Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .			
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 up Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Bori HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .		1	
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 up Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 01	Poster 04	D 0=	Sample Locati	on/Depth & Con	centration	D1 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
																				_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.002	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		••	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•					•	
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Declar 04	D 0=	Sample Locati	on/Depth & Con	centration	D1 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
																				_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.002	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		••	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•					•	
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

							Samj	ple Location/Depth	& Concentratio	n				
Parameter	Part 201 GCC Residential Direct Contact	40CFR761.61 High Occupancy Limit	Tank Farm (A1- 4)	Tank Farm (A1-4)	N. of Parking Lot, E of Plant (B1-4)	N. of Parking Lot, E of Plant (B1-4)	В5	В6	В7	E. of Parking Lot, S. of Railroad Tracks (C1-3)		N. of Parking lot, S. of Drum Storage pad (D3-4)	East Property Line	East Property Line
			Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	12" composite	6" composite	12" composite	0-12"	0-12"	0-12"	6" composite	12" composite	6" composite	6" composite	12" composite
Total PCBs (mg/Kg)	4.0	1.0	0.49	7.2	15	0.77	28	22	10	5.8	< 0.3	5.3	< 0.3	< 0.3

										Sa	mple Location/D	epth & Concentr	ation							
Parameter	Part 201 GCC Residential	High Occupancy	South of Plant (4-1&4-2)	XS1	XS2	XS3	XS4	XS6	XE1A	XE1B	XE2	XE3	XE4	XE5	XE6	XE7	XE8	XE9	XE10	XE11
	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	0-12"	0-12"	0-12"	0-12"	0-12"	6"	12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	<0.3	<3 **	<3 **	<3 **	<3 **	<3 **	25	9.0	<3 **	<3 **	3.3	16	3.5	<3 **	<3 **	<3 **	<3 **	<3 **

	Part 201 GCC	40CFR761.61	Sa	mple Location/De	pth & Concentration	on	Post-Excavatio	n Soil Samples
Parameter		High Occupancy	AST Dike	OD	RTS	RTN	S-2	S-3
Tarameter	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Oct-86	Oct-86
	Direct Contact	Limit	sediment	0-12"	stone	stone	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	1,000	18	20	5	3.2	3.2

	Part 201 GCC Residential Direct Contact A0CFR761.61 High Occupancy Limit								Sam	ple Location/D	Pepth & Concentr	ation							
Parameter	Residential High Occupancy	EB-3	EB-4	EB-5	EB-7	EB-8	EB-9	EB-12	EB-12 Duplicate	EB-14	EB-16	EB-19	EB-20	EB-24	EB-25	EB-26	EB-27	EB-27 Duplicate	EB-28
	Direct Contact Limit	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13
		8 - 10'	5 - 7'	10 - 12'	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"	0 - 6"	0 - 6"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0 1.0	< 0.1	< 0.1	< 0.09	0.4	1.9	0.16	< 0.098	< 0.098	< 0.11	< 0.1	< 0.094	< 0.1	< 0.097	< 0.1	< 0.1	< 0.11	< 0.11	0.15

	Part 201 GCC	40CFR761.61	Sample Loc	ation/Depth & Co	ncentration
Parameter		High Occupancy	EB-31	EB-32	EB-33
1 arameter	Direct Contact	Limit	Nov-13	Nov-13	Nov-13
	Direct Contact	Limit	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0	1.0	< 0.098	< 0.11	0.33

	Part 201 GCC	40CFR761.61		Sample L	ocation/Depth & C	oncentration	
Parameter	Residential	High	XE-10	XE-11	XE-12	XE-13	XS-3
1 arameter	Direct Contact	Occupancy	Nov-16	Nov-16	Dec-16	Dec-16	Oct-16
	Direct Contact	Limit	0-1' / DUP-3	0-1' / DUP-3	0-1' / DUP-3	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	0.11 / 0.28	0.17 / 0.39	0.143 / 0.057	0.055	<0.2

									Sam	ple Location/Dep	pth & Concentrat	ion						
	Part 201 GCC	40CFR761.61	Boring-105	Boring-107	Boring-137	Boring-138	Boring-139	Boring-RRP1	Boring-OST1	Boring-169	Boring-188	Boring-189	Boring-191	Borir	ıg-193	Boring-193E	Boring-193S	Boring-194
Parameter	Residential	High Occupancy	HAB-105	HAB-107	HAB-137	HAB-138	HAB-139	RRP-1	OST-1	169	188	189	191	193	193	HAB-193 E	HAB-193 S	194
	Direct Contact	Limit	Sep-14	Sep-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Jan-15	Dec-14	Dec-14	Dec-14
			0-2'	0-2'	0.5-1'	0.5-1'	0.5-1'	?	?	4-4.5'	4-4.5'	1-1.5'	1-1.5	1-1.5'	4-5'	1-1.5	1-1.5	1-1.5'
Total PCBs (mg/Kg)	4.0	1.0	< 0.091	0.83	0.49	1.3	<0.1	0.36	< 0.09	<0.1	0.52	< 0.095	<0.09	5.2	<0.1	< 0.09	< 0.091	< 0.092

								Excavation	n #1A					
	Part 201 GCC	40CFR761.61					Samp	ole Location/Depth	n & Concentration	1				
Parameter		High Occupancy	XS-1	XS-1	XS-1, 5'N	XS-1, 5'E	XS-1, 5'S	XS-1, 5'W	Exc-1A-S	Exc-1A-S	Exc-1A-SW	Exc-1A-SW	Exc-1A-W	Exc-1A-W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	8.8	<0.2	30	6.8	1.4	3	0.064	0.12	0.028	0.14	0.054	0.027

									Ex	cavation #1B*							
	Part 201 GCC	40CFR761.61							Sample Locat	ion/Depth & Co	ncentration						
Parameter	Residential	High Occupancy	XS-2	XS-2	XS-2, 5'W	XS-2 W	XS-2 W	XS-2, 5'E	XS-2, 5'N	XS-2, 5'S	Exc-1A-N	Exc-1A-N	Exc-1A-SE	Exc-1A-SE	Exc-1B	Exc-1B	Exc-1B
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	2-3'	3.5-4'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	3-3.5'
Total PCBs (mg/Kg)	4.0	1.0	5.3	0.610	2,900	5.4	<0.2	0.35	1.20	20	0.360	0.74	0.063	0.015	0.48	0.32	<0.096

						Excavation #2			
	Part 201 GCC	40CFR761.61			Sample Loca	ation/Depth & Cor	ncentration		
Parameter	Residential	High Occupancy	XS-4	XS-4	XS-4, 5'N	XS-4, 5'E	XS-4, 5'S	XS-4, 5'W	Exc-2 N
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.6	<0.2	2.6	0.37	0.28	0.66	0.069

					Excava	tion #3		
	Part 201 GCC	40CFR761.61		Sa	ample Location/De	pth & Concentration	on	
Parameter		High Occupancy	XS-6	XS-6	XS-6, 5'S	XS-6, 5'N	XS-6, 5'E	XS-6, 5'W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'
tal PCBs (mg/Kg)	4.0	1.0	2.1	<0.2	<0.2	<0.2	<0.2	<0.2

Notes:
The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C.

< Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017.

*Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill.

**These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .			
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 up Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	tration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	tration							Sample Locati	on/Depth & Con	centration			
		1			1	1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ng-16	Boring	g-17
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					Illiaiation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
																l												
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Criteria (CC	(1)				1				ample Location	Depth & Concen	tration						Samo	le Location/Dent	h & Concentratio	n .			
				201 Genera Cica						Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
					111111111111111111111111111111111111111					0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																								
Total PCBs (mg/Kg)	NILL	N TT T																										
Total I CD3 (IIIE/ Rg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
rount cos (mg/ kg)	NLL			3,000 201 Generic Clear	,		6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
roun i CDS (mg/ Rg)	NLL				,		6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ng-34	<0.097 Boring-35	Boring-36
Parameter	Residential				Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ng-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	ng-34 HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	ng-34 HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	ng-34 HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093	HAB-34 Aug-14 0-2' <0.088 centration	ng-34 HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52	Aug-14 0-2' <0.091 40.091 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52 Aug-14	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52	Aug-14 0-2' <0.091 40.091 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5'	Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52 Aug-14	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration GP-42 Dec-14 4-5' CO.1 tration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Inhalation 16,000 nup Criteria (GC Inhalation Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2 <0.1 Boring HAB-52 Aug-14 0-2 <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Nonresidential Soil	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' < 0.1 dration ng-42 Dec-14 4-5' < 0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2 <0.1 Boring HAB-52 Aug-14 0-2 <0.092 Boring-69	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2 <0.1 Boring HAB-52 Aug-14 0-2 <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===																<i>T</i> D -11 -1 -				-
			Michigan Part	201 Generic Clear	nup Criteria (GCC	L)				В.	ring-73		ample Location/I		ation ng-80	n - 1 02	n	Destar of	D 0=	Sample Locati	on/Depth & Con	centration	n e=	D1 00	1
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14	DUP Aug-14 0-2'	Aug-14	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14	-
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	
						-		•			•														-
			Michigan Part	201 Generic Clear	nup Criteria (GCC	Ľ)				Bo	ring-89	Boring-89	Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Boring-108	Boring
Parameter	Residential	Nonresidential	CSI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	< 0.089	<0.085	<0.09	<0.09	< 0.092	< 0.093	0.11	0.13	<0.09	<0.091	<0.1	<0.09
totai i CDs (ilig/ Rg)	INLL	INLL	INLL	3,000	10,000	3,200	0,300	4.0	1.0	V0.003	<0.003	V0.1	٧٥.٥٥٥	<0.009	<0.005	<0.09	<0.07	NO.092	40.093	0.11	0.13	<0.07	V0.071	V0.1	\0.0 .
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)							ample Location/I			440					le Location/Dept				
					I	ı				Boring-110	Boring-111	Boring-115	Boring-116	Boring-117	Born	ng-118	Boring-119	Boring-120	Borin	g-121	Boring-122	Boring-123	Boring-124	Boring-125	Boring
Parameter		Nonresidential	GSI	Residential Soil Volatilization	Soil	Residential	Nonresidential	Part 201 GCC		HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	HAB-118 DUP	HAB-119	HAB-120	HAB-121	HAB-121 DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Drinking Water Protection	Drinking Water Protection	Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-
			<u> </u>	1			1		<u> </u>	2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NILI	NII I	NILI	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044]	0.048 J	0.25	0.16	.078 J	0.40
otal FCDS (mg/ Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	NO.092	0.16	0.14	25	<u>~0.091</u>	120	76	\0.1	0.32	\0.1	0.044	0.048 J	0.25	0.16	.078 J	0.40
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)						Depth & Concentr													
			1	1	1	1	1			Boring-178	Boring-179	Boring-180	Boring-182												
			1							1															

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	tration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	tration							Sample Locati	on/Depth & Con	centration			
		1			1	1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ng-16	Boring	g-17
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					Illiaiation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
																l												
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Criteria (CC	(1)				1				ample Location	Depth & Concen	tration						Samo	le Location/Dent	h & Concentratio	n .			
				201 Genera Cica						Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
					111111111111111111111111111111111111111					0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																								
Total PCBs (mg/Kg)	NILL	N TT T																										
Total I CD3 (IIIE/ Rg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
rount cos (mg/ kg)	NLL			3,000 201 Generic Clear	,		6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
roun i CDS (mg/ Rg)	NLL				,		6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ng-34	<0.097 Boring-35	Boring-36
Parameter	Residential				Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ng-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	ng-34 HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	ng-34 HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	ng-34 HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093	HAB-34 Aug-14 0-2' <0.088 centration	ng-34 HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52	Aug-14 0-2' <0.091 40.091 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52 Aug-14	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52	Aug-14 0-2' <0.091 40.091 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5'	Bori HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52 Aug-14	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration GP-42 Dec-14 4-5' CO.1 tration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Boring HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Inhalation 16,000 nup Criteria (GC Inhalation Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2 <0.1 Boring HAB-52 Aug-14 0-2 <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	SSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection NLL GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Nonresidential Soil	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' < 0.1 dration ng-42 Dec-14 4-5' < 0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2 <0.1 Boring HAB-52 Aug-14 0-2 <0.092 Boring-69	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection NLL GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	ng-34 HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2 <0.1 Boring HAB-52 Aug-14 0-2 <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 g-52 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				***	0 l. l /===																<i>T</i> D -11 -1 -				-
			Michigan Part	201 Generic Clear	nup Criteria (GCC	L)				В.	ring-73		ample Location/I		ation ng-80	n - 1 02	n	Destar of	D 0=	Sample Locati	on/Depth & Con	centration	n e=	D1 00	1
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14	DUP Aug-14 0-2'	Aug-14	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14	-
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	
						-		•			•														-
			Michigan Part	201 Generic Clear	nup Criteria (GCC	Ľ)				Bo	ring-89	Boring-89	Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Boring-108	Boring
Parameter	Residential	Nonresidential	CSI	Residential Soil Volatilization	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	< 0.089	<0.085	<0.09	<0.09	< 0.092	< 0.093	0.11	0.13	<0.09	<0.091	<0.1	<0.09
totai i CDs (ilig/ Rg)	INLL	INLL	INLL	3,000	10,000	3,200	0,300	4.0	1.0	V0.003	<0.003	V0.1	٧٥.٥٥٥	<0.009	<0.005	<0.09	<0.07	NO.092	40.093	0.11	0.13	<0.07	V0.071	V0.1	\0.0 .
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)							ample Location/I			440					le Location/Dept				
					I	ı				Boring-110	Boring-111	Boring-115	Boring-116	Boring-117	Born	ng-118	Boring-119	Boring-120	Borin	g-121	Boring-122	Boring-123	Boring-124	Boring-125	Boring
Parameter		Nonresidential	GSI	Residential Soil Volatilization	Soil	Residential	Nonresidential	Part 201 GCC		HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	HAB-118 DUP	HAB-119	HAB-120	HAB-121	HAB-121 DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Drinking Water Protection	Drinking Water Protection	Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-
			<u> </u>	1			1		<u> </u>	2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NILI	NII I	NILI	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044]	0.048 J	0.25	0.16	.078 J	0.40
otal FCDS (mg/ Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	NO.092	0.16	0.14	25	<u>~0.091</u>	120	76	\0.1	0.32	\0.1	0.044	0.048 J	0.25	0.16	.078 J	0.40
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)						Depth & Concentr													
			1	1	1	1	1			Boring-178	Boring-179	Boring-180	Boring-182												
			1							1															

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .		1	
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 HAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	ng-31 HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28 HAB-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Concentration Concen	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	ng-31 HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 The Criteria (GC) Nonresidential Soil Volatilization Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring-14 0-2 Boring-39 HAB-39 Aug-14 0-2	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Bori HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2 Boring-39 HAB-39 Aug-14 0-2	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Declar 04	D 0=	Sample Locati	on/Depth & Con	centration	D 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
																				_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.002	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		•	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•						
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Declar 04	D 0=	Sample Locati	on/Depth & Con	centration	D 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
																				_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.002	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		••	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•					•	
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

							Samj	ple Location/Depth	& Concentratio	n				
Parameter	Part 201 GCC Residential Direct Contact	40CFR761.61 High Occupancy Limit	Tank Farm (A1- 4)	Tank Farm (A1-4)	N. of Parking Lot, E of Plant (B1-4)	N. of Parking Lot, E of Plant (B1-4)	В5	В6	В7	E. of Parking Lot, S. of Railroad Tracks (C1-3)		N. of Parking lot, S. of Drum Storage pad (D3-4)	East Property Line	East Property Line
			Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	12" composite	6" composite	12" composite	0-12"	0-12"	0-12"	6" composite	12" composite	6" composite	6" composite	12" composite
Total PCBs (mg/Kg)	4.0	1.0	0.49	7.2	15	0.77	28	22	10	5.8	<0.3	5.3	< 0.3	< 0.3

										Sa	mple Location/D	epth & Concentr	ation							
Parameter	Part 201 GCC Residential	High Occupancy	South of Plant (4-1&4-2)	XS1	XS2	XS3	XS4	XS6	XE1A	XE1B	XE2	XE3	XE4	XE5	XE6	XE7	XE8	XE9	XE10	XE11
	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	0-12"	0-12"	0-12"	0-12"	0-12"	6"	12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	<0.3	<3 **	<3 **	<3 **	<3 **	<3 **	25	9.0	<3 **	<3 **	3.3	16	3.5	<3 **	<3 **	<3 **	<3 **	<3 **

	Part 201 GCC	40CFR761.61	Sa	mple Location/De	pth & Concentration	on	Post-Excavatio	n Soil Samples
Parameter		High Occupancy	AST Dike	OD	RTS	RTN	S-2	S-3
Tarameter	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Oct-86	Oct-86
	Direct Contact	Limit	sediment	0-12"	stone	stone	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	1,000	18	20	5	3.2	3.2

									Sam	ple Location/D	Pepth & Concentr	ation							
Parameter	Part 201 GCC 40CFR761.61 Residential High Occupance	EB-3	EB-4	EB-5	EB-7	EB-8	EB-9	EB-12	EB-12 Duplicate	EB-14	EB-16	EB-19	EB-20	EB-24	EB-25	EB-26	EB-27	EB-27 Duplicate	EB-28
	Direct Contact Limit	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13
		8 - 10'	5 - 7'	10 - 12'	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"	0 - 6"	0 - 6"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0 1.0	< 0.1	< 0.1	< 0.09	0.4	1.9	0.16	< 0.098	< 0.098	< 0.11	< 0.1	< 0.094	< 0.1	< 0.097	< 0.1	< 0.1	< 0.11	< 0.11	0.15

	Part 201 GCC	40CFR761.61	Sample Loc	ation/Depth & Co	ncentration
Parameter		High Occupancy	EB-31	EB-32	EB-33
1 arameter	Direct Contact	Limit	Nov-13	Nov-13	Nov-13
	Direct Contact	Limit	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0	1.0	< 0.098	< 0.11	0.33

	Part 201 GCC	40CFR761.61		Sample L	ocation/Depth & C	oncentration	
Parameter	Residential	High	XE-10	XE-11	XE-12	XE-13	XS-3
1 arameter	Direct Contact	Occupancy	Nov-16	Nov-16	Dec-16	Dec-16	Oct-16
	Direct Contact	Limit	0-1' / DUP-3	0-1' / DUP-3	0-1' / DUP-3	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	0.11 / 0.28	0.17 / 0.39	0.143 / 0.057	0.055	<0.2

									Sam	ple Location/Dep	pth & Concentrat	ion						
	Part 201 GCC	40CFR761.61	Boring-105	Boring-107	Boring-137	Boring-138	Boring-139	Boring-RRP1	Boring-OST1	Boring-169	Boring-188	Boring-189	Boring-191	Borir	ıg-193	Boring-193E	Boring-193S	Boring-194
Parameter	Residential	High Occupancy	HAB-105	HAB-107	HAB-137	HAB-138	HAB-139	RRP-1	OST-1	169	188	189	191	193	193	HAB-193 E	HAB-193 S	194
	Direct Contact	Limit	Sep-14	Sep-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Jan-15	Dec-14	Dec-14	Dec-14
			0-2'	0-2'	0.5-1'	0.5-1'	0.5-1'	?	?	4-4.5'	4-4.5'	1-1.5'	1-1.5	1-1.5'	4-5'	1-1.5	1-1.5	1-1.5'
Total PCBs (mg/Kg)	4.0	1.0	< 0.091	0.83	0.49	1.3	<0.1	0.36	< 0.09	<0.1	0.52	< 0.095	<0.09	5.2	<0.1	< 0.09	< 0.091	< 0.092

								Excavation	n #1A					
	Part 201 GCC	40CFR761.61					Samp	ole Location/Depth	n & Concentration	1				
Parameter		High Occupancy	XS-1	XS-1	XS-1, 5'N	XS-1, 5'E	XS-1, 5'S	XS-1, 5'W	Exc-1A-S	Exc-1A-S	Exc-1A-SW	Exc-1A-SW	Exc-1A-W	Exc-1A-W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	8.8	<0.2	30	6.8	1.4	3	0.064	0.12	0.028	0.14	0.054	0.027

									Ex	cavation #1B*							
	Part 201 GCC	40CFR761.61							Sample Locat	ion/Depth & Co	ncentration						
Parameter	Residential	High Occupancy	XS-2	XS-2	XS-2, 5'W	XS-2 W	XS-2 W	XS-2, 5'E	XS-2, 5'N	XS-2, 5'S	Exc-1A-N	Exc-1A-N	Exc-1A-SE	Exc-1A-SE	Exc-1B	Exc-1B	Exc-1B
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	2-3'	3.5-4'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	3-3.5'
Total PCBs (mg/Kg)	4.0	1.0	5.3	0.610	2,900	5.4	<0.2	0.35	1.20	20	0.360	0.74	0.063	0.015	0.48	0.32	<0.096

						Excavation #2			
	Part 201 GCC	40CFR761.61			Sample Loca	ation/Depth & Cor	ncentration		
Parameter	Residential	High Occupancy	XS-4	XS-4	XS-4, 5'N	XS-4, 5'E	XS-4, 5'S	XS-4, 5'W	Exc-2 N
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.6	<0.2	2.6	0.37	0.28	0.66	0.069

					Excava	tion #3		
	Part 201 GCC	40CFR761.61		Sa	ample Location/De	pth & Concentration	on	
Parameter		High Occupancy	XS-6	XS-6	XS-6, 5'S	XS-6, 5'N	XS-6, 5'E	XS-6, 5'W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'
tal PCBs (mg/Kg)	4.0	1.0	2.1	<0.2	<0.2	<0.2	<0.2	<0.2

Notes:
The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C.

< Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017.

*Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill.

**These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #										
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E	
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16	
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								5	Sample Location/D	epth & Concent	ration									
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10		
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
					Excavation #5			1							Excavation #6	•		1				
	Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1				
Parameter	Residential	High Occupancy	S-2	S-2, 5' N	S-2. 5' E	S-2, 5' S	S-2, 5'W		Para	meter	Residential	High	S-3	S-3, 5' N	S-3, 5'E	S-3, 5' S	S-3, 5' W					
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16					
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	< 0.2	< 0.2	< 0.2	< 0.2		Total PCBs (mg/	/Kg)	4.0	1.0	< 0.2	< 0.2	0.67	0.25	< 0.2					
	İ		•	*		•	•	•			•	•						-				
												Exca	avation #7									
	Part 201 GCC	40CFR761.61											/Depth & Concent	tration								
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138. 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
							•	•	•										•			
												Exca	vation #8*									
	Part 201 GCC	40CFR761.61									:		Depth & Concent	tration								
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Saı	mple Location/Dep	th & Concentration	ı		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	1				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #										
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E	
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16	
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								5	Sample Location/D	epth & Concent	ration									
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10		
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
					Excavation #5			1							Excavation #6	•		1				
	Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1				
Parameter	Residential	High Occupancy	S-2	S-2, 5' N	S-2. 5' E	S-2, 5' S	S-2, 5'W		Para	meter	Residential	High	S-3	S-3, 5' N	S-3, 5'E	S-3, 5' S	S-3, 5' W					
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16					
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	< 0.2	< 0.2	< 0.2	< 0.2		Total PCBs (mg/	/Kg)	4.0	1.0	< 0.2	< 0.2	0.67	0.25	< 0.2					
	İ		•	•		•	•	•			•	•						-				
												Exca	avation #7									
	Part 201 GCC	40CFR761.61											/Depth & Concent	tration								
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138, 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
							•	•	•										•			
												Exca	vation #8*									
	Part 201 GCC	40CFR761.61									:		Depth & Concent	tration								
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Saı	mple Location/Dep	th & Concentration	ı		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	1				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	eric Cleanup (Criteria																
Parameter	CAS Number	Statewide Default Background		ng Water Criteria ***	Direct Contact Criteria	Groundwater Surface Water Interface	EB-3 8-10'	EB-4 5-7'	EB-5 10-12'	EB-7 0-1'	EB-7 2-3'	EB-8 0-1'	EB-9 0-1'	EB-12 0-1'	EB-12 0-1' DUP	EB-14 0-1'	EB-16 0-0.5'	EB-19 0-0.5'	EB-20 0-0.5'	EB-24 0-1'
		Levels				Protection Criteria	13111229-01	13111229-02	13111229-21	13111229-03	1501227-01	13111229-04	13111229-05	13111229-06	13111229-33	13111229-07	13111229-08	13111229-09	13111229-10	13111229-13
			Residential	Non- Residential	Non-Residential	Cincila	11/19/2013	11/19/2013	11/20/2013	11/19/2013	1/7/2015	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013
Metals USEPA	Method 7471	(Hg) or 6020A	(µg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	39	23	16	25	NA	33	25	23	22	39	34	24	27	27
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	11,000	4,600	7,600	15,000	340	5,400	6,900	5,600	3,500	10,000	5,600	9,300	8,800	5,600
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	120,000	88,000	33,000	140,000	NA	71,000	89,000	76,000	81,000	91,000	100,000	79,000	100,000	93,000
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	600	U	U	710	NA	U	U	U	U	U	U	470	U	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	27,000	34,000	15,000	29,000	NA	19,000	22,000	16,000	19,000	24,000	23,000	20,000	26,000	24,000
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	15,000	11,000	10,000	17,000	NA	10,000	11,000	8,800	7,300	13,000	11,000	12,000	12,000	16,000
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	1,500	18,000	1,000	1,300	NA	860	1,000	1100	810	1,200	1,000	1,000	1,100	1,300
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	NA	U	U	U	U	U	U	U	U	U

		Part 201 Gene	eric Cleanup	Criteria																
Parameter	CAS Number	Statewide Default Background		ng Water on Criteria	Direct Contact Criteria	Groundwater Surface Water Interface	EB-25 0-1'	EB-26 0-1'	EB-27 0-1'	EB-27 0-1' DUP	EB-28 0-1'	EB-31 0-1'	EB-32 0-1'	EB-33 0-0.5'	ERM-BG-1 0-1'	ERM-BG-1 3-4'	ERM-BG-2 0.3-1'	ERM-BG-2 3-4'	ERM-BG-3 0.3-1'	ERM-BG-3 2-3'
		Levels				Protection	13111229-14	13111229-15	13111229-16	13111229-34	13111229-17	13111229-18	13111229-19	13111229-20	1404478-29	1404478-30	1404478-31	1404478-32	1404478-33	1404478-34
			Residential	Non- Residential	Non-Residential	Criteria	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	65	55	95	83	54	30	45	36	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	10,000	9,400	11,000	8,500	8,100	7,600	9,700	8,600	7,100	8,000	7,900	10,000	8,100	8,000
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	110,000	110,000	100,000	100,000	100,000	140,000	170,000	89,000	NA	NA	NA	NA	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	890	500	U	U	U	U	540	U	NA	NA	NA	NA	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	26,000	25,000	33,000	27,000	27,000	26,000	32,000	25,000	NA	NA	NA	NA	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	25,000	20,000	30,000	29,000	17,000	10,000	14,000	14,000	NA	NA	NA	NA	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	2,000	1,700	1,800	1,900	1,600	1,100	1,900	1,200	NA	NA	NA	NA	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	U	U	U	U	NA	NA	NA	NA	NA	NA

Notes:

* Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.

** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- $\hbox{-} For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed. \\$
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

2,000 EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 1 of 3

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup C	Criteria																	
Parameter	CAS Number	Statewide Default Background	Drinkin Protection (U	Direct Contact Criteria	Groundwater Surface Water Interface	ERM-BG-4 0.3-1'	ERM-BG-4 2-3'	ERM-BG-5 0.3-1'	ERM-BG-5 0.3-1' DUP	ERM-BG-5 2-3'	ERM-BG-6 0.3-1'	ERM-BG-6 2-3'	ERM-BG-7 0.3-1'	ERM-BG-7 2-3'	ERM-BG-8 0.3-1'	ERM-BG-8 2-3'	ERM-BG-9 0.3-1'	ERM-BG-9 2-3'	ERM-BG-10 0.3-1'	ERM-BG-10 2-3'
		Levels				Protection	1404478-35	1404478-36	1404478-37	1404478-38	1404478-39	1404478-40	1404478-41	1404478-42	1404478-43	1404478-44	1404478-45	1404478-46	1404478-47	1404478-48	1404478-49
			Residential	Non- Residential	Non-Residential	Criteria	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																		
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	8,900	10,000	10,000	7,200	6,900	7,300	7,700	7,800	6,400	6,600	6,600	7,400	9,000	7,600	8,200
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

		Part 201 Gene	eric Cleanup (Criteria				Bori	ing-1	Bori	ing-2	Bor	ing-3	Boris	ng-4	Bori	ing-5	Bori	ing-6	Bor	ing-7
Parameter	CAS Number	Statewide Default Background	Drinkin Protection	ng Water n Criteria	Direct Contact Criteria	Groundwater Surface Water Interface Protection	ERM-BG-10 2-3' DUP 1404478-50	HAB-1 0-2' 1404478-01	HAB-1 2-3.5'	HAB-2 0-2' 1404478-03	HAB-2 2-4' 1404478-04	HAB-3 0-2' 1404478-05	HAB-3 2-4' 1404478-06	HAB-4 0-2' 1404478-07	HAB-4 2-4' 1404478-08	HAB-5 0-2' 1404478-09	HAB-5 2-4' 1404478-10	HAB-6 0-2' 1404478-11	HAB-6 2-4' 1404478-12	HAB-7 0-2' 1404478-13	HAB-7 2-4' 1404478-14
		Levels		Non-		Criteria															+
			Residential	Residential	Non-Residential	Į.	4/8/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
Metals USEPA	Method 7471	(Hg) or 6020A	μg/kg)																		
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	NA	U	U	14	U	U	U	U	U	U	U	U	U	U	U
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	8,400	2,100	1,600	1,600	16,000	1,600	2,000	3,800	3,300	3,100	1,600	1,800	2,000	1,500	1,900
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	NA	12,000	21,000	12,000	740,000	11,000	14,000	46,000	21,000	29,000	8,900	17,000	11,000	14,000	9,500
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	NA	U	U	U	750	U	U	U	U	U	U	U	U	460	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	NA	5,500	7,100	7,400	8,500	5,600	6,100	10,000	8,200	8,400	6,000	6,600	6,200	6,800	5,700
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	NA	2,900	3,700	2,800	5,100	2,900	3,500	5,000	5,400	4,800	2,700	3,200	3,400	7,300	3,200
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	NA	U	U	U	500	U	U	410	690	470	U	U	U	U	U
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	NA	U	U	U	U	U	U	U	U	U	U	U	U	U	U

Notes:

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- $\hbox{-} For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed. \\$
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

2,000 EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 2 of 3

Tables

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .		1	
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 HAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	ng-31 HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28 HAB-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Concentration Concen	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	ng-31 HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 The Criteria (GC) Nonresidential Soil Volatilization Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring-14 0-2 Boring-39 HAB-39 Aug-14 0-2	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Bori HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2 Boring-39 HAB-39 Aug-14 0-2	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Tables

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .		1	
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 HAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	ng-31 HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28 HAB-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Concentration Concen	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	ng-31 HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 The Criteria (GC) Nonresidential Soil Volatilization Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring-14 0-2 Boring-39 HAB-39 Aug-14 0-2	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2 Boring-39 HAB-39 Aug-14 0-2	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Declar 04	D 0=	Sample Locati	on/Depth & Con	centration	D 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
								•												_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.092	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		••	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•						
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Declar 04	D 0=	Sample Locati	on/Depth & Con	centration	D 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
								•												_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.092	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		••	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•						
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

							Samj	ple Location/Depth	& Concentratio	n				
Parameter	Part 201 GCC Residential Direct Contact	40CFR761.61 High Occupancy Limit	Tank Farm (A1- 4)	Tank Farm (A1-4)	N. of Parking Lot, E of Plant (B1-4)	N. of Parking Lot, E of Plant (B1-4)	В5	В6	В7	E. of Parking Lot, S. of Railroad Tracks (C1-3)		N. of Parking lot, S. of Drum Storage pad (D3-4)	East Property Line	East Property Line
			Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	12" composite	6" composite	12" composite	0-12"	0-12"	0-12"	6" composite	12" composite	6" composite	6" composite	12" composite
Total PCBs (mg/Kg)	4.0	1.0	0.49	7.2	15	0.77	28	22	10	5.8	<0.3	5.3	< 0.3	< 0.3

										Sa	mple Location/D	epth & Concentr	ation							
Parameter	Part 201 GCC Residential	High Occupancy	South of Plant (4-1&4-2)	XS1	XS2	XS3	XS4	XS6	XE1A	XE1B	XE2	XE3	XE4	XE5	XE6	XE7	XE8	XE9	XE10	XE11
	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	0-12"	0-12"	0-12"	0-12"	0-12"	6"	12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	<0.3	<3 **	<3 **	<3 **	<3 **	<3 **	25	9.0	<3 **	<3 **	3.3	16	3.5	<3 **	<3 **	<3 **	<3 **	<3 **

	Part 201 GCC	40CFR761.61	Sa	mple Location/De	pth & Concentration	on	Post-Excavatio	n Soil Samples
Parameter		High Occupancy	AST Dike	OD	RTS	RTN	S-2	S-3
Tarameter	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Oct-86	Oct-86
	Direct Contact	Limit	sediment	0-12"	stone	stone	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	1,000	18	20	5	3.2	3.2

									Sam	ple Location/D	Pepth & Concentr	ation							
Parameter	Part 201 GCC 40CFR761.61 Residential High Occupance	EB-3	EB-4	EB-5	EB-7	EB-8	EB-9	EB-12	EB-12 Duplicate	EB-14	EB-16	EB-19	EB-20	EB-24	EB-25	EB-26	EB-27	EB-27 Duplicate	EB-28
	Direct Contact Limit	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13
		8 - 10'	5 - 7'	10 - 12'	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"	0 - 6"	0 - 6"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0 1.0	< 0.1	< 0.1	< 0.09	0.4	1.9	0.16	< 0.098	< 0.098	< 0.11	< 0.1	< 0.094	< 0.1	< 0.097	< 0.1	< 0.1	< 0.11	< 0.11	0.15

	Part 201 GCC	40CFR761.61	Sample Loc	ation/Depth & Co	ncentration
Parameter		High Occupancy	EB-31	EB-32	EB-33
1 arameter	Direct Contact	Limit	Nov-13	Nov-13	Nov-13
	Direct Contact	Limit	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0	1.0	< 0.098	< 0.11	0.33

	Part 201 GCC	40CFR761.61		Sample L	ocation/Depth & C	oncentration	
Parameter	Residential	High	XE-10	XE-11	XE-12	XE-13	XS-3
1 arameter	Direct Contact	Occupancy	Nov-16	Nov-16	Dec-16	Dec-16	Oct-16
	Direct Contact	Limit	0-1' / DUP-3	0-1' / DUP-3	0-1' / DUP-3	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	0.11 / 0.28	0.17 / 0.39	0.143 / 0.057	0.055	<0.2

									Sam	ple Location/Dep	pth & Concentrat	ion						
	Part 201 GCC	40CFR761.61	Boring-105	Boring-107	Boring-137	Boring-138	Boring-139	Boring-RRP1	Boring-OST1	Boring-169	Boring-188	Boring-189	Boring-191	Borir	ıg-193	Boring-193E	Boring-193S	Boring-194
Parameter	Residential	High Occupancy	HAB-105	HAB-107	HAB-137	HAB-138	HAB-139	RRP-1	OST-1	169	188	189	191	193	193	HAB-193 E	HAB-193 S	194
	Direct Contact	Limit	Sep-14	Sep-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Jan-15	Dec-14	Dec-14	Dec-14
			0-2'	0-2'	0.5-1'	0.5-1'	0.5-1'	?	?	4-4.5'	4-4.5'	1-1.5'	1-1.5	1-1.5'	4-5'	1-1.5	1-1.5	1-1.5'
Total PCBs (mg/Kg)	4.0	1.0	< 0.091	0.83	0.49	1.3	<0.1	0.36	< 0.09	<0.1	0.52	< 0.095	<0.09	5.2	<0.1	< 0.09	< 0.091	< 0.092

								Excavation	n #1A					
	Part 201 GCC	40CFR761.61					Samp	ole Location/Depth	n & Concentration	1				
Parameter		High Occupancy	XS-1	XS-1	XS-1, 5'N	XS-1, 5'E	XS-1, 5'S	XS-1, 5'W	Exc-1A-S	Exc-1A-S	Exc-1A-SW	Exc-1A-SW	Exc-1A-W	Exc-1A-W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	8.8	<0.2	30	6.8	1.4	3	0.064	0.12	0.028	0.14	0.054	0.027

									Ex	cavation #1B*							
	Part 201 GCC	40CFR761.61							Sample Locat	ion/Depth & Co	ncentration						
Parameter	Residential	High Occupancy	XS-2	XS-2	XS-2, 5'W	XS-2 W	XS-2 W	XS-2, 5'E	XS-2, 5'N	XS-2, 5'S	Exc-1A-N	Exc-1A-N	Exc-1A-SE	Exc-1A-SE	Exc-1B	Exc-1B	Exc-1B
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	2-3'	3.5-4'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	3-3.5'
Total PCBs (mg/Kg)	4.0	1.0	5.3	0.610	2,900	5.4	<0.2	0.35	1.20	20	0.360	0.74	0.063	0.015	0.48	0.32	<0.096

						Excavation #2			
	Part 201 GCC	40CFR761.61			Sample Loca	ation/Depth & Cor	ncentration		
Parameter	Residential	High Occupancy	XS-4	XS-4	XS-4, 5'N	XS-4, 5'E	XS-4, 5'S	XS-4, 5'W	Exc-2 N
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.6	<0.2	2.6	0.37	0.28	0.66	0.069

					Excava	tion #3		
	Part 201 GCC	40CFR761.61		Sa	ample Location/De	pth & Concentration	on	
Parameter		High Occupancy	XS-6	XS-6	XS-6, 5'S	XS-6, 5'N	XS-6, 5'E	XS-6, 5'W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'
tal PCBs (mg/Kg)	4.0	1.0	2.1	<0.2	<0.2	<0.2	<0.2	<0.2

Notes:
The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C.

< Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017.

*Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill.

**These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Tables

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .			
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	<0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 HAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	ng-31 HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28 HAB-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Concentration Concen	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	ng-31 HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 The Criteria (GC) Nonresidential Soil Volatilization Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring-14 0-2 Boring-39 HAB-39 Aug-14 0-2	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2 Boring-39 HAB-39 Aug-14 0-2	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Tables

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .			
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	<0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 HAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	ng-31 HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28 HAB-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Concentration Concen	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	ng-31 HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 The Criteria (GC) Nonresidential Soil Volatilization Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Bori HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Declar 04	D 0=	Sample Locati	on/Depth & Con	centration	D 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
								•												_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.092	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		••	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•					•	
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Declar 04	D 0=	Sample Locati	on/Depth & Con	centration	D 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
								•												_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.092	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		••	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•					•	
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

							Samj	ple Location/Depth	& Concentratio	n				
Parameter	Part 201 GCC Residential Direct Contact	40CFR761.61 High Occupancy Limit	Tank Farm (A1- 4)	Tank Farm (A1-4)	N. of Parking Lot, E of Plant (B1-4)	N. of Parking Lot, E of Plant (B1-4)	В5	В6	В7	E. of Parking Lot, S. of Railroad Tracks (C1-3)		N. of Parking lot, S. of Drum Storage pad (D3-4)	East Property Line	East Property Line
			Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	12" composite	6" composite	12" composite	0-12"	0-12"	0-12"	6" composite	12" composite	6" composite	6" composite	12" composite
Total PCBs (mg/Kg)	4.0	1.0	0.49	7.2	15	0.77	28	22	10	5.8	<0.3	5.3	< 0.3	< 0.3

										Sa	mple Location/D	epth & Concentr	ation							
Parameter	Residential High Occupar	High Occupancy	South of Plant (4-1&4-2)	XS1	XS2	XS3	XS4	XS6	XE1A	XE1B	XE2	XE3	XE4	XE5	XE6	XE7	XE8	XE9	XE10	XE11
	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	0-12"	0-12"	0-12"	0-12"	0-12"	6"	12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	<0.3	<3 **	<3 **	<3 **	<3 **	<3 **	25	9.0	<3 **	<3 **	3.3	16	3.5	<3 **	<3 **	<3 **	<3 **	<3 **

	Part 201 GCC	40CFR761.61	Sa	mple Location/De	pth & Concentration	on	Post-Excavatio	n Soil Samples
Parameter		High Occupancy	AST Dike	OD	RTS	RTN	S-2	S-3
Tarameter	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Oct-86	Oct-86
	Direct Contact	Limit	sediment	0-12"	stone	stone	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	1,000	18	20	5	3.2	3.2

									Sam	ple Location/D	Pepth & Concentr	ation							
Parameter	Part 201 GCC 40CFR761.61 Residential High Occupance	EB-3	EB-4	EB-5	EB-7	EB-8	EB-9	EB-12	EB-12 Duplicate	EB-14	EB-16	EB-19	EB-20	EB-24	EB-25	EB-26	EB-27	EB-27 Duplicate	EB-28
	Direct Contact Limit	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13
		8 - 10'	5 - 7'	10 - 12'	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"	0 - 6"	0 - 6"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0 1.0	< 0.1	< 0.1	< 0.09	0.4	1.9	0.16	< 0.098	< 0.098	< 0.11	< 0.1	< 0.094	< 0.1	< 0.097	< 0.1	< 0.1	< 0.11	< 0.11	0.15

	Part 201 GCC	40CFR761.61	Sample Loc	ation/Depth & Co	ncentration
Parameter		High Occupancy	EB-31	EB-32	EB-33
1 arameter	Direct Contact	Limit	Nov-13	Nov-13	Nov-13
	Direct Contact	Limit	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0	1.0	< 0.098	< 0.11	0.33

	Part 201 GCC	40CFR761.61		Sample L	ocation/Depth & C	oncentration	
Parameter	Residential	High	XE-10	XE-11	XE-12	XE-13	XS-3
1 arameter	Direct Contact	Occupancy	Nov-16	Nov-16	Dec-16	Dec-16	Oct-16
	Direct Contact	Limit	0-1' / DUP-3	0-1' / DUP-3	0-1' / DUP-3	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	0.11 / 0.28	0.17 / 0.39	0.143 / 0.057	0.055	<0.2

									Sam	ple Location/Dep	pth & Concentrat	ion						
	Part 201 GCC	40CFR761.61	Boring-105	Boring-107	Boring-137	Boring-138	Boring-139	Boring-RRP1	Boring-OST1	Boring-169	Boring-188	Boring-189	Boring-191	Borir	ıg-193	Boring-193E	Boring-193S	Boring-194
Parameter	Residential	High Occupancy	HAB-105	HAB-107	HAB-137	HAB-138	HAB-139	RRP-1	OST-1	169	188	189	191	193	193	HAB-193 E	HAB-193 S	194
	Direct Contact	Limit	Sep-14	Sep-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Jan-15	Dec-14	Dec-14	Dec-14
			0-2'	0-2'	0.5-1'	0.5-1'	0.5-1'	?	?	4-4.5'	4-4.5'	1-1.5'	1-1.5	1-1.5'	4-5'	1-1.5	1-1.5	1-1.5'
Total PCBs (mg/Kg)	4.0	1.0	< 0.091	0.83	0.49	1.3	<0.1	0.36	< 0.09	<0.1	0.52	< 0.095	<0.09	5.2	<0.1	< 0.09	< 0.091	< 0.092

								Excavation	n #1A					
	Part 201 GCC	40CFR761.61					Samp	ole Location/Depth	n & Concentration	1				
Parameter		High Occupancy	XS-1	XS-1	XS-1, 5'N	XS-1, 5'E	XS-1, 5'S	XS-1, 5'W	Exc-1A-S	Exc-1A-S	Exc-1A-SW	Exc-1A-SW	Exc-1A-W	Exc-1A-W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	8.8	<0.2	30	6.8	1.4	3	0.064	0.12	0.028	0.14	0.054	0.027

									Ex	cavation #1B*							
	Part 201 GCC	40CFR761.61							Sample Locat	ion/Depth & Co	ncentration						
Parameter	Residential	High Occupancy	XS-2	XS-2	XS-2, 5'W	XS-2 W	XS-2 W	XS-2, 5'E	XS-2, 5'N	XS-2, 5'S	Exc-1A-N	Exc-1A-N	Exc-1A-SE	Exc-1A-SE	Exc-1B	Exc-1B	Exc-1B
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	2-3'	3.5-4'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	3-3.5'
Total PCBs (mg/Kg)	4.0	1.0	5.3	0.610	2,900	5.4	<0.2	0.35	1.20	20	0.360	0.74	0.063	0.015	0.48	0.32	<0.096

						Excavation #2			
	Part 201 GCC	40CFR761.61			Sample Loca	ation/Depth & Cor	ncentration		
Parameter	Residential	High Occupancy	XS-4	XS-4	XS-4, 5'N	XS-4, 5'E	XS-4, 5'S	XS-4, 5'W	Exc-2 N
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.6	<0.2	2.6	0.37	0.28	0.66	0.069

					Excava	tion #3		
	Part 201 GCC	40CFR761.61		Sa	ample Location/De	pth & Concentration	on	
Parameter		High Occupancy	XS-6	XS-6	XS-6, 5'S	XS-6, 5'N	XS-6, 5'E	XS-6, 5'W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'
tal PCBs (mg/Kg)	4.0	1.0	2.1	<0.2	<0.2	<0.2	<0.2	<0.2

Notes:
The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C.

< Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017.

*Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill.

**These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #										
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E	
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16	
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								5	Sample Location/D	epth & Concent	ration									
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10		
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
					Excavation #5			1							Excavation #6	•		1				
	Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1				
Parameter	Residential	High Occupancy	S-2	S-2, 5' N	S-2. 5' E	S-2, 5' S	S-2, 5'W		Para	meter	Residential	High	S-3	S-3, 5' N	S-3, 5'E	S-3, 5' S	S-3, 5' W					
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16					
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	< 0.2	< 0.2	< 0.2	< 0.2		Total PCBs (mg/	/Kg)	4.0	1.0	< 0.2	< 0.2	0.67	0.25	< 0.2					
	İ		•	•		•	•	•			•	•						-				
												Exca	avation #7									
	Part 201 GCC	40CFR761.61											/Depth & Concent	tration								
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138, 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
							•	•	•										•			
												Exca	vation #8*									
	Part 201 GCC	40CFR761.61									:		Depth & Concent	tration								
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Saı	mple Location/Dep	th & Concentration	ı		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	1				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #]
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E]
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16]
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								9	Sample Location/L	(/	ration								1	
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10	1	
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
																					<u>-</u>	
		1 1			Excavation #5			1			T	I	I		Excavation #6			7				
	Part 201 GCC	40CFR761.61		Sample Le	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Le	cation/Depth & Co			-				
Parameter	Residential	High Occupancy	S-2	S-2, 5' N	S-2. 5' E	S-2. 5' S	S-2, 5'W	1	Para	meter	Residential	High	S-3	S-3. 5' N	S-3. 5'E	S-3, 5' S	S-3, 5' W	+				
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	-				
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	<0.2	<0.2	<0.2	<0.2	1	Total PCBs (mg/	/Ka)	4.0	1.0	<0.2	<0.2	0.67	0.25	<0.2	1				
10.0.1 (250 (11.6) 14.6)	210	1.0	0.10	-0.2	-0.2	V.2	0.2	1	Total T CDS (IIIG)	116/	1.0	210	-0.2	-0.2	0.07	0.20	V.2	_				
													avation #7									
1 .	Part 201 GCC	40CFR761.61		1			1			,			/Depth & Concent									
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138, 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
	D . 404 C ==	40.07777-04 ::				-			-		-		vation #8*			-			-			-
l " .	Part 201 GCC	40CFR761.61											/Depth & Concent									
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
T . 1 PCP (///)	1.0	1.0	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Saı	mple Location/Dep	th & Concentration	n		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	ı				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup (Criteria																
Parameter	CAS Number	Statewide Default Background		ng Water Criteria ***	Direct Contact Criteria	Groundwater Surface Water Interface	EB-3 8-10'	EB-4 5-7'	EB-5 10-12'	EB-7 0-1'	EB-7 2-3'	EB-8 0-1'	EB-9 0-1'	EB-12 0-1'	EB-12 0-1' DUP	EB-14 0-1'	EB-16 0-0.5'	EB-19 0-0.5'	EB-20 0-0.5'	EB-24 0-1'
	Background Levels Residential Non- Residential Non-Residential						13111229-01	13111229-02	13111229-21	13111229-03	1501227-01	13111229-04	13111229-05	13111229-06	13111229-33	13111229-07	13111229-08	13111229-09	13111229-10	13111229-13
	Residential Non-Non-Residential						11/19/2013	11/19/2013	11/20/2013	11/19/2013	1/7/2015	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	39	23	16	25	NA	33	25	23	22	39	34	24	27	27
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	11,000	4,600	7,600	15,000	340	5,400	6,900	5,600	3,500	10,000	5,600	9,300	8,800	5,600
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	120,000	88,000	33,000	140,000	NA	71,000	89,000	76,000	81,000	91,000	100,000	79,000	100,000	93,000
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	600	U	U	710	NA	U	U	U	U	U	U	470	U	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	27,000	34,000	15,000	29,000	NA	19,000	22,000	16,000	19,000	24,000	23,000	20,000	26,000	24,000
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	15,000	11,000	10,000	17,000	NA	10,000	11,000	8,800	7,300	13,000	11,000	12,000	12,000	16,000
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	1,500	18,000	1,000	1,300	NA	860	1,000	1100	810	1,200	1,000	1,000	1,100	1,300
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	NA	U	U	U	U	U	U	U	U	U

		Part 201 Gene	eric Cleanup (Criteria																
Parameter	CAS Number	Statewide Default Background		ng Water on Criteria	Direct Contact Criteria	Groundwater Surface Water Interface	EB-25 0-1'	EB-26 0-1'	EB-27 0-1'	EB-27 0-1' DUP	EB-28 0-1'	EB-31 0-1'	EB-32 0-1'	EB-33 0-0.5'	ERM-BG-1 0-1'	ERM-BG-1 3-4'	ERM-BG-2 0.3-1'	ERM-BG-2 3-4'	ERM-BG-3 0.3-1'	ERM-BG-3 2-3'
		Levels				Protection	13111229-14	13111229-15	13111229-16	13111229-34	13111229-17	13111229-18	13111229-19	13111229-20	1404478-29	1404478-30	1404478-31	1404478-32	1404478-33	1404478-34
	Levels Non-Residential Residential Non-Residential						11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	65	55	95	83	54	30	45	36	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	10,000	9,400	11,000	8,500	8,100	7,600	9,700	8,600	7,100	8,000	7,900	10,000	8,100	8,000
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	110,000	110,000	100,000	100,000	100,000	140,000	170,000	89,000	NA	NA	NA	NA	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	890	500	U	U	U	U	540	U	NA	NA	NA	NA	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	26,000	25,000	33,000	27,000	27,000	26,000	32,000	25,000	NA	NA	NA	NA	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	25,000	20,000	30,000	29,000	17,000	10,000	14,000	14,000	NA	NA	NA	NA	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	2,000	1,700	1,800	1,900	1,600	1,100	1,900	1,200	NA	NA	NA	NA	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	U	U	U	U	NA	NA	NA	NA	NA	NA

Notes:

13111229-03 11/19/2013

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the sitespecific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- NA Indicates referenced criterion and/or result is not available for this parameter.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000 - Lattice shaded cells exceed the greater of the groundwater surface water interface protection criteria or the background level. Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014. 0-1'

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup (Criteria																	
Parameter	CAS Number	Statewide Default Background	Drinkin Protection	0	Direct Contact Criteria	Groundwater Surface Water Interface	ERM-BG-4 0.3-1'	ERM-BG-4 2-3'	ERM-BG-5 0.3-1'	ERM-BG-5 0.3-1' DUP	ERM-BG-5 2-3'	ERM-BG-6 0.3-1'	ERM-BG-6 2-3'	ERM-BG-7 0.3-1'	ERM-BG-7 2-3'	ERM-BG-8 0.3-1'	ERM-BG-8 2-3'	ERM-BG-9 0.3-1'	ERM-BG-9 2-3'	ERM-BG-10 0.3-1'	ERM-BG-10 2-3'
		Levels				Protection	1404478-35	1404478-36	1404478-37	1404478-38	1404478-39	1404478-40	1404478-41	1404478-42	1404478-43	1404478-44	1404478-45	1404478-46	1404478-47	1404478-48	1404478-49
			Residential	Non- Residential	Non-Residential	Criteria	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(µg/kg)																		
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	8,900	10,000	10,000	7,200	6,900	7,300	7,700	7,800	6,400	6,600	6,600	7,400	9,000	7,600	8,200
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

		Part 201 Gen	eric Cleanup (Criteria				Bor	ing-1	Bor	ing-2	Bor	ing-3	Bori	ng-4	Bor	ing-5	Bori	ing-6	Bor	ing-7
Parameter	CAS Number	Statewide Default Background		ng Water on Criteria	Direct Contact Criteria	Groundwater Surface Water Interface	ERM-BG-10 2-3' DUP	HAB-1 0-2'	HAB-1 2-3.5'	HAB-2 0-2'	HAB-2 2-4'	HAB-3 0-2'	HAB-3 2-4'	HAB-4 0-2'	HAB-4 2-4'	HAB-5 0-2'	HAB-5 2-4'	HAB-6 0-2'	HAB-6 2-4'	HAB-7 0-2'	HAB-7 2-4'
		Levels				Protection	1404478-50	1404478-01	1404478-02	1404478-03	1404478-04	1404478-05	1404478-06	1404478-07	1404478-08	1404478-09	1404478-10	1404478-11	1404478-12	1404478-13	1404478-14
			Residential	Non- Residential	Non-Residential	Criteria	4/8/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
Metals USEPA	Method 7471	(Hg) or 6020A	μg/kg)												•						
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	NA	U	U	14	U	U	U	U	U	U	U	U	U	U	U
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	8,400	2,100	1,600	1,600	16,000	1,600	2,000	3,800	3,300	3,100	1,600	1,800	2,000	1,500	1,900
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	NA	12,000	21,000	12,000	740,000	11,000	14,000	46,000	21,000	29,000	8,900	17,000	11,000	14,000	9,500
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	NA	U	U	U	750	U	U	U	U	U	U	U	U	460	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	NA	5,500	7,100	7,400	8,500	5,600	6,100	10,000	8,200	8,400	6,000	6,600	6,200	6,800	5,700
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	NA	2,900	3,700	2,800	5,100	2,900	3,500	5,000	5,400	4,800	2,700	3,200	3,400	7,300	3,200
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	NA	U	U	U	500	U	U	410	690	470	U	U	U	U	U
Silver	7440-22-4	1.000	4,500	13,000	9.0E+06	100	NA	U	U	U	U	U	U	U	U	U	U	U	U	U	U

Notes:

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- $\hbox{-} For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed. \\$
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 2,000
 Lattice shaded cells exceed the greater of the groundwater surface water interface

2,000 EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 2 of 3

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup (Criteria			Bori	ing-8	Boring-8	Bor	ing-9	Bor	ing-10	Borin	g-11		Boring-12		Bori	ng-13
Parameter	CAS Number	Statewide Default Background		ng Water Criteria ***	Direct Contact Criteria	Groundwater Surface Water Interface	HAB-8 0-2'	HAB-8 2-4'	HAB-8 0-2' DUP	HAB-9 0-2'	HAB-9 2-4'	HAB-10 0-2'	HAB-10 2-4'	HAB-11 0-2'	HAB-11 2-4'	HAB-12 0-2'	HAB-12 2-3'	HAB-12 0-2' DUP	HAB-13 0-2'	HAB-13 2-3'
		Levels				Protection	1404478-15	1404478-16	1404478-17	1404478-18	1404478-19	1404478-20	1404478-21	1404478-22	1404478-23	1404478-24	1404478-25	1404478-26	1404478-27	1404478-28
			Residential	Non- Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	2,800	2,400	2,100	2,000	4,000	2,200	1,500	2,000	1,800	2,300	1,800	2,100	1,200	1,300
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	16,000	11,000	13,000	17,000	26,000	16,000	12,000	14,000	11,000	14,000	9,700	13,000	6,100	8,300
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	6,500	5,300	6,100	6,300	9,400	7,100	5,400	5,800	6,600	6,200	5,500	6,000	3,600	4,200
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	3,600	3,200	3,600	5,300	6,200	4,400	4,100	3,500	2,500	4,000	94,000	4,300	2,400	2,500
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	U	U	410	U	570	U	U	470	U	440	430	U	U	490
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	U	U	U	U	U	U	U	U	U	U

		Part 201 Gene	eric Cleanup (Criteria			Borin	ng-14	Borii	ng-15	Bori	ng-16	Boring-195	Boring-196
Parameter	CAS Number	Background Levels Protection 1406681-01 1406681-02 1406681-03 1406681-04 1406681-05 1406681-06 1501009-01 Criteria 6/11/2014 6								196 1-1.5'				
		0					1406681-01	1406681-02	1406681-03	1406681-04	1406681-05	1406681-06	1501009-01	1501009-02
			Residential	Non- Residential	Non-Residential	Criteria	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	12/23/2014	12/23/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)											_
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	U	U	32	U	U	U	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	1,800	4,400	3,300	2,800	1,500	1,800	5,400	5,700
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	15,000	29,000	37,000	22,000	9,600	17,000	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	120	160	610	170	86	110	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	5,900	8,900	11,000	8,700	4,500	5,800	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	3,200	6,600	8,500	4,400	2,800	3,400	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	570	970	990	740	570	550	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	120	U	54	U	NA	NA

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 3 of 3

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup (Criteria			Bori	ing-8	Boring-8	Bor	ing-9	Bor	ing-10	Borin	g-11		Boring-12		Bori	ng-13
Parameter	CAS Number	Statewide Default Background		ng Water Criteria ***	Direct Contact Criteria	Groundwater Surface Water Interface	HAB-8 0-2'	HAB-8 2-4'	HAB-8 0-2' DUP	HAB-9 0-2'	HAB-9 2-4'	HAB-10 0-2'	HAB-10 2-4'	HAB-11 0-2'	HAB-11 2-4'	HAB-12 0-2'	HAB-12 2-3'	HAB-12 0-2' DUP	HAB-13 0-2'	HAB-13 2-3'
		Levels				Protection	1404478-15	1404478-16	1404478-17	1404478-18	1404478-19	1404478-20	1404478-21	1404478-22	1404478-23	1404478-24	1404478-25	1404478-26	1404478-27	1404478-28
			Residential	Non- Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	2,800	2,400	2,100	2,000	4,000	2,200	1,500	2,000	1,800	2,300	1,800	2,100	1,200	1,300
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	16,000	11,000	13,000	17,000	26,000	16,000	12,000	14,000	11,000	14,000	9,700	13,000	6,100	8,300
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	6,500	5,300	6,100	6,300	9,400	7,100	5,400	5,800	6,600	6,200	5,500	6,000	3,600	4,200
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	3,600	3,200	3,600	5,300	6,200	4,400	4,100	3,500	2,500	4,000	94,000	4,300	2,400	2,500
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	U	U	410	U	570	U	U	470	U	440	430	U	U	490
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	U	U	U	U	U	U	U	U	U	U

		Part 201 Gene	eric Cleanup (Criteria			Borin	ng-14	Borii	ng-15	Bori	ng-16	Boring-195	Boring-196
Parameter	CAS Number	Background Levels Protection 1406681-01 1406681-02 1406681-03 1406681-04 1406681-05 1406681-06 1501009-01 Criteria 6/11/2014 6								196 1-1.5'				
		0					1406681-01	1406681-02	1406681-03	1406681-04	1406681-05	1406681-06	1501009-01	1501009-02
			Residential	Non- Residential	Non-Residential	Criteria	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	12/23/2014	12/23/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)											_
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	U	U	32	U	U	U	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	1,800	4,400	3,300	2,800	1,500	1,800	5,400	5,700
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	15,000	29,000	37,000	22,000	9,600	17,000	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	120	160	610	170	86	110	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	5,900	8,900	11,000	8,700	4,500	5,800	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	3,200	6,600	8,500	4,400	2,800	3,400	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	570	970	990	740	570	550	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	120	U	54	U	NA	NA

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 3 of 3

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	Teanup Crite	ria																								
Parameter	CAS Number	Drinkir Protection	ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	EB-3 8-10'	EB-4 5-7'	EB-7 0-1'	EB-8 0-1'	EB-9 0-1'	EB-12 0-1'	EB-12 0-1' DUP	EB-14 0-1'	EB-16 0-0.5'	EB-19 0-0.5'	EB-20 0-0.5'	EB-23 5-6'	EB-23 9-10'	EB-24 0-1'	EB-25 0-1'	EB-26 0-1'	EB-27 0-1'	EB-27 0-1' DUP	EB-28 0-1'	EB-31 0-1'	EB-32 0-1'	EB-33 0-0.5'
					Criteria	Protection	13111229-01	13111229-02	13111229-03	13111229-04	13111229-05	13111229-06	13111229-33	13111229-07	13111229-08	13111229-09	13111229-10	13111229-11	13111229-12	13111229-13	13111229-14	13111229-15	13111229-16	13111229-34	13111229-17	13111229-18	13111229-19	13111229-20
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	37	U	U	U	620	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	250	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	46	200	U	U	U	2,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	240	750	U	U	U	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	79	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds - For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

 - U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

 2,000

 - Lattice shaded cells exceed the groundwater surface water interface protection criteria.

 3,000 T

 - Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.
 - - Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 1 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	Teanup Crite	eria			Box	ing-1	Bor	ing-2	Bor	ing-3	Bor	ing-4	Bor	ring-5	Bor	ing-6		Bor	ing-7			Boring-8		Bor	ring-9
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation Criteria	Groundwater Surface Water Interface	HAB-1 0-2'	HAB-1 2-3.5'	HAB-2 0-2'	HAB-2 2-4'	HAB-3 0-2'	HAB-3 2-4'	HAB-4 0-2'	HAB-4 2-4'	HAB-5 0-2'	HAB-5 2-4'	HAB-6 0-2'	HAB-6 2-4'	HAB-7 0-2'	HAB-7 2-4'	HAB-7 4-6'	HAB-7 6-8'	HAB-8 0-2'	HAB-8 2-4'	HAB-8 0-2' DUP	HAB-9 0-2'	HAB-9 2-4'
					Criteria	Protection	1404478-01	1404478-02	1404478-03	1404478-04	1404478-05	1404478-06	1404478-07	1404478-08	1404478-09	1404478-10	1404478-11	1404478-12	1404478-13	1404478-14	1406681-39	1406681-40	1404478-15	1404478-16	1404478-17	1404478-18	1404478-19
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	6/12/2014	6/12/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
VOCs USEPA Method 8260 (µg/Kg)																											
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	35	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	U	450	550	1,400	1,700	2,400	4,700	1,600	2,700	U	U	U	U	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	U	110	U	U	U	390	470	1,000	1,200	360	840	790	810	U	U	360	440	500	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	380	12,000	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	140	160	79	200	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bor	ing-10	Boris	ng-11		Boring-12		Bor	ing-13	Bor	ing-14	Bori	ng-15	Bori	ng-16	Bori	ring-17	Bor	ing-18		Boring-19	
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-10 0-2'	HAB-10 2-4'	HAB-11 0-2'	HAB-11 2-4'	HAB-12 0-2'	HAB-12 2-3'	HAB-12 0-2' DUP	HAB-13 0-2'	HAB-13 2-3'	HAB-14 0-2'	HAB-14 2-4'	HAB-15 0-2'	HAB-15 2-4'	HAB-16 0-2'	HAB-16 2-4'	HAB-17 0-2'	HAB-17 2-4'	HAB-18 0-2'	HAB-18 2-4'	HAB-19 0-2'	HAB-19 0-2' DUP	HAB-19 24'
					Criteria	Protection	1404478-20	1404478-21	1404478-22	1404478-23	1404478-24	1404478-25	1404478-26	1404478-27	1404478-28	1406681-01	1406681-02	1406681-03	1406681-04	1406681-05	1406681-06	140668-07	1406681-08	1406681-09	1406681-10	1406681-11	1406681-12	1406681-13
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014
VOCs USEPA Method 8260 (µg/Kg)																										1	†	1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	93	470	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	48	40	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	1,900	960	U	U	U	3,600	5,300	440	510	U	42	3,300	3,200	560	640	U	U	360	200	150
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	87	170	470	790	U	U	U	U	U	77	U	U	U	170	150	U	U	160	230	820	460	250
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	260	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic (Cleanup Crite	eria			Bor	ing-20	Bor	ing-21		Boring-22		Boring-23		Boring-24		Bori	ng-25	Bori	ng-26	Bori	ing-27	Bori	ng-28	Bori	ing-29
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-20 0-2'	HAB-20 2-4'	HAB-21 0-2'	HAB-21 2-4'	HAB-22 0-2'	HAB-22 2-4'	HAB-23 0-2'	HAB-23 2-4'	HAB-24 0-2'	HAB-24 0-2' DUP	HAB-24 2-4'	HAB-25 0-2'	HAB-25 2-4'	HAB-26 0-2'	HAB-26 2-4'	HAB-27 0-2'	HAB-27 2-4'	HAB-28 0-2'	HAB-28 2-4'	HAB-29 0-2'	HAB-29 2-4'
					Criteria	Protection	1406681-14	1406681-15	1406681-16	1406681-17	1406681-18	1406681-19	1406681-20	1406681-21	1406681-22	1406681-23	1406681-24	1406681-25	1406681-26	1406681-27	1406681-28	1406681-29	1406681-30	1406681-31	1406681-32	1406681-33	1406681-34
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/12/2014	6/12/2014	6/12/2014	6/12/2014
VOCs USEPA Method 8260 (µg/Kg)																											
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	37	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	150	160	190	89	60	U	U	U	390	270	U	130	63	U	U	190	82	6,400	9,800	4,200	3,300
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	83	U	55	U	45	U	89	340	U	U	U	630	310	U	U	450	250	930	1,200	690	430
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	93	76	U	U	U	U	600	U	U	U	U	U	U	U	U	U	U	210	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	140	110
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	56	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 4 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria				Bori	ng-30		Bori	ng-31	Boring-33	Boring-36	Boring-37	Boring-39	Boring-52	Boring-62	Boring-68	Boring-76	Boring-78		Boring-81		Boring-82	Boring-93	Boring-94	Boring-95
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-30 0-2'	HAB-30 2-4'	HAB-30 4-6'	HAB-30 6-8'	HAB-31 0-2'	HAB-31 2-4'	HAB-33 0-2'	HAB-36 0-2'	HAB-37 0-2'	HAB-39 0-2'	HAB-52 0-2'	HAB-62 0-2'	HAB-68 0-2'	HAB-76 0-2'	HAB-78 0-2'	HAB-81 0-2'	HAB-81 4-6'	HAB-81 9-11'	HAB-82 0-2'	HAB-93 0-2'	HAB-94 0-2'	HAB-95 0-2'
					Criteria	Protection	1406681-35	1406681-36	1406681-55	1406681-56	1406681-37	1406681-38	14081187-02	14081187-05	14081187-06	14081187-08	14081187-22	14081187-33	14081187-40	14081187-49	14081187-51	14091057-01	14091057-02	14091057-03	14091057-04	14091057-19	14091057-20	14091057-21
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	6/12/2014	6/12/2014	8/20/2014	8/20/2014	6/12/2014	6/12/2014	8/18/2014	8/18/2014	8/18/2014	8/18/2014	8/19/2014	8/19/2014	8/20/2014	8/20/2014	8/21/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014
VOCs USEPA Method 8260 (µg/Kg)																												+
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	36,000	U	U	U	U	U	450	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	51	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	100	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	160	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	10,000	18,000	2,000	930	420	280	42	440	45	750	64	130	44	720	2,100	18,000	19,000	110	7,300	U	300	77
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	140	230	U	200	350	280	U	170	85	140	U	580	U	U	120	220	240	75	200	120	250	220
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	98	U	U	U	U	U	390	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	190	340	70	U	U	U	U	U	U	59	U	U	U	U	U	220	290	U	300	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bor	ing-96	Bori	ng-97	Bori	ng-98	Boring-99	Boring-106			Boring-130			Boring-131	Boring-132	Boring-133	Bori	ng-134	Boring-135	Boring-136	Boring-140	Boring-141
Parameter	CAS Number	Drinkir Protection	ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-96 0-2'	HAB-96 2-4'	HAB-97 0-2'	HAB-97 0-2' DUP	HAB-98 0-2'	HAB-98 2-4'	HAB-99 0-2'	HAB-106 0-2'	GP-130 2-2.5'	GP-130 4-5'	GP-130 7-8'	GP-130 10-11'	GP-130 13-14'	HAB-131 2-2.5'	GP-132 2-2.5'	HAB-133 2-2.5'	GP-134 2-2.5'	GP-134 2-2.5 DUP	GP-135 2-2.5'	HAB-136 1.5-2'	HAB-140 1.5-2'	SB-141 2-2.5'
					Criteria	Protection	14091057-22	14091057-39	14091057-23	14091057-24	14091057-25	14091057-26	14091057-27	14091057-36	1412085-12	1412659-05	1412659-06	1412659-07	1412659-08	1412086-04	141208-13	1412086-03	141208-15	1412085-16	141208-14	1412086-09	1412086-08	1412085-11
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	9/18/2014	9/19/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/19/2014	12/2/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/4/2014
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	390	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	59	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	150	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	1,000	U	180	180	390	66	U	U	3,500	440	U	U	U	83	1,400	1,200	260	260	410	240	2,300	500
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	200	U	270	310	640	U	140	U	110	87	U	U	U	U	300	1,600	600	490	410	760	160	93
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	200	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ū	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 6 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bori	ing-142	Borir	ng-143			Boring-144			Bori	ng-145	Bori	ng-146	Borir	ng-147	Borii	ng-148			Boring-149		
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-142 4-5'	GP-142 7-8'	GP-143 4-5'	GP-143 7-8'	GP-144 45'	GP-144 10-11'	SB-144 12-13'	SB-144 16-17'	SB-144 20-21'	SB-145 4-5'	SB-145 7-8'	SB-146 4-5'	SB-146 7-8'	GP-147 9-10'	GP-147 11-12'	SB-148 4-5'	SB-148 7-8'	SB-149 4-5'	SB-149 7-8'	SB-149 10-11'	SB-149 13-14'	SB-149 17-18'
					Criteria	Protection	1412087-05A	1412087-06A	1412087-07A	1412087-08A	1412087-09A	1412087-10A	1412379-07	1412379-08	1412379-09	1412085-01	1412085-02	1412085-03	1412085-04	1412087-11	1412087-12	1412085-05	1412085-06	1412085-07	1412085-08	1412379-10	1412379-11	1412379-12
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/5/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/5/2014
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	87 J	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	270	U	U	U	U	U	U	2,800	U	U	U	U	U	U	U	U
1.1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	110	U	U	U	U	61	U	U	330	72	U	U	U	U	U	U	U
1.1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	110	U	U	U	U	U	U	120	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	370	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	310	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	250	U	U	U	U	U	U	15 J	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	530	88	190	20,000	3,100	8,800	59	U	240	U	U	U	1.800	64	120	200	510	3,900	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1.1-Trichloroethane	71-55-6	4,000	4.000	1.0E+09	4.6E+05	1.800	U	370	U	190	230	780	670	U	U	U	220	U	U	2,700	U	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5.900	U	II.	II.	II.	11	II.	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Frichloroethylene	79-01-6	100	100	6.6E+05	1.900 Ŧ	4.000	U	U	II.	U	350	230	3.000 Ŧ	U	U	80	U	U	U	14.000Ŧ	98	130	U	U	150	U	U	U
1.2.4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	1	- 11	- 11	- 11	II	11	3,000 T	U	II.	II	II.	U	II.	12.000	32 I	II.	U	U	II.	U	U	U
1.3.5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1.100	II.	II.	11	- 11	- 11	- 11	U	U	U	II.	U	U	U	3,400	11	II.	U	U	II.	II.	U	U
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820							U	- 11	II.	II.	II.			530	II.	II.			II	II.	II.	U

- Xylenes, Total
 Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	ria				Bori	ng-150		Borin	g-151		Bori	ng-152			Bori	ing-153		Bori	ng-154	Bori	ng-155	Boring-161		Boring-162	2
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-150 4-5'	GP-150 7-8'	SB-150 10-11'	SB-150 14-15'	GP-151 4-5'	GP-151 7-8'	GP-152 4-5'	GP-152 7-8'	GP-152 10-11'	GP-152 13-14'	SB-153 4-5'	SB-153 7-8'	SB-153 10-11'	SB-153 13-14'	GP-154 7-8'	GP-154 11-12'	GP-155 4-5'	GP-155 7-8'	GP-161 2-3'	GP-162 4-5'	GP-162 7-8'	GP-163 4-5'
					Criteria	Protection	1412087-13	1412087-14	1412379-13	1412379-14	1412087-15	1412087-16	1412087-17	1412087-18	1412659-09	1412659-10	1412085-09	1412085-10	1412659-11	1412659-12	1412087-01A	1412087-02A	1412087-03A	1412087-04A	1412659-21	1412087-19	1412087-20	1412087-21
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014
VOCs USEPA Method 8260 (µg/Kg)																												1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	99 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	51
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	71	U	U	1,400	U	U	U	U	70	130	180
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	320	U	U	U	U	U	180	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	61	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	460	U	U	U	U	U	U	830
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	150	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	380	66	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	1,000	1,500	U	U	U	U	U	2,700	U	U	1,100	4,300	U	U	18,000	U	93	U	550	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	150	U	U	U	U	U	270	U	U	U	290	200	U	3,100	U	U	590	53	81	1,800	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	110	110	U	U	U	U	U	160	U	U	U	830	U	U	2,900 Ŧ	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	29 J	U	U	U	U	U	U	U	U	U	U	U	U	U	1,500	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	710	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	200	U	U	U	U	U	U	880

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 8 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	leanup Crite	ria			Boring-163		Boring-164		Boring-165	Boring-166	Borii	ng-167	Boring-168	Borir	ıg-169	Borin	ng-170	Borir	ng-171	Bori	ng-172		Bori	ng-174	
Parameter	CAS Number	Drinkin Protection	ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation Criteria	Groundwater Surface Water Interface	GP-163 7-8'	HAB-164 1-1.5	GP-164 4-5'	GP-164 4-5' DUP	HAB-165 1-1.5'	HAB-166 1-1.5'	HAB-167 1-1.5'	GP-167 4-5'	HAB-168 1-1.5	HAB-169 1-1.5'	169 4-4.5'	SB-170 7-8'	SB-170 11-12'	SB-171 7-8'	SB-171 11-12'	SB-172 7-8'	SB-172 11-12'	GP-174 2-2.5'	GP-174 4-5'	GP-174 10-11'	GP-174 12-13'
		Residential	Non- Residential	Non-Residential	Non-Residential	Protection Criteria	12/2/2014	1412388-01	1412659-22	12/11/2014	1412388-02	1412388-03	12/2/2014	12/11/2014	1412388-05	1412388-06	12/16/2014	12/5/2014	1412379-02	1412379-03	12/5/2014	1412379-05	1412379-06	12/11/2014	1412659-17	1412659-18	12/11/2014
VOCs USEPA Method 8260 (µg/Kg)																											1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	1,100	U	U	U	U	1,300	U	U	500	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	26 J	U	U	U	U	170	U	U	1,100	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	980	U	U	U	U	2,400	U	U	30,000	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	16,000	86	390	U	40	4,600	U	U	65,000	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	94	U	U	U	U	29 J	U	U	U	210	U	260	U	U	U	U	U	U	U	460	65
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	96	U	U	U	U	U	U	U	U	U	U	160	21 J	U	67	U	U	U	U	100	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	29 J	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	32 J	U	U	U	U	U	68	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	78	U	U	U	U	U	98	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	140	U	U	U	U	U	U	U	U	16
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	180	U	U	460	U	U	3,700	U	90	U	2,100	U	1,600	1,000	6,100	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1.1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	1,300	U	U	U	U	U	U	U	U	U	U	180	U	81	72	510	U	99	64	500	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	350	U	U	U	110	U	190	120	1,600	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	620	U	U	U	U	U	U	U	U	U	U	T U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1.100	II.	Ü.	II.	U.	- U	U	U	U	- U	U.	U	17 I	U	Ū.	U	II.	U	II.	II.	II.	+ <u>u</u>
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	II.	11	II.	II.	II.	U	II.	II.	II.	U	II.	11	11	- II	TI.	II.	II.	11	II.	II.	1

- Xylenes, Total
 Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds - For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

 - U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

 2,000

 - Lattice shaded cells exceed the groundwater surface water interface protection criteria.

 3,000 T

 - Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Davi	201 Canaria	Cleanup Crite	wia			Poris	ng-175	Pori	ng-176	Boring-181	Dania Dit	Dania - 102	D 104	Dania - 105	D 100	Dania - 100	P 100	Dania - 101	Paris = 102	Boring-193	Paris = 104
	Tait	Z01 Generic	Cleanup Cine	114	1		DOIL	ig-1/3	DOIL	iig-170	boring-181	Resin Fit	boring-183	Doring-184	DOTING-185	Doring-188	boring-189	boring-190	Doring-191	Boring-192	boring-193	DOTING-194
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-175 4-5'	GP-175 7-8'	GP-176 4-5'	GP-176 7-8'	GP-181 2-2.5'	Resin Pit 2-4'	183 2-2.5'	184 2-2.5'	185 2-2.5'	188 1-1.5'	189 1-1.5'	190 1-1.5'	191 1-1.5'	192 1-1.5'	193 1-1.5'	194 1-1.5'
					Criteria	Protection	1412659-13	1412659-14	1412659-01	1412659-02	1412659-25	1412659-26	1412859-01	1412859-02	1412859-03	1412859-10	1412859-11	1412859-15	1412859-07	1412859-06	1412859-09	1412859-13
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014
VOCs USEPA Method 8260 (µg/Kg)																						
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	46	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	33	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	550	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	190	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	3,200	U	U	210	U	1,100	410	470	U	U	U	U	U	100	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	16	25	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	290	U	U	180	U	160	47	81	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	86	U	U	U	U	180	59	98	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	640	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	220	U	U	U	U	U	U	U	U	U	U
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	200	U	U	U	U	U	U	U	U	U	U

Notes:

**Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

- For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds above the MDL.

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Table 6 Summary of Detectable Soil Analytical Results at Eastern Steam Cleaning Sump (ESCS) General Electric, Riverview, Michigan

					Michigan Pa	rt 201 Generic Cleanup	Criteria (GCC)						Samp
Parameter	CAS Number	Residential Drinking Water Protection*	Nonresidential Drinking Water Protection*	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Residential Direct Contact	Nonresidential Direct Contact	SS01 South Bottom 07/18/2002	SS02 North Bottom 07/18/2002	SS03 West Wall 07/18/2002
SVOC PAHs (mg/kg)													
1,2,4-Trichlorobenzene	120821	4,200	4,200	5,900	1.1E+06	1.1E+06	2.5E+10	1.1E+10	990,000	1.1E+06	< 0.33	< 0.33	< 0.33
Other SVOC PAHs	varies	varies	varies	varies	varies	varies	varies	varies	varies	varies	BDL	BDL	BDL
MDEQ 624/8260 VOCs (μg/kg)												
cis-1,2-Dichloroethene	156592	1,400	1,400	12,000	22,000	41,000	2.3E+09	1.0E+09	640,000	640,000	< 0.055	< 0.059	130
1,1-Dichloroethane	75343	18,000	50,000	15,000	230,000	430,000	3.3E+10	1.5E+10	890,000	890,000	< 0.055	< 0.059	< 0.063
1,1,1-Trichloroethane	71556	4,000	4,000	1,800	250,000	460,000	6.7E+10	2.9E+10	460,000	460,000	< 0.055	< 0.059	< 0.063
Trichloroethene	79016	100	100	4,000	1,000	1,900	1.3E+08	5.9E+07	500,000	500,000	< 0.055	< 0.059	< 0.063
Tetrachloroethene	127184	100	100	1,200	11,000	21,000	2.7E+09	1.2E+09	88,000	88,000	< 0.055	< 0.059	< 0.063
Other VOCs	varies	varies	varies	varies	varies	varies	varies	varies	varies	varies	BDL	BDL	BDL
PCBs (mg/kg)	•	•	•			•						•	•
Total PCBs	1336363	NLL	NLL	NLL	3.0E+03	1.6E+04	5.2E+03	6.5E+03	4.0	16	< 0.19	< 0.19	< 0.19

		Sam	ple Location/I	Depth & Conc	entration		
SS01 South Bottom 07/18/2002	SS02 North Bottom 07/18/2002	SS03 West Wall 07/18/2002	SS04 East Wall 07/18/2002	SS05 North Wall 07/18/2002	SS06 South Wall 07/18/2002	West Pipe Sand 07/18/2002	SS07 (Duplicate of SS06) South Wall 07/18/2002
< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	1.0	< 0.33
BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
< 0.055	< 0.059	130	< 0.058	< 0.059	< 0.067	< 0.056	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	89	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	460	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	190	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	1,400	< 0.065
BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
< 0.19	< 0.19	< 0.19	< 0.19	< 0.19	< 0.19	3.79	< 0.19

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- For simplification, only detected concentrations are shown on this table. See analytical laboratory report for full list of analytes.
- NLL Indicates parameter is not likely to leach under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below MDEQ RRD established detection limit.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) protection criteria.

ERM 1 of 1 OCTOBER 2015

Table 7 Summary of Eastern Steam Cleaning Sump (ESCS) Removal Waste Manifests General Electric, Riverview, Michigan

Waste Profile	Manifest Number	Shipper	Date Received	Waste Volume	Comments:
CV0022 - TSCA Oil and Water	NYG3407625	Franks Vacuum Service	9/13/2002	1,540 lbs	Five Drums, 11 to 500 ppm PCBs,
from Sump Cleanout					no RCRA codes
CV0023 - TSCA Solids from	NYG3407805	Tonawanda Tank	9/19/2002	12,940 lbs	Rolloffs and drums, 0.18-190 ppm
Sump Cleanout	NYG3407652		9/18/2002	23,980 lbs	PCBs, no RCRA codes
	NYG3407778		9/18/2002	12,580 lbs	
	NYG3407814		9/17/2002	24,960 lbs	
	NYG3407634		9/16/2002	14,100 lbs	
				88,560 lbs total	
CV0047 - Cinder Block and	NYG3407958	Tonawanda Tank	9/17/2002	21,340 lbs	Rolloffs, 0-6.6 ppm PCBs, no RCRA
Concrete from Sump Cleanout	NYG3407976		9/16/2002	<u>11,520 lbs</u>	codes
				32,860 lbs total	

All waste listed above was disposed at the Chemical Waste Management facility in Model City, New York.

The information listed above was provided by Waste Management (Vonya Spies) to ERM (Martin Ryan) on March 7, 2012.

The ESCS removal activities were completed in July 2002 under the oversight of GES, Inc.

 Table 8
 Summary of Pre-2013 Soil Analytical Results
 General Electric Facility, Riverview, Michigan

			Michigan Pa	art 201 Generic Cle	anup Criteria (GCC)								Sample	e ID/ Sample	Date/Concer	ntration							
Personatur	CAS	Drinkin Protection	0	Direct Contact Criteria	Soil Volatilization to Indoor Air	Groundwater Surface Water		В	G1			ВС	G2	•	•	BG3			ВС	G4			MW5A	
Parameter	Numbers	Frotection	i Criteria	Criteria	Inhalation Criteria	Interface Protection Criteria	6-18"	24-36"	48-60"	96-108"	6-18"	24-36"	48-60"	96-108"	6-18"	24-36"	96-108"	6-18"	24-36"	48-60"	96-108"	0-12"	12-24"	24-36"
		Residential	Non- residential	Non-residential	Non-residential	Citteria	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89
MDEQ 624/8260 VOCs (μg/kg)																								
1,1 - Dichloroethene	75354	140	140	5.7E+05	330	2,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Chlorobenzene	108907	2,000	2,000	260,000	220,000	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Ethylbenzene	100414	1,500	1,500	140,000	140,000	360	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Methylene Chloride	75092	100	100	2.3E+06	240,000	30,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	336	203	NA
Trichlorofluoromethane	75694	52,000	150,000	560,000	560,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
1,1,2-Trichlorofluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
1,2-Dichlorobenzene	95501	14,000	14,000	210,000	210,000	280	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Dichlorodifluoromethane	75718	95,000	270,000	1.0E+06	1.7E+06	ID	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Ethylacetate	141786	130,000	380,000	7.5E+06	7.5E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
m+p-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
o-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
cis-1,2-Dichloroethene	156592	1,400	1,400	640,000	41,000	12,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
trans-1,2-Dichloroethene	156605	2,000	2,000	1.4E+06	43,000	30,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
1,1- Dichloroethane	75343	18,000	50,000	890,000	430,000	15,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Tetrachloroethene	127184	100	100	88,000	21,000	1,200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,530	4,420	NA
1,1,1, - Trichloroethane	71556	4,000	4,000	460,000	460,000	1,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Trichloroethene	79016	100	100	500,000	1,900	4,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	1,710	NA
Acetone	67641	15,000	42,000	7.3E+07	1.1E+08	34,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,480	<971	NA
PCBs (mg/kg)																								
Total PCBs	1336363	NLL	NLL	4 *	16,000	NLL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	All BDL	All BDL	NA
Pesticides (mg/kg)																								
Varies	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/kg)																								
Lead	7439921	700	700	900	NLV	2,500	6.8	13.8	7.63	5.02	12.6	7.45	7.63	5.84	8.31	9.18	4.67	7.55	8.95	5.38	6.71	5.26	9.33	8.2

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 NLL Indicates parameter is not likely to leach under most soil conditions.

- NA Indicates sample was not analyzed for this parameter.

2,000 - Lattice shaded cells exceed the groundwater surface water interface protection criteria and corresponding interval was removed by excavation.

Shaded column headings indicate that the soil associated with this sample interval was remediated by excavation in 2014.

ERM 1 of 3 8/7/2018

 Table 8
 Summary of Pre-2013 Soil Analytical Results
 General Electric Facility, Riverview, Michigan

			Michigan Pa	art 201 Generic Clea	nup Criteria (GCC)								Sample ID	/ Sample Dat	e/Concentra	tion						
Parameter	CAS	Drinkin Protection	O	Direct Contact Criteria	Soil Volatilization to Indoor Air	Groundwater Surface Water		MW6		М	W7		М	W8			MW9			MW10		MV	W11
rarameter	Numbers	Frotection		Criteria	Inhalation Criteria	Interface Protection Criteria	0-12"	15-27"	32-43"	0-12"	16-28"	0-12"	15-27"	29-41"	41-52"	0-12"	15-27"	27-41"	0-12"	15-27"	27-41"	0-12"	28-39"
		Residential	Non- residential	Non-residential	Non-residential	Cincila	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89
MDEQ 624/8260 VOCs (µg/kg)																							
1,1 - Dichloroethene	75354	140	140	5.7E+05	330	2,600	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	108907	2,000	2,000	260,000	220,000	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	100414	1,500	1,500	140,000	140,000	360	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	75092	100	100	2.3E+06	240,000	30,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorofluoromethane	75694	52,000	150,000	560,000	560,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichlorofluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	95501	14,000	14,000	210,000	210,000	280	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dichlorodifluoromethane	75718	95,000	270,000	1.0E+06	1.7E+06	ID	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylacetate	141786	130,000	380,000	7.5E+06	7.5E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m+p-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	156592	1,400	1,400	640,000	41,000	12,000	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	156605	2,000	2,000	1.4E+06	43,000	30,000	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1- Dichloroethane	75343	18,000	50,000	890,000	430,000	15,000	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	127184	100	100	88,000	21,000	1,200	13.3	7.7	0.8	< 0.3	< 0.3	331	24.9	141.7	79.4	1.3	1.4	12.1	392	177.4	9.9	27.3	0.58
1,1,1, - Trichloroethane	71556	4,000	4,000	460,000	460,000	1,800	4.6	2.1	1.6	7.6	1.9	29.5	1.5	21.2	9.3	2.5	2.7	5.1	14.5	17.7	1.5	1.2	1.5
Trichloroethene	79016	100	100	500,000	1,900	4,000	<1.2	<1.2	<1.2	<1.2	<1.2	55.3	8.9	44.8	66.5	<1.2	<1.2	2.7	12.3	13.8	8.3	1.5	<1.2
Acetone	67641	15,000	42,000	7.3E+07	1.1E+08	34,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs (mg/kg)																							
Total PCBs	1336363	NLL	NLL	4 *	16,000	NLL	All BDL	All BDL	All BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg)																							
Varies	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/kg)																							
Lead	7439921	700	700	900	NLV	2,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 NLL Indicates parameter is not likely to leach under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.

2,000 - Lattice shaded cells exceed the groundwater surface water interface protection criteria and corresponding interval was removed by excavation.

Shaded column headings indicate that the soil associated with this sample interval was remediated by excavation in 2014.

ERM 2 of 3 8/7/2018

 Table 8
 Summary of Pre-2013 Soil Analytical Results
 General Electric Facility, Riverview, Michigan

			Michigan Pa	art 201 Generic Clea	nup Criteria (GCC))					Sampl	e ID/ Sample	Date/Concent	tration				
Parameter	CAS	Drinkin Protectio	ig Water	Direct Contact Criteria	Soil Volatilization to Indoor Air	Groundwater Surface Water		MW12			MW13	, •	Si	B1	Si	32	MW6	(OW6)
i atametei	Numbers	Trotectio	ii Criteria	Cinteria	Inhalation Criteria	Interface Protection	0-12"	15-27"	27-41"	0-12"	15-27"	29-41"	0-2'	2-4'	0-2'	4-6'	0-2'	4-6'
		Residential	Non- residential	Non-residential	Non-residential	Criteria	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	May-97	May-97	May-97	May-97	May-97	May-97
MDEQ 624/8260 VOCs (μg/kg)																		
1,1 - Dichloroethene	75354	140	140	5.7E+05	330	2,600	BDL	BDL	BDL	BDL	BDL	BDL	<2.7	<3.2	<3.0	3.9	<3.1	<3.0
Chlorobenzene	108907	2,000	2,000	260,000	220,000	500	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Ethylbenzene	100414	1,500	1,500	140,000	140,000	360	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Methylene Chloride	75092	100	100	2.3E+06	240,000	30,000	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Trichlorofluoromethane	75694	52,000	150,000	560,000	560,000	NA	NA	NA	NA	NA	NA	NA	<5.5	<6.4	<6.0	<6.0	<6.2	<6.0
1,1,2-Trichlorofluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
1,2-Dichlorobenzene	95501	14,000	14,000	210,000	210,000	280	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Dichlorodifluoromethane	75718	95,000	270,000	1.0E+06	1.7E+06	ID	NA	NA	NA	NA	NA	NA	<5.5	< 6.4	<6.0	<6.0	<6.2	<6.0
Ethylacetate	141786	130,000	380,000	7.5E+06	7.5E+06	NA	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
m+p-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
o-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
cis-1,2-Dichloroethene	156592	1,400	1,400	640,000	41,000	12,000	BDL	BDL	BDL	BDL	BDL	BDL	27	24	220	140	60	42
trans-1,2-Dichloroethene	156605	2,000	2,000	1.4E+06	43,000	30,000	BDL	BDL	BDL	BDL	BDL	BDL	<2.7	<3.2	16	13	4.6	<3.0
1,1- Dichloroethane	75343	18,000	50,000	890,000	430,000	15,000	BDL	BDL	BDL	BDL	BDL	BDL	<2.7	4.3	12	64	<3.1	<3
Tetrachloroethene	127184	100	100	88,000	21,000	1,200	251	196.2	47.9	87.1	88.6	11.6	61	48	460	<3.0	430	80
1,1,1, - Trichloroethane	71556	4,000	4,000	460,000	460,000	1,800	4.0	3.1	5.5	6.0	6.4	4.0	<2.7	<3.2	<3.0	41	<3.1	<3.0
Trichloroethene	79016	100	100	500,000	1,900	4,000	15.2	54.2	19.3	11.9	25.8	5.3	4.3	4.1	66	3.0	54	39
Acetone	67641	15,000	42,000	7.3E+07	1.1E+08	34,000	<550	<600	<620	<540	<610	< 560	NA	NA	NA	NA	NA	NA
PCBs (mg/kg)																		
Total PCBs	1336363	NLL	NLL	4 *	16,000	NLL	0.24	All BDL	All BDL	All BDL	All BDL	0.36	< 0.018	< 0.021	< 0.020	< 0.020	NA	NA
Pesticides (mg/kg)																		
Varies	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/kg)																		
Lead	7439921	700	700	900	NLV	2,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 NLL Indicates parameter is not likely to leach under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.

2,000 - Lattice shaded cells exceed the groundwater surface water interface protection criteria and corresponding interval was removed by excavation.

Shaded column headings indicate that the soil associated with this sample interval was remediated by excavation in 2014.

ERM 8/7/2018 3 of 3

Table 9 Indoor Sub-Slab Vapor Testing Results General Electric, Riverview, Michigan

	MDEO Part 201										Sample I	O, Sample C	ollection Da	te & Concer	ntration (ppl	bv)									
	Nonresidential Sub-Slab Soil Gas											Sub-Sla	b Vapor Ind	loor Sample	s										
Parameter	Concentration for Vapor Intrusion (ppbv)	SV-1 May 1996	SV-1 SV-2 SV-3 SV-4 SV-5 SV-6 SV-7 SV-8 SV-9 SV-10 SV-11 SV-12 SV-13 SV-14 SV-15 SV-16 SV-17 SV-18 SV-19 SV-20 SV-21 SV-22 SV-23															SV-23 May 1996	SV-24 May 1996						
Acetone	1,400,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
trans-1,2-Dichloroethylene	9,800	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	38	<10	<10	<10	<10	<10	<10	<10
Ethylbenzene	13,000	<35	<35	<35	<35	<35	<35	<35	<35	<35	85	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
Methylene Chloride	18,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Tetrachloroethylene	3,300	7J	<10	<10	11	20	<10	<10	30	<10	<10	<10	<10	<10	<10	<10	195	651	6,025	<10	<10	<10	22	<10	803
Toluene	740,000	<30	<30	<30	<30	<30	<30	<30	43	36	183	<30	<30	<30	<30	<30	59	<30	<30	<30	<30	<30	<30	<30	<30
1,1,1-Trichloroethane	610,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Trichloroethene	210	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	39	25	<10	<10	<10	<10	<10	<10
Total Xylenes	13,000	<35	<35	<35	<35	<35	<35	<35	<35	<35	20J	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35

- Notes:

 Samples were collected and analyzed by O'Brien and Gere Engineers, Inc., and reported in August 1996.

 Soil Gas Screening Levels per MDEQ Guidance Document for the Vapor Intrusion Pathway, May 2013.

 Laboratory analysis performed using a Photovac 10S70 portable gas chromatograph (GC).

 J Indicates estimated value below the method quantitation limit.

 Shaded values exceed the referenced Soil Gas Screening Level.

ERM 1 of 1 OCTOBER 2015

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	ria				Bori	ng-150		Borin	g-151		Bori	ng-152			Bori	ing-153		Bori	ng-154	Bori	ng-155	Boring-161		Boring-162	2
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-150 4-5'	GP-150 7-8'	SB-150 10-11'	SB-150 14-15'	GP-151 4-5'	GP-151 7-8'	GP-152 4-5'	GP-152 7-8'	GP-152 10-11'	GP-152 13-14'	SB-153 4-5'	SB-153 7-8'	SB-153 10-11'	SB-153 13-14'	GP-154 7-8'	GP-154 11-12'	GP-155 4-5'	GP-155 7-8'	GP-161 2-3'	GP-162 4-5'	GP-162 7-8'	GP-163 4-5'
					Criteria	Protection	1412087-13	1412087-14	1412379-13	1412379-14	1412087-15	1412087-16	1412087-17	1412087-18	1412659-09	1412659-10	1412085-09	1412085-10	1412659-11	1412659-12	1412087-01A	1412087-02A	1412087-03A	1412087-04A	1412659-21	1412087-19	1412087-20	1412087-21
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014
VOCs USEPA Method 8260 (µg/Kg)																												1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	99 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	51
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	71	U	U	1,400	U	U	U	U	70	130	180
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	320	U	U	U	U	U	180	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	61	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	460	U	U	U	U	U	U	830
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	150	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	380	66	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	1,000	1,500	U	U	U	U	U	2,700	U	U	1,100	4,300	U	U	18,000	U	93	U	550	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	150	U	U	U	U	U	270	U	U	U	290	200	U	3,100	U	U	590	53	81	1,800	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	110	110	U	U	U	U	U	160	U	U	U	830	U	U	2,900 Ŧ	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	29 J	U	U	U	U	U	U	U	U	U	U	U	U	U	1,500	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	710	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	200	U	U	U	U	U	U	880

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 8 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic (Cleanup Crite	eria			Boring-163		Boring-164		Boring-165	Boring-166	Bori	ng-167	Boring-168	Borir	ıg-169	Borir	ıg-170	Borin	ng-171	Bori	ng-172		Bori	ng-174	
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-163 7-8'	HAB-164 1-1.5	GP-164 4-5'	GP-164 4-5' DUP	HAB-165 1-1.5'	HAB-166 1-1.5'	HAB-167 1-1.5'	GP-167 4-5'	HAB-168 1-1.5	HAB-169 1-1.5'	169 4-4.5'	SB-170 7-8'	SB-170 11-12'	SB-171 7-8'	SB-171 11-12'	SB-172 7-8'	SB-172 11-12'	GP-174 2-2.5'	GP-174 4-5'	GP-174 10-11'	GP-174 12-13'
					Criteria	Protection	1412087-22	1412388-01	1412659-22	1412659-23	1412388-02	1412388-03	1412388-04	1412659-24	1412388-05	1412388-06	1412859-16	1412379-01	1412379-02	1412379-03	1412379-04	1412379-05	1412379-06	1412659-16	1412659-17	1412659-18	1412659-19
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/2/2014	12/2/2014	12/16/2014	12/5/2014	12/5/2014	12/5/2014	12/5/2014	12/5/2014	12/5/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014
VOCs USEPA Method 8260 (µg/Kg)																											
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	1,100	U	U	U	U	1,300	U	U	500	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	26 J	U	U	U	U	170	U	U	1,100	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	980	U	U	U	U	2,400	U	U	30,000	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	16,000	86	390	U	40	4,600	U	U	65,000	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	94	U	U	U	U	29 J	U	U	U	210	U	260	U	U	U	U	Ü	U	U	460	65
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	96	U	U	U	U	U	U	U	U	U	Ü	160	21 J	U	67	U	U	U	U	100	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	Ü	U	U	U	U	U	U	U	U	U	U	29 J	U	U	Ü	U	U	U	U	U	Ü
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	32 J	U	U	U	U	U	68	U	U	Ü	U	Ü	U	U	Ü	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	78	U	U	U	U	U	98	U	U	Ü	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	Ü	U	U	U	U	Ü	U	U	U	U	U	U	U	U	16
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07 9.3E+05	4.7E+05 21.000	730 1.200	U	U	U	U	U	U 100	U	U	460	U	U	140 3,700	U	90	U	2.100	U	1,600	1.000	6.100	16
Tetrachloroethylene	127-18-4	100	100		,		_		Ü			180			460			3,700						1,000	,	6,100	
Toluene 1.1.1-Trichloroethane	108-88-3 71-55-6	16,000 4.000	16,000 4.000	1.6E+08 1.0E+09	6.1E+05 4.6E+05	5,400 1.800	1.300	U	U	U	Ü	U	U	U	U	U	U	180	U	U 81	72	510	U	99	U 64	500	U
1,2,4-Trichlorobenzene	120-82-1	-,	4,000	5.8E+06	4.6E+05 1.8E+07	1,800 5,900	1,300		U	U	U	II.	U	U	U	U	U	180	U	81	72	510	11	99	64	500	U U
7 7	79-01-6	4,200 100	100	5.8E+06 6.6E+05	1.8E+07 1.900 Ŧ	5,900 4,000	U			U	- 11	U	- 11	U	U	U		350	U II	11		110	- 11	190	120	1.600	- 11
Trichloroethylene	79-01-6 95-63-6	2,100	2,100	1.0E+08	8.0E+06	4,000 570	II.		U	II.		U	U			620	- 11	330		U		110		190	120	1,000	- "
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	95-63-6 108-67-8	1.800	1.800	1.0E+08 1.0E+08	8.0E+06 4.8E+06	1.100	- "			- 11	- 11	II.	- 11	U		020	11	17 I	11				11		- 11	- 11	- 11
-/-/-		-,	-,000	1.0E+08 1.0E+09	4.8E+06 1.2E+07	1,100 820			U	U		II.		U	U	U II		1/ J	U	U	U	U	U	U			U U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 9 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic (Cleanup Crite	ria			Bori	ng-175	Bori	ng-176	Boring-181	Resin Pit	Boring-183	Boring-184	Boring-185	Boring-188	Boring-189	Boring-190	Boring-191	Boring-192	Boring-193	Boring-194
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-175 4-5'	GP-175 7-8'	GP-176 4-5'	GP-176 7-8'	GP-181 2-2.5'	Resin Pit 2-4'	183 2-2.5'	184 2-2.5'	185 2-2.5'	188 1-1.5'	189 1-1.5'	190 1-1.5'	191 1-1.5'	192 1-1.5'	193 1-1.5'	194 1-1.5'
					Criteria	Protection	1412659-13	1412659-14	1412659-01	1412659-02	1412659-25	1412659-26	1412859-01	1412859-02	1412859-03	1412859-10	1412859-11	1412859-15	1412859-07	1412859-06	1412859-09	1412859-13
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014
VOCs USEPA Method 8260 (µg/Kg)																						
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	46	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	33	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	550	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	190	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	3,200	U	U	210	U	1,100	410	470	U	U	U	U	U	100	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	16	25	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	290	U	U	180	U	160	47	81	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 т	4,000	U	86	U	U	U	U	180	59	98	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	640	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	220	U	U	U	U	U	U	U	U	U	U
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	200	U	U	U	U	U	U	U	U	U	U

Notes:

**Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

- For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds above the MDL.

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Table 6 Summary of Detectable Soil Analytical Results at Eastern Steam Cleaning Sump (ESCS) General Electric, Riverview, Michigan

					Michigan Pa	rt 201 Generic Cleanup	Criteria (GCC)						Samp
Parameter	CAS Number	Residential Drinking Water Protection*	Nonresidential Drinking Water Protection*	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Residential Direct Contact	Nonresidential Direct Contact	SS01 South Bottom 07/18/2002	SS02 North Bottom 07/18/2002	SS03 West Wall 07/18/2002
SVOC PAHs (mg/kg)													
1,2,4-Trichlorobenzene	120821	4,200	4,200	5,900	1.1E+06	1.1E+06	2.5E+10	1.1E+10	990,000	1.1E+06	< 0.33	< 0.33	< 0.33
Other SVOC PAHs	varies	varies	varies	varies	varies	varies	varies	varies	varies	varies	BDL	BDL	BDL
MDEQ 624/8260 VOCs (μg/kg)												
cis-1,2-Dichloroethene	156592	1,400	1,400	12,000	22,000	41,000	2.3E+09	1.0E+09	640,000	640,000	< 0.055	< 0.059	130
1,1-Dichloroethane	75343	18,000	50,000	15,000	230,000	430,000	3.3E+10	1.5E+10	890,000	890,000	< 0.055	< 0.059	< 0.063
1,1,1-Trichloroethane	71556	4,000	4,000	1,800	250,000	460,000	6.7E+10	2.9E+10	460,000	460,000	< 0.055	< 0.059	< 0.063
Trichloroethene	79016	100	100	4,000	1,000	1,900	1.3E+08	5.9E+07	500,000	500,000	< 0.055	< 0.059	< 0.063
Tetrachloroethene	127184	100	100	1,200	11,000	21,000	2.7E+09	1.2E+09	88,000	88,000	< 0.055	< 0.059	< 0.063
Other VOCs	varies	varies	varies	varies	varies	varies	varies	varies	varies	varies	BDL	BDL	BDL
PCBs (mg/kg)	•	•	•			•						•	•
Total PCBs	1336363	NLL	NLL	NLL	3.0E+03	1.6E+04	5.2E+03	6.5E+03	4.0	16	< 0.19	< 0.19	< 0.19

		Sam	ple Location/I	Depth & Conc	entration		
SS01 South Bottom 07/18/2002	SS02 North Bottom 07/18/2002	SS03 West Wall 07/18/2002	SS04 East Wall 07/18/2002	SS05 North Wall 07/18/2002	SS06 South Wall 07/18/2002	West Pipe Sand 07/18/2002	SS07 (Duplicate of SS06) South Wall 07/18/2002
< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	1.0	< 0.33
BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
< 0.055	< 0.059	130	< 0.058	< 0.059	< 0.067	< 0.056	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	89	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	460	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	190	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	1,400	< 0.065
BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
< 0.19	< 0.19	< 0.19	< 0.19	< 0.19	< 0.19	3.79	< 0.19

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- For simplification, only detected concentrations are shown on this table. See analytical laboratory report for full list of analytes.
- NLL Indicates parameter is not likely to leach under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below MDEQ RRD established detection limit.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) protection criteria.

ERM 1 of 1 OCTOBER 2015

Table 7 Summary of Eastern Steam Cleaning Sump (ESCS) Removal Waste Manifests General Electric, Riverview, Michigan

Waste Profile	Manifest Number	Shipper	Date Received	Waste Volume	Comments:
CV0022 - TSCA Oil and Water	NYG3407625	Franks Vacuum Service	9/13/2002	1,540 lbs	Five Drums, 11 to 500 ppm PCBs,
from Sump Cleanout					no RCRA codes
CV0023 - TSCA Solids from	NYG3407805	Tonawanda Tank	9/19/2002	12,940 lbs	Rolloffs and drums, 0.18-190 ppm
Sump Cleanout	NYG3407652		9/18/2002	23,980 lbs	PCBs, no RCRA codes
	NYG3407778		9/18/2002	12,580 lbs	
	NYG3407814		9/17/2002	24,960 lbs	
	NYG3407634		9/16/2002	14,100 lbs	
				88,560 lbs total	
CV0047 - Cinder Block and	NYG3407958	Tonawanda Tank	9/17/2002	21,340 lbs	Rolloffs, 0-6.6 ppm PCBs, no RCRA
Concrete from Sump Cleanout	NYG3407976		9/16/2002	<u>11,520 lbs</u>	codes
				32,860 lbs total	

All waste listed above was disposed at the Chemical Waste Management facility in Model City, New York.

The information listed above was provided by Waste Management (Vonya Spies) to ERM (Martin Ryan) on March 7, 2012.

The ESCS removal activities were completed in July 2002 under the oversight of GES, Inc.

 Table 8
 Summary of Pre-2013 Soil Analytical Results
 General Electric Facility, Riverview, Michigan

			Michigan Pa	art 201 Generic Cle	anup Criteria (GCC)								Sample	e ID/ Sample	Date/Concer	ntration							
Deventor	CAS	Drinkin Protection	0	Direct Contact Criteria	Soil Volatilization to Indoor Air	Groundwater Surface Water		В	G1			ВС	G2	•	•	BG3			ВС	G4			MW5A	
Parameter	Numbers	Frotection	i Criteria	Criteria	Inhalation Criteria	Interface Protection Criteria	6-18"	24-36"	48-60"	96-108"	6-18"	24-36"	48-60"	96-108"	6-18"	24-36"	96-108"	6-18"	24-36"	48-60"	96-108"	0-12"	12-24"	24-36"
		Residential	Non- residential	Non-residential	Non-residential	Citteria	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89
MDEQ 624/8260 VOCs (μg/kg)																								
1,1 - Dichloroethene	75354	140	140	5.7E+05	330	2,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Chlorobenzene	108907	2,000	2,000	260,000	220,000	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Ethylbenzene	100414	1,500	1,500	140,000	140,000	360	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Methylene Chloride	75092	100	100	2.3E+06	240,000	30,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	336	203	NA
Trichlorofluoromethane	75694	52,000	150,000	560,000	560,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
1,1,2-Trichlorofluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
1,2-Dichlorobenzene	95501	14,000	14,000	210,000	210,000	280	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Dichlorodifluoromethane	75718	95,000	270,000	1.0E+06	1.7E+06	ID	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Ethylacetate	141786	130,000	380,000	7.5E+06	7.5E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
m+p-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
o-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
cis-1,2-Dichloroethene	156592	1,400	1,400	640,000	41,000	12,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
trans-1,2-Dichloroethene	156605	2,000	2,000	1.4E+06	43,000	30,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
1,1- Dichloroethane	75343	18,000	50,000	890,000	430,000	15,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Tetrachloroethene	127184	100	100	88,000	21,000	1,200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,530	4,420	NA
1,1,1, - Trichloroethane	71556	4,000	4,000	460,000	460,000	1,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Trichloroethene	79016	100	100	500,000	1,900	4,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	1,710	NA
Acetone	67641	15,000	42,000	7.3E+07	1.1E+08	34,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,480	<971	NA
PCBs (mg/kg)																								
Total PCBs	1336363	NLL	NLL	4 *	16,000	NLL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	All BDL	All BDL	NA
Pesticides (mg/kg)																								
Varies	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/kg)																								
Lead	7439921	700	700	900	NLV	2,500	6.8	13.8	7.63	5.02	12.6	7.45	7.63	5.84	8.31	9.18	4.67	7.55	8.95	5.38	6.71	5.26	9.33	8.2

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 NLL Indicates parameter is not likely to leach under most soil conditions.

- NA Indicates sample was not analyzed for this parameter.

2,000 - Lattice shaded cells exceed the groundwater surface water interface protection criteria and corresponding interval was removed by excavation.

Shaded column headings indicate that the soil associated with this sample interval was remediated by excavation in 2014.

ERM 1 of 3 8/7/2018

 Table 8
 Summary of Pre-2013 Soil Analytical Results
 General Electric Facility, Riverview, Michigan

			Michigan Pa	art 201 Generic Clea	nup Criteria (GCC)								Sample ID	/ Sample Dat	e/Concentra	tion						
Parameter	CAS	Drinkin Protection	O	Direct Contact Criteria	Soil Volatilization to Indoor Air	Groundwater Surface Water		MW6		М	W7		М	W8			MW9			MW10		MV	W11
rarameter	Numbers	Frotection		Criteria	Inhalation Criteria	Interface Protection Criteria	0-12"	15-27"	32-43"	0-12"	16-28"	0-12"	15-27"	29-41"	41-52"	0-12"	15-27"	27-41"	0-12"	15-27"	27-41"	0-12"	28-39"
		Residential	Non- residential	Non-residential	Non-residential	Cincia	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89
MDEQ 624/8260 VOCs (µg/kg)																							
1,1 - Dichloroethene	75354	140	140	5.7E+05	330	2,600	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	108907	2,000	2,000	260,000	220,000	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	100414	1,500	1,500	140,000	140,000	360	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	75092	100	100	2.3E+06	240,000	30,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorofluoromethane	75694	52,000	150,000	560,000	560,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichlorofluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	95501	14,000	14,000	210,000	210,000	280	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dichlorodifluoromethane	75718	95,000	270,000	1.0E+06	1.7E+06	ID	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylacetate	141786	130,000	380,000	7.5E+06	7.5E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m+p-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	156592	1,400	1,400	640,000	41,000	12,000	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	156605	2,000	2,000	1.4E+06	43,000	30,000	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1- Dichloroethane	75343	18,000	50,000	890,000	430,000	15,000	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	127184	100	100	88,000	21,000	1,200	13.3	7.7	0.8	< 0.3	< 0.3	331	24.9	141.7	79.4	1.3	1.4	12.1	392	177.4	9.9	27.3	0.58
1,1,1, - Trichloroethane	71556	4,000	4,000	460,000	460,000	1,800	4.6	2.1	1.6	7.6	1.9	29.5	1.5	21.2	9.3	2.5	2.7	5.1	14.5	17.7	1.5	1.2	1.5
Trichloroethene	79016	100	100	500,000	1,900	4,000	<1.2	<1.2	<1.2	<1.2	<1.2	55.3	8.9	44.8	66.5	<1.2	<1.2	2.7	12.3	13.8	8.3	1.5	<1.2
Acetone	67641	15,000	42,000	7.3E+07	1.1E+08	34,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs (mg/kg)																							
Total PCBs	1336363	NLL	NLL	4 *	16,000	NLL	All BDL	All BDL	All BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg)																							
Varies	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/kg)																							
Lead	7439921	700	700	900	NLV	2,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 NLL Indicates parameter is not likely to leach under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.

2,000 - Lattice shaded cells exceed the groundwater surface water interface protection criteria and corresponding interval was removed by excavation.

Shaded column headings indicate that the soil associated with this sample interval was remediated by excavation in 2014.

ERM 2 of 3 8/7/2018

 Table 8
 Summary of Pre-2013 Soil Analytical Results
 General Electric Facility, Riverview, Michigan

			Michigan Pa	art 201 Generic Clea	nup Criteria (GCC))					Sampl	e ID/ Sample	Date/Concent	tration				
Parameter	CAS	Drinkin Protectio	ig Water	Direct Contact Criteria	Soil Volatilization to Indoor Air	Groundwater Surface Water		MW12			MW13	, •	Si	B1	Si	32	MW6	(OW6)
i atametei	Numbers	Trotectio	ii Criteria	Cinteria	Inhalation Criteria	Interface Protection	0-12"	15-27"	27-41"	0-12"	15-27"	29-41"	0-2'	2-4'	0-2'	4-6'	0-2'	4-6'
		Residential	Non- residential	Non-residential	Non-residential	Criteria	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	May-97	May-97	May-97	May-97	May-97	May-97
MDEQ 624/8260 VOCs (μg/kg)																		
1,1 - Dichloroethene	75354	140	140	5.7E+05	330	2,600	BDL	BDL	BDL	BDL	BDL	BDL	<2.7	<3.2	<3.0	3.9	<3.1	<3.0
Chlorobenzene	108907	2,000	2,000	260,000	220,000	500	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Ethylbenzene	100414	1,500	1,500	140,000	140,000	360	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Methylene Chloride	75092	100	100	2.3E+06	240,000	30,000	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Trichlorofluoromethane	75694	52,000	150,000	560,000	560,000	NA	NA	NA	NA	NA	NA	NA	<5.5	<6.4	<6.0	<6.0	<6.2	<6.0
1,1,2-Trichlorofluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
1,2-Dichlorobenzene	95501	14,000	14,000	210,000	210,000	280	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Dichlorodifluoromethane	75718	95,000	270,000	1.0E+06	1.7E+06	ID	NA	NA	NA	NA	NA	NA	<5.5	< 6.4	<6.0	<6.0	<6.2	<6.0
Ethylacetate	141786	130,000	380,000	7.5E+06	7.5E+06	NA	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
m+p-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
o-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
cis-1,2-Dichloroethene	156592	1,400	1,400	640,000	41,000	12,000	BDL	BDL	BDL	BDL	BDL	BDL	27	24	220	140	60	42
trans-1,2-Dichloroethene	156605	2,000	2,000	1.4E+06	43,000	30,000	BDL	BDL	BDL	BDL	BDL	BDL	<2.7	<3.2	16	13	4.6	<3.0
1,1- Dichloroethane	75343	18,000	50,000	890,000	430,000	15,000	BDL	BDL	BDL	BDL	BDL	BDL	<2.7	4.3	12	64	<3.1	<3
Tetrachloroethene	127184	100	100	88,000	21,000	1,200	251	196.2	47.9	87.1	88.6	11.6	61	48	460	<3.0	430	80
1,1,1, - Trichloroethane	71556	4,000	4,000	460,000	460,000	1,800	4.0	3.1	5.5	6.0	6.4	4.0	<2.7	<3.2	<3.0	41	<3.1	<3.0
Trichloroethene	79016	100	100	500,000	1,900	4,000	15.2	54.2	19.3	11.9	25.8	5.3	4.3	4.1	66	3.0	54	39
Acetone	67641	15,000	42,000	7.3E+07	1.1E+08	34,000	<550	<600	<620	<540	<610	< 560	NA	NA	NA	NA	NA	NA
PCBs (mg/kg)																		
Total PCBs	1336363	NLL	NLL	4 *	16,000	NLL	0.24	All BDL	All BDL	All BDL	All BDL	0.36	< 0.018	< 0.021	< 0.020	< 0.020	NA	NA
Pesticides (mg/kg)																		
Varies	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/kg)																		
Lead	7439921	700	700	900	NLV	2,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 NLL Indicates parameter is not likely to leach under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.

2,000 - Lattice shaded cells exceed the groundwater surface water interface protection criteria and corresponding interval was removed by excavation.

Shaded column headings indicate that the soil associated with this sample interval was remediated by excavation in 2014.

ERM 8/7/2018 3 of 3

Table 9 Indoor Sub-Slab Vapor Testing Results General Electric, Riverview, Michigan

	MDEO Part 201										Sample I	O, Sample C	ollection Da	te & Concer	ntration (ppl	bv)									
	Nonresidential Sub-Slab Soil Gas											Sub-Sla	b Vapor Ind	loor Sample	s										
Parameter	Concentration for Vapor Intrusion (ppbv)	SV-1 May 1996	SV-2 May 1996	SV-3 May 1996	SV-4 May 1996	SV-5 May 1996	SV-6 May 1996	SV-7 May 1996	SV-8 May 1996	SV-9 May 1996	SV-10 May 1996	SV-11 May 1996	SV-12 May 1996	SV-13 May 1996	SV-14 May 1996	SV-15 May 1996	SV-16 May 1996	SV-17 May 1996	SV-18 May 1996	SV-19 May 1996	SV-20 May 1996	SV-21 May 1996	SV-22 May 1996	SV-23 May 1996	SV-24 May 1996
Acetone	1,400,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
trans-1,2-Dichloroethylene	9,800	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	38	<10	<10	<10	<10	<10	<10	<10
Ethylbenzene	13,000	<35	<35	<35	<35	<35	<35	<35	<35	<35	85	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
Methylene Chloride	18,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Tetrachloroethylene	3,300	7J	<10	<10	11	20	<10	<10	30	<10	<10	<10	<10	<10	<10	<10	195	651	6,025	<10	<10	<10	22	<10	803
Toluene	740,000	<30	<30	<30	<30	<30	<30	<30	43	36	183	<30	<30	<30	<30	<30	59	<30	<30	<30	<30	<30	<30	<30	<30
1,1,1-Trichloroethane	610,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Trichloroethene	210	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	39	25	<10	<10	<10	<10	<10	<10
Total Xylenes	13,000	<35	<35	<35	<35	<35	<35	<35	<35	<35	20J	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35

- Notes:

 Samples were collected and analyzed by O'Brien and Gere Engineers, Inc., and reported in August 1996.

 Soil Gas Screening Levels per MDEQ Guidance Document for the Vapor Intrusion Pathway, May 2013.

 Laboratory analysis performed using a Photovac 10S70 portable gas chromatograph (GC).

 J Indicates estimated value below the method quantitation limit.

 Shaded values exceed the referenced Soil Gas Screening Level.

ERM 1 of 1 OCTOBER 2015

Table 10 Summary of Monitoring Well Construction General Electric, Riverview, Michigan

Observation Well Location	Year Installed	Grade Elevation	Top of Casing Elevation	Screen Depth	Sand Pack Depth
		ft. AMSL	ft. AMSL	ft. BG	ft. BG
PZ1	2005	594.46	594.97	0-6.2	Unknown
PZ2	2005	595.24	596.46	0-5.3	Unknown
PZ3	2005	594.32	594.78	0-3.4	Unknown
OW1	1997	594.83	596.83	3-8	2-10
OW2	1997	595.75	595.40	4-9	2-10
OW3	1997	595.49	594.85	3-8	2-10
OW4	1997	595.75	595.43	3.5-8.5	2-10
OW5	1997	595.52	595.00	3-8	2-10
OW6	1997	595.35	594.65	4-9	3-10
OW7	1997	595.85	595.52	3.5-8.5	2-10
OW8	1997	595.78	595.38	4-9	3-10
OW9	1997	594.24	593.66	4-9	3-10
MWA	1988 *	Unknown	Unknown	1-4	Unknown
MWB	1988 *	Unknown	Unknown	0.5-3.5	Unknown
MWC	1988 *	Unknown	Unknown	2.5-4.5	Unknown
MW2	1989 *	Unknown	Unknown	2-4	Unknown
MW3	1989 *	Unknown	Unknown	1.5-3.5	Unknown
MW4	1989 *	Unknown	Unknown	0.5-2.5	Unknown
MW5	1989 *	Unknown	Unknown	1.5-3.5	Unknown
MW9	1989 *	Unknown	Unknown	1.5-4.5	Unknown
MW12	1989 *	Unknown	Unknown	0.5-3.5	Unknown
MW13	1989 *	Unknown	Unknown	1-4	Unknown

- PZ1-PZ3, OW1-OW9, MWA-MWC were constructed of 2" diam. PVC materials. All other MW Series wells were constructed of 2" diam. steel.
- AMSL Above Mean Sea Level
- BG Below Grade
- * MW-Series wells were plugged and abandoned by Chester Environmental in 1993.
- Wells were not installed at the MW1, MW6, MW7, MW8, MW10, and MW11 locations.

Table 10 Summary of Monitoring Well Construction General Electric, Riverview, Michigan

Observation Well Location	Year Installed	Grade Elevation	Top of Casing Elevation	Screen Depth	Sand Pack Depth
		ft. AMSL	ft. AMSL	ft. BG	ft. BG
PZ1	2005	594.46	594.97	0-6.2	Unknown
PZ2	2005	595.24	596.46	0-5.3	Unknown
PZ3	2005	594.32	594.78	0-3.4	Unknown
OW1	1997	594.83	596.83	3-8	2-10
OW2	1997	595.75	595.40	4-9	2-10
OW3	1997	595.49	594.85	3-8	2-10
OW4	1997	595.75	595.43	3.5-8.5	2-10
OW5	1997	595.52	595.00	3-8	2-10
OW6	1997	595.35	594.65	4-9	3-10
OW7	1997	595.85	595.52	3.5-8.5	2-10
OW8	1997	595.78	595.38	4-9	3-10
OW9	1997	594.24	593.66	4-9	3-10
MWA	1988 *	Unknown	Unknown	1-4	Unknown
MWB	1988 *	Unknown	Unknown	0.5-3.5	Unknown
MWC	1988 *	Unknown	Unknown	2.5-4.5	Unknown
MW2	1989 *	Unknown	Unknown	2-4	Unknown
MW3	1989 *	Unknown	Unknown	1.5-3.5	Unknown
MW4	1989 *	Unknown	Unknown	0.5-2.5	Unknown
MW5	1989 *	Unknown	Unknown	1.5-3.5	Unknown
MW9	1989 *	Unknown	Unknown	1.5-4.5	Unknown
MW12	1989 *	Unknown	Unknown	0.5-3.5	Unknown
MW13	1989 *	Unknown	Unknown	1-4	Unknown

- PZ1-PZ3, OW1-OW9, MWA-MWC were constructed of 2" diam. PVC materials. All other MW Series wells were constructed of 2" diam. steel.
- AMSL Above Mean Sea Level
- BG Below Grade
- * MW-Series wells were plugged and abandoned by Chester Environmental in 1993.
- Wells were not installed at the MW1, MW6, MW7, MW8, MW10, and MW11 locations.

 Table 11
 Summary of Groundwater Analytical Results
 General Electric, Riverview, Michigan

		Micl	higan Part 201 Gen	eric Cleanup (Criteria (GCC)														
Parameter	CAS Numbers	Residential Drinking Water	Non- Residential Drinking Water	GSI	Nonresidential Volatilization to Indoor Air Inhalation	Sump Jun-87	Sump Apr-88	Sump May-88	Sump Apr-91	MW-A Apr-91	MW-B Apr-91	MW-C Apr-91	MW Mar-89	-2 ** Apr-91	MW Mar-89	√-3 ** Apr-91	MW-4 ** Mar-89	MW Mar-89	V-5 ** Apr-91
MDEQ 624/8260 VOCs (μg/I	.)							Sample Locatio	ns were Excava	ted in July 2002	2								
Tetrachloroethene	127184	5.0	5.0	60	170,000	2,700	56.3	91.7	9.0	17	99	2,500	15.6	22	1.58	<5	<2	3.53	<5
Trichloroethene	79016	5.0	5.0	200	4,900	390	176	43.3	<5	120	34	900	14	11	<1.2	<5	<2	<2	<5
cis-1,2- Dichloroethene	156592	70	70	620	210,000	<60	<2.0	NA	<5	NA	NA	NA	NA	BDL	NA	<5	NA	NA	<5
trans-1,2-Dichloroethene	156605	100	100	1,500	200,000	220	8.62	NA	< 5	<5	<5	<5	NA	<5	NA	<5	NA	NA	<5
Vinyl Chloride	75014	2.0	2.0	13	13,000	<100	7.15	39.1	<10	470	230	75	NA	<10	NA	<10	NA	NA	<10
1,1,1-Trichloroethane	71556	200	200	89	1.30E+06	<60	39.8	167	12	50	33	50	75.6	41	64.7	<5	<2	<2	<5
1,1-Dichloroethene	75354	7.0	7.0	130	1,300	<60	9.74	<2	<5	<5	7.0	21	NA	<5	NA	<5	NA	NA	<5
1,1-Dichloroethane	75343	880	2,500	740	2.30E+06	260	58.5	NA	12	900	220	1,000	NA	150	NA	<5	NA	NA	<5
Benzene	71432	5.0	5.0	200	35,000	<60	<2.0	<2	<5	NA	NA	NA	NA	<5	NA	<5	NA	NA	<5
Chlorobenzene	108907	100	100	25	470,000	<60	4.48	3.01	<5	<5	<5	<5	<2.0	<5	NA	<5	<2.0	<2.0	<5
Chloroethane	75003	430	1,700	1,100	5.70E+06	<60	<2.0	3.01	<10	100	61	18	NA	<10	NA	<10	NA	NA	<10
1,2 - Dichloroethane	107062	5.0	5.0	360	59,000	<60	<2.0	14.8	<5	<5	<5	<5	NA	<5	NA	<5	NA	NA	<5
1,1,2 - Trichloroethane	79005	5.0	5.0	330	110,000	<60	<2.0	167	<5	<5	<5	<5	NA	<5	NA	<5	NA	NA	<5
Ethyl Benzene	100414	74	74	18	170,000	710	<2.0	28.5	<5	17	<5	<5	NA	<5	NA	<5	NA	NA	<5
Methylene Chloride	75092	5.0	5.0	1,500	1.40E+06	<100	5.98	12.2	<5	10	<5	<5	<2	<5	NA	<5	<2	<2	<5
Toluene	108883	790	790	270	530,000	300	5.59	15.1	<5	39	<5	<5	NA	<5	NA	<5	NA	NA	<5
Total Xylene	1330207	280	280	41	190,000	<60	2.69	180	< 5	104	<5	<5	NA	<5	NA	<5	NA	NA	<5
MDEQ 625/8270 SVOCs (µg		200	200		150,000		,	100		101	Ü			J		J		- 11.1	
1,3-Dichlorobenzene	541731	6.6	19	28	41,000	NA	39.2	11.8	NA	<10	<10	<10	NA	<10	NA	<10	NA	NA	<10
1,4-Dichlorobenzene	106467	75	75	17	74,000	NA	36.9	20.1	NA	<10	<10	<10	NA	<10	NA	<10	NA	NA	<10
1,2,4-Trichlorobenzene	120821	70	70	99	300,000	NA	161	277	NA	20	<10	<10	NA	<10	NA	<10	NA	NA	<10
Bis(2-ethylexyl)pthalate	117817	6.0	6.0	25	NLV	NA	<10	<10	NA	18	<10	<10	NA	<10	NA	<10	NA	NA	<10
2,4-Dimethylphenol	105679	370	1,000	380	NLV	NA	<10	<10	NA	<10	<10	<10	NA	<10	NA	<10	NA	NA	<10
Phenol	108952	4,400	13,000	450	NLV	NA	<10	<10	NA	<10	<10	<10	NA	<10	NA	<10	NA	NA	<10
2-Methylnapthalene	91576	260	750	19	25,000	NA	<10	<10	NA	<10	<10	<10	NA	<10	NA	<10	NA	NA	<10
Methylphenol isomers	1319773	370	1,000	30	NLV	NA	<10	<10	NA	<10	<10	11	NA	<10	NA	<10	NA	NA	<10
PCBs (μg/L)	1017770	0,0	1,000		1127		-				1	I .		_					
Total PCBs	1336363	0.5	0.5	0.2	45	NA	25.3	<1	1.7	92	<1	<1	BDL	<1	4.3	<1	BDL	BDL	<1
Pesticides (µg/L)			1																
4,4-DDD	72548	9.1	37	NA	NLV	NA	<10	<2	NA	<0.1	<0.1	<0.1	<0.2	<0.1	NA	<0.1	< 0.2	0.767	<0.1
4,4-DDT	50293	3.6	10	0.02	NLV	NA	<10	<2	NA	<0.1	<0.1	<0.1	<0.2	<0.1	NA	<0.1	<0.2	0.924	<0.1
Metals (mg/L)	00230	0.0	10	0.02	1127	- 11.1	10	_		0.1	0.1	0.1	0.2	0.1		0.1	V.2	0.521	0.1
Arsenic	7440382	0.010	0.010	0.010	NLV	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	7440393	2.0	2.0	0.67	NLV	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	7440439	0.005	0.005	0.0025	NLV	NA	<0.1	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium	16065831	0.10	0.10	0.10	NLV	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	7439921	0.004	0.004	0.10	NLV	NA NA	<0.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Selenium	7782492	0.05	0.05	0.005	NLV	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	7440224	0.034	0.098	0.0003	NLV	NA	<0.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Mercury	Varies	0.002	0.002	0.0002	0.056	NA	<0.05	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA
1987 samples were collected						1 1/1	٠٥.٥٥	11/1	1 1/1	11/17	1 1/1	11/1	1 1/1	11/1	11/17	11/11	1 1/1	11/1	1 1/1

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA
- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- GSI = Groundwater/surface water interface.
 For simplification, only detected concentrations are shown on this table. See laboratory report for full list of analytes.
- NLV Indicates parameter is not likely to volatilize under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below target detection limit per MDEQ Operational Memorandum #2, Attachment 1, 10/22/2004.
- < Indicates value below laboratory detection limit
 ** Monitoring well plugged and abandoned in 1993.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) criteria. - Blue-diagonal values exceed the referenced non-residential volatilization to indoor air inhalation criteria.

ERM 1 of 4 8/7/2018

 Table 11
 Summary of Groundwater Analytical Results
 General Electric, Riverview, Michigan

		Mich	nigan Part 201 Gene	ric Cleanup (Criteria (GCC)																
Parameter	CAS Numbers	Residential Drinking Water *	Non- Residential Drinking Water *	GSI	Nonresidential Volatilization to Indoor Air Inhalation	MW Mar-89	/-9 ** Apr-91	MW- Mar-89	-12 ** Apr-91	MW- Mar-89	13 ** Apr-91	Jun-97	O Aug-98	W1 Jul-09	Nov-13	Jun-97	OW2 Aug-98	Jul-09	Jun-97	OW3 Aug-98	Jul-09
MDEQ 624/8260 VOCs (μg/L))																				
Tetrachloroethene	127184	5.0	5.0	60	170,000	<0.3	<5	67.9	26	3.7	38	<0.5	<0.5	<1	NA	<0.5	0.62	<5	< 0.5	<0.5	<1
Trichloroethene	79016	5.0	5.0	200	4,900	<1.2	<5	25.8	11	4.2	36	<0.5	<0.5	<1	NA	<0.5	<0.5	<5	< 0.5	<0.5	<1
cis-1,2- Dichloroethene	156592	70	70	620	210,000	NA	<5	NA	<5	NA	< 5	< 0.5	< 0.5	<1	NA	0.82	< 0.5	<5	7.8	2.5	<1
trans-1,2-Dichloroethene	156605	100	100	1,500	200,000	NA	<5	NA	<5	NA	<5	<0.5	<0.5	<1	NA	<0.5	<0.5	<5	0.74	<0.5	<1
Vinyl Chloride	75014	2.0	2.0	13	13,000	NA	<10	NA	<10	NA	<10	<1	<1	<1	<1	<1	<1	<5	<1	<1	<1
1,1,1-Trichloroethane	71556	200	200	89	1.30E+06	< 0.3	<5	236	<5	56.4	<5	< 0.5	< 0.5	<1	NA	3.8	25	47.7	< 0.5	0.56	<1
1,1-Dichloroethene	75354	7.0	7.0	130	1,300	NA	<5	NA	< 5	NA	< 5	< 0.5	< 0.5	<1	NA	<0.5	< 0.5	<5	< 0.5	<0.5	<1
1,1-Dichloroethane	75343	880	2,500	740	2.30E+06	NA	<5	NA	26	NA	13	< 0.5	< 0.5	<1	NA	6.3	12	22	1.5	1.9	<1
Benzene	71432	5.0	5.0	200	35,000	NA	<5	NA	<5	NA	< 5	< 0.5	< 0.5	<1	NA	<0.5	< 0.5	<5	< 0.5	<0.5	<1
Chlorobenzene	108907	100	100	25	470,000	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<1
Chloroethane	75003	430	1,700	1,100	5.70E+06	NA	<10	NA	<10	NA	<10	<1	<1	<1	NA	<1	<1	<5	<1	<1	<1
1,2 - Dichloroethane	107062	5.0	5.0	360	59,000	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	NA	<0.5	2.0	<5	<0.5	<0.5	<1
1,1,2 - Trichloroethane	79005	5.0	5.0	330	110,000	NA	<5	NA	<5	NA	7.0	< 0.5	<0.5	<1	NA	<0.5	< 0.5	<5	<0.5	<0.5	<1
Ethyl Benzene	100414	74	74	18	170,000	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	NA	<0.5	< 0.5	<5	< 0.5	<0.5	<1
Methylene Chloride	75092	5.0	5.0	1,500	1.40E+06	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	NA	<0.5	< 0.5	<5	< 0.5	<0.5	<1
Toluene	108883	790	790	270	530,000	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	NA	<0.5	< 0.5	<5	< 0.5	<0.5	<1
Total Xylene	1330207	280	280	41	190,000	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	NA	<0.5	< 0.5	<5	< 0.5	< 0.5	<1
MDEQ 625/8270 SVOCs (μg/	L)																				
1,3-Dichlorobenzene	541731	6.6	19	28	41,000	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
1,4-Dichlorobenzene	106467	75	75	17	74,000	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
1,2,4-Trichlorobenzene	120821	70	70	99	300,000	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
Bis(2-ethylexyl)pthalate	117817	6.0	6.0	25	NLV	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
2,4-Dimethylphenol	105679	370	1,000	380	NLV	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
Phenol	108952	4,400	13,000	450	NLV	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
2-Methylnapthalene	91576	260	750	19	25,000	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
Methylphenol isomers	1319773	370	1,000	30	NLV	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
PCBs (μg/L)																					
Total PCBs	1336363	0.5	0.5	0.2	45	1.6	<1	2.8	<1	2.5	<1	<0.2	NA	< 0.503	NA	<0.2	NA	< 0.504	< 0.2	NA	< 0.507
Pesticides (µg/L)																					
4,4-DDD	72548	9.1	37	NA	NLV	NA	<0.1	NA	<0.1	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4-DDT	50293	3.6	10	0.02	NLV	NA	<0.1	NA	<0.1	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/L)	•	•					•		•						•			•			
Arsenic	7440382	0.010	0.010	0.010	NLV	NA	NA	NA	NA	NA	NA	NA	NA	< 0.01	< 0.005	NA	NA	< 0.01	NA	NA	< 0.01
Barium	7440393	2.0	2.0	0.67	NLV	NA	NA	NA	NA	NA	NA	NA	NA	0.0494J	NA	NA	NA	<0.1	NA	NA	<0.1
Cadmium	7440439	0.005	0.005	0.0025	NLV	NA	NA	NA	NA	NA	NA	NA	NA	0.00276J	< 0.001	NA	NA	< 0.01	NA	NA	< 0.01
Chromium	16065831	0.10	0.10	0.10	NLV	NA	NA	NA	NA	NA	NA	NA	NA	0.00146J	NA	NA	NA	< 0.01	NA	NA	<0.01
Lead	7439921	0.004	0.004	0.014	NLV	NA	NA	NA	NA	NA	NA	NA	NA	<0.01	NA	NA	NA	< 0.01	NA	NA	<0.01
Selenium	7782492	0.05	0.05	0.005	NLV	NA	NA	NA	NA	NA	NA	NA	NA	< 0.02	< 0.005	NA	NA	< 0.02	NA	NA	< 0.02
Silver	7440224	0.034	0.098	0.0002	NLV	NA	NA	NA	NA	NA	NA	NA	NA	0.00308J	< 0.0002	NA	NA	< 0.01	NA	NA	< 0.01
Mercury	Varies	0.002	0.002	0.0000013	0.056	NA	NA	NA	NA	NA	NA	NA	NA	<0.000285	NA	NA	NA	< 0.000285	NA	NA	< 0.000285
1987 samples were collected b		000 1 1000	1		10011		l .		l .		1	J.	1					1	1	1	

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA
- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- GSI = Groundwater/surface water interface.
 For simplification, only detected concentrations are shown on this table. See laboratory report for full list of analytes.
- NLV Indicates parameter is not likely to volatilize under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below target detection limit per MDEQ Operational Memorandum #2, Attachment 1, 10/22/2004.
- < Indicates value below laboratory detection limit
 ** Monitoring well plugged and abandoned in 1993.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) criteria. - Blue-diagonal values exceed the referenced non-residential volatilization to indoor air inhalation criteria.

ERM 2 of 4 8/7/2018

 Table 11
 Summary of Groundwater Analytical Results
 General Electric, Riverview, Michigan

		Mich	nigan Part 201 Gene	eric Cleanup (Criteria (GCC)															
Parameter	CAS Numbers	Residential Drinking Water *	Non- Residential Drinking Water *	GSI	Nonresidential Volatilization to Indoor Air Inhalation	Jun-97	O Aug-98	W4 Jul-09	Nov-13	Jun-97	Aug-98	OW5 Jul-09	Nov-13	Nov-13 Dup	Jun-97	OW6 Aug-98	Jul-09	Jun-97	OW7 Aug-98	Ju1-09
MDEQ 624/8260 VOCs (μg/I	L)																			
Tetrachloroethene	127184	5.0	5.0	60	170,000	< 0.5	<0.5	<1	NA	1.0	1.9	<10	NA	NA	<0.5	0.61	<10	<0.5	<0.5	<1
Trichloroethene	79016	5.0	5.0	200	4,900	< 0.5	<0.5	<1	NA	4.9	6.0	<10	NA	NA	3.5	5.8	<10	<0.5	<0.5	<1
cis-1,2- Dichloroethene	156592	70	70	620	210,000	< 0.5	<0.5	<1	NA	40	24	15.5	NA	NA	43	40	68	<0.5	<0.5	<1
trans-1,2-Dichloroethene	156605	100	100	1,500	200,000	<0.5	<0.5	<1	NA	7.4	5.5	<10	NA	NA	5.8	3.7	<10	<0.5	<0.5	<1
Vinyl Chloride	75014	2.0	2.0	13	13,000	<1	<1	<1	<1	24	29	13.5	19	20	1.1	<1	<10	<1	<1	<1
1,1,1-Trichloroethane	71556	200	200	89	1.30E+06	<0.5	<0.5	<1	NA	2.2	3.2	<10	NA	NA	89	38	32.7	<0.5	<0.5	<1
1,1-Dichloroethene	75354	7.0	7.0	130	1,300	<0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	3.5	1.0	<10	<0.5	<0.5	<1
1,1-Dichloroethane	75343	880	2,500	740	2.30E+06	1.0	0.5	<1	NA	11	8.8	<10	NA	NA	43	25	20.1	<0.5	<0.5	<1
Benzene	71432	5.0	5.0	200	35,000	<0.5	<0.5	<1	NA	2.7	5.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
Chlorobenzene	108907	100	100	25	470,000	<0.5	<0.5	<1	<1	<0.5	99	103	68	67	<0.5	<0.5	<10	<0.5	<0.5	<1
Chloroethane	75003	430	1,700	1,100	5.70E+06	<1	<1	<1	NA	<1	1.1	<10	NA	NA	<1	<1	<10	<1	<1	<1
1,2 - Dichloroethane	107062	5.0	5.0	360	59,000	< 0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
1,1,2 - Trichloroethane	79005	5.0	5.0	330	110,000	<0.5	<0.5	<1	NA	BDL	<0.5	<10	NA	NA	1.7	0.83	<10	<0.5	<0.5	<1
Ethyl Benzene	100414	74	74	18	170,000	< 0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
Methylene Chloride	75092	5.0	5.0	1,500	1.40E+06	<0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
Toluene	108883	790	790	270	530,000	< 0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
Total Xylene	1330207	280	280	41	190,000	< 0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
MDEQ 625/8270 SVOCs (μg	/L)																			
1,3-Dichlorobenzene	541731	6.6	19	28	41,000	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
1,4-Dichlorobenzene	106467	75	75	17	74,000	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
1,2,4-Trichlorobenzene	120821	70	70	99	300,000	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
Bis(2-ethylexyl)pthalate	117817	6.0	6.0	25	NLV	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
2,4-Dimethylphenol	105679	370	1,000	380	NLV	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	< 5.05	NA	NA	<5.11
Phenol	108952	4,400	13,000	450	NLV	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
2-Methylnapthalene	91576	260	750	19	25,000	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
Methylphenol isomers	1319773	370	1,000	30	NLV	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
PCBs (µg/L)																				
Total PCBs	1336363	0.5	0.5	0.2	45	<0.2	NA	< 0.506	NA	<0.21	NA	<5.00	NA	NA	<0.21	NA	< 0.512	<0.2	NA	< 0.510
Pesticides (µg/L)																				
4,4-DDD	72548	9.1	37	NA	NLV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4-DDT	50293	3.6	10	0.02	NLV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/L)																				
Arsenic	7440382	0.010	0.010	0.010	NLV	NA	NA	< 0.01	< 0.005	NA	NA	0.0102	< 0.005	<5	NA	NA	< 0.01	NA	NA	< 0.01
Barium	7440393	2.0	2.0	0.67	NLV	NA	NA	<0.1	NA	NA	NA	<0.1	NA	NA	NA	NA	<0.1	NA	NA	<0.1
Cadmium	7440439	0.005	0.005	0.0025	NLV	NA	NA	< 0.01	< 0.001	NA	NA	< 0.01	< 0.001	<1	NA	NA	< 0.01	NA	NA	< 0.01
Chromium	16065831	0.10	0.10	0.10	NLV	NA	NA	< 0.01	NA	NA	NA	< 0.01	NA	NA	NA	NA	< 0.01	NA	NA	< 0.01
Lead	7439921	0.004	0.004	0.014	NLV	NA	NA	< 0.01	NA	NA	NA	< 0.01	NA	NA	NA	NA	< 0.01	NA	NA	< 0.01
Selenium	7782492	0.05	0.05	0.005	NLV	NA	NA	0.0205	< 0.005	NA	NA	< 0.02	< 0.005	<5	NA	NA	< 0.02	NA	NA	< 0.02
Silver	7440224	0.034	0.098	0.0002	NLV	NA	NA	< 0.01	< 0.0002	NA	NA	< 0.01	< 0.0002	<0.2	NA	NA	< 0.01	NA	NA	< 0.01
Mercury	Varies	0.002	0.002	0.0000013	0.056	NA	NA	< 0.000285	NA	NA	NA	< 0.000285	NA	NA	NA	NA	< 0.000285	NA	NA	< 0.000285
1987 samples were collected	by Clayton	1988 and 1989 cam	nles were collecte	d by OHM	1991 samples were															

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA
- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- GSI = Groundwater/surface water interface.
 For simplification, only detected concentrations are shown on this table. See laboratory report for full list of analytes.
- NLV Indicates parameter is not likely to volatilize under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below target detection limit per MDEQ Operational Memorandum #2, Attachment 1, 10/22/2004.
- < Indicates value below laboratory detection limit
 ** Monitoring well plugged and abandoned in 1993.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) criteria. - Blue-diagonal values exceed the referenced non-residential volatilization to indoor air inhalation criteria.

ERM 3 of 4 8/7/2018

 Table 11
 Summary of Groundwater Analytical Results
 General Electric, Riverview, Michigan

		Micl	higan Part 201 Gene	eric Cleanup (Criteria (GCC)													
Parameter	CAS Numbers	Residential Drinking Water *	Non- Residential Drinking Water	GSI	Nonresidential Volatilization to Indoor Air Inhalation	Jun-97	OW8 Aug-98	Jul-09	Jun-97	Aug-98	OW9 Jul-09	Jul-09 Dup	Jul-09	PZ1 Jul-09 Dup	Nov-13	MH-West Office Nov-13	EB-1 Nov-13	EB-2 Nov-13
MDEQ 624/8260 VOCs (μg/I	.)		•									•				•		
Tetrachloroethene	127184	5.0	5.0	60	170,000	<0.5	< 0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	5.9	<1	<1
Trichloroethene	79016	5.0	5.0	200	4,900	<0.5	<0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	3.8	<1	<1
cis-1,2- Dichloroethene	156592	70	70	620	210,000	61	52	33.4	<0.5	<0.5	<1	<1	<1	<1	NA	11	<1	<1
trans-1,2-Dichloroethene	156605	100	100	1,500	200,000	8.3	5.3	2.59	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Vinyl Chloride	75014	2.0	2.0	13	13,000	4.2	1.7	1.68	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	71556	200	200	89	1.30E+06	2.4	1.2	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
1,1-Dichloroethene	75354	7.0	7.0	130	1,300	1.4	0.66	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
1,1-Dichloroethane	75343	880	2,500	740	2.30E+06	61	52	31.9	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Benzene	71432	5.0	5.0	200	35,000	<0.5	< 0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Chlorobenzene	108907	100	100	25	470,000	<0.5	< 0.5	<1	<0.5	<0.5	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	75003	430	1,700	1,100	5.70E+06	<1	<1	<1	<1	<1	<1	<1	<1	<1	NA	<1	<1	<1
1,2 - Dichloroethane	107062	5.0	5.0	360	59,000	<0.5	< 0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
1,1,2 - Trichloroethane	79005	5.0	5.0	330	110,000	<0.5	< 0.5	<1	<0.5	< 0.5	<1	<1	<1	<1	NA	<1	<1	<1
Ethyl Benzene	100414	74	74	18	170,000	<0.5	< 0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Methylene Chloride	75092	5.0	5.0	1,500	1.40E+06	<0.5	< 0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<5	<5	<5
Toluene	108883	790	790	270	530,000	<0.5	< 0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Total Xylene	1330207	280	280	41	190,000	<0.5	< 0.5	<1	<0.5	< 0.5	<1	<1	<1	<1	NA	<3	<3	<3
MDEQ 625/8270 SVOCs (μg/	/L)																	
1,3-Dichlorobenzene	541731	6.6	19	28	41,000	NA	NA	<5.25	NA	NA	<5.05	<5.08	<5.09	<5.11	NA	NA	NA	NA
1,4-Dichlorobenzene	106467	75	75	17	74,000	NA	NA	<5.25	NA	NA	<5.05	< 5.08	< 5.09	<5.11	NA	NA	NA	NA
1,2,4-Trichlorobenzene	120821	70	70	99	300,000	NA	NA	<5.25	NA	NA	<5.05	<5.08	<5.09	<5.11	NA	NA	NA	NA
Bis(2-ethylexyl)pthalate	117817	6.0	6.0	25	NLV	NA	NA	<5.25	NA	NA	<5.05	<5.08	< 5.09	<5.11	NA	NA	NA	NA
2,4-Dimethylphenol	105679	370	1,000	380	NLV	NA	NA	<5.25	NA	NA	<5.05	< 5.08	< 5.09	<5.11	NA	NA	NA	NA
Phenol	108952	4,400	13,000	450	NLV	NA	NA	<5.25	NA	NA	<5.05	< 5.08	<5.09	<5.11	NA	NA	NA	NA
2-Methylnapthalene	91576	260	750	19	25,000	NA	NA	<5.25	NA	NA	<5.05	< 5.08	<5.09	<5.11	NA	NA	NA	NA
Methylphenol isomers	1319773	370	1,000	30	NLV	NA	NA	<5.25	NA	NA	<5.05	<5.08	<5.09	<5.11	NA	NA	NA	NA
PCBs (µg/L)																		
Total PCBs	1336363	0.5	0.5	0.2	45	<0.2	NA	< 0.522	< 0.22	NA	< 0.514	< 0.513	< 0.506	<0.508	NA	NA	< 0.20	< 0.20
Pesticides (µg/L)																		
4,4-DDD	72548	9.1	37	NA	NLV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4-DDT	50293	3.6	10	0.02	NLV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/L)																		
Arsenic	7440382	0.010	0.010	0.010	NLV	NA	NA	< 0.01	NA	NA	< 0.01	< 0.01	< 0.01	0.0103	< 0.005	NA	< 0.005	< 0.005
Barium	7440393	2.0	2.0	0.67	NLV	NA	NA	<0.1	NA	NA	<0.1	<0.1	<0.1	<0.1	NA	NA	0.026	0.026
Cadmium	7440439	0.005	0.005	0.0025	NLV	NA	NA	< 0.01	NA	NA	< 0.01	< 0.01	< 0.01	< 0.01	< 0.001	NA	< 0.001	< 0.001
Chromium	16065831	0.10	0.10	0.10	NLV	NA	NA	< 0.01	NA	NA	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	< 0.005	< 0.005
Lead	7439921	0.004	0.004	0.014	NLV	NA	NA	< 0.01	NA	NA	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	< 0.003	< 0.003
Selenium	7782492	0.05	0.05	0.005	NLV	NA	NA	< 0.02	NA	NA	<0.02	< 0.02	< 0.02	< 0.02	< 0.005	NA	< 0.005	< 0.005
Silver	7440224	0.034	0.098	0.0002	NLV	NA	NA	< 0.01	NA	NA	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0002	NA	< 0.0002	< 0.0002
Mercury	Varies	0.002	0.002	0.0000013	0.056	NA	NA	< 0.000285	NA	NA	< 0.000285	< 0.000285	< 0.000285	< 0.000285	NA	NA	< 0.0002	< 0.0002

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA
- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- GSI = Groundwater/surface water interface.
 For simplification, only detected concentrations are shown on this table. See laboratory report for full list of analytes.
- NLV Indicates parameter is not likely to volatilize under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below target detection limit per MDEQ Operational Memorandum #2, Attachment 1, 10/22/2004.
- < Indicates value below laboratory detection limit
 ** Monitoring well plugged and abandoned in 1993.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) criteria. - Blue-diagonal values exceed the referenced non-residential volatilization to indoor air inhalation criteria.

ERM 4 of 4 8/7/2018

Table 12 Borings Completed During 2013 to 2017 Investigations General Electric, Riverview, Michigan

		1			1	T	l	ı		
Map	Sample				l			Soil		
Boring	Boring	Date	Drilling		Total	-	n.	Sample		
ID	ID	Completed	Method	Surface Cover	Depth	Description	PID	Interval	Analyses	Geologist
EB-3		11/19/2013	Hand Auger	Grass	10'	0-1' Topsoil 1-9.5' Moderately stiff, grayish brown clay w/ silt, trace gravel, moist, very low plasticity 9.5-10' Wet clay	0	8-10'	1,3,12,13	SH
EB-4		11/19/2013	Hand Auger	Grass	7'	0-1' Topsoil 1-7' Moderately stiff, grayish brown clay w/ silt, trace gravel, moist, very low plasticity	0	5-7'	1,3,12,13	SH
EB-5			Geoprobe	Asphalt	15'					SH
		11/20/2013				0-0.25' Asphalt 0.25-1.25' Asphalt road base (sand/gravel fill) 1.25-2.5' Loose It brn fine sand, moist-wet, clay lense @ 1.6-1.75' 2.5-15' Moderately stiff grayish brown clay, trace silt & gravel, moist, low plasticity.	NA	10-12'	1,3,12,13	
EB-7		11/19/2013	Hand Auger	Asphalt	4.5'	0-0.2' Asphalt 0.2-4' Lt brn sand 4-4.5' Wet clay	NA	0-1'	1,3,12,13	SH
EB-8		11/19/2013	Hand Auger	Asphalt	4'	0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-2' Lt brn, wet sand 2-3.5' Wet, gray sand 3.5-4' Clay	NA	0-1'	1,3,12,13	SH
EB-9		11/19/2013	Geoprobe	Asphalt	4'	0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-2' Lt gray sand 2-4' Clay	NA	0-1'	1,3,12,13	SH
EB-12		11/19/2013	Geoprobe	Asphalt	4'	0.2' Asphalt 0.2-8' Gravel/asphalt loose 1-2' Lt gray sand 2-4' Clay	NA	0-1'	1,3,12,13	SH
EB-14		11/20/2013	Geoprobe	Concrete	7'	0-0.2' Concrete 0.2-3.75' Lt brn sand 3.75-7' Gray clay	NA	0-1'	1,3,12,13	SH
EB-16		11/20/2013	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-0.5'	1,3,12,13	SH
EB-19		11/20/2013	Geoprobe	Asphalt	5'	0-0.2' Asphalt 0.2-1' Loose asphalt & blk gravel 1-5' Native gray clay	NA	0-0.5'	1,3,12,13	SH
EB-20		11/20/2013	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-1' Loose drk brn gravel 1-1.5' Loose, lt brn sand 1.5-2' Native gray clay	NA	0-0.5'	1,3,12,13	SH
EB-23		11/20/2013	Geoprobe	Asphalt	10'	0-0.2' Asphalt 0.2-0.8' Loose blk gravel & asphalt 1-2.5' Lt grayish brown, moderately stiff clay w/ sand, moist 2.5-3' Gray sand, fine grained, moist 3-5' Gray clay, stiff, moist 5-5.5' Gray sand, fine grained, moist	0	5-6'	1,12,13	SH
						5.5-6' Gray clay, stiff 6-6.2' Crushed asphalt & gravel, blk 6.2-10' Lt grayish brown, stiff clay	0	9-10'	1,12,13	
EB-24		11/20/2013	Geoprobe	Grass	5'	0-0.25' Topsoil 0.25-2' Lg gray gravel, wet, w/ silt 2-5' Native gray clay	NA	0-1'	1,3,12,13	SH
EB-25		11/20/2013	Geoprobe	Grass	1.5'	0-0.5' Topsoil 0.5-1' Gravel 1-1.5' Gray clay	NA	0-1'	1,3,12,13	SH
EB-26		11/20/2013	Geoprobe	Grass	1.5'	0-0.5' Topsoil 0.5-1' Gravel 1-1.5' Gray clay	NA	0-1'	1,3,12,13	SH
EB-27		11/20/2013	Geoprobe	Grass	1.5'	0-0.5' Topsoil 0.5-1' Gravel 1-1.5' Gray clay	NA	0-1'	1,3,12,13	SH
EB-28		11/20/2013	Geoprobe	Grass	1.5'	0-0.5' Topsoil 0.5-1' Gravel 1-1.5' Gray clay	NA	0-1'	1,3,12,13	SH

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID	Soil Sample Interval		Geologist
EB-31		11/20/2013	Hand Auger	Grass	1'	0-1' Clay	NA	0-1'	1,3,12,13	SH
EB-32		11/20/2013	Hand Auger	Grass	1'	0-1' Clay	NA	0-1'	1,3,12,13	SH
EB-33		11/20/2013	Hand Auger	Grass	1.5'	0-0.5' Topsoil 0.5-1' Gravel/cobble concrete 1-1.5' Clay	NA	0-0.5'	1,3,12,13	SH
1	HAB-1	4/7/2014	Hand Auger	Concrete	3.5'	0-0.5' Concrete 0.5'-3.5' Loose brn-drk brn very fine well graded sand w/ some silt, trace clay, moist to wet @ 3.5'	NA	0-2' 2-3.5'	1,3,12,13 1,3,12,13	ВВ
2	HAB-2	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete		0-2'	1,3,12,13	BB
			J			0.5-3.5' Loose brn very fine well graded sand , trace silt & clay, moist 3.5-4' Moderately soft drk brn-blk clay, moist	NA	2-4'	1,3,12,13	
3	HAB-3	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete	NA	0-2'	1,3,12,13	BB
4	HAB-4	4/7/2014	Hand Associ	Concrete	4'	0.5-4' Loose brn very fine well graded sand, trace silt & clay, moist 0-0.5' Concrete		2-4' 0-2'	1,3,12,13	BB
4	пар-4	4/7/2014	Hand Auger	Concrete	4	0.5-3.9' Loose brn very fine well graded sand, trace silt & clay, moist 3.9-4' Moderately soft drk brn-blk clay, moist	NA	2-4'	1,3,12,13 1,3,12,13	DD
5	HAB-5	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete	NTA	0-2'	1,3,12,13	BB
	***-		Ü			0.5-4' Loose brn well graded very fine sand, trace silt & clay, mois	NA	2-4'	1,3,12,13	
6	HAB-6	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete		0-2'	1,3,12,13	ВВ
						0.5-2.75' Loose brn very fine well graded sand , trace silt & clay, moist 2.75-4' Soft brn sandy clay , moist, cohesive, plastic, wet @ bottom	NA	2-4'	1,3,12,13	
7	HAB-7	4/7/2014	Hand Auger	Concrete	8'	0-0.5' Concrete		0-2'	1,3,12,13	BB
						0.5-4' Loose brn very fine well graded sand , trace silt & clay 4' clay , moist	NA	2-4'	1,3,12,13	
		6/12/2014				4-8' Moderately stiff brownish gray-dark gray lean clay, trace	NA	4-6'	1,3	
						gravel, high plasticity, moist		6-8'	1,3	
8	HAB-8	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-4' Loose brn very fine well graded sand, trace silt & clay, wet	NA	0-2'	1,3,12,13	ВВ
						@ 4'		2-4'	1,3,12,13	
9	HAB-9	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-4' Loose brn very fine well graded sand, trace silt & clay, wet clay @ 4'	NA	0-2' 2-4'	1,3,12,13 1,3,12,13	BB
10	IIAD 10	4 /7 /2014	TT 1 A	Camanata	41	177			1,0,12,10	BB
10	HAB-10	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-4' Loose brn very fine well graded sand, clay seam @ 1.6-1.8', clay @ 4'	NA	0-2' 2-4'	1,3,12,13 1,3,12,13	
11	HAB-11	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete	NA	0-2'	1,3,12,13	ВВ
						0.5-4' Loose brn well graded very fine sand, trace silt & clay, mois Sand, wet @ 3'		2-4'	1,3,12,13	BB
12	HAB-12	4/7/2014	Hand Auger	Concrete	3'	Suite, net #3	NA	0-2' 2-3'	1,3,12,13 1,3,12,13	ВВ
13	HAB-13	4/7/2014	Hand Auger	Concrete	3'	Sand, wet @ 3'				BB
		-, -, -011	uger				NA	0-2'	1,3,12,13	
EBG-1	ERM- BG-1	4/8/2014	Hand Auger	Grass	4'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NA	2-3' 0-1'	1,3,12,13	ВВ
							INA	3-4'	11	
EBG-2	ERM- BG-2	4/8/2014	Hand Auger	Grass	4'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NA	0.3-1'	11	ВВ
							- 11. 4	3-4'	11	
EBG-3	ERM- BG-3	4/8/2014	Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'		0.3-1'	11	ВВ
							NA	2-3'	11	
EBG-4	ERM- BG-4	4/8/2014	Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NA	0.3-1'	11	ВВ
								2-3'	11	

Map Boring ID	ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab Analyses	
EBG-5	ERM- BG-5	4/8/2014	Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NA	0.3-1' 2-3'	11 11	BB
EBG-6	ERM- BG-6	4/8/2014	Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NIA	0.3-1'	11	ВВ
							NA	2-3'	11	
EBG-7	ERM- BG-7	4/8/2014	Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NA	0.3-1'	11	BB
EBG-8	ERM-		Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'		2-3'	11	BB
	BG-8	4/8/2014					NA	0.3-1'	11	
EBG-9	ERM-		Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'		2-3'	11	BB
	BG-9	4/8/2014					NA	0.3-1'	11	
EBG-10	ERM-		Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'		2-3'	11	ВВ
EDG-10	BG-10	4/8/2014	Tianu Auger	Glass	3	bank blown san ee taly w/ alace small gravel, wee \(\theta 2.5\)	NA	0.3-1' 2-3'	11 11	DD
14	HAB-14	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0-0.5-3.5' Loose grayish brown-brown poorly graded fine sand, trace gravel & clay, moist 3.5-4' Gray lean clay, high plasticity, moist	0	0-2'	1,3,12,13	ВВ
								2-4'	1,3,12,13	
15	HAB-15	6/11/2014	Hand Auger	Concrete	4'	0-0.5 Concrete 0.5-1' Loose grayish brown-brown poorly graded fine sand w/ clay, moist, trace gravel, slight solvent-like odors noted 1-4.75' Loose grayish brown-brown poorly graded fine sand, trace clay, moist 4.75-5' Stiff gray lean clay, moist, high plasticity	0	0-2'	1,3,12,13	ВВ
								2-4'	1,3,12,13	
16	HAB-16	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.5' Loose grayish brown-brown poorly graded fine sand, trace clay & gravel, moist 3.5-4' Moderately stiff brownish gray-dark gray lean clay, high	NA	0-2'	1,3,12,13	BB
17	HAB-17		Hand Auger	Concrete	4'	plasticity, moist 0-0.5 Concrete		2-4'	1,3,12,13	BB
17		6/11/2014	Tiana Tiager	Concrete	ī	0.5-3.75 Loose grayish brow-brown poorly graded fine sand, trace clay & gravel, moist 3.75-4 Moderately stiff gray lean clay, high plasticity, moist	NA	0-2'	1,3	DD .
								2-4'	1,3	
18	HAB-18	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.5' Loose grayish brown-brown poorly graded fine sand, trace clay & gravel, moist	NA	0-2'	1,3	BB
						3.5-4' Moderately stiff grayish brow lean clay , high plasticity, trace gravel, moist	- 1,2-2	2-4'	1,3	
19	HAB-19	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.75' Loose grayish brown-brown poorly graded fine sand, trace clay & gravel, moist		0-2'	1,3	ВВ
						3.75-4' Stiff brownish gray-dark gray lean clay , trace gravel, high plasticity, moist	NA	2-4'	1,3	
20	HAB-20	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.75' Loose grayish brown-brown poorly graded fine sand, trace clay & gravel, moist. Strong solvent-like odors noted 1-3'. 3.75-4' Stiff brownish gray-dark gray lean clay, trace gravel, high plasticity, moist	2.5	0-2'	1,3 1,3	ВВ
						<u> </u>			,	

Map	Sample							Soil		
Boring ID	Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab Analyses	Geologist
21	HAB-21		Hand Auger	Concrete	4'	0-0.5' Concrete				BB
		6/11/2014				0.5-3.75' Loose grayish brown-brown poorly graded fine sand, trace clay & gravel, moist. Slight odors noted 1-2'.	2.5	0-2'	1,3	
	****			_		3.75-4' Stiff brownish gray-dark gray lean clay , trace gravel, high	2.3	2-4'	1,3	777
22	HAB-22	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3' Loose grayish brown-brown fine poorly graded sand,	2	0-2'	1,3	BB
						moist, trace gravel 0-3.75' Loose grayish brown-brown fine poorly graded sand,	4.5	2.41		
						moist, trace clay 3.75-4' Stiff grayish brown-dark gray clay , trace gravel, moist	1.5	2-4'	1,3	
23	HAB-23	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.75' Loose grayish brown-brown poorly graded fine sand,	NTA	0-2'	1,3	BB
		, ,				trace clay& gravel, moist-wet @3.5' 3.75-4' Stiff brownish gray-dark gray lean clay , trace gravel,	NA	2-4'	1,3	
24	HAB-24	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete		0-2'	1,3	BB
		0/11/2014				0.5-2' Loose grayish brown-brown poorly graded fine sand , trace gravel, moist	NA		,	
25	HAB-25		Hand Auger	Concrete	4'	2-3' Loose grayish vrown-brown poorly graded fine sand, trace 0-0.5' Concrete		2-4'	1,3	BB
		6/11/2014	J			0.5-2' Loose grayish brown-brown poorly graded fine sand w/ trace gravel & clay, moist	NA	0-2'	1,3	
26	HAB-26		Hand Auger	Concrete	4'	2-3.75' Loose grayish brown-brown poorly gaded fine sand w/		2-4'	1,3	BB
20	11AD-20	6/11/2014	Tianu Auger	Concrete	4	0.5-3.75' Loose grayish brown-brown poorly graded fine sand , trace clay & gravel, moist-wet @ ~ 3.5'	NA	0-2'	1,3	DD
	****			_		3.75-4' Moderately stiff brownish gray-dark gray lean clay, high		2-4'	1,3	777
27	HAB-27	6/11/2014	Hand Auger	Concrete	6'	0-0.5' Concrete 0.5-2' Loose grayish brown-brown poorly graded fine sand , trace	2.8	0-2'	1,3	BB
						gravel, moist 2-2.25' Soft brownish gray to brown lean clay , high plasticity,	2	2-4'	1,3	
28	HAB-28	6/12/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.75' Loose grayish brown-brown poorly graded fine sand,	9	0-2'	1,3	BB
						trace gravel, moist 3.75-4' Stiff brownish gray-dark gray lean clay , high plasticity,		2-4'	1,3	
						trace gravel, moist		4.5-5'	3	
29	HAB-29	6/12/2014	Hand Auger	Concrete	6'	0-0.5' Concrete 0.5-6' Loose grayish brown-brown poorly graded fine sand, trace		0-2'	1,3	BB
		0/12/2011				clay & gravel, moist-wet @ ~ 3.75'	NA	2-4'	1,3	
30	HAB-30	£ /12 /2014	Hand Auger	Concrete	8'	0-0.5' Concrete			,	BB
		6/12/2014				0.5-3' Loose grayish brown-brown poorly graded fine sand w/some clay & trace gravel, moist		0-2'	1,3	
						3-3.25' Soft grayish brown lean clay , high plasticity, moist 3.25-3.75' Loose grayish brown-brown poorly graded fine sand	NA	2-4'	1,3	
		8/20/2014				4-8' Stiff brownish gray clay , trace silt & gravel, moist-wet @ ~ 7'		4-6' 6-8'	1 1	
31	HAB-31	6/12/2014	Hand Auger	Concrete	4'	0-0.5' Concrete		0-2'		BB
		, ,				0.5-3' Loose grayish brown-brown poorly graded fine sand , trace gravel, moist	NA		1,3	
		6/12/2014		_		3-3.75' Loose grayish brown-brown poorly graded fine sand,		2-4'	1,3	BB
32	HAB-32	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0.7	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.4			
33	HAB-33	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				BB
		, -,					38.7	0-2'	1,3	
						0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt	13			nn
34	HAB-34	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	12.1	0-2'	2	BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2	3	
							15	3-3.5'	3	
35	HAB-35	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
							17.9	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt	3.8			pp
36	HAB-36	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	1.4	0-2'	1.2	BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2	1,3	
27	IIAD OF	0 /10 /2011	TT 1 A	Com	21		1.4			BB
37	HAB-37	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	69	0-2'	1,3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	5			
						·				

Tables

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the President Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .		1	
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 HAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 up Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Bori HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	SSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection NLL GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Volatilization Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Tables

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the President Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .		1	
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 HAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28 HAB-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Concentration Concen	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 up Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Bori HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-49 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Volatilization Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Desire 04	D 0=	Sample Locati	on/Depth & Con	centration	D1 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
								•												_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.002	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		•	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•						
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

Dec-14

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Drinking Water

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Desire 04	D 0=	Sample Locati	on/Depth & Con	centration	D1 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
								•												_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.002	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		•	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•					•	
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

Dec-14

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Drinking Water

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

							Samj	ple Location/Depth	& Concentratio	n				
Parameter	Part 201 GCC Residential Direct Contact	40CFR761.61 High Occupancy Limit	Tank Farm (A1- 4)	Tank Farm (A1-4)	N. of Parking Lot, E of Plant (B1-4)	N. of Parking Lot, E of Plant (B1-4)	В5	В6	В7	E. of Parking Lot, S. of Railroad Tracks (C1-3)		N. of Parking lot, S. of Drum Storage pad (D3-4)	East Property Line	East Property Line
			Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	12" composite	6" composite	12" composite	0-12"	0-12"	0-12"	6" composite	12" composite	6" composite	6" composite	12" composite
Total PCBs (mg/Kg)	4.0	1.0	0.49	7.2	15	0.77	28	22	10	5.8	<0.3	5.3	< 0.3	< 0.3

										Sa	mple Location/D	epth & Concentr	ation							
Parameter	Part 201 GCC 40CFR761. Residential High Occupa Direct Contact Limit		South of Plant (4-1&4-2)	XS1	XS2	XS3	XS4	XS6	XE1A	XE1B	XE2	XE3	XE4	XE5	XE6	XE7	XE8	XE9	XE10	XE11
	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	0-12"	0-12"	0-12"	0-12"	0-12"	6"	12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	<0.3	<3 **	<3 **	<3 **	<3 **	<3 **	25	9.0	<3 **	<3 **	3.3	16	3.5	<3 **	<3 **	<3 **	<3 **	<3 **

	Part 201 GCC	40CFR761.61	Sa	mple Location/De	pth & Concentration	on	Post-Excavatio	n Soil Samples
Parameter		High Occupancy	AST Dike	OD	RTS	RTN	S-2	S-3
Tarameter	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Oct-86	Oct-86
	Direct Contact	Limit	sediment	0-12"	stone	stone	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	1,000	18	20	5	3.2	3.2

									Sam	ple Location/D	Pepth & Concentr	ation							
Parameter	Part 201 GCC 40CFR761.61 Residential High Occupance	EB-3	EB-4	EB-5	EB-7	EB-8	EB-9	EB-12	EB-12 Duplicate	EB-14	EB-16	EB-19	EB-20	EB-24	EB-25	EB-26	EB-27	EB-27 Duplicate	EB-28
	Direct Contact Limit	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13
		8 - 10'	5 - 7'	10 - 12'	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"	0 - 6"	0 - 6"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0 1.0	< 0.1	< 0.1	< 0.09	0.4	1.9	0.16	< 0.098	< 0.098	< 0.11	< 0.1	< 0.094	< 0.1	< 0.097	< 0.1	< 0.1	< 0.11	< 0.11	0.15

	Part 201 GCC	40CFR761.61	Sample Loc	ation/Depth & Co	ncentration
Parameter		High Occupancy	EB-31	EB-32	EB-33
1 arameter	Direct Contact	Limit	Nov-13	Nov-13	Nov-13
	Direct Contact	Limit	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0	1.0	< 0.098	< 0.11	0.33

	Part 201 GCC	40CFR761.61		Sample L	ocation/Depth & C	oncentration	
Parameter	Residential	High	XE-10	XE-11	XE-12	XE-13	XS-3
1 arameter	Direct Contact	Occupancy	Nov-16	Nov-16	Dec-16	Dec-16	Oct-16
	Direct Contact	Limit	0-1' / DUP-3	0-1' / DUP-3	0-1' / DUP-3	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	0.11 / 0.28	0.17 / 0.39	0.143 / 0.057	0.055	<0.2

									Sam	ple Location/Dep	pth & Concentrat	ion						
	Part 201 GCC	40CFR761.61	Boring-105	Boring-107	Boring-137	Boring-138	Boring-139	Boring-RRP1	Boring-OST1	Boring-169	Boring-188	Boring-189	Boring-191	Borir	ıg-193	Boring-193E	Boring-193S	Boring-194
Parameter	Residential	High Occupancy	HAB-105	HAB-107	HAB-137	HAB-138	HAB-139	RRP-1	OST-1	169	188	189	191	193	193	HAB-193 E	HAB-193 S	194
	Direct Contact	Limit	Sep-14	Sep-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Jan-15	Dec-14	Dec-14	Dec-14
			0-2'	0-2'	0.5-1'	0.5-1'	0.5-1'	?	?	4-4.5'	4-4.5'	1-1.5'	1-1.5	1-1.5'	4-5'	1-1.5	1-1.5	1-1.5'
Total PCBs (mg/Kg)	4.0	1.0	< 0.091	0.83	0.49	1.3	<0.1	0.36	< 0.09	<0.1	0.52	< 0.095	<0.09	5.2	<0.1	< 0.09	< 0.091	< 0.092

								Excavation	n #1A					
	Part 201 GCC	40CFR761.61					Samp	ole Location/Depth	n & Concentration	1				
Parameter		High Occupancy	XS-1	XS-1	XS-1, 5'N	XS-1, 5'E	XS-1, 5'S	XS-1, 5'W	Exc-1A-S	Exc-1A-S	Exc-1A-SW	Exc-1A-SW	Exc-1A-W	Exc-1A-W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	8.8	<0.2	30	6.8	1.4	3	0.064	0.12	0.028	0.14	0.054	0.027

									Ex	cavation #1B*							
	Part 201 GCC	40CFR761.61							Sample Locat	ion/Depth & Co	ncentration						
Parameter	Residential	High Occupancy	XS-2	XS-2	XS-2, 5'W	XS-2 W	XS-2 W	XS-2, 5'E	XS-2, 5'N	XS-2, 5'S	Exc-1A-N	Exc-1A-N	Exc-1A-SE	Exc-1A-SE	Exc-1B	Exc-1B	Exc-1B
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	2-3'	3.5-4'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	3-3.5'
Total PCBs (mg/Kg)	4.0	1.0	5.3	0.610	2,900	5.4	<0.2	0.35	1.20	20	0.360	0.74	0.063	0.015	0.48	0.32	<0.096

						Excavation #2			
	Part 201 GCC	40CFR761.61			Sample Loca	ation/Depth & Cor	ncentration		
Parameter	Residential	High Occupancy	XS-4	XS-4	XS-4, 5'N	XS-4, 5'E	XS-4, 5'S	XS-4, 5'W	Exc-2 N
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.6	<0.2	2.6	0.37	0.28	0.66	0.069

					Excava	tion #3		
	Part 201 GCC	40CFR761.61		Sa	ample Location/De	pth & Concentration	on	
Parameter		High Occupancy	XS-6	XS-6	XS-6, 5'S	XS-6, 5'N	XS-6, 5'E	XS-6, 5'W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'
tal PCBs (mg/Kg)	4.0	1.0	2.1	<0.2	<0.2	<0.2	<0.2	<0.2

Notes:
The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C.

< Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017.

*Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill.

**These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Tables

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the President Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	< 0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .		1	
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 HAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28 HAB-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Concentration Concen	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 up Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Bori HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Volatilization Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Tables

Table 1 Solid Waste Management Unit (SWMU) and Areas of Concern (AOCs) Summary General Electric Facility, Riverview, Michigan

SWMU	Comments
SWMU #1 - Hazardous Waste Storage Building (HWSB)	The HWSB is located on the south side of the main building and was used to hold all drums and containers of hazardous waste (primarily cleaning solvents and PCB-contaminated oil). Chlorinated solvents and PCBs were detected in soil and/or perched groundwater. Remediation of releases was recommended in the President Prescription (PA/VSI) , General Electric Detroit Apparatus Service Shop, Riverview, Michigan, Final Report, U.S. EPA Office of Waste Programs Enforcement and PRC Environmental Management, Inc., November 9, 1990 ("PA/VSI").
	The <u>Hazardous Waste Storage Building Closure Certification Report, GES, October 2005</u> documented the site investigation data, cleanup and decontamination actions, site stratigraphy, groundwater not in an aquifer (GWNIAA) determination, exposure pathway summary, and closure objectives to meet the regulatory criteria for closure. The closure report was approved in MDEQ's 28 July 2006 letter with a condition that GE shall file a Notice of Approved Environmental Remediation (NAER) with the Wayne County Register of Deeds stating that the property use is restricted to industrial use. A NAER was recorded with the Wayne County Register of Deeds on 21 June 2007.
SWMU #2 – Outdoor Container Storage Area	This SWMU consisted of a 200' x 30' concrete paved fenced area located adjacent to the exterior south wall of the building and east of the HWSB. Prior to 1980, most non-hazardous wastes generated from the site were stored in this area including scrap
Container Storage Area	equipment, new materials and various non-hazardous wastes. The area was decontaminated in 1987 and sampling indicated the area met the cleanup levels set forth in the <u>Closure Plan for the Electrical Equipment Repair Facility at General Electric's Riverview</u> , <u>Michigan Facility</u> , O.H. <u>Materials Corporation</u> , 28 February 1989 ("Closure Plan") approved by MDNR. No further action was recommended in the PA/VSI.
SWMU #3 - Underground Grease Traps/Sumps	Two 40-gallon sumps ("West Sump" and "East Sump") were used as grease traps to collect runoff from equipment and machine parts steam-cleaning operations inside the building.
	The PA/VSI report indicates that the West Sump, also referred to in various reports as the "Bay B Grease Trap" and the "North Sump," was closed in 1986. The West Sump was sampled in 1987 to verify it was clean and subsequently filled with concrete. The sample results were included in the 28 February 1989 Closure Plan approved by MDNR.
	The PA/VSI indicated that the East Sump, also referred to in various reports as the "Bay E Grease Trap" and the "Eastern Steam Cleaning Sump" (ESCS) required additional assessment and remediation due to "VOC contamination in soil and perched groundwater." In July 2002, the ESCS was removed and the surrounding impacted soil was excavated. Confirmatory samples were below applicable cleanup criteria. No documentation of the removal activities was submitted to MDEQ. MDEQ indicated the documentation should be submitted with the closure report that documents all investigation and remedial activities.
SWMU #4 - Transformer Oil Storage Tanks	Three 8,000-gallon aboveground storage tanks were located approximately 300 feet east of the building in an enclosed fenced area with an impervious dike. The tanks held new, recycled, and waste transformer oil. During 1986-1987, the tanks, and concrete dike walls and floor were removed and 12-inches of underlying soil were excavated. Sample analysis indicated cleanup criteria set forth in the approved Closure Plan were met. No indications of impact were noted during the PA/VSI and no further action

SWMU	Comments
	was recommended.
AOC	
AOC #1 - 1976 Oil Spill Area	A spill occurred in 1976 while transferring transformer oil into a tanker truck. Approximately 600 gallons were released to the
	paved parking lot and cleanup activities were conducted. No evidence of the spill was observed during the PA/VSI and no
	further action was recommended.
AOC #2 - Shop Production	This AOC was identified based on the use of hazardous substances inside the building. The PA/VSI report acknowledged the
Areas	decontamination and closure activities conducted by GE, and no further action was recommended.

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

			Michigan Part	201 Generic Clear	nup Criteria (GC	C)							S	ample Location	Depth & Concen	itration							Sample Locati	on/Depth & Con	centration			
										Bor	ing-1	Borin			ing-3		ing-4	Bor	ing-5	Bori	ng-6		Bori				Boring-8	
Parameter	Residential Drinking Wate Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-1 Apr-14	HAB-1 Apr-14	HAB-2 Apr-14	HAB-2 Apr-14	HAB-3 Apr-14	HAB-3 Apr-14	HAB-4 Apr-14	HAB-4 Apr-14	HAB-5 Apr-14	HAB-5 Apr-14	HAB-6 Apr-14	HAB-6 Apr-14	HAB-7 Apr-14	HAB-7 Apr-14	HAB-7 Jun-14	HAB-7 Jun-14	HAB-8 Apr-14	HAB-8 Apr-14	HAB-8 DUP Apr-14
					iiiiaiatioii					0-2'	2-3.5'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	4-6'	6-8'	0-2'	2-4'	0-2'
				1			1			0-2	2-0.0	0-2	2-4	0-2	2-4	0-2	2-1	0-2	2-4	0-2	2-4	0-2	2-4	7-0	0-0	0-2	2-4	0-2
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	< 0.092	< 0.097	0.197	< 0.092	< 0.087	< 0.091	1.48	0.38	0.35	< 0.09	< 0.091	< 0.091	46	147	< 0.11	0.49	0.55	< 0.095	< 0.093
	1		Michigan Part	201 Generic Clear	nun Criteria (GC	(1)							S	ample Location/	Depth & Concen	ntration							Sample Locati	on/Depth & Con	centration			
		•				1	1	•		Bor	ing-9	Borin	ng-10	Bori	ing-11		Boring-12		Bori	ng-13	Borii	ng-14	Bori	ng-15	Bori	ing-16	Borin	ng-17
Parameter	Residential Drinking Wate Protection	Nonresidential T Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-9 Apr-14	HAB-9 Apr-14	HAB-10 Apr-14	HAB-10 Apr-14	HAB-11 Apr-14	HAB-11 Apr-14	HAB-12 Apr-14	HAB-12 Apr-14	HAB-12 DUP Apr-14	HAB-13 Apr-14	HAB-13 Apr-14	HAB-14 Jun-14	HAB-14 Jun-14	HAB-15 Jun-14	HAB-15 Jun-14	HAB-16 Jun-14	HAB-16 Jun-14	HAB-17 Jun-14	HAB-17 Jun-14
					imatation					0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-3'	0-2'	0-2'	2-31	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	2.05	0.22	0.67	<0.09	< 0.094	< 0.093	< 0.096	< 0.095	0.32	0.11	< 0.096	0.11	0.15	8.8	0.5	<0.085	< 0.092	< 0.089	< 0.097
	1		Michigan Part	201 Generic Clear	nun Critoria (CC	(1)				1				ample Location	Depth & Concen	stration						Samo	le Location/Dent	h & Concentratio	n .			
				201 Genera Cica	inp criteria (oc					Bori	ng-18		Boring-19	ampie zocation		ng-20	Bori	ng-21	Bori	ng-22	Borii	ng-23		ng-24	Boring-24	Bori	ng-25	
Parameter	Residential Drinking Wate	Nonresidential r Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-18	HAB-18	HAB-19	HAB-19 DUP	HAB-19	HAB-20	HAB-20	HAB-21	HAB-21	HAB-22	HAB-22	HAB-23	HAB-23	HAB-24	HAB-24 DUP	HAB-24	HAB-25	HAB-25	
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	Jun-14	
										0-2'	2-4'	0-2'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	2-4'	0-2'	0-21	2-4'	0-2'	2-4'	
				+																							1	
Total PCBs (mg/Kg)	NILL	2 77 7																										
roun r cus (mg/ kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	0.23	< 0.097	< 0.085	< 0.086	< 0.11	23	< 0.09	0.34	<0.11	<0.091	<0.11	7.4	< 0.11	0.69	0.16	<0.1	< 0.095	< 0.097	
Total I CD3 (Hig/ Ng)	NLL			3,000 201 Generic Clear			6,500	4.0	1.0	0.23	<0.097	<0.085			23 Depth & Concen		0.34	<0.11	<0.091	<0.11	7.4	<0.11		0.16 on/Depth & Con	1	<0.095	<0.097	
Tomi CDS (Hig/ Ng)	NLL						6,500	4.0	1.0		<0.097	<0.085	S		-			<0.11		<0.11		<0.11	Sample Locati		centration	<0.095 ing-34	<0.097 Boring-35	Boring-36
Parameter	Residential				nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	C) Residential	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *		1		S		Depth & Concen								Sample Locati	on/Depth & Con	centration			Boring-36 HAB-36 Aug-14
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26	ing-26 HAB-26 Jun-14	Borin HAB-27	MAB-27 Jun-14	ample Locationy HAB-28	Depth & Concen Boring-28 HAB-28	HAB-28	Bori HAB-29 Jun-14	ng-29 HAB-29 Jun-14	Bori HAB-30	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Con Boring-33 HAB-33	HAB-34 Aug-14	ing-34 HAB-34	Boring-35 HAB-35 Aug-14	HAB-36
	Residential Drinking Wate	Nonresidential r Drinking Water	Michigan Part	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation	Bori HAB-26 Jun-14	ing-26 HAB-26	Borin HAB-27 Jun-14	S ng-27 HAB-27	HAB-28	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29	ng-29 HAB-29	Bori HAB-30 Jun-14	ing-30 HAB-30	Borii HAB-31	ng-31 HAB-31	Sample Locati Boring-32 HAB-32	on/Depth & Con Boring-33 HAB-33 Aug-14	centration Bori HAB-34	HAB-34 Dec-14	Boring-35 HAB-35	HAB-36 Aug-14
	Residential Drinking Wate Protection	Nonresidential r Drinking Water	GSI Protection	201 Generic Clear Residential Soil Volatilization to Indoor Air	nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate	Part 201 GCC Residential	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14	MAB-27 HAB-27 Jun-14 2-4'	HAB-28 Jun-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14	HAB-28	Bori HAB-29 Jun-14	HAB-29 Jun-14 2-4'	Bori HAB-30 Jun-14	ng-30 HAB-30 Jun-14	Borii HAB-31 Jun-14	ng-31 HAB-31 Jun-14	Sample Locati Boring-32 HAB-32 Aug-14	on/Depth & Com Boring-33 HAB-33 Aug-14 0-2'	HAB-34 Aug-14	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14	HAB-36 Aug-14
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2'	Ing-26 HAB-26 Jun-14 2-4	Borin HAB-27 Jun-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1	HAB-29 Jun-14 0-2'	MAB-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2' 0.19	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2'	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5' 0.12	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	HAB-26 Jun-14 0-2'	HAB-26 Jun-14 2-4' 0.21	Borin HAB-27 Jun-14 0-2'	Jun-14 2-4' <0.1	HAB-28 Jun-14 0-2' 2.9 ample Locationy	Depth & Concen Boring-28 HAB-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Concentration Concen	HAB-28 Dec-14 4.5-5'	HAB-29 Jun-14 0-2'	Ing-29 HAB-29 Jun-14 2-4' <0.094	HAB-30 Jun-14 0-2'	HAB-30 Jun-14 2-4'	Boris HAB-31 Jun-14 0-2' <0.093	HAB-31 Jun-14 2-4'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con	HAB-34 Aug-14 0-2' <0.088 centration	HAB-34 Dec-14 3-3.5'	Boring-35 HAB-35 Aug-14 0-2' <0.1	HAB-36 Aug-14 0-2' <0.091
Parameter	Residential Drinking Wate Protection NLL Residential	Nonresidential r Drinking Water Protection NLL	GSI Protection NLL	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization 3,000 201 Generic Clear Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Boring-37 HAB-37 Aug-14	MAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-40 HAB-40 Aug-14	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14	Aug-14 Column	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 up Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37	Ing-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38	Boring-14 0-2' 2.9 Boring-39 HAB-39	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 GP-42	HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43	ng-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45	Borin HAB-31 Jun-14 0-2 <0.093 Boring-46 HAB-46	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49	Centration Bori HAB-34 Aug-14 0-2' <0.088 Centration Boring-50 HAB-50	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52	Aug-14 0-2' <0.091 ng-52 HAB-52 DUP
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2'	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2'	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration ng-42 Dec-14 4-5'	Bori HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14 0-2'	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	Borl HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14 0-2'	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2'	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14 0-2'	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	HAB-36 Aug-14 0-2' <0.091 ng-52 HAB-52 DUP Aug-14 0-2'
Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2'	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2'	Boring HAB-27 Jun-14 0-2' 2.9 Boring-39 HAB-39 Aug-14	Sng-27 HAB-27 Jun-14 2-4' <0.1 Sng-26 Boring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Borin HAB-29 Jun-14 0-2' <0.09 Boring-43 HAB-43 Aug-14	Ing-29 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14	HAB-30 Jun-14 0-2' 0.19 HAB-44 DUP Aug-14	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14	Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09	HAB-34	Dec-14 3-3.5' Boring-51 HAB-51 Aug-14	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2'	Aug-14 0-2' <0.091 1g-52 HAB-52 DUP Aug-14
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clear Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Borin HAB-27 Jun-14 0-2 2.9 Boring-39 HAB-39 Aug-14 0-2'	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen Boring-28 HAB-28 Jun-14 2-4' 1.5 Depth & Concen Bori HAB-42 Aug-14 0-2'	HAB-28 Dec-14 4.5-5' <0.1 atration GP-42 Dec-14 4-5' <0.1	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <0.093	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	ng-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2'	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2'	MAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2'	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2'	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 201 Generic Clean Residential Soil Residential Soil	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 16,000 16,000	Residential Soil Particulate Inhalation 5,200 Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact 4.0	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Bori HAB-26 Jun-14 0-2' 1.8 Boring-37 HAB-37 Aug-14 0-2' <0.089	mg-26 HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' <0.088	Boring-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 attration ng-42 Dec-14 4-5' <0.1 ttration	Boring-43 HAB-43 Aug-14 0-2' 0.16	MAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2'	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12	Borin HAB-31 Jun-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1	HAB-31 Jun-14 2-4' <0.093 Boring-47 HAB-47 Aug-14 0-2' <0.091	Sample Locati Boring-32 HAB-32 Aug-14 0-2 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2 <0.093 Sample Locati Sample Locati Sample Locati	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con	HAB-34	Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 3g-52 HAB-52 DUP Aug-14 0-2' <0.095
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	SSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization Nonresidential Soil Volatilization 16,000 Aup Criteria (GC Nonresidential Soil Volatilization Volatilization	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Number of the protection	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization 1 Application Volatilization Residential Soil Volatilization	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 nup Criteria (GC Nonresidential Soil Volatilization 16,000 nup Criteria (GC	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500 Nonresidential	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089	HAB-26 Jun-14 2.4' 0.21 Boring-38 HAB-38 Aug-14 0.2' <0.088 Boring-54 Boring-54	Boring-39 HAB-39 Aug-14 0-2' 2.9 Boring-39 HAB-39 Aug-14 0-2' <0.083	Sang-27 HAB-27 Jun-14 2-4' <0.1 Sang-20 HAB-40 HAB-40 Aug-14 0-2' <0.093 Sang-26 Sang-26	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 tration ng-42 GP-42 Dec-14 4-5' <0.1 tration Boring-59	Boring-43 HAB-43 Aug-14 0-2' 0.16	Boring-61 HAB-29 Jun-14 2-4' <0.094 Boring-61	HAB-30 Jun-14 0-2' 0.19 mg-44 HAB-44 DUP Aug-14 0-2' <0.088	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62	Boring-46 HAB-46 Aug-14 0-2' <0.093	Boring-64 Boring-64 Boring-64	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72
Parameter Total PCBs (mg/Kg) Parameter Total PCBs (mg/Kg)	Residential Drinking Wate Protection NLL Residential Drinking Wate Protection NLL Residential Drinking Wate	Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water Protection NLL Nonresidential r Drinking Water	GSI Protection NLL Michigan Part GSI Protection NLL Michigan Part GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation 3,000 201 Generic Clean Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation 16,000 Nonresidential Soil Volatilization to Indoor Air Inhalation Nonresidential Soil Volatilization to Indoor Air	Residential Soil Particulate Inhalation 5,200 C) Residential Soil Particulate Inhalation 5,200 C)	Nonresidential Soil Particulate Inhalation 6,500 Nonresidential Soil Particulate Inhalation 6,500	Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential Direct Contact 4.0 Part 201 GCC Residential	Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal * 1.0 Site-Specific Delineation Goal *	Boring-37 HAB-37 HAB-37 Aug-14 0-2' <0.089 Boring-53 HAB-53	HAB-26 Jun-14 2-4' 0.21 Boring-38 HAB-38 Aug-14 0-2' < 0.088 Boring-54 HAB-54 HAB-54	Boring-39 HAB-39 HAB-39 Aug-14 0-2' <0.083 Boring-55 HAB-55	Sng-27 HAB-27 Jun-14 2-4' <0.1 Snoring-40 HAB-40 Aug-14 0-2' <0.093 Snoring-56 HAB-56	HAB-28 Jun-14 0-2' 2.9 ample Locationy Boring-41 HAB-41 Aug-14 0-2' <0.099 ample Locationy Boring-57 HAB-57	Depth & Concen	HAB-28 Dec-14 4.5-5' <0.1 stration ng-42 GP-42 Dec-14 4-5' <0.1 stration Boring-59 HAB-59	Boring-43 HAB-43 Aug-14 0-2' 0.16 Boring-60 HAB-60	Boring-61 HAB-29 Jun-14 2-4' <0.094 Bori HAB-44 Aug-14 0-2' <10.093	HAB-30 Jun-14 0-2' 0.19 ng-44 HAB-44 DUP Aug-14 0-2' <0.088 Bori	mg-30 HAB-30 Jun-14 2-4' <0.11 Boring-45 HAB-45 Aug-14 0-2' 0.12 mg-62 HAB-62 DUP	Boring-14 0-2' <0.093 Boring-46 HAB-46 Aug-14 0-2' <0.1 Boring-63 HAB-63	Boring-47 HAB-47 Aug-14 0-2' Solution and the second and the s	Sample Locati Boring-32 HAB-32 Aug-14 0-2' 0.16 Sample Locati Boring-48 HAB-48 Aug-14 0-2' <0.093 Sample Locati Boring-65 HAB-65	on/Depth & Con Boring-33 HAB-33 Aug-14 0-2' <0.093 on/Depth & Con Boring-49 HAB-49 Aug-14 0-2' <0.09 on/Depth & Con Boring-66 HAB-66	HAB-34	HAB-34 Dec-14 3-3.5' 0.12 Boring-51 HAB-51 Aug-14 0-2' <0.097 Boring-68 HAB-68	Boring-35 HAB-35 Aug-14 0-2' <0.1 Borin HAB-52 Aug-14 0-2' <0.092 Boring-69 HAB-69	HAB-36 Aug-14 0-2' <0.091 HAB-52 DUP Aug-14 0-2' <0.095 Boring-72 HAB-72

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Desire 04	D 0=	Sample Locati	on/Depth & Con	centration	D1 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
								•												_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.092	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		•	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•					•	
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

Dec-14

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Drinking Water

Table 2 Summary of PCB in Interior Area Soil General Electric, Riverview, Michigan

				****	0 l. l /===	73									.,			,			<i>T</i> D -11 -1 -				i
			Michigan Part	201 Generic Clear	nup Criteria (GCC	-)				n .	ing-73		ample Location/D		ation ng-80	n - 1 02	D 0 -	Desire 04	D 0=	Sample Locati	on/Depth & Con	centration	D1 0=	n	
					Nonresidential					HAB-73	HAB-73	Boring-74 HAB-74	Boring-77 HAB-77	HAB-80	HAB-80	Boring-83 HAB-83	Boring-84 HAB-84	Boring-84 HAB-84	Boring-85 HAB-85	HAB-86	Boring-86 HAB-86	HAB-86	Boring-87 HAB-87	Boring-88 HAB-88	
Parameter	Residential Drinking Water Protection	Nonresidential Drinking Water Protection	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Part 201 GCC Residential Direct Contact	Site-Specific Delineation Goal *	Aug-14 0-2'	DUP Aug-14 0-2'	Aug-14 0-2'	Aug-14 0-2'	Aug-14	DUP Aug-14 0-2'	Sep-14	Sep-14	Dec-14	Sep-14	Sep-14 0-2'	Sep-14 2-4'	Sep-14 4-6'	Sep-14	Sep-14 0-2'	
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	15.2	14.5	2.4	< 0.087	< 0.09	< 0.091	1.2	1.3	<0.1	< 0.095	0.13	< 0.09	< 0.099	2.69	< 0.091	ł
								•												_					
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)				Bor	ing-89	Boring-89	ample Location/D Boring-90			l Bori	ng-100	Boring-101	Boring-102		le Location/Dept ng-103	h & Concentration Boring-104		Roring-108	Boring.
Parameter	Residential	Nonresidential	CCI	Residential Soil	Nonresidential Soil	Residential	Nonresidential	Part 201 GCC	Site-Specific	HAB-89	HAB-89	HAB-89	HAB-90	HAB-91	HAB-92	HAB-100	HAB-100 DUP	HAB-101	HAB-102	HAB-103	HAB-103 DUP	HAB-104	HAB-105	HAB-108	HAB-1
	Drinking Water Protection	Drinking Water Protection	GSI Protection	to Indoor Air Inhalation	Volatilization to Indoor Air Inhalation	Soil Particulate Inhalation	Soil Particulate Inhalation	Residential Direct Contact	Delineation Goal *	Sep-15	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Sep-14	Dec-14	Dec-1
										0-2'	2-4'	4-6'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	0-2'	3-3.5'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16.000	5,200	6,500	4.0	1.0	<0.085	<0.085	<0.1	<0.088	<0.089	<0.085	<0.09	<0.09	<0.092	<0.093	0.11	0.13	< 0.09	< 0.091	<0.1	<0.098
Total T CD3 (Ing/ Rg)	NLL	INEL	INLL	3,000	10,000	3,200	0,500	4.0	1.0	10.000	10.005	10.1	10.000	10.007	40.000	10.00	10.00	10.092	10.055	0.11	0.13	10.07	10.071	10.1	-0.02
			Michigan Part	201 Generic Clear	nup Criteria (GCC	C)				D : 440	I n 1 444		ample Location/D			ng-118	D 1 440	D 1 100	Borin		le Location/Dept			73 1 485	
											Boring-111	Boring-115 HAB-115	Boring-116	Boring-117	HAB-118	HAB-118	Boring-119	Boring-120 HAB-120		g-121 HAB-121		Boring-123		•	
Parameter	Drinking Water	Nonresidential Drinking Water	GSI Protection	Residential Soil Volatilization to Indoor Air	Volatilization	Residential Soil Particulate		Part 201 GCC Residential	Site-Specific Delineation	HAB-110	HAB-111	HAB-115	HAB-116	HAB-117	HAB-118	DUP	HAB-119	HAB-120	HAB-121	DUP	HAB-122	HAB-123	HAB-124	HAB-125	HAB-1
	Protection	Protection	Trotection	Inhalation	to Indoor Air Inhalation	Inhalation	Inhalation	Direct Contact	Goal *	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-1
										2-2.5'	2-2.5'	1.5-2'	1.5-2'	1.5-2'	2-2.5'	2-2.5'	2.5-3'	2.5-3'	2.5-3'	2.5-3'	3-3.5	3-3.5'	2.5-3'	2.5-3'	2-2.5
Total PCBs (mg/Kg)	NLL	NLL	NLL	3,000	16,000	5,200	6,500	4.0	1.0	<0.092	0.16	0.14	25	<0.091	120	76	<0.1	0.32	<0.1	0.044J	0.048 J	0.25	0.16	.078 J	0.46
		•																•	•					•	
			Michigan Part	201 Generic Clea	nup Criteria (GCC	-)						Depth & Concentra Boring-180													
										Doing-170	Doing-1/9	Dornig-100	201111g-102												
				Danidantial Cail	Nonresidential	1	1		1	HAB-178	HAB-179	GP-180	HAB-182												

Dec-14

2-2.5'

Dec-14 2-2.5'

Dec-14

4-5'

Dec-14

2-2.5'

- Notes:

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12-30-13.

 < Indicates value below laboratory detection limit.

 NLL Indicates parameter is not likely to leach under most soil conditions.

 Yellow-shaded values indicate that total PCBs exceeded the 1 mg/Kg delineation goal.

 The vicinity of this sample was excavated as part of 2014 remedial excavations (shown on Figure 12A).

 *GE conservatively opted to delineate and remove all impacted fill and underlying soil within the former shop building footprint to a concentration of 1 mg/Kg and dispose of it in accordance with 761.61(b) "Performance-based disposal".

Residential Nonresidential Soil Particulate

GSI

Total PCBs (mg/Kg) NLL NLL NLL 3,000 16,000 5,200 6,500 4.0

Drinking Water

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

							Samj	ple Location/Depth	& Concentratio	n				
Parameter	Part 201 GCC Residential Direct Contact	40CFR761.61 High Occupancy Limit	Tank Farm (A1- 4)	Tank Farm (A1-4)	N. of Parking Lot, E of Plant (B1-4)	N. of Parking Lot, E of Plant (B1-4)	В5	В6	В7	E. of Parking Lot, S. of Railroad Tracks (C1-3)		N. of Parking lot, S. of Drum Storage pad (D3-4)	East Property Line	East Property Line
			Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	12" composite	6" composite	12" composite	0-12"	0-12"	0-12"	6" composite	12" composite	6" composite	6" composite	12" composite
Total PCBs (mg/Kg)	4.0	1.0	0.49	7.2	15	0.77	28	22	10	5.8	<0.3	5.3	< 0.3	< 0.3

										Sa	mple Location/D	epth & Concentr	ation							
Parameter	Part 201 GCC Residential	High Occupancy	South of Plant (4-1&4-2)	XS1	XS2	XS3	XS4	XS6	XE1A	XE1B	XE2	XE3	XE4	XE5	XE6	XE7	XE8	XE9	XE10	XE11
	Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86
			6" composite	0-12"	0-12"	0-12"	0-12"	0-12"	6"	12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	<0.3	<3 **	<3 **	<3 **	<3 **	<3 **	25	9.0	<3 **	<3 **	3.3	16	3.5	<3 **	<3 **	<3 **	<3 **	<3 **

	Part 201 GCC	40CFR761.61	Sa	mple Location/De	pth & Concentration	on	Post-Excavatio	n Soil Samples
Parameter	Residential	High Occupancy	AST Dike	OD	RTS	RTN	S-2	S-3
Tarameter	Residential Direct Contact	Limit	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Apr-Jul-86	Oct-86	Oct-86
	Direct Contact	Limit	sediment	0-12"	stone	stone	0-12"	0-12"
Total PCBs (mg/Kg)	4.0	1.0	1,000	18	20	5	3.2	3.2

									Sam	ple Location/D	Pepth & Concentr	ation							
Parameter	Part 201 GCC 40CFR761.61 Residential High Occupance	EB-3	EB-4	EB-5	EB-7	EB-8	EB-9	EB-12	EB-12 Duplicate	EB-14	EB-16	EB-19	EB-20	EB-24	EB-25	EB-26	EB-27	EB-27 Duplicate	EB-28
	Direct Contact Limit	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13	Nov-13
		8 - 10'	5 - 7'	10 - 12'	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"	0 - 6"	0 - 6"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0 1.0	< 0.1	< 0.1	< 0.09	0.4	1.9	0.16	< 0.098	< 0.098	< 0.11	< 0.1	< 0.094	< 0.1	< 0.097	< 0.1	< 0.1	< 0.11	< 0.11	0.15

	Part 201 GCC	40CFR761.61	Sample Loc	ation/Depth & Co	ncentration
Parameter		High Occupancy	EB-31	EB-32	EB-33
1 arameter	Direct Contact	Limit	Nov-13	Nov-13	Nov-13
	Direct Contact	Limit	0 - 12"	0 - 12"	0 - 6"
Total PCBs (mg/Kg)	4.0	1.0	< 0.098	< 0.11	0.33

	Part 201 GCC	40CFR761.61		Sample L	ocation/Depth & C	oncentration	
Parameter	Residential	High	XE-10	XE-11	XE-12	XE-13	XS-3
1 arameter	Direct Contact	Occupancy	Nov-16	Nov-16	Dec-16	Dec-16	Oct-16
	Direct Contact	Limit	0-1' / DUP-3	0-1' / DUP-3	0-1' / DUP-3	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	0.11 / 0.28	0.17 / 0.39	0.143 / 0.057	0.055	<0.2

									Sam	ple Location/Dep	pth & Concentrat	ion						
	Part 201 GCC	40CFR761.61	Boring-105	Boring-107	Boring-137	Boring-138	Boring-139	Boring-RRP1	Boring-OST1	Boring-169	Boring-188	Boring-189	Boring-191	Borir	ıg-193	Boring-193E	Boring-193S	Boring-194
Parameter	Residential	High Occupancy	HAB-105	HAB-107	HAB-137	HAB-138	HAB-139	RRP-1	OST-1	169	188	189	191	193	193	HAB-193 E	HAB-193 S	194
	Direct Contact	Limit	Sep-14	Sep-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Dec-14	Jan-15	Dec-14	Dec-14	Dec-14
			0-2'	0-2'	0.5-1'	0.5-1'	0.5-1'	?	?	4-4.5'	4-4.5'	1-1.5'	1-1.5	1-1.5'	4-5'	1-1.5	1-1.5	1-1.5'
Total PCBs (mg/Kg)	4.0	1.0	< 0.091	0.83	0.49	1.3	<0.1	0.36	< 0.09	<0.1	0.52	< 0.095	<0.09	5.2	<0.1	< 0.09	< 0.091	< 0.092

								Excavation	n #1A					
	Part 201 GCC	40CFR761.61					Samp	ole Location/Depth	n & Concentration	1				
Parameter		High Occupancy	XS-1	XS-1	XS-1, 5'N	XS-1, 5'E	XS-1, 5'S	XS-1, 5'W	Exc-1A-S	Exc-1A-S	Exc-1A-SW	Exc-1A-SW	Exc-1A-W	Exc-1A-W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	8.8	<0.2	30	6.8	1.4	3	0.064	0.12	0.028	0.14	0.054	0.027

									Ex	cavation #1B*							
	Part 201 GCC	40CFR761.61							Sample Locat	ion/Depth & Co	ncentration						
Parameter	Residential	High Occupancy	XS-2	XS-2	XS-2, 5'W	XS-2 W	XS-2 W	XS-2, 5'E	XS-2, 5'N	XS-2, 5'S	Exc-1A-N	Exc-1A-N	Exc-1A-SE	Exc-1A-SE	Exc-1B	Exc-1B	Exc-1B
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16
			0-1'	1-2'	0-1'	2-3'	3.5-4'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	3-3.5'
Total PCBs (mg/Kg)	4.0	1.0	5.3	0.610	2,900	5.4	<0.2	0.35	1.20	20	0.360	0.74	0.063	0.015	0.48	0.32	<0.096

						Excavation #2			
	Part 201 GCC	40CFR761.61			Sample Loca	ation/Depth & Cor	ncentration		
Parameter	Residential	High Occupancy	XS-4	XS-4	XS-4, 5'N	XS-4, 5'E	XS-4, 5'S	XS-4, 5'W	Exc-2 N
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.6	<0.2	2.6	0.37	0.28	0.66	0.069

					Excava	tion #3		
	Part 201 GCC	40CFR761.61		Sa	ample Location/De	pth & Concentration	on	
Parameter		High Occupancy	XS-6	XS-6	XS-6, 5'S	XS-6, 5'N	XS-6, 5'E	XS-6, 5'W
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16
			0-1'	1-2'	0-1'	0-1'	0-1'	0-1'
tal PCBs (mg/Kg)	4.0	1.0	2.1	<0.2	<0.2	<0.2	<0.2	<0.2

Notes:
The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C.

< Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017.

*Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill.

**These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #										
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E	
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16	
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								5	Sample Location/D	epth & Concent	ration									
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10		
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
					Excavation #5			1							Excavation #6	•		1				
	Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1				
Parameter	Residential	High Occupancy	S-2	S-2, 5' N	S-2. 5' E	S-2, 5' S	S-2, 5'W		Para	meter	Residential	High	S-3	S-3, 5' N	S-3, 5'E	S-3, 5' S	S-3, 5' W					
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16					
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	< 0.2	< 0.2	< 0.2	< 0.2		Total PCBs (mg/	/Kg)	4.0	1.0	< 0.2	< 0.2	0.67	0.25	< 0.2					
	İ		•	*		•	•	•			•	•						-				
												Exca	avation #7									
	Part 201 GCC	40CFR761.61											/Depth & Concent	tration								
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138, 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
							•	•	•										•			
												Exca	vation #8*									
	Part 201 GCC	40CFR761.61									:		Depth & Concent	tration								
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Sai	mple Location/Dep	th & Concentration	ı		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	1				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #										
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E	
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16	
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								5	Sample Location/D	epth & Concent	ration									
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10		
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
					Excavation #5			1							Excavation #6	•		1				
	Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1				
Parameter	Residential	High Occupancy	S-2	S-2, 5' N	S-2. 5' E	S-2, 5' S	S-2, 5'W		Para	meter	Residential	High	S-3	S-3, 5' N	S-3, 5'E	S-3, 5' S	S-3, 5' W					
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16					
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	< 0.2	< 0.2	< 0.2	< 0.2		Total PCBs (mg/	/Kg)	4.0	1.0	< 0.2	< 0.2	0.67	0.25	< 0.2					
	İ		•	•		•	•	•			•	•						-				
												Exca	avation #7									
	Part 201 GCC	40CFR761.61											/Depth & Concent	tration								
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138. 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
							•	•	•										•			
												Exca	vation #8*									
	Part 201 GCC	40CFR761.61									:		Depth & Concent	tration								
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Saı	mple Location/Dep	th & Concentration	ı		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	1				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	eric Cleanup (Criteria																
Parameter	CAS Number	Statewide Default Background		ng Water Criteria ***	Direct Contact Criteria	Groundwater Surface Water Interface	EB-3 8-10'	EB-4 5-7'	EB-5 10-12'	EB-7 0-1'	EB-7 2-3'	EB-8 0-1'	EB-9 0-1'	EB-12 0-1'	EB-12 0-1' DUP	EB-14 0-1'	EB-16 0-0.5'	EB-19 0-0.5'	EB-20 0-0.5'	EB-24 0-1'
		Levels				Protection Criteria	13111229-01	13111229-02	13111229-21	13111229-03	1501227-01	13111229-04	13111229-05	13111229-06	13111229-33	13111229-07	13111229-08	13111229-09	13111229-10	13111229-13
			Residential	Non- Residential	Non-Residential	Cincila	11/19/2013	11/19/2013	11/20/2013	11/19/2013	1/7/2015	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013
Metals USEPA	Method 7471	(Hg) or 6020A	(µg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	39	23	16	25	NA	33	25	23	22	39	34	24	27	27
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	11,000	4,600	7,600	15,000	340	5,400	6,900	5,600	3,500	10,000	5,600	9,300	8,800	5,600
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	120,000	88,000	33,000	140,000	NA	71,000	89,000	76,000	81,000	91,000	100,000	79,000	100,000	93,000
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	600	U	U	710	NA	U	U	U	U	U	U	470	U	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	27,000	34,000	15,000	29,000	NA	19,000	22,000	16,000	19,000	24,000	23,000	20,000	26,000	24,000
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	15,000	11,000	10,000	17,000	NA	10,000	11,000	8,800	7,300	13,000	11,000	12,000	12,000	16,000
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	1,500	18,000	1,000	1,300	NA	860	1,000	1100	810	1,200	1,000	1,000	1,100	1,300
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	NA	U	U	U	U	U	U	U	U	U

		Part 201 Gene	eric Cleanup	Criteria																
Parameter	CAS Number	Statewide Default Background		ng Water on Criteria	Direct Contact Criteria	Groundwater Surface Water Interface	EB-25 0-1'	EB-26 0-1'	EB-27 0-1'	EB-27 0-1' DUP	EB-28 0-1'	EB-31 0-1'	EB-32 0-1'	EB-33 0-0.5'	ERM-BG-1 0-1'	ERM-BG-1 3-4'	ERM-BG-2 0.3-1'	ERM-BG-2 3-4'	ERM-BG-3 0.3-1'	ERM-BG-3 2-3'
		Levels				Protection	13111229-14	13111229-15	13111229-16	13111229-34	13111229-17	13111229-18	13111229-19	13111229-20	1404478-29	1404478-30	1404478-31	1404478-32	1404478-33	1404478-34
			Residential	Non- Residential	Non-Residential	Criteria	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	65	55	95	83	54	30	45	36	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	10,000	9,400	11,000	8,500	8,100	7,600	9,700	8,600	7,100	8,000	7,900	10,000	8,100	8,000
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	110,000	110,000	100,000	100,000	100,000	140,000	170,000	89,000	NA	NA	NA	NA	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	890	500	U	U	U	U	540	U	NA	NA	NA	NA	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	26,000	25,000	33,000	27,000	27,000	26,000	32,000	25,000	NA	NA	NA	NA	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	25,000	20,000	30,000	29,000	17,000	10,000	14,000	14,000	NA	NA	NA	NA	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	2,000	1,700	1,800	1,900	1,600	1,100	1,900	1,200	NA	NA	NA	NA	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	U	U	U	U	NA	NA	NA	NA	NA	NA

Notes:

* Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.

** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- $\hbox{-} For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed. \\$
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

2,000 EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 1 of 3

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup C	Criteria																	
Parameter	CAS Number	Statewide Default		U	Direct Contact Criteria	Groundwater Surface Water Interface	ERM-BG-4 0.3-1'	ERM-BG-4 2-3'	ERM-BG-5 0.3-1'	ERM-BG-5 0.3-1' DUP	ERM-BG-5 2-3'	ERM-BG-6 0.3-1'	ERM-BG-6 2-3'	ERM-BG-7 0.3-1'	ERM-BG-7 2-3'	ERM-BG-8 0.3-1'	ERM-BG-8 2-3'	ERM-BG-9 0.3-1'	ERM-BG-9 2-3'	ERM-BG-10 0.3-1'	ERM-BG-10 2-3'
		Ü				Protection	1404478-35	1404478-36	1404478-37	1404478-38	1404478-39	1404478-40	1404478-41	1404478-42	1404478-43	1404478-44	1404478-45	1404478-46	1404478-47	1404478-48	1404478-49
			Residential	Non- Residential	Non-Residential	Criteria	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Metals USEPA	CAS Number CAS Number CAS Number Default Default Background Levels Residential Non-Residential Non-																				
Mercury (Total)				1,700	580,000	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	8,900	10,000	10,000	7,200	6,900	7,300	7,700	7,800	6,400	6,600	6,600	7,400	9,000	7,600	8,200
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

		Part 201 Gene	eric Cleanup (Criteria				Bori	ing-1	Bori	ing-2	Bor	ing-3	Boris	ng-4	Bori	ing-5	Bori	ing-6	Bor	ing-7
Parameter	CAS Number	Statewide Default Background	Drinkin Protection	ng Water n Criteria	Direct Contact Criteria	Groundwater Surface Water Interface Protection	ERM-BG-10 2-3' DUP 1404478-50	HAB-1 0-2' 1404478-01	HAB-1 2-3.5'	HAB-2 0-2' 1404478-03	HAB-2 2-4' 1404478-04	HAB-3 0-2' 1404478-05	HAB-3 2-4' 1404478-06	HAB-4 0-2' 1404478-07	HAB-4 2-4' 1404478-08	HAB-5 0-2' 1404478-09	HAB-5 2-4' 1404478-10	HAB-6 0-2' 1404478-11	HAB-6 2-4' 1404478-12	HAB-7 0-2' 1404478-13	HAB-7 2-4' 1404478-14
		Levels		Non-		Criteria															+
			Residential	Residential	Non-Residential	Į.	4/8/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
Metals USEPA	Method 7471	(Hg) or 6020A	μg/kg)																		
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	NA	U	U	14	U	U	U	U	U	U	U	U	U	U	U
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	8,400	2,100	1,600	1,600	16,000	1,600	2,000	3,800	3,300	3,100	1,600	1,800	2,000	1,500	1,900
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	NA	12,000	21,000	12,000	740,000	11,000	14,000	46,000	21,000	29,000	8,900	17,000	11,000	14,000	9,500
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	NA	U	U	U	750	U	U	U	U	U	U	U	U	460	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	NA	5,500	7,100	7,400	8,500	5,600	6,100	10,000	8,200	8,400	6,000	6,600	6,200	6,800	5,700
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	NA	2,900	3,700	2,800	5,100	2,900	3,500	5,000	5,400	4,800	2,700	3,200	3,400	7,300	3,200
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	NA	U	U	U	500	U	U	410	690	470	U	U	U	U	U
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	NA	U	U	U	U	U	U	U	U	U	U	U	U	U	U

Notes:

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- $\hbox{-} For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed. \\$
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

2,000 EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 2 of 3

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup (Criteria			Bori	ing-8	Boring-8	Bor	ing-9	Bor	ing-10	Borin	g-11		Boring-12		Bori	ng-13
Parameter	CAS Number	Statewide Default Background			Direct Contact Criteria	Groundwater Surface Water Interface	HAB-8 0-2'	HAB-8 2-4'	HAB-8 0-2' DUP	HAB-9 0-2'	HAB-9 2-4'	HAB-10 0-2'	HAB-10 2-4'	HAB-11 0-2'	HAB-11 2-4'	HAB-12 0-2'	HAB-12 2-3'	HAB-12 0-2' DUP	HAB-13 0-2'	HAB-13 2-3'
		Levels				Protection	1404478-15	1404478-16	1404478-17	1404478-18	1404478-19	1404478-20	1404478-21	1404478-22	1404478-23	1404478-24	1404478-25	1404478-26	1404478-27	1404478-28
			Residential	Non- Residential	Non-Residential		4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	Statewide Default Background Levels CAS Number Cas Number Cas N														U					
Arsenic	Tameter Parameter Parameter CAS Number Background Levels														1,300					
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	16,000	11,000	13,000	17,000	26,000	16,000	12,000	14,000	11,000	14,000	9,700	13,000	6,100	8,300
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	6,500	5,300	6,100	6,300	9,400	7,100	5,400	5,800	6,600	6,200	5,500	6,000	3,600	4,200
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	3,600	3,200	3,600	5,300	6,200	4,400	4,100	3,500	2,500	4,000	94,000	4,300	2,400	2,500
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	U	U	410	U	570	U	U	470	U	440	430	U	U	490
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	U	U	U	U	U	U	U	U	U	U

		Part 201 Gene	eric Cleanup (Criteria			Borin	ng-14	Borii	ng-15	Bori	ng-16	Boring-195	Boring-196
Parameter	CAS Number	Statewide Default Background		0	Direct Contact Criteria	Groundwater Surface Water Interface	HAB-14 0-2'	HAB-14 2-4'	HAB-15 0-2'	HAB-15 2-4'	HAB-16 0-2'	HAB-16 2-4'	195 1-1.5	196 1-1.5'
	Parameter CAS Number Default Background Levels Residential Non-Residential Non-Reside									1406681-04	1406681-05	1406681-06	1501009-01	1501009-02
Parameter CAS Number CAS Number CAS Number Default Background Levels Residential Non-Residential No											6/11/2014	6/11/2014	12/23/2014	12/23/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)											_
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	U	U	32	U	U	U	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	3,300	2,800	1,500	1,800	5,400	5,700				
Parameter CAS Number CAS Number Default Background Levels Protection Criteria Protection Criteria Protection Criteria Non-Residential Non-Residential Non-Residential Non-Residential Non-Residential No											17,000	NA	NA	
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	120	160	610	170	86	110	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	5,900	8,900	11,000	8,700	4,500	5,800	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	3,200	6,600	8,500	4,400	2,800	3,400	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	570	970	990	740	570	550	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	120	U	54	U	NA	NA

Notes:

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 3 of 3

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	Teanup Crite	ria																								
Parameter	CAS Number	Drinkir Protection	ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	EB-3 8-10'	EB-4 5-7'	EB-7 0-1'	EB-8 0-1'	EB-9 0-1'	EB-12 0-1'	EB-12 0-1' DUP	EB-14 0-1'	EB-16 0-0.5'	EB-19 0-0.5'	EB-20 0-0.5'	EB-23 5-6'	EB-23 9-10'	EB-24 0-1'	EB-25 0-1'	EB-26 0-1'	EB-27 0-1'	EB-27 0-1' DUP	EB-28 0-1'	EB-31 0-1'	EB-32 0-1'	EB-33 0-0.5'
					Criteria	Protection	13111229-01	13111229-02	13111229-03	13111229-04	13111229-05	13111229-06	13111229-33	13111229-07	13111229-08	13111229-09	13111229-10	13111229-11	13111229-12	13111229-13	13111229-14	13111229-15	13111229-16	13111229-34	13111229-17	13111229-18	13111229-19	13111229-20
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	37	U	U	U	620	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	250	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	46	200	U	U	U	2,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	240	750	U	U	U	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	79	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds - For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

 - U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

 2,000

 - Lattice shaded cells exceed the groundwater surface water interface protection criteria.

 3,000 T

 - Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.
 - - Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 1 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	leanup Crite	ria			Bor	ing-1	Bor	ing-2	Bor	ing-3	Bor	ng-4	Bor	ing-5	Bor	ing-6		Bor	ing-7			Boring-8		Bor	ring-9
Parameter	CAS Number	Drinkin Protection	ng Water 1 Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation Criteria	Groundwater Surface Water Interface Protection	HAB-1 0-2'	HAB-1 2-3.5'	HAB-2 0-2'	HAB-2 2-4'	HAB-3 0-2'	HAB-3 2-4'	HAB-4 0-2'	HAB-4 2-4'	HAB-5 0-2'	HAB-5 2-4'	HAB-6 0-2'	HAB-6 2-4'	HAB-7 0-2'	HAB-7 2-4'	HAB-7 4-6'	HAB-7 6-8'	HAB-8 0-2'	HAB-8 2-4'	HAB-8 0-2' DUP	HAB-9 0-2'	HAB-9 2-4'
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	6/12/2014	6/12/2014		4/7/2014	4/7/2014	4/7/2014	4/7/2014
VOCs USEPA Method 8260 (µg/Kg)																											
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	35	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	U	450	550	1,400	1,700	2,400	4,700	1,600	2,700	U	U	U	U	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1.1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1.800	U	U	110	U	U	U	390	470	1.000	1.200	360	840	790	810	U	U	360	440	500	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	380	12.000	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	140	160	79	200	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	II.	II.	U	U	II.	U	II.	U	II.	II.	II.	II.	II.	U	11	II.	U	U	-
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1.100	U	U	II.	II.	U	U	II.	U	II.	U	U	U	II.	U	U	U	TI II	U	U	U	
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	II	II.	II.	II.	U	II.	II	II.	U	II.	II.	II	II.	II.	U	11	II.	II	U	11

- Xylenes, Total
 Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bor	ing-10	Boris	ng-11		Boring-12		Bor	ing-13	Bor	ing-14	Bori	ng-15	Bori	ng-16	Bori	ring-17	Bor	ing-18		Boring-19	
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-10 0-2'	HAB-10 2-4'	HAB-11 0-2'	HAB-11 2-4'	HAB-12 0-2'	HAB-12 2-3'	HAB-12 0-2' DUP	HAB-13 0-2'	HAB-13 2-3'	HAB-14 0-2'	HAB-14 2-4'	HAB-15 0-2'	HAB-15 2-4'	HAB-16 0-2'	HAB-16 2-4'	HAB-17 0-2'	HAB-17 2-4'	HAB-18 0-2'	HAB-18 2-4'	HAB-19 0-2'	HAB-19 0-2' DUP	HAB-19 24'
					Criteria	Protection	1404478-20	1404478-21	1404478-22	1404478-23	1404478-24	1404478-25	1404478-26	1404478-27	1404478-28	1406681-01	1406681-02	1406681-03	1406681-04	1406681-05	1406681-06	140668-07	1406681-08	1406681-09	1406681-10	1406681-11	1406681-12	1406681-13
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014
VOCs USEPA Method 8260 (µg/Kg)																										1	†	1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	93	470	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	48	40	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	1,900	960	U	U	U	3,600	5,300	440	510	U	42	3,300	3,200	560	640	U	U	360	200	150
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	87	170	470	790	U	U	U	U	U	77	U	U	U	170	150	U	U	160	230	820	460	250
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	260	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic (Cleanup Crite	eria			Bor	ing-20	Bor	ing-21		Boring-22		Boring-23		Boring-24		Bori	ng-25	Bori	ng-26	Bori	ing-27	Bori	ng-28	Bori	ing-29
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-20 0-2'	HAB-20 2-4'	HAB-21 0-2'	HAB-21 2-4'	HAB-22 0-2'	HAB-22 2-4'	HAB-23 0-2'	HAB-23 2-4'	HAB-24 0-2'	HAB-24 0-2' DUP	HAB-24 2-4'	HAB-25 0-2'	HAB-25 2-4'	HAB-26 0-2'	HAB-26 2-4'	HAB-27 0-2'	HAB-27 2-4'	HAB-28 0-2'	HAB-28 2-4'	HAB-29 0-2'	HAB-29 2-4'
					Criteria	Protection	1406681-14	1406681-15	1406681-16	1406681-17	1406681-18	1406681-19	1406681-20	1406681-21	1406681-22	1406681-23	1406681-24	1406681-25	1406681-26	1406681-27	1406681-28	1406681-29	1406681-30	1406681-31	1406681-32	1406681-33	1406681-34
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/12/2014	6/12/2014	6/12/2014	6/12/2014
VOCs USEPA Method 8260 (µg/Kg)																											
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	37	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	150	160	190	89	60	U	U	U	390	270	U	130	63	U	U	190	82	6,400	9,800	4,200	3,300
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	83	U	55	U	45	U	89	340	U	U	U	630	310	U	U	450	250	930	1,200	690	430
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	93	76	U	U	U	U	600	U	U	U	U	U	U	U	U	U	U	210	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	140	110
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	56	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 4 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria				Bori	ng-30		Bori	ng-31	Boring-33	Boring-36	Boring-37	Boring-39	Boring-52	Boring-62	Boring-68	Boring-76	Boring-78		Boring-81		Boring-82	Boring-93	Boring-94	Boring-95
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-30 0-2'	HAB-30 2-4'	HAB-30 4-6'	HAB-30 6-8'	HAB-31 0-2'	HAB-31 2-4'	HAB-33 0-2'	HAB-36 0-2'	HAB-37 0-2'	HAB-39 0-2'	HAB-52 0-2'	HAB-62 0-2'	HAB-68 0-2'	HAB-76 0-2'	HAB-78 0-2'	HAB-81 0-2'	HAB-81 4-6'	HAB-81 9-11'	HAB-82 0-2'	HAB-93 0-2'	HAB-94 0-2'	HAB-95 0-2'
					Criteria	Protection	1406681-35	1406681-36	1406681-55	1406681-56	1406681-37	1406681-38	14081187-02	14081187-05	14081187-06	14081187-08	14081187-22	14081187-33	14081187-40	14081187-49	14081187-51	14091057-01	14091057-02	14091057-03	14091057-04	14091057-19	14091057-20	14091057-21
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	6/12/2014	6/12/2014	8/20/2014	8/20/2014	6/12/2014	6/12/2014	8/18/2014	8/18/2014	8/18/2014	8/18/2014	8/19/2014	8/19/2014	8/20/2014	8/20/2014	8/21/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014
VOCs USEPA Method 8260 (µg/Kg)																												+
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	36,000	U	U	U	U	U	450	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	51	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	100	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	160	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	10,000	18,000	2,000	930	420	280	42	440	45	750	64	130	44	720	2,100	18,000	19,000	110	7,300	U	300	77
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	140	230	U	200	350	280	U	170	85	140	U	580	U	U	120	220	240	75	200	120	250	220
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	98	U	U	U	U	U	390	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	190	340	70	U	U	U	U	U	U	59	U	U	U	U	U	220	290	U	300	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	Cleanup Crit	eria			Bor	ing-96	Bori	ng-97	Bori	ng-98	Boring-99	Boring-106			Boring-130			Boring-131	Boring-132	Boring-133	Bor	ng-134	Boring-135	Boring-136	Boring-140	Boring-141
Parameter	CAS Number	Drinkir Protection	ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-96 0-2'	HAB-96 2-4'	HAB-97 0-2'	HAB-97 0-2' DUP	HAB-98 0-2'	HAB-98 2-4'	HAB-99 0-2'	HAB-106 0-2'	GP-130 2-2.5'	GP-130 4-5'	GP-130 7-8'	GP-130 10-11'	GP-130 13-14'	HAB-131 2-2.5'	GP-132 2-2.5'	HAB-133 2-2.5'	GP-134 2-2.5'	GP-134 2-2.5 DUP	GP-135 2-2.5'	HAB-136 1.5-2'	HAB-140 1.5-2'	SB-141 2-2.5'
					Criteria	Protection	14091057-22	14091057-39	14091057-23	14091057-24	14091057-25	14091057-26	14091057-27	14091057-36	1412085-12	1412659-05	1412659-06	1412659-07	1412659-08	1412086-04	141208-13	1412086-03	141208-15	1412085-16	141208-14	1412086-09	1412086-08	1412085-11
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	9/18/2014	9/19/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/19/2014	12/2/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/4/2014
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	390	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	59	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	150	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	1,000	U	180	180	390	66	U	U	3,500	440	U	U	U	83	1,400	1,200	260	260	410	240	2,300	500
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	200	U	270	310	640	U	140	U	110	87	U	U	U	U	300	1,600	600	490	410	760	160	93
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	200	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 6 of 10 8/10/2018

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #]
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E]
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16]
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								9	Sample Location/L	(/	ration								1	
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10	1	
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
																					<u>-</u>	
		1 1			Excavation #5			1			T	I	I		Excavation #6			7				
	Part 201 GCC	40CFR761.61		Sample Le	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Le	cation/Depth & Co			-				
Parameter	Residential	High Occupancy	S-2	S-2. 5' N	S-2. 5' E	S-2. 5' S	S-2, 5'W	1	Para	meter	Residential	High	S-3	S-3. 5' N	S-3. 5'E	S-3, 5' S	S-3, 5' W	+				
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	-				
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	<0.2	<0.2	<0.2	<0.2	1	Total PCBs (mg/	/Ka)	4.0	1.0	<0.2	<0.2	0.67	0.25	<0.2	1				
10.0.1 (250 (11.6) 14.6)	210	110	0.10	-0.2	-0.2	V.2	0.2	1	Total T CDS (IIIG)	116/	1.0	210	-0.2	-0.2	0.07	0.20	V.2	_				
													avation #7									
1 .	Part 201 GCC	40CFR761.61		1	1	_	1			,			/Depth & Concent									
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138, 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
	D . 404 C ==	40.07777-04 ::				-			-		-		vation #8*			-			-			-
l " .	Part 201 GCC	40CFR761.61											/Depth & Concent									
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
T . 1 PCP (///)	1.0	1.0	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Sai	mple Location/Dep	th & Concentration	n		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	ı				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #]
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E]
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16]
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								9	Sample Location/L	(/	ration								1	
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10	1	
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
																					<u>-</u>	
		1 1			Excavation #5			1			T	I	I		Excavation #6			7				
	Part 201 GCC	40CFR761.61		Sample Le	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Le	cation/Depth & Co			-				
Parameter	Residential	High Occupancy	S-2	S-2. 5' N	S-2. 5' E	S-2. 5' S	S-2, 5'W	1	Para	meter	Residential	High	S-3	S-3. 5' N	S-3. 5'E	S-3, 5' S	S-3, 5' W	+				
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	-				
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	<0.2	<0.2	<0.2	<0.2	1	Total PCBs (mg/	/Ka)	4.0	1.0	<0.2	<0.2	0.67	0.25	<0.2	1				
10.0.1 (220 (11.6) 14.6)	210	110	0.10	-0.2	-0.2	V.2	0.2	1	Total T CDS (IIIG)	116/	1.0	210	-0.2	-0.2	0.07	0.20	V.2	_				
													avation #7									
1 .	Part 201 GCC	40CFR761.61		1		_	1			,			/Depth & Concent									
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138, 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
	D . 404 C ==	40.07777-04 ::				-			-		-		vation #8*			-			-			-
l " .	Part 201 GCC	40CFR761.61											/Depth & Concent									
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
T . 1 PCP (///)	1.0	1.0	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Sai	mple Location/Dep	th & Concentration	n		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	ı				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	eric Cleanup (Criteria																
Parameter	CAS Number	Statewide Default Background		ng Water Criteria ***	Direct Contact Criteria	Groundwater Surface Water Interface	EB-3 8-10'	EB-4 5-7'	EB-5 10-12'	EB-7 0-1'	EB-7 2-3'	EB-8 0-1'	EB-9 0-1'	EB-12 0-1'	EB-12 0-1' DUP	EB-14 0-1'	EB-16 0-0.5'	EB-19 0-0.5'	EB-20 0-0.5'	EB-24 0-1'
		Levels				Protection Criteria	13111229-01	13111229-02	13111229-21	13111229-03	1501227-01	13111229-04	13111229-05	13111229-06	13111229-33	13111229-07	13111229-08	13111229-09	13111229-10	13111229-13
			Residential	Non- Residential	Non-Residential	Cincila	11/19/2013	11/19/2013	11/20/2013	11/19/2013	1/7/2015	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	39	23	16	25	NA	33	25	23	22	39	34	24	27	27
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	11,000	4,600	7,600	15,000	340	5,400	6,900	5,600	3,500	10,000	5,600	9,300	8,800	5,600
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	120,000	88,000	33,000	140,000	NA	71,000	89,000	76,000	81,000	91,000	100,000	79,000	100,000	93,000
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	600	U	U	710	NA	U	U	U	U	U	U	470	U	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	27,000	34,000	15,000	29,000	NA	19,000	22,000	16,000	19,000	24,000	23,000	20,000	26,000	24,000
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	15,000	11,000	10,000	17,000	NA	10,000	11,000	8,800	7,300	13,000	11,000	12,000	12,000	16,000
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	1,500	18,000	1,000	1,300	NA	860	1,000	1100	810	1,200	1,000	1,000	1,100	1,300
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	NA	U	U	U	U	U	U	U	U	U

		Part 201 Gene	eric Cleanup	Criteria																
Parameter	CAS Number	Statewide Default		ng Water on Criteria	Direct Contact Criteria	Groundwater Surface Water Interface	EB-25 0-1'	EB-26 0-1'	EB-27 0-1'	EB-27 0-1' DUP	EB-28 0-1'	EB-31 0-1'	EB-32 0-1'	EB-33 0-0.5'	ERM-BG-1 0-1'	ERM-BG-1 3-4'	ERM-BG-2 0.3-1'	ERM-BG-2 3-4'	ERM-BG-3 0.3-1'	ERM-BG-3 2-3'
	Parameter CAS Number Background Levels Criteria Criteria Inter Protection Criteria C						13111229-14	13111229-15	13111229-16	13111229-34	13111229-17	13111229-18	13111229-19	13111229-20	1404478-29	1404478-30	1404478-31	1404478-32	1404478-33	1404478-34
			Residential	Non- Residential	Non-Residential	Criteria	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Levels Residential Non-Residential Non-																				
Mercury (Total)	Residential Residential Non-Residential						65	55	95	83	54	30	45	36	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	10,000	9,400	11,000	8,500	8,100	7,600	9,700	8,600	7,100	8,000	7,900	10,000	8,100	8,000
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	110,000	110,000	100,000	100,000	100,000	140,000	170,000	89,000	NA	NA	NA	NA	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	890	500	U	U	U	U	540	U	NA	NA	NA	NA	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	26,000	25,000	33,000	27,000	27,000	26,000	32,000	25,000	NA	NA	NA	NA	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	25,000	20,000	30,000	29,000	17,000	10,000	14,000	14,000	NA	NA	NA	NA	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	2,000	1,700	1,800	1,900	1,600	1,100	1,900	1,200	NA	NA	NA	NA	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	U	U	U	U	NA	NA	NA	NA	NA	NA

* Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.

** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- $\hbox{-} For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed. \\$
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

2,000 EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 1 of 3

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup C	Criteria																	
Parameter	CAS Number	Statewide Default	Drinkin Protection (U	Direct Contact Criteria	Groundwater Surface Water Interface	ERM-BG-4 0.3-1'	ERM-BG-4 2-3'	ERM-BG-5 0.3-1'	ERM-BG-5 0.3-1' DUP	ERM-BG-5 2-3'	ERM-BG-6 0.3-1'	ERM-BG-6 2-3'	ERM-BG-7 0.3-1'	ERM-BG-7 2-3'	ERM-BG-8 0.3-1'	ERM-BG-8 2-3'	ERM-BG-9 0.3-1'	ERM-BG-9 2-3'	ERM-BG-10 0.3-1'	ERM-BG-10 2-3'
	Background Prote						1404478-35	1404478-36	1404478-37	1404478-38	1404478-39	1404478-40	1404478-41	1404478-42	1404478-43	1404478-44	1404478-45	1404478-46	1404478-47	1404478-48	1404478-49
			Residential	Non- Residential	Non-Residential	Criteria	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																		
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	8,900	10,000	10,000	7,200	6,900	7,300	7,700	7,800	6,400	6,600	6,600	7,400	9,000	7,600	8,200
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

		Part 201 Gene	eric Cleanup (Criteria				Bori	ing-1	Bori	ing-2	Bor	ing-3	Boris	ng-4	Bori	ing-5	Bori	ing-6	Bor	ing-7
Parameter	CAS Number	Statewide Default Background	Drinkin Protection	ng Water n Criteria	Direct Contact Criteria	Groundwater Surface Water Interface Protection	ERM-BG-10 2-3' DUP 1404478-50	HAB-1 0-2' 1404478-01	HAB-1 2-3.5'	HAB-2 0-2' 1404478-03	HAB-2 2-4' 1404478-04	HAB-3 0-2' 1404478-05	HAB-3 2-4' 1404478-06	HAB-4 0-2' 1404478-07	HAB-4 2-4' 1404478-08	HAB-5 0-2' 1404478-09	HAB-5 2-4' 1404478-10	HAB-6 0-2' 1404478-11	HAB-6 2-4' 1404478-12	HAB-7 0-2' 1404478-13	HAB-7 2-4' 1404478-14
		Levels		Non-		Criteria							+								+
			Residential	Residential	Non-Residential	Į.	4/8/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
Metals USEPA	Method 7471	(Hg) or 6020A	μg/kg)																		
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	NA	U	U	14	U	U	U	U	U	U	U	U	U	U	U
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	8,400	2,100	1,600	1,600	16,000	1,600	2,000	3,800	3,300	3,100	1,600	1,800	2,000	1,500	1,900
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	NA	12,000	21,000	12,000	740,000	11,000	14,000	46,000	21,000	29,000	8,900	17,000	11,000	14,000	9,500
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	NA	U	U	U	750	U	U	U	U	U	U	U	U	460	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	NA	5,500	7,100	7,400	8,500	5,600	6,100	10,000	8,200	8,400	6,000	6,600	6,200	6,800	5,700
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	NA	2,900	3,700	2,800	5,100	2,900	3,500	5,000	5,400	4,800	2,700	3,200	3,400	7,300	3,200
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	NA	U	U	U	500	U	U	410	690	470	U	U	U	U	U
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	NA	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- $\hbox{-} For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed. \\$
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

2,000 EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 2 of 3

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup (Criteria			Bori	ing-8	Boring-8	Bor	ing-9	Bor	ing-10	Borin	g-11		Boring-12		Bori	ng-13
Parameter	CAS Number	Statewide Default Background		ng Water Criteria ***	Direct Contact Criteria	Groundwater Surface Water Interface	HAB-8 0-2'	HAB-8 2-4'	HAB-8 0-2' DUP	HAB-9 0-2'	HAB-9 2-4'	HAB-10 0-2'	HAB-10 2-4'	HAB-11 0-2'	HAB-11 2-4'	HAB-12 0-2'	HAB-12 2-3'	HAB-12 0-2' DUP	HAB-13 0-2'	HAB-13 2-3'
		Levels				Protection	1404478-15	1404478-16	1404478-17	1404478-18	1404478-19	1404478-20	1404478-21	1404478-22	1404478-23	1404478-24	1404478-25	1404478-26	1404478-27	1404478-28
			Residential	Non- Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	2,800	2,400	2,100	2,000	4,000	2,200	1,500	2,000	1,800	2,300	1,800	2,100	1,200	1,300
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	16,000	11,000	13,000	17,000	26,000	16,000	12,000	14,000	11,000	14,000	9,700	13,000	6,100	8,300
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	6,500	5,300	6,100	6,300	9,400	7,100	5,400	5,800	6,600	6,200	5,500	6,000	3,600	4,200
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	3,600	3,200	3,600	5,300	6,200	4,400	4,100	3,500	2,500	4,000	94,000	4,300	2,400	2,500
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	U	U	410	U	570	U	U	470	U	440	430	U	U	490
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	U	U	U	U	U	U	U	U	U	U

		Part 201 Gene	eric Cleanup (Criteria			Borin	ng-14	Borii	ng-15	Bori	ng-16	Boring-195	Boring-196
Parameter	CAS Number	Statewide Default Background		ng Water n Criteria	Direct Contact Criteria	Groundwater Surface Water Interface	HAB-14 0-2'	HAB-14 2-4'	HAB-15 0-2'	HAB-15 2-4'	HAB-16 0-2'	HAB-16 2-4'	195 1-1.5	196 1-1.5'
		Levels					1406681-01	1406681-02	1406681-03	1406681-04	1406681-05	1406681-06	1501009-01	1501009-02
	Parameter CAS Number Background Protection Criteria Criteria Interface								6/11/2014	6/11/2014	6/11/2014	6/11/2014	12/23/2014	12/23/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)											_
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	U	U	32	U	U	U	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	1,800	4,400	3,300	2,800	1,500	1,800	5,400	5,700
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	15,000	29,000	37,000	22,000	9,600	17,000	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	120	160	610	170	86	110	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	5,900	8,900	11,000	8,700	4,500	5,800	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	3,200	6,600	8,500	4,400	2,800	3,400	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	570	970	990	740	570	550	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	120	U	54	U	NA	NA

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 3 of 3

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	Teanup Crite	ria																								
Parameter	CAS Number	Drinkir Protection	ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	EB-3 8-10'	EB-4 5-7'	EB-7 0-1'	EB-8 0-1'	EB-9 0-1'	EB-12 0-1'	EB-12 0-1' DUP	EB-14 0-1'	EB-16 0-0.5'	EB-19 0-0.5'	EB-20 0-0.5'	EB-23 5-6'	EB-23 9-10'	EB-24 0-1'	EB-25 0-1'	EB-26 0-1'	EB-27 0-1'	EB-27 0-1' DUP	EB-28 0-1'	EB-31 0-1'	EB-32 0-1'	EB-33 0-0.5'
					Criteria	Protection	13111229-01	13111229-02	13111229-03	13111229-04	13111229-05	13111229-06	13111229-33	13111229-07	13111229-08	13111229-09	13111229-10	13111229-11	13111229-12	13111229-13	13111229-14	13111229-15	13111229-16	13111229-34	13111229-17	13111229-18	13111229-19	13111229-20
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	37	U	U	U	620	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	250	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	46	200	U	U	U	2,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	240	750	U	U	U	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	79	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds - For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

 - U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

 2,000

 - Lattice shaded cells exceed the groundwater surface water interface protection criteria.

 3,000 T

 - Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.
 - - Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 1 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	Teanup Crite	eria			Box	ing-1	Bor	ing-2	Bor	ing-3	Bor	ing-4	Bor	ring-5	Bor	ing-6		Bor	ing-7			Boring-8		Bor	ring-9
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation Criteria	Groundwater Surface Water Interface	HAB-1 0-2'	HAB-1 2-3.5'	HAB-2 0-2'	HAB-2 2-4'	HAB-3 0-2'	HAB-3 2-4'	HAB-4 0-2'	HAB-4 2-4'	HAB-5 0-2'	HAB-5 2-4'	HAB-6 0-2'	HAB-6 2-4'	HAB-7 0-2'	HAB-7 2-4'	HAB-7 4-6'	HAB-7 6-8'	HAB-8 0-2'	HAB-8 2-4'	HAB-8 0-2' DUP	HAB-9 0-2'	HAB-9 2-4'
					Criteria	Protection	1404478-01	1404478-02	1404478-03	1404478-04	1404478-05	1404478-06	1404478-07	1404478-08	1404478-09	1404478-10	1404478-11	1404478-12	1404478-13	1404478-14	1406681-39	1406681-40	1404478-15	1404478-16	1404478-17	1404478-18	1404478-19
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	6/12/2014	6/12/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
VOCs USEPA Method 8260 (µg/Kg)																											
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	35	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	U	450	550	1,400	1,700	2,400	4,700	1,600	2,700	U	U	U	U	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	U	110	U	U	U	390	470	1,000	1,200	360	840	790	810	U	U	360	440	500	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	380	12,000	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	140	160	79	200	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bor	ing-10	Boris	ng-11		Boring-12		Bor	ing-13	Bor	ing-14	Bori	ng-15	Bori	ng-16	Bori	ring-17	Bor	ing-18		Boring-19	
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-10 0-2'	HAB-10 2-4'	HAB-11 0-2'	HAB-11 2-4'	HAB-12 0-2'	HAB-12 2-3'	HAB-12 0-2' DUP	HAB-13 0-2'	HAB-13 2-3'	HAB-14 0-2'	HAB-14 2-4'	HAB-15 0-2'	HAB-15 2-4'	HAB-16 0-2'	HAB-16 2-4'	HAB-17 0-2'	HAB-17 2-4'	HAB-18 0-2'	HAB-18 2-4'	HAB-19 0-2'	HAB-19 0-2' DUP	HAB-19 24'
					Criteria	Protection	1404478-20	1404478-21	1404478-22	1404478-23	1404478-24	1404478-25	1404478-26	1404478-27	1404478-28	1406681-01	1406681-02	1406681-03	1406681-04	1406681-05	1406681-06	140668-07	1406681-08	1406681-09	1406681-10	1406681-11	1406681-12	1406681-13
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014
VOCs USEPA Method 8260 (µg/Kg)																										1	†	1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	93	470	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	48	40	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	1,900	960	U	U	U	3,600	5,300	440	510	U	42	3,300	3,200	560	640	U	U	360	200	150
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	87	170	470	790	U	U	U	U	U	77	U	U	U	170	150	U	U	160	230	820	460	250
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	260	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic (Cleanup Crite	eria			Bor	ing-20	Bor	ing-21		Boring-22		Boring-23		Boring-24		Bori	ng-25	Bori	ng-26	Bori	ing-27	Bori	ng-28	Bori	ing-29
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-20 0-2'	HAB-20 2-4'	HAB-21 0-2'	HAB-21 2-4'	HAB-22 0-2'	HAB-22 2-4'	HAB-23 0-2'	HAB-23 2-4'	HAB-24 0-2'	HAB-24 0-2' DUP	HAB-24 2-4'	HAB-25 0-2'	HAB-25 2-4'	HAB-26 0-2'	HAB-26 2-4'	HAB-27 0-2'	HAB-27 2-4'	HAB-28 0-2'	HAB-28 2-4'	HAB-29 0-2'	HAB-29 2-4'
					Criteria	Protection	1406681-14	1406681-15	1406681-16	1406681-17	1406681-18	1406681-19	1406681-20	1406681-21	1406681-22	1406681-23	1406681-24	1406681-25	1406681-26	1406681-27	1406681-28	1406681-29	1406681-30	1406681-31	1406681-32	1406681-33	1406681-34
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/12/2014	6/12/2014	6/12/2014	6/12/2014
VOCs USEPA Method 8260 (µg/Kg)																											
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	37	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	150	160	190	89	60	U	U	U	390	270	U	130	63	U	U	190	82	6,400	9,800	4,200	3,300
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	83	U	55	U	45	U	89	340	U	U	U	630	310	U	U	450	250	930	1,200	690	430
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	93	76	U	U	U	U	600	U	U	U	U	U	U	U	U	U	U	210	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	140	110
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	56	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 4 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria				Bori	ng-30		Bori	ng-31	Boring-33	Boring-36	Boring-37	Boring-39	Boring-52	Boring-62	Boring-68	Boring-76	Boring-78		Boring-81		Boring-82	Boring-93	Boring-94	Boring-95
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-30 0-2'	HAB-30 2-4'	HAB-30 4-6'	HAB-30 6-8'	HAB-31 0-2'	HAB-31 2-4'	HAB-33 0-2'	HAB-36 0-2'	HAB-37 0-2'	HAB-39 0-2'	HAB-52 0-2'	HAB-62 0-2'	HAB-68 0-2'	HAB-76 0-2'	HAB-78 0-2'	HAB-81 0-2'	HAB-81 4-6'	HAB-81 9-11'	HAB-82 0-2'	HAB-93 0-2'	HAB-94 0-2'	HAB-95 0-2'
					Criteria	Protection	1406681-35	1406681-36	1406681-55	1406681-56	1406681-37	1406681-38	14081187-02	14081187-05	14081187-06	14081187-08	14081187-22	14081187-33	14081187-40	14081187-49	14081187-51	14091057-01	14091057-02	14091057-03	14091057-04	14091057-19	14091057-20	14091057-21
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	6/12/2014	6/12/2014	8/20/2014	8/20/2014	6/12/2014	6/12/2014	8/18/2014	8/18/2014	8/18/2014	8/18/2014	8/19/2014	8/19/2014	8/20/2014	8/20/2014	8/21/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014
VOCs USEPA Method 8260 (µg/Kg)																												+
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	36,000	U	U	U	U	U	450	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	51	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	100	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	160	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	10,000	18,000	2,000	930	420	280	42	440	45	750	64	130	44	720	2,100	18,000	19,000	110	7,300	U	300	77
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	140	230	U	200	350	280	U	170	85	140	U	580	U	U	120	220	240	75	200	120	250	220
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	98	U	U	U	U	U	390	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	190	340	70	U	U	U	U	U	U	59	U	U	U	U	U	220	290	U	300	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bor	ing-96	Bori	ng-97	Bori	ng-98	Boring-99	Boring-106			Boring-130			Boring-131	Boring-132	Boring-133	Bori	ng-134	Boring-135	Boring-136	Boring-140	Boring-141
Parameter	CAS Number	Drinkir Protection	ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-96 0-2'	HAB-96 2-4'	HAB-97 0-2'	HAB-97 0-2' DUP	HAB-98 0-2'	HAB-98 2-4'	HAB-99 0-2'	HAB-106 0-2'	GP-130 2-2.5'	GP-130 4-5'	GP-130 7-8'	GP-130 10-11'	GP-130 13-14'	HAB-131 2-2.5'	GP-132 2-2.5'	HAB-133 2-2.5'	GP-134 2-2.5'	GP-134 2-2.5 DUP	GP-135 2-2.5'	HAB-136 1.5-2'	HAB-140 1.5-2'	SB-141 2-2.5'
					Criteria	Protection	14091057-22	14091057-39	14091057-23	14091057-24	14091057-25	14091057-26	14091057-27	14091057-36	1412085-12	1412659-05	1412659-06	1412659-07	1412659-08	1412086-04	141208-13	1412086-03	141208-15	1412085-16	141208-14	1412086-09	1412086-08	1412085-11
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	9/18/2014	9/19/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/19/2014	12/2/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/4/2014
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	390	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	59	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	150	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	1,000	U	180	180	390	66	U	U	3,500	440	U	U	U	83	1,400	1,200	260	260	410	240	2,300	500
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	200	U	270	310	640	U	140	U	110	87	U	U	U	U	300	1,600	600	490	410	760	160	93
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	200	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ū	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 6 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bori	ing-142	Borir	ng-143			Boring-144			Bori	ng-145	Bori	ng-146	Borir	ng-147	Borii	ng-148			Boring-149		
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-142 4-5'	GP-142 7-8'	GP-143 4-5'	GP-143 7-8'	GP-144 45'	GP-144 10-11'	SB-144 12-13'	SB-144 16-17'	SB-144 20-21'	SB-145 4-5'	SB-145 7-8'	SB-146 4-5'	SB-146 7-8'	GP-147 9-10'	GP-147 11-12'	SB-148 4-5'	SB-148 7-8'	SB-149 4-5'	SB-149 7-8'	SB-149 10-11'	SB-149 13-14'	SB-149 17-18'
					Criteria	Protection	1412087-05A	1412087-06A	1412087-07A	1412087-08A	1412087-09A	1412087-10A	1412379-07	1412379-08	1412379-09	1412085-01	1412085-02	1412085-03	1412085-04	1412087-11	1412087-12	1412085-05	1412085-06	1412085-07	1412085-08	1412379-10	1412379-11	1412379-12
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/5/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/5/2014
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	87 J	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	270	U	U	U	U	U	U	2,800	U	U	U	U	U	U	U	U
1.1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	110	U	U	U	U	61	U	U	330	72	U	U	U	U	U	U	U
1.1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	110	U	U	U	U	U	U	120	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	370	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	310	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	250	U	U	U	U	U	U	15 J	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	530	88	190	20,000	3,100	8,800	59	U	240	U	U	U	1.800	64	120	200	510	3,900	U	U	U
Foluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1.1-Trichloroethane	71-55-6	4,000	4.000	1.0E+09	4.6E+05	1.800	U	370	U	190	230	780	670	U	U	U	220	U	U	2,700	U	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5.900	U	II.	II.	II.	11	II.	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Frichloroethylene	79-01-6	100	100	6.6E+05	1.900 Ŧ	4.000	U.	U	II.	U	350	230	3.000 Ŧ	U	U	80	U	U	U	14.000Ŧ	98	130	U	U	150	U	U	U
1.2.4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	1	- 11	- 11	- 11	II	11	3,000 T	U	II.	II	II.	U	II.	12.000	32 I	II.	U	U	II.	U	U	U
1.3.5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1.100	II.	II.	11	- 11	11	- 11	U	U	U	II.	U	U	U	3,400	11	II.	U	U	II.	II.	U	U
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820							U	- 11	II.	II.	II.			530	II.	II.			II	II.	II.	U

- Xylenes, Total
 Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	ria				Bori	ng-150		Borin	g-151		Bori	ng-152			Bori	ing-153		Bori	ng-154	Bori	ng-155	Boring-161		Boring-162	2
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-150 4-5'	GP-150 7-8'	SB-150 10-11'	SB-150 14-15'	GP-151 4-5'	GP-151 7-8'	GP-152 4-5'	GP-152 7-8'	GP-152 10-11'	GP-152 13-14'	SB-153 4-5'	SB-153 7-8'	SB-153 10-11'	SB-153 13-14'	GP-154 7-8'	GP-154 11-12'	GP-155 4-5'	GP-155 7-8'	GP-161 2-3'	GP-162 4-5'	GP-162 7-8'	GP-163 4-5'
					Criteria	Protection	1412087-13	1412087-14	1412379-13	1412379-14	1412087-15	1412087-16	1412087-17	1412087-18	1412659-09	1412659-10	1412085-09	1412085-10	1412659-11	1412659-12	1412087-01A	1412087-02A	1412087-03A	1412087-04A	1412659-21	1412087-19	1412087-20	1412087-21
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014
VOCs USEPA Method 8260 (µg/Kg)																												1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	99 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	51
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	71	U	U	1,400	U	U	U	U	70	130	180
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	320	U	U	U	U	U	180	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	61	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	460	U	U	U	U	U	U	830
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	150	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	380	66	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	1,000	1,500	U	U	U	U	U	2,700	U	U	1,100	4,300	U	U	18,000	U	93	U	550	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	150	U	U	U	U	U	270	U	U	U	290	200	U	3,100	U	U	590	53	81	1,800	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	110	110	U	U	U	U	U	160	U	U	U	830	U	U	2,900 Ŧ	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	29 J	U	U	U	U	U	U	U	U	U	U	U	U	U	1,500	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	710	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	200	U	U	U	U	U	U	880

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 8 of 10 8/10/2018

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #										
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E	
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16	
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								5	Sample Location/D	epth & Concent	ration									
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10		
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
					Excavation #5			1							Excavation #6	•		1				
	Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1				
Parameter	Residential	High Occupancy	S-2	S-2, 5' N	S-2. 5' E	S-2, 5' S	S-2, 5'W		Para	meter	Residential	High	S-3	S-3, 5' N	S-3, 5'E	S-3, 5' S	S-3, 5' W					
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16					
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	< 0.2	< 0.2	< 0.2	< 0.2		Total PCBs (mg/	/Kg)	4.0	1.0	< 0.2	< 0.2	0.67	0.25	< 0.2					
	İ		•	•		•	•	•			•	•						-				
												Exca	avation #7									
	Part 201 GCC	40CFR761.61											/Depth & Concent	tration								
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138. 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
							•	•	•										•			
												Exca	vation #8*									
	Part 201 GCC	40CFR761.61									:		Depth & Concent	tration								
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Saı	mple Location/Dep	th & Concentration	ı		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	1				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bori	ing-142	Borir	ng-143			Boring-144			Bori	ng-145	Bori	ng-146	Borir	ng-147	Borii	ng-148			Boring-149		
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-142 4-5'	GP-142 7-8'	GP-143 4-5'	GP-143 7-8'	GP-144 45'	GP-144 10-11'	SB-144 12-13'	SB-144 16-17'	SB-144 20-21'	SB-145 4-5'	SB-145 7-8'	SB-146 4-5'	SB-146 7-8'	GP-147 9-10'	GP-147 11-12'	SB-148 4-5'	SB-148 7-8'	SB-149 4-5'	SB-149 7-8'	SB-149 10-11'	SB-149 13-14'	SB-149 17-18'
					Criteria	Protection	1412087-05A	1412087-06A	1412087-07A	1412087-08A	1412087-09A	1412087-10A	1412379-07	1412379-08	1412379-09	1412085-01	1412085-02	1412085-03	1412085-04	1412087-11	1412087-12	1412085-05	1412085-06	1412085-07	1412085-08	1412379-10	1412379-11	1412379-12
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/5/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/5/2014
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	87 J	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	270	U	U	U	U	U	U	2,800	U	U	U	U	U	U	U	U
1.1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	110	U	U	U	U	61	U	U	330	72	U	U	U	U	U	U	U
1.1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	110	U	U	U	U	U	U	120	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	370	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	310	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	250	U	U	U	U	U	U	15 J	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	530	88	190	20,000	3,100	8,800	59	U	240	U	U	U	1.800	64	120	200	510	3,900	U	U	U
Foluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1.1-Trichloroethane	71-55-6	4,000	4.000	1.0E+09	4.6E+05	1.800	U	370	U	190	230	780	670	U	U	U	220	U	U	2,700	U	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5.900	U	II.	II.	II.	11	II.	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Frichloroethylene	79-01-6	100	100	6.6E+05	1.900 Ŧ	4.000	U.	U	II.	U	350	230	3.000 Ŧ	U	U	80	U	U	U	14.000Ŧ	98	130	U	U	150	U	U	U
1.2.4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	1	- 11	- 11	- 11	II	11	3,000 T	U	II.	II	II.	U	II.	12.000	32 I	II.	U	U	II.	U	U	U
1.3.5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1.100	II.	II.	11	- 11	11	- 11	U	U	U	II.	U	U	U	3,400	11	II.	U	U	II.	II.	U	U
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820							U	- 11	II.	II.	II.			530	II.	II.			II	II.	II.	U

- Xylenes, Total
 Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	ria				Bori	ng-150		Borin	g-151		Bori	ng-152			Bori	ing-153		Bori	ng-154	Bori	ng-155	Boring-161		Boring-162	2
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-150 4-5'	GP-150 7-8'	SB-150 10-11'	SB-150 14-15'	GP-151 4-5'	GP-151 7-8'	GP-152 4-5'	GP-152 7-8'	GP-152 10-11'	GP-152 13-14'	SB-153 4-5'	SB-153 7-8'	SB-153 10-11'	SB-153 13-14'	GP-154 7-8'	GP-154 11-12'	GP-155 4-5'	GP-155 7-8'	GP-161 2-3'	GP-162 4-5'	GP-162 7-8'	GP-163 4-5'
					Criteria	Protection	1412087-13	1412087-14	1412379-13	1412379-14	1412087-15	1412087-16	1412087-17	1412087-18	1412659-09	1412659-10	1412085-09	1412085-10	1412659-11	1412659-12	1412087-01A	1412087-02A	1412087-03A	1412087-04A	1412659-21	1412087-19	1412087-20	1412087-21
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014
VOCs USEPA Method 8260 (µg/Kg)																												1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	99 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	51
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	71	U	U	1,400	U	U	U	U	70	130	180
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	320	U	U	U	U	U	180	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	61	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	460	U	U	U	U	U	U	830
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	150	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	380	66	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	1,000	1,500	U	U	U	U	U	2,700	U	U	1,100	4,300	U	U	18,000	U	93	U	550	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	150	U	U	U	U	U	270	U	U	U	290	200	U	3,100	U	U	590	53	81	1,800	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	110	110	U	U	U	U	U	160	U	U	U	830	U	U	2,900 Ŧ	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	29 J	U	U	U	U	U	U	U	U	U	U	U	U	U	1,500	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	710	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	200	U	U	U	U	U	U	880

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 8 of 10 8/10/2018

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #										
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E	
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16	
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								5	Sample Location/D	epth & Concent	ration									
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10		
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
					Excavation #5			1							Excavation #6	•		1				
	Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1				
Parameter	Residential	High Occupancy	S-2	S-2, 5' N	S-2. 5' E	S-2, 5' S	S-2, 5'W		Para	meter	Residential	High	S-3	S-3, 5' N	S-3, 5'E	S-3, 5' S	S-3, 5' W					
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16					
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	< 0.2	< 0.2	< 0.2	< 0.2		Total PCBs (mg/	/Kg)	4.0	1.0	< 0.2	< 0.2	0.67	0.25	< 0.2					
	İ		•	•		•	•	•			•	•						-				
												Exca	avation #7									
	Part 201 GCC	40CFR761.61											/Depth & Concent	tration								
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138, 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
							•	•	•										•			
												Exca	vation #8*									
	Part 201 GCC	40CFR761.61									:		Depth & Concent	tration								
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Saı	mple Location/Dep	th & Concentration	ı		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	1				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Summary of PCB in Exterior Yard Area Soil Table 3 General Electric, Riverview, Michigan

												Excavation #										
	Part 201 GCC	40CFR761.61										ocation/Depth &										
Parameter	Residential	High Occupancy	XE-4	XE-4	XE-4	XE-4	XE-4, 5'N	XE-4, 5'N	XE-4, 5'E	XE-4, 5'E	XE-4, 5'S	XE-4, 5'S	XE-4, 5'W	XE-4, 5'W	Exc-4 N	Exc-4 N	Exc-4 N1	Exc-4 NE	Exc-4 NE	Exc-4 E	Exc-4 E	
	Direct Contact	Limit	Nov-16	Oct-16	Oct-16	Dec-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Nov-16	Nov-16	Feb-17	Nov-16	Nov-16	Dec-16	Dec-16	
			0-1'	1-2'	2-3'	3.5-4'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	1-2'	2-3'	
Total PCBs (mg/Kg)	4.0	1.0	3.3	27	4.6	0.081	0.66	1.4	0.21	41.0	0.67	0.12	0.53	1.1	<0.2	<0.2	0.036	19	<0.2	<0.2	<0.2	
											Excavation	n #4 (cont'd)*									1	
	Part 201 GCC	40CFR761.61								5	Sample Location/D	epth & Concent	ration									
Parameter	Residential	High Occupancy	Exc-4 S	Exc-4 S	Exc-4 SW	Exc-4 SW	Exc-4 W	Exc-4 W	Exc-4 W2	Exc-4-01	Exc-4-01	Exc-4-01	Exc-4 -02	Exc-4 -03	Exc-4 -07	Exc-4 -08	Exc-4 -08	Exc-4 -08	Exc-4 -09	Exc-4 -10		
	Direct Contact	Limit	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Sep-17	Sep-17	Feb-17	Feb-17	Feb-17	Feb-17	Sep-17	Sep-17	Sep-17	Sep-17		
			1-2'	2-3'	0-1'	1-2'	1-2'	2-3'	0-1'	0-1'	1-2'	2-3'	0-1'	0-1'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'		
Total PCBs (mg/Kg)	4.0	1.0	<0.2	0.031	9.0	<0.2	1.2	<0.2	0.14	390	0.039	0.045	0.17	<0.2	0.14	0.025	2.2	0.029	0.52	0.87		
					Excavation #5			1							Excavation #6	•		1				
	Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1			Part 201 GCC	40CFR761.61		Sample Lo	cation/Depth & Co			1				
Parameter	Residential	High Occupancy	S-2	S-2, 5' N	S-2. 5' E	S-2, 5' S	S-2, 5'W		Para	meter	Residential	High	S-3	S-3, 5' N	S-3, 5'E	S-3, 5' S	S-3, 5' W					
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16				Direct Contact	Occupancy Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16					
			1-2'	0-1'	0-1'	0-1'	0-1'					Limit	1-2'	0-1'	0-1'	0-1'	0-1'					
Total PCBs (mg/Kg)	4.0	1.0	0.45	< 0.2	< 0.2	< 0.2	< 0.2		Total PCBs (mg/	/Kg)	4.0	1.0	< 0.2	< 0.2	0.67	0.25	< 0.2					
	İ		•	•		•	•	•			•	•						-				
												Exca	avation #7									
	Part 201 GCC	40CFR761.61											/Depth & Concent	tration								
Parameter	Residential	High Occupancy	138	138	138, 5' N	138, 5' E	138, 5' E	138, 5' E	138, 5' W	138, 5' W	138, 5' S	Exc-7 N	Exc-7 N	Exc-7 S	Exc-7 S	Exc-7 E	Exc-7 E	Exc-7 E2	Exc-7 E2	Exc-7-01	Exc-7-02	Exc-7-03
	Direct Contact	Limit	Oct-16	Oct-16	Oct-16	Oct-16	Oct-16	Dec-16	Dec-16	Dec-16	Oct-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	0-1'	1-2'	2.5-3'	0-1'	2.5-3'	0-1'	0-1' / DUP-C	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	3.7	0.27	0.42	3.7	1.2	0.1	0.95	0.95	0.57	0.73 / 0.28	0.16	<0.2	<0.2	1.5	0.31	1.4	<0.2	1.20	0.19	0.05
							•	•	•										•			
												Exca	vation #8*									
	Part 201 GCC	40CFR761.61									:		Depth & Concent	tration								
Parameter	Residential	High Occupancy	XE-8	XE-8	XE-8 N	XE-8 N	XE-8 E	XE-8 S	XE-8 S	XE-9	XE-9	XE-9 S	XE-9 S	XE-9 N	XE-9 N	XE-9 W	XE-9 W	XE-14	XE-14	XE-15	Exc-8 N	Exc-8 N
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	0-1'	1-2'
Total PCBs (mg/Kg)	4.0	1.0	1.34	<0.2	4.60	2.80	0.99	3.60	0.066	1,700	0.17	40.0	0.43	130.0	8.2	6.4	0.1	4.9	0.23	0.25	2	0.48

						Excavation #	8 (cont'd)*			
	Part 201 GCC	40CFR761.61			Sai	mple Location/Dep	th & Concentration	ı		
Parameter		High Occupancy	Exc-8 N1	Exc-8 N2	Exc-8 N3	Exc-8 N4	Exc-8 N5	Exc-8 N6	Exc-8 N7	Exc-8 N8
	Direct Contact	Limit	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	2-3'	0-1'	0-1'	0-1'	2-3'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	<0.2	<0.2	0.13	22	<0.2	0.36	0.017	<0.2

							Excavatio	n #9				
	Part 201 GCC	40CFR761.61				Sam	ole Location/Deptl	1 & Concentration				
Parameter	Residential	High Occupancy	XE-7	XE-7	XE-7 N	XE-7 E	XE-7 S	XE-7S	XE-7 W	XE-7W	XE-18	Exc-9-01
	Direct Contact	Limit	Nov-18	Nov-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17
			0-1'	1-2'	0-1'	0-1'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.14	0.38	0.3	0.55	1.3	0.242	3.5	0.63	0.36	0.04

								Excavation	n #10					
	Part 201 GCC	40CFR761.61					Samı	ole Location/Deptl	n & Concentration	1				
Parameter	Residential	High Occupancy	XE-16	XE-16	XE-17	XE-17	Exc-10-01	Exc-10-02	Exc-10-02	Exc-10-03	Exc-10-03	Exc-10-04	Exc-10-04	Exc-10-05
	Direct Contact	Limit	Dec-16	Dec-16	Dec-16	Dec-16	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1	1-2'	0-1'	1-2'	2-3'	2-3'	3.5-4'	0-1'	1-2'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	2.37	4	17.2	0.45	0.013	0.0092	0.019	<0.2	<0.2	0.057	<0.2	0.017

							Ex	cavation #11					
	Part 201 GCC	40CFR761.61					Sample Locati	on/Depth & Conce	ntration				
Parameter	Residential	High Occupancy	XE-3	XE-3	XE-3 N	XE-3 N	XE-3 E	XE-3 E	XE-3 S	XE-3 W	Exc-11-02	Exc-11-05	Exc-11-06
	Direct Contact	Limit	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Nov-16	Feb-17	Feb-17	Feb-17
			0-1'	1-2'	0-1'	1-2'	0-1'	1-2'	0-1'	0-1'	0-1'	0-1'	0-1'
Total PCBs (mg/Kg)	4.0	1.0	1.72	0.35	0.039	0.034	0.032	<0.2	5.2	1.77	0.16	<0.2	0.85

The 1986 to 2013 PCB sample locations are shown on Figure 4. The 2016 and 2017 PCB sample locations are shown on Figures 13B and 13C. < Indicates value below laboratory detection limit indicated.

Yellow-shaded values indicate that total PCB exceeded the 1 mg/Kg delineation goal. All soil locations/ depths with analytical results greater than 1 mg/Kg total PCBs were excavated and disposed of at an appropriately licensed offsite landfill in 2014 or 2017. *Soil from Excavations 1B, 4, and 8 was disposed at US Ecology's Belleville, MI TSCA-licensed landfill. All other soil was disposed at WMI's Woodland Meadows solid waste landfill. *These locations were resampled in 2016 and, if > 1 mg/Kg, were excavated as part of 2017 remediation.

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	eric Cleanup (Criteria																
Parameter	CAS Number	Statewide Default Background		ng Water Criteria ***	Direct Contact Criteria	Groundwater Surface Water Interface	EB-3 8-10'	EB-4 5-7'	EB-5 10-12'	EB-7 0-1'	EB-7 2-3'	EB-8 0-1'	EB-9 0-1'	EB-12 0-1'	EB-12 0-1' DUP	EB-14 0-1'	EB-16 0-0.5'	EB-19 0-0.5'	EB-20 0-0.5'	EB-24 0-1'
		Levels				Protection Criteria	13111229-01	13111229-02	13111229-21	13111229-03	1501227-01	13111229-04	13111229-05	13111229-06	13111229-33	13111229-07	13111229-08	13111229-09	13111229-10	13111229-13
			Residential	Non- Residential	Non-Residential	Cincila	11/19/2013	11/19/2013	11/20/2013	11/19/2013	1/7/2015	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013
Metals USEPA	Method 7471	(Hg) or 6020A	(µg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	39	23	16	25	NA	33	25	23	22	39	34	24	27	27
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	11,000	4,600	7,600	15,000	340	5,400	6,900	5,600	3,500	10,000	5,600	9,300	8,800	5,600
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	120,000	88,000	33,000	140,000	NA	71,000	89,000	76,000	81,000	91,000	100,000	79,000	100,000	93,000
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	600	U	U	710	NA	U	U	U	U	U	U	470	U	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	27,000	34,000	15,000	29,000	NA	19,000	22,000	16,000	19,000	24,000	23,000	20,000	26,000	24,000
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	15,000	11,000	10,000	17,000	NA	10,000	11,000	8,800	7,300	13,000	11,000	12,000	12,000	16,000
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	1,500	18,000	1,000	1,300	NA	860	1,000	1100	810	1,200	1,000	1,000	1,100	1,300
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	NA	U	U	U	U	U	U	U	U	U

		Part 201 Gene	eric Cleanup	Criteria																
Parameter	CAS Number	Statewide Default Background		ng Water on Criteria	Direct Contact Criteria	Groundwater Surface Water Interface	EB-25 0-1'	EB-26 0-1'	EB-27 0-1'	EB-27 0-1' DUP	EB-28 0-1'	EB-31 0-1'	EB-32 0-1'	EB-33 0-0.5'	ERM-BG-1 0-1'	ERM-BG-1 3-4'	ERM-BG-2 0.3-1'	ERM-BG-2 3-4'	ERM-BG-3 0.3-1'	ERM-BG-3 2-3'
		Levels				Protection	13111229-14	13111229-15	13111229-16	13111229-34	13111229-17	13111229-18	13111229-19	13111229-20	1404478-29	1404478-30	1404478-31	1404478-32	1404478-33	1404478-34
			Residential	Non- Residential	Non-Residential	Criteria	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	65	55	95	83	54	30	45	36	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	10,000	9,400	11,000	8,500	8,100	7,600	9,700	8,600	7,100	8,000	7,900	10,000	8,100	8,000
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	110,000	110,000	100,000	100,000	100,000	140,000	170,000	89,000	NA	NA	NA	NA	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	890	500	U	U	U	U	540	U	NA	NA	NA	NA	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	26,000	25,000	33,000	27,000	27,000	26,000	32,000	25,000	NA	NA	NA	NA	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	25,000	20,000	30,000	29,000	17,000	10,000	14,000	14,000	NA	NA	NA	NA	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	2,000	1,700	1,800	1,900	1,600	1,100	1,900	1,200	NA	NA	NA	NA	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	U	U	U	U	NA	NA	NA	NA	NA	NA

* Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.

** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- $\hbox{-} For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed. \\$
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

2,000 EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 1 of 3

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup C	Criteria																	
Parameter	CAS Number	Statewide Default Background	Drinkin Protection (U	Direct Contact Criteria	Groundwater Surface Water Interface	ERM-BG-4 0.3-1'	ERM-BG-4 2-3'	ERM-BG-5 0.3-1'	ERM-BG-5 0.3-1' DUP	ERM-BG-5 2-3'	ERM-BG-6 0.3-1'	ERM-BG-6 2-3'	ERM-BG-7 0.3-1'	ERM-BG-7 2-3'	ERM-BG-8 0.3-1'	ERM-BG-8 2-3'	ERM-BG-9 0.3-1'	ERM-BG-9 2-3'	ERM-BG-10 0.3-1'	ERM-BG-10 2-3'
		Levels				Protection	1404478-35	1404478-36	1404478-37	1404478-38	1404478-39	1404478-40	1404478-41	1404478-42	1404478-43	1404478-44	1404478-45	1404478-46	1404478-47	1404478-48	1404478-49
			Residential	Non- Residential	Non-Residential	Criteria	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014	4/8/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																		
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	8,900	10,000	10,000	7,200	6,900	7,300	7,700	7,800	6,400	6,600	6,600	7,400	9,000	7,600	8,200
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

		Part 201 Gene	eric Cleanup (Criteria				Bori	ing-1	Bori	ing-2	Bor	ing-3	Boris	ng-4	Bori	ing-5	Bori	ing-6	Bor	ing-7
Parameter	CAS Number	Statewide Default Background	Drinkin Protection	ng Water n Criteria	Direct Contact Criteria	Groundwater Surface Water Interface Protection	ERM-BG-10 2-3' DUP 1404478-50	HAB-1 0-2' 1404478-01	HAB-1 2-3.5'	HAB-2 0-2' 1404478-03	HAB-2 2-4' 1404478-04	HAB-3 0-2' 1404478-05	HAB-3 2-4' 1404478-06	HAB-4 0-2' 1404478-07	HAB-4 2-4' 1404478-08	HAB-5 0-2' 1404478-09	HAB-5 2-4' 1404478-10	HAB-6 0-2' 1404478-11	HAB-6 2-4' 1404478-12	HAB-7 0-2' 1404478-13	HAB-7 2-4' 1404478-14
		Levels		Non-		Criteria							+								+
			Residential	Residential	Non-Residential	Į.	4/8/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
Metals USEPA	Method 7471	(Hg) or 6020A	μg/kg)																		
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	NA	U	U	14	U	U	U	U	U	U	U	U	U	U	U
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	8,400	2,100	1,600	1,600	16,000	1,600	2,000	3,800	3,300	3,100	1,600	1,800	2,000	1,500	1,900
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	NA	12,000	21,000	12,000	740,000	11,000	14,000	46,000	21,000	29,000	8,900	17,000	11,000	14,000	9,500
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	NA	U	U	U	750	U	U	U	U	U	U	U	U	460	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	NA	5,500	7,100	7,400	8,500	5,600	6,100	10,000	8,200	8,400	6,000	6,600	6,200	6,800	5,700
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	NA	2,900	3,700	2,800	5,100	2,900	3,500	5,000	5,400	4,800	2,700	3,200	3,400	7,300	3,200
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	NA	U	U	U	500	U	U	410	690	470	U	U	U	U	U
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	NA	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the site-specific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- $\hbox{-} For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed. \\$
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 2,000 Lattice shaded cells exceed the greater of the groundwater surface water interface

2,000 EB-7 0-1'

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 2 of 3

Table 4 Summary of 2013 and 2014 Investigation Metals Results General Electric, Riverview, Michigan

		Part 201 Gene	ric Cleanup (Criteria			Bori	ing-8	Boring-8	Bor	ing-9	Bor	ing-10	Borin	g-11		Boring-12		Bori	ng-13
Parameter	CAS Number	Statewide Default Background		ng Water Criteria ***	Direct Contact Criteria	Groundwater Surface Water Interface	HAB-8 0-2'	HAB-8 2-4'	HAB-8 0-2' DUP	HAB-9 0-2'	HAB-9 2-4'	HAB-10 0-2'	HAB-10 2-4'	HAB-11 0-2'	HAB-11 2-4'	HAB-12 0-2'	HAB-12 2-3'	HAB-12 0-2' DUP	HAB-13 0-2'	HAB-13 2-3'
		Levels				Protection	1404478-15	1404478-16	1404478-17	1404478-18	1404478-19	1404478-20	1404478-21	1404478-22	1404478-23	1404478-24	1404478-25	1404478-26	1404478-27	1404478-28
			Residential	Non- Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(μg/kg)																	
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	2,800	2,400	2,100	2,000	4,000	2,200	1,500	2,000	1,800	2,300	1,800	2,100	1,200	1,300
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	16,000	11,000	13,000	17,000	26,000	16,000	12,000	14,000	11,000	14,000	9,700	13,000	6,100	8,300
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	6,500	5,300	6,100	6,300	9,400	7,100	5,400	5,800	6,600	6,200	5,500	6,000	3,600	4,200
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	3,600	3,200	3,600	5,300	6,200	4,400	4,100	3,500	2,500	4,000	94,000	4,300	2,400	2,500
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	U	U	410	U	570	U	U	470	U	440	430	U	U	490
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	U	U	U	U	U	U	U	U	U	U	U	U

	Parameter CAS Number Statewide Default Background Levels Statewide Default Background Levels Statewide Default Background Levels Drinking Water Protection Criteria Drinking Water Protection Criteria Drinking Water Surface Water Surface Water Interface Protection Criteria 1406681-01 1406681-02 1406681-03 1406681-04 1406681-05 1406681-06 1501009-01 15010											Boring-196		
Parameter	Statewide Default Background Levels Statewide Default Oriteria CAS Number Statewide Default Background Levels Statewide Default Oriteria Cas Number Statewide Default Background Levels Direct Contact Criteria Criteria Criteria Criteria Criteria Direct Condact Criteria Surface Water Interface Protection Criteria Criteria										196 1-1.5'			
		AS Number Statewide Default Background Levels Drinking Water Protection Criteria Non-Residential					1501009-02							
			Residential		Non-Residential	Criteria	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	12/23/2014	12/23/2014
Metals USEPA	Method 7471	(Hg) or 6020A	(µg/kg)											_
Mercury (Total)	7439-97-6	130	1,700	1,700	580,000	50	U	U	32	U	U	U	NA	NA
Arsenic	7440-38-2	11,700*	4,600	4,600	37,000	4,600	1,800	4,400	3,300	2,800	1,500	1,800	5,400	5,700
Barium	7440-39-3	75,000	1.30E+06	1.3E+06	1.3E+08	4.4E+06	15,000	29,000	37,000	22,000	9,600	17,000	NA	NA
Cadmium	7440-43-9	1,200	6,000	6,000	2.1E+06	3,600	120	160	610	170	86	110	NA	NA
Chromium	7440-47-3	18,000	30,000	30,000	1.0E+09	2.9E+09	5,900	8,900	11,000	8,700	4,500	5,800	NA	NA
Lead	7439-92-1	21,000	700,000	700,000	900,000	5.1E+06	3,200	6,600	8,500	4,400	2,800	3,400	NA	NA
Selenium **	7782-49-2	410	4,000	4,000	9.6E+06	400	570	970	990	740	570	550	NA	NA
Silver	7440-22-4	1,000	4,500	13,000	9.0E+06	100	U	U	120	U	54	U	NA	NA

- * Site-specific background value determined for arsenic using statistical analysis from MDEQ's S3TM Guidance document. Soil at two boring locations, EB-7 and HAB-2, had arsenic concentrations that exceeded both the sitespecific background and the GSIP criteria, but not the direct contact criterion. EB-7 was conservatively excavated. HAB-2 was not excavated.
- ** Based on the results of SPLP analysis of associated samples, these selenium results do not exceed the GSIP criterion (see selenium discussion on p. 13 of the CMI Report).

***Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- If Statewide Default Background Criteria are higher than Drinking Water Protection or GSIP Criteria, the Background Criteria are used.
- Chromium criteria assume that all chromium is in trivalent form.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- NA Indicates referenced criterion and/or result is not available for this parameter.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL. 2,000 - Lattice shaded cells exceed the greater of the groundwater surface water interface

0-1' 13111229-03

11/19/2013

protection criteria or the background level.

Shaded column headings indicate that the soil sample interval was remediated by excavation in 2014.

ERM 3 of 3 8/7/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	Cleanup Crite	ria																								
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	EB-3 8-10'	EB-4 5-7'	EB-7 0-1'	EB-8 0-1'	EB-9 0-1'	EB-12 0-1'	EB-12 0-1' DUP	EB-14 0-1'	EB-16 0-0.5'	EB-19 0-0.5'	EB-20 0-0.5'	EB-23 5-6'	EB-23 9-10'	EB-24 0-1'	EB-25 0-1'	EB-26 0-1'	EB-27 0-1'	EB-27 0-1' DUP	EB-28 0-1'	EB-31 0-1'	EB-32 0-1'	EB-33 0-0.5'
					Criteria	Protection	13111229-01	13111229-02	13111229-03	13111229-04	13111229-05	13111229-06	13111229-33	13111229-07	13111229-08	13111229-09	13111229-10	13111229-11	13111229-12	13111229-13	13111229-14	13111229-15	13111229-16	13111229-34	13111229-17	13111229-18	13111229-19	13111229-20
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/19/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013	11/20/2013
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	37	U	U	U	620	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	250	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	46	200	U	U	U	2,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	240	750	U	U	U	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	79	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Toluene	108-88-3	16,000	16.000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1.1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	1 500	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.2.4-Trimethylbenzene	95-63-6	2,100	2.100	1.0E+08	8.0E+06	570	U	U	II	II	U	IJ	II.	U	IJ	U	U	U	U	U	U	IJ	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1.100	- U	U	II.	II.	Ü.	U	II.	U	U	II.	II.	U	II.	U	U	- U	Ü.	II.	U	U	II.	U
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	Ü	U	Ü	U	Ü	U	Ū	U	U	Ü	Ü	U	U	Ū	Ü	U	. U	U	II.	U

Xylenes, Total 133-020-7 5,600 5,600 1.0E+09 1.2E+07 820

Notes:

*Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

- For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	leanup Crite	ria			Box	ing-1	Bor	ing-2	Bor	ing-3	Bor	ng-4	Bor	ing-5	Bor	ing-6		Bor	ing-7			Boring-8		Bor	ring-9
Parameter	CAS Number	Drinkin Protection	ng Water 1 Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation Criteria	Groundwater Surface Water Interface Protection	HAB-1 0-2'	HAB-1 2-3.5'	HAB-2 0-2'	HAB-2 2-4'	HAB-3 0-2'	HAB-3 2-4'	HAB-4 0-2'	HAB-4 2-4'	HAB-5 0-2'	HAB-5 2-4'	HAB-6 0-2'	HAB-6 2-4'	HAB-7 0-2'	HAB-7 2-4'	HAB-7 4-6'	HAB-7 6-8'	HAB-8 0-2'	HAB-8 2-4'	HAB-8 0-2' DUP	HAB-9 0-2'	HAB-9 2-4'
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	6/12/2014	6/12/2014		4/7/2014	4/7/2014	4/7/2014	4/7/2014
VOCs USEPA Method 8260 (µg/Kg)																											
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	35	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	U	450	550	1,400	1,700	2,400	4,700	1,600	2,700	U	U	U	U	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1.1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1.800	U	U	110	U	U	U	390	470	1.000	1.200	360	840	790	810	U	U	360	440	500	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	380	12.000	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	140	160	79	200	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	II.	II.	U	U	II.	U	II.	U	II.	II.	II.	II.	II.	U	11	U	U	U	-
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1.100	U	U	II.	II.	U	U	II.	U	II.	U	U	U	II.	U	II.	II.	111	U	U	U	
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	II	II.	II.	II.	U	II.	II	II.	U	II.	II.	II	II.	II.	U	11	II.	II	U	11

- Xylenes, Total
 Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bor	ing-10	Boris	ng-11		Boring-12		Bor	ing-13	Bor	ing-14	Bori	ng-15	Bori	ng-16	Bori	ring-17	Bor	ing-18		Boring-19	
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-10 0-2'	HAB-10 2-4'	HAB-11 0-2'	HAB-11 2-4'	HAB-12 0-2'	HAB-12 2-3'	HAB-12 0-2' DUP	HAB-13 0-2'	HAB-13 2-3'	HAB-14 0-2'	HAB-14 2-4'	HAB-15 0-2'	HAB-15 2-4'	HAB-16 0-2'	HAB-16 2-4'	HAB-17 0-2'	HAB-17 2-4'	HAB-18 0-2'	HAB-18 2-4'	HAB-19 0-2'	HAB-19 0-2' DUP	HAB-19 24'
					Criteria	Protection	1404478-20	1404478-21	1404478-22	1404478-23	1404478-24	1404478-25	1404478-26	1404478-27	1404478-28	1406681-01	1406681-02	1406681-03	1406681-04	1406681-05	1406681-06	140668-07	1406681-08	1406681-09	1406681-10	1406681-11	1406681-12	1406681-13
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	4/7/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014
VOCs USEPA Method 8260 (µg/Kg)																										1	†	1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	93	470	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	48	40	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	1,900	960	U	U	U	3,600	5,300	440	510	U	42	3,300	3,200	560	640	U	U	360	200	150
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	87	170	470	790	U	U	U	U	U	77	U	U	U	170	150	U	U	160	230	820	460	250
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	260	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic (Cleanup Crite	eria			Bor	ing-20	Bor	ing-21		Boring-22		Boring-23		Boring-24		Bori	ng-25	Bori	ng-26	Bori	ing-27	Bori	ng-28	Bori	ing-29
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-20 0-2'	HAB-20 2-4'	HAB-21 0-2'	HAB-21 2-4'	HAB-22 0-2'	HAB-22 2-4'	HAB-23 0-2'	HAB-23 2-4'	HAB-24 0-2'	HAB-24 0-2' DUP	HAB-24 2-4'	HAB-25 0-2'	HAB-25 2-4'	HAB-26 0-2'	HAB-26 2-4'	HAB-27 0-2'	HAB-27 2-4'	HAB-28 0-2'	HAB-28 2-4'	HAB-29 0-2'	HAB-29 2-4'
					Criteria	Protection	1406681-14	1406681-15	1406681-16	1406681-17	1406681-18	1406681-19	1406681-20	1406681-21	1406681-22	1406681-23	1406681-24	1406681-25	1406681-26	1406681-27	1406681-28	1406681-29	1406681-30	1406681-31	1406681-32	1406681-33	1406681-34
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/11/2014	6/12/2014	6/12/2014	6/12/2014	6/12/2014
VOCs USEPA Method 8260 (µg/Kg)																											
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	37	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	150	160	190	89	60	U	U	U	390	270	U	130	63	U	U	190	82	6,400	9,800	4,200	3,300
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	83	U	55	U	45	U	89	340	U	U	U	630	310	U	U	450	250	930	1,200	690	430
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	93	76	U	U	U	U	600	U	U	U	U	U	U	U	U	U	U	210	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	140	110
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	56	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 4 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria				Bori	ng-30		Bori	ng-31	Boring-33	Boring-36	Boring-37	Boring-39	Boring-52	Boring-62	Boring-68	Boring-76	Boring-78		Boring-81		Boring-82	Boring-93	Boring-94	Boring-95
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-30 0-2'	HAB-30 2-4'	HAB-30 4-6'	HAB-30 6-8'	HAB-31 0-2'	HAB-31 2-4'	HAB-33 0-2'	HAB-36 0-2'	HAB-37 0-2'	HAB-39 0-2'	HAB-52 0-2'	HAB-62 0-2'	HAB-68 0-2'	HAB-76 0-2'	HAB-78 0-2'	HAB-81 0-2'	HAB-81 4-6'	HAB-81 9-11'	HAB-82 0-2'	HAB-93 0-2'	HAB-94 0-2'	HAB-95 0-2'
					Criteria	Protection	1406681-35	1406681-36	1406681-55	1406681-56	1406681-37	1406681-38	14081187-02	14081187-05	14081187-06	14081187-08	14081187-22	14081187-33	14081187-40	14081187-49	14081187-51	14091057-01	14091057-02	14091057-03	14091057-04	14091057-19	14091057-20	14091057-21
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	6/12/2014	6/12/2014	8/20/2014	8/20/2014	6/12/2014	6/12/2014	8/18/2014	8/18/2014	8/18/2014	8/18/2014	8/19/2014	8/19/2014	8/20/2014	8/20/2014	8/21/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014
VOCs USEPA Method 8260 (µg/Kg)																												+
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	36,000	U	U	U	U	U	450	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	51	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	100	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	160	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	10,000	18,000	2,000	930	420	280	42	440	45	750	64	130	44	720	2,100	18,000	19,000	110	7,300	U	300	77
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	140	230	U	200	350	280	U	170	85	140	U	580	U	U	120	220	240	75	200	120	250	220
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	98	U	U	U	U	U	390	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	190	340	70	U	U	U	U	U	U	59	U	U	U	U	U	220	290	U	300	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bor	ing-96	Bori	ng-97	Bori	ng-98	Boring-99	Boring-106			Boring-130			Boring-131	Boring-132	Boring-133	Bori	ng-134	Boring-135	Boring-136	Boring-140	Boring-141
Parameter	CAS Number	Drinkir Protection	ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	HAB-96 0-2'	HAB-96 2-4'	HAB-97 0-2'	HAB-97 0-2' DUP	HAB-98 0-2'	HAB-98 2-4'	HAB-99 0-2'	HAB-106 0-2'	GP-130 2-2.5'	GP-130 4-5'	GP-130 7-8'	GP-130 10-11'	GP-130 13-14'	HAB-131 2-2.5'	GP-132 2-2.5'	HAB-133 2-2.5'	GP-134 2-2.5'	GP-134 2-2.5 DUP	GP-135 2-2.5'	HAB-136 1.5-2'	HAB-140 1.5-2'	SB-141 2-2.5'
					Criteria	Protection	14091057-22	14091057-39	14091057-23	14091057-24	14091057-25	14091057-26	14091057-27	14091057-36	1412085-12	1412659-05	1412659-06	1412659-07	1412659-08	1412086-04	141208-13	1412086-03	141208-15	1412085-16	141208-14	1412086-09	1412086-08	1412085-11
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	9/18/2014	9/19/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/19/2014	12/2/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/4/2014
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	390	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	59	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	150	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	1,000	U	180	180	390	66	U	U	3,500	440	U	U	U	83	1,400	1,200	260	260	410	240	2,300	500
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	200	U	270	310	640	U	140	U	110	87	U	U	U	U	300	1,600	600	490	410	760	160	93
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	200	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ū	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

- | Xylenes, Jotal Notes:
 | "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 | "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
 | Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
 | For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 6 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic C	leanup Crite	eria			Bori	ing-142	Borir	ng-143			Boring-144			Bori	ng-145	Bori	ng-146	Borir	ng-147	Borii	ng-148			Boring-149		
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-142 4-5'	GP-142 7-8'	GP-143 4-5'	GP-143 7-8'	GP-144 45'	GP-144 10-11'	SB-144 12-13'	SB-144 16-17'	SB-144 20-21'	SB-145 4-5'	SB-145 7-8'	SB-146 4-5'	SB-146 7-8'	GP-147 9-10'	GP-147 11-12'	SB-148 4-5'	SB-148 7-8'	SB-149 4-5'	SB-149 7-8'	SB-149 10-11'	SB-149 13-14'	SB-149 17-18'
					Criteria	Protection	1412087-05A	1412087-06A	1412087-07A	1412087-08A	1412087-09A	1412087-10A	1412379-07	1412379-08	1412379-09	1412085-01	1412085-02	1412085-03	1412085-04	1412087-11	1412087-12	1412085-05	1412085-06	1412085-07	1412085-08	1412379-10	1412379-11	1412379-12
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/5/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/5/2014
VOCs USEPA Method 8260 (µg/Kg)																												
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	87 J	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	270	U	U	U	U	U	U	2,800	U	U	U	U	U	U	U	U
1.1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	110	U	U	U	U	61	U	U	330	72	U	U	U	U	U	U	U
1.1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	110	U	U	U	U	U	U	120	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	370	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	310	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	250	U	U	U	U	U	U	15 J	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	530	88	190	20,000	3,100	8,800	59	U	240	U	U	U	1.800	64	120	200	510	3,900	U	U	U
Foluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1.1-Trichloroethane	71-55-6	4,000	4.000	1.0E+09	4.6E+05	1.800	U	370	U	190	230	780	670	U	U	U	220	U	U	2,700	U	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5.900	U	II.	II.	II.	11	II.	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Frichloroethylene	79-01-6	100	100	6.6E+05	1.900 Ŧ	4.000	U	U	II.	U	350	230	3.000 Ŧ	U	U	80	U	U	U	14.000Ŧ	98	130	U	U	150	U	U	U
1.2.4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	1	- 11	- 11	- 11	II	11	3,000 T	U	II.	II	II.	U	II.	12.000	32 I	II.	U	U	II.	U	U	U
1.3.5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1.100	II.	II.	11	- 11	- 11	- 11	U	U	U	II.	U	U	U	3,400	11	II.	U	U	II.	II.	U	U
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820							U	- 11	II.	II.	II.			530	II.	II.			II	II.	II.	U

- Xylenes, Total
 Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 201 Generic Cleanu			ria				Bori	ng-150		Borin	g-151		Bori	ng-152			Bori	ing-153		Bori	ng-154	Bori	ng-155	Boring-161		Boring-162	2
Parameter	CAS Number	Drinkin Protection		Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-150 4-5'	GP-150 7-8'	SB-150 10-11'	SB-150 14-15'	GP-151 4-5'	GP-151 7-8'	GP-152 4-5'	GP-152 7-8'	GP-152 10-11'	GP-152 13-14'	SB-153 4-5'	SB-153 7-8'	SB-153 10-11'	SB-153 13-14'	GP-154 7-8'	GP-154 11-12'	GP-155 4-5'	GP-155 7-8'	GP-161 2-3'	GP-162 4-5'	GP-162 7-8'	GP-163 4-5'
					Criteria	Protection	1412087-13	1412087-14	1412379-13	1412379-14	1412087-15	1412087-16	1412087-17	1412087-18	1412659-09	1412659-10	1412085-09	1412085-10	1412659-11	1412659-12	1412087-01A	1412087-02A	1412087-03A	1412087-04A	1412659-21	1412087-19	1412087-20	1412087-21
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/2/2014	12/2/2014	12/5/2014	12/5/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/11/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/11/2014	12/2/2014	12/2/2014	12/2/2014
VOCs USEPA Method 8260 (µg/Kg)																												1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	99 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	51
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	71	U	U	1,400	U	U	U	U	70	130	180
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	320	U	U	U	U	U	180	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	61	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	460	U	U	U	U	U	U	830
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	150	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	U	U	U	380	66	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	1,000	1,500	U	U	U	U	U	2,700	U	U	1,100	4,300	U	U	18,000	U	93	U	550	U	U	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	150	U	U	U	U	U	270	U	U	U	290	200	U	3,100	U	U	590	53	81	1,800	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	110	110	U	U	U	U	U	160	U	U	U	830	U	U	2,900 Ŧ	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	29 J	U	U	U	U	U	U	U	U	U	U	U	U	U	1,500	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	U	U	U	U	U	U	U	U	U	710	U	U	U	U	U	U	U
Xylenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	U	U	U	U	U	U	U	U	U	200	U	U	U	U	U	U	880

| Xylenes, Jotal Notes:
| "Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
| "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.
| Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
| For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Shaded column headings indicate that the soil associated with sample interval was remediated by excavation in 2014.

ERM 8 of 10 8/10/2018

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	leanup Crite	ria			Boring-163		Boring-164		Boring-165	Boring-166	Borii	ng-167	Boring-168	Borir	ıg-169	Borin	ng-170	Borir	ng-171	Bori	ng-172		Bori	ng-174	
Parameter	CAS Number	Drinkin Protection	ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation Criteria	Groundwater Surface Water Interface	GP-163 7-8'	HAB-164 1-1.5	GP-164 4-5'	GP-164 4-5' DUP	HAB-165 1-1.5'	HAB-166 1-1.5'	HAB-167 1-1.5'	GP-167 4-5'	HAB-168 1-1.5	HAB-169 1-1.5'	169 4-4.5'	SB-170 7-8'	SB-170 11-12'	SB-171 7-8'	SB-171 11-12'	SB-172 7-8'	SB-172 11-12'	GP-174 2-2.5'	GP-174 4-5'	GP-174 10-11'	GP-174 12-13'
		Residential	Non- Residential	Non-Residential	Non-Residential	Protection Criteria	12/2/2014	1412388-01	1412659-22	12/11/2014	1412388-02	1412388-03	12/2/2014	12/11/2014	1412388-05	1412388-06	12/16/2014	12/5/2014	1412379-02	1412379-03	12/5/2014	1412379-05	1412379-06	12/11/2014	1412659-17	1412659-18	12/11/2014
VOCs USEPA Method 8260 (µg/Kg)																											1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	1,100	U	U	U	U	1,300	U	U	500	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	26 J	U	U	U	U	170	U	U	1,100	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	980	U	U	U	U	2,400	U	U	30,000	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	16,000	86	390	U	40	4,600	U	U	65,000	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	94	U	U	U	U	29 J	U	U	U	210	U	260	U	U	U	U	U	U	U	460	65
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	96	U	U	U	U	U	U	U	U	U	U	160	21 J	U	67	U	U	U	U	100	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	29 J	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	32 J	U	U	U	U	U	68	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	78	U	U	U	U	U	98	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	140	U	U	U	U	U	U	U	U	16
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	180	U	U	460	U	U	3,700	U	90	U	2,100	U	1,600	1,000	6,100	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1.1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	1,300	U	U	U	U	U	U	U	U	U	U	180	U	81	72	510	U	99	64	500	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	350	U	U	U	110	U	190	120	1,600	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	620	U	U	U	U	U	U	U	U	U	U	T U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1.100	II.	Ü.	II.	U.	- U	U	U	U	II.	U.	U	17 I	U	Ū.	U	II.	U	II.	II.	II.	+ <u>u</u>
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	II.	11	II.	II.	II.	U	II.	II.	II.	U	II.	11	11	- II	TI.	II.	II.	11	II.	II.	1

- Xylenes, Total
 Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds - For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

 - U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

 2,000

 - Lattice shaded cells exceed the groundwater surface water interface protection criteria.

 3,000 T

 - Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part 2	201 Generic C	leanup Crite	ria			Boring-163		Boring-164		Boring-165	Boring-166	Borii	ng-167	Boring-168	Borir	ıg-169	Borin	ng-170	Borir	ng-171	Bori	ng-172		Bori	ng-174	
Parameter	CAS Number	Drinkin Protection	ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation Criteria	Groundwater Surface Water Interface	GP-163 7-8'	HAB-164 1-1.5	GP-164 4-5'	GP-164 4-5' DUP	HAB-165 1-1.5'	HAB-166 1-1.5'	HAB-167 1-1.5'	GP-167 4-5'	HAB-168 1-1.5	HAB-169 1-1.5'	169 4-4.5'	SB-170 7-8'	SB-170 11-12'	SB-171 7-8'	SB-171 11-12'	SB-172 7-8'	SB-172 11-12'	GP-174 2-2.5'	GP-174 4-5'	GP-174 10-11'	GP-174 12-13'
		Residential	Non- Residential	Non-Residential	Non-Residential	Protection Criteria	12/2/2014	1412388-01	1412659-22	12/11/2014	1412388-02	1412388-03	12/2/2014	12/11/2014	1412388-05	1412388-06	12/16/2014	12/5/2014	1412379-02	1412379-03	12/5/2014	1412379-05	1412379-06	12/11/2014	1412659-17	1412659-18	12/11/2014
VOCs USEPA Method 8260 (µg/Kg)																											1
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	1,100	U	U	U	U	1,300	U	U	500	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	26 J	U	U	U	U	170	U	U	1,100	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	980	U	U	U	U	2,400	U	U	30,000	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	16,000	86	390	U	40	4,600	U	U	65,000	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	94	U	U	U	U	29 J	U	U	U	210	U	260	U	U	U	U	U	U	U	460	65
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	96	U	U	U	U	U	U	U	U	U	U	160	21 J	U	67	U	U	U	U	100	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	29 J	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	32 J	U	U	U	U	U	68	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	78	U	U	U	U	U	98	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	U	U	U	U	U	U	140	U	U	U	U	U	U	U	U	16
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	U	U	U	U	180	U	U	460	U	U	3,700	U	90	U	2,100	U	1,600	1,000	6,100	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1.1.1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	1,300	U	U	U	U	U	U	U	U	U	U	180	U	81	72	510	U	99	64	500	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 Ŧ	4,000	U	U	U	U	U	U	U	U	U	U	U	350	U	U	U	110	U	190	120	1,600	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	U	U	U	U	620	U	U	U	U	U	U	U	U	U	U	+ U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1.100	II.	Ü.	II.	U.	- U	U	U	U	II.	U.	U	17 I	U	Ū.	U	II.	U	II.	II.	II.	+ <u>u</u>
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	II.	11	II.	II.	II.	U	II.	II.	II.	U	II.	11	11	- II	TI.	II.	II.	11	II.	II.	1

- Xylenes, Total
 Notes:

 *Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

 "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

 For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds - For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

 - U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

 2,000

 - Lattice shaded cells exceed the groundwater surface water interface protection criteria.

 3,000 T

 - Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Summary of 2013 and 2014 Investigation Soil VOCs Results General Electric, Riverview, Michigan

	Part	201 Generic (Cleanup Crite	ria			Bori	ng-175	Bori	ng-176	Boring-181	Resin Pit	Boring-183	Boring-184	Boring-185	Boring-188	Boring-189	Boring-190	Boring-191	Boring-192	Boring-193	Boring-194
Parameter	CAS Number		ng Water n Criteria*	Direct Contact Criteria	Soil Volatilization to Indoor Air Inhalation	Groundwater Surface Water Interface	GP-175 4-5'	GP-175 7-8'	GP-176 4-5'	GP-176 7-8'	GP-181 2-2.5'	Resin Pit 2-4'	183 2-2.5'	184 2-2.5'	185 2-2.5'	188 1-1.5'	189 1-1.5'	190 1-1.5'	191 1-1.5'	192 1-1.5'	193 1-1.5'	194 1-1.5'
					Criteria	Protection	1412659-13	1412659-14	1412659-01	1412659-02	1412659-25	1412659-26	1412859-01	1412859-02	1412859-03	1412859-10	1412859-11	1412859-15	1412859-07	1412859-06	1412859-09	1412859-13
		Residential	Non- Residential	Non-Residential	Non-Residential	Criteria	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/11/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014	12/16/2014
VOCs USEPA Method 8260 (µg/Kg)																						
Acetone	67-64-1	15,000	42,000	7.3E+07	5.4E+08	34,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2-Butanone	78-93-3	2.6E+05	7.6E+05	7.0E+08	9.9E+07	44,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Benzene	71-43-2	100	100	8.4E+05	8,400	4,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Chlorobenzene	108-90-7	2,000	2,000	1.4E+07	2.2E+05	500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-Dichlorobenzene	95-50-1	14,000	14,000	2.1E+05	2.0E+07	280	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-Dichlorobenzene	541-73-1	170	480	6.6E+05	48,000	680	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-Dichlorobenzene	106-46-7	1,700	1,700	1.9E+06	100,000	360	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethylene	156-59-2	1,400	1,400	8.0E+06	41,000	12,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethane	75-34-3	1,800	50,000	8.70E+07	4.3E+05	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-Dichloroethene	75-35-4	140	140	6.6E+05	11,000	2,600	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Ethylbenzene	100-41-4	1,500	1,500	7.1E+07	460,000	360	U	U	U	U	U	46	U	U	U	U	U	U	U	U	U	U
Isopropylbenzene	98-82-8	91,000	2.6E+05	8.0E+07	7.3E+05	3,200	U	U	U	U	U	33	U	U	U	U	U	U	U	U	U	U
2-Methylnaphthalene	91-57-6	57,000	1.7E+05	2.6E+07	4.9E+06	4,200	U	U	U	U	U	550	U	U	U	U	U	U	U	U	U	U
Naphthalene	91-20-3	35,000	1.0E+05	5.2E+07	4.7E+05	730	U	U	U	U	U	190	U	U	U	U	U	U	U	U	U	U
Tetrachloroethylene	127-18-4	100	100	9.3E+05	21,000	1,200	U	3,200	U	U	210	U	1,100	410	470	U	U	U	U	U	100	U
Toluene	108-88-3	16,000	16,000	1.6E+08	6.1E+05	5,400	U	U	U	U	16	25	U	U	U	U	U	U	U	U	U	U
1,1,1-Trichloroethane	71-55-6	4,000	4,000	1.0E+09	4.6E+05	1,800	U	290	U	U	180	U	160	47	81	U	U	U	U	U	U	U
1,2,4-Trichlorobenzene	120-82-1	4,200	4,200	5.8E+06	1.8E+07	5,900	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Trichloroethylene	79-01-6	100	100	6.6E+05	1,900 т	4,000	U	86	U	U	U	U	180	59	98	U	U	U	U	U	U	U
1,2,4-Trimethylbenzene	95-63-6	2,100	2,100	1.0E+08	8.0E+06	570	U	U	U	U	U	640	U	U	U	U	U	U	U	U	U	U
1,3,5-Trimethylbenzene	108-67-8	1,800	1,800	1.0E+08	4.8E+06	1,100	U	U	U	U	U	220	U	U	U	U	U	U	U	U	U	U
Xvlenes, Total	133-020-7	5,600	5,600	1.0E+09	1.2E+07	820	U	U	U	U	U	200	U	U	U	U	U	U	U	U	U	U

Notes:

**Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.

- "EB" series boring locations are shown on Figure 6. All others are shown on Figure 10A.

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.

- For simplification, generally only detected concentrations are shown on this table. See laboratory report for full list of compounds above the MDL.

- For simplification, generally only detected concentrations are shown on this table. See laboratory reanalyzed.

- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.

2,000

- Lattice shaded cells exceed the groundwater surface water interface protection criteria.

3,000 T

- Tindicates exceedance of the non-residential soil volatilization to indoor air criteria.

Table 6 Summary of Detectable Soil Analytical Results at Eastern Steam Cleaning Sump (ESCS) General Electric, Riverview, Michigan

					Michigan Pa	rt 201 Generic Cleanup	Criteria (GCC)						Samp
Parameter	CAS Number	Residential Drinking Water Protection*	Nonresidential Drinking Water Protection*	GSI Protection	Residential Soil Volatilization to Indoor Air Inhalation	Nonresidential Soil Volatilization to Indoor Air Inhalation	Residential Soil Particulate Inhalation	Nonresidential Soil Particulate Inhalation	Residential Direct Contact	Nonresidential Direct Contact	SS01 South Bottom 07/18/2002	SS02 North Bottom 07/18/2002	SS03 West Wall 07/18/2002
SVOC PAHs (mg/kg)													
1,2,4-Trichlorobenzene	120821	4,200	4,200	5,900	1.1E+06	1.1E+06	2.5E+10	1.1E+10	990,000	1.1E+06	< 0.33	< 0.33	< 0.33
Other SVOC PAHs	varies	varies	varies	varies	varies	varies	varies	varies	varies	varies	BDL	BDL	BDL
MDEQ 624/8260 VOCs (μg/kg)												
cis-1,2-Dichloroethene	156592	1,400	1,400	12,000	22,000	41,000	2.3E+09	1.0E+09	640,000	640,000	< 0.055	< 0.059	130
1,1-Dichloroethane	75343	18,000	50,000	15,000	230,000	430,000	3.3E+10	1.5E+10	890,000	890,000	< 0.055	< 0.059	< 0.063
1,1,1-Trichloroethane	71556	4,000	4,000	1,800	250,000	460,000	6.7E+10	2.9E+10	460,000	460,000	< 0.055	< 0.059	< 0.063
Trichloroethene	79016	100	100	4,000	1,000	1,900	1.3E+08	5.9E+07	500,000	500,000	< 0.055	< 0.059	< 0.063
Tetrachloroethene	127184	100	100	1,200	11,000	21,000	2.7E+09	1.2E+09	88,000	88,000	< 0.055	< 0.059	< 0.063
Other VOCs	varies	varies	varies	varies	varies	varies	varies	varies	varies	varies	BDL	BDL	BDL
PCBs (mg/kg)		•	•			•						•	
Total PCBs	1336363	NLL	NLL	NLL	3.0E+03	1.6E+04	5.2E+03	6.5E+03	4.0	16	< 0.19	< 0.19	< 0.19

		Sam	ple Location/I	Depth & Conc	entration		
SS01 South Bottom 07/18/2002	SS02 North Bottom 07/18/2002	SS03 West Wall 07/18/2002	SS04 East Wall 07/18/2002	SS05 North Wall 07/18/2002	SS06 South Wall 07/18/2002	West Pipe Sand 07/18/2002	SS07 (Duplicate of SS06) South Wall 07/18/2002
< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	1.0	< 0.33
BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
< 0.055	< 0.059	130	< 0.058	< 0.059	< 0.067	< 0.056	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	89	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	460	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	190	< 0.065
< 0.055	< 0.059	< 0.063	< 0.058	< 0.059	< 0.067	1,400	< 0.065
BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
< 0.19	< 0.19	< 0.19	< 0.19	< 0.19	< 0.19	3.79	< 0.19

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA.
 Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- For simplification, only detected concentrations are shown on this table. See analytical laboratory report for full list of analytes.
- NLL Indicates parameter is not likely to leach under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below MDEQ RRD established detection limit.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) protection criteria.

ERM 1 of 1 OCTOBER 2015

Table 7 Summary of Eastern Steam Cleaning Sump (ESCS) Removal Waste Manifests General Electric, Riverview, Michigan

Waste Profile	Manifest Number	Shipper	Date Received	Waste Volume	Comments:
CV0022 - TSCA Oil and Water	NYG3407625	Franks Vacuum Service	9/13/2002	1,540 lbs	Five Drums, 11 to 500 ppm PCBs,
from Sump Cleanout					no RCRA codes
CV0023 - TSCA Solids from	NYG3407805	Tonawanda Tank	9/19/2002	12,940 lbs	Rolloffs and drums, 0.18-190 ppm
Sump Cleanout	NYG3407652		9/18/2002	23,980 lbs	PCBs, no RCRA codes
	NYG3407778		9/18/2002	12,580 lbs	
	NYG3407814		9/17/2002	24,960 lbs	
	NYG3407634		9/16/2002	14,100 lbs	
				88,560 lbs total	
CV0047 - Cinder Block and	NYG3407958	Tonawanda Tank	9/17/2002	21,340 lbs	Rolloffs, 0-6.6 ppm PCBs, no RCRA
Concrete from Sump Cleanout	NYG3407976		9/16/2002	<u>11,520 lbs</u>	codes
				32,860 lbs total	

All waste listed above was disposed at the Chemical Waste Management facility in Model City, New York.

The information listed above was provided by Waste Management (Vonya Spies) to ERM (Martin Ryan) on March 7, 2012.

The ESCS removal activities were completed in July 2002 under the oversight of GES, Inc.

 Table 8
 Summary of Pre-2013 Soil Analytical Results
 General Electric Facility, Riverview, Michigan

			Michigan Pa	art 201 Generic Cle	anup Criteria (GCC)								Sample	e ID/ Sample	Date/Concer	ntration							
Deventor	CAS	Drinkin Protection	0	Direct Contact Criteria	Soil Volatilization to Indoor Air	Groundwater Surface Water		В	G1			ВС	G2	•	•	BG3			ВС	G4	MW5A			
Parameter	Numbers	Frotection	i Criteria	Criteria	Inhalation Criteria	Interface Protection Criteria	6-18"	24-36"	48-60"	96-108"	6-18"	24-36"	48-60"	96-108"	6-18"	24-36"	96-108"	6-18"	24-36"	48-60"	96-108"	0-12"	12-24"	24-36"
		Residential	Non- residential	Non-residential	Non-residential	Citteria	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89	Apr-89
MDEQ 624/8260 VOCs (μg/kg)																								
1,1 - Dichloroethene	75354	140	140	5.7E+05	330	2,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Chlorobenzene	108907	2,000	2,000	260,000	220,000	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Ethylbenzene	100414	1,500	1,500	140,000	140,000	360	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Methylene Chloride	75092	100	100	2.3E+06	240,000	30,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	336	203	NA
Trichlorofluoromethane	75694	52,000	150,000	560,000	560,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
1,1,2-Trichlorofluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
1,2-Dichlorobenzene	95501	14,000	14,000	210,000	210,000	280	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Dichlorodifluoromethane	75718	95,000	270,000	1.0E+06	1.7E+06	ID	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Ethylacetate	141786	130,000	380,000	7.5E+06	7.5E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
m+p-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
o-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
cis-1,2-Dichloroethene	156592	1,400	1,400	640,000	41,000	12,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
trans-1,2-Dichloroethene	156605	2,000	2,000	1.4E+06	43,000	30,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
1,1- Dichloroethane	75343	18,000	50,000	890,000	430,000	15,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Tetrachloroethene	127184	100	100	88,000	21,000	1,200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,530	4,420	NA
1,1,1, - Trichloroethane	71556	4,000	4,000	460,000	460,000	1,800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	<194	NA
Trichloroethene	79016	100	100	500,000	1,900	4,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<199	1,710	NA
Acetone	67641	15,000	42,000	7.3E+07	1.1E+08	34,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,480	<971	NA
PCBs (mg/kg)																								
Total PCBs	1336363	NLL	NLL	4 *	16,000	NLL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	All BDL	All BDL	NA
Pesticides (mg/kg)																								
Varies	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/kg)																								
Lead	7439921	700	700	900	NLV	2,500	6.8	13.8	7.63	5.02	12.6	7.45	7.63	5.84	8.31	9.18	4.67	7.55	8.95	5.38	6.71	5.26	9.33	8.2

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 NLL Indicates parameter is not likely to leach under most soil conditions.

- NA Indicates sample was not analyzed for this parameter.

2,000 - Lattice shaded cells exceed the groundwater surface water interface protection criteria and corresponding interval was removed by excavation.

Shaded column headings indicate that the soil associated with this sample interval was remediated by excavation in 2014.

ERM 1 of 3 8/7/2018

 Table 8
 Summary of Pre-2013 Soil Analytical Results
 General Electric Facility, Riverview, Michigan

			Michigan Pa	art 201 Generic Clea	nup Criteria (GCC								Sample ID	/ Sample Dat	e/Concentra	tion							
Parameter	CAS	Drinkin Protection	O	Direct Contact Criteria	Soil Volatilization to Indoor Air	Groundwater Surface Water		MW6		М	W7		М	W8			MW9			MW10		MW11	
rarameter	Numbers	Frotection		Criteria	Inhalation Criteria	Interface Protection Criteria	0-12"	15-27"	32-43"	0-12"	16-28"	0-12"	15-27"	29-41"	41-52"	0-12"	15-27"	27-41"	0-12"	15-27"	27-41"	0-12"	28-39"
		Residential	Non- residential	Non-residential	Non-residential	Cincia	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89
MDEQ 624/8260 VOCs (μg/kg)																							
1,1 - Dichloroethene	75354	140	140	5.7E+05	330	2,600	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	108907	2,000	2,000	260,000	220,000	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	100414	1,500	1,500	140,000	140,000	360	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	75092	100	100	2.3E+06	240,000	30,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorofluoromethane	75694	52,000	150,000	560,000	560,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichlorofluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	95501	14,000	14,000	210,000	210,000	280	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dichlorodifluoromethane	75718	95,000	270,000	1.0E+06	1.7E+06	ID	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylacetate	141786	130,000	380,000	7.5E+06	7.5E+06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
m+p-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	156592	1,400	1,400	640,000	41,000	12,000	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	156605	2,000	2,000	1.4E+06	43,000	30,000	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1- Dichloroethane	75343	18,000	50,000	890,000	430,000	15,000	BDL	BDL	BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	127184	100	100	88,000	21,000	1,200	13.3	7.7	0.8	< 0.3	< 0.3	331	24.9	141.7	79.4	1.3	1.4	12.1	392	177.4	9.9	27.3	0.58
1,1,1, - Trichloroethane	71556	4,000	4,000	460,000	460,000	1,800	4.6	2.1	1.6	7.6	1.9	29.5	1.5	21.2	9.3	2.5	2.7	5.1	14.5	17.7	1.5	1.2	1.5
Trichloroethene	79016	100	100	500,000	1,900	4,000	<1.2	<1.2	<1.2	<1.2	<1.2	55.3	8.9	44.8	66.5	<1.2	<1.2	2.7	12.3	13.8	8.3	1.5	<1.2
Acetone	67641	15,000	42,000	7.3E+07	1.1E+08	34,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs (mg/kg)																							
Total PCBs	1336363	NLL	NLL	4 *	16,000	NLL	All BDL	All BDL	All BDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides (mg/kg)																							
Varies	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/kg)																							
Lead	7439921	700	700	900	NLV	2,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 NLL Indicates parameter is not likely to leach under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.

2,000 - Lattice shaded cells exceed the groundwater surface water interface protection criteria and corresponding interval was removed by excavation.

Shaded column headings indicate that the soil associated with this sample interval was remediated by excavation in 2014.

ERM 2 of 3 8/7/2018

 Table 8
 Summary of Pre-2013 Soil Analytical Results
 General Electric Facility, Riverview, Michigan

			Michigan Pa	art 201 Generic Clea	nup Criteria (GCC						Sampl	e ID/ Sample	Date/Concent	tration				
Parameter	CAS	Drinkin Protectio	U	Direct Contact Criteria	Soil Volatilization to Indoor Air	Groundwater Surface Water		MW12			MW13	, •	Si	B1	Si	32	MW6 (OW6)	
i arameter	Numbers	Trotectio	ii Criteria	Cinteria	Inhalation Criteria	Interface Protection Criteria	0-12"	15-27"	27-41"	0-12"	15-27"	29-41"	0-2'	2-4'	0-2'	4-6'	0-2'	4-6'
		Residential	Non- residential	Non-residential	Non-residential		Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	Aug-89	May-97	May-97	May-97	May-97	May-97	May-97
MDEQ 624/8260 VOCs (μg/kg)																		
1,1 - Dichloroethene	75354	140	140	5.7E+05	330	BDL	BDL	BDL	BDL	BDL	BDL	<2.7	<3.2	<3.0	3.9	<3.1	<3.0	
Chlorobenzene	108907	2,000	2,000	260,000	220,000	500	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Ethylbenzene	100414	1,500	1,500	140,000	140,000	360	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Methylene Chloride	75092	100	100	2.3E+06	240,000	30,000	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Trichlorofluoromethane	75694	52,000	150,000	560,000	560,000	NA	NA	NA	NA	NA	NA	NA	<5.5	<6.4	<6.0	<6.0	<6.2	<6.0
1,1,2-Trichlorofluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
1,2-Dichlorobenzene	95501	14,000	14,000	210,000	210,000	280	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
Dichlorodifluoromethane	75718	95,000	270,000	1.0E+06	1.7E+06	ID	NA	NA	NA	NA	NA	NA	<5.5	< 6.4	<6.0	<6.0	<6.2	<6.0
Ethylacetate	141786	130,000	380,000	7.5E+06	7.5E+06	NA	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
m+p-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
o-Xylenes	133027	5,600	5,600	150,000	150,000	820	NA	NA	NA	NA	NA	NA	<2.7	<3.2	<3.0	<3.0	<3.1	<3.0
cis-1,2-Dichloroethene	156592	1,400	1,400	640,000	41,000	12,000	BDL	BDL	BDL	BDL	BDL	BDL	27	24	220	140	60	42
trans-1,2-Dichloroethene	156605	2,000	2,000	1.4E+06	43,000	30,000	BDL	BDL	BDL	BDL	BDL	BDL	<2.7	<3.2	16	13	4.6	<3.0
1,1- Dichloroethane	75343	18,000	50,000	890,000	430,000	15,000	BDL	BDL	BDL	BDL	BDL	BDL	<2.7	4.3	12	64	<3.1	<3
Tetrachloroethene	127184	100	100	88,000	21,000	1,200	251	196.2	47.9	87.1	88.6	11.6	61	48	460	<3.0	430	80
1,1,1, - Trichloroethane	71556	4,000	4,000	460,000	460,000	1,800	4.0	3.1	5.5	6.0	6.4	4.0	<2.7	<3.2	<3.0	41	<3.1	<3.0
Trichloroethene	79016	100	100	500,000	1,900	4,000	15.2	54.2	19.3	11.9	25.8	5.3	4.3	4.1	66	3.0	54	39
Acetone	67641	15,000	42,000	7.3E+07	1.1E+08	34,000	<550	<600	<620	<540	<610	< 560	NA	NA	NA	NA	NA	NA
PCBs (mg/kg)																		
Total PCBs	1336363	NLL	NLL	4 *	16,000	NLL	0.24	All BDL	All BDL	All BDL	All BDL	0.36	< 0.018	< 0.021	< 0.020	< 0.020	NA	NA
Pesticides (mg/kg)																		
Varies	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/kg)	•	•		•	•			•						*	•			
Lead	7439921	700	700	900	NLV	2,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/13.
- For simplification, generally only detected concentrations are shown on this table. See analytical laboratory report for full list of compounds analyzed.
- U indicates that the sample was analyzed for a contaminant but not detected above the MDL.
 NLL Indicates parameter is not likely to leach under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.

2,000 - Lattice shaded cells exceed the groundwater surface water interface protection criteria and corresponding interval was removed by excavation.

Shaded column headings indicate that the soil associated with this sample interval was remediated by excavation in 2014.

ERM 8/7/2018 3 of 3

Table 9 Indoor Sub-Slab Vapor Testing Results General Electric, Riverview, Michigan

	MDEO Part 201	Sample ID, Sample Collection Date & Concentration (ppbv)																							
	Nonresidential Sub-Slab Soil Gas											Sub-Sla	b Vapor Ind	loor Sample	s										
Parameter	Concentration for Vapor Intrusion (ppbv)	SV-1 May 1996	SV-2 May 1996	SV-3 May 1996	SV-4 May 1996	SV-5 May 1996	SV-6 May 1996	SV-7 May 1996	SV-8 May 1996	SV-9 May 1996	SV-10 May 1996	SV-11 May 1996	SV-12 May 1996	SV-13 May 1996	SV-14 May 1996	SV-15 May 1996	SV-16 May 1996	SV-17 May 1996	SV-18 May 1996	SV-19 May 1996	SV-20 May 1996	SV-21 May 1996	SV-22 May 1996	SV-23 May 1996	SV-24 May 1996
Acetone	1,400,000	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
trans-1,2-Dichloroethylene	9,800	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	38	<10	<10	<10	<10	<10	<10	<10
Ethylbenzene	13,000	<35	<35	<35	<35	<35	<35	<35	<35	<35	85	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35
Methylene Chloride	18,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Tetrachloroethylene	3,300	7J	<10	<10	11	20	<10	<10	30	<10	<10	<10	<10	<10	<10	<10	195	651	6,025	<10	<10	<10	22	<10	803
Toluene	740,000	<30	<30	<30	<30	<30	<30	<30	43	36	183	<30	<30	<30	<30	<30	59	<30	<30	<30	<30	<30	<30	<30	<30
1,1,1-Trichloroethane	610,000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Trichloroethene	210	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	39	25	<10	<10	<10	<10	<10	<10
Total Xylenes	13,000	<35	<35	<35	<35	<35	<35	<35	<35	<35	20J	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35

- Notes:

 Samples were collected and analyzed by O'Brien and Gere Engineers, Inc., and reported in August 1996.

 Soil Gas Screening Levels per MDEQ Guidance Document for the Vapor Intrusion Pathway, May 2013.

 Laboratory analysis performed using a Photovac 10S70 portable gas chromatograph (GC).

 J Indicates estimated value below the method quantitation limit.

 Shaded values exceed the referenced Soil Gas Screening Level.

ERM 1 of 1 OCTOBER 2015

Table 10 Summary of Monitoring Well Construction General Electric, Riverview, Michigan

			Top of		
Observation Well Location	Year Installed	Grade Elevation	Casing Elevation	Screen Depth	Sand Pack Depth
		ft. AMSL	ft. AMSL	ft. BG	ft. BG
PZ1	2005	594.46	594.97	0-6.2	Unknown
PZ2	2005	595.24	596.46	0-5.3	Unknown
PZ3	2005	594.32	594.78	0-3.4	Unknown
OW1	1997	594.83	596.83	3-8	2-10
OW2	1997	595.75	595.40	4-9	2-10
OW3	1997	595.49	594.85	3-8	2-10
OW4	1997	595.75	595.43	3.5-8.5	2-10
OW5	1997	595.52	595.00	3-8	2-10
OW6	1997	595.35	594.65	4-9	3-10
OW7	1997	595.85	595.52	3.5-8.5	2-10
OW8	1997	595.78	595.38	4-9	3-10
OW9	1997	594.24	593.66	4-9	3-10
MWA	1988 *	Unknown	Unknown	1-4	Unknown
MWB	1988 *	Unknown	Unknown	0.5-3.5	Unknown
MWC	1988 *	Unknown	Unknown	2.5-4.5	Unknown
MW2	1989 *	Unknown	Unknown	2-4	Unknown
MW3	1989 *	Unknown	Unknown	1.5-3.5	Unknown
MW4	1989 *	Unknown	Unknown	0.5-2.5	Unknown
MW5	1989 *	Unknown	Unknown	1.5-3.5	Unknown
MW9	1989 *	Unknown	Unknown	1.5-4.5	Unknown
MW12	1989 *	Unknown	Unknown	0.5-3.5	Unknown
MW13	1989 *	Unknown	Unknown	1-4	Unknown

Notes:

- PZ1-PZ3, OW1-OW9, MWA-MWC were constructed of 2" diam. PVC materials. All other MW Series wells were constructed of 2" diam. steel.
- AMSL Above Mean Sea Level
- BG Below Grade
- * MW-Series wells were plugged and abandoned by Chester Environmental in 1993.
- Wells were not installed at the MW1, MW6, MW7, MW8, MW10, and MW11 locations.

 Table 11
 Summary of Groundwater Analytical Results
 General Electric, Riverview, Michigan

		Micl	higan Part 201 Gen	eric Cleanup (Criteria (GCC)														
Parameter	CAS Numbers	Residential Drinking Water	Non- Residential Drinking Water	GSI	Nonresidential Volatilization to Indoor Air Inhalation	Sump Jun-87	Sump Apr-88	Sump May-88	Sump Apr-91	MW-A Apr-91	MW-B Apr-91	MW-C Apr-91	MW Mar-89	-2 ** Apr-91	MW Mar-89	√-3 ** Apr-91	MW-4 ** Mar-89	MW Mar-89	V-5 ** Apr-91
MDEQ 624/8260 VOCs (μg/I	.)							Sample Locatio	ns were Excava	ted in July 2002	2								
Tetrachloroethene	127184	5.0	5.0	60	170,000	2,700	56.3	91.7	9.0	17	99	2,500	15.6	22	1.58	<5	<2	3.53	<5
Trichloroethene	79016	5.0	5.0	200	4,900	390	176	43.3	<5	120	34	900	14	11	<1.2	<5	<2	<2	<5
cis-1,2- Dichloroethene	156592	70	70	620	210,000	<60	<2.0	NA	<5	NA	NA	NA	NA	BDL	NA	<5	NA	NA	<5
trans-1,2-Dichloroethene	156605	100	100	1,500	200,000	220	8.62	NA	< 5	<5	<5	<5	NA	<5	NA	<5	NA	NA	<5
Vinyl Chloride	75014	2.0	2.0	13	13,000	<100	7.15	39.1	<10	470	230	75	NA	<10	NA	<10	NA	NA	<10
1,1,1-Trichloroethane	71556	200	200	89	1.30E+06	<60	39.8	167	12	50	33	50	75.6	41	64.7	<5	<2	<2	<5
1,1-Dichloroethene	75354	7.0	7.0	130	1,300	<60	9.74	<2	<5	<5	7.0	21	NA	<5	NA	<5	NA	NA	<5
1,1-Dichloroethane	75343	880	2,500	740	2.30E+06	260	58.5	NA	12	900	220	1,000	NA	150	NA	<5	NA	NA	<5
Benzene	71432	5.0	5.0	200	35,000	<60	<2.0	<2	<5	NA	NA	NA	NA	<5	NA	<5	NA	NA	<5
Chlorobenzene	108907	100	100	25	470,000	<60	4.48	3.01	<5	<5	<5	<5	<2.0	<5	NA	<5	<2.0	<2.0	<5
Chloroethane	75003	430	1,700	1,100	5.70E+06	<60	<2.0	3.01	<10	100	61	18	NA	<10	NA	<10	NA	NA	<10
1,2 - Dichloroethane	107062	5.0	5.0	360	59,000	<60	<2.0	14.8	<5	<5	<5	<5	NA	<5	NA	<5	NA	NA	<5
1,1,2 - Trichloroethane	79005	5.0	5.0	330	110,000	<60	<2.0	167	<5	<5	<5	<5	NA	<5	NA	<5	NA	NA	<5
Ethyl Benzene	100414	74	74	18	170,000	710	<2.0	28.5	<5	17	<5	<5	NA	<5	NA	<5	NA	NA	<5
Methylene Chloride	75092	5.0	5.0	1,500	1.40E+06	<100	5.98	12.2	<5	10	<5	<5	<2	<5	NA	<5	<2	<2	<5
Toluene	108883	790	790	270	530,000	300	5.59	15.1	<5	39	<5	<5	NA	<5	NA	<5	NA	NA	<5
Total Xylene	1330207	280	280	41	190,000	<60	2.69	180	<5	104	<5	<5	NA	<5	NA	<5	NA	NA	<5
MDEQ 625/8270 SVOCs (µg		200	200		150,000		,	100		101	Ü			J		J		- 11.1	
1,3-Dichlorobenzene	541731	6.6	19	28	41,000	NA	39.2	11.8	NA	<10	<10	<10	NA	<10	NA	<10	NA	NA	<10
1,4-Dichlorobenzene	106467	75	75	17	74,000	NA	36.9	20.1	NA	<10	<10	<10	NA	<10	NA	<10	NA	NA	<10
1,2,4-Trichlorobenzene	120821	70	70	99	300,000	NA	161	277	NA	20	<10	<10	NA	<10	NA	<10	NA	NA	<10
Bis(2-ethylexyl)pthalate	117817	6.0	6.0	25	NLV	NA	<10	<10	NA	18	<10	<10	NA	<10	NA	<10	NA	NA	<10
2,4-Dimethylphenol	105679	370	1,000	380	NLV	NA	<10	<10	NA	<10	<10	<10	NA	<10	NA	<10	NA	NA	<10
Phenol	108952	4,400	13,000	450	NLV	NA	<10	<10	NA	<10	<10	<10	NA	<10	NA	<10	NA	NA	<10
2-Methylnapthalene	91576	260	750	19	25,000	NA	<10	<10	NA	<10	<10	<10	NA	<10	NA	<10	NA	NA	<10
Methylphenol isomers	1319773	370	1,000	30	NLV	NA	<10	<10	NA	<10	<10	11	NA	<10	NA	<10	NA	NA	<10
PCBs (μg/L)	1017770	0,0	1,000		1127		-				1	I .		_					
Total PCBs	1336363	0.5	0.5	0.2	45	NA	25.3	<1	1.7	92	<1	<1	BDL	<1	4.3	<1	BDL	BDL	<1
Pesticides (µg/L)			1																
4,4-DDD	72548	9.1	37	NA	NLV	NA	<10	<2	NA	<0.1	<0.1	<0.1	<0.2	<0.1	NA	<0.1	< 0.2	0.767	<0.1
4,4-DDT	50293	3.6	10	0.02	NLV	NA	<10	<2	NA	<0.1	<0.1	<0.1	<0.2	<0.1	NA	<0.1	<0.2	0.924	<0.1
Metals (mg/L)	00230	0.0	10	0.02	1127	- 11.1	10	_		0.1	0.1	0.1	0.2	0.1		0.1	V.2	0.521	0.1
Arsenic	7440382	0.010	0.010	0.010	NLV	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	7440393	2.0	2.0	0.67	NLV	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	7440439	0.005	0.005	0.0025	NLV	NA	<0.1	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium	16065831	0.10	0.10	0.10	NLV	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	7439921	0.004	0.004	0.10	NLV	NA NA	<0.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Selenium	7782492	0.05	0.05	0.005	NLV	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	7440224	0.034	0.098	0.0003	NLV	NA	<0.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Mercury	Varies	0.002	0.002	0.0002	0.056	NA	<0.05	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA NA
1987 samples were collected						1 1/1	٠٥.٥٥	11/1	1 1/1	11/17	1 1/1	1 1/1	1 1/1	11/1	11/17	11/11	1 1/1	11/1	1 1/1

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA
- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- GSI = Groundwater/surface water interface.
 For simplification, only detected concentrations are shown on this table. See laboratory report for full list of analytes.
- NLV Indicates parameter is not likely to volatilize under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below target detection limit per MDEQ Operational Memorandum #2, Attachment 1, 10/22/2004.
- < Indicates value below laboratory detection limit
 ** Monitoring well plugged and abandoned in 1993.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) criteria. - Blue-diagonal values exceed the referenced non-residential volatilization to indoor air inhalation criteria.

ERM 1 of 4 8/7/2018

 Table 11
 Summary of Groundwater Analytical Results
 General Electric, Riverview, Michigan

		Mich	nigan Part 201 Gene	ric Cleanup (Criteria (GCC)																
Parameter	CAS Numbers	Residential Drinking Water *	Non- Residential Drinking Water *	GSI	Nonresidential Volatilization to Indoor Air Inhalation	MW Mar-89	/-9 ** Apr-91	MW- Mar-89	-12 ** Apr-91	MW- Mar-89	13 ** Apr-91	Jun-97	O Aug-98	W1 Jul-09	Nov-13	Jun-97	OW2 Aug-98	Jul-09	Jun-97	OW3 Aug-98	Jul-09
MDEQ 624/8260 VOCs (μg/L))																				
Tetrachloroethene	127184	5.0	5.0	60	170,000	<0.3	<5	67.9	26	3.7	38	<0.5	<0.5	<1	NA	<0.5	0.62	<5	< 0.5	<0.5	<1
Trichloroethene	79016	5.0	5.0	200	4,900	<1.2	<5	25.8	11	4.2	36	<0.5	<0.5	<1	NA	<0.5	<0.5	<5	< 0.5	<0.5	<1
cis-1,2- Dichloroethene	156592	70	70	620	210,000	NA	<5	NA	<5	NA	< 5	< 0.5	< 0.5	<1	NA	0.82	< 0.5	<5	7.8	2.5	<1
trans-1,2-Dichloroethene	156605	100	100	1,500	200,000	NA	<5	NA	<5	NA	<5	<0.5	<0.5	<1	NA	<0.5	<0.5	<5	0.74	<0.5	<1
Vinyl Chloride	75014	2.0	2.0	13	13,000	NA	<10	NA	<10	NA	<10	<1	<1	<1	<1	<1	<1	<5	<1	<1	<1
1,1,1-Trichloroethane	71556	200	200	89	1.30E+06	< 0.3	<5	236	<5	56.4	<5	< 0.5	< 0.5	<1	NA	3.8	25	47.7	< 0.5	0.56	<1
1,1-Dichloroethene	75354	7.0	7.0	130	1,300	NA	<5	NA	< 5	NA	<5	< 0.5	< 0.5	<1	NA	<0.5	< 0.5	<5	<0.5	<0.5	<1
1,1-Dichloroethane	75343	880	2,500	740	2.30E+06	NA	<5	NA	26	NA	13	< 0.5	< 0.5	<1	NA	6.3	12	22	1.5	1.9	<1
Benzene	71432	5.0	5.0	200	35,000	NA	<5	NA	<5	NA	<5	< 0.5	< 0.5	<1	NA	<0.5	< 0.5	<5	<0.5	<0.5	<1
Chlorobenzene	108907	100	100	25	470,000	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	<1	<0.5	<0.5	<5	<0.5	<0.5	<1
Chloroethane	75003	430	1,700	1,100	5.70E+06	NA	<10	NA	<10	NA	<10	<1	<1	<1	NA	<1	<1	<5	<1	<1	<1
1,2 - Dichloroethane	107062	5.0	5.0	360	59,000	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	NA	<0.5	2.0	<5	<0.5	<0.5	<1
1,1,2 - Trichloroethane	79005	5.0	5.0	330	110,000	NA	<5	NA	<5	NA	7.0	< 0.5	<0.5	<1	NA	<0.5	< 0.5	<5	<0.5	<0.5	<1
Ethyl Benzene	100414	74	74	18	170,000	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	NA	<0.5	< 0.5	<5	< 0.5	<0.5	<1
Methylene Chloride	75092	5.0	5.0	1,500	1.40E+06	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	NA	<0.5	< 0.5	<5	< 0.5	<0.5	<1
Toluene	108883	790	790	270	530,000	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	NA	<0.5	< 0.5	<5	< 0.5	<0.5	<1
Total Xylene	1330207	280	280	41	190,000	NA	<5	NA	<5	NA	<5	< 0.5	<0.5	<1	NA	<0.5	< 0.5	<5	< 0.5	<0.5	<1
MDEQ 625/8270 SVOCs (μg/	L)																				
1,3-Dichlorobenzene	541731	6.6	19	28	41,000	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
1,4-Dichlorobenzene	106467	75	75	17	74,000	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
1,2,4-Trichlorobenzene	120821	70	70	99	300,000	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
Bis(2-ethylexyl)pthalate	117817	6.0	6.0	25	NLV	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
2,4-Dimethylphenol	105679	370	1,000	380	NLV	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
Phenol	108952	4,400	13,000	450	NLV	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
2-Methylnapthalene	91576	260	750	19	25,000	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
Methylphenol isomers	1319773	370	1,000	30	NLV	NA	<10	NA	<10	NA	<10	NA	NA	< 5.04	NA	NA	NA	<5.11	NA	NA	<5.05
PCBs (μg/L)																					
Total PCBs	1336363	0.5	0.5	0.2	45	1.6	<1	2.8	<1	2.5	<1	<0.2	NA	< 0.503	NA	<0.2	NA	< 0.504	< 0.2	NA	< 0.507
Pesticides (µg/L)																					
4,4-DDD	72548	9.1	37	NA	NLV	NA	<0.1	NA	<0.1	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4-DDT	50293	3.6	10	0.02	NLV	NA	<0.1	NA	<0.1	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/L)	•	•					•		•						•			•			
Arsenic	7440382	0.010	0.010	0.010	NLV	NA	NA	NA	NA	NA	NA	NA	NA	< 0.01	< 0.005	NA	NA	< 0.01	NA	NA	< 0.01
Barium	7440393	2.0	2.0	0.67	NLV	NA	NA	NA	NA	NA	NA	NA	NA	0.0494J	NA	NA	NA	<0.1	NA	NA	<0.1
Cadmium	7440439	0.005	0.005	0.0025	NLV	NA	NA	NA	NA	NA	NA	NA	NA	0.00276J	< 0.001	NA	NA	< 0.01	NA	NA	< 0.01
Chromium	16065831	0.10	0.10	0.10	NLV	NA	NA	NA	NA	NA	NA	NA	NA	0.00146J	NA	NA	NA	< 0.01	NA	NA	< 0.01
Lead	7439921	0.004	0.004	0.014	NLV	NA	NA	NA	NA	NA	NA	NA	NA	<0.01	NA	NA	NA	< 0.01	NA	NA	<0.01
Selenium	7782492	0.05	0.05	0.005	NLV	NA	NA	NA	NA	NA	NA	NA	NA	< 0.02	< 0.005	NA	NA	< 0.02	NA	NA	< 0.02
Silver	7440224	0.034	0.098	0.0002	NLV	NA	NA	NA	NA	NA	NA	NA	NA	0.00308J	< 0.0002	NA	NA	< 0.01	NA	NA	< 0.01
Mercury	Varies	0.002	0.002	0.0000013	0.056	NA	NA	NA	NA	NA	NA	NA	NA	<0.000285	NA	NA	NA	< 0.000285	NA	NA	< 0.000285
1987 samples were collected b		000 1 1000	1		10011		l .		l .		1	J.	1					1	1	1	

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA
- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- GSI = Groundwater/surface water interface.
 For simplification, only detected concentrations are shown on this table. See laboratory report for full list of analytes.
- NLV Indicates parameter is not likely to volatilize under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below target detection limit per MDEQ Operational Memorandum #2, Attachment 1, 10/22/2004.
- < Indicates value below laboratory detection limit
 ** Monitoring well plugged and abandoned in 1993.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) criteria. - Blue-diagonal values exceed the referenced non-residential volatilization to indoor air inhalation criteria.

ERM 2 of 4 8/7/2018

 Table 11
 Summary of Groundwater Analytical Results
 General Electric, Riverview, Michigan

		Mich	nigan Part 201 Gene	eric Cleanup (Criteria (GCC)															
Parameter	CAS Numbers	Residential Drinking Water *	Non- Residential Drinking Water *	GSI	Nonresidential Volatilization to Indoor Air Inhalation	Jun-97	O Aug-98	W4 Jul-09	Nov-13	Jun-97	Aug-98	OW5 Jul-09	Nov-13	Nov-13 Dup	Jun-97	OW6 Aug-98	Jul-09	Jun-97	OW7 Aug-98	Ju1-09
MDEQ 624/8260 VOCs (μg/I	L)																			
Tetrachloroethene	127184	5.0	5.0	60	170,000	< 0.5	< 0.5	<1	NA	1.0	1.9	<10	NA	NA	<0.5	0.61	<10	<0.5	<0.5	<1
Trichloroethene	79016	5.0	5.0	200	4,900	< 0.5	<0.5	<1	NA	4.9	6.0	<10	NA	NA	3.5	5.8	<10	<0.5	<0.5	<1
cis-1,2- Dichloroethene	156592	70	70	620	210,000	< 0.5	<0.5	<1	NA	40	24	15.5	NA	NA	43	40	68	<0.5	<0.5	<1
trans-1,2-Dichloroethene	156605	100	100	1,500	200,000	<0.5	<0.5	<1	NA	7.4	5.5	<10	NA	NA	5.8	3.7	<10	<0.5	<0.5	<1
Vinyl Chloride	75014	2.0	2.0	13	13,000	<1	<1	<1	<1	24	29	13.5	19	20	1.1	<1	<10	<1	<1	<1
1,1,1-Trichloroethane	71556	200	200	89	1.30E+06	<0.5	<0.5	<1	NA	2.2	3.2	<10	NA	NA	89	38	32.7	<0.5	<0.5	<1
1,1-Dichloroethene	75354	7.0	7.0	130	1,300	<0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	3.5	1.0	<10	<0.5	<0.5	<1
1,1-Dichloroethane	75343	880	2,500	740	2.30E+06	1.0	0.5	<1	NA	11	8.8	<10	NA	NA	43	25	20.1	<0.5	<0.5	<1
Benzene	71432	5.0	5.0	200	35,000	<0.5	<0.5	<1	NA	2.7	5.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
Chlorobenzene	108907	100	100	25	470,000	<0.5	<0.5	<1	<1	<0.5	99	103	68	67	<0.5	<0.5	<10	<0.5	<0.5	<1
Chloroethane	75003	430	1,700	1,100	5.70E+06	<1	<1	<1	NA	<1	1.1	<10	NA	NA	<1	<1	<10	<1	<1	<1
1,2 - Dichloroethane	107062	5.0	5.0	360	59,000	< 0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
1,1,2 - Trichloroethane	79005	5.0	5.0	330	110,000	<0.5	<0.5	<1	NA	BDL	<0.5	<10	NA	NA	1.7	0.83	<10	<0.5	<0.5	<1
Ethyl Benzene	100414	74	74	18	170,000	< 0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
Methylene Chloride	75092	5.0	5.0	1,500	1.40E+06	<0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
Toluene	108883	790	790	270	530,000	< 0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
Total Xylene	1330207	280	280	41	190,000	< 0.5	<0.5	<1	NA	<0.5	<0.5	<10	NA	NA	<0.5	<0.5	<10	<0.5	<0.5	<1
MDEQ 625/8270 SVOCs (μg	/L)																			
1,3-Dichlorobenzene	541731	6.6	19	28	41,000	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
1,4-Dichlorobenzene	106467	75	75	17	74,000	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
1,2,4-Trichlorobenzene	120821	70	70	99	300,000	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
Bis(2-ethylexyl)pthalate	117817	6.0	6.0	25	NLV	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
2,4-Dimethylphenol	105679	370	1,000	380	NLV	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	< 5.05	NA	NA	<5.11
Phenol	108952	4,400	13,000	450	NLV	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
2-Methylnapthalene	91576	260	750	19	25,000	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
Methylphenol isomers	1319773	370	1,000	30	NLV	NA	NA	<5.05	NA	NA	NA	<5.03	NA	NA	NA	NA	<5.05	NA	NA	<5.11
PCBs (µg/L)																				
Total PCBs	1336363	0.5	0.5	0.2	45	<0.2	NA	< 0.506	NA	<0.21	NA	<5.00	NA	NA	<0.21	NA	< 0.512	<0.2	NA	< 0.510
Pesticides (µg/L)																				
4,4-DDD	72548	9.1	37	NA	NLV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4-DDT	50293	3.6	10	0.02	NLV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/L)																				
Arsenic	7440382	0.010	0.010	0.010	NLV	NA	NA	< 0.01	< 0.005	NA	NA	0.0102	< 0.005	<5	NA	NA	< 0.01	NA	NA	< 0.01
Barium	7440393	2.0	2.0	0.67	NLV	NA	NA	<0.1	NA	NA	NA	<0.1	NA	NA	NA	NA	<0.1	NA	NA	<0.1
Cadmium	7440439	0.005	0.005	0.0025	NLV	NA	NA	< 0.01	< 0.001	NA	NA	< 0.01	< 0.001	<1	NA	NA	< 0.01	NA	NA	< 0.01
Chromium	16065831	0.10	0.10	0.10	NLV	NA	NA	< 0.01	NA	NA	NA	< 0.01	NA	NA	NA	NA	< 0.01	NA	NA	< 0.01
Lead	7439921	0.004	0.004	0.014	NLV	NA	NA	< 0.01	NA	NA	NA	< 0.01	NA	NA	NA	NA	< 0.01	NA	NA	< 0.01
Selenium	7782492	0.05	0.05	0.005	NLV	NA	NA	0.0205	< 0.005	NA	NA	< 0.02	< 0.005	<5	NA	NA	< 0.02	NA	NA	< 0.02
Silver	7440224	0.034	0.098	0.0002	NLV	NA	NA	< 0.01	< 0.0002	NA	NA	< 0.01	< 0.0002	<0.2	NA	NA	< 0.01	NA	NA	< 0.01
Mercury	Varies	0.002	0.002	0.0000013	0.056	NA	NA	< 0.000285	NA	NA	NA	< 0.000285	NA	NA	NA	NA	< 0.000285	NA	NA	< 0.000285
1987 samples were collected	by Clayton	1988 and 1989 cam	nles were collecte	d by OHM	1991 samples were															

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA
- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- GSI = Groundwater/surface water interface.
 For simplification, only detected concentrations are shown on this table. See laboratory report for full list of analytes.
- NLV Indicates parameter is not likely to volatilize under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below target detection limit per MDEQ Operational Memorandum #2, Attachment 1, 10/22/2004.
- < Indicates value below laboratory detection limit
 ** Monitoring well plugged and abandoned in 1993.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) criteria. - Blue-diagonal values exceed the referenced non-residential volatilization to indoor air inhalation criteria.

ERM 3 of 4 8/7/2018

 Table 11
 Summary of Groundwater Analytical Results
 General Electric, Riverview, Michigan

		Mic	higan Part 201 Gene	eric Cleanup (Criteria (GCC)													
Parameter	CAS Numbers	Residential Drinking Water	Non- Residential Drinking Water *	GSI	Nonresidential Volatilization to Indoor Air Inhalation	Jun-97	OW8 Aug-98	Jul-09	Jun-97	Aug-98	OW9 Jul-09	Jul-09 Dup	Jul-09	PZ1 Jul-09 Dup	Nov-13	MH-West Office Nov-13	EB-1 Nov-13	EB-2 Nov-13
MDEQ 624/8260 VOCs (μg/L	.)											•						
Tetrachloroethene	127184	5.0	5.0	60	170,000	< 0.5	<0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	5.9	<1	<1
Trichloroethene	79016	5.0	5.0	200	4,900	<0.5	< 0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	3.8	<1	<1
cis-1,2- Dichloroethene	156592	70	70	620	210,000	61	52	33.4	<0.5	<0.5	<1	<1	<1	<1	NA	11	<1	<1
trans-1,2-Dichloroethene	156605	100	100	1,500	200,000	8.3	5.3	2.59	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Vinyl Chloride	75014	2.0	2.0	13	13,000	4.2	1.7	1.68	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	71556	200	200	89	1.30E+06	2.4	1.2	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
1,1-Dichloroethene	75354	7.0	7.0	130	1,300	1.4	0.66	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
1,1-Dichloroethane	75343	880	2,500	740	2.30E+06	61	52	31.9	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Benzene	71432	5.0	5.0	200	35,000	<0.5	<0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Chlorobenzene	108907	100	100	25	470,000	<0.5	<0.5	<1	<0.5	<0.5	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	75003	430	1,700	1,100	5.70E+06	<1	<1	<1	<1	<1	<1	<1	<1	<1	NA	<1	<1	<1
1,2 - Dichloroethane	107062	5.0	5.0	360	59,000	<0.5	<0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
1,1,2 - Trichloroethane	79005	5.0	5.0	330	110,000	<0.5	<0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Ethyl Benzene	100414	74	74	18	170,000	<0.5	<0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Methylene Chloride	75092	5.0	5.0	1,500	1.40E+06	<0.5	<0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<5	<5	< 5
Toluene	108883	790	790	270	530,000	<0.5	<0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<1	<1	<1
Total Xylene	1330207	280	280	41	190,000	<0.5	<0.5	<1	<0.5	<0.5	<1	<1	<1	<1	NA	<3	<3	<3
MDEQ 625/8270 SVOCs (μg/	/L)																	
1,3-Dichlorobenzene	541731	6.6	19	28	41,000	NA	NA	<5.25	NA	NA	<5.05	<5.08	<5.09	<5.11	NA	NA	NA	NA
1,4-Dichlorobenzene	106467	75	75	17	74,000	NA	NA	<5.25	NA	NA	<5.05	<5.08	<5.09	<5.11	NA	NA	NA	NA
1,2,4-Trichlorobenzene	120821	70	70	99	300,000	NA	NA	<5.25	NA	NA	<5.05	<5.08	<5.09	<5.11	NA	NA	NA	NA
Bis(2-ethylexyl)pthalate	117817	6.0	6.0	25	NLV	NA	NA	<5.25	NA	NA	<5.05	< 5.08	<5.09	<5.11	NA	NA	NA	NA
2,4-Dimethylphenol	105679	370	1,000	380	NLV	NA	NA	<5.25	NA	NA	<5.05	<5.08	<5.09	<5.11	NA	NA	NA	NA
Phenol	108952	4,400	13,000	450	NLV	NA	NA	<5.25	NA	NA	<5.05	<5.08	<5.09	<5.11	NA	NA	NA	NA
2-Methylnapthalene	91576	260	750	19	25,000	NA	NA	<5.25	NA	NA	<5.05	<5.08	<5.09	<5.11	NA	NA	NA	NA
Methylphenol isomers	1319773	370	1,000	30	NLV	NA	NA	<5.25	NA	NA	<5.05	<5.08	< 5.09	<5.11	NA	NA	NA	NA
PCBs (μg/L)																		
Total PCBs	1336363	0.5	0.5	0.2	45	<0.2	NA	< 0.522	<0.22	NA	< 0.514	< 0.513	< 0.506	< 0.508	NA	NA	< 0.20	<0.20
Pesticides (µg/L)																		
4,4-DDD	72548	9.1	37	NA	NLV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4-DDT	50293	3.6	10	0.02	NLV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals (mg/L)																		
Arsenic	7440382	0.010	0.010	0.010	NLV	NA	NA	< 0.01	NA	NA	< 0.01	< 0.01	< 0.01	0.0103	< 0.005	NA	< 0.005	< 0.005
Barium	7440393	2.0	2.0	0.67	NLV	NA	NA	<0.1	NA	NA	<0.1	<0.1	<0.1	<0.1	NA	NA	0.026	0.026
Cadmium	7440439	0.005	0.005	0.0025	NLV	NA	NA	< 0.01	NA	NA	< 0.01	<0.01	< 0.01	< 0.01	< 0.001	NA	< 0.001	< 0.001
Chromium	16065831	0.10	0.10	0.10	NLV	NA	NA	< 0.01	NA	NA	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	< 0.005	< 0.005
Lead	7439921	0.004	0.004	0.014	NLV	NA	NA	< 0.01	NA	NA	<0.01	< 0.01	<0.01	< 0.01	NA	NA	< 0.003	< 0.003
Selenium	7782492	0.05	0.05	0.005	NLV	NA	NA	<0.02	NA	NA	<0.02	<0.02	< 0.02	<0.02	< 0.005	NA	< 0.005	< 0.005
Silver	7440224	0.034	0.098	0.0002	NLV	NA	NA	< 0.01	NA	NA	<0.01	< 0.01	<0.01	< 0.01	<0.0002	NA	<0.0002	<0.0002
Mercury	Varies	0.002	0.002	0.0000013	0.056	NA	NA	< 0.000285	NA	NA	< 0.000285	<0.000285	< 0.000285	<0.000285	NA	NA	< 0.0002	< 0.0002

- * Drinking water protection criteria are shown for comparison only; they do not apply due to site's GWNIAA
- Cleanup criteria per MDEQ RRD Operational Memorandum #1, Attachment 1, 12/30/2013.
- GSI = Groundwater/surface water interface.
 For simplification, only detected concentrations are shown on this table. See laboratory report for full list of analytes.
- NLV Indicates parameter is not likely to volatilize under most soil conditions.
- NA Indicates sample was not analyzed for this parameter.
- BDL Indicates value below target detection limit per MDEQ Operational Memorandum #2, Attachment 1, 10/22/2004.
- < Indicates value below laboratory detection limit
 ** Monitoring well plugged and abandoned in 1993.

- Outlined values exceed the referenced groundwater/surface water interface (GSI) criteria. - Blue-diagonal values exceed the referenced non-residential volatilization to indoor air inhalation criteria.

ERM 4 of 4 8/7/2018

Table 12 Borings Completed During 2013 to 2017 Investigations General Electric, Riverview, Michigan

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID	Soil Sample Interval		Geologist
EB-3		11/19/2013	Hand Auger	Grass	10'	0-1' Topsoil 1-9.5' Moderately stiff, grayish brown clay w/ silt, trace gravel, moist, very low plasticity 9.5-10' Wet clay	0	8-10'	1,3,12,13	SH
EB-4		11/19/2013	Hand Auger	Grass	7'	0-1' Topsoil 1-7' Moderately stiff, grayish brown clay w/ silt, trace gravel, moist, very low plasticity	0	5-7'	1,3,12,13	SH
EB-5		11/20/2013	Geoprobe	Asphalt	15'	0-0.25' Asphalt 0.25-1.25' Asphalt road base (sand /gravel fill) 1.25-2.5' Loose It brn fine sand , moist-wet, clay lense @ 1.6-1.75' 2.5-15' Moderately stiff grayish brown clay , trace silt & gravel, moist, low plasticity.	NA	10-12'	1,3,12,13	SH
EB-7		11/19/2013	Hand Auger	Asphalt	4.5'	0-0.2' Asphalt 0.2-4' Lt brn sand 4-4.5' Wet clay	NA	0-1'	1,3,12,13	SH
EB-8		11/19/2013	Hand Auger	Asphalt	4'	0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-2' Lt brn, wet sand 2-3.5' Wet, gray sand 3.5-4' Clay	NA	0-1'	1,3,12,13	SH
EB-9		11/19/2013	Geoprobe	Asphalt	4'	0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-2' Lt gray sand 2-4' Clay	NA	0-1'	1,3,12,13	SH
EB-12		11/19/2013	Geoprobe	Asphalt	4'	0.2' Asphalt 0.2-8' Gravel/asphalt loose 1-2' Lt gray sand 2-4' Clay	NA	0-1'	1,3,12,13	SH
EB-14		11/20/2013	Geoprobe	Concrete	7'	0-0.2' Concrete 0.2-3.75' Lt brn sand 3.75-7' Gray clay	NA	0-1'	1,3,12,13	SH
EB-16		11/20/2013	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-0.5'	1,3,12,13	SH
EB-19		11/20/2013	Geoprobe	Asphalt	5'	0-0.2' Asphalt 0.2-1' Loose asphalt & blk gravel 1-5' Native gray clay	NA	0-0.5'	1,3,12,13	SH
EB-20		11/20/2013	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-1' Loose drk brn gravel 1-1.5' Loose, It brn sand 1.5-2' Native gray clay	NA	0-0.5'	1,3,12,13	SH
EB-23		11/20/2013	Geoprobe	Asphalt	10'	0-0.2' Asphalt 0.2-0.8' Loose blk gravel & asphalt 1-2.5' Lt grayish brown, moderately stiff clay w/ sand, moist 2.5-3' Gray sand, fine grained, moist 3-5' Gray clay, stiff, moist 5-5.5' Gray sand, fine grained, moist	0	5-6'	1,12,13	SH
						5.5-6' Gray clay, stiff 6-6.2' Crushed asphalt & gravel, blk 6.2-10' Lt grayish brown, stiff clay	0	9-10'	1,12,13	
EB-24		11/20/2013	Geoprobe	Grass	5'	0.0.25' Topsoil 0.25-2' Lg gray gravel , wet, w/ silt 2-5' Native gray clay	NA	0-1'	1,3,12,13	SH
EB-25		11/20/2013	Geoprobe	Grass	1.5'	0-0.5' Topsoil 0.5-1' Gravel 1-1.5' Gray clay	NA	0-1'	1,3,12,13	SH
EB-26		11/20/2013	Geoprobe	Grass	1.5'	0-0.5' Topsoil 0.5-1' Gravel 1-1.5' Gray clay	NA	0-1'	1,3,12,13	SH
EB-27		11/20/2013	Geoprobe	Grass	1.5'	0-0.5' Topsoil 0.5-1' Gravel 1-1.5' Gray clay	NA	0-1'	1,3,12,13	SH
EB-28		11/20/2013	Geoprobe	Grass	1.5'	0-0.5' Topsoil 0.5-1' Gravel 1-1.5' Gray clay	NA	0-1'	1,3,12,13	SH

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID	Soil Sample Interval		Geologist
EB-31		11/20/2013	Hand Auger	Grass	1'	0-1' Clay	NA	0-1'	1,3,12,13	SH
EB-32		11/20/2013	Hand Auger	Grass	1'	0-1' Clay	NA	0-1'	1,3,12,13	SH
EB-33		11/20/2013	Hand Auger	Grass	1.5'	0-0.5' Topsoil 0.5-1' Gravel/cobble concrete 1-1.5' Clay	NA	0-0.5'	1,3,12,13	SH
1	HAB-1	4/7/2014	Hand Auger	Concrete	3.5'	0-0.5' Concrete 0.5'-3.5' Loose brn-drk brn very fine well graded sand w/ some silt, trace clay, moist to wet @ 3.5'	NA	0-2' 2-3.5'	1,3,12,13 1,3,12,13	BB
2	HAB-2	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete		0-2'	1,3,12,13	BB
			J			0.5-3.5' Loose brn very fine well graded sand , trace silt & clay, moist 3.5-4' Moderately soft drk brn-blk clay, moist	NA	2-4'	1,3,12,13	
3	HAB-3	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete	NA	0-2'	1,3,12,13	BB
4	HAB-4	4/7/2014	Hand Associ	Concrete	4'	0.5-4' Loose brn very fine well graded sand, trace silt & clay, moist 0-0.5' Concrete		2-4' 0-2'	1,3,12,13	BB
4	пар-4	4/7/2014	Hand Auger	Concrete	4	0.5-3.9' Loose brn very fine well graded sand, trace silt & clay, moist 3.9-4' Moderately soft drk brn-blk clay, moist	NA	2-4'	1,3,12,13 1,3,12,13	DD
5	HAB-5	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete	NTA	0-2'	1,3,12,13	BB
	***-		Ü			0.5-4' Loose brn well graded very fine sand, trace silt & clay, mois	NA	2-4'	1,3,12,13	
6	HAB-6	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete		0-2'	1,3,12,13	ВВ
						0.5-2.75' Loose brn very fine well graded sand , trace silt & clay, moist 2.75-4' Soft brn sandy clay , moist, cohesive, plastic, wet @ bottom	NA	2-4'	1,3,12,13	
7	HAB-7	4/7/2014	Hand Auger	Concrete	8'	0-0.5' Concrete		0-2'	1,3,12,13	BB
						0.5-4' Loose brn very fine well graded sand , trace silt & clay 4' clay , moist	NA	2-4'	1,3,12,13	
		6/12/2014				4-8' Moderately stiff brownish gray-dark gray lean clay, trace	NA	4-6'	1,3	
						gravel, high plasticity, moist		6-8'	1,3	
8	HAB-8	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-4' Loose brn very fine well graded sand, trace silt & clay, wet	NA	0-2'	1,3,12,13	BB
						@ 4'		2-4'	1,3,12,13	
9	HAB-9	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-4' Loose brn very fine well graded sand, trace silt & clay, wet clay @ 4'	NA	0-2' 2-4'	1,3,12,13 1,3,12,13	BB
10	IIAD 10	4 /7 /2014	TT 1 A	Camanata	41	177			1,0,12,10	BB
10	HAB-10	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-4' Loose brn very fine well graded sand, clay seam @ 1.6-1.8', clay @ 4'	NA	0-2' 2-4'	1,3,12,13 1,3,12,13	
11	HAB-11	4/7/2014	Hand Auger	Concrete	4'	0-0.5' Concrete	NA	0-2'	1,3,12,13	ВВ
						0.5-4' Loose brn well graded very fine sand, trace silt & clay, mois Sand, wet @ 3'		2-4'	1,3,12,13	BB
12	HAB-12	4/7/2014	Hand Auger	Concrete	3'	Suite, net #3	NA	0-2' 2-3'	1,3,12,13 1,3,12,13	ВВ
13	HAB-13	4/7/2014	Hand Auger	Concrete	3'	Sand, wet @ 3'				BB
		-, -, -011	uger				NA	0-2'	1,3,12,13	
EBG-1	ERM- BG-1	4/8/2014	Hand Auger	Grass	4'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NA	2-3' 0-1'	1,3,12,13	ВВ
							INA	3-4'	11	
EBG-2	ERM- BG-2	4/8/2014	Hand Auger	Grass	4'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NA	0.3-1'	11	ВВ
							- 11. 4	3-4'	11	
EBG-3	ERM- BG-3	4/8/2014	Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'		0.3-1'	11	ВВ
							NA	2-3'	11	
EBG-4	ERM- BG-4	4/8/2014	Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NA	0.3-1'	11	ВВ
								2-3'	11	

Map Boring ID	ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab Analyses	
EBG-5	ERM- BG-5	4/8/2014	Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NA	0.3-1' 2-3'	11 11	BB
EBG-6	ERM- BG-6	4/8/2014	Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NIA	0.3-1'	11	ВВ
							NA	2-3'	11	
EBG-7	ERM- BG-7	4/8/2014	Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'	NA	0.3-1'	11	BB
EBG-8	ERM-		Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'		2-3'	11	BB
	BG-8	4/8/2014					NA	0.3-1'	11	
EBG-9	ERM-		Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'		2-3'	11	BB
	BG-9	4/8/2014					NA	0.3-1'	11	
EBG-10	ERM-		Hand Auger	Grass	3'	Dark brown silt & clay w/ trace small gravel, wet @ 2.5'		2-3'	11	ВВ
EDG-10	BG-10	4/8/2014	Tianu Auger	Glass	3	bank blown san ee taly w/ alace small gravel, wee \(\theta 2.5\)	NA	0.3-1' 2-3'	11 11	DD
14	HAB-14	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0-0.5-3.5' Loose grayish brown-brown poorly graded fine sand, trace gravel & clay, moist 3.5-4' Gray lean clay, high plasticity, moist	0	0-2'	1,3,12,13	ВВ
								2-4'	1,3,12,13	
15	HAB-15	6/11/2014	Hand Auger	Concrete	4'	0-0.5 Concrete 0.5-1' Loose grayish brown-brown poorly graded fine sand w/ clay, moist, trace gravel, slight solvent-like odors noted 1-4.75' Loose grayish brown-brown poorly graded fine sand, trace clay, moist 4.75-5' Stiff gray lean clay, moist, high plasticity	0	0-2'	1,3,12,13	ВВ
								2-4'	1,3,12,13	
16	HAB-16	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.5' Loose grayish brown-brown poorly graded fine sand, trace clay & gravel, moist 3.5-4' Moderately stiff brownish gray-dark gray lean clay, high	NA	0-2'	1,3,12,13	ВВ
17	HAB-17		Hand Auger	Concrete	4'	plasticity, moist 0-0.5 Concrete		2-4'	1,3,12,13	ВВ
17	11110 17	6/11/2014	Tranta Truger	Concrete	ī	0.5-3.75 Loose grayish brow-brown poorly graded fine sand, trace clay & gravel, moist 3.75-4 Moderately stiff gray lean clay, high plasticity, moist	NA	0-2'	1,3	DD .
								2-4'	1,3	
18	HAB-18	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.5' Loose grayish brown-brown poorly graded fine sand, trace clay & gravel, moist	NA	0-2'	1,3	BB
				_		3.5-4' Moderately stiff grayish brow lean clay , high plasticity, trace gravel, moist		2-4'	1,3	
19	HAB-19	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.75' Loose grayish brown-brown poorly graded fine sand, trace clay & gravel, moist		0-2'	1,3	BB
						3.75-4' Stiff brownish gray-dark gray lean clay , trace gravel, high plasticity, moist	NA	2-4'	1,3	
20	HAB-20	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.75' Loose grayish brown-brown poorly graded fine sand, trace clay & gravel, moist. Strong solvent-like odors noted 1-3'. 3.75-4' Stiff brownish gray-dark gray lean clay, trace gravel, high plasticity, moist	2.5	0-2'	1,3 1,3	ВВ

Map	Sample							Soil		
Boring ID	Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab Analyses	Geologist
21	HAB-21		Hand Auger	Concrete	4'	0-0.5' Concrete				BB
		6/11/2014				0.5-3.75' Loose grayish brown-brown poorly graded fine sand, trace clay & gravel, moist. Slight odors noted 1-2'.	2.5	0-2'	1,3	
	****			_		3.75-4' Stiff brownish gray-dark gray lean clay , trace gravel, high	2.3	2-4'	1,3	777
22	HAB-22	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3' Loose grayish brown-brown fine poorly graded sand,	2	0-2'	1,3	BB
						moist, trace gravel 0-3.75' Loose grayish brown-brown fine poorly graded sand,	4.5	2.41		
						moist, trace clay 3.75-4' Stiff grayish brown-dark gray clay , trace gravel, moist	1.5	2-4'	1,3	
23	HAB-23	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.75' Loose grayish brown-brown poorly graded fine sand,	NTA	0-2'	1,3	BB
		, ,				trace clay& gravel, moist-wet @3.5' 3.75-4' Stiff brownish gray-dark gray lean clay , trace gravel,	NA	2-4'	1,3	
24	HAB-24	6/11/2014	Hand Auger	Concrete	4'	0-0.5' Concrete		0-2'	1,3	BB
		0/11/2014				0.5-2' Loose grayish brown-brown poorly graded fine sand , trace gravel, moist	NA		ĺ	
25	HAB-25		Hand Auger	Concrete	4'	2-3' Loose grayish vrown-brown poorly graded fine sand, trace 0-0.5' Concrete		2-4'	1,3	BB
		6/11/2014	J			0.5-2' Loose grayish brown-brown poorly graded fine sand w/ trace gravel & clay, moist	NA	0-2'	1,3	
26	HAB-26		Hand Auger	Concrete	4'	2-3.75' Loose grayish brown-brown poorly gaded fine sand w/		2-4'	1,3	BB
20	11AD-20	6/11/2014	Tianu Auger	Concrete	4	0.5-3.75' Loose grayish brown-brown poorly graded fine sand , trace clay & gravel, moist-wet @ ~ 3.5'	NA	0-2'	1,3	DD
	****			_		3.75-4' Moderately stiff brownish gray-dark gray lean clay, high		2-4'	1,3	777
27	HAB-27	6/11/2014	Hand Auger	Concrete	6'	0-0.5' Concrete 0.5-2' Loose grayish brown-brown poorly graded fine sand , trace	2.8	0-2'	1,3	BB
						gravel, moist 2-2.25' Soft brownish gray to brown lean clay , high plasticity,	2	2-4'	1,3	
28	HAB-28	6/12/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-3.75' Loose grayish brown-brown poorly graded fine sand,	9	0-2'	1,3	BB
						trace gravel, moist 3.75-4' Stiff brownish gray-dark gray lean clay , high plasticity,		2-4'	1,3	
						trace gravel, moist		4.5-5'	3	
29	HAB-29	6/12/2014	Hand Auger	Concrete	6'	0-0.5' Concrete 0.5-6' Loose grayish brown-brown poorly graded fine sand, trace		0-2'	1,3	BB
		0/12/2011				clay & gravel, moist-wet @ ~ 3.75'	NA	2-4'	1,3	
30	HAB-30	£ /12 /2014	Hand Auger	Concrete	8'	0-0.5' Concrete			,	BB
		6/12/2014				0.5-3' Loose grayish brown-brown poorly graded fine sand w/some clay & trace gravel, moist		0-2'	1,3	
						3-3.25' Soft grayish brown lean clay , high plasticity, moist 3.25-3.75' Loose grayish brown-brown poorly graded fine sand	NA	2-4'	1,3	
		8/20/2014				4-8' Stiff brownish gray clay , trace silt & gravel, moist-wet @ ~ 7'		4-6' 6-8'	1 1	
31	HAB-31	6/12/2014	Hand Auger	Concrete	4'	0-0.5' Concrete		0-2'		BB
		, ,				0.5-3' Loose grayish brown-brown poorly graded fine sand , trace gravel, moist	NA		1,3	
		6/12/2014		_		3-3.75' Loose grayish brown-brown poorly graded fine sand,		2-4'	1,3	BB
32	HAB-32	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0.7	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.4			
33	HAB-33	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				BB
		, -,					38.7	0-2'	1,3	
						0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt	13			nn
34	HAB-34	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	12.1	0-2'	2	BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2	3	
							15	3-3.5'	3	
35	HAB-35	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
							17.9	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt	3.8			pp
36	HAB-36	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	1.4	0-2'	1.2	BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2	1,3	
27	IIAD OF	0 /10 /2011	TT 1 A	Com	21		1.4			BB
37	HAB-37	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	69	0-2'	1,3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	5			
						·				

18	Map Boring ID	0	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID	Soil Sample Interval	Soil Lab Analyses	Geologist
11AB-59 8/18/2014 Hand Auger Concrete 2 0.5 Concrete 0.5 1.0 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.6 1.5 1.5 1.6 1.5	38	HAB-38	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	5	0.21	2	BB
HAB-90 HAB-90 HAB-90 HAB-14 Auger Concrete 2 Co.S. Concesses Co.S. C							0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2	3	
1.0	39	HAB-39	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	8.5			BB
HAB-40 8/18/2014 Hand Auger Concrete 2 Sd18 Canceste Sd2 Lanes bro proofly graded fine sand, moist, some cloy 4 sit 4 0.2 3 0.5 0.2 3 0.5 0.2 3 0.5 0.2 3 0.5 0.2 3 0.5 0.5 0.2 3 0.5 0.							0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2'	1,3	
1	40	HAB-40	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				BB
HAB-41							0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2'	3	
1.0	41	HAB-41	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				BB
HAB-42 S/18/2014 Hand Auger Concrete 5 Daily Concrete Daily							0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2'	3	
12/11/2014 Geoprobe	42	HAB-42	8/18/2014	Hand Auger	Concrete	5'			0-2'	3	BB
HAB-43 B/18/2014 Hand Auger Concrete 2 0-0.5 Concrete 3.5 2 Leose brn poorly graded fine sand, moist, some clay & silt 4 0-2 3 BB				Geoprobe			0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt	6.2			
1.52 Loose bra poorly graded fine sand, moist, some clay & allt 4 4 5 6.0 6.2 3 6.3 6.5 6.2 3 6.5 6.5 6.2 3 6.5 6.5 6.5 6.2 3 6.5	43	HAB-43			Concrete	2'	0-0.5' Concrete	6.2	10		ВВ
HAB-44 HAB-44 HAB-44 HAB-44 HAB-44 HAB-44 HAB-44 HAB-44 HAB-44 HAB-45 HAB-45 HAB-45 HAB-45 HAB-46 H							0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	4	0-2'	3	
0.52 Loose brn poorly graded fine sand, moist, some clay & silt 0.5 0.2 3 BB	44	HAB-44	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0.5			BB
45 HAB-45 8/18/2014 Hand Auger Concrete 2' 0.05 Concrete 0.5-2 Loose brn poorly graded fine sand, moist, some clay & silt 0.5 0.2' 3 BB							0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2'	3	
10.5-2 1.0 10.5	45	HAB-45	8/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
HAB-46 BAB-46 BAB-46 BAB-46 BAB-46 BAB-46 BAB-46 BAB-47 BAB-47 BAB-47 BAB-47 BAB-48 BAB-48 BAB-48 BAB-48 BAB-48 BAB-49 B			, ,	o o			0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2'	3	
10	46	HAB-46	8/19/2014	Hand Auger	Concrete	2'					BB
HAB-47 B/19/2014 Hand Auger Concrete 2' 0-0.5' Concrete 10 0-2' 3 BB			, , ,						0-2'	3	
10 0.2' 3 12 13 14 14 14 14 14 15 15 15	47	HAB-47	8/19/2014	Hand Auger	Concrete	2'					BB
HAB-48 8/19/2014 Hand Auger Concrete 2' 0-0.5' Concrete 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 6.9 6.9			2, 2, 2			_			0-2'	3	
HAB-49 B/19/2014 Hand Auger Concrete 2' 0-0.5' Concrete 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 3.7	48	HAB-48	8/19/2014	Hand Auger	Concrete	2'		12			BB
HAB-49 8/19/2014 Hand Auger Concrete 2' 0.0.5' Concrete 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 3,7 3 BB BB BB BB BB BB BB		11112 10	0, 13, 2011	Thank Truger	Concrete	_			0-2'	3	
0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 3.7 3.	10	HAR 40	8/10/2014	Hand Augor	Concrete	21		6.9			BB
50	42	TIAD-49	0/19/2014	Tianu Auger	Concrete	2			0-2'	3	
Solution Solution	F0	HAREO	9/10/2014	Hand Augen	Compresso	21		3.7			BB
51	30	HAD-30	8/ 19/ 2014	riana Auger	Concrete	2			0-2'	3	
1	F1	IIAD F1	0 /10 /2014	II J A	Comments	21		3			ВВ
52 HAB-52 8/19/2014 Hand Auger Concrete 2' 0-0.5' Concrete 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 12.2 12.3 BB 53 HAB-53 8/19/2014 Hand Auger Concrete 2' 0-0.5' Concrete 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 0.5-2' SBB	51	нав-эт	8/19/2014	Hand Auger	Concrete	2		0	0-2'	3	
12.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3		114D 50	0 /40 /004 4	** 1.4		-		0			BB
53 HAB-53 8/19/2014 Hand Auger Concrete 2' 0-0.5' Concrete 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt 0 BB 54 HAB-54 8/19/2014 Hand Auger Concrete 2' 0-1' Sand 0.1-2' Gray clay 0 0 0-2' 3 BB 55 HAB-55 8/19/2014 Hand Auger Concrete 2' 0-0.5' Concrete 0 0 0-2' 3 BB 65 HAB-55 8/19/2014 Hand Auger Concrete 0 0 0-2' 3 BB	52	HAB-52	8/19/2014	Hand Auger	Concrete	2'		22	0-2'	1,3	
1		TT / TO =:	0.100.100.11	**		_,		12.2			BB
54 HAB-54 8/19/2014 Hand Auger Concrete 2' 0-1' Sand 0 0-2' 3 BB 55 HAB-55 8/19/2014 Hand Auger Concrete 2' 0-0.5' Concrete 0 0 0-2' 3 BB	53	нав-53	8/19/2014	Hand Auger	Concrete	2'		0	0-2'	3	
1-2' Gray clay 1-2' Gray clay 55 HAB-55 8/19/2014 Hand Auger Concrete 2' 0-0.5' Concrete 0 0-2 3 BB 0 0-2' 3		****	0.440.455					0			BB
55 HAB-55 8/19/2014 Hand Auger Concrete 2' 0-0.5' Concrete 0 0 0-2' 3 BB	54	HAB-54	8/19/2014	Hand Auger	Concrete	2'			0-2'	3	
05 21 and her model for and maintain during	55	HAB-55	8/19/2014	Hand Auger	Concrete	2'					ВВ
							0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt		0-2'	3	

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab	Geologist
56	HAB-56	8/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	FID	mervai	Anaryses	BB
30	1111D-50	0/15/2014	Tiana Tiager	Concrete	_		3.1	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0			BB
57	HAB-57	8/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0			nn.
58	HAB-58	8/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	3.7	0-2'	3	BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0			
59	HAB-59	8/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0.21		BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	3	
60	HAB-60	8/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
			0			0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	3	
(1	IIAD (1	0./10./2014	TT 1.4	C 1	21		0			BB
61	HAB-61	8/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0			BB
62	HAB-62	8/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	20.2	0-2'	1,3	DD
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0			
63	HAB-63	8/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2	3	
64	HAB-64	8/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	14.6			BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	3	
65	HAB-65	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0			BB
		0/20/2014						0-2'	3	
66	HAB-66		Hand Auger	Concrete	2'	0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt	0			BB
		8/20/2014			_	0-0.5' Concrete	24.3	0-2'	3	
	11.1D.4E		** 1.4	0 .	21	0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	3.1			nn.
67	HAB-67	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	2.2	0-2'	3	BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0			
68	HAB-68	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	30.3			ВВ
								0-2'	1,3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	7.2			
69	HAB-69	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	30.8	0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt	5.8	0-2	3	
70	HAB-70	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	2.5			BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.3	0-2'	Н	
71	HAB-71	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	5.6	2.5		ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	2.4	0-2'	Н	
72	HAB-72	0.45-11	Hand Auger	Concrete	2'					BB
		8/20/2014	842			0-0.5' Concrete	12.2	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	6			

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab Analyses	Geologist
73	HAB-73	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	3			BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	2	0-2'	3	
74	HAB-74	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	16.5			BB
		0/20/2014						0-2'	3	
75	HAB-75		Hand Auger	Concrete	2'	0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	2.8			BB
		8/20/2014	Timina Tinger	Concrete	_	0-0.5' Concrete	18	0-2'	Н	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	5.7			
76	HAB-76	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	37	0.21	1	BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	7.6	0-2'	1	
77	HAB-77	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	2.2			BB
		., .,					0	0-2'	3	
78	HAB-78		Hand Auger	Concrete	2'	0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt				BB
		8/21/2014				0-0.5' Concrete	1.7	0-2'	1	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	1.8			
79	HAB-79	8/21/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	2.7	0-2'	Н	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	3.4	0-2	11	
80	HAB-80	8/21/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				BB
		, ,	o o			OF OUT and how made and discount of the country of	1.4	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt 0-0.5' Concrete	2			BB
81	HAB-81	9/18/2014	Hand Auger	Concrete	11'	0.5-10' Loose, brown, fine, poorly graded \boldsymbol{sand} , some silt, wet @ \sim 6'	6 (0-1')	0-2'	1	
							l6.5 (1-3 l6 (3-4.5		4	
							.6 (4.5-5 6.8	4-6' 5.5-6'	1 NA	
							7.4	6-8'	NA NA	
						10-10.75' Soft, gray, sticky clay , trace sand, silt & gravel, wet, strong solvent odor	2.3 (8-10) 0 (10.5-1	9-11'	1	
82	HAB-82	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				BB
		, ,	J			0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	4.5	0-2'	1	
02	11.1 D 00	0.440.4204.4		<u> </u>	21		5			BB
83	HAB-83	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0.2	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt				nn
84	HAB-84	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete		0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0 2		
								3-3.5'	3	BB
85	HAB-85	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	6	0-2'	3	DD
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		-		
86	HAB-86	9/18/2014	Hand Auger	Concrete	6'	0-0.5' Concrete 0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.9	0-2'	3	BB
							0	2-4'	3	
		- 4				4.5-6' Dark brownish blak clay	0	4-6'	3	BB
87	HAB-87	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	2.5	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt				
88	HAB-88	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	1	0.21	2	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.3	0-2'	3	

Map Boring ID	0	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID	Soil Sample Interval	Soil Lab Analyses	Geologist
89	HAB-89	9/18/2014	Hand Auger	Concrete	6'	0-0.5' Concrete 0.5-4' Loose brn poorly graded fine sand, moist, some clay & silt	0.3	0-2'	3	ВВ
						4-6' Dark grayish brown-gray clay	0	2-4' 4-6'	3	
90	HAB-90	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	3	
91	HAB-91	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	3	
92	HAB-92	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	3	
93	HAB-93	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
		, ,	o o			0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	1	
94	HAB-94	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
		., .,				0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.3	0-2'	1	
95	HAB-95	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
		<i>3</i> / 10/ 2011				0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.3	0-2'	1	
96	HAB-96	9/18/2014	Hand Auger	Concrete	4'	0-0.5' Concrete				ВВ
		9/19/2014				0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.9	0-2'	1	
		9/ 19/ 2014				0.5-2 Loose bill poorly graded line said, moist, some clay & sit		2-4'	1	
97	HAB-97	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	1	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2	1	
98	HAB-98	9/18/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-4' Loose brn poorly graded fine sand, moist, some clay & silt 4' Gray clay	0	0-2'	1	ВВ
99	HAB-99		Hand Auger	Concrete	2'	* Gray Clay		2-4'		ВВ
	11112 //	9/18/2014	Tiana Tiager	Concrete	_	0-0.5' Concrete	0	0-2'	3	
100	HAB-		Hand Auger	Concrete	2'	0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt				ВВ
100	100	9/18/2014	Tiana Auger	Concrete	2	0-0.5' Concrete	0	0-2'	3	DD
101	IIAD		** 1.4		21	0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt				DD.
101	HAB- 101	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	ВВ
102	****					0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt				777
102	HAB- 102	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt				
103	HAB- 103	9/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	Ů		, j	
104	HAB- 104	9/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2	<i>J</i>	
105	HAB- 105	9/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2	<i>3</i>	
106	HAB- 106	9/19/2014	Hand Auger	Grass	2'	Sand	0	0-2'	1	ВВ

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab Analyses	Geologist
73	HAB-73	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	3			BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	2	0-2'	3	
74	HAB-74	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	16.5			BB
		0/20/2014						0-2'	3	
75	HAB-75		Hand Auger	Concrete	2'	0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	2.8			BB
		8/20/2014	Timina Tinger	Concrete	_	0-0.5' Concrete	18	0-2'	Н	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	5.7			
76	HAB-76	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	37	0.21	1	BB
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	7.6	0-2'	1	
77	HAB-77	8/20/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	2.2			BB
		., .,					0	0-2'	3	
78	HAB-78		Hand Auger	Concrete	2'	0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt				BB
		8/21/2014				0-0.5' Concrete	1.7	0-2'	1	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	1.8			
79	HAB-79	8/21/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	2.7	0-2'	Н	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	3.4	0-2	11	
80	HAB-80	8/21/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				BB
		, ,	o o			OF OUT and how made and discount of the country of	1.4	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt 0-0.5' Concrete	2			BB
81	HAB-81	9/18/2014	Hand Auger	Concrete	11'	0.5-10' Loose, brown, fine, poorly graded \boldsymbol{sand} , some silt, wet @ \sim 6'	6 (0-1')	0-2'	1	
							l6.5 (1-3 l6 (3-4.5		4	
							.6 (4.5-5 6.8	4-6' 5.5-6'	1 NA	
							7.4	6-8'	NA NA	
						10-10.75' Soft, gray, sticky clay , trace sand, silt & gravel, wet, strong solvent odor	2.3 (8-10) 0 (10.5-1	9-11'	1	
82	HAB-82	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				BB
		, ,	J			0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	4.5	0-2'	1	
02	11.1 D 00	0.440.4204.4		<u> </u>	21		5			BB
83	HAB-83	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0.2	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt				nn
84	HAB-84	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete		0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0 2		
								3-3.5'	3	BB
85	HAB-85	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	6	0-2'	3	DD
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		-		
86	HAB-86	9/18/2014	Hand Auger	Concrete	6'	0-0.5' Concrete 0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt	0.9	0-2'	3	BB
							0	2-4'	3	
		- 4				4.5-6' Dark brownish blak clay	0	4-6'	3	BB
87	HAB-87	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	2.5	0-2'	3	
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt				
88	HAB-88	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	1	0.21	2	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.3	0-2'	3	

Map Boring ID	0	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID	Soil Sample Interval	Soil Lab Analyses	Geologist
89	HAB-89	9/18/2014	Hand Auger	Concrete	6'	0-0.5' Concrete 0.5-4' Loose brn poorly graded fine sand, moist, some clay & silt	0.3	0-2'	3	ВВ
						4-6' Dark grayish brown-gray clay	0	2-4' 4-6'	3	
90	HAB-90	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	3	
91	HAB-91	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	3	
92	HAB-92	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	3	
93	HAB-93	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
		, ,	o o			0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2'	1	
94	HAB-94	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
		., .,				0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.3	0-2'	1	
95	HAB-95	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete				ВВ
		<i>3</i> / 10/ 2011				0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.3	0-2'	1	
96	HAB-96	9/18/2014	Hand Auger	Concrete	4'	0-0.5' Concrete				ВВ
		9/19/2014				0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0.9	0-2'	1	
		9/ 19/ 2014				0.5-2 Loose bill poorly graded line said, moist, some clay & sit		2-4'	1	
97	HAB-97	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	1	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	0	0-2	1	
98	HAB-98	9/18/2014	Hand Auger	Concrete	4'	0-0.5' Concrete 0.5-4' Loose brn poorly graded fine sand, moist, some clay & silt 4' Gray clay	0	0-2'	1	ВВ
99	HAB-99		Hand Auger	Concrete	2'	* Gray Clay		2-4'		ВВ
	11112 //	9/18/2014	Tiana Tiager	Concrete	_	0-0.5' Concrete	0	0-2'	3	
100	HAB-		Hand Auger	Concrete	2'	0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt				ВВ
100	100	9/18/2014	Tiana Auger	Concrete	2	0-0.5' Concrete	0	0-2'	3	DD
101	IIAD		** 1.4		21	0.5-2' Loose brn poorly graded fine sand, moist, some clay & silt				DD.
101	HAB- 101	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	ВВ
102	****					0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt				777
102	HAB- 102	9/18/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt				
103	HAB- 103	9/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt	Ů		, j	
104	HAB- 104	9/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2	<i>J</i>	
105	HAB- 105	9/19/2014	Hand Auger	Concrete	2'	0-0.5' Concrete	0	0-2'	3	ВВ
						0.5-2' Loose brn poorly graded fine sand , moist, some clay & silt		0-2	<i>3</i>	
106	HAB- 106	9/19/2014	Hand Auger	Grass	2'	Sand	0	0-2'	1	ВВ

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID	Soil Sample Interval		Geologist
107	HAB- 107	9/19/2014	Hand Auger	Grass	2'	Sand	0	0-2'	3	BB
108	HAB- 108	12/2/2014	Hand Auger	Concrete	3.5'	Sand to 3.5' (clay boundary)	NA	3-3.5'	3	AA
109	HAB- 109	12/2/2014	Hand Auger	Concrete	2.5'	Sand to 2.5' (clay boundary)	NA	2-2.5'	3	AA
110	HAB- 110	12/2/2014	Hand Auger	Concrete	2.5'	Sand to 2.5' (clay boundary)	NA	2-2.5'	3	AA
111	HAB- 111	12/2/2014	Hand Auger	Concrete	2.5'	Sand to 2.5' (clay boundary)	NA	2-2.5'	3	AA
115	HAB- 115	12/2/2014	Hand Auger	Concrete	2'	Sand to 3' (clay boundary)	NA	1.5-2'	3	AA
116	HAB- 116	12/2/2014	Hand Auger	Concrete	2'	Sand to 3' (clay boundary)	NA	1.5-2'	3	AA
117	HAB- 117	12/2/2014	Hand Auger	Concrete	2'	Sand to 3' (clay boundary)	NA	1.5-2'	3	AA
118	HAB- 118	12/2/2014	Hand Auger	Concrete	2.5'	Sand to 3' (clay boundary)	NA	2-2.5'	3	AA
119	HAB- 119	12/2/2014	Hand Auger	Concrete	3'	Sand to 2.5' (clay boundary)	NA	2.5-3'	3	AA
120	HAB- 120	12/2/2014	Hand Auger	Concrete	3'	Sand to 2.5' (clay boundary)	NA	2.5-3'	3	AA
121	HAB- 121	12/2/2014	Hand Auger	Concrete	3'	Sand to 3' (clay boundary)	NA	2.5-3'	3	AA
122	HAB- 122	12/2/2014	Hand Auger	Concrete	3.5'	Sand to 3' (clay boundary)	NA	3-3.5'	3	AA
123	HAB- 123	12/2/2014	Hand Auger	Concrete	3.5'	Sand to 2' (clay boundary)	NA	3-3.5'	3	AA
124	HAB- 124	12/2/2014	Hand Auger	Concrete	3'	Sand to 3' (clay boundary)	NA	2.5-3'	3	AA
125	HAB- 125	12/2/2014	Hand Auger	Concrete	3'	Sand to 3' (clay boundary)	NA	2.5-3'	3	AA
126	HAB- 126	12/2/2014	Hand Auger	Concrete	2.5'	Sand to 2' (clay boundary)	NA	2-2.5'	3	AA
130	GP-130	12/2/2014 12/11/2014	Geoprobe	Concrete	14'	0-8' Loose light grayish brn, fine sand, wet at 2'		2-2.5' 4-5'	1 1	ВВ
		, ,				8.5-14' Stiff brn clay, trace gravel	NA	7-8' 10-11'	1 1	
	HAB-					·		13-14'	1	BB
131	131	12/2/2014	Hand Auger	Concrete	2.5'	Sand	0	2-2.5'	1	
132	GP-132 HAB-	12/2/2014	Geoprobe	Concrete	4'	Sand to 3' then clay to 4', moist-wet @ 2.75'	NA	2-2.5'	1	BB AA
133	133	12/2/2014	Hand Auger	Concrete	2.5'	Sand	0.2	2-2.5'	1	
134	GP-134	12/2/2014	Geoprobe	Concrete	2.5'	Sand to 4', wet @ 3'	NA	2-2.5'	1	BB
135	GP-135 HAB-	12/2/2014	Geoprobe	Concrete	4'	Sand to 3.75' then clay, wet @ 3'	NA	2-2.5'	1	BB AA
136	136	12/2/2014	Hand Auger	Concrete	2'	Sand	0	1.5-2'	1	
137	HAB- 137	12/2/2014	Hand Auger	Concrete	1'	Sand	NA	0.5-1'	3	AA
138	HAB- 138	12/2/2014	Hand Auger	Concrete	1'	Sand	NA	0.5-1'	3	AA
139	HAB- 139	12/2/2014	Hand Auger	Concrete	1'	Sand	NA	0.5-1'	3	AA
RRP-1		12/2/2014	Hand Auger	Gravel Ballast		Sand to 2' (clay boundary)	NA	2-2.5	3	AA
OST-1	LIAD	12/2/2014	Hand Auger	Gravel Ballast		Sand	NA	0-1'	3	AA AA
140	HAB- 140	12/2/2014	Hand Auger	Concrete	2'	Sand to 2.5' (clay boundary)	3.9	1.5-2'	1	11/1
141	SB-141	12/2/2014	Geoprobe	Concrete	3.25'	0-3' Sand, 3-3.25' soft, moist clay	NA	2-2.5'	1	BB
142	GP-142	12/2/2014	Geoprobe	Concrete	8'	0-3.75' Sand		0-4'	NA	BB
						3.75-8' Clay, moist	0.9	4-5'	1	
143	GP-143	12/2/2014	Geoprobe	Concrete	8'	0-3' Sand	3.2	7-8' 0-4'	1 NA	BB
140	J1 -14J	12, 2, 2014	Scoprobe	Concrete	U	3-8' Clay, moist	NA	4-5'	1	
							NA	7-8'	1	

Мар	Sample							Soil		
Boring	-	Date	Drilling		Total				Soil Lab	
ID	ID	Completed	Method	Surface Cover	Depth	Description	PID		Analyses	Geologist
144	GP-144	12/2/2014	Geoprobe	Concrete	21'	0-10' Sand, wet @ 4'	1.7	1-2'	NA	BB
			Confidence				1.1 (3-4)		1	
						10-12' Clay, wet	0	10-11'	1	
	SB-144	12/5/2014					NA	12-13'	1	
		, ,					NA	16-17'	1	
							NA	20-21'	1	
145	SB-145	12/2/2014	Geoprobe	Concrete	8'	0-3.5' Sand	0.4(AA)	0-4'	NA	BB
			-			3.5-8' Clay, moist	NA	4-5'	1	
							NA	7-8'	1	
146	SB-146	12/2/2014	Geoprobe	Concrete	8'	0-4' Sand		0-4'	NA	BB
						4-8' Clay, moist	NA	4-5'	1	
								7-8'	1	
147	GP-147	12/2/2014	Geoprobe	Concrete	12'	0-10' Sand, wet @ 4'	31.8	0-7'	NA	BB
							278	7-9'	NA	
							539.1	9-10'	1	
						10-12' Clay, wet	6.7	11-12'	1	
148	SB-148	12/2/2014	Geoprobe	Concrete	8'	0-3.5' Sand	0(AA)	0-4'	NA	BB
		1				3.5-8' Clay, moist	NA	4-5'	1	
							NA	7-8'	1	
149	SB-149	12/2/2014	Geoprobe	Concrete	18'	0-3.75' Sand		0-4'	NA	BB
		1				3.75-8' Clay, moist		4-5'	1	
		12/5/2014					NA	7-8'	1	
								10-11'	1	
								13-14'	1	
								17-18'	1	222
150	GP-150	12/2/2014	Geoprobe	Concrete	15'	0-3' Sand	0.4	0-4'	NA	BB
						3-8' Clay, moist	5.7	4-5'	1	
							22.4	6-7'	NA	
							3	7-8'	1	
	SB-150	12/5/2014					NA	10-11'	1	
							NA	14-15'	1	222
151	GP-151	12/2/2014	Geoprobe	Concrete	8'	0-3' Sand	0.5	0-4'	NA	BB
						3-8' Clay, moist	0.3	4-5'	1	
450	CD 450	10 /0 /0014	C 1	C 1	1.41	0-3' Sand	0.2	7-8'	1	BB
152	GP-152	12/2/2014	Geoprobe	Concrete	14'	3-10' Clay, moist		0-4'	NA	DD
						3-10 Clay, moist		4-5'	1	
		10 /11 /2014				10.121 ±iff hor alarmon / silt tors a second	NA	7-8'	1	
		12/11/2014				10-13' stiff brn clay w/ silt, trace gravel 13-14' stiff gry clay, trace gravel		10-11'	1 1	
						13-14 Sun gry Clay, trace graver		13-14'	1	
153	SB-153	12/2/2014	Geoprobe	Concrete	14'	0-3' Sand		0-4'	NA	BB
155	3D-133	12/2/2014	Geoprobe	Concrete	14	3-8' Clay, moist		4-5'	1	DD
		1				ş	NA	7-8'	1	
		12/11/2014				10-13' stiff brn clay w/ silt, trace gravel	1 1/1	10-11'	1	
		12/11/2014				13-14' stiff gry clay , trace gravel		13-14'	1	
154	GP-154	12/2/2014	Geoprobe	Concrete	12'	Clay	13.9	7-8'	1	ВВ
101	0. 101	12, 2, 2014	Scopiose	Concrete		Clay	0.2	11-12'	1	
155	GP-155	12/2/2014	Geoprobe	Concrete	8'	0-3.5' Sand		0-4'	NA	ВВ
100	0. 100	12, 2, 2014	Scopiose	Concrete		3.5-8' Clay, moist	NA	4-5'	1	
		1						7-8'	1	
156		12/2/2014	Hand Auger	Concrete	2'	Sand	0.1	1.5-2'	NA	AA
157		12/2/2014	Hand Auger	Concrete	2'	Sand	0	1.5-2'	NA	AA
158		12/2/2014	Hand Auger	Concrete	2'	Sand	0	1.5-2'	NA	AA
159		12/2/2014	Hand Auger	Concrete	2'	Sand	0.2	1.5-2'	NA	AA
160		12/2/2014	Hand Auger	Concrete	2.5'	Sand	0	2-2.5'	NA	AA
161	GP-161	12/2/2014	Hand Auger	Concrete	3'	Sand	0.6	2-3'	1	AA
162	GP-162	12/2/2014	Geoprobe	Concrete	8'	0-1' Sand	NA	0-1'	NA	BB
		1	-			1-8' Clay, moist	0.5	2-3'	NA	
		1					NA	4-5'	1	
		1					NA	7-8'	1	
163	GP-163	12/2/2014	Geoprobe	Concrete	8'	0-3.5' Sand	1	0-4'	NA	BB
		1	-			3.5-8' Clay	1.5	4-5'	1	
L	<u></u>				<u></u>		NA	7-8'	1	
164	HAB-	12/2/2014	Hand A	Commete	E1					AA
164	164	12/2/2014	Hand Auger	Concrete	5'	0-3' sand	NA	1-1.5'	1	
L	<u></u>	12/11/2014	Geoprobe		<u></u>	3-5' clay		4-5'	1	BB
		•				•	•			

Мар	Camanda	1						Soil		
Boring	Sample Boring	Date	Drilling		Total			Sample	Soil Lab	
ID	ID	Completed	Method	Surface Cover	Depth	Description	PID			Geologist
165	HAB-	12/2/2014	Hand Auger	Grass	2'		NA			AA
	165		Ü			Sand to 0.5' (clay boundary)		1-1.5'	1	
166	CD 1/7	12/2/2014	Hand Auger	Concrete	2'	Sand 0-3' sand	NA	1-1.5'	1	AA AA
167	GP-167	12/2/2014 12/11/2014	Hand Auger Geoprobe	Concrete	5'	3-5' clay	NA	1-1.5' 4-5'	1 1	BB
	HAB-		•			o o casy		4-0	1	AA
168	168	12/2/2014	Hand Auger	Concrete	2'	Sand	NA	1-1.5'	1	
169	HAB-	12/2/2014	Hand Auger	Concrete	5'					AA
109	169		Tiana Auger	Concrete	3		NA	1-1.5'	1	
	169	12/16/2014						4-4.5'	3	BB
170	SB-70	12/5/2014		Concrete	12'		NA	7-8'	1	BB
171	SB-171	12/5/2014		Concrete	12'			11-12' 7-8'	1	BB
1/1	3D-171	12/3/2014		Concrete	12		NA	11-12'	1	DD
172	SB-172	12/5/2014		Concrete	12'		27.4	7-8'	1	BB
							NA	11-12'	1	
174	GP-174	12/11/2014	Geoprobe	Concrete	17'	0-8' sand, wet @ 5'	NA	2-2.5'	1	BB
							0.3	4-5'	1	
						8-18' clay	(8-10')	10-11'	1	
							NA	12-13'	1	
175	GP-175	12/11/2014	Geoprobe	Concrete	11'	0-3' Sand	NA	16-17' 4-5'	H 1	BB
1/3	GF-1/5	12/11/2014	Geoprobe	Concrete	11	3-8' Clay, moist	NA	7-8'	1	DD
						8-11' Stiff brown clay w/ silt, trace gravel	1421	10-11'	H	
176	GP-176	12/11/2014	Geoprobe	Grass	14'	0-11' stiff brn clay , trace gravel		4-5'	1	BB
		, ,	1				NIA	7-8'	1	
							NA	10-11'	Н	
						11-14' grayish brn silt w/ clay, trace gravel		13-14'	Н	
178	HAB-	12/11/2014	Hand Auger	Concrete	3'		NA			BB
	178	,,				0-3' sand		2-2.5'	3	nn.
179	HAB- 179	12/11/2014	Hand Auger	Concrete	3'	0-3' sand	NA	2.25	2	BB
180	GP-180	12/11/2014	Geoprobe	Concrete	5'	0-3' sand, 3-5' clay	NA	2-2.5' 4-5'	3	BB
181	GP-181	12/11/2014	Geoprobe	Concrete	3'	0-3' sand	NA	2-2.5'	1	BB
182	пар-	12/11/2014	Hand Auger	Concrete	3'	0-3' sand	NA	2-2.5'	3	BB
183	182	12/16/2014	Hand Auger	Concrete	3'	0-3' sand	NA	2-2.5'	1	BB
184		12/16/2014	Hand Auger	Concrete	3'	0-3' sand	NA	2-2.5'	1	BB
185		12/16/2014	Hand Auger	Concrete	3'	0-3' sand	NA	2-2.5'	1	BB
186		12/16/2014	Hand Auger	Concrete	3'	0-3' sand	NA	2-2.5'	Н	BB
187		12/16/2014	Hand Auger	Concrete	3'	0-3' sand	NA	2-2.5'	Н	BB
188		12/16/2014	Hand Auger	Concrete	5'	0-3' sand	NA	1-1.5'	1	BB
						3-5' clay		4-4.5'	3	
189		12/16/2014	Hand Auger	Concrete	1.5'	sand	NA	1-1.5'	1,3	BB
190 191		12/16/2014	Hand Auger	Asphalt	1.5' 5'	sand 0-3' sand	NA	1-1.5'	1 1 2	BB BB
191		12/16/2014	Hand Auger	Concrete) J	3-5' clay	NA	1-1.5' 4-4.5'	1,3 H	DD
192		12/16/2014	Hand Auger	Concrete	3'	0-3' sand	NA	1-1.5'	1	BB
193		12/16/2014	U	Concrete	5'	0-3' sand		1-1.5'	1,3	BB
		<u> </u>				3-5' clay	NA	4-4.5'	Н	
193	HAB-	12/31/2014	Hand Auger	Concrete	3'		NA			BB
East	193 E	12/31/2014	riana Auger	Concrete	3	0-3' sand	1 1/1	1-1.5'	3	
193	HAB-	12/31/2014	Hand Auger	Asphalt	3'		NA	1-1.5'	3	BB
South	193-S		Ü			0-3' sand				DD
194 195		12/16/2014 12/23/2014	Hand Auger Hand Auger	Asphalt Asphalt	3' 3'	0-3' sand 0-3' sand	NA NA	1-1.5' 1-1.5'	1,3 11	BB BB
195		12/23/2014		Asphalt	3'	0-3' sand	NA NA	1-1.5'	11	BB
170		12, 23, 2014	Timia Tiugei	ториш			1471	11.0	11	25
Resin			Geoprobe		6'	0-1' loose light grayish brn fine sand and gravel, moist	0.0	0.01	27.4	ВВ
Pit						1-6' tight dark grayish black coarse well graded sand , gravel w/concrete fragments. Slight odors, wet @ ~3'	0.2	0-2'	NA	
		12/11/2014				concrete tragments. Stignt odors, wet @ ~3	2	2-4'	1	
		12/11/2014					_		1	
							0.9	4-6'	NA	
					j .					

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID	Soil Sample Interval	Soil Lab Analyses	Geologist
XS-1	XS-1	10/19/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	ВВ
XS-1, 5'N	XS-1, 5'N	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
XS-1, 5'E	XS-1, 5'E	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	BB
XS-1, 5'S	XS-1, 5'S	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	BB
XS-1, 5'W	XS-1, 5'W	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
XS-2	XS-2	10/19/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	BB
XS-2, 5'N	XS-2, 5'N	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	BB
XS-2, 5'E	XS-2, 5'E	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	BB
XS-2, 5'S	XS-2, 5'S	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
XS-2, 5'W	XS-2, 5'W	10/19/2016	Hand Auger	Asphalt	4'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay 2-3' Soft Clay, moist 3.5-4' Soft Clay, moist	NA	0-1' 2-3'	3	BB AA/BB/C B CB
XS-3	XS-3	12/14/2016 10/19/2016 10/20/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1' 1-2'	3	BB
XS-3, 5'N	XS-3, 5'N	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
XS-3, 5'E	XS-3, 5'E	10/20/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	BB
XS-3, 5'S	XS-3, 5'S	10/20/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	BB

Map	Sample	D .	D :II:		Tr. 1			Soil	6 11 1	
Boring	Boring	Date	Drilling	Cumbo ao Corron	Total	Description	DID	Sample		Caalaaiat
ID	ID	Completed	Method	Surface Cover	Depth	Description	PID	Interval	Analyses	Geologist
XS-3, 5'W	XS-3, 5'W	10/20/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
XS-4	XS-4	10/19/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	ВВ
XS-4, 5'N	XS-4, 5'N	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
XS-4, 5'E	XS-4, 5'E	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
XS-4, 5'S	XS-4, 5'S	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	BB
XS-4, 5'W	XS-4, 5'W	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
XS-6	XS-6	10/19/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1' 1-2'	3	ВВ
XS-6, 5'N	XS-6, 5'N	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
XS-6, 5'E	XS-6, 5'E	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
XS-6, 5'S	XS-6, 5'S	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	BB
XS-4, 6'W	XS-4, 6'W	10/19/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	BB
XE-3	XE-3	11/22/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	AA/BB/C B
XE-3, N	XE-3, N	11/22/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	AA/BB/C B
XE-3, E	XE-3, E	11/22/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	AA/BB/C B
								1-2'		

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab Analyses	Geologist
XE-3, S	XE-3, S	11/22/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	AA/BB/C B
XE-3, W	XE-3, W	11/22/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	AA/BB/C B
XE-4	XE-4	10/20/2016 12/14/2016 12/14/2016	Hand Auger	Grass	4'	1-2' coarse Gravel & Sand, moist 2-3' Soft Clay, moist 3.5-4' Soft Clay, moist	NA	1-2' 2-3' 3.5-4'	3	AA/CB CB CB
XE-4, 5'N	XE-4, 5'N	10/20/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1'	3	AA/CB
XE-4, 5'E	XE-4, 5'E	10/20/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1'	3	AA/CB
XE-4, 5'S	XE-4, 5'S	10/20/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1'	3	AA/CB
XE-4, 5'W	XE-4, 5'W	10/20/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1'	3	AA/CB
XE-7	XE-7	11/22/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	AA/BB/C B
XE-7-N	XE-7-N	11/22/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/BB/C B
XE-7-E	XE-7-E	11/22/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/BB/C B
XE-7-S	XE-7-S	11/22/2016 12/14/2016	Hand Auger	Soil	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	AA/BB/C B CB
XE-8	XE-8	11/22/2016 12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	AA/BB/C B CB
XE-10	XE-10	11/22/2016	Hand Auger	Grass	2'	1-2' coarse Gravel & Sand, moist	NA	1-2'	3	AA/BB/C B
XE-11	XE-11	11/22/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist 0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/BB/C B
S-2.5'N	S-2 S-2, 5'N	10/20/2016	Hand Auger Hand Auger	Grass	2'	U-1 gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist 0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1' 1-2' 0-1'	3	AA/CB AA/CB
	S-2, 5'E	10/20/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/CB
S-2, 5'S	S-2, 5'S	10/20/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/CB
S-2,	S-2, 5'W	10/20/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/CB
5'W S-3	S-3	10/20/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist	NA NA	0-1'	3	AA/CB
S-3, 5'N	S-3, 5'N	10/20/2016	Hand Auger	Grass	1'	1-2' coarse Gravel & Sand, moist 0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/CB
S-3, 5'E	S-3, 5'E	10/20/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/CB

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab Analyses	Geologist
S-3, 5'S	S-3, 5'S	10/20/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/CB
S-3, 5'W	S-3, 5'W	10/20/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/CB
138	138	10/20/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	AA/CB
138, 5'N	138, 5'N	10/20/2016	Hand Auger	Soil	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/CB
138, 5'E	138, 5'E	10/20/2016	Hand Auger	Grass	3'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	AA/CB
		12/14/2016				2.5-3' Soft Clay, moist		2.5-3'		СВ
138, 5'S	138, 5'S	10/20/2016	Hand Auger	Soil	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/CB
138, 5'W	138, 5'W	10/20/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/CB
Exc-1A-N	Exc-1A- N	11/22/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	AA/BB/C B
Exc-1A- SE	Exc-1A- SE	11/22/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	AA/BB/C B
Exc-1A-S	Exc-1A- S	11/22/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	AA/BB/C B
Exc-1A-W	Exc-1A- W	11/22/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	AA/BB/C B
Exc-1A- SW	Exc-1A- SW	11/22/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	AA/BB/C B
Exc-1B	Exc-1B	11/22/2016	Hand Auger	Asphalt	3.5'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay 2-3.5' Soft Clay, moist	NA	0-1'	3	AA/BB/C B
Exc-2-	Exc-2-N	11/22/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/BB/C B
Exc-4- N	Exc-4-N	11/22/2016	Hand Auger	Grass	3'	1-2' coarse Gravel & Sand, moist	NA	1-2'	3	AA/BB/C B
Exc-4-E	Exc-4-E	11/22/2016	Hand Auger	Grass	3'	2-3' Soft Clay, moist 1-2' coarse Gravel & Sand, moist 2-3' Soft Clay, moist	NA	2-3' 1-2' 2-3'	3	AA/BB/C B
Exc-4-S	Exc-4-S	11/22/2016	Hand Auger	Grass	3'	1-2' coarse Gravel & Sand, moist 2-3' Soft Clay, moist	NA	1-2' 2-3'	3	AA/BB/C B
Exc-4- W	Exc-4-W	11/22/2016	Hand Auger	Grass	3'	1-2' coarse Gravel & Sand, moist 2-3' Soft Clay, moist	NA	1-2' 2-3'	3	AA/BB/C B

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab Analyses	Geologist
Exc-4- NE	Exc-4- NE	12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	СВ
Exc-4- W2	Exc-4- W2	12/14/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	СВ
Exc-4- SW	Exc-4- SW	12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	СВ
Exc-7 N	Exc-7 N	11/22/2016	Hand Auger	Soil	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1'	3	AA/BB/C B
Exc-7 E	Exc-7 E	11/22/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/BB/C B
Exc-7 S	Exc-7 S	11/22/2016	Hand Auger	Grass	2'	1-2' coarse Gravel & Sand, moist 0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA/BB/C B
Exc-7	Exc-7 W	11/22/2016	Hand Auger	Grass	2'	1-2' coarse Gravel & Sand, moist 0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1'	3	AA/BB/C B
Exc-7- E2	Exc-7- E2	12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1'	3	СВ
XE-8-N	XE-8-N	12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1'	3	СВ
XE-8-E	XE-8-E	12/14/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	СВ
XE-8-S	XE-8-S	12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	СВ
XE-9	XE-9	12/14/2016	Hand Auger	Grass	2'	1-2' coarse Gravel & Sand, moist	NA	1-2'	3	СВ
XE-9-N	XE-9-N	12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	СВ
XE-9- W	XE-9-W	12/14/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	СВ
XE-9-S	XE-9-S	12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	1-2' 0-1' 1-2'	3	СВ
XE-12	XE-12	12/14/2016	Hand Auger	Asphalt	2'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1.5 Lt brn sand 1.5-2' Clay	NA	0-1'	3	СВ
XE-13	XE-13	12/14/2016	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	СВ
XE-14	XE-14	12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	СВ
XE-15	XE-15	12/14/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	СВ
XE-16	XE-16	12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	СВ
XE-17	XE-17	12/14/2016	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	СВ
XE-18	XE-18	12/14/2016	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	СВ

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID		Soil Lab Analyses	Geologist
Exc-4- N1	Exc-4- N1	2/13/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA
Exc-4- 01	Exc-4-01	2/14/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	ВВ
Exc-4- 02	Exc-4-02	2/14/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	BB
Exc-4- 03	Exc-4-03	2/14/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	ВВ
Exc-4- 07	Exc-4-07	2/14/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	ВВ
Exc-4- 08	Exc-4-08	2/14/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	ВВ
Exc-7- 01	Exc-7-01	2/14/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	ВВ
Exc-7- 02	Exc-7-02	2/14/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	ВВ
Exc-7- 03	Exc-7-03	2/14/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	ВВ
Exc-08- N	Exc-08- N	2/13/2017	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	AA
Exc-08- N1	Exc-08- N1	2/13/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA
Exc-08- N2	Exc-08- N2	2/13/2017	Hand Auger	Grass	3'	2-3' Soft Clay, moist	NA	2-3'	3	AA
Exc-08- N3	Exc-08- N3	2/13/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA
Exc-08- N4	Exc-08- N4	2/13/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA
Exc-08- N5	Exc-08- N5	2/13/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA
Exc-08- N6	Exc-08- N6	2/13/2017	Hand Auger	Grass	3'	2-3' Soft Clay, moist	NA	2-3'	3	AA
Exc-08- N7	Exc-08- N7	2/13/2017	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	AA
Exc-08- N8	Exc-08- N8	2/13/2017	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	AA
Exc-09- 01	Exc-09- 01	2/13/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	AA
Exc-10- 01	Exc-10- 01	2/13/2017	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0-2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	AA

Map Boring ID	Sample Boring ID	Date Completed	Drilling Method	Surface Cover	Total Depth	Description	PID	Soil Sample Interval		Geologist
Exc-10- 02	Exc-10- 02	2/13/2017	Hand Auger	Asphalt	3'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	2-3'	3	AA
						1-2' coarse Gravel & Sand, moist 2-3' Soft Clay , moist				
Exc-10- 03	Exc-10- 03	2/13/2017	Hand Auger	Asphalt	4'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	2-3'	3	AA
						1-2' coarse Gravel & Sand, moist 2-3' Soft Clay, moist 3-4" Soft Clay, moist	INA	3-4'		
Exc-10- 04	Exc-10- 04	2/13/2017	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	AA
Exc-10- 05	Exc-10- 05	2/13/2017	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	AA
Exc-11- 02	Exc-11- 02	2/14/2017	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
Exc-11- 05	Exc-11- 05	2/14/2017	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
Exc-11- 06	Exc-11- 06	2/14/2017	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	ВВ
Exc-04- 01	Exc-04- 01	9/5/2017	Hand Auger	Grass	3'	1-2' coarse Gravel & Sand, moist 2-3' Soft Clay, moist	NA	2-3'	3	SL/MR
Exc-08	Exc-08	9/5/2017	Hand Auger	Grass	2'	0-1' gravelly Sand w/ trace small gravel, moist 1-2' coarse Gravel & Sand, moist	NA	0-1' 1-2'	3	SL/MR
Exc-09	Exc-09	9/5/2017	Hand Auger	Grass	1'	0-1' gravelly Sand w/ trace small gravel, moist	NA	0-1'	3	SL/MR
Exc-10	Exc-10	9/5/2017	Hand Auger	Asphalt	1'	0-0.2' Asphalt 0.2-0.8' Gravel/asphalt loose 0.8-1 Lt brn sand	NA	0-1'	3	SL/MR

Notes:

- Geoprobe owned by Terra Probe Environmental, Inc. $\,$

AA - Aaron Alexander

BB - Brian Beach

CB- Chris Burrows

MR-Martin Ryan

SH- Steve Hoekwater

SL- Scott Lang

Notes:										
Sample Analyzed For:										
1- VOCs by EPA Method 8260										
3- PCBs by EPA Method 8082										
11- Arsenic by EPA Method 6020										
12- Mercury by EPA Method 7471										
13-Metals by EPA Method 6020										
H- Held by lab, never analyzed										