Landfill Gas Collection System Design

BRYAN WELDON P.E.
Permit Requirements 01
Gas Models 02
Passive Gas Systems 03
Active Gas Systems 04
Economic Factors 05
Questions 06
Air Regulations for MSW Landfills – NSPS and EGs
When is a GCCS required by rule?

• NSPS XXX minimum criteria that will require a GCCS:
 • Landfill must have a design capacity > 2.5 million Mg AND > 2.5 million cubic meters.
 • Landfill must have begun physical construction AFTER July 17, 2014
 • Landfill must have the potential to generate 34 Mg/yr of NMOC emissions

• NSPS WWW minimum criteria that will require a GCCS:
 • Landfill must have a design capacity > 2.5 million Mg AND > 2.5 million cubic meters.
 • Landfill must have begun physical construction AFTER May 29, 1991
 • Landfill must have the potential to generate 50 Mg/yr of NMOC emissions
When is a GCCS required by rule?

• EG Cf minimum criteria that will require a GCCS:
 • Landfill has accepted waste any time since November 8, 1987 or has design capacity for future waste acceptance.
 • Landfill must have a design capacity > 2.5 million Mg AND > 2.5 million cubic meters.
 • Landfill must have begun physical construction BEFORE July 18, 2014
 • Active landfill must have the potential to generate 34 Mg/yr of NMOC emissions
 • Closed landfill must have the potential to generate 50 Mg/yr of NMOC emissions

• EG Cc minimum criteria that will require a GCCS:
 • Landfill has accepted waste any time since November 8, 1987 or has design capacity for future waste acceptance.
 • Landfill must have a design capacity > 2.5 million Mg AND > 2.5 million cubic meters.
 • Landfill must have begun physical construction BEFORE May 30, 1991
 • Landfill must have the potential to generate 50 Mg/yr of NMOC emissions
Landfill Gas Emission Model

LAND GEM

- Official model used by the US EPA
- Minimal Model Parameters/Variables/Inputs
- Overly Conservative Gas Production Estimates
- Generally, NOT the Best Indicator for Gas Collection Design Systems
Industry Specific Models

GASSIM

- Not Used for Permitting
- More Dynamic Parameters/Variables/Inputs
 - Moisture
 - Waste Composition
- Better Indicator of Actual Landfill Gas Production
Passive Gas Systems
Passive Gas System
Passive Gas System

GAS FLARING

Solar Flares

- Installed in Passive Gas Vents
- Operate for Low Gas Flows
- Localized Gas Flaring
- Operate at Ambient Pressure
- Difficult to Operate in Cold Weather Climates
 - Heat Pads, Insulation and Running Power
Passive Gas System

DESIGN CRITERIA

PROS

• Cheap to Construct
• Can be Built During Landfill Closure
• Little to No Regular Maintenance

CONS

• Less Gas Collection
• Minimal or No Gas Destruction
• No Possibility for Energy Production
Active Gas Systems
Active Gas System
Active Gas System

VERTICAL EXTRACTION WELLS
Active Gas System

VERTICAL EXTRACTION WELLS

- Must Provide Safe Access During Installation
- Spaced based on Radius of Influence (ROI)
- >15’ Above Liner
Active Gas System

HORIZONTAL EXTRACTION WELLS

- Trenched into Waste
- Greater Gas Collection than Vertical Wells
- Best if Installed during Waste Placement
- Cannot be Modified after Construction
- Vulnerable to Waste Settlement
Active Gas System

CON D E N S A T E S U M P S

- Provide Gas Knockout
- Deep Enough to Not Pull Condensate into Header
- Will Require Drainage Method
 - Self Draining Into Waste
 - Self Draining into leachate System
 - Pumping System
Active Gas System

HEADER AND LATERAL PIPEWORK

- Always Maintain >5% Grade
- Design for Cover to Drive Over
- Ensure Grades Don’t Interfere with Cap
- Pressure Test all Pipework
- Be Conservative on Pipe Sizing
- Install Valves for Isolation
Active Gas System

FLARE / BLOWER

• Enclosed Flare vs Candlestick
 • Cost vs Efficiency
• Sized Based on Gas Model Results
• Placed in a Secure Location on Site
• Immediately Down Stream of Condensate Sump
Active Gas System

DESIGN CRITERIA

PROS

- Targeted Gas Collection
 - Odor Control
 - Migration Management
- Possible to Earn Capital to Offset Costs

CONS

- More Expensive to Construct
- Should be Designed with Cell Landform
- Regular Maintenance and Upkeep
Economic Factors
Economic Factors

COST TO CONSTRUCT-ACTIVE SYSTEM

- ~$15,000 Per Well
 Includes all Associated Pipework
- >$100,000 for Flare
- Regular Monitoring, Upkeep
 - Wellfield Balancing
 - Permit Reporting
 - Replace Worn Pipes, Hosing, Valves, etc..
Economic Factors

LANDFILL GAS GENERATORS

- Require Additional Infrastructure
 - Powerlines, Transformers, etc…
 - Additional Pipework to Possibly Sell Gas Offsite
- Minimum ~650 SCFM to Operate a Single 2 MW Generator
 - May Require Multiple Generators for Return on Investment
- Requires More Stringent Gas Management
Economic Factors

HIGH BTU GAS PLANT

- Require Gas Plant Installed On Site
 - Refine Gas to >98% Methane
 - Pump Gas into Natural Gas Pipeline
- Extremely Stringent Gas Quality Requirements
- Cost-Benefit Dependent on Price of Natural Gas
Questions?