.6	3.62	40	
Surr: 2-Fluorobiphe	enyl	369.4	0	1000	0	36.9	34-98	361.2	2.24	40	
Surr: 2,4,6-Tribrom	ophenol	518.4	0	1000	0	51.8	32-92	551.4	6.17	40	
Pyridine		79.2	200	200	0	39.6	11-60	60.4	0	30	J
Pentachlorophenol		196.8	100	200	0	98.4	30-104	200.2	1.71	30	
p-Cresol		166.2	100	200	0	83.1	31-81	164.2	1.21	30	S
o-Cresol		168.8	100	200	0	84.4	32-87	165.6	1.91	30	
Nitrobenzene		157.2	100	200	0	78.6	41-101	140.4	11.3	30	
m-Cresol		166.2	100	200	0	83.1	31-81	164.2	1.21	30	S
Hexachloroethane		101.6	100	200	0	50.8	19-99	104.4	2.72	30	
Hexachlorobenzene		192.8	100	200	0	96.4	52-104	205	6.13	30	
Hexachloro-1,3-butad	liene	113.8	100	200	0	56.9	21-99	100.4	12.5	30	
2,4-Dinitrotoluene		202.4	100	200	0	101	52-106	216.2	6.59	30	
2,4,6-Trichlorophenol		173.8	100	200	0	86.9	41-102	161.6	7.27	30	
2,4,5-Trichlorophenol		171.2	100	200	0	85.6	45-104	166.6	2.72	30	
1,4-Dichlorobenzene		113	100	200	0	56.5	26-96	113.6	0.53	30	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Client ID: CONT-007	(TCLP)	Run ID	: SVMS8	_170718A	9	SeqNo: 453	8580	Prep Date: 7/18	/2017	DF: 1	
MSD	Sample ID: 1707480-	-13A MSD				Units: µg/	L	Analysi	s Date: 7/	19/2017 1	2:30 A
20.02		, voo			0110210						
Batch ID: 104546	Instrument ID S	SVMS8		Method:	SW8270	D					

1707480-16A

Work Order: 1707480
Project: CONT

Batch ID: R215964a	Instrument ID VN	IS6		Metho	d: SW826	0B					
MBLK	Sample ID: VBLKW2-1	70717-R21	15964a			Units: µg/L	_	Analy	/sis Date: 7	/18/2017 ()1:19 AN
Client ID:		Run ID	: VMS6_	170717B		SeqNo: 453 6	6088	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1-Dichloroethene		ND	1.0								
1,2-Dichloroethane		ND	1.0								
2-Butanone		ND	5.0								
Benzene		ND	1.0								
Carbon tetrachloride		ND	1.0								
Chlorobenzene		ND	1.0								
Chloroform		ND	1.0								
Tetrachloroethene		ND	1.0								
Trichloroethene		ND	1.0								
Vinyl chloride		ND	1.0								
Surr: 1,2-Dichloroe	hane-d4	21.16	0	20		0 106	75-120		0		
Surr: 4-Bromofluoro	benzene	20.44	0	20		0 102	80-110		0		
Surr: Dibromofluoro	methane	20.03	0	20		0 100	85-115		0		
Surr: Toluene-d8		20.24	0	20		0 101	85-110		0		

LCS Sa	ample ID: VLCSW2-170717-R2		l	Jnits: µg/L		Analy	sis Date: 7	/18/2017	12:27 PM	
Client ID:	Run I	D: VMS6 _	170717B	Se	eqNo: 453 (6094	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1-Dichloroethene	25.29	1.0	20	0	126	70-145	()		
1,2-Dichloroethane	21.31	1.0	20	0	107	78-125	()		
2-Butanone	20.61	5.0	20	0	103	55-150	()		
Benzene	21.67	1.0	20	0	108	85-125)		
Carbon tetrachloride	21.44	1.0	20	0	107	65-140	()		
Chlorobenzene	20.4	1.0	20	0	102	80-120	()		
Chloroform	23.17	1.0	20	0	116	80-130	()		
Tetrachloroethene	20.13	1.0	20	0	101	68-166	()		
Trichloroethene	20.68	1.0	20	0	103	84-130	()		
Vinyl chloride	22.6	1.0	20	0	113	50-136	()		
Surr: 1,2-Dichloroetha	ne-d4 20.32	0	20	0	102	75-120	()		
Surr: 4-Bromofluorobe	enzene 21.75	0	20	0	109	80-110	()		
Surr: Dibromofluorome	ethane 20.08	0	20	0	100	85-115	()		
Surr: Toluene-d8	20.23	0	20	0	101	85-110	()		

Work Order: 1707480 Project: CONT QC BATCH REPORT

Batch ID: R215964a Instru	ment ID VMS6		Metho	d: SW8260B						
MS Sample ID:	1707602-07A MS				Units: μ g/L	-	Analys	sis Date: 7	7/18/2017 ⁻	10:32 AN
Client ID:	Run ID	: VMS6_	170717B	Se	eqNo: 453	6092	Prep Date:		DF: 10)
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1-Dichloroethene	509.2	10	200	0	255	70-145	C			S
1,2-Dichloroethane	213.6	10	200	0	107	78-125	C	1		
2-Butanone	261	50	200	0	130	55-150	C			
Benzene	227.8	10	200	12	108	85-125	C			
Carbon tetrachloride	227.8	10	200	0	114	65-140	C	1		
Chlorobenzene	208.5	10	200	0	104	80-120	C	ı		
Chloroform	216.3	10	200	71.2	72.6	80-130	C			S
Tetrachloroethene	362.4	10	200	0	181	68-166	C			S
Trichloroethene	554.2	10	200	0	277	84-130	C	1		S
Vinyl chloride	251.9	10	200	0	126	50-136	C			
Surr: 1,2-Dichloroethane-d4	202.3	0	200	0	101	75-120	C			
Surr: 4-Bromofluorobenzene	216.2	0	200	0	108	80-110	C			
Surr: Dibromofluoromethane	32.6	0	200	0	16.3	85-115	C			S
Surr: Toluene-d8	198.6	0	200	0	99.3	85-110	C	1		

MSD	Sample ID: 1707602-07A MSD	·	Jnits: µg/L	-	Analysis Date: 7/18/2017 10:59			0:59 AM		
Client ID:	Run I	D: VMS6 _	170717B	Se	eqNo: 453	6093	Prep Date:		DF: 10	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1-Dichloroethene	462.8	10	200	0	231	70-145	509.2	9.55	30	S
1,2-Dichloroethane	200.9	10	200	0	100	78-125	213.6	6.13	30	
2-Butanone	252.9	50	200	0	126	55-150	261	3.15	30	
Benzene	211.4	10	200	12	99.7	85-125	227.8	7.47	30	
Carbon tetrachloride	207.1	10	200	0	104	65-140	227.8	9.52	30	
Chlorobenzene	192.8	10	200	0	96.4	80-120	208.5	7.82	30	
Chloroform	189.6	10	200	71.2	59.2	80-130	216.3	13.2	30	S
Tetrachloroethene	330.4	10	200	0	165	68-166	362.4	9.24	30	
Trichloroethene	501.3	10	200	0	251	84-130	554.2	10	30	S
Vinyl chloride	234.2	10	200	0	117	50-136	251.9	7.28	30	
Surr: 1,2-Dichloroeth	nane-d4 204.4	0	200	0	102	75-120	202.3	1.03	30	
Surr: 4-Bromofluorol	penzene 212.3	0	200	0	106	80-110	216.2	1.82	30	
Surr: Dibromofluoror	nethane 32.3	0	200	0	16.2	85-115	32.6	0.924	30	S
Surr: Toluene-d8	195.4	0	200	0	97.7	85-110	198.6	1.62	30	

The following samples were analyzed in this batch:

1707480-09B 1707480-12B 1707480-10B 1707480-13B 1707480-11B 1707480-14B

1707480-15B

Work Order: 1707480 Project: CONT

Batch ID: R216030a	Instrument ID VMS5			Method	: SW826	0B					
MBLK	Sample ID: VBLKW2-17071	18-R2160	30a			Units: µg/L		Anal	ysis Date: 7	/19/2017 1	2:55 PM
Client ID:	F	Run ID: V	MS5_1	170718B		SeqNo: 453 7	7966	Prep Date:		DF: 1	
Analyte	Res	sult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1-Dichloroethene	1	ND	1.0								
1,2-Dichloroethane	1	ND	1.0								
2-Butanone		ND	5.0								
Benzene	1	ND	1.0								
Carbon tetrachloride	1	ND	1.0								
Chlorobenzene	1	ND	1.0								
Chloroform		ND	1.0								
Tetrachloroethene	1	ND	1.0								
Trichloroethene	1	ND	1.0								
Vinyl chloride	1	ND	1.0								
Surr: 1,2-Dichloroet	hane-d4 17.	.83	0	20		0 89.2	75-120		0		
Surr: 4-Bromofluoro	benzene 18.	.89	0	20		0 94.4	80-110		0		
Surr: Dibromofluoro	methane 18.	.94	0	20		0 94.7	85-115		0		
Surr: Toluene-d8	18.	.57	0	20		0 92.8	85-110		0		

LCS Sa	ample ID: VLCSW2-170718-R2		Ų	Jnits: µg/L		Analysis Date: 7/19/2017 12:04 P				
Client ID:	Run I	D: VMS5 _	170718B	Se	qNo: 453	7965	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1-Dichloroethene	21.14	1.0	20	0	106	70-145	0			
1,2-Dichloroethane	18.43	1.0	20	0	92.2	78-125	0			
2-Butanone	17.73	5.0	20	0	88.6	55-150	0			
Benzene	20.67	1.0	20	0	103	85-125	0			
Carbon tetrachloride	21.59	1.0	20	0	108	65-140	0			
Chlorobenzene	20.2	1.0	20	0	101	80-120	0			
Chloroform	17.88	1.0	20	0	89.4	80-130	0			
Tetrachloroethene	21.69	1.0	20	0	108	68-166	0			
Trichloroethene	22.3	1.0	20	0	112	84-130	0			
Vinyl chloride	13.35	1.0	20	0	66.8	50-136	0			
Surr: 1,2-Dichloroetha	nne-d4 17.3	0	20	0	86.5	75-120	0			
Surr: 4-Bromofluorobe	enzene 20.39	0	20	0	102	80-110	0			
Surr: Dibromofluorome	ethane 18.75	0	20	0	93.8	85-115	0			
Surr: Toluene-d8	19.03	0	20	0	95.2	85-110	0			

U.P. Environmental Services, Inc.

Work Order: 1707480 Project: CONT

Client:

QC BATCH REPORT

Batch ID: R216030a	Instrument ID VN	IS5		Metho	d: SW826	0B							
MS	Sample ID: 1707827-3	5B MS				ι	Jnits: µg/L		Anal	ysis Date	: 7/1	19/2017 (9:54 AM
Client ID:		Run ID:	VMS5_	170718B		Se	qNo: 453	7963	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RP	D	RPD Limit	Qual
1,1-Dichloroethene		24.55	1.0	20		0	123	70-145		0			
1,2-Dichloroethane		19.7	1.0	20		0	98.5	78-125		0			
2-Butanone		17.69	5.0	20		0	88.4	55-150		0			
Benzene		23.32	1.0	20		0	117	85-125		0			
Carbon tetrachloride		24.86	1.0	20		0	124	65-140		0			
Chlorobenzene		22.55	1.0	20		0	113	80-120		0			
Chloroform		19.91	1.0	20		0	99.6	80-130		0			
Tetrachloroethene		25.96	1.0	20		0	130	68-166		0			
Trichloroethene		25.57	1.0	20		0	128	84-130		0			
Vinyl chloride		15.72	1.0	20		0	78.6	50-136		0			
Surr: 1,2-Dichloroe	thane-d4	16.83	0	20		0	84.2	75-120		0			
Surr: 4-Bromofluoro	obenzene	20.55	0	20		0	103	80-110		0			
Surr: Dibromofluoro	omethane	18.56	0	20		0	92.8	85-115		0			
Surr: Toluene-d8		19.15	0	20		0	95.8	85-110		0			

MSD Sa	ample ID: 1707827-35B MSD		Units: μg/L			Analysis Date: 7/19/2017 10:20 A				
Client ID:	Run II	D: VMS5 _	170718B	Se	eqNo: 453	7964	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1-Dichloroethene	23.8	1.0	20	0	119	70-145	24.55	3.1	30	
1,2-Dichloroethane	19.43	1.0	20	0	97.2	78-125	19.7	1.38	30	
2-Butanone	18.79	5.0	20	0	94	55-150	17.69	6.03	30	
Benzene	22.72	1.0	20	0	114	85-125	23.32	2.61	30	
Carbon tetrachloride	24.5	1.0	20	0	122	65-140	24.86	1.46	30	
Chlorobenzene	21.85	1.0	20	0	109	80-120	22.55	3.15	30	
Chloroform	19.23	1.0	20	0	96.2	80-130	19.91	3.47	30	
Tetrachloroethene	25.32	1.0	20	0	127	68-166	25.96	2.5	30	
Trichloroethene	25.03	1.0	20	0	125	84-130	25.57	2.13	30	
Vinyl chloride	15.87	1.0	20	0	79.4	50-136	15.72	0.95	30	
Surr: 1,2-Dichloroetha	ne-d4 16.3	0	20	0	81.5	75-120	16.83	3.2	30	
Surr: 4-Bromofluorobe	enzene 20.21	0	20	0	101	80-110	20.55	1.67	30	
Surr: Dibromofluorome	ethane 18.31	0	20	0	91.6	85-115	18.56	1.36	30	
Surr: Toluene-d8	18.58	0	20	0	92.9	85-110	19.15	3.02	30	

The following samples were analyzed in this batch:

1707480-15B

1707480-16B

Work Order: 1707480
Project: CONT

Batch ID: 104408	Instrument ID WETCHEM		Method	d: SW90 4	15D						
LCS	Sample ID: LCS-104408-104408				ι	Jnits: s.u.		Analy	sis Date: 7	/14/2017	10:45 AM
Client ID:	Run IE	: WETC	HEM_170714	4B	Se	qNo: 453 1	1608	Prep Date: 7/1	13/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
рН	3.96	0.10	4		0	99	90-110		0		
DUP	Sample ID: 1707411-01A DUP				ι	Jnits: s.u.		Analy	sis Date: 7	/14/2017	10:45 AM
Client ID:	Run II	: WETC	HEM_170714	4B	Se	qNo: 453 1	1612	Prep Date: 7/1	13/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
рН	6.63	0.10	0		0	0	0-0	6.5	3 1.52	20	Н
DUP	Sample ID: 1707480-01A DUP				ι	Jnits: s.u.		Analy	sis Date: 7	/14/2017	10:45 AM
Client ID: CONT-010	Run II	: WETCH	HEM_170714	4B	Se	qNo: 453 1	1618	Prep Date: 7/1	13/2017	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
рН	8.14	0.10	0		0	0	0-0	7.8	5 3.63	20	
The following samp	les were analyzed in this batch:	17	707480-01A 707480-04A 707480-07A	17	7074	80-02A 80-05A 80-08A		07480-03A 07480-06A			

Work Order: 1707480
Project: CONT

Batch ID: R215798	Instrument ID MOIST		Method	d: SW35 5	60C					
MBLK	Sample ID: WBLKS-R215798				Units: % d	of sample	Analys	is Date: 7/	13/2017 0	4:14 PM
Client ID:	Run ID	: MOIST	_170713C		SeqNo: 453	31363	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	ND	0.050								
LCS	Sample ID: LCS-R215798				Units: % d	of sample	Analys	is Date: 7/	13/2017 0	4:14 PM
Client ID:	Run ID	: MOIST	_170713C		SeqNo: 453	31362	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	100	0.050	100		0 100	99.5-100	.5 0			
DUP	Sample ID: 1707538-01B DUP				Units: % o	of sample	Analys	is Date: 7/	13/2017 0	4:14 PM
Client ID:	Run ID	: MOIST	_170713C		SeqNo: 453	31349	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	17.84	0.050	0		0 0	0-0	18.28	2.44	5	
DUP	Sample ID: 1707538-06B DUP				Units: % o	of sample	Analys	is Date: 7/	13/2017 0	4:14 PM
Client ID:	Run ID	: MOIST	_170713C		SeqNo: 453	31355	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	16.7	0.050	0		0 0	0-0	15.91	4.85	5	
The following samp	oles were analyzed in this batch:	17	707480-01A 707480-04A 707480-07A	17	707480-02A 707480-05A 707480-08A		07480-03A 07480-06A			

Work Order: 1707480
Project: CONT

Batch ID: R215977	Instrument ID WETCHEM		Method	: SW7.3.	.4.2							
MBLK	Sample ID: MB-R215977-R215977				L	Jnits: mg/l	Kg	Ana	lysi	s Date:	7/18/2017	09:05 AM
Client ID:	Run ID:	WETCH	HEM_170718	A	Se	qNo: 453 5	5550	Prep Date:			DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value		%RPD	RPD Limit	Qual
Sulfide, Reactive	ND	100										
LCS	Sample ID: LCS-R215977-R215977	7			L	Jnits: mg/l	Kg	Ana	lysi	s Date:	7/18/2017	09:05 AM
Client ID:	Run ID:	WETCH	HEM_170718	Α	Se	qNo: 453 5	5551	Prep Date:			DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value		%RPD	RPD Limit	Qual
Sulfide, Reactive	1608	100	2149		0	74.8	60-120		0			

Work Order: 1707480
Project: CONT

Batch ID: R215982	Instrument ID WETCHEM		Method	: SW7.3	.3.2						
MBLK	Sample ID: MB-R215982-R215982	2			U	nits: mg/ l	Kg	Analy	sis Date: 7/	18/2017 1	0:30 AM
Client ID:	Run ID	WETCH	HEM_170718	BC	Sec	No: 453	762	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Reactive	ND	100									
LCS	Sample ID: LCS-R215982-R215982				Units: mg/Kg			Analysis Date: 7/18/2017 10			0:30 AM
Client ID:	Run ID	WETCH	HEM_170718	BC .	Sec	No: 453	5763	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Reactive	124.8	100	125		0	99.8	84-112		0		
MS	Sample ID: 1707467-02A MS				U	nits: mg/ l	Kg	Analy	sis Date: 7/	18/2017 1	0:30 AM
Client ID:	Run ID	WETCH	HEM_170718	BC .	Sec	No: 453	765	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Reactive	249.1	100	250		0	99.6	84-112		0		
MSD	Sample ID: 1707467-02A MSD				U	nits: mg/ l	Kg	Analy	sis Date: 7/	18/2017 1	0:30 AM
Client ID:	Run ID	WETCH	HEM_170718	BC .	Sec	No: 453	766	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Reactive	234.9	100	250		0	94	84-112	249.	1 5.86	8	
The following samp	oles were analyzed in this batch:	17	707480-01A 707480-04A 707480-07A	17	074	80-02A 80-05A 80-08A		07480-03A 07480-06A			

Work Order: 1707480
Project: CONT

Batch ID: R216024	Instrument ID WE	TCHEM		Method	d: SW101	0A							
LCS	Sample ID: LCS-R2160	24-R21602	4			U	Inits: ° F		Ana	lysis Da	te:	7/18/2017 1	1:30 AM
Client ID:		Run ID:	WETCH	HEM_170718	BL	Se	qNo: 453 0	6938	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%R	RPD	RPD Limit	Qual
Flashpoint/Ignitability		83	1.0	81		0	102	97-103		0			
DUP	Sample ID: 1707602-09	C DUP				U	Inits: °F		Ana	lysis Da	te:	7/18/2017 1	1:30 AN
Client ID:		Run ID:	WETCH	HEM_170718	BL	Se	qNo: 453 0	6948	Prep Date:			DF: 1	
			501	0.000	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%P	RPD	RPD Limit	Qual
Analyte		Result	PQL	SPK Val	- value		/0KLC			/011			Quui
Analyte Flashpoint/Ignitability		Result ND	1.0	SPK Val	Valao	0	0	0-0		0		0 10	Quui

Work Order: 1707480
Project: CONT

Flashpoint/Ignitability	ND	1.0	0		0	0	0-0		0	0 10	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPI	RPD Limit	Qual
Client ID:	Run	ID: WETC	HEM_17071	9L	Se	qNo: 453 8	8855	Prep Date:		DF: 1	I
DUP	Sample ID: 1707602-13C DUP				ι	Jnits: °F		Ana	lysis Date:	7/19/2017	10:00 AN
Flashpoint/Ignitability	83	1.0	81		0	102	97-103		0		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPI	RPD Limit	Qual
Client ID:	Run	ID: WETO	HEM_17071	9L	Se	qNo: 453 8	8858	Prep Date:		DF: 1	l
LCS	Sample ID: LCS-R216104-R216	6104			ι	Jnits: °F		Ana	lysis Date:	7/19/2017	10:00 AN
Batch ID: R216104	Instrument ID WETCHEM		Metho	d: SW10 ′	10A						

Cincinnati, OH +1 513 733 5336

Everett, WA +1 425 356 2600 Fort Collins, CO +1 970 490 1511

Holland, MI +1 616 399 6070

Chain of Custody Form

Page _____ of ____ COC ID: 44313 Houston, TX +1 281 530 5656

Middletown, PA +1 717 944 5541

mer Information	Project N	Project Information Parameter/M
mer Information	Project N	
	Project N	
	P. 1925 (1947) (27.32) (1952) (1952) (1952)	Name A TCLP, W
	Project Nur	mber B TCCP, JO
U.P. Environmental Services, Inc.	Bill To Com	pany U.P. Environmental Services, Inc
Rick Riedy	Invoice	Attn Accounts Payable D
P.O. Box 127	Add	P.O. Box 127 E
Bark River, Mil 49807	City/State	e/Zip Bark River, MI 49807
(906) 468-9900	P	horie (908) 486-9900 H
(906) 466-2641	•	Fax (908) 468-2641
Que penoironmental. con	e-Mail Add	drass d
nple Description	Date	Time Matrix Pres. #Bottles A B C D E
310	7-11-17	1/30p N/4 2 X X
5 0 00	1=11-17	1740c NA 2 XX
09	1-11-17	1500 NA 2 XX
	Rick Riedy P.O. Box 127 Bank River, Mil. 49807 (906) 468-9900 (906) 468-2841 (PANULUM MARKET LONG PROPERTY OF MARKET LONG PROPERTY DEPARTY D	Rick Riedy Invoice P.O. Box 127 Add Bark River, Mf. 49807 City/State (906) 468-9900 P. (906) 468-2841 C. U. Pernul run mowies L. Com inple Description Date 7-11-17

ALS Group, USA

Sample Receipt Checklist

Client Name:	UP ENVIRONMENTAL				Date/Time I	Received:	<u>12-J</u>	lul-17 (<u>09:00</u>	
Work Order:	<u>1707480</u>				Received b	y:	KRV	<u>v</u>		
Checklist complete Matrices:	leted by Keith Wierenga eSignature	12	2-Jul-17 Date	_	Reviewed by:	Bill C eSignatu				13-Jul-17 Date
Carrier name:	<u>FedEx</u>									
Shipping contai	ner/cooler in good condition?		Yes	✓	No 🗆	Not I	Present			
Custody seals in	ntact on shipping container/coole	r?	Yes		No 🗌	Not I	Present	✓		
Custody seals in	ntact on sample bottles?		Yes		No 🗌	Not I	Present	✓		
Chain of custod	y present?		Yes	✓	No 🗌					
Chain of custod	y signed when relinquished and r	received?	Yes	✓	No 🗌					
Chain of custod	y agrees with sample labels?		Yes	✓	No 🗌					
Samples in prop	per container/bottle?		Yes	✓	No 🗌					
Sample contain	ers intact?		Yes	✓	No 🗌					
Sufficient samp	le volume for indicated test?		Yes	✓	No 🗌					
All samples rec	eived within holding time?		Yes	✓	No 🗌					
Container/Temp	Blank temperature in compliance	e?	Yes	✓	No 🗌					
Sample(s) received Temperature(s)	ived on ice? /Thermometer(s):		Yes 6.0/6.0		No 🗌		SR2			
Cooler(s)/Kit(s):										
	ple(s) sent to storage:		7/12/20 Yes	017 2	2:25:52 PM No	No V/OA	vials subn	nittod	✓	
	als have zero headspace?						✓	iiilleu		
pH adjusted?	eptable upon receipt?		Yes Yes		No L		▼			
pH adjusted by:			-		110	14// [
Login Notes:	:=======	=====		 						
Client Contacte	d:	Date Contacted:			Person	Contacte	d:			
Contacted By:		Regarding:								
Comments:										
CorrectiveAction	n:								SRC F	Page 1 of 1

Tradebe Environmental Services **Land Disposal Restriction Notification Form**

The waste described on waste stream profile 1000161621

★ The waste described on waste stream profile 1000161621

is not regulated under RCRA 40 CFR.

does not meet the applicable treatment standards in 40 CFR 268 Subpart D.

TREATABILITY GROUP

	This is a	wasteweter stream.	3	This is a non-wastewater stream.		
	CODE	SUBCATEGORY/CONSTITUENTS	CODE	SUBCATEGORY/CONSTITUENTS	CODE	SUBCATEGORY/CONSTITUENTS
	D001	Ignitable Wastes (TOC>10%)	D010*	Selenium	D025*	p-Cresol
	D001*	Ignitable Wastes (TOC<10%) Managed In Non-CWA	or equival	ent/Non-Class 1 SDWA System	D026*	Cresol (Total)
	D001*	Ignitable Wastes (TOC<10%) Managed in CWA or eq	uivalent/C	class 1 SDWA System	D027*	p-Dichlorobenzene
	D002*	Corrosive Wastes Managed in Non-CWA or Equivalent	nt/Non-Cla	ass 1 SDWA System	D028*	1,2-Dichloroethane
	D002*	Corrosive Wastes Managed in CWA or Equivalent/Cla	es 1 SDV	VA Syetem	D029*	1,1-Dichloroethylene
	D003	Reactive sulfides based on 261.23(a)(5)	D011*	Silver	D030*	2,4-Dinitrotoluene
	D003*	Other Reactive based on 261.23(a)(1)	D012*	Endrin	D031*	Heptachlor
	D003*	Water Reactive based on 261.23(a)(2),(3),(4)	D013*	Lindane	D032*	Hexachtorobenzene
	D003	Reactive Cyanides based on 261.23(a)(5)	D014*	Methoxychlor	D033*	Hexachlorobutadiene
	D004*	Arsenic	D015*	Toxaphone	D034*	Hesxachloroethane
	D005°	Barium	D016*	2,4-D	D035*	Methyl ethyl ketone
	D006*	Cadmium	D017*	2,4,5-TP (Silvext)	D036*	Nitrobenzene
	D006*	Cadmium Containing Batteries	D018*	Вепделе	D037*	Pentachiorophenol
	D007*	Chromium	D019*	Carbon Tetrachloride	D038*	Pyridine
×	D006*	Lead	D020*	Chlordane	D039*	Tetrachloroethylene
	D008*	Lead Acid Batteries	D021*	Chlorobenzene	D040*	Trichloroethylene
	D009*	High Mercury-Organic>260ppm Hg	D022*	Chloroform	D041*	2,4,5-Trichlorophenol
	D009*	High Mercury-Inorganic≺260ppm Hg	D023*	o-Cresol	D042*	2,4,6-Trichlorophenol
	D009*	Low Mercury <260ppm	D024*	m-Cresol	D043*	Vinyl chloride
	D009*	Mercury Wastewater				
If th	e waste :	identified by an asterisk(*) contain any Und	erlying	Hazardous Constituents (see APPENDIX	I) per 2	68.7(a)(1)

F001 - F005 LISTED WASTE

CODE	CONSTITUENTS	CODE	CONSTITUENTS	CODE	CONSTITUENTS	CODE	CONSTITUENTS
001	Carbon tetrachloride	F002	Tetrachloroethylene	F003	Ethyl ather	F004	Nitrobanzene
-001	Chlorinated Flurocarbons	F002	1,1,1-Trichloroethane	F003	Methanol	F005	Вепzеле
-001	Methylene chloride	F002	Trichloroethylene	F003	Methyl isobutyl ketone	F005	Carbon disulfide
-001	Tetrachloroethylene	F002	1,1,2-Trichloro-1,2,2-trifluoroethane	F003	Xylenes	F005	2-Ethoxyethanol Only
001	1,1,1-Trichioroethane	F002	Trichlorofluoromethane	F003	Contains any combination of following:Carbon Plaufilite Cyclinhoveness and Methanol	F005	lectutanol
001	Trichloroethylene	F003	Acetone	E004	(F003/F005 ONLY)	F005	Mathyl ethyl ketone
002	Chlorobenzene	F003	n-Butyl alcobol			F005	2-Nitropropane Only
002	o-Dichlorobenzene	F003	Cyclohexanone	-		F005	Pyridine
F002	Methylene chloride	F003	Ethyl acetale			F005	Toluena
	1,1,2-Trichloroethane	F003	Ethylbenzene	F004	Cresol Mixed Isomers(Cresylic acid)	F005	Contains any combination of following:Carbon Disulfide,Cyclohexanona and Mathenol(F003/F005 ONLY)
	F001 F001 F001 F001 F001 F002 F002 F002	Chlorinated Flurocarbons Methylene chloride Tetrachloroethylene Trichloroethylene Trichloroethylene Chlorobenzene Chlorobenzene Chlorobenzene Methylene chloride T,1,2-Trichloroethane	F001 Carbon tetrachloride F002 F001 Chlorinated Flurocarbons F002 F001 Methylene chloride F002 F001 Tetrachloroethylene F002 F001 1,1,1-Trichloroethane F002 F001 Trichloroethylene F003 F002 Chlorobenzene F003 F002 o-Dichlorobenzene F003 F002 Methylene chloride F003 F002 1,1,2-Trichloroethane F003	F001 Carbon tetrachloride F002 Tetrachloroethylene F001 Chlorinated Flurocarbons F002 1,1,1-Trichloroethane F001 Methylene chloride F002 Trichloroethylene F001 Tetrachloroethylene F002 1,1,2-Trichloro-1,2,2-trifluoroethane F001 1,1,1-Trichloroethane F002 Trichlorofluoromethane F001 Trichloroethylene F003 Acetone F002 Chlorobenzene F003 n-Butyl alcobol F002 o-Dichlorobenzene F003 Cyclohexanone F002 Methylene chloride F003 Ethyl acetate	F001 Carbon tetrachloride F002 Tetrachloroethylene F003 F001 Chlorinated Flurocarbons F002 1,1,1-Trichloroethane F003 F001 Methylene chloride F002 Trichloroethylene F003 F001 Tetrachloroethylene F002 1,1,2-Trichloro-1,2,2-trifluoroethane F003 F001 1,1,1-Trichloroethane F003 Trichlorofluoromethane F003 F001 Trichloroethylene F003 Acetone F004 F002 Chlorobenzene F003 n-Butyl alcobol F004 F002 o-Dichlorobenzene F003 Cyclohexanone F004 F002 Methylene chloride F003 Ethyl acetate F004 F002 1,1,2-Trichloroethane F004 F004	F001 Carbon tetrachloride F002 Tetrachloroethylene F003 Ethyl ather F001 Chlorinated Flurocarbons F002 1,1,1-Trichloroethane F003 Methanol F001 Methylene chloride F002 Trichloroethylene F003 Methyl isobutyl ketone F001 Tetrachloroethylene F002 1,1,2-Trichloro-1,2,2-trifluoroethane F003 Xylenes F001 1,1,1-Trichloroethane F002 Trichlorofluoromethane F003 Cartains any combination of fallowing Carbon Described F004 PC Good F003 F004 O-Creaol F004 O-Creaol F005 Chlorobenzene F003 n-Butyl alcobol F004 M-Cresol F005 Methylene chloride F003 Ethyl acetate F000 Methylene chloride F003 Ethyl acetate F000 1,1,2-Trichloroethane F003 Ethylbenzene F004 Cresol Mixed Isomers(Cresytic acid)	Contained Flurocarbons F002 Tetrachloroethylene F003 Ethyl ather F004 F005 F001 Chlorinated Flurocarbons F002 1,1,1-Trichloroethane F003 Methylene chloride F002 Trichloroethylene F003 Methyl isobutyl ketone F005 F005 F001 Tetrachloroethylene F002 1,1,2-Trichloro-1,2,2-trifluoroethane F003 Xylenes F005 F005 F001 1,1,1-Trichloroethane F002 Trichlorofluoromethane F003 Xylenes F005 F005 F001 Trichloroethane F002 Trichlorofluoromethane F003 Contains any combination of following:Carbon Disultitie, Cyclothexanone and Methanol F005 F005 F005 F005 F005 F005 F005 F00

	CODE	SUBCATEGORY/CONSTITUENTS	CODE	SUBCATEGORY/CONSTITUENTS
	F025	Light Ends	P047	4,6-dinîtro-o-cresol salts
	F025	Spent filters/aids and dessicants	P065	Non Wastewater, not incinerator or RMERC residue
	K006	Anhydrous	P065	Non Wastewaters from RMERC<260ppm Hg
	K008	Hydrated	P065	Non wastewater Incinerator residue <260ppm
	K069	Low Lead	P065	All P065 wastewaters
	K069	High Lead	P065	Non wastewaters from incinerator or RMERC residue w/ >280ppm Hg
	K071	Non wastewaters that are residues from RMERC	P092	Non Wastewater, not incinerator or RMERC residue
	K071	Non wastewaters not residues from RMERC	P092	Non Wastewaters from RMERC <260ppm Hg
	K071	All K071 wastewaters	P092	Non wastewater Incinerator residue <260ppm
	K106	Non wastewaters that contain > 260ppm Hg	P092	All P092 wastewaters
	K106	Non wastewaters that contain < 260ppm Hg from RMERC	P092	Non wastewaters incinerator or RMERC residues >260ppm Hg
	K106	Other non wastewaters that contain <260ppm Hg	U151	Non wastewaters >260ppm total Hg
	K106	All K106 wastewaters	U151	Non wastewaters from RMERC residues w/ <260ppm Hg
	K175	Non wastewaters	U151	Non wastewaters from not RMERC residues w/ <260ppm Hg
	K175	All K175 wastewaters		., -
	P047	4,6 dinitro-o-cresol		Ali U151 (mercury) wastewaters
OTH	IER WAS	TE CODES For all other waste codes please use continuation page	U240	2,4-D
	TIFICA		U240	2,4-D salts and esters

certify under penalty of law that I am familiar with this waste and all information is true and accurate and in compliance with the standards specified in 40CFR Part 268 SubpartD and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d).

Name Printed	1	Title	·
Authorized Signature	<u> </u>	Date	:

TRADEBE ENVIRONMENTAL SERVICES LDR CONTINUATION

Waste Stream Profile

1000161621

ALL OTHER WASTE CODES

CODE

SUBCATEGORY/CONSTITUENTS

APPENDIX I - LDR - UNIVERSAL TREATMENT STANDARD	S: REGULATED CONSTITUENTS D001,D002,D012-D043
---	---

CHEMICALS THAT ARE PRESENT IN AMOUNTS GREATER THAN TREATMENT STANDARDS IN WASTE STREAM PROFILE

1000161621

APPENDIX II

EPCRA and Homeland Security Chemicals of Interest Declaration

Waste Stream Profile

1000161621

Constituents

Min

Max

UoM

EPCRA 313

DH\$

Tradebe Environmental Services, LLC

1433 E 83rd Ave, Suite 200 Merrillville, IN 48410 www.tradebeusa.com

Waste Stream Profile Approval Letter

July 31, 2017

UP Environmental Services, Inc. PO Box 127
Bark River MI 49807

Dear Valued Customer,

Tradebe Environmental Services wishes to inform you that the waste stream profile(s) below has been approved for shipment into TRADEBE TREATMENT AND RECYCLING, LLC located in East Chicago, IN, Millington, TN, and Milwaukee, WI.

<u>Profile Number:</u> 1000161621

Profile Name: abandoned containters

Generator Name: MI Dept of Environmental Quality

42634 Highway M-26, Hubbell, MI 49934

DOT Description: NA3077 HAZARDOUS WASTE, SOLIDS, N.O.S. (lead sludge) 9 III

Waste Codes: D008
EPA Management Code: H141
Process Code: SM

Special Requirements:

Terms:

In accordance with 40 CFR 264.12(b) "Required Notice" and the Stato's equivalent regulation, Tradebe Environmental Services, LLC is informing the Generator, Tradebe's designated Facilities have the appropriate permit(s) for the approved listed waste stream profile and will accept the waste stream as described by the Generator/Broker, including but not limited to the Generator's Waste Stream Profile Sheot that was completed in accordance with 40 CFR 262.11 "Hazardous Waste Determination" and/or their State's regulatory equivalent. If at any time the waste is found to contain constituents, properties, or concentrations inconsistent with the information supplied by the Generator/Broker, title to such waste shall not pass to Tradebe Environmental Services, LLC and in addition to a Rejection of the non-conforming waste, you shall be liable for all direct, indirect, and consequential damages incurred by Tradebe Environmental Services, LLC. Tradebe Environmental Services, LLC reserves the right, in its sole discretion, te utilize processes within RCRA environmental standards alternate to the process code stated above to process the waste listed on this approval letter.

To facilitate the expedited receipt and processing of the above waste, Tradebe Environmental Services, LLC requires that the above listed Waste Stream Number appear on each shipping document (Block 14 on the Uniform Hazardous Waste Manifest, Block 13 on the Nonhazardous Waste Manifest, or Description of Articles on a Bill of Lading).

Please contact our Customer Service Department at (800) 388-7242 to schedule or if you have any questions or comments regarding your waste stream.

Thank you for the opportunity to serve your environmental needs.

Kirk McCracken

Kirk McCracken, Approvals Manager

Non-Hazardous WAM Approval

Requested Management Facility: KEW Landfill

Profile Number: 120806MI	Waste Approval Expiration Date: 07/26	2018		
APPROVAL DETAILS				
Approval Decision: ☑ Approved ☐ Not Approved		Profile Renewal: C) Yes	⊠ No
Management Method: <u>Direct Landfill</u>			- 100	
Generator Name: Michigan Dept of Environmental Quality				
Material Name: Non-Hazardous Waste				
Management Facility Precautions, Special Handling Procedures or Limitation		·		
Generator Conditions	···			
- Shipment must be scheduled into the disposal facilit	y at least 24 hours in advance.	Contact inform	ation	will
be provided by your TSR.				
- The waste profile number must appear on the shipping	papers.			
WM Authorization Name: Ben Dahlby	Title: Waste Approval Manage	er		
WM Authorization Signature:	D.	ate: 07/26/2017		
Agency Authorization (if Required):		ate:		

1	UNIFORM HAZARDOUS WASTE MANIFEST MIK193755056 2. Page 1	of 3. Emergency Response 800–633–83		4. Manifest	Tracking Nu	Approved.	-	JK		
*	5. Generator's Name and Mailing Address MI Dept. of Environmental Quality 55195 US 41, Calumet, MI 49913 Generator's Phone: 906-337-0389	Generator's Site Address 52634 Hwy. Hubbell, N	M-26		ss)					
ļ	6. Transporter 1 Company Name U. P. Environmental Services, Inc.			U.S. EPAID	Number 856358	345				
	7. Transporter 2 Company Name		U.S. EPAID Number							
	8. Designated Facility Name and Site Address TRADEBE Treatment and Recycling of WI, LLC 5611 W. Hemlock St., Milwaukee, WI 53223 Facility's Phone: 414-760-9175			U.S. EPA ID	Number -)56	-			
1	9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))	10. Contain	ners Type	11. Total Quantity	12. Unit	13. \	Waste Code:	S		
GENERATOR -	UN 3077, Hazardous Waste, Solid, n.o.s., 9, PG III	4	DM	1	Y	B000				
- GENE	2.									
V	3.									
	4.									
	Approval #: 1000151621 ERG - # 7 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignme marked and labeled/placarded, and are in all respects in proper condition for transport according to a Exporter, I certify that the contents of this consignment conform to the terms of the attached EPAAckin I certify that the waste minimization statement Identified in 40 CFR 262.27(a) (If I am a large quantity of Generator's/Offeror's Printed/Typed Name	oplicable international and nati nowledgment of Consent. generator) or (b) (if I am a sma Signature	onal governm	ental regulations	. If export shi	pment and I a	m the Prima			
NT.L	16. International Shipments Import to U.S. Export from Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials	~ ^	try/exit:							
TRANSPORTER	Transporter 1 Printed/Typed Name Transporter 2 Printed/Typed Name	Signature Signature	_ ~			Mon Mon	11	Year Year		
1	18a. Discrepancy Indication Space Quantity Type	Residue Manifest Reference	Mumber	Partial Re	jection		Full Reje	ction		
ACILITY	18b. Alternate Facility (or Generator)	wamast kalalahda	ranibel.	U.S. EPAID	Number					
DESIGNATED FACILITY	Facility's Phone: 18c. Signature of Alternate Facility (or Generator)					Mor	nth Day	Year		
- DESI	19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disport 1.	3.		4.						
+	20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the m Printed/Typed Name	anifest except as noted in Item Signature	18a	Land	20c	Mon		Year		

Tradebe Environmental Services Land Disposal Restriction Notification Form

The waste described on waste stream profile 1000161621

x The waste described on waste stream profile 1000161621

is not regulated under RCRA 40 CFR.

does not meet the applicable treatment standards in 40 CFR 268 Subpart D.

TREATABILITY GROUP

D009*

D009*

D009°

					•	
	This is a	a wastewater stream.	,	This is a non-wastewater stream.		
	CODE	SUBCATEGORY/CONSTITUENTS	CODE	SUBCATEGORY/CONSTITUENTS	CODE	SUBCATEGORY/CONSTITUENTS
	D001	Ignitable Wastes (TOC>10%)	D010*	Selenium	D025°	p-Cresol
	D001*	Ignitable Wastes (TOC<10%) Managed in Non-CWA	or equival	lent/Non-Class 1 SDWA System	D026*	Cresol (Total)
	D001*	Ignitable Wastes (TOC<10%) Managed in CWA or eq	quivalent/C	Class 1 SDWA System	D027*	p-Dichlorobenzene
	D005.	Corrosive Wastes Managed in Non-CWA or Equivalent	nt/Non-Cla	ass 1 SDWA System	D028*	1,2-Dichloroethane
	D002*	Corroalve Wastes Managed In CWA or Equivalent/Cla	ass 1 SDV	VA System	D029*	1,1-Dichloroethylene
	D003	Reactive sulfides based on 261.23(a)(5)	D011*	Silver	D030°	2,4-Dinkrotoluene
	D003*	Other Reactive based on 261.23(a)(1)	D012*	Endrin	D031*	Heptachlor
	D003*	Water Reactive based on 261.23(a)(2),(3),(4)	D013*	Lindane	D032*	Hexachlorobenzena
	D003	Reactive Cyanides based on 261.23(e)(5)	D014*	Methoxychlor	D033*	Hexachlorobutadiene
	D004*	Arsenic	D015*	Toxaphone	DD34*	Hesxachloroethane
	D005*	Barium	D016*	2,4-D	D035*	Methyl ethyl ketone
	D006*	Cadmium	D017*	2,4,5-TP (Slivex)	D036*	Nitrobenzene
	D006"	Cedmium Containing Batteries	D018*	Benzene	D037*	Pentachtorophenot
	D007*	Chromium	D019*	Carbon Tetrachloride	D038*	Pyridine
(D008*	Lead	D050.	Chlordane	D039*	Tetrachloroethylene
	Doda.	Lead Acid Batteries	D021*	Chlorobenzene	D040*	Trichloroethylene
	D009*	High Mercury-Organic>260ppm Hg	D022°	Chloroform	D041*	2,4,5-Trichlorophenol

If the waste identified by an asterisk(*) contain any Underlying Hazardous Constituents (see APPENDIX I) per 268.7(a)(1) F001 - F005 LISTED WASTE

o-Cresol

m-Cresol

00231

D024*

CODE	CONSTITUENTS	CODE	CONSTITUENTS	CODE	CONSTITUENTS	CODE	CONSTITUENTS
F001	Carbon tetrachloride	F002	Tetrachloroethylene	F003	Ethyl ether	F004	Nitrobanzene
F001	Chlorinated Flurocarbons	F002	1,1,1-Trichtoroethane	F003	Methanol	F005	Benzena
F001	Methylene chloride	F002	Trichloroethylene	F003	Methyl isobutyl ketone	F005	Carbon disulfide
F001	Tetrachloroethylene	F002	1,1,2-Trichloro-1,2,2-trifluoroethane	F003	Xylenes	F005	2-Ethoxyethanol Only
F001	1,1.1-Trichloroethane	F002	Trichlorofluoromethana	F003	Contains any combination of following Corbon Disulfide Cyclohestenone and Malhanol	F005	Isobutanol
F001	Trichloroethylene	F003	Acetone	FOD4	(F003/F005 ONLY) O-Cresol	F00\$	Melhyl ethyl ketone
F002	Chlorobenzene	F003	n-Butyl alcobol			F005	2-Nitropropane Only
F002	o-Dichlorobenzene	F003	Cyclohexenone	F004	M-Cresol	F005	Pyridine
F002	Methylene chloride	F003	Ethyl acetate	F004	P-Cresol	F005	Toluene
F002	1,1,2-Trichloroethana	F003	Ethylbenzene	F004	Cresol Mixed Isomers(Cresylic acid)	F005	Contains any combination of following:Carbon Disulfide.Cyclohexanone and Mothanol(F000/F005

High Mercury-Inorganic<260ppm Hg

Low Mercury <260ppm

Mercury Wastowater

	CODE	SUBCATEGORY/CONSTITUENTS	CODE	SUBCATEGORY/CONSTITUENTS
	F025	Light Ends	P 047	4,6-dinitro-o-cresol salts
	F025	Spent filters/alds and dessicants	P065	Non Wastewater, not inclnerator or RMERC residue
	K006	Anhydrous	P065	Non Wastewaters from RMERC<260ppm Hg
	K008	Hydraled	P065	Non wastewater incinerator residue <260ppm
	K069	Low Lead	P065	All P065 wasteweters
	K069	High Lead	P065	Non wastewaters from incinerator or RMERC residue w/ >260ppm Hg
	K071	Non wastewaters that are residues from RMERC	P092	Non Wastewater, not inclnerator or RMERC residue
	K071	Non wastewaters not residues from RMERC	P092	Non Wastewaters from RMERC <260ppm Hg
	K071	All K071 wastewaters	P092	Non wastewater incinerator residue <260ppm
	K106	Non wastewaters that contain > 260ppm Hg	P092	All P092 wastewaters
	K106	Non wastewaters that contain < 260ppm Hg from RMERC	P092	Non wastewaters inclnerator or RMERC residues >260ppm Hg
		Other non wastewaters that contain <280ppm Hg	U151	Non wastewaters >260ppm total Hg
	•	All K106 wastewsters	U151	Non wastewaters from RMERC residues w/ <260ppm Hp
	K175	Non wastewaters	U151	Non wastewaters from not RMERC residues w/ <260ppm Hg
	K175	All K175 wastewaters	U151	-1
	P047	4,6 dinitro-o-cresol		All U151 (mercury) wastewaters
OTI	HER WAS	STE CODES For all other waste codes please use continuation page	U240	2,4-D
CEI	RTIFICAT	TION	U240	2,4-D salts and eaters

certify under penalty of law that I am familiar with this waste and all information is true and accurate and in compliance with the standards specified in 40CFR Part 268 SubpartD and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d).

Name Printed

Title

Date

TRADEBE

D042*

D043*

2,4,6-Trichlorophenol

Vinyl chloride

TRADEBE ENVIRONMENTAL SERVICES LDR CONTINUATION

Waste Stream Profile

1000161621

ALL OTHER WASTE CODES

CODE

SUBCATEGORY/CONSTITUENTS

APPENDIX I - LDR - UNIVERSAL TREATMENT STANDARDS: REGULATED CONSTITUENTS DO	01,D002.	,D012-D04
---	----------	-----------

CHEMICALS THAT ARE PRESENT IN AMOUNTS GREATER THAN TREATMENT STANDARDS IN WASTE STREAM PROFILE

1000161621

APPENDIX II

EPCRA and Homeland Security Chemicals of Interest Declaration

Waste Stream Profile

1000161621

Constituents

Min

Max

UoM

EPCRA 313

DHS

NON-HAZARDOUS MANIFEST

WASTE MANAGEMENT	16		00	HAID A						
NON-HAZARDOUS MANIFEST M K 1 9 3 7		anifest Doc	10.51	2. Page 1		-17				
3. Generator's Mailing Address: MICHIGAN DEPT OF ENVIRONMENTAL					st Number	90	111	71		
55195 US-41	Generator's Site Address (If different than mailing): 52430 HWY M-26 (DUNCAN AVE) HUBBELL, MI 49934				B. State Generator's ID					
4. Generator's Phone 906-337-0389										
5. Transporter 1 Company Name UP ENVIRONMENTAL SERVICES, INC.	6. US EPA II) Number			ransporter's orter's Phone		5-466-9900			
7. Transporter 2 Company Name	8. US EPA II	Number		E. State Tr	ansporter's	ID				
9. Designated Facility Name and Site Address	10. US EPA	D Number		F. Transpo	orter's Phone					
K&W Landfill 11877 State Highway M38 Ontonagon, MI 49953	e Highway M38 H. State Facility Phone 906-883				33-3504					
		12.0	ontainers	40		_				
11. Description of Waste Materials a. Non-Hazardous Waste		No.	Туре	13. Total Quantity	14. Unit Wt./Vol.	1. 6	Aisc. Comme	nts		
WM Profile # 120806MI		4	DM	1	Ý	(1.9	3 To	m		
b.										
WM Profile #			D							
c.										
WM Profile #					E TOTAL			12.Y		
d.	-									
WM Profile #										
J. Additional Descriptions for Materials Listed Above		K. Dispos	sal Location							
BILL TO:		Cell				Level	1133			
15. Special Handling Instructions and Additional Information	1	Grid								
ton.										
Purchase Order #	EMERGENCY CO	NTACT / PH	ONE NO.:	Amy Keran	en 906-337-	0389 /				
16. GENERATOR'S CERTIFICATE: I hereby certify that the above-described materials are not had been been been been been been been bee	azardous wastes as defin	ed by CFR P	art 261 or a	ny applicable	state law, h	ave been fu	illy and			
Printed Name Hmy Kerkny, MDER	Signature "On behal			MDES		Month	Day	Y.		
1.7. Transporter 1 Acknowledgement of Receipt of Materials Printed Name										
Weil Larson	Signature	1				Month	Day	Yo		
 Transporter 2 Acknowledgement of Receipt of Materials Printed Name 						1		1		
Frances Wallie	Signature					Month	Day	Ye		
9. Certificate of Final Treatment/Disposal		*		7						
certify, on behalf of the above listed treatment facility, that pplicable laws, regulations, permits and licenses on the dat	to the best of my knowle	dge, the ab	ove-describ	ed waste wa	as managed	in complian	ce with al	ľ		
0. Facility Owner or Operator: Certification of receipt of n	on-hazardous-materials co	vered by th	nis manifes							
Printed Name CP2 27, 60	Signature	Ox	Jhi	MOD	105	Month	Day	Ye		
White-TREATMENT STORAGE DISPOSAL FACILITY CODY	Blue GENERATOR	00	TH	NO WA	CENER	8	111	11		

1-12-17				1		
38	MATERIAL	AMOUNT		2 dru		
	7		- !			
1)	spendel	94				
1	Gen Lo	00	- }			
1		0	!			
55,3	70.500	X	1			
	AAOSS		_ 1			
1.1	ARE	1	_ 1			
	IET ()	1/000	_ 1			
,	1000	MASS	2.77			

APPENDIX H Photographic Log

Photo 1: View from shoreline of drum location, prior to excavation activities. Photo taken July 10, 2017.

Photo 3: View looking southwest to excavation area with boom in place. Photo taken July 10, 2017.

Photo 5: View looking southwest during drum excavation (Container #4). Photo taken July 11, 2017.

Photo 2: View from shoreline of partially exposed drum, prior to excavation activities. Photo taken July 10, 2017.

Photo 4: View of submerged Container #1 (DM-04) being removed from shoreline during excavation. Photo taken July 10, 2017.

Photo 6: View of drum (Container #6) removed from shoreline area. Photo taken July 11, 2017.

Photo 7: Green, copper material observed in test pit near Container #4 excavation site.
Photo taken July 11, 2017.

Photo 9: Container #5 with metal scrap removed from shoreline, staged for transport and disposal. Photo taken July 11, 2017.

Photo 11: View looking southeast at backfilled excavation site, prior to complete restoration.
Photo taken on July 11, 2017.

Photo 8: View of white sludge material mixed with sediment, excavated from shoreline as part of Container #10. Photo taken July 11, 2017.

Photo 10: View of partial drum and hardened contents removed from shoreline during excavation. Photo taken on July 11, 2017.

Photo 12: View looking southwest at completed site restoration. Photo taken on July 11, 2017.

