DED

CHEMICAL UPDATE WORKSHEET

Chemical Name:	Polychlorinated biphenyls
CAS #:	1336-36-3
Revised By:	RRD Toxicology Unit
Revision Date:	August 19, 2015

(A) Chemical-Physical Properties

	Part 201 Value	Updated Value	Reference Source	Comments
Molecular Weight (g/mol)	268.4	291.99	EPI	EXP
Physical State at ambient temp	Solid	Solid	MDEQ	
Melting Point (°C)		NA	NA	NA
Boiling Point (°C)		357.50	HSDB	ЕХР
Solubility (ug/L)	44.7	700	EPI	ЕХР
Vapor Pressure (mmHg at 25°C)	0.000076	4.94E-04	РР	EST
HLC (atm-m³/mol at 25°C)	4.20E-4	4.15E-04	EPI	ЕХР
Log Kow (log P; octanol-water)	5.58	7.10	EPI	ЕХР
Koc (organic carbon; L/Kg)	3.06E+5	7.810E+04	EPI	EST
Ionizing Koc (L/kg)		NR	NA	NA
Diffusivity in Air (Di; cm²/s)	0.08	4.32E-02	W9	EST
Diffusivity in Water (Dw; cm ² /s)	8.0E-6	5.04E-06	W9	EST
Soil Water Partition Coefficient (Kd; inorganics)	NR	NR	NA	NA

	Part 201 Value	Updated Value	Reference Source	Comments
Flash Point (°C)	NA	NA	NA	NA
Lower Explosivity Level (LEL; unitless)	NA	NA	NA	NA
Critical Temperature (K)		NA	NA	NA
Enthalpy of Vaporization (cal/mol)		NA	NA	NA
Density (g/mL, g/cm ³)		NA	NA	NA
EMSOFT Flux Residential 2 m (mg/day/cm ²)	2.00E-08	2.42E-06	EMSOFT	EST
EMSOFT Flux Residential 5 m (mg/day/cm ²)	2.00E-08	2.42E-06	EMSOFT	EST
EMSOFT Flux Nonresidential 2 m (mg/day/cm ²)	2.27E-08	3.06E-06	EMSOFT	EST
EMSOFT Flux Nonresidential 5 m (mg/day/cm ²)	2.27E-08	3.06E-06	EMSOFT	EST

(B) Toxicity Values/Benchmarks

	Part 201 Value	Updated Value	Source/Reference/ Date	Comments/Notes /Issues
Reference Dose (RfD) (mg/kg/day)	2.0E-5	2.0E-5	IRIS, 1996 (RfD for Aroclor 1254)	
RfD details	Per RD: RfD of 2.0E-5 is based on Aroclor 1254, critical effects are ocular exudate, inflamed and prominent Meibomian glands, distorted growth of finger and toe nails; decreased antibody (IgG and IgM) response to sheep erythrocytes; UF = 300: 10 for intraspecies variability (sensitive individuals), 3 for interspecies (monkeys to humans); 3 for subchronic to chronic; and a "partial factor" (3??) for use of a "minimal" LOAEL.	 Tier 1 Source: IRIS: Basis: IRIS is a Tier 1 source. Critical Studies: Arnold, D.L., F. Bryce, R. Stapley et al. 1993a. Toxicologica Aroclor 1254 ingestion by female Rhesus (Macaca mulatt Prebreeding phase - clinical health findings. Food Chem. (e-copy in tox assessment folder) Arnold, D.L., F. Bryce, K. Karpinski et al. 1993b. Toxicologi Aroclor 1254 ingestion by female Rhesus (Macaca mulatt Prebreeding phase -clinical and analytical laboratory find Toxicol. 31: 811-824. (e-copy in tox assessment folder) Tryphonas, H., S. Hayward, L. O'Grady et al. 1989. Immun PCB (Aroclor 1254) in the adult rhesus (Macaca mulatta) preliminary report. Int. J. Immunopharmacol. 11: 199-206 assessment folder) Tryphonas, H., M.I. Luster, G. Schiffman et al. 1991a. Effe exposure of PCB (Aroclor 1254) on specific and nonspecifi parameters in the rhesus (Macaca mulatta) monkey. Fund 16(4): 773-786. (e-copy not available) Tryphonas, H., M.I. Luster, K.L. White et al. 1991b. Effects 1254) on non-specific immune parameters in Rhesus (Ma monkeys. Int. J. Immunopharmacol. 13: 639-648. (e-copy folder) Methods: Groups of 16 adult female rhesus monkeys ingeste containing Aroclor 1254 (Monsanto Lot No. KA634) in 1:1 glyd daily at dosages of 0, 5, 20, 40 or 80 ug/kg-day for more than mixture contained 5.19 ppm of polychlorinated dibenzofuran 	a) monkeys, Part 1A: Toxicol. 31: 799- 810. cal consequences of a) monkeys, Part 1B: ings. Food Chem. otoxicity studies of monkey 5. (e-copy in tox ct of chronic ic immune d. Appl. Toxicol. cof PCB (Aroclor caca mulatta) in tox assessment d gelatin capsules cerol: corn oil vehicle 5 years. The Aroclor	Complete

Part 201 Value	Updated Value	Source/Reference/ Date	Comments/Notes /Issues
(See IRIS for	levels of polychlorinated dibenzo-p-dioxins (Truelove et al., 1		
details) RD	initiation the monkeys were 11.1 +/- 4.1 years old (Tryphonas	s et al., 1991a, b;	
calculation date:	Arnold et al., 1993a, b). After 25 months of exposure the mor	nkeys had achieved a	
11/1/96.	pharmacokinetic steady-state based on PCB concentrations in		
Per RD: (Note: Rf	D and/or blood (Tryphonas et al., 1989). Results of general hea	Ith and clinical	
for Aroclor 1016	pathology evaluations conducted during the first 37 months of	of exposure were	
of 7E-5 is based	reported by Arnold et al. (1993a, b). Results of immunologic a	assessments after 23	
on developmenta	I and 55 months of exposure were reported by Tryphonas et a	l. (1989, 1991a, b).	
effect - reduced	Results of reproductive endocrinology evaluations after 24 or	⁻ 29 months of	
birth weights in	exposure were reported by Truelove et al. (1990) and Arnold	et al. (1993a).	
monkeys from a	Effects on hydrocortisone levels during the first 22 months of	exposure were	
reproductive	reported by Loo et al. (1989) and Arnold et al. (1993b). All of	the aforementioned	
bioassay,	evaluations were performed during the prebreeding phase of	f the study. Results of	
however, use of	reproduction and histopathology evaluations in these monke	ys are not fully	
this RfD does not	available (Arnold, 1992).		
result in lower so	I Critical effect: ocular exudate, inflamed and prominent Meib	omian glands,	
direct contact	distorted growth of finger and toe nails; decreased antibody	(IgG and IgM)	
criteria than	response to sheep erythrocytes		
criteria based on	End point or Point of Departure (POD): LOAEL = 0.005 mg/kg	g-day. NOAEL = none.	
carcinogenic slop	e Uncertainty Factors : UF = 300; A 10-fold factor is applied to a	account for sensitive	
factor of 2.0).	individuals. A factor of 3 is applied to extrapolation from rhes	sus monkeys to	
Per IRIS: Please	humans. A full 10-fold factor for interspecies extrapolation is	not considered	
check the	necessary because of similarities in toxic responses and meta	bolism of PCBs	
following	between monkeys and humans and the general physiologic s	imilarity between	
individual aroclor	these species. A partial factor is applied for the use of a minir	nal LOAEL since the	
files for RfD	changes in the periocular tissues and nail bed see at the 0.05	mg/kg-day are not	
assessments:	considered to be of marked severity. The duration of the criti	cal study continued	
Aroclor 1016,	for approximately 25% of the lifespan of rhesus monkeys so t		
Aroclor 1248, and	was used for extrapolation from subchronic exposure to a ch	ronic RfD. The	
Aroclor 1254	immunologic and clinical changes that were observed did not	••	
(9/27/11;	dependent upon duration which further justifies using a factor		
6/25/13). IRIS	for extrapolation from subchronic to chronic, lifetime exposu	re.	

	Part 201 Value	Updated Value	Source/Reference/	Comments/Notes
	RfD last revised 6/1/94.	Source and date: IRIS; 11/1/1996 (RfD for Aroclor 1254) NOTE: Per IRIS (11/1/1996); Aroclor 1016 RfD = 7.0E-5 mg/kg Aroclor 1016 of 7E-5 mg/kg-day is based on developmental weights in monkeys from a reproductive bioassay); howeve does not protect for the effects from Aroclor 1254. NOTE: Per IRIS (11/1/1996); Aroclor 1248: The health effects 1248 were reviewed by the U.S. EPA RfD/RfC Work Group and inadequate for the derivation of an oral RfD. Tier 2 Sources: PPRTV: No PPRTV record available at this time. MRL: Per ATSDR (final 11/2000), MRL = 0.02 μg/kg/day (oral- 1254. Same as IRIS RfD. An addendum to the Tox Profile was however a modification to the chronic oral MRL (2000) was n Tier 3 Source: MDEQ: Per DEQ-CCD (11/1/1996), RfD = 0.00002 mg/kg/day, Aroclor 1254 basis. Per MDEQ-SWQ-CCD (6/1/1985) RfD = 0.0000000000000000000000000000000000	effect (reduced birth r, use of this RfD data for Aroclor d determined to be -chronic) as Aroclor released in 2011 ot made. same as IRIS for	/Issues
Oral Cancer Slope Factor (CSF) (mg/kg-day) ⁻¹)	2.0E+0	based on Aroclor 1248. 2.0E+0	IRIS, 1997 (CSF for PCBs CAS# 1336- 36-3)	
CSF details	Per IRIS: The SF of 2.0E+0 per mg/kg/d is based on the occurrence of liver hepatocellular adenomas, carcinomas,	Tier 1 Source: IRIS: Basis: IRIS is a Tier 1 source. Per IRIS, an upper-bound slope f (mg/kg)/day is recommended for food early life exposure (an factors) for all mixtures and pathways vs a low risk and persis slope factor of 0.4 per (mg/kg)/day. The CSF of 2.0 is selected early life exposures for both residential and nonresidential la Critical Studies:	factor of 2.0 per nong several other tence upper bound d primarily to address	Complete

Part	t 201 Value	Updated Value	Source/Reference/ Date	Comments/Notes /Issues
chola	ngiomas, or	• Brunner, M.J., T.M. Sullivan, A.W. Singer, et. al. 1996.	An assessment of	
chola	ngiocarcino	the chronic toxicity and oncogenicity of Aroclor-1016,	, Aroclor-1242,	
mas ii	n female	Aroclor- 1254, and Aroclor-1260 administered in diet	to rats. Study No.	
Sprag	ue Dawley	SC920192. Chronic toxicity and oncogenicity report. B	Battelle, Columbus	
rats e	xposed to	OH. (e-copy not available)		
Arock	ors in the	• Norback, D.H. and R.H. Weltman. 1985. Polychlorinat	ed biphenyl	
diet (I	Brunner et	induction of hepatocellular carcinoma in the Sprague	-Dawley rat. Environ.	
	96; Norback	Health Perspect. 60: 97-105.(e-copy in tox assessmen	t folder)	
and V	Veltman,	Methods: The CSF of 2.0E+0 per mg/kg-day is based on the or	ccurrence of liver	
-	. The cancer	hepatocellular adenomas, carcinomas, cholangiomas, or chola	angiocarcinomas in	
	icy of PCB	female Sprague Dawley rats exposed to Aroclors in the diet (B	Brunner et al., 1996;	
mixtu		Norback and Weltman, 1985). The cancer potency of PCB mix	tures is determined	
	mined using	using a tiered approach that depends on the information avai	lable. The IRIS CSF	
	ed approach	represents an upper-bound SF for high risk and persistence. A	represents an upper-bound SF for high risk and persistence. A September 1996	
	lepends on	EPA support document is available.		
	formation	Carcinogen Weight-of-Evidence (WOE) Class: B2; probable http://www.endocedimensional.com/actio	-	
	ble. The IRIS	IRIS WOE Basis: A 1996 study found liver tumors in female rat	ts exposed to	
	presents an	Aroclors 1260, 1254, 1242, and 1016, and in male rats expose		
	r-bound SF	mixtures contain overlapping groups of congeners that, toget		
	gh risk and	of congeners most often found in environmental mixtures. Ea		
	stence. A	high, statistically significant incidences of liver tumors in rats i		
	mber 1996	1260 or Clophen A 60 (Kimbrough et al., 1975; Norback and W		
	upport	Schaeffer et al., 1984). Mechanistic studies are beginning to id	•	
	nent is	congeners that have dioxin-like activity and may promote tun	•	
	ble. The IRIS	modes of action. PCBs are absorbed through ingestion, inhala		
SF wa		exposure, after which they are transported similarly through		
revise	ed: 6/1/97.	provides a reasonable basis for expecting similar internal effe		
		routes of environmental exposure. Information on relative ab	•	
		suggests that differences in toxicity across exposure routes ar		
		studies are being updated; currently available evidence is inac	dequate, but	
		suggestive.		
		Additional info:		

	Part 201 Value	Updated Value	Source/Reference/ Date	Comments/Notes /Issues
		 Aroclor 1254: has not undergone a complete evaluation and determination. Aroclor 1248: has not undergone a complete evaluation and determination. Aroclor 1016: has not undergone a complete evaluation and determination. PCBs (1336-36-3) file (6/1/1997). Source and Date: IRIS; 6/1/1997 		
		Tier 2 Sources: PPRTV: No PPRTV record available at this time. MRL: NA; MRLs are for non-cancer effects only. Tier 3 Source:		
Reference Concentration (RfC) or Initial Threshold Screening Level (ITSL) (µg/m³)		MDEQ: Per DEQ-CCD RRD (1/1/1986), CSF = 2 mg/kg/day.	MDEQ, 2015	-
RfC/ITSL details	No AQD entry in EPB-CCD (9/27/11; 6/25/13). No PPRTV (11/28/11; 6/25/13).	Tier 1 and 2 Sources: IRIS: Per IRIS (RfD revision date 6/1/1994), no value at this time. PPRTV: No PPRTV record available at this time. MRL: Per ATSDR (final 11/2000), no inhalation value at this time. Tier 3 Source: MDEQ: Per MDEQ-CCD, no value at this time.		Complete
Inhalation Unit Risk Factor (IURF) ((µg/m³) ⁻¹)	6.0E-4	1.0E-4	IRIS, 1997	
IURF details	Per AQD: EPA's IRIS updated carcinogenicity assessment for polychlorinated	Tier 1 Source: IRIS: Basis: IRIS is a Tier 1 source. The unit risk value is based on th 2 (mg/kg/day) ⁻¹ Critical Studies:	ne oral slope factor of	Complete

Part 201 Value	Updated Value	Source/Reference/ Date	Comments/Notes /Issues
biphenyls. Based	Brunner, M.J., T.M. Sullivan, A.W. Singer, et. al. 1996.	An assessment of	
on the recent	the chronic toxicity and oncogenicity of Aroclor-1016	, Aroclor-1242,	
Brunner et al	Aroclor- 1254, and Aroclor-1260 administered in diet	to rats. Study No.	
(1996), 2 yr. rat	SC920192. Chronic toxicity and oncogenicity report. E	Battelle, Columbus	
oral study.	OH. (e-copy not available)		
Sprague-Dawley	Norback, D.H. and R.H. Weltman. 1985. Polychlorinat	ed biphenyl	
rats were fed	induction of hepatocellular carcinoma in the Sprague	-Dawley rat. Environ.	
diets contain	Health Perspect. 60: 97-105.(e-copy in tox assessmer	it folder)	
various Arochlors.	Method(s): The CSF of 2.0E+0 per mg/kg/d is based on the oc	currence of liver	
Significant	hepatocellular adenomas, carcinomas, cholangiomas, or chol	angiocarcinomas in	
increases of liver	female Sprague Dawley rats exposed to Aroclors in the diet (F	Brunner et al., 1996;	
adenomas or	Norback and Weltman, 1985). The cancer potency of PCB mix	tures is determined	
carcinomas were	using a tiered approach that depends on the information ava	ilable. The IRIS SF	
found in females	represents an upper-bound SF for high risk and persistence.	A September 1996	
with all Arochlors,	EPA support document is available.		
and males with	1) Dose response data: Liver hepatocellular adenomas,	carcinomas,	
Aroclor 1260. The	cholangiomas, or cholangiocarcinomas (same as RfD	oral exposure route	
unit risk value is	IRIS 6/1/1994)		
based on the oral	2) <i>Extrapolation method</i> : Linear extrapolation below LE	D10s (U.S. EPA,	
slope factor of 2	1996b)		
(mg/kg)-1, EPA	Carcinogen Weight-of-Evidence (WOE) Class: B2; probable h	-	
noted that	IRIS WOE Basis: A 1996 study found liver tumors in female ra	•	
differences	Aroclors 1260, 1254, 1242, and 1016, and in male rats expose		
between	mixtures contain overlapping groups of congeners that, toget		
exposure routes	of congeners most often found in environmental mixtures. Ea		
are small. See	high, statistically significant incidences of liver tumors in rats		
EPA's IRIS printout	1260 or Clophen A 60 (Kimbrough et al., 1975; Norback and V		
for the range of	Schaeffer et al., 1984). Mechanistic studies are beginning to i	•	
other slope	congeners that have dioxin-like activity and may promote tur	•	
factors that may	modes of action. PCBs are absorbed through ingestion, inhala		
be possible to use	exposure, after which they are transported similarly through		
in calculating	provides a reasonable basis for expecting similar internal effe	ects from different	

	Part 201 Value	Updated Value	Source/Reference/ Date	Comments/Notes /Issues		
	different screening levels. AQD calculation date: 10/1/96.	routes of environmental exposure. Information on relative al suggests that differences in toxicity across exposure routes a studies are being updated; currently available evidence is ina suggestive. Source and Date : IRIS; 6/1/1997				
		Tier 2 Sources: PPRTV: No PPRTV record available at this time. MRL: NA; MRLs are for non-cancer effects only.	PPRTV: No PPRTV record available at this time.			
		Tier 3 Source: MDEQ: Per MDEQ-AQD-CCD (10/1/1996), AQD IURF = 0.0000 updated carcinogenicity assessment for polychlorinated biph recent Brunner et al (1996), 2-year rat oral study. Sprague-Da diets contain various Arochlors. Significant increases of liver a carcinomas were found in females with all Arochlors, and ma 1260. The unit risk value is based on the oral slope factor of 2 noted that differences between exposure routes are small. So for the range of other slope factors that may be possible to u different screening levels.	enyls. Based on the awley rats were fed adenomas or les with Aroclor 2 (mg/kg) ⁻¹ , EPA ee EPA's IRIS printout			
Mutagenic Mode of Action (MMOA)? (Y/N)		NO	USEPA, 2015			
MMOA Details		Not listed as a carcinogen with mutagenic MOA in the US	SEPA OSWER List.			
Developmental or Reproductive Effector? (Y/N)	No	Yes- oral exposure (2.0E-5 mg/kg-day). No- inhalation exposure Oral Exposure Pathways- Full Term Exposure				
Developmental or Reproductive Toxicity Details		NOTE: Per IRIS (11/1/1996); Aroclor 1016 RfD = 7.0E-5 mg/kg Aroclor 1016 of 7E-5 mg/kg-day is based on developmental e weights in monkeys from a reproductive bioassay, however, not protect for the effects from Aroclor 1254 SO use 2.0E-5 a protective of developmental effects. See RfD sections as sev	ffect - reduced birth use of this RfD does nd consider it			

	Part 201 Value	Updated Value	Source/Reference/ Date	Comments/Notes /Issues
		are reported.		
State Drinking Water Standard (SDWS) (µg/L)	0.0005	0.5	SDWA, 1976	
SDWS details	NA	MI Safe Drinking Water Act (SDWA) 1976 PA 399		
Secondary Maximum Contaminant Level (SMCL) (µg/L)		NO	SDWA, 1976 and USEPA SMCL List	
SMCL details	NA	MI Safe Drinking Water Act (SDWA) 1976 PA 399 and USE	MI Safe Drinking Water Act (SDWA) 1976 PA 399 and USEPA SMCL List, 2015	
Is there an Aesthetic Value? (Y/N)	NO	Not evaluated.	NA	
Aesthetic value details	NA	NA		
Is there a Phytotoxicity Value? (Y/N)	NO	Not evaluated.	NA	
Phytotoxicity details	NA	NA		
Others:				

(C) Chemical-specific Absorption Factors

	Part 201 Value	Update	Source/Reference/ Dates	Comments/Notes /Issues
Gastrointestinal absorption efficiency value (ABSgi)		1.0	MDEQ, 2015/USEPA RAGS- E, 2004	
ABSgi details		RAGS E (USEPA, 2004) Default Value		
Skin absorption efficiency value (AEd)		0.14	MDEQ, 2015	
AEd details				
Ingestion Absorption Efficiency (AEi)		0.5	MDEQ, 2015	
AEi Details				
Relative Source Contribution for Water (RSC _w)		0.2	MDEQ, 2015	
Relative Source Contribution for Soil (RSC _s)		1.0	MDEQ, 2015	
Relative Source Contribution for Air (RSC _A)		1.0	MDEQ, 2015	
Others				

(D) Rule 57 Water Quality Values and GSI Criteria

Current GSI value (µg/L)	0.2 (M); 0.000026
Updated GSI value (μg/L)	0.2 (M); 0.000026
Rule 57 Drinking Water Value (μ g/L)	0.2 (M); 0.000026

	Rule 57 Value (μg/L)	Verification Date
Human Non-cancer Values- Drinking water source (HNV-drink)	NLS	
Human Non-Cancer Values- Non-drinking water sources (HNV-Non-drink)	NLS	
Wildlife Value (WV)	0.00012	7/1997
Human Cancer Values for Drinking Water Source (HCV-drink)	0.000026	7/1997
Human Cancer values for non-drinking water source (HCV-Non-drink)	0.000026	7/1997
Final Chronic Value (FCV)	ID* (0.000026)	6/1997
Aquatic maximum value (AMV)	ID	6/1997
Final Acute Value (FAV)	ID	6/1997

Sources:

MDEQ Surface Water Assessment Section Rule 57 <u>website</u>
 MDEQ Rule 57 <u>table</u>

(E) Target Detection Limits (TDL)

	Value	Source
Target Detection Limit – Soil (µg/kg)	330	MDEQ, 2015
Target Detection Limit – Water (μg/L)	0.2	MDEQ, 2015
Target Detection Limit – Air (ppbv)	3.90E-03	MDEQ, 2015
Target Detection Limit – Soil Gas (ppbv)	1.30E-01	MDEQ, 2015

CHEMICAL UPDATE WORKSHEET ABBREVIATIONS:

CAS # - Chemical Abstract Service Number.

Section (A) Chemical-Physical Properties

Reference Source(s):

CRC	Chemical Rubber Company Handbook of Chemistry and Physics, 95th edition, 2014-2015
EMSOFT	USEPA Exposure Model for Soil-Organic Fate and Transport (EMSOFT) (EPA, 2002)
EPA2001	USEPA (2001) Fact Sheet, Correcting the Henry's Law Constant for Soil Temperature. Office of Solid
EPA4	Waste and Emergency Response, Washington, D.C. USEPA (2004) User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. February 22, 2004.
EPI	USEPA's Estimation Programs Interface SUITE 4.1,
	Copyright 2000-2012
HSDB	Hazardous Substances Data Bank
MDEQ	Michigan Department of Environmental Quality
NPG	National Institute for Occupational Safety and
	Health Pocket Guide to Chemical Hazards
PC	National Center for Biotechnology Information's
	PubChem database
PP	Syracuse Research Corporation's PhysProp database
SCDM	USEPA's Superfund Chemical Data Matrix
SSG	USEPA's Soil Screening Guidance: Technical Background Document, Second Edition, 1996
USEPA/EPA	United States environmental protection agency's Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). July, 2004.

W9

USEPA's User Guide for Water9 Software, Version 2.0.0, 2001

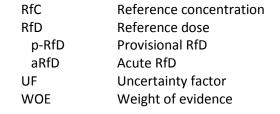
Basis/Comments:

EST	estimated
EXP	experimental
EXT	extrapolated
NA	not available or not applicable
NR	not relevant

Section (B) Toxicity Values/Benchmarks

Sources/References:

ATSDR	Agency for Toxic Substances and Disease Registry
CALEPA	California Environmental Protection Agency
CAL DTSC	California Department of Toxic Substances Control
CAL OEHHA	CAEPA Office of Environmental Health Hazard
	Assessment
CCD	MDEQ Chemical Criteria Database
ECHA	European Chemicals Agency (REACH)
OECD HPV	Organization for Economic Cooperation and
	Development HPV Database
HEAST	USEPA's Health Effects Assessment Summary Tables
IRIS	USEPA's Integrated Risk Information System
MADEP	Massachusetts Department of Environmental
	Protection
MDEQ/DEQ	Michigan Department of Environmental Quality
DEQ-CCD/AQD	MDEQ Air Quality Division
DEQ-CCD/RRD	MDEQ Remediation and Redevelopment Division
DEQ-CCD/WRD	MDEQ Water Resources Division
MNDOH	Minnesota Department of Health



NJDEP	New Jersey Department of Environmental
	Protection
NYDEC	New York State Department of Environmental
	Conservation
OPP/OPPT	USEPA's Office of Pesticide Programs
PPRTV	USEPA's Provisional Peer Reviewed Toxicity Values
RIVM	The Netherlands National Institute of Public Health
	and the Environment
TCEQ	Texas Commission on Environmental Quality
USEPA	United States Environmental Protection Agency
USEPA OSWER	USEPA Office of Solid Waste and Emergency
	Response
USEPA MCL	USEPA Maximum Contaminant Level
WHO	World Health Organization
WHO IPCS	International Programme on Chemical Safety
	(IPCS/INCHEM)
WHO IARC	International Agency for Research on Cancers
NA	Not Available.
NR	Not Relevant.

Toxicity terms:

DE

BMC	Benchmark concentration
BMCL	Lower bound confidence limit on the BMC
BMD	benchmark dose
BMDL	Lower bound confidence limit on the BMD
CSF	Cancer slope Factor
CNS	Central nervous system
IURF or IUR	Inhalation unit risk factor
LOAEL	Lowest observed adverse effect level
LOEL	Lowest observed effect level
MRL	Minimal risk level (ATSDR)
NOAEL	No observed adverse effect level
NOEL	No observed effect level

Section (C) Chemical-specific Absorption Factors

MDEQ	Michigan Department of Environmental Quality
USEPA RAGS-E	United States Environmental Protection Agency's
	Risk Assessment Guidance for Superfund Volume I:
	Human Health Evaluation Manual (Part E,
	Supplemental Guidance for Dermal Risk
	Assessment). July, 2004.

Section (D) Rule 57 Water Quality Values and GSI Criteria

- GSI Groundwater-surface water interface
- NA A value is not available or not applicable.
- ID Insufficient data to derive value
- NLS No literature search has been conducted

