Application of the Richards-Baker Flashiness Index to Gaged Michigan Rivers and Streams

Dave Fongers
Hydrologic Studies and Dam Safety Unit
Water Resources Division

With Assistance from
Robert Day
Joseph Rathbun
Nonpoint Source Unit
Water Resources Division

May 3, 2012
This Nonpoint Source Pollution Control project has been funded wholly by the United States Environmental Protection Agency through a Part 319 grant to the Michigan Department of Environmental Quality. The contents of this document do not necessarily reflect the views and policies of the United States Environmental Protection Agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use. For more information, please visit www.michigan.gov/nps.

The cover depicts the United States Geological Survey gages analyzed using the Richards-Baker Flashiness Index method.

For comments or questions relating to this document, please contact Dave Fongers at:

Michigan Department of Environmental Quality
Water Resources Division
P.O. Box 30458
Lansing, Michigan 48909-7958
fongersd@michigan.gov
Table of Contents

Summary .. 1

Introduction .. 2

Methodology .. 3

 Gage Selection ... 3
 Calculation of Yearly and Characteristic R-B Index Values .. 3
 General Changes in Methodology since the 2007 Report ... 5
 Gage-Specific Changes in Methodology since the 2007 Report ... 6

R-B Index Value Analysis .. 8

Trend Analysis ..12

Changes in Results since the 2007 Report ...17

Understanding the Flashiness Results ..22

 Application to NPS BMP Selection ...22
 Flashiness Changes and Hydrologic Alterations ...22

 Dams ..23

 Land Use, Soil, and Imperviousness ..23

Gage-Specific Flashiness Information ..30

 Information by Gage Site ...30
 Statistical Analysis Summary ...126

References ..141

Appendices ... A-1

 Appendix A: Explanation of Cusum Analysis .. A-1
 Appendix B: Michigan’s Major Watersheds ... B-1
Summary

Stream flashiness is a stream flow response to storms. Streams that rise and fall quickly are considered flashier than those that maintain a steadier flow. An increase in flashiness, often due to changing land use, is a common cause of stream channel instability. The Richards-Baker Flashiness Index (R-B Index) uses data from United States Geological Survey (USGS) gaging stations to quantify the frequency and rapidity of short-term changes in stream flow. The Michigan Department of Environmental Quality (MDEQ) Nonpoint Source (NPS) Program staff calculated R-B Index values and assessed trends for 308 USGS gages in Michigan watersheds that had at least five years of data through the end of water year 2011.

The NPS Program encourages grant recipients to incorporate this information in their stream stability assessments and watershed management plans. Watershed stakeholders should also find it useful as an aid to Best Management Practices (BMPs) selection and design. The NPS Program may also use the information to guide future grant goals. The information should also be useful to those interpreting other data, such as watershed development trends, stream bank erosion rates, or biological survey data.

The characteristic R-B Index values for Michigan watersheds are unitless and range from 0.005 to 1.009. Fluctuations over time are apparent in a stream’s R-B Index values. Some fluctuations in the R-B Index values are expected from year to year simply because of natural weather variations. Longer term trends result from hydrologic alterations within the watershed. Trends identified at gages in operation during the past 25 years should be influencing the streams’ morphology today. For the 204 gages in operation during the past 25 years, 31 have decreasing trends and 39 have increasing trends. For gages included in the 2007 report that have updated trend analyses, 10 gages have morphologically destabilizing flashiness trend changes and 33 have morphologically stabilizing or stable trend changes.

An increase in flashiness, due to higher peak flows or more frequent bankfull flows, may result in measurable changes to the channel shape – width, depth, sinuosity, and slope. These changes occur by erosion. Reducing excessive erosion is a common NPS project objective. A frequent dilemma in selecting and siting NPS BMPs is assessing the scale of the stream channel stability problem versus the scale of the problem’s cause. The R-B Index is one tool for diagnosing the scale of a particular stream channel problem.

This report is intended to describe the flashiness analysis methodology and results. It does not attempt to fully explain changes in R-B Index values at specific sites. Further analysis of a specific site or sites within a watershed would be more efficiently and practically performed by local watershed groups and other stakeholders who can often apply watershed-specific and other local information to the interpretation.

The R-B Index values and trends apply only to the stream in the vicinity of the gage. Conditions throughout the watershed may vary. For example, flashy flows in a stream above the gage may be masked by the combined flows of other streams at the gage. Similarly, streams that are increasingly flashy at one gaged location may become stable downstream due to attenuation of flashy flows by tributary flows downstream of the gage.
Introduction

The term flashiness reflects the frequency and rapidity of short-term changes in stream flow (Baker et al., 2004). A stream described as flashy responds to rainfall by rising and falling quickly. Conversely, a stream that is not flashy would rise and fall less for an equivalent rainfall and would typically derive more of its overall flow from groundwater.

One approach to quantifying flashiness was proposed by Baker et al (2004). The method measures the path length of flow oscillations for data from gaged streams. Longer paths correlate with flashier streams, while more constant flows have shorter path lengths. Values for the R-B Index could theoretically range from zero to two. The R-B Index value would have a value of zero if the stream flow were absolutely constant. The R-B Index value increases as the path length, and flashiness, increase. An example of R-B Index values for two Michigan streams with similar drainage areas is shown in Figure 1. The Au Sable River and Lower River Rouge gaged drainage areas are 97 and 84 square miles, respectively. For water year 1991, both gages recorded similar total flows; 900 and 790 billion cubic feet for the Au Sable River and Lower Rouge River, respectively. Despite similar drainage areas and total discharges, the Lower Rouge River exhibited much flashier flows than the Au Sable River, with R-B Index values of 0.56 and 0.05, respectively. This is presumably due primarily to three factors: vegetation, soils, and imperviousness. The Au Sable River watershed has more vegetation and sandier, more permeable soils. The Lower Rouge River watershed has more impervious surface cover.

![R-B Index Value Comparison](image)

Figure 1 – Hydrographs for Two Michigan Streams.

One complication in interpreting R-B Index values is the effect of watershed size. Specifically, smaller watersheds naturally tend to have flashier flows. There is a natural tendency for flashiness
to decrease as the drainage area increases because varied timing of tributary flows helps attenuate main channel peak flows, and because soils and land uses tend to become more varied as the watershed size increases. This is reflected in the Baker et al (2004) results, as summarized in Figure 2, which shows that maximum R-B Index values decrease as watershed size increases.

Figure 2 – Summary of the Richards-Baker Data for 515 Gages in Six Midwestern States, including Michigan.

Methodology

Gage Selection

This flashiness analysis for Michigan watersheds uses average daily flow data from 308 USGS gages (Figure 3). The selection criteria was that each gage had at least five years of daily data (P. Richards, personal communication, 2005) and that the flow data be available for at least 90 percent of the water year. For this report, data was available through the end of water year 2011, which was September 30, 2011.

We did not limit the age of the data, preferring that watershed groups and other users of the results draw their own conclusions with regard to the validity and usefulness of the results, particularly with regard to discontinued gages, for their watershed. Of the 308 gages, 104 were discontinued over 25 years ago. Another 61 were discontinued 2 to 25 years ago. Refer also to Figure 3. Flashiness rankings for discontinued gages may not reflect current conditions.

Occasionally, a gage is moved and assigned a new number. If the gages are considered equivalent, the discontinued gage’s flow record is included in the new gage’s record. Only the newer gage, with the complete record, is included in this analysis. These gages are noted in the “Information by Gage Site” section.
Figure 3 – USGS Gage Status for Michigan Watersheds.
Calculation of Yearly and Characteristic R-B Index Values

Yearly R-B Index values are calculated by summing the absolute values of daily flow differences and dividing by the sum of the daily flows for each year, as shown in Figure 4. If flow data is not available for one day, the difference equation spans the one day gap. For gaps of two days or more, the difference equation is reset at the beginning of the gap. Days reported as “ICE” are excluded from this analysis and are the most common reason for a data gap. More detail can be obtained from the journal article by Baker et al (2004).

<table>
<thead>
<tr>
<th>Date</th>
<th>Flow (cfs)</th>
<th>Absolute Value of Flow Change (cfs)</th>
<th>Yearly R-B Index Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/1/2010</td>
<td>1340</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>10/2/2010</td>
<td>1370</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>10/3/2010</td>
<td>1370</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10/4/2010</td>
<td>1370</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10/5/2010</td>
<td>1370</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10/6/2010</td>
<td>1330</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>10/7/2010</td>
<td>1240</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>10/9/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/10/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/11/2010</td>
<td>1210</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10/12/2010</td>
<td>1200</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9/26/2011</td>
<td>1190</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>9/27/2011</td>
<td>1400</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>9/28/2011</td>
<td>1400</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9/29/2011</td>
<td>1080</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>9/30/2011</td>
<td>1170</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

723,920 63,500 0.0877

Figure 4 – Calculation of Yearly R-B Index Values.

A characteristic R-B Index value for each gage is calculated from that gage’s yearly values. Refer also to Figure 5.

- Linear regression is used to estimate the characteristic R-B Index value at the last year when data were collected when there is a statistically significant trend. For this report, statistical significance means linear regression p value is less than or equal to 0.05. In other words, the characteristic R-B Index value is the point on the trend line at the last year of data collection. This point is highlighted on the graphs in “Information by Gage Site” section.
- If there is not a trend, the characteristic R-B Index value is the average of yearly R-B Index values.
The F-Test Two-Sample for Variances analysis was applied to gages with large yearly data gaps. If \(P(F \leq f) \) one-tail is less than 0.05, the variances are different and only the more recent data is analyzed for linear regression. If greater than 0.05, all data are used.

Visual examination of the data plots for each gage indicates that some gages have experienced trend changes. A statistical technique, termed cusum, was then applied to the data, and then the first derivative of the five-year moving average cusum data was plotted. Extremes in the first derivative plots were used to identify possible trend breaks. Where a possible trend change was identified, an additional regression analysis was performed on the gage’s more recent yearly R-B Index values. This technique is further explained in Appendix A. If a statistically significant change occurred, only the more recent data were used for the trend analysis and to calculate the characteristic R-B Index value.

Serially correlated data and data with heterogeneous variance were excluded from the linear regression analysis. The linear trend lines shown in the “Information by Gage Site” section do not guarantee a linear relationship between flashiness and time for those streams, nor can they be used to predict future flashiness trends for those streams. The physical processes causing the changes are undoubtedly complex. The trends identified are only intended to objectively identify streams experiencing flow changes that may be physically altering the stream’s channel morphology today.

General Changes in Methodology since the 2007 Report

Data through water year 2011 were added. Gages outside the state of Michigan were added if they are in a watershed that includes Michigan. A few new gages within Michigan were also added. The term “Average R-B Index Value” was replaced with “Characteristic R-B Index Value” because averages are no longer used when there is a statistically significant trend.

Other statistical criteria were revised as described below:

1. The yearly analyses were restricted to only include water years that have flow data for at least 90 percent of the water year, or at least 329 days. Ice days are excluded. This revision was applied to all data, resulting in the deletion of some previously reported R-B Index yearly values and the elimination of one gage from the analysis.
2. The F-Test Two-Sample for Variances analysis was applied to gages with significant data gaps.
3. Statistical significance is reported only if the p value is less than or equal to 0.05. In the 2007 report, we included p values of 0.05 to 0.10.
4. Where there is a statistically significant trend, linear regression is used to estimate the characteristic R-B Index value at the last year when data were collected. Previously, the average of the yearly R-B Index values for the years spanned by the trend line was used for what is termed the characteristic R-B Index value in this report.

Gage-Specific Changes in Methodology since the 2007 Report

Gage 04065000 (Menominee River near Iron Mountain), included in the first report, is no longer included because the data does not meet criterion number 1 listed under “General Changes.”

Thirty gages were added (Figure 6). Most are in Indiana or Wisconsin, but located in a watershed that includes Michigan. A few new gages in Michigan that now have enough data to be analyzed have been added. Four of the added gages have statistically significant increasing trends. Four have statistically significant decreasing trends. This information will be useful to someone considering BMPs for a site in Michigan, but upstream or downstream of one of the added gages. See also the “Application to NPS BMP Selection” section.

Figure 6 – Gages Added to the Analysis Since the 2007 Report.
List of Added Gages:

- **Streams Tributary to Lake Superior**
 - 04028000, Montreal River at Ironwood, Michigan
 - 04029000, West Branch Montreal River at Gile, Wisconsin
 - 04029990, Montreal River at Saxon Falls near Saxon, Wisconsin
 - 04043150, Silver River near L'Anse, Michigan
 - 04043244, East Branch Salmon Trout River near Dodge City, Michigan
 - 04043275, Yellow Dog River near Big Bay, Michigan

- **Streams Tributary to Lake Michigan, Upper Peninsula**
 - 04063700, Popple River near Fence, Wisconsin
 - 04064000, Pine River near Florence, Wisconsin
 - 04064500, Pine River below Pine River Powerplant near Florence, Wisconsin
 - 04065106, Menominee River at Niagara, Wisconsin (decreasing trend)
 - 04066030, Menominee River at White Rapids Dam near Banat, Michigan
 - 04066500, Pike River at Amberg, Wisconsin
 - 04067500, Menominee River near McAllister, Wisconsin (decreasing trend)

- **Streams Tributary to Lake Michigan, Southern Lower Peninsula**
 - 04096100, Galena River near Laporte, Indiana
 - 04097970, Lime Lake Outlet at Panama, Indiana
 - 04099510, Pigeon Creek near Angola, Indiana (decreasing trend)
 - 04099610, Pretty Lake Inlet near Stroh, Indiana
 - 04099750, Pigeon River near Scott, Indiana (increasing trend)
 - 04099808, Little Elkhart River at Middlebury, Indiana
 - 04099850, Pine Creek near Elkhart, Indiana
 - 04100222, North Branch Elkhart River at Cosperville, Indiana (decreasing trend)
 - 04100252, Forker Creek near Burr Oak, Indiana (increasing trend)
 - 04100295, Rimmell Branch near Albion, Indiana
 - 04100377, Solomon Creek near Syracuse, Indiana (increasing trend)
 - 04100465, Turkey Creek at Syracuse, Indiana
 - 04100500, Elkhart River at Goshen, Indiana
 - 04101000, St. Joseph River at Elkhart, Indiana (increasing trend)
 - 04101370, Juday Creek near South Bend, Indiana
 - 04108670, Kalamazoo River near New Richmond, Michigan

- **Streams Tributary to Detroit River**
 - 04168580, Ecorse River at Dearborn Heights, Michigan

R-B Index Value Analysis

The R-B Index values for Michigan watersheds range from 0.005 to 1.009, as shown in Table 1. For comparison, the R-B Index values for the Richards-Baker six-state study of 515 midwestern gages ranged from 0.030 to 1.323. The Richards-Baker six-state study used data from 1975 through 2001.

Results of this R-B flashiness analysis are summarized in Figures 7 and 8. Figure 7 is similar to Figure 2, which summarizes the six-state Richards-Baker data. The 3,000-square mile drainage
area break point used in that study was omitted in this study because only eight gages in this study exceed that size.

Figure 8 illustrates the quartile rankings. Most of the flashiest steams are in the southeastern portion of the Lower Peninsula or the western end of the Upper Peninsula. This is likely a combination of developed land uses and heavier soils. The cluster of less flashy streams in the northern portion of the Lower Peninsula is likely the result of extensive natural land uses and sandy soils. In itself, a high or low ranking is not necessarily good or bad. The rankings may be used to identify areas where methods to reduce flashiness can be employed, or to identify areas where extra effort is warranted to protect our most sensitive and exceptional streams. This is discussed further in the “Flashiness Changes and Hydrologic Alterations, Land Use” section.

Detailed information for each gage is provided in the “Gage-Specific Flashiness Information” section.

Table 1 – Summary of R-B Flashiness Analysis Statistics.

<table>
<thead>
<tr>
<th>MDEQ Analysis for Michigan</th>
<th>Drainage Area (sq. miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-30</td>
</tr>
<tr>
<td>Number of Gages</td>
<td>49</td>
</tr>
<tr>
<td>Mean</td>
<td>0.356</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.005</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>0.156</td>
</tr>
<tr>
<td>Median/50th Percentile</td>
<td>0.294</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>0.489</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.957</td>
</tr>
</tbody>
</table>
Figure 7 – Summary of Michigan R-B Index values.
Figure 8 – Quartile Ranking of Michigan R-B Index Values.

Flashiness rankings are for gages with at least five years of data. Many gages have been discontinued. Rankings may not reflect current conditions.

Rankings are for the gage locations only. Conditions throughout the watershed may vary.
Trend Analysis

Fluctuations over time are common in a stream’s R-B Index values. Some fluctuations in the R-B Index values are expected from year to year simply because of natural weather variations. Longer-term trends result from hydrologic alterations, such as a change in land use or removal or change in operation of a dam. Figure 9 illustrates two examples. An increase in flashiness, due to higher peak flows or more frequent bankfull flows, can result in changes to the channel shape: width, depth, sinuosity, and slope. This is especially true for stream channels that are steep and composed of noncohesive materials (Rhoads and Miller, 1991). Changes in stream channel shape, in turn, can have significant impacts on aquatic organism populations (Richards et al., 1997; Van Steeter and Pitlick, 1998). Because a stream can take 50 years or more to adapt to flow changes (Caraco, 2000), we restricted the trend analysis to gages in operation during the past 25 years. The identified trends, which may span part or all of the gage record, should therefore be influencing each stream’s morphology today and provide a comparative reference of the present condition of Michigan’s streams.

![Figure 9 – Examples of Changing Stream Flashiness over Time.](image)

As noted earlier, R-B Index values tend to decrease as the watershed sizes increase, which is accounted for in the quartile rankings. With regard to the trend analysis, smaller watersheds are also more likely to register an increase in flashiness, as shown in Figure 10. For example, 41 percent of the gages with an increasing trend have watersheds smaller than 100 square miles, compared to only 19 percent of the gages with decreasing trends.

The results of the trend analysis are shown in Figure 11 and Tables 2 and 3. Statistically significant trends in the R-B Index values are identified for 70 of the 204 gages in operation during the past 25 years. Thirty-one of the gages have decreasing trends. Thirty-nine of the gages have increasing trends. Detailed information for each gage is provided in the “Gage-Specific Flashiness Information” section.

Trends are for the gage location only. Streams that are increasingly flashy at one location may become stable downstream due to attenuation of flashy flows by tributary flows downstream of the gage. Similarly, flashy flows in a stream above the gage may be masked by the combined flows of other streams at the gage.
Figure 10 – Scaling Comparison of Gages with Increasing and Decreasing R-B Index Trends.
Flashiness trends are for gaged sites in operation during the past 25 years. Some gages have been discontinued and trends may not reflect current conditions.

Trends are for the gage locations only. Conditions throughout the watershed may vary.
Table 2 – Summary of Less Flashy Gages.

<table>
<thead>
<tr>
<th>Gage Number</th>
<th>Gage Description</th>
<th>Drainage Area (sq. mi.)</th>
<th>Major Watershed</th>
<th>Ending Water Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>04034500</td>
<td>Middle Branch Ontonagon River near Trout Creek, MI</td>
<td>203</td>
<td>Ontonagon, 53</td>
<td>2011</td>
</tr>
<tr>
<td>04036000</td>
<td>West Branch Ontonagon River near Bergland, MI</td>
<td>162</td>
<td>Ontonagon, 53</td>
<td>2011</td>
</tr>
<tr>
<td>04041500</td>
<td>Sturgeon River near Alston, MI</td>
<td>346</td>
<td>Portage, 55</td>
<td>2011</td>
</tr>
<tr>
<td>04057510</td>
<td>Sturgeon River near Nahma Junction, MI</td>
<td>183</td>
<td>Sturgeon, 58</td>
<td>2009</td>
</tr>
<tr>
<td>04057800</td>
<td>Middle Branch Escanaba River at Humboldt, MI</td>
<td>46</td>
<td>Escanaba, 46</td>
<td>2009</td>
</tr>
<tr>
<td>04060500</td>
<td>Iron River at Highway 424 at Caspian, MI</td>
<td>92</td>
<td>Menominee, 50</td>
<td>2009</td>
</tr>
<tr>
<td>04062000</td>
<td>Paint River near Alpha, MI</td>
<td>631</td>
<td>Menominee, 50</td>
<td>2011</td>
</tr>
<tr>
<td>04062011</td>
<td>Brule River near Commonwealth, WI</td>
<td>1020</td>
<td>Menominee, 50</td>
<td>2011</td>
</tr>
<tr>
<td>04062500</td>
<td>Michigamme River near Crystal Falls, MI</td>
<td>656</td>
<td>Menominee, 50</td>
<td>2011</td>
</tr>
<tr>
<td>04063000</td>
<td>Menominee River near Florence, WI</td>
<td>1760</td>
<td>Menominee, 50</td>
<td>2011</td>
</tr>
<tr>
<td>04063500</td>
<td>Menominee River at Twin Falls near Iron Mountain, MI</td>
<td>1800</td>
<td>Menominee, 50</td>
<td>2011</td>
</tr>
<tr>
<td>04066106</td>
<td>Menominee River at Niagara, WI</td>
<td>2470</td>
<td>Menominee, 50</td>
<td>2011</td>
</tr>
<tr>
<td>04066003</td>
<td>Menominee River below Pemene Creek near Pembine, WI</td>
<td>3140</td>
<td>Menominee, 50</td>
<td>2011</td>
</tr>
<tr>
<td>04067500</td>
<td>Menominee River near McAllister, WI</td>
<td>3930</td>
<td>Menominee, 50</td>
<td>2011</td>
</tr>
<tr>
<td>04097500</td>
<td>St. Joseph River at Three Rivers, MI</td>
<td>1350</td>
<td>St. Joseph, 34</td>
<td>2011</td>
</tr>
<tr>
<td>04099000</td>
<td>St. Joseph River at Mottville, MI</td>
<td>1866</td>
<td>St. Joseph, 34</td>
<td>2011</td>
</tr>
<tr>
<td>04099510</td>
<td>Pigeon Creek near Angola, IN</td>
<td>106</td>
<td>St. Joseph, 34</td>
<td>2011</td>
</tr>
<tr>
<td>04100222</td>
<td>North Branch Elkhart River at Cospervill, IN</td>
<td>142</td>
<td>St. Joseph, 34</td>
<td>2011</td>
</tr>
<tr>
<td>04101000</td>
<td>St. Joseph River at Elkhart, IN</td>
<td>3370</td>
<td>St. Joseph, 34</td>
<td>2011</td>
</tr>
<tr>
<td>04101500</td>
<td>St. Joseph River at Niles, MI</td>
<td>3666</td>
<td>St. Joseph, 34</td>
<td>2011</td>
</tr>
<tr>
<td>04106000</td>
<td>Kalamazoo River at Comstock, MI</td>
<td>1010</td>
<td>Kalamazoo, 17</td>
<td>2011</td>
</tr>
<tr>
<td>04116000</td>
<td>Grand River at Ionia, MI</td>
<td>2840</td>
<td>Grand, 14</td>
<td>2011</td>
</tr>
<tr>
<td>04116500</td>
<td>Flat River at Smyrna, MI</td>
<td>528</td>
<td>Grand, 14</td>
<td>1986</td>
</tr>
<tr>
<td>04122000</td>
<td>Muskegon River at Newaygo, MI</td>
<td>2350</td>
<td>Muskegon, 22</td>
<td>1993</td>
</tr>
<tr>
<td>04122100</td>
<td>Bear Creek near Muskegon, MI</td>
<td>17</td>
<td>Muskegon, 22</td>
<td>2011</td>
</tr>
<tr>
<td>04126000</td>
<td>Manistee River near Manistee, MI</td>
<td>1677</td>
<td>Manistee, 20</td>
<td>1993</td>
</tr>
<tr>
<td>04127800</td>
<td>Jordan River near East Jordan, MI</td>
<td>68</td>
<td>Pine, 10</td>
<td>2011</td>
</tr>
<tr>
<td>04130500</td>
<td>Black River near Tower, MI</td>
<td>311</td>
<td>Cheboygan, 11</td>
<td>2000</td>
</tr>
<tr>
<td>04161500</td>
<td>Paint Creek near Lake Orion, MI</td>
<td>39</td>
<td>Clinton, 12</td>
<td>1991</td>
</tr>
<tr>
<td>04168000</td>
<td>Lower River Rouge at Inkster, MI</td>
<td>83</td>
<td>Rouge, 31</td>
<td>2011</td>
</tr>
<tr>
<td>04174800</td>
<td>Huron River at Ypsilanti, MI</td>
<td>807</td>
<td>Huron, 15</td>
<td>1994</td>
</tr>
</tbody>
</table>
Table 3 – Summary of More Flashy Gages.

<table>
<thead>
<tr>
<th>Gage Number</th>
<th>Gage Description</th>
<th>Drainage Area (sq. mi.)</th>
<th>Major Watershed</th>
<th>Ending Water Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>04037500</td>
<td>Cisco Branch Ontonagon River at Cisco Lake Outlet, MI</td>
<td>51</td>
<td>Ontonagon, 53</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>More Flashy Gages in the Upper Peninsula – Total 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04096515</td>
<td>South Branch Hog Creek near Allen, MI</td>
<td>49</td>
<td>St. Joseph, 34</td>
<td>2010</td>
</tr>
<tr>
<td>04096990</td>
<td>Nottawa Creek near Athens, MI</td>
<td>162</td>
<td>St. Joseph, 34</td>
<td>1997</td>
</tr>
<tr>
<td>04099750</td>
<td>Pigeon River near Scott, IN</td>
<td>307</td>
<td>St. Joseph, 34</td>
<td>2011</td>
</tr>
<tr>
<td>04100252</td>
<td>Forker Creek near Burr Oak, IN</td>
<td>19</td>
<td>St. Joseph, 34</td>
<td>2003</td>
</tr>
<tr>
<td>04100377</td>
<td>Solomon Creek near Syracuse, IN</td>
<td>36</td>
<td>St. Joseph, 34</td>
<td>2003</td>
</tr>
<tr>
<td>04101800</td>
<td>Dowagiac River at Summerville, MI</td>
<td>255</td>
<td>St. Joseph, 34</td>
<td>2011</td>
</tr>
<tr>
<td>04102500</td>
<td>Paw Paw River at Riverside, MI</td>
<td>390</td>
<td>St. Joseph, 34</td>
<td>2011</td>
</tr>
<tr>
<td>04102700</td>
<td>South Branch Black River near Bangor, MI</td>
<td>84</td>
<td>Black, 7</td>
<td>2011</td>
</tr>
<tr>
<td>04104945</td>
<td>Wanadoga Creek near Battle Creek, MI</td>
<td>48</td>
<td>Kalamazoo, 17</td>
<td>2011</td>
</tr>
<tr>
<td>04105000</td>
<td>Battle Creek at Battle Creek, MI</td>
<td>241</td>
<td>Kalamazoo, 17</td>
<td>2011</td>
</tr>
<tr>
<td>04105500</td>
<td>Kalamazoo River near Battle Creek, MI</td>
<td>824</td>
<td>Kalamazoo, 17</td>
<td>2011</td>
</tr>
<tr>
<td>04105700</td>
<td>Augusta Creek near Augusta, MI</td>
<td>39</td>
<td>Kalamazoo, 17</td>
<td>2011</td>
</tr>
<tr>
<td>04106180</td>
<td>Portage Creek at Portage, MI</td>
<td>17</td>
<td>Kalamazoo, 17</td>
<td>2006</td>
</tr>
<tr>
<td>04106320</td>
<td>West Fork Portage Creek near Oshkemo, MI</td>
<td>13</td>
<td>Kalamazoo, 17</td>
<td>1996</td>
</tr>
<tr>
<td>04106500</td>
<td>Portage Creek at Kalamazoo, MI</td>
<td>47</td>
<td>Kalamazoo, 17</td>
<td>1986</td>
</tr>
<tr>
<td>04108600</td>
<td>Rabbit River near Hopkins, MI</td>
<td>71</td>
<td>Kalamazoo, 17</td>
<td>2011</td>
</tr>
<tr>
<td>04111379</td>
<td>Red Cedar River near Williamston, MI</td>
<td>163</td>
<td>Grand, 14</td>
<td>2011</td>
</tr>
<tr>
<td>04112500</td>
<td>Red Cedar River at East Lansing, MI</td>
<td>355</td>
<td>Grand, 14</td>
<td>2011</td>
</tr>
<tr>
<td>04118000</td>
<td>Thornapple River near Caledonia, MI</td>
<td>773</td>
<td>Grand, 14</td>
<td>1994</td>
</tr>
<tr>
<td>04121944</td>
<td>Little Muskegon River near Oak Grove, MI</td>
<td>345</td>
<td>Muskegon, 22</td>
<td>2011</td>
</tr>
<tr>
<td>04121970</td>
<td>Muskegon River near Croton, MI</td>
<td>2313</td>
<td>Muskegon, 22</td>
<td>2011</td>
</tr>
<tr>
<td>04122500</td>
<td>Pere Marquette River at Scottville, MI</td>
<td>681</td>
<td>Pere Marquette, 25</td>
<td>2011</td>
</tr>
<tr>
<td>04124000</td>
<td>Manistee River near Sherman, MI</td>
<td>857</td>
<td>Manistee, 20</td>
<td>2011</td>
</tr>
<tr>
<td>04128990</td>
<td>Pigeon River at Sturgeon Valley Road near Vanderbilt, MI</td>
<td>58</td>
<td>Cheboygan, 11</td>
<td>2011</td>
</tr>
<tr>
<td>04135500</td>
<td>Au Sable River at Grayling, MI</td>
<td>110</td>
<td>Au Sable, 2</td>
<td>1993</td>
</tr>
<tr>
<td>04135700</td>
<td>South Branch Au Sable River near Luzerne, MI</td>
<td>401</td>
<td>Au Sable, 2</td>
<td>2011</td>
</tr>
<tr>
<td>04136000</td>
<td>Au Sable River near Red Oak, MI</td>
<td>1108</td>
<td>Au Sable, 2</td>
<td>2011</td>
</tr>
<tr>
<td>04137005</td>
<td>Au Sable River near Curtisville, MI</td>
<td>1598</td>
<td>Au Sable, 2</td>
<td>2011</td>
</tr>
<tr>
<td>04147500</td>
<td>Flint River near Otisville, MI</td>
<td>530</td>
<td>Saginaw, 32</td>
<td>2011</td>
</tr>
<tr>
<td>04148140</td>
<td>Kearsley Creek near Davison, MI</td>
<td>99</td>
<td>Saginaw, 32</td>
<td>2011</td>
</tr>
<tr>
<td>04148500</td>
<td>Flint River near Flint, MI</td>
<td>956</td>
<td>Saginaw, 32</td>
<td>2011</td>
</tr>
<tr>
<td>04160600</td>
<td>Belle River at Memphis, MI</td>
<td>151</td>
<td>Belle, 3</td>
<td>2011</td>
</tr>
<tr>
<td>04161100</td>
<td>Galloway Creek near Auburn Heights, MI</td>
<td>18</td>
<td>Clinton, 12</td>
<td>1991</td>
</tr>
<tr>
<td>04161540</td>
<td>Paint Creek at Rochester, MI</td>
<td>71</td>
<td>Clinton, 12</td>
<td>2011</td>
</tr>
<tr>
<td>04161580</td>
<td>Stony Creek near Rome, MI</td>
<td>26</td>
<td>Clinton, 12</td>
<td>2011</td>
</tr>
<tr>
<td>04164000</td>
<td>Clinton River near Fraser, MI</td>
<td>444</td>
<td>Clinton, 12</td>
<td>2011</td>
</tr>
<tr>
<td>04165500</td>
<td>Clinton River at Moravian Drive at Mount Clemens, MI</td>
<td>734</td>
<td>Clinton, 12</td>
<td>2004</td>
</tr>
<tr>
<td>04176000</td>
<td>River Raisin near Adrian, MI</td>
<td>463</td>
<td>Raisin, 29</td>
<td>2011</td>
</tr>
</tbody>
</table>
Changes in Results since the 2007 Report

Many of the characteristic R-B Index values were recalculated as trend line endpoints at the last year of data collection instead of as averages. Data with large gaps were also reevaluated using F-Test Two-Sample for Variances analysis. Some gages therefore have revised characteristic R-B Index values due only to refinements in the methodology, not because of a change in the stream’s flashiness. Further, one gage was dropped and 30 gages were added, mostly in neighboring states, but located in a watershed that includes Michigan. Because of these revisions, the summary statistics, Table 1, and trend counts, Table 2, should not be directly compared to the 2007 report.

Seventy-two of the gages with trends can be reviewed for changes from the 2007 report to this report. These 72 gages are summarized in Table 4 and on Figure 12 with the results grouped as follows:

- Destabilizing – unnatural steambank erosion is possible
 - Decreasing trend updated to increasing trend
 - No trend updated to increasing trend
 - Continued increasing trend

- Stabilizing – unnatural steambank erosion rate is not worsening and may be improving
 - Increasing trend updated to no trend
 - Increasing trend updated to decreasing trend

- Stable – unnatural steambank erosion rate is not expected
 - Decreasing trend updated to no trend
 - No trend updated to decreasing trend
 - Continued decreasing trend

Table 4 – Summary of Trend Comparison from 2007 to 2012 Report.

<table>
<thead>
<tr>
<th>Morphologic Impact</th>
<th>Trend Changed</th>
<th>Trend Continuing</th>
<th>Trend Unchanged</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destabilizing</td>
<td>11</td>
<td>18</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Stabilizing</td>
<td>14</td>
<td>*</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Stable</td>
<td>19</td>
<td>10</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

*As defined above, all gages classified as stabilizing must have a trend change from the 2007 report.

Twenty-eight gages were excluded from the comparison as described in Table 5.

Table 6 provides details for each of the gages as compared to the 2007 report. Forty-four gages with additional data had revised trend analysis. Twenty-eight gages have additional data analyzed for this report, but the reported trend did not change.
Table 5 – Gages Excluded from Comparison, Sorted by Gage Number.

<table>
<thead>
<tr>
<th>Gage</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>04065106, Menominee River at Niagara, WI</td>
<td>Not in 2007 report, neighboring state, decreasing trend</td>
</tr>
<tr>
<td>04065393, East Branch Sturgeon River below Skunk Creek near Felch, MI</td>
<td>Data now over 25 years old, was decreasing trend</td>
</tr>
<tr>
<td>04067500, Menominee River near McAllister, WI</td>
<td>Not in 2007 report, neighboring state, decreasing trend</td>
</tr>
<tr>
<td>04096900, Nottawa Creek Near Athens, MI</td>
<td>Static Analysis, Increasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04099510, Pigeon Creek near Angola, IN</td>
<td>Not in 2007 report, neighboring state, decreasing trend</td>
</tr>
<tr>
<td>04099750, Pigeon River near Scott, IN</td>
<td>Not in 2007 report, neighboring state, increasing trend</td>
</tr>
<tr>
<td>04100222, North Branch Elkhart River at Cosperville, IN</td>
<td>Not in 2007 report, neighboring state, decreasing trend</td>
</tr>
<tr>
<td>04100252, Forker Creek near Burr Oak, IN</td>
<td>Not in 2007 report, neighboring state, increasing trend</td>
</tr>
<tr>
<td>04100377, Solomon Creek near Syracuse, IN</td>
<td>Not in 2007 report, neighboring state, increasing trend</td>
</tr>
<tr>
<td>04101000, St. Joseph River at Elkhart, IN</td>
<td>Not in 2007 report, neighboring state, increasing trend</td>
</tr>
<tr>
<td>04106320, West Fork Portage Creek Near Oshtemo, MI</td>
<td>Static Analysis, Increasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04106500, Portage Creek At Kalamazoo, MI</td>
<td>Static Analysis, Increasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04116500, Flat River At Smyrna, MI</td>
<td>Static Analysis, Decreasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04118000, Thornapple River Near Caledonia, MI</td>
<td>Static Analysis, Increasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04122000, Muskegon River At Newaygo, MI</td>
<td>Static Analysis, Decreasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04126000, Manistee River Near Manistee, MI</td>
<td>Static Analysis, Decreasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04135500, Au Sable River At Grayling, MI</td>
<td>Static Analysis, Increasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04135600, East Branch Au Sable River at Grayling, MI</td>
<td>Static Analysis, Increasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04140500, Rifle River at State Road at Selkirk, MI</td>
<td>Data now over 25 years old, was increasing trend</td>
</tr>
<tr>
<td>04143500, North Branch Kawkawlin River near Kawkawlin, MI</td>
<td>Data now over 25 years old, was decreasing trend</td>
</tr>
<tr>
<td>04144000, Shiawassee River at Byron, MI</td>
<td>Data now over 25 years old, was decreasing trend</td>
</tr>
<tr>
<td>04152500, Tobacco River at Glidden Road at Beaverton, MI</td>
<td>Data now over 25 years old, was decreasing trend</td>
</tr>
<tr>
<td>04161100, Galloway Creek Near Auburn Heights, MI</td>
<td>Static Analysis, Increasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04161500, Paint Creek near Lake Orion, MI</td>
<td>No trend changed to decreasing trend based on revised analysis, no new data</td>
</tr>
<tr>
<td>04162900, Big Beaver Creek near Warren, MI</td>
<td>Increasing trend changed to no trend based on revised analysis, no new data</td>
</tr>
<tr>
<td>04165500, Clinton River At Mount Clemens, MI</td>
<td>Static Analysis, Increasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04174800, Huron River At Ypsilanti, MI</td>
<td>Static Analysis, Decreasing Trend, but gage was discontinued and had no additional data to analyze</td>
</tr>
<tr>
<td>04175700, River Raisin near Tecumseh, MI</td>
<td>Data now over 25 years old, was decreasing trend</td>
</tr>
</tbody>
</table>
Table 6 – Gages with Updated Trend Analysis Compared to 2007 Report, Sorted by Gage Number.

<table>
<thead>
<tr>
<th>Gage</th>
<th>Trend Change</th>
<th>Morphologic Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>04033000, Middle Branch Ontonagon River near Paulding, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04034500, Middle Branch Ontonagon River near Trout Creek, MI</td>
<td>Increasing Trend to Decreasing Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04036000, West Branch Ontonagon River Near Bergland, MI</td>
<td>Decreasing Trend Continuing</td>
<td>Stable</td>
</tr>
<tr>
<td>04037500, Cisco Branch Ontonagon River At Cisco Lake Outlet, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04041500, Sturgeon River near Alston, MI</td>
<td>No Trend to Decreasing Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04044724, AuTrain River at Forest Lake, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04057510, Sturgeon River near Nahma Junction, MI</td>
<td>No Trend to Decreasing Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04057800, Middle Branch Escanaba River at Humboldt, MI</td>
<td>No Trend to Decreasing Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04058100, Middle Branch Escanaba River near Princeton, MI</td>
<td>Decreasing Trend to No Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04059000, Escanaba River at Cornell, MI</td>
<td>Decreasing Trend to No Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04060500, Iron River at Highway 424 at Caspian, MI</td>
<td>No Trend to Decreasing Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04062000, Paint River near Alpha, MI</td>
<td>No Trend to Decreasing Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04062011, Brule River Near Commonwealth, WI</td>
<td>Decreasing Trend Continuing</td>
<td>Stable</td>
</tr>
<tr>
<td>04062500, Michigamme River Near Crystal Falls, MI</td>
<td>Decreasing Trend Continuing</td>
<td>Stable</td>
</tr>
<tr>
<td>04063000, Menominee River near Florence, WI</td>
<td>No Trend to Decreasing Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04063500, Menominee River at Twin Falls near Iron Mountain, MI</td>
<td>No Trend to Decreasing Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04066003, Menominee River Below Pemene Creek Near Pembine, WI</td>
<td>Decreasing Trend Continuing</td>
<td>Stable</td>
</tr>
<tr>
<td>04096015, Galien River near Sawyer, MI</td>
<td>Decreasing Trend to No Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04096515, South Branch Hog Creek Near Allen, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04097500, St. Joseph River At Three Rivers, MI</td>
<td>Decreasing Trend Continuing</td>
<td>Stable</td>
</tr>
<tr>
<td>04099000, St. Joseph River At Mottville, MI</td>
<td>Decreasing Trend Continuing</td>
<td>Stable</td>
</tr>
<tr>
<td>04101500, St. Joseph River At Niles, MI</td>
<td>Decreasing Trend Continuing</td>
<td>Stable</td>
</tr>
<tr>
<td>04101800, Dowagiac River At Summerville, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04102500, Paw Paw River At Riverside, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04102700, South Branch Black River near Bangor, MI</td>
<td>No Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04104945, Wanadoga Creek near Battle Creek, MI</td>
<td>No Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04105000, Battle Creek At Battle Creek, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04105500, Kalamazoo River near Battle Creek, MI</td>
<td>Decreasing Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04105700, Augusta Creek Near Augusta, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04106000, Kalamazoo River at Comstock, MI</td>
<td>No Trend to Decreasing Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04106180, Portage Creek At Portage, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04106400, West Fork Portage Creek at Kalamazoo, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04108600, Rabbit River Near Hopkins, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04109000, Grand River at Jackson, MI</td>
<td>Decreasing Trend to No Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04111000, Grand River at Eaton Rapids, MI</td>
<td>Decreasing Trend to No Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04111379, Red Cedar River near Williamston, MI</td>
<td>No Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04112500, Red Cedar River At East Lansing, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>Gage</td>
<td>Trend Change</td>
<td>Morphologic Impact</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>04116000, Grand River at Ionia, MI</td>
<td>No Trend to Decreasing Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04121900, Little Muskegon River near Morley, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04121944, Little Muskegon River near Oak Grove, MI</td>
<td>No Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04121970, Muskegon River near Croton, MI</td>
<td>No Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04122100, Bear Creek Near Muskegon, MI</td>
<td>Decreasing Trend Continuing</td>
<td>Stable</td>
</tr>
<tr>
<td>04122500, Pere Marquette River At Scottville, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04124000, Manistee River near Sherman, MI</td>
<td>No Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04127800, Jordan River Near East Jordan, MI</td>
<td>Decreasing Trend Continuing</td>
<td>Stable</td>
</tr>
<tr>
<td>04128990, Pigeon River Near Vanderbilt, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04130500, Black River near Tower, MI</td>
<td>No Trend to Decreasing Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04135700, South Branch Au Sable River near Luzerne, MI</td>
<td>No Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04136000, Au Sable River near Red Oak, MI</td>
<td>No Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04137005, Au Sable River near Curtisville, MI</td>
<td>No Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04137500, Au Sable River near Au Sable, MI</td>
<td>Decreasing Trend to No Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04147500, Flint River Near Otisville, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04148140, Kearsley Creek near Davison, MI</td>
<td>No Trend to Increasing Trend</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04148500, Flint River Near Flint, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04149000, Flint River near Fosters, MI</td>
<td>Decreasing Trend to No Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04159492, Black River near Jeddo, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04160600, Belle River At Memphis, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04161000, Clinton River at Auburn Heights, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04161540, Paint Creek At Rochester, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04161580, Stony Creek Near Romeo, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04164000, Clinton River Near Fraser, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
<tr>
<td>04164500, North Branch Clinton River near Mount Clemens, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04166000, River Rouge at Birmingham, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04166100, River Rouge at Southfield, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04166200, Evans Ditch at Southfield, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04166300, Upper River Rouge at Farmington, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04166500, River Rouge at Detroit, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04167000, Middle River Rouge near Garden City, MI</td>
<td>Increasing Trend to No Trend</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>04168000, Lower River Rouge At Inkster, MI</td>
<td>Decreasing Trend Continuing</td>
<td>Stable</td>
</tr>
<tr>
<td>04173500, Mill Creek near Dexter, MI</td>
<td>Decreasing Trend to No Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04174500, Huron River at Ann Arbor, MI</td>
<td>Decreasing Trend to No Trend</td>
<td>Stable</td>
</tr>
<tr>
<td>04176000, River Raisin Near Adrian, MI</td>
<td>Increasing Trend Continuing</td>
<td>Destabilizing</td>
</tr>
</tbody>
</table>
Figure 12 – Gages with Flashiness Trend Changes from the 2007 Report.
Understanding the Flashiness Results

Application to NPS BMP Selection

An increase in flashiness, due to higher or more frequent flows, results in changes to the channel shape: width, depth, sinuosity, and slope. These changes occur by erosion. Reducing excessive erosion is a component of many NPS projects. A frequent dilemma in selecting and siting NPS BMPs is assessing the scale of the stream channel stability problem versus the scale of the problem’s cause. A bank erosion problem with a local, small-scale cause (e.g., cattle access) can be addressed by a local BMP (e.g., fencing), while a bank erosion problem with a large-scale cause (e.g., a watershed-wide increase in impervious area) can only be addressed with a similarly large-scale solution (e.g., regional storm water management practices).

The R-B Index is one tool for diagnosing the scale of a particular stream channel problem. If the R-B Index values are steady over time, channel erosion problems in the vicinity of the USGS gage may have local causes that can be addressed with a local BMP. Conversely, if an R-B Index trend indicates that flashiness is increasing over time, channel erosion problems in the vicinity of the gage station may have large-scale causes and will require a large-scale solution. Note that “in the vicinity of the gage” is not well defined. Streams that are increasingly flashy at one location may become stable downstream due to attenuation of flashy flows by tributary flows downstream of the gage. Similarly, flashy flows in a stream above the gage may be masked by the combined flows of other streams at the gage.

Flashiness Changes and Hydrologic Alterations

In general, flashiness changes result from hydrologic alterations. Some factors that can alter flashiness include:

- In-Stream Changes
 - Removal or change in operation of a dam
 - Expansion or straightening of the drainage network

- Watershed Land Use Changes
 - Urbanization
 - Forest regrowth
 - Soil compaction
 - Change in paved or other impervious areas
 - Use of low impact development techniques
 - Change in forestry practices
 - Change in agricultural practices
 - Change in runoff storage capacity

This report does not attempt to fully explain R-B Index value changes at specific sites. Thorough analysis of a specific site or sites within a watershed would be more efficiently and practically performed by local watershed groups and other stakeholders who can often apply watershed-specific and other local information to the interpretation. However, an overview of the results does generally illustrate the effect of some hydrologic alterations. These are discussed in more detail in the following sections.
Dams

The influence of water control structures, especially dams, is one of many complicating factors when interpreting stream flashiness data. The MDEQ tracks over 2,500 dams in a statewide dam safety database. There are undoubtedly many more small dams present on the state’s rivers and streams. Dams, especially hydropower dams, can influence stream flow and therefore stream flashiness in both the short term (oscillations over hours or days) and the long term (trends over many years). This report does not try to identify all locations where a dam may influence the results of the R-B Index calculations. However, the “Information by Gage Site” section notes gages that may be affected by dam operations. This information is from the MDEQ’s Surface Water Assessment Section (Suppnick, personal communication, 2006) and from yearly USGS Water Resources Data books. This information should be considered a partial, provisional list.

Gage 04170000 is an example of dam operation affecting R-B Index values, as shown in Figure 13. The USGS notes that prior to May 29, 1957, the flow was regulated by a power plant. Since then, there has been only occasional regulation for lake level control. R-B Index values are consistently lower after 1957.

The installation or removal of a dam, or a change in the operation of the dam, can affect the R-B Index values. However, if a dam is operated to manage only lower flows, it is possible that the effect on stream morphology will be negligible.

![Figure 13](image)

Figure 13 – Changes in the R-B Index Following Changes in 1957 in the Operation of a Dam Upstream of USGS Gage 04170000.

Land Use, Soil, and Imperviousness

It is almost axiomatic that urban areas have flashy streams and undeveloped areas do not. Figures 14 and 15 illustrate the land use throughout the state as of 2001, along with the flashiness rankings and trends. Although the figures suggest that there is some correlation of flashiness with developed land uses, land use does not completely predict flashiness rankings or trends. Certainly many of the flashier gages are in urban areas. However, some are also in areas with extensive natural areas, and some of the gages in the lower quartiles are in or near urban areas. Soils, Figure 16, are also a factor in the quartile rankings. Flashiness rankings and trends represent the stream’s response to many factors in a complex system - the watershed. When wise storm water management is employed, adverse stream impacts can be minimized.
Figure 14 – General 2001 Land Use Classifications with R-B Index Quartile Rankings.
Figure 15 – General 2001 Land Use Classifications with R-B Index Flashiness Trends.
Figure 16 – Soil Hydrogroups from the United States Department of Agriculture-Natural Resources Conservation Service’s (USDA-NRCS) Soil Survey Geographic Database, Dual Classified Soil Resolved using 1978 Land Use Data, with R-B Index Quartile Rankings.
Imperviousness within the watershed has received particular attention as an indicator of stream quality. The Center for Watershed Protection developed the Impervious Cover Model (ICM) for urban headwater streams, excerpted in Table 7 and detailed in *The Importance of Imperviousness, The Practice of Watershed Protection* (Schueler, 2000). In May 2008, three ICM refinements were presented by Tom Schueler, Chesapeake Stormwater Network, and Lisa Fraley-McNeal, Center for Watershed Protection, at the 2nd Symposium on Urbanization and Stream Ecology. Figure 17 shows the revised figure, adapted with permission.

The three refinements as described by Fraley-McNeal (personal communication, 2008) are:

1. The imperviousness/stream quality relationship is now a cone rather than a line. The cone represents the observed variability in stream quality and also the typical range in expected improvement that could be attributed to subwatershed treatment. The cone illustrates that most regions show a generally continuous but variable gradient of stream degradation as impervious cover increases.

2. The cone width is greatest for impervious cover values less than ten percent, which reflects the wide variability in stream quality observed for these streams. This prevents the misperception that streams with low impervious cover will automatically possess good or excellent quality. The expected quality of streams in this range of impervious cover is generally influenced more by other watershed characteristics such as forest cover, road density, riparian continuity, and cropping practices.

3. The transition between stream quality classifications is now a band rather than a fixed line. If specific values are used to separate stream categories, the values should be based on actual monitoring data for the ecoregion, the stream indicators of greatest concern, and the predominant predevelopment regional land cover (e.g., crops or forest).

To properly apply and interpret the ICM in a watershed context:

- Watershed scale matters. The use of the ICM should generally be restricted to first to third order alluvial streams.
- The ICM may not work well in subwatersheds with major pollutant point sources, or extensive impoundments or dams within the stream network.
- The ICM is best applied to subwatersheds located within the same physiographic region. In particular, stream slopes, as measured from the top to the bottom of subwatersheds, should be in the same general range.
- The ICM is unreliable when management practices are poor, particularly when impervious cover levels are low (e.g., deforestation, acid mine drainage, intensive row crops, denudation of riparian cover).

When these caveats are applied, the available science generally reinforces the validity of the ICM as a watershed planning tool to forecast the general response of freshwater and tidal streams as a result of future land development.

Percent imperviousness was analyzed using 1978 land cover data, 1995 Topologically Integrated Geographic Encoding and Referencing population density data, and the Impervious Surface Analysis Tool (ISAT) Geographic Information Systems extension. The population data is from the Michigan Geographic Data Library, http://gis-michigan.opendata.arcgis.com/. The population data was converted to 50 meter grids. The ISAT was provided by the National Oceanic and Atmospheric Administration. Percent imperviousness was
estimated using ISAT according to Table 8. The imperviousness values for residential, commercial, and industrial are from the USDA-NRCS (1986).

Figure 18 illustrates the percent imperviousness and flashiness trends results. Compared to the 2007 report, fewer of the gages that are exhibiting increasing flashiness are in or near urban areas with over 25 percent imperviousness. This is probably due to slower development and improved storm water management. Refer also to the “Changes in Results since the 2007 Report” section.

Table 7 - Classification of Urban Headwater Streams.

<table>
<thead>
<tr>
<th>Urban Stream Classification</th>
<th>Sensitive</th>
<th>Impacted</th>
<th>Nonsupporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Stability</td>
<td>Stable</td>
<td>Unstable</td>
<td>Highly unstable</td>
</tr>
<tr>
<td>Water Quality</td>
<td>Good</td>
<td>Fair</td>
<td>Fair-Poor</td>
</tr>
<tr>
<td>Stream Biodiversity</td>
<td>Good-Excellent</td>
<td>Fair-Good</td>
<td>Poor</td>
</tr>
<tr>
<td>Resource Objective</td>
<td>Protect biodiversity and channel stability</td>
<td>Maintain critical elements of stream quality</td>
<td>Minimize downstream pollutant loads</td>
</tr>
</tbody>
</table>

Excerpted from “The Practice of Watershed Protection” (Schueler, 2000, p. 15).

Table 8 - Imperviousness Table for ISAT Analysis.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>Assigned Imperviousness (percent) by Population Density (people per square mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Less than 250</td>
</tr>
<tr>
<td>1</td>
<td>Residential</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Commercial</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>Industrial</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>Road, Utilities</td>
<td>95</td>
</tr>
<tr>
<td>5, 6, 10-14</td>
<td>Agriculture</td>
<td>1</td>
</tr>
<tr>
<td>7, 8, 9</td>
<td>Natural land covers</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 18 – Statewide Imperviousness with Updated Flashiness Trends, 1978 Land Use.
Gage-Specific Flashiness Information

Information by Gage Site

Graphs of the R-B Index values are shown for each site. The x-axis always ends at 2011, so that the comparative age of the data is more readily apparent. The y-axis is constrained to show gridlines for every 0.1 increment, allowing a sense of rank relative to other gages - more gridlines equate to higher values. The graphs for all gages with data encompassing at least part of the past 25 years have a soft blue border.

The characteristic R-B Index values are either:

- The average of the yearly R-B Index values and is shown as a horizontal gold line spanning the years used to calculate the value.
- The endpoint of a statistically significant (i.e., $p < 0.05$) trend. If the trend encompasses at least part of the past 25 years, it is represented by a sloped purple line. If the trend is older, it is represented by a sloped gold line with soft edges. Where there is an identified trend, the characteristic R-B Index value is based on the point on the trend line at the last year of data collection and is represented by a brown circle.

Gage-specific information is included under each graph. Some, though likely not all, of the gages that may be affected by dam operations are noted. In a few cases, equivalent gages are noted. This is where a gage is moved and assigned a new number, but considered equivalent. In these cases, the flow record for the discontinued gage is included in the new gage. Only the newer gage, with the complete record, is included in this analysis.

The graphs in this section are arranged in numerical order. In general, they are arranged by Great Lake (or connecting channel) watershed, in the following order:

- Streams tributary to Lake Superior (04001000-04045500), pages 30-37
- Streams tributary to Lake Michigan
 - Upper Peninsula (04046000-04067500), pages 37-53
 - Southern Lower Peninsula (04096015-04119000), pages 53-76
 - Northern Lower Peninsula (04121000-04127800), pages 77-84
- Streams tributary to Lake Huron
 - Upper Peninsula (04127918), page 84
 - Lower Peninsula (04127997-04159010), pages 85-104
- Streams tributary to St. Clair River (04159492-04160600), pages 104-106
- Streams tributary to Lake St. Clair (04160800-04165500), pages 106-115
- Streams tributary to Detroit River (04166000-04168580), pages 115-119
- Streams tributary to Lake Erie (04169500-04176605), pages 119-124

As noted on the USGS Web site, http://pubs.usgs.gov/wdr/WDR-WA-03-1/pdf/ADR_F.pdf, “Since October 1, 1950, hydrologic-station records in USGS reports have been listed in order of downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary entering between two mainstream stations is listed between those stations.”
Streams Tributary to Lake Superior

USGS Gage 04001000, Washington Creek at Windigo, MI
- Drainage Area (square miles): 13.2
- Basin Number: 55
- Characteristic R-B Index Value: 0.225
- Rank: Lower Middle
- First Water Year: 1965
- Last Water Year: 2003
- Number of Water Years Analyzed: 39

USGS Gage 04028000, Montreal River at Gile, WI
- Drainage Area (square miles): 78
- Basin Number: 51
- Characteristic R-B Index Value: 0.174
- Rank: Upper Middle
- First Water Year: 1919
- Last Water Year: 1947
- Number of Water Years Analyzed: 12
- Comments: Gage added for this report update.

USGS Gage 04029000, West Branch Montreal River at Saxon Falls near Saxon, WI
- Drainage Area (square miles): 261
- Basin Number: 51
- Characteristic R-B Index Value: 0.179
- Rank: Highest
- First Water Year: 1939
- Last Water Year: 2010
- Number of Water Years Analyzed: 56
- Comments: Gage added for this report update.
Streams Tributary to Lake Superior (cont.)

USGS Gage 04030000, Montreal River near Saxon, WI
- Drainage Area (square miles): 264
- Basin Number: 51
- Characteristic R-B Index Value: 0.144
- Rank: Upper Middle
- p value: 0.01
- First Water Year: 1939
- Last Water Year: 1970
- Number of Water Years Analyzed: 32
- Comments: Diurnal fluctuation caused by Saxon Falls power plant 1.5 miles upstream. Flow regulated by Gile reservoir on West Branch Montreal River since April 1941.

USGS Gage 04031000, Black River near Bessemer, MI
- Drainage Area (square miles): 200
- Basin Number: 56
- Characteristic R-B Index Value: 0.220
- Rank: Highest
- First Water Year: 1955
- Last Water Year: 2010
- Number of Water Years Analyzed: 38
- Comments: Flow included some ground water pumped from mines at Bessemer.

USGS Gage 04031500, Presque Isle River at Marenisco, MI
- Drainage Area (square miles): 171
- Basin Number: 56
- Characteristic R-B Index Value: 0.113
- Rank: Upper Middle
- First Water Year: 1946
- Last Water Year: 1982
- Number of Water Years Analyzed: 37
- Comments: Since 1959, occasional regulation by Presque Isle Flooding Reservoir 2.5 miles upstream.

USGS Gage 04032000, Presque Isle River near Tula, MI
- Drainage Area (square miles): 261
- Basin Number: 56
- Characteristic R-B Index Value: 0.138
- Rank: Upper Middle
- First Water Year: 1946
- Last Water Year: 1973
- Number of Water Years Analyzed: 28
- Comments: Occasional regulation for lake or pond level control at several places above station at Marenisco.
Streams Tributary to Lake Superior (cont.)

USGS Gage 04032500, Iron River near White Pine, MI
- Drainage Area (square miles): 98.1
- Basin Number: 56
- Characteristic R-B Index Value: 0.266
- Rank: Upper Middle
- p value: 0.03
- First Water Year: 1953
- Last Water Year: 1957
- Number of Water Years Analyzed: 5

USGS Gage 04033000, Middle Branch Ontonagon River near Paulding, MI
- Drainage Area (square miles): 164
- Basin Number: 53
- Characteristic R-B Index Value: 0.081
- Rank: Lower Middle
- First Water Year: 1943
- First Water Year Analyzed, if different: 1976
- Last Water Year: 2009
- Number of Water Years Analyzed: 29
- Comments: Initially published an increasing trend for this gage. Additional data revises the analysis to decreasing trend for this report update.

USGS Gage 04034500, Middle Branch Ontonagon River near Trout Creek, MI
- Drainage Area (square miles): 203
- Basin Number: 53
- Characteristic R-B Index Value: 0.049
- Rank: Lowest
- Trend: decrease, p value: 0.02
- First Water Year: 1943
- Last Water Year: 2011
- Number of Water Years Analyzed: 69
- Comments:
 - Regulation by Bond Falls Reservoir 7.5 miles upstream.
 - Initially published an increasing trend for this gage. Additional data revises the analysis to decreasing trend for this report update.

USGS Gage 04035000, East Branch Ontonagon River near Mass, MI
- Drainage Area (square miles): 272
- Basin Number: 53
- Characteristic R-B Index Value: 0.170
- Rank: Upper Middle
- First Water Year: 1943
- Last Water Year: 1979
- Number of Water Years Analyzed: 37
Streams Tributary to Lake Superior (cont.)

USGS Gage 04035500, Middle Branch Ontonagon River near Rockland, MI
- Drainage Area (square miles): 671
- Basin Number: 53
- Characteristic R-B Index Value: 0.233
- Rank: Highest
- First Water Year: 1943
- Last Water Year: 2008
- Number of Water Years Analyzed: 66
- Comments: Regulation by Bond Falls Reservoir 30 miles upstream.

USGS Gage 04036000, West Branch Ontonagon River near Bergland, MI
- Drainage Area (square miles): 162
- Basin Number: 53
- Characteristic R-B Index Value: 0.060
- Rank: Lowest
- Trend: decrease, p value: 0.00
- First Water Year: 1943
- Last Water Year: 2011
- Number of Water Years Analyzed: 34
- Comments: Flow regulated by Lake Gogebic.

USGS Gage 04037500, Cisco Branch Ontonagon River at Cisco Lake Outlet, MI
- Drainage Area (square miles): 50.7
- Basin Number: 53
- Characteristic R-B Index Value: 0.281
- Rank: Upper Middle
- Trend: increase, p value: 0.00
- First Water Year: 1945
- Last Water Year: 2011
- Number of Water Years Analyzed: 35
- Comments: Flow regulated by Cisco Lake.

USGS Gage 04039500, South Branch Ontonagon River at Ewen, MI
- Drainage Area (square miles): 348
- Basin Number: 53
- Characteristic R-B Index Value: 0.141
- Rank: Upper Middle
- First Water Year: 1943
- Last Water Year: 1971
- Number of Water Years Analyzed: 28
- Comments: Some diversions from middle branch Ontonagon River by Bond Falls Canal. Some regulation at medium and low flows by Cisco Lake.
Streams Tributary to Lake Superior (cont.)

USGS Gage 04040000, Ontonagon River near Rockland, MI
- Drainage Area (square miles): 1340
- Basin Number: 53
- Characteristic R-B Index Value: 0.181
- Rank: Highest
- First Water Year: 1943
- Last Water Year: 2010
- Number of Water Years Analyzed: 68
- Comments: Regulated by Lake Victoria power plant on west branch five miles upstream. Bonds Falls reservoir 24 miles upstream.

USGS Gage 04041500, Sturgeon River near Alston, MI
- Drainage Area (square miles): 346
- Basin Number: 55
- Characteristic R-B Index Value: 0.123
- Rank: Upper Middle
- Trend: decrease, p value: 0.00
- First Water Year: 1933
- Last Water Year: 2011
- Number of Water Years Analyzed: 49
- Comments:
 - Flow regulated by power plant at gage station.
 - Initially published no trend for this gage. Additional data revises the analysis to decreasing trend for this report update.

USGS Gage 04042500, Otter River near Elo, MI
- Drainage Area (square miles): 162
- Basin Number: 55
- Characteristic R-B Index Value: 0.176
- Rank: Highest
- First Water Year: 1943
- Last Water Year: 1972
- Number of Water Years Analyzed: 30
Streams Tributary to Lake Superior (cont.)

USGS Gage 04043000, Sturgeon River near Arnheim, MI
- Drainage Area (square miles): 705
- Basin Number: 55
- Characteristic R-B Index Value: 0.095
- Rank: Lower Middle
- First Water Year: 1943
- Last Water Year: 1973
- Number of Water Years Analyzed: 31
- Comments: Occasional slight regulation caused by Prickett Dam at mile 45.

USGS Gage 04043150, Silver River near L'Anse, MI
- Drainage Area (square miles): 64.7
- Basin Number: 48
- Characteristic R-B Index Value: 0.250
- Rank: Upper Middle
- First Water Year: 2002
- Last Water Year: 2010
- Number of Water Years Analyzed: 9
- Comments: Gage added for this report update.

USGS Gage 04043050, Trap Rock River near Lake Linden, MI
- Drainage Area (square miles): 28
- Basin Number: 55
- Characteristic R-B Index Value: 0.233
- Rank: Lower Middle
- First Water Year: 1967
- Last Water Year: 2010
- Number of Water Years Analyzed: 44

USGS Gage 04043244, East Branch Salmon Trout River near Dodge City, MI
- Drainage Area (square miles): 10.2
- Basin Number: 48
- Characteristic R-B Index Value: 0.144
- Rank: Lowest
- First Water Year: 2006
- Last Water Year: 2010
- Number of Water Years Analyzed: 5
- Comments: Gage added for this report update.
Streams Tributary to Lake Superior (cont.)

USGS Gage 04043275, Yellow Dog River near Big Bay, MI
- Drainage Area (square miles): 31.8
- Basin Number: 48
- Characteristic R-B Index Value: 0.117
- Rank: Lower Middle
- First Water Year: 2006
- Last Water Year: 2010
- Number of Water Years Analyzed: 5
- Comments: Gage added for this report update.

USGS Gage 04044400, Carp River at US-Highway 41 near Negaunee, MI
- Drainage Area (square miles): 51.4
- Basin Number: 45
- Characteristic R-B Index Value: 0.088
- Rank: Lowest
- First Water Year: 1962
- Last Water Year: 1985
- Number of Water Years Analyzed: 24
- Comments: Flow regulated by Deer Lake storage reservoir five miles upstream.

USGS Gage 040444583, Cherry Creek near Harvey, MI
- Drainage Area (square miles): 4.53
- Basin Number: 43
- Characteristic R-B Index Value: 0.005
- Rank: Lowest
- First Water Year: 1966
- Last Water Year: 1981
- Number of Water Years Analyzed: 7

USGS Gage 04044724, AuTrain River at Forest Lake, MI
- Drainage Area (square miles): 81
- Basin Number: 39
- Characteristic R-B Index Value: 0.046
- Rank: Lowest
- First Water Year: 1994
- Last Water Year: 2011
- Number of Water Years Analyzed: 18
- Comments:
 - Flow regulated by a power plant 800 feet upstream and by the Au-Train Basin 0.6 miles upstream.
 - Initially published an increasing trend for this gage. Additional data revises the analysis to no trend for this report update.
Streams Tributary to Lake Superior (cont.)

USGS Gage 04045500, Tahquamenon River near Paradise, MI
- Drainage Area (square miles): 790
- Basin Number: 60
- Characteristic R-B Index Value: 0.055
- Rank: Lowest
- First Water Year: 1954
- Last Water Year: 2010
- Number of Water Years Analyzed: 57

USGS Gage 04046000, Black River near Garnet, MI
- Drainage Area (square miles): 28
- Basin Number: 41
- Characteristic R-B Index Value: 0.128
- Rank: Lowest
- First Water Year: 1952
- Last Water Year: 2011
- Number of Water Years Analyzed: 44

Streams Tributary to Lake Michigan, Upper Peninsula

USGS Gage 04049500, Manistique River at Germfask, MI
- Drainage Area (square miles): 341
- Basin Number: 49
- Characteristic R-B Index Value: 0.040
- Rank: Lowest
- p value: 0.05
- First Water Year: 1939
- Last Water Year: 1970
- Number of Water Years Analyzed: 32

Comments: Slight regulation on outlet of Manistique Lake about seven miles upstream beginning July 1948.

USGS Gage 04054500, Duck Creek near Blaney, MI
- Drainage Area (square miles): 92
- Basin Number: 49
- Characteristic R-B Index Value: 0.092
- Rank: Lowest
- First Water Year: 1939
- Last Water Year: 1954
- Number of Water Years Analyzed: 16
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04055000, Manistique River at Cookson Bridge near Blaney, MI
- Drainage Area (square miles): 704
- Basin Number: 49
- Characteristic R-B Index Value: 0.048
- Rank: Lowest
- First Water Year: 1938
- Last Water Year: 1970
- Number of Water Years Analyzed: 33
- Comments: Since July 1948 slight regulation on outlet at Manistique Lake about 25 miles upstream.

USGS Gage 04056000, West Branch Manistique River near Manistique, MI
- Drainage Area (square miles): 322
- Basin Number: 49
- Characteristic R-B Index Value: 0.058
- Rank: Lowest
- First Water Year: 1939
- Last Water Year: 1956
- Number of Water Years Analyzed: 18

USGS Gage 04056500, Manistique River near Manistique, MI
- Drainage Area (square miles): 1100
- Basin Number: 49
- Characteristic R-B Index Value: 0.050
- Rank: Lowest
- First Water Year: 1939
- Last Water Year: 2009
- Number of Water Years Analyzed: 71
- Comments: Slight regulation by dam on outlet of Manistee Lake since July 1948.

USGS Gage 04057000, Indian River near Manistique, MI
- Drainage Area (square miles): 302
- Basin Number: 49
- Characteristic R-B Index Value: 0.029
- Rank: Lowest
- First Water Year: 1939
- First Water Year Analyzed, if different: 1965
- Last Water Year: 1993
- Number of Water Years Analyzed: 8
- Comments: Indian Lake regulated 1.5 miles below base gage.
USGS Gage 04057510, Sturgeon River near Nahma Junction, MI
- Drainage Area (square miles): 183
- Basin Number: 58
- Characteristic R-B Index Value: 0.089
- Rank: Lower Middle
- Trend: decrease, p value: 0.01
- First Water Year: 1967
- First Water Year Analyzed, if different: 1984
- Last Water Year: 2009
- Number of Water Years Analyzed: 26
- Comments: Initially published no trend for this gage. Additional data revises the analysis to decreasing trend for this report update.

USGS Gage 04057800, Middle Branch Escanaba River at Humboldt, MI
- Drainage Area (square miles): 46
- Basin Number: 46
- Characteristic R-B Index Value: 0.153
- Rank: Lower Middle
- Trend: decrease, p value: 0.03
- First Water Year: 1960
- Last Water Year: 2009
- Number of Water Years Analyzed: 50
- Comments:
 - From July 1960 to June 1972 some diversions 100 feet upstream by industry for iron ore processing.
 - Initially published no trend for this gage. Additional data revises the analysis to decreasing trend for this report update.
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04057820, Middle Branch Escanaba River near Greenwood, MI
- Drainage Area (square miles): 73.3
- Basin Number: 46
- Characteristic R-B Index Value: 0.101
- Rank: Lower Middle
- First Water Year: 1973
- Last Water Year: 1982
- Number of Water Years Analyzed: 10
- Comments: Since January 1973 flow diverted 2.3 miles upstream at Greenwood after Bay, to Green Creek for iron ore processing, some returned to middle branch Escanaba River 24 miles downstream via another Green Creek and some returned to East Branch Escanaba River via Goose Lake Outlet.

USGS Gage 04057900, Black River near Republic, MI
- Drainage Area (square miles): 34.4
- Basin Number: 46
- Characteristic R-B Index Value: 0.154
- Rank: Lower Middle
- First Water Year: 1962
- Last Water Year: 1968
- Number of Water Years Analyzed: 7
- Comments: Records include effluent from industrial plant diverted into basin from Middle Branch Escanaba River.

USGS Gage 04058000, Middle Branch Escanaba River near Ishpeming, MI
- Drainage Area (square miles): 128
- Basin Number: 46
- Characteristic R-B Index Value: 0.131
- Rank: Upper Middle
- First Water Year: 1955
- Last Water Year: 1975
- Number of Water Years Analyzed: 21
- Comments: Some flow diverted and returned above station by iron ore processing plant.
USGS Gage 04058100, Middle Branch Escanaba River near Princeton, MI
- Drainage Area (square miles): 210
- Basin Number: 46
- Characteristic R-B Index Value: 0.090
- Rank: Lower Middle
- First Water Year: 1962
- First Water Year Analyzed, if different: 1996
- Last Water Year: 2011
- Number of Water Years Analyzed: 15
- Comments:
 - Flow regulated by power plant 400 feet upstream from station. Since December 1972 additional regulation 27 miles upstream by Greenwood release. Since January 1973 some flow diverted to Green Creek via Greenwood Diversion 27 miles upstream. October 1979 some of the diversion returned five miles downstream via Goose Lake Outlet and East Branch Escanaba River. 1973 to 1991 discharges and runoff figures were adjusted for diversion and change in contents in Greenwood reservoir.
 - Initially published decreasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04058200, Schweitzer Creek near Palmer, MI
- Drainage Area (square miles): 23.6
- Basin Number: 46
- Characteristic R-B Index Value: 0.204
- Rank: Lower Middle
- First Water Year: 1961
- Last Water Year: 2009
- Number of Water Years Analyzed: 49
- Comments: Since August 1962 flow completely regulated by Schweitzer Reservoirs one mile upstream. Prior to June 1994 some diversions from headwaters of basin for municipal supply and effluent discharge to the Carp River basin. An average of 46 cubic feet per second was diverted from Schweitzer reservoirs by industry iron ore processing, some returned via Goose Lake Outlet and East Branch Escanaba River. Diversions into Schweitzer Reservoir from Greenwood Reservoir via Greenwood diversion.
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04058300, Warner Creek near Palmer, MI
- Drainage Area (square miles): 14.2
- Basin Number: 46
- Characteristic R-B Index Value: 0.195
- Rank: Lower Middle
- First Water Year: 1962
- Last Water Year: 1978
- Number of Water Years Analyzed: 13

USGS Gage 04058400, Goose Lake Outlet near Sands Station, MI
- Drainage Area (square miles): 37.5
- Basin Number: 46
- Characteristic R-B Index Value: 0.084
- Rank: Lowest
- p value: 0.05
- First Water Year: 1966
- Last Water Year: 1982
- Number of Water Years Analyzed: 17
- Comments: Flow includes an average of 9.6 cubic feet per second discharge into basin from mine tailings pond three miles upstream, the greater part diverted from Schweitzer Reservoir station. Diversion began October 1979.

USGS Gage 04058500, East Branch Escanaba River at Gwinn, MI
- Drainage Area (square miles): 124
- Basin Number: 46
- Characteristic R-B Index Value: 0.133
- Rank: Upper Middle
- First Water Year: 1955
- Last Water Year: 1980
- Number of Water Years Analyzed: 26
- Comments: Since August 1962 some regulation by Schweitzer Reservoir about 16 miles upstream. An average of 2.2 cubic feet per second was diverted from headwaters of basin by the City of Ishpeming for municipal supply and effluent discharge to the Carp River Basin. An average of 34 cubic feet per second was diverted from Schweitzer reservoir by industry for iron ore processing, some returned to the Middle Branch Escanaba River via Green Creek and some returned to the East Branch Escanaba River via the Goose Lake Outlet. Diversion into Schweitzer Reservoir from Greenwood Reservoir via Greenwood Diversion.
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04059000, Escanaba River at Cornell, MI
- Drainage Area (square miles): 870
- Basin Number: 46
- Characteristic R-B Index Value: 0.103
- Rank: Lower Middle
- First Water Year: 1951
- First Water Year Analyzed, if different: 1996
- Last Water Year: 2009
- Number of Water Years Analyzed: 14
- Comments:
 - Diurnal fluctuation and occasional slight regulation caused by Boney Falls power plant seven miles above station since 1950. Since August 1962 some regulation by Schweitzer reservoir at headwaters.
 - Initially published decreasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04059400, Ten Mile Creek at Perronville, MI
- Drainage Area (square miles): 39
- Basin Number: 47
- Characteristic R-B Index Value: 0.165
- Rank: Lower Middle
- First Water Year: 1972
- Last Water Year: 1977
- Number of Water Years Analyzed: 6

USGS Gage 04059500, Ford River near Hyde, MI
- Drainage Area (square miles): 450
- Basin Number: 47
- Characteristic R-B Index Value: 0.113
- Rank: Upper Middle
- First Water Year: 1955
- Last Water Year: 2009
- Number of Water Years Analyzed: 55
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04060500, Iron River at Highway 424 at Caspian, MI
- Drainage Area (square miles): 92.1
- Basin Number: 50
- Characteristic R-B Index Value: 0.069
- Rank: Lowest
- Trend: decrease, p value: 0.00
- First Water Year: 1949
- Last Water Year: 2009
- Number of Water Years Analyzed: 37
- Comments:
 - Prior to August 1978 the average flow includes mine pumpage and sewage effluent. Since August 1978 average flow includes about one foot per second sewage effluent.
 - Initially published no trend for this gage. Additional data revises the analysis to decreasing trend for this report update.

USGS Gage 04060993, Brule River at US-2 near Florence, WI
- Drainage Area (square miles): 366
- Basin Number: 50
- Characteristic R-B Index Value: 0.080
- Rank: Lower Middle
- First Water Year: 1915
- Last Water Year: 2009
- Number of Water Years Analyzed: 66
- Comments: Discharge includes some mine pumpage prior to August 1977, discontinued gage 04061000 considered equivalent.

USGS Gage 04061500, Paint River at Crystal Falls, MI
- Drainage Area (square miles): 597
- Basin Number: 50
- Characteristic R-B Index Value: 0.109
- Rank: Upper Middle
- First Water Year: 1945
- Last Water Year: 1996
- Number of Water Years Analyzed: 51
- Comments: Diurnal fluctuations caused by power plant immediately upstream; since storage capacity is small, daily flows are not affected appreciably.
USGS Gage 04062000, Paint River near Alpha, MI
- Drainage Area (square miles): 631
- Basin Number: 50
- Characteristic R-B Index Value: 0.051
- Rank: Lowest
- Trend: decrease, p value: 0.00
- First Water Year: 1953
- Last Water Year: 2011
- Number of Water Years Analyzed: 30
Comments:
- Flow completely regulated by Lower Paint Dam 0.6 miles upstream.
- Initially published no trend for this gage. Additional data revises the analysis to decreasing trend for this report update.

USGS Gage 04062011, Brule River near Commonwealth, WI
- Drainage Area (square miles): 1020
- Basin Number: 50
- Characteristic R-B Index Value: 0.072
- Rank: Lower Middle
- Trend: decrease, p value: 0.00
- First Water Year: 1990
- Last Water Year: 2011
- Number of Water Years Analyzed: 22
Comments: Flow regulated by power plant 900 feet upstream and by Lower Paint Dam 8.2 miles upstream.

USGS Gage 04062100, Peshekee River near Michigamme, MI
- Drainage Area (square miles): 66.5
- Basin Number: 50
- Characteristic R-B Index Value: 0.197
- Rank: Upper Middle
- First Water Year: 1962
- Last Water Year: 1995
- Number of Water Years Analyzed: 9
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04062200, Peshekee River near Champion, MI
- Drainage Area (square miles): 133
- Basin Number: 50
- Characteristic R-B Index Value: 0.169
- Rank: Upper Middle
- First Water Year: 1962
- First Water Year Analyzed, if different: 2001
- Last Water Year: 2009
- Number of Water Years Analyzed: 9

USGS Gage 04062230, Michigamme River near Champion, MI
- Drainage Area (square miles): 231
- Basin Number: 50
- Characteristic R-B Index Value: 0.065
- Rank: Lowest
- First Water Year: 1965
- Last Water Year: 1969
- Number of Water Years Analyzed: 5

USGS Gage 04062270, Michigamme River near Republic, MI
- Drainage Area (square miles): 240
- Basin Number: 50
- Characteristic R-B Index Value: 0.083
- Rank: Lower Middle
- First Water Year: 1962
- First Water Year Analyzed, if different: 1964
- Last Water Year: 1975
- Number of Water Years Analyzed: 12
- Comments: Prior to June 1, 1963 diurnal fluctuation caused by power plant 0.4 miles above station; power plant abandoned and only occasional regulation since. Since June 1, 1963 water diverted 0.5 miles above station for industrial use and returned to river by Gambles Creek five miles downstream.
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04062400, Michigamme River near Witch Lake, MI
- Drainage Area (square miles): 316
- Basin Number: 50
- Characteristic R-B Index Value: 0.075
- Rank: Lower Middle
- First Water Year: 1965
- Last Water Year: 1980
- Number of Water Years Analyzed: 16
- Comments: Water discharge records good except those from the winter period, which are fair. Occasional regulation 14 miles upstream. Some flow diverted and returned to the above station by an iron ore processing plant.

USGS Gage 04062500, Michigamme River near Crystal Falls, MI
- Drainage Area (square miles): 656
- Basin Number: 50
- Characteristic R-B Index Value: 0.048
- Rank: Lowest
- Trend: decrease, p value: 0.00
- First Water Year: 1945
- First Water Year Analyzed, if different: 1972
- Last Water Year: 2011
- Number of Water Years Analyzed: 40
- Comments: Regulated by power plant and Michigan reservoir five miles upstream.
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04063000, Menominee River near Florence, WI
- Drainage Area (square miles): 1760
- Basin Number: 50
- Characteristic R-B Index Value: 0.086
- Rank: Upper Middle
- Trend: decrease, p value: 0.00
- First Water Year: 1915
- First Water Year Analyzed, if different: 1952
- Last Water Year: 2011
- Number of Water Years Analyzed: 60

Comments:
- Prior to July 1950 discharge determined from power plant records, flow regulated by power plants, Michigamme Reservoir, Peavy Pond, and many smaller reservoirs upstream from station.
- Initially published no trend for this gage. Additional data revises the analysis to decreasing trend for this report update.

USGS Gage 04063500, Menominee River at Twin Falls near Iron Mountain, MI
- Drainage Area (square miles): 1800
- Basin Number: 50
- Characteristic R-B Index Value: 0.076
- Rank: Lower Middle
- Trend: decrease, p value: 0.00
- First Water Year: 1915
- First Water Year Analyzed, if different: 1963
- Last Water Year: 2011
- Number of Water Years Analyzed: 49

Comments:
- Prior to 1957 discharge determined from power plant records. Flow regulated by power plants, Michigamme Reservoir, Peavy Pond, and many smaller reservoirs upstream from station.
- Initially published no trend for this gage. Additional data revises the analysis to decreasing trend for this report update.
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04063700, Popple River near Fence, WI
- Drainage Area (square miles): 139
- Basin Number: 50
- Characteristic R-B Index Value: 0.098
- Rank: Lower Middle
- First Water Year: 1964
- Last Water Year: 2011
- Number of Water Years Analyzed: 47
- Comments: Gage added for this report update.

USGS Gage 04064000, Pine River near Florence, WI
- Drainage Area (square miles): 510
- Basin Number: 50
- Characteristic R-B Index Value: 0.067
- Rank: Lowest
- First Water Year: 1914
- Last Water Year: 1923
- Number of Water Years Analyzed: 10
- Comments: Gage added for this report update.

USGS Gage 04065106, Menominee River at Niagara, WI
- Drainage Area (square miles): 2470
- Basin Number: 50
- Characteristic R-B Index Value: 0.069
- Rank: Lower Middle
- Trend: decrease, p value: 0.00
- First Water Year: 1993
- Last Water Year: 2011
- Number of Water Years Analyzed: 19
- Comments: Gage added for this report update.
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04065300, West Branch Sturgeon River near Randville, MI
- Drainage Area (square miles): 56.1
- Basin Number: 50
- Characteristic R-B Index Value: 0.183
- Rank: Upper Middle
- First Water Year: 1959
- Last Water Year: 1981
- Number of Water Years Analyzed: 23
- Comments: Since December 1958 diversion above for industrial use; figures of runoff adjusted thereafter. Small diversions for sprinkler irrigation.

USGS Gage 04065393, East Branch Sturgeon River below Skunk Creek near Felch, MI
- Drainage Area (square miles): 61.8
- Basin Number: 50
- Characteristic R-B Index Value: 0.137
- Rank: Lower Middle
- First Water Year: 1974
- Last Water Year: 1984
- Number of Water Years Analyzed: 11
- Comments: Since June 1975 occasional regulation during low flows by Gene Lake Reservoir in headwater and hardwood reservoir 1.2 miles upstream.

USGS Gage 04065500, Sturgeon River near Foster City, MI
- Drainage Area (square miles): 237
- Basin Number: 50
- Characteristic R-B Index Value: 0.109
- Rank: Upper Middle
- First Water Year: 1955
- Last Water Year: 1980
- Number of Water Years Analyzed: 26
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04065600, Pine Creek near Iron Mountain, MI
- Drainage Area (square miles): 17
- Basin Number: 50
- Characteristic R-B Index Value: 0.156
- Rank: Lowest
- First Water Year: 1972
- Last Water Year: 1961
- Number of Water Years Analyzed: 10
- Comments: Flow includes an average of 5.6 cubic feet per second diverted from West Branch Sturgeon River basin.

USGS Gage 04065722, Menominee River near Vulcan, MI
- Drainage Area (square miles): 2900
- Basin Number: 50
- Characteristic R-B Index Value: 0.089
- Rank: Upper Middle
- First Water Year: 1989
- Last Water Year: 2011
- Number of Water Years Analyzed: 23
- Comments: Flow regulated by power plants, Michigamme Reservoir, Peavy Pond, and many smaller reservoirs upstream from station. Discontinued Gage 04066000 considered equivalent.

USGS Gage 04066003, Menominee River below Pemene Creek near Pembine, WI
- Drainage Area (square miles): 3140
- Basin Number: 50
- Characteristic R-B Index Value: 0.080
- Rank: Upper Middle
- Trend: decrease, p value: 0.00
- First Water Year: 1950
- Last Water Year: 2011
- Number of Water Years Analyzed: 61
- Comments: Flow regulated by power plants, Michigamme Reservoir, Peavy Pond, and many smaller reservoirs upstream from station.

USGS Gage 04066030, Menominee River at White Rapids Dam near Banat, MI
- Drainage Area (square miles): 3190
- Basin Number: 50
- Characteristic R-B Index Value: 0.102
- Rank: Highest
- First Water Year: 1999
- Last Water Year: 2011
- Number of Water Years Analyzed: 13
- Comments: Gage added for this report update.
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04066800, Menominee River at Koss, MI
- Drainage Area (square miles): 3700
- Basin Number: 50
- Characteristic R-B Index Value: 0.090
- Rank: Upper Middle
- First Water Year: 1914
- Last Water Year: 2011
- Number of Water Years Analyzed: 12

Comments:
- Flow regulated by power plants, Michigamme Reservoir, Peavy Pond on Michigamme River, and by smaller reservoirs above station.
- Gage listed as 04066700 in previous report.

USGS Gage 04066500, Pike River at Amberg, WI
- Drainage Area (square miles): 255
- Basin Number: 50
- Characteristic R-B Index Value: 0.090
- Rank: Lower Middle
- First Water Year: 1915
- Last Water Year: 2011
- Number of Water Years Analyzed: 66

Comments: Gage added for this report update.
Streams Tributary to Lake Michigan, Upper Peninsula (cont.)

USGS Gage 04067500, Menominee River near McAllister, WI
- Drainage Area (square miles): 3930
- Basin Number: 50
- Characteristic R-B Index Value: 0.081
- Rank: Upper Middle
- Trend: decrease, p value: 0.01
- First Water Year: 1946
- First Water Year Analyzed, if different: 1980
- Last Water Year: 2011
- Number of Water Years Analyzed: 24
- Comments: Gage added for this report update.

Streams Tributary to Lake Michigan, Southern Lower Peninsula

USGS Gage 04096015, Galien River near Sawyer, MI
- Drainage Area (square miles): 80.7
- Basin Number: 34
- Characteristic R-B Index Value: 0.304
- Rank: Highest
- First Water Year: 1996
- Last Water Year: 2010
- Number of Water Years Analyzed: 15
- Comments: Initially published decreasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04096100, Galena River near Laporte, IN
- Drainage Area (square miles): 17.2
- Basin Number: 34
- Characteristic R-B Index Value: 0.229
- Rank: Lower Middle
- First Water Year: 1970
- Last Water Year: 2003
- Number of Water Years Analyzed: 34
- Comments: Gage added for this report update.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04096272, Beebe Creek at Moore Road near Hillsdale, MI
- Drainage Area (square miles): 42.4
- Basin Number: 34
- Characteristic R-B Index Value: 0.173
- Rank: Lower Middle
- First Water Year: 1975
- Last Water Year: 1980
- Number of Water Years Analyzed: 6
- Comments: Occasional regulation by Lake Belair about five miles above location.

USGS Gage 04096405, St. Joseph River at Burlington, MI
- Drainage Area (square miles): 206
- Basin Number: 34
- Characteristic R-B Index Value: 0.063
- Rank: Lowest
- First Water Year: 1963
- Last Water Year: 2011
- Number of Water Years Analyzed: 49
- Comments: Discontinued gage 04096400 considered equivalent.

USGS Gage 04096500, Sauk River at Jay Street at Coldwater, MI
- Drainage Area (square miles): 60
- Basin Number: 34
- Characteristic R-B Index Value: 0.100
- Rank: Lowest
- First Water Year: 1938
- Last Water Year: 1962
- Number of Water Years Analyzed: 25
- Comments: Drainage area indeterminate due to infrequent contribution to or from Coldwater Lake. Regulation caused by dam at outlet of Marble Lake.

USGS Gage 04096515, South Branch Hog Creek near Allen, MI
- Drainage Area (square miles): 48.7
- Basin Number: 34
- Characteristic R-B Index Value: 0.141
- Rank: Lower Middle
- Trend: increase, p value: 0.00
- First Water Year: 1970
- Last Water Year: 2010
- Number of Water Years Analyzed: 42
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04096600, Coldwater River near Hodunk, MI
- Drainage Area (square miles): 293
- Basin Number: 34
- Characteristic R-B Index Value: 0.078
- Rank: Lower Middle
- First Water Year: 1963
- Last Water Year: 1989
- Number of Water Years Analyzed: 27
- Comments: Diurnal fluctuation caused by mills upstream above station.

USGS Gage 04096900, Nottawa Creek near Athens, MI
- Drainage Area (square miles): 162
- Basin Number: 34
- Characteristic R-B Index Value: 0.084
- Rank: Lower Middle
- Trend: increase, p value: 0.02
- First Water Year: 1967
- Last Water Year: 1997
- Number of Water Years Analyzed: 31

USGS Gage 04097170, Portage River at W Avenue near Vicksburg, MI
- Drainage Area (square miles): 68.2
- Basin Number: 34
- Characteristic R-B Index Value: 0.047
- Rank: Lowest
- First Water Year: 1947
- First Water Year Analyzed, if different: 1965
- Last Water Year: 1979
- Number of Water Years Analyzed: 15

USGS Gage 04097200, Gourdneck Creek near Schoolcraft, MI
- Drainage Area (square miles): 7.29
- Basin Number: 34
- Characteristic R-B Index Value: 0.094
- Rank: Lowest
- First Water Year: 1965
- Last Water Year: 1972
- Number of Water Years Analyzed: 8
- Comments: Gourdneck canal diverts water from stream 100 feet above station to sustain lake levels.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04097500, St. Joseph River at Three Rivers, MI
- Drainage Area (square miles): 1350
- Basin Number: 34
- Characteristic R-B Index Value: 0.062
- Rank: Lower Middle
- Trend: decrease, p value: 0.01
- First Water Year: 1954
- Last Water Year: 2011
- Number of Water Years Analyzed: 49
- Comments: Flow regulated by power plant upstream from station.

USGS Gage 04097540, Prairie River near Nottawa, MI
- Drainage Area (square miles): 106
- Basin Number: 34
- Characteristic R-B Index Value: 0.056
- Rank: Lowest
- First Water Year: 1963
- Last Water Year: 2010
- Number of Water Years Analyzed: 48
- Comments: Since 1987 some diversion by pumping for sprinkler irrigation.

USGS Gage 04097970, Lime Lake Outlet at Panama, IN
- Drainage Area (square miles): 17.5
- Basin Number: 34
- Characteristic R-B Index Value: 0.062
- Rank: Lowest
- First Water Year: 1970
- Last Water Year: 1986
- Number of Water Years Analyzed: 17
- Comments: Gage added for this report update.

USGS Gage 04098500, Fawn River near White Pigeon, MI
- Drainage Area (square miles): 192
- Basin Number: 34
- Characteristic R-B Index Value: 0.051
- Rank: Lowest
- First Water Year: 1958
- Last Water Year: 1975
- Number of Water Years Analyzed: 18
- Comments: Small diurnal fluctuation caused by power plants above station.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04099000, St. Joseph River at Mottville, MI
- Drainage Area (square miles): 1866
- Basin Number: 34
- Characteristic R-B Index Value: 0.050
- Rank: Lowest
- Trend: decrease, p value: 0.00
- First Water Year: 1925
- Last Water Year: 2011
- Number of Water Years Analyzed: 87
- Comments: Flow regulated by power plants upstream from station.

USGS Gage 04099510, Pigeon Creek near Angola, IN
- Drainage Area (square miles): 106
- Basin Number: 34
- Characteristic R-B Index Value: 0.079
- Rank: Lower Middle
- Trend: decrease, p value: 0.04
- First Water Year: 1946
- First Water Year Analyzed, if different: 1996
- Last Water Year: 2011
- Number of Water Years Analyzed: 16
- Comments: Gage added for this report update.

USGS Gage 04099610, Pretty Lake Inlet near Stroh, IN
- Drainage Area (square miles): 1.96
- Basin Number: 34
- Characteristic R-B Index Value: 0.281
- Rank: Lower Middle
- First Water Year: 1964
- Last Water Year: 1981
- Number of Water Years Analyzed: 18
- Comments: Gage added for this report update.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04099750, Pigeon River near Scott, IN
- Drainage Area (square miles): 307
- Basin Number: 34
- Characteristic R-B Index Value: 0.068
- Rank: Lower Middle
- Trend: increase, p value: 0.00
- First Water Year: 1969
- Last Water Year: 2011
- Number of Water Years Analyzed: 43
- Comments: Gage added for this report update.

USGS Gage 04099808, Little Elkhart River at Middlebury, IN
- Drainage Area (square miles): 91.7
- Basin Number: 34
- Characteristic R-B Index Value: 0.154
- Rank: Lower Middle
- First Water Year: 1980
- Last Water Year: 2003
- Number of Water Years Analyzed: 24
- Comments: Gage added for this report update.

USGS Gage 04099850, Pine Creek near Elkhart, IN
- Drainage Area (square miles): 31
- Basin Number: 34
- Characteristic R-B Index Value: 0.200
- Rank: Upper Middle
- First Water Year: 1980
- Last Water Year: 2003
- Number of Water Years Analyzed: 24
- Comments: Gage added for this report update.

USGS Gage 04100222, North Branch Elkhart River at Cosperville, IN
- Drainage Area (square miles): 142
- Basin Number: 34
- Characteristic R-B Index Value: 0.053
- Rank: Lowest
- Trend: decrease, p value: 0.05
- First Water Year: 1972
- Last Water Year: 2011
- Number of Water Years Analyzed: 40
- Comments: Gage added for this report update.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04100252, Forker Creek near Burr Oak, IN
- Drainage Area (square miles): 19.2
- Basin Number: 34
- Characteristic R-B Index Value: 0.198
- Rank: Lower Middle
- Trend: increase, p value: 0.04
- First Water Year: 1970
- Last Water Year: 2003
- Number of Water Years Analyzed: 34
- Comments: Gage added for this report update.

USGS Gage 04100295, Rimmell Branch near Albion, IN
- Drainage Area (square miles): 10.7
- Basin Number: 34
- Characteristic R-B Index Value: 0.446
- Rank: Upper Middle
- First Water Year: 1981
- Last Water Year: 2001
- Number of Water Years Analyzed: 21
- Comments: Gage added for this report update.

USGS Gage 04100377, Solomon Creek near Syracuse, IN
- Drainage Area (square miles): 36.1
- Basin Number: 34
- Characteristic R-B Index Value: 0.108
- Rank: Lower Middle
- Trend: increase, p value: 0.02
- First Water Year: 1988
- Last Water Year: 2003
- Number of Water Years Analyzed: 16
- Comments: Gage added for this report update.

USGS Gage 04100465, Turkey Creek at Syracuse, IN
- Drainage Area (square miles): 43.8
- Basin Number: 34
- Characteristic R-B Index Value: 0.065
- Rank: Lowest
- First Water Year: 1970
- Last Water Year: 1987
- Number of Water Years Analyzed: 18
- Comments: Gage added for this report update.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04100500, Elkhart River at Goshen, IN
- Drainage Area (square miles): 594
- Basin Number: 34
- Characteristic R-B Index Value: 0.102
- Rank: Lower Middle
- First Water Year: 1932
- First Water Year Analyzed, if different: 1955
- Last Water Year: 2011
- Number of Water Years Analyzed: 57
- Comments: Gage added for this report update.

USGS Gage 04101000, St. Joseph River at Elkhart, IN
- Drainage Area (square miles): 3370
- Basin Number: 34
- Characteristic R-B Index Value: 0.093
- Rank: Lowest
- Trend: decrease, p value: 0.00
- First Water Year: 1931
- Last Water Year: 2011
- Number of Water Years Analyzed: 80
- Comments: Flow regulated by power plants upstream from station.

USGS Gage 04101370, Juday Creek near South Bend, IN
- Drainage Area (square miles): 38
- Basin Number: 34
- Characteristic R-B Index Value: 0.093
- Rank: Lowest
- Trend: decrease, p value: 0.00
- First Water Year: 1993
- Last Water Year: 2010
- Number of Water Years Analyzed: 18
- Comments: Gage added for this report update.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04101800, Dowagiac River at Sumnerville, MI
- Drainage Area (square miles): 255
- Basin Number: 34
- Characteristic R-B Index Value: 0.092
- Rank: Lower Middle
- Trend: increase, p value: 0.00
- First Water Year: 1961
- First Water Year Analyzed, if different: 1973
- Last Water Year: 2011
- Number of Water Years Analyzed: 39
- Comments: Flow regulated by millpond and lake-level control dam upstream from station.

USGS Gage 04102000, St. Joseph River at Berrien Springs, MI
- Drainage Area (square miles): 4081
- Basin Number: 34
- Characteristic R-B Index Value: 0.085
- Rank: Upper Middle
- First Water Year: 1902
- Last Water Year: 1956
- Number of Water Years Analyzed: 10

USGS Gage 04102500, Paw Paw River at Riverside, MI
- Drainage Area (square miles): 390
- Basin Number: 34
- Characteristic R-B Index Value: 0.070
- Rank: Lower Middle
- Trend: increase, p value: 0.00
- First Water Year: 1952
- First Water Year Analyzed, if different: 1971
- Last Water Year: 2011
- Number of Water Years Analyzed: 41
- Comments: Diurnal fluctuation, principally during low flow, caused by paper mill upstream from station.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04102700, South Branch Black River near Bangor, MI
- Drainage Area (square miles): 83.6
- Basin Number: 7
- Characteristic R-B Index Value: 0.191
- Rank: Upper Middle
- Trend: increase, p value: 0.01
- First Water Year: 1967
- Last Water Year: 2011
- Number of Water Years Analyzed: 45

Comments:
- Occasional regulation caused by mills upstream from station.
- Initially published no trend for this gage. Additional data revises the analysis to increasing trend for this report update.

USGS Gage 04102776, Middle Branch Black River near South Haven, MI
- Drainage Area (square miles): 83
- Basin Number: 7
- Characteristic R-B Index Value: 0.129
- Rank: Lower Middle
- First Water Year: 1995
- Last Water Year: 2010
- Number of Water Years Analyzed: 16

USGS Gage 04102850, South Branch Kalamazoo River near Albion, MI
- Drainage Area (square miles): 146
- Basin Number: 17
- Characteristic R-B Index Value: 0.052
- Rank: Lowest
- p value: 0.03
- First Water Year: 1972
- Last Water Year: 1976
- Number of Water Years Analyzed: 5
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04103010, Kalamazoo River near Marengo, MI
- Drainage Area (square miles): 267
- Basin Number: 17
- Characteristic R-B Index Value: 0.063
- Rank: Lowest
- First Water Year: 1987
- Last Water Year: 2011
- Number of Water Years Analyzed: 25
- Comments: Some diversion by pumping for irrigation.

USGS Gage 04103500, Kalamazoo River at Marshall, MI
- Drainage Area (square miles): 449
- Basin Number: 17
- Characteristic R-B Index Value: 0.074
- Rank: Lower Middle
- First Water Year: 1949
- First Water Year Analyzed, if different: 2002
- Last Water Year: 2011
- Number of Water Years Analyzed: 10
- Comments: Flow regulated by power plant upstream from station.

USGS Gage 04104945, Wanadoga Creek near Battle Creek, MI
- Drainage Area (square miles): 48.3
- Basin Number: 17
- Characteristic R-B Index Value: 0.198
- Rank: Upper Middle
- Trend: increase, p value: 0.01
- First Water Year: 1995
- Last Water Year: 2011
- Number of Water Years Analyzed: 17
- Comments: Initially published no trend for this gage. Additional data revises the analysis to increasing trend for this report update.
USGS Gage 04105000, Battle Creek at Battle Creek, MI
- Drainage Area (square miles): 241
- Basin Number: 17
- Characteristic R-B Index Value: 0.126
- Rank: Upper Middle
- Trend: increase, p value: 0.00
- First Water Year: 1935
- First Water Year Analyzed, if different: 1962
- Last Water Year: 2011
- Number of Water Years Analyzed: 50
- Comments: Occasional slight regulation prior November 1943.

USGS Gage 04105500, Kalamazoo River near Battle Creek, MI
- Drainage Area (square miles): 824
- Basin Number: 17
- Characteristic R-B Index Value: 0.089
- Rank: Lower Middle
- Trend: increase, p value: 0.01
- First Water Year: 1937
- First Water Year Analyzed, if different: 1994
- Last Water Year: 2011
- Number of Water Years Analyzed: 18
- Comments:
 - Diurnal fluctuation below 1500 feet per second caused by power plants upstream from station.
 - Initially published decreasing trend for this gage. Additional data revises the analysis to increasing trend for this report update.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04105700, Augusta Creek near Augusta, MI
- Drainage Area (square miles): 38.9
- Basin Number: 17
- Characteristic R-B Index Value: 0.105
- Rank: Lower Middle
- Trend: increase, p value: 0.00
- First Water Year: 1965
- First Water Year Analyzed, if different: 1972
- Last Water Year: 2011
- Number of Water Years Analyzed: 40

USGS Gage 04105800, Gull Creek at 37th Street near Galesburg, MI
- Drainage Area (square miles): 38.1
- Basin Number: 17
- Characteristic R-B Index Value: 0.060
- Rank: Lowest
- First Water Year: 1965
- Last Water Year: 1972
- Number of Water Years Analyzed: 8
- Comments: Occasional regulation by many dams upstream.

USGS Gage 04106000, Kalamazoo River at Comstock, MI
- Drainage Area (square miles): 1010
- Basin Number: 17
- Characteristic R-B Index Value: 0.077
- Rank: Lower Middle
- Trend: decrease, p value: 0.02
- First Water Year: 1933
- Last Water Year: 2011
- Number of Water Years Analyzed: 74
- Comments:
 - Flow regulation by power plant 1.2 miles upstream from station.
 - Initially published no trend for this gage. Additional data revises the analysis to decreasing trend for this report update.

USGS Gage 04106180, Portage Creek at Portage, MI
- Drainage Area (square miles): 16.5
- Basin Number: 17
- Characteristic R-B Index Value: 0.091
- Rank: Lowest
- Trend: increase, p value: 0.01
- First Water Year: 1983
- Last Water Year: 2006
- Number of Water Years Analyzed: 24
USGS Gage 04106300, Portage Creek near Kalamazoo, MI
- Drainage Area (square miles): 22.4
- Basin Number: 17
- Characteristic R-B Index Value: 0.109
- Rank: Lowest
- First Water Year: 1965
- First Water Year Analyzed, if different: 1988
- Last Water Year: 2008
- Number of Water Years Analyzed: 21
- Comments: Flow includes water which is pumped from ground water sources by industry and discharge into stream two miles upstream from station.

USGS Gage 04106320, West Fork Portage Creek near Oshtemo, MI
- Drainage Area (square miles): 13
- Basin Number: 17
- Characteristic R-B Index Value: 0.098
- Rank: Lowest
- Trend: increase, p value: 0.00
- First Water Year: 1973
- Last Water Year: 1996
- Number of Water Years Analyzed: 24
- Comments: At times flow is affected by ground water withdrawals.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04106400, West Fork Portage Creek at Kalamazoo, MI
- Drainage Area (square miles): 18.7
- Basin Number: 17
- Characteristic R-B Index Value: 0.088
- Rank: Lowest
- First Water Year: 1960
- First Water Year Analyzed, if different: 1995
- Last Water Year: 2011
- Number of Water Years Analyzed: 17

Comments:
- At times water is affected by water withdrawals.
- Initially published increasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04106500, Portage Creek at Kalamazoo, MI
- Drainage Area (square miles): 46.8
- Basin Number: 17
- Characteristic R-B Index Value: 0.121
- Rank: Lower Middle
- Trend: increase, p value: 0.01
- First Water Year: 1948
- Last Water Year: 1986
- Number of Water Years Analyzed: 22

Comments: Some regulation by mill ponds upstream from station. Flow includes water which is pumped from groundwater sources by industry and discharged into stream five miles upstream from station.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04108500, Kalamazoo River near Fennville, MI
- Drainage Area (square miles): 1600
- Basin Number: 17
- Characteristic R-B Index Value: 0.108
- Rank: Highest
- First Water Year: 1930
- Last Water Year: 1993
- Number of Water Years Analyzed: 63
- Comments: Flow regulated at low and medium flow stages by power plant upstream from station and since June 1936 by Calkins Dam and power plant four miles upstream.

USGS Gage 04108600, Rabbit River near Hopkins, MI
- Drainage Area (square miles): 71.4
- Basin Number: 17
- Characteristic R-B Index Value: 0.269
- Rank: Upper Middle
- Trend: increase, p value: 0.00
- First Water Year: 1966
- Last Water Year: 2011
- Number of Water Years Analyzed: 46

USGS Gage 04108670, Kalamazoo River near New Richmond, MI
- Drainage Area (square miles): 1994
- Basin Number: 17
- Characteristic R-B Index Value: 0.071
- Rank: Lower Middle
- First Water Year: 1995
- Last Water Year: 2010
- Number of Water Years Analyzed: 9
- Comments: Gage added for this report update.

USGS Gage 04108800, Macatawa River near Zeeland, MI
- Drainage Area (square miles): 65.8
- Basin Number: 8
- Characteristic R-B Index Value: 0.571
- Rank: Highest
- First Water Year: 1961
- Last Water Year: 2011
- Number of Water Years Analyzed: 51
- Comments: Prior to October 1978 published as Black River near Zeeland. Discontinued gage 04108801 considered equivalent.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04109000, Grand River at Jackson, MI
- Drainage Area (square miles): 174
- Basin Number: 14
- Characteristic R-B Index Value: 0.095
- Rank: Lower Middle
- First Water Year: 1936
- Last Water Year: 2011
- Number of Water Years Analyzed: 21

Comments:
- Slight regulation by mill upstream, flow includes 20 cubic feet per second as sewage effluent which originates from ground water sources from the City of Jackson.
- Initially published decreasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04109500, Portage River at Portage Lake Road near Munith, MI
- Drainage Area (square miles): 55
- Basin Number: 14
- Characteristic R-B Index Value: 0.101
- Rank: Lowest
- p value: 0.04
- First Water Year: 1945
- Last Water Year: 1956
- Number of Water Years Analyzed: 12

USGS Gage 04110000, Orchard Creek at State Highway 106 at Munith, MI
- Drainage Area (square miles): 49
- Basin Number: 14
- Characteristic R-B Index Value: 0.226
- Rank: Upper Middle
- First Water Year: 1945
- Last Water Year: 1956
- Number of Water Years Analyzed: 12
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04111000, Grand River at Eaton Rapids, MI
- Drainage Area (square miles): 661
- Basin Number: 14
- Characteristic R-B Index Value: 0.087
- Rank: Lower Middle
- First Water Year: 1951
- First Water Year Analyzed, if different: 1996
- Last Water Year: 2011
- Number of Water Years Analyzed: 16
- Comments:
 - Initially published decreasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04111379, Red Cedar River near Williamston, MI
- Drainage Area (square miles): 163
- Basin Number: 14
- Characteristic R-B Index Value: 0.174
- Rank: Highest
- Trend: increase, p value: 0.04
- First Water Year: 1976
- Last Water Year: 2011
- Number of Water Years Analyzed: 9
- Comments:
 - Flow is regulated at times by pumpage for irrigation.
 - Initially published no trend for this gage. Additional data revises the analysis to increasing trend for this report update.

USGS Gage 04111500, Deer Creek near Dansville, MI
- Drainage Area (square miles): 16.3
- Basin Number: 14
- Characteristic R-B Index Value: 0.370
- Rank: Upper Middle
- First Water Year: 1954
- Last Water Year: 2011
- Number of Water Years Analyzed: 58
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04112000, Sloan Creek near Williamston, MI
- Drainage Area (square miles): 9.34
- Basin Number: 14
- Characteristic R-B Index Value: 0.460
- Rank: Upper Middle
- First Water Year: 1955
- Last Water Year: 2011
- Number of Water Years Analyzed: 56
- Comments: At times flow is regulated by pumpage from irrigation.

USGS Gage 04112500, Red Cedar River at East Lansing, MI
- Drainage Area (square miles): 355
- Basin Number: 14
- Characteristic R-B Index Value: 0.175
- Rank: Highest
- Trend: increase, p value: 0.02
- First Water Year: 1932
- First Water Year Analyzed, if different: 1988
- Last Water Year: 2011
- Number of Water Years Analyzed: 24
- Comments: Prior to 1975 occasional regulation at low flow by mill at Williamston, 16 miles upstream.

USGS Gage 04112850, Sycamore Creek at Holt Road near Holt, MI
- Drainage Area (square miles): 80.6
- Basin Number: 14
- Characteristic R-B Index Value: 0.229
- Rank: Upper Middle
- First Water Year: 1976
- Last Water Year: 1997
- Number of Water Years Analyzed: 9
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04113000, Grand River at Lansing, MI
- Drainage Area (square miles): 1230
- Basin Number: 14
- Characteristic R-B Index Value: 0.127
- Rank: Highest
- First Water Year: 1901
- First Water Year Analyzed, if different: 1965
- Last Water Year: 2011
- Number of Water Years Analyzed: 47
- Comments: Large diurnal fluctuation at low flow and medium flow caused by power plants upstream from station.

USGS Gage 04113097, Carrier Creek near Lansing, MI
- Drainage Area (square miles): 12.1
- Basin Number: 14
- Characteristic R-B Index Value: 0.451
- Rank: Upper Middle
- First Water Year: 1976
- Last Water Year: 1980
- Number of Water Years Analyzed: 5

USGS Gage 04114000, Grand River at Portland, MI
- Drainage Area (square miles): 1385
- Basin Number: 14
- Characteristic R-B Index Value: 0.122
- Rank: Highest
- First Water Year: 1953
- Last Water Year: 2011
- Number of Water Years Analyzed: 52
- Comments: Slight diurnal fluctuation caused by power plants upstream from station.

USGS Gage 04114498, Looking Glass River near Eagle, MI
- Drainage Area (square miles): 280
- Basin Number: 14
- Characteristic R-B Index Value: 0.100
- Rank: Lower Middle
- First Water Year: 1945
- Last Water Year: 2011
- Number of Water Years Analyzed: 62
- Comments: Small intermittent diversions at times into Lake Geneva when discharge is above fifty cubic feet per second.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04115000, Maple River at Maple Rapids, MI
- Drainage Area (square miles): 434
- Basin Number: 14
- Characteristic R-B Index Value: 0.114
- Rank: Upper Middle
- First Water Year: 1945
- Last Water Year: 2011
- Number of Water Years Analyzed: 68
- Comments: At times water is pumped from the river about eight miles upstream to fill the wetlands in the Maple River State Game Area. Some of the water is returned to the river at a later date, when the water levels are lowered.

USGS Gage 04115265, Fish Creek near Crystal, MI
- Drainage Area (square miles): 39.7
- Basin Number: 14
- Characteristic R-B Index Value: 0.180
- Rank: Upper Middle
- First Water Year: 1988
- Last Water Year: 2011
- Number of Water Years Analyzed: 24
- Comments: At times low flow is affected by pumpage for irrigation.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04116000, Grand River at Ionia, MI
- Drainage Area (square miles): 2840
- Basin Number: 14
- Characteristic R-B Index Value: 0.098
- Rank: Upper Middle
- Trend: decrease, p value: 0.00
- First Water Year: 1952
- Last Water Year: 2011
- Number of Water Years Analyzed: 60
- Comments:
 - Diurnal fluctuation below approximately 5,000 cubic feet per second caused by power plants upstream from station.
 - Initially published no trend for this gage. Additional data revises the analysis to decreasing trend for this report update.

USGS Gage 04116500, Flat River at Smyrna, MI
- Drainage Area (square miles): 528
- Basin Number: 14
- Characteristic R-B Index Value: 0.066
- Rank: Lowest
- Trend: decrease, p value: 0.00
- First Water Year: 1951
- Last Water Year: 1986
- Number of Water Years Analyzed: 36
- Comments: Diurnal fluctuation caused by power plants above station prior to September 1956; occasional diurnal fluctuation since.

USGS Gage 04117000, Quaker Brook near Nashville, MI
- Drainage Area (square miles): 7.6
- Basin Number: 14
- Characteristic R-B Index Value: 0.301
- Rank: Upper Middle
- First Water Year: 1955
- Last Water Year: 2011
- Number of Water Years Analyzed: 38
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04117500, Thornapple River near Hastings, MI
- Drainage Area (square miles): 385
- Basin Number: 14
- Characteristic R-B Index Value: 0.112
- Rank: Upper Middle
- First Water Year: 1945
- First Water Year Analyzed, if different: 1978
- Last Water Year: 2011
- Number of Water Years Analyzed: 34

USGS Gage 04118000, Thornapple River near Caledonia, MI
- Drainage Area (square miles): 773
- Basin Number: 14
- Characteristic R-B Index Value: 0.110
- Rank: Upper Middle
- Trend: increase, p value: 0.00
- First Water Year: 1952
- First Water Year Analyzed, if different: 1971
- Last Water Year: 1994
- Number of Water Years Analyzed: 22

Comments: Prior to December 1958 and since October 1983 large diurnal fluctuation at low and medium flow and occasional regulation during high flow, caused by power plant upstream from station; occasional fluctuation during the interim period.
Streams Tributary to Lake Michigan, Southern Lower Peninsula (cont.)

USGS Gage 04118500, Rogue River near Rockford, MI
- Drainage Area (square miles): 234
- Basin Number: 14
- Characteristic R-B Index Value: 0.104
- Rank: Lower Middle
- First Water Year: 1953
- Last Water Year: 2011
- Number of Water Years Analyzed: 54
- Comments: Some regulation caused by dam two miles upstream from station.

USGS Gage 04119000, Grand River at Grand Rapids, MI
- Drainage Area (square miles): 4900
- Basin Number: 14
- Characteristic R-B Index Value: 0.074
- Rank: Lower Middle
- First Water Year: 1902
- First Water Year Analyzed, if different: 1989
- Last Water Year: 2011
- Number of Water Years Analyzed: 23
- Comments: Moderate diurnal fluctuation at low and medium flow caused by power plants upstream from station.
Streams Tributary to Lake Michigan, Northern Lower Peninsula

USGS Gage 04121000, Muskegon River near Merritt, MI
- Drainage Area (square miles): 355
- Basin Number: 22
- Characteristic R-B Index Value: 0.040
- Rank: Lowest
- p value: 0.00
- First Water Year: 1947
- Last Water Year: 1973
- Number of Water Years Analyzed: 27
- Comments: Occasional regulation by manipulation of stop logs at Reedsburg Dam.

USGS Gage 04121300, Clam River at Vogel Center, MI
- Drainage Area (square miles): 243
- Basin Number: 22
- Characteristic R-B Index Value: 0.079
- Rank: Lower Middle
- First Water Year: 1967
- Last Water Year: 2011
- Number of Water Years Analyzed: 45
- Comments: Some regulation at low flow by dams upstream from station.

USGS Gage 04121500, Muskegon River at Evart, MI
- Drainage Area (square miles): 1433
- Basin Number: 22
- Characteristic R-B Index Value: 0.057
- Rank: Lowest
- First Water Year: 1935
- First Water Year Analyzed, if different: 1960
- Last Water Year: 2011
- Number of Water Years Analyzed: 52
- Comments: Some regulation at low flow by dams upstream from station.
Streams Tributary to Lake Michigan, Northern Lower Peninsula (cont.)

USGS Gage 04121900, Little Muskegon River near Morley, MI
- Drainage Area (square miles): 121
- Basin Number: 22
- Characteristic R-B Index Value: 0.109
- Rank: Upper Middle
- First Water Year: 1967
- First Water Year Analyzed, if different: 1979
- Last Water Year: 1996
- Number of Water Years Analyzed: 18

Comments:
- Some regulation by dam above station.
- Initially published increasing trend for this gage. Tighter p value standard changes this to no trend for this report update.

USGS Gage 04121944, Little Muskegon River near Oak Grove, MI
- Drainage Area (square miles): 345
- Basin Number: 22
- Characteristic R-B Index Value: 0.108
- Rank: Upper Middle
- Trend: increase, p value: 0.05
- First Water Year: 1996
- Last Water Year: 2011
- Number of Water Years Analyzed: 16

Comments: Initially published no trend for this gage. Additional data revises the analysis to an increasing trend for this report update.
Streams Tributary to Lake Michigan, Northern Lower Peninsula (cont.)

USGS Gage 04121970, Muskegon River near Croton, MI
- Drainage Area (square miles): 2313
- Basin Number: 22
- Characteristic R-B Index Value: 0.077
- Rank: Lower Middle
- Trend: increase, p value: 0.01
- First Water Year: 1996
- Last Water Year: 2011
- Number of Water Years Analyzed: 16

Comments:
- Flow completely regulated by Croton Dam 1,000 feet upstream.
- Initially published no trend for this gage. Additional data revises the analysis to an increasing trend for this report update.

USGS Gage 04122000, Muskegon River at Newaygo, MI
- Drainage Area (square miles): 2350
- Basin Number: 22
- Characteristic R-B Index Value: 0.098
- Rank: Upper Middle
- Trend: decrease, p value: 0.01
- First Water Year: 1910
- Last Water Year: 1993
- Number of Water Years Analyzed: 71

Comments: Flow regulated by power plants upstream from station, the largest of which are Croton Dam, Hardy Dam, and Rogers Dam. Since December 27, 1965 power plant at Newaygo is non-operative. In January 1969, dam at Newaygo was removed.
Streams Tributary to Lake Michigan, Northern Lower Peninsula (cont.)

USGS Gage 04122100, Bear Creek near Muskegon, MI
- Drainage Area (square miles): 16.7
- Basin Number: 22
- Characteristic R-B Index Value: 0.172
- Trend: decrease, p value: 0.00
- First Water Year: 1966
- Last Water Year: 2011
- Number of Water Years Analyzed: 46
- Comments: Some regulation during low flow by dams and irrigation upstream from station.

USGS Gage 04122500, Pere Marquette River at Scottville, MI
- Drainage Area (square miles): 681
- Basin Number: 25
- Characteristic R-B Index Value: 0.055
- Trend: increase, p value: 0.00
- First Water Year: 1940
- Last Water Year: 2011
- Number of Water Years Analyzed: 74

USGS Gage 04122000, White River near Whitehall, MI
- Drainage Area (square miles): 406
- Basin Number: 37
- Characteristic R-B Index Value: 0.066
- Rank: Lowest
- First Water Year: 1958
- Last Water Year: 2011
- Number of Water Years Analyzed: 54

USGS Gage 04123000, Big Sable River near Freesoile, MI
- Drainage Area (square miles): 127
- Basin Number: 5
- Characteristic R-B Index Value: 0.037
- Rank: Lowest
- First Water Year: 1943
- Last Water Year: 1972
- Number of Water Years Analyzed: 30
Streams Tributary to Lake Michigan, Northern Lower Peninsula (cont.)

USGS Gage 04123500, Manistee River near Grayling, MI
- Drainage Area (square miles): 123
- Basin Number: 20
- Characteristic R-B Index Value: 0.026
- Rank: Lowest
- First Water Year: 1943
- Last Water Year: 1973
- Number of Water Years Analyzed: 31

USGS Gage 04124000, Manistee River near Sherman, MI
- Drainage Area (square miles): 857
- Basin Number: 20
- Characteristic R-B Index Value: 0.041
- Rank: Lowest
- Trend: increase, p value: 0.00
- First Water Year: 1998
- Last Water Year: 2011
- Number of Water Years Analyzed: 14
- Comments: Flow completely regulated by Hodenpyl Dam 200 feet upstream.

USGS Gage 04124200, Manistee River near Mesick, MI
- Drainage Area (square miles): 1018
- Basin Number: 20
- Characteristic R-B Index Value: 0.047
- Rank: Lowest
- First Water Year: 1998
- Last Water Year: 2011
- Number of Water Years Analyzed: 14
- Comments: Flow completely regulated by Hodenpyl Dam 200 feet upstream.

USGS Gage 041245000, East Branch Pine River near Tustin, MI
- Drainage Area (square miles): 60
- Basin Number: 20
- Characteristic R-B Index Value: 0.195
- Rank: Upper Middle
- First Water Year: 1953
- Last Water Year: 2011
- Number of Water Years Analyzed: 31

Comments: Initially published no trend for this gage. Additional data revises the analysis to an increasing trend for this report update.
USGS Gage 04125000, Pine River near Leroy, MI
- Drainage Area (square miles): 128
- Basin Number: 20
- Characteristic R-B Index Value: 0.114
- Rank: Upper Middle
- p value: 0.05
- First Water Year: 1953
- Last Water Year: 1963
- Number of Water Years Analyzed: 11

USGS Gage 04125460, Pine River at High School Bridge, near Hoxeyville, MI
- Drainage Area (square miles): 245
- Basin Number: 20
- Characteristic R-B Index Value: 0.066
- Rank: Lowest
- First Water Year: 1953
- Last Water Year: 2011
- Number of Water Years Analyzed: 45
- Comments: Discontinued gage 04125500 considered equivalent.

USGS Gage 04125550, Manistee River near Wellston, MI
- Drainage Area (square miles): 1451
- Basin Number: 20
- Characteristic R-B Index Value: 0.050
- Rank: Lowest
- First Water Year: 1997
- Last Water Year: 2011
- Number of Water Years Analyzed: 15
- Comments: Flow completely regulated by Tippy Dam 700 feet upstream.

USGS Gage 04126000, Manistee River near Manistee, MI
- Drainage Area (square miles): 1677
- Basin Number: 20
- Characteristic R-B Index Value: 0.066
- Rank: Lower Middle
- Trend: decrease, p value: 0.00
- First Water Year: 1952
- First Water Year Analyzed, if different: 1983
- Last Water Year: 1993
- Number of Water Years Analyzed: 11
- Comments: Flow regulated at all stages by Tippy Hydroelectric Power Plant 21 miles upstream.
Streams Tributary to Lake Michigan, Northern Lower Peninsula (cont.)

USGS Gage 04126200, Little Manistee River near Freesoil, MI
- Drainage Area (square miles): 178
- Basin Number: 20
- Characteristic R-B Index Value: 0.037
- Rank: Lowest
- First Water Year: 1957
- Last Water Year: 1975
- Number of Water Years Analyzed: 19
- Comments: Some regulation above station.

USGS Gage 04126740, Platte River at Honor, MI
- Drainage Area (square miles): 125
- Basin Number: 28
- Characteristic R-B Index Value: 0.039
- Rank: Lowest
- First Water Year: 1991
- Last Water Year: 2011
- Number of Water Years Analyzed: 21
- Comments: Some diversion for fish hatchery six miles upstream from station.

USGS Gage 04126970, Boardman River above Brown Bridge Road, near Mayfield, MI
- Drainage Area (square miles): 141
- Basin Number: 9
- Characteristic R-B Index Value: 0.040
- Rank: Lowest
- First Water Year: 1988
- Last Water Year: 2011
- Number of Water Years Analyzed: 14

USGS Gage 04127000, Boardman River near Mayfield, MI
- Drainage Area (square miles): 182
- Basin Number: 9
- Characteristic R-B Index Value: 0.091
- Rank: Lower Middle
- p value: 0.00
- First Water Year: 1953
- Last Water Year: 1989
- Number of Water Years Analyzed: 37
- Comments: Flow regulated by hydroelectric power plant nine miles above station.
Streams Tributary to Lake Michigan, Northern Lower Peninsula (cont.)

USGS Gage 04127800, Jordan River near East Jordan, MI
- Drainage Area (square miles): 67.9
- Basin Number: 10
- Characteristic R-B Index Value: 0.055
- Trend: Lowest
- First Water Year: 1967
- First Water Year Analyzed, if different: 1984
- Last Water Year: 2011
- Number of Water Years Analyzed: 28
- Comments: Some regulation at low flow by fish hatchery upstream from station.

Streams Tributary to Lake Huron

USGS Gage 04127918, Pine River near Rudyard, MI
- Drainage Area (square miles): 184
- Basin Number: 54
- Characteristic R-B Index Value: 0.184
- Rank: Highest
- First Water Year: 1973
- Last Water Year: 2010
- Number of Water Years Analyzed: 38
- Comments: This gage is in the Upper Peninsula.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04127997, Sturgeon River at Wolverine, MI
- Drainage Area (square miles): 192
- Basin Number: 11
- Characteristic R-B Index Value: 0.079
- Rank: Lower Middle
- First Water Year: 1943
- First Water Year Analyzed, if different: 1973
- Last Water Year: 2011
- Number of Water Years Analyzed: 39
- Comments: discontinued gage 04128000 considered equivalent. Prior to July 1975 intermittent regulation low flows from pond 2.4 miles upstream.

USGS Gage 04128990, Pigeon River at Sturgeon Valley Road near Vanderbilt, MI
- Drainage Area (square miles): 57.7
- Basin Number: 11
- Characteristic R-B Index Value: 0.158
- Rank: Lower Middle
- Trend: increase, p value: 0.00
- First Water Year: 1951
- Last Water Year: 2011
- Number of Water Years Analyzed: 61
- Comments: Prior to May 1967 and since April 22, 1958 regulation by Lansing Club Dam one mile upstream.

USGS Gage 04129500, Pigeon River at Afton, MI
- Drainage Area (square miles): 139
- Basin Number: 11
- Characteristic R-B Index Value: 0.094
- Rank: Lower Middle
- First Water Year: 1942
- First Water Year Analyzed, if different: 1946
- Last Water Year: 1981
- Number of Water Years Analyzed: 36
- Comments: Prior to May 16, 1957 and since April 22, 1958 occasional regulation by Lansing Club Dam 22 miles above station.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04130000, Cheboygan River near Cheboygan, MI
- Drainage Area (square miles): 889
- Basin Number: 11
- Characteristic R-B Index Value: 0.036
- Rank: Lowest
- p value: 0.00
- First Water Year: 1943
- Last Water Year: 1982
- Number of Water Years Analyzed: 40
- Comments: Flow regulated by dam in Cheboygan, prior to December 31, 1965 flow affected by variable backwater from power plant in Cheboygan 5.2 miles below station and by Alverno Power Plant.

USGS Gage 04130500, Black River near Tower, MI
- Drainage Area (square miles): 311
- Basin Number: 11
- Characteristic R-B Index Value: 0.105
- Rank: Lower Middle
- Trend: decrease, p value: 0.00
- First Water Year: 1943
- First Water Year Analyzed, if different: 1955
- Last Water Year: 2000
- Number of Water Years Analyzed: 45
- Comments:
 - Completely regulated by Kebler Dam 400 feet upstream.
 - Initially published no trend for this gage. Cusum analysis revises the analysis to a decreasing trend for this report update.

USGS Gage 04131000, Rainy River near Onaway, MI
- Drainage Area (square miles): 79
- Basin Number: 11
- Characteristic R-B Index Value: 0.114
- Rank: Lower Middle
- p value: 0.05
- First Water Year: 1943
- Last Water Year: 1952
- Number of Water Years Analyzed: 10
Streams Tributary to Lake Huron (cont.)

USGS Gage 04131500, Rainy River near Ocqueoc, MI
- Drainage Area (square miles): 87.9
- Basin Number: 11
- Characteristic R-B Index Value: 0.134
- Rank: Lower Middle
- First Water Year: 1953
- Last Water Year: 1979
- Number of Water Years Analyzed: 27

USGS Gage 04132000, Black River near Cheboygan, MI
- Drainage Area (square miles): 597
- Basin Number: 11
- Characteristic R-B Index Value: 0.063
- Rank: Lowest
- p value: 0.00
- First Water Year: 1944
- Last Water Year: 1974
- Number of Water Years Analyzed: 31
- Comments: Flow regulated by Alverno Dam; prior to December 31, 1965 flow regulated by power plant at Alverno Dam.

USGS Gage 04132500, Thunder Bay River near Hillman, MI
- Drainage Area (square miles): 232
- Basin Number: 36
- Characteristic R-B Index Value: 0.077
- Rank: Lower Middle
- First Water Year: 1946
- Last Water Year: 1972
- Number of Water Years Analyzed: 16
- Comments: Prior to May 12, 1950 diurnal fluctuation below about 500 cubic feet per second by power plant at Atlanta, occasional regulation from dams above station.

USGS Gage 04133501, Thunder Bay River at Herron Road near Bolton, MI
- Drainage Area (square miles): 586
- Basin Number: 36
- Characteristic R-B Index Value: 0.086
- Rank: Lower Middle
- First Water Year: 1946
- Last Water Year: 2011
- Number of Water Years Analyzed: 9
- Comments: Occasional regulation by dams upstream from station, discontinued gage 04133500 considered equivalent.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04134000, North Branch Thunder Bay River near Bolton, MI
- Drainage Area (square miles): 184
- Basin Number: 36
- Characteristic R-B Index Value: 0.144
- Rank: Upper Middle
- First Water Year: 1946
- Last Water Year: 1980
- Number of Water Years Analyzed: 35
- Comments: Occasional regulation during low flows by dam above station.

USGS Gage 04135000, Thunder Bay River near Alpena, MI
- Drainage Area (square miles): 1238
- Basin Number: 36
- Characteristic R-B Index Value: 0.188
- Rank: Highest
- First Water Year: 1902
- Last Water Year: 1993
- Number of Water Years Analyzed: 21
- Comments: Flow regulated at all stages by hydroelectric power plant 1,000 feet upstream.

USGS Gage 04135500, Au Sable River at Grayling, MI
- Drainage Area (square miles): 110
- Basin Number: 2
- Characteristic R-B Index Value: 0.052
- Rank: Lowest
- Trend: increase, p value: 0.00
- First Water Year: 1956
- Last Water Year: 1993
- Number of Water Years Analyzed: 51
- Comments: Prior to December 31, 1952 diurnal fluctuation caused by power plant 2.5 miles upstream.

USGS Gage 04135600, East Branch Au Sable River at Grayling, MI
- Drainage Area (square miles): 76
- Basin Number: 2
- Characteristic R-B Index Value: 0.048
- Rank: Lowest
- First Water Year: 1958
- Last Water Year: 1984
- Number of Water Years Analyzed: 28
- Comments: Occasional regulation by MDNR ponds above station.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04135700, South Branch Au Sable River near Luzerne, MI
- Drainage Area (square miles): 401
- Basin Number: 2
- Characteristic R-B Index Value: 0.047
- Rank: Lowest
- Trend: increase, p value: 0.02
- First Water Year: 1967
- Last Water Year: 2011
- Number of Water Years Analyzed: 44

Comments:
- Occasional regulation by dam upstream from station.
- Initially published no trend for this gage. Additional data revises the analysis to an increasing trend for this report update.

USGS Gage 04136000, Au Sable River near Red Oak, MI
- Drainage Area (square miles): 1108
- Basin Number: 2
- Characteristic R-B Index Value: 0.050
- Rank: Lowest
- Trend: increase, p value: 0.05
- First Water Year: 1909
- Last Water Year: 2011
- Number of Water Years Analyzed: 22

Comments: Initially published no trend for this gage. Additional data revises the analysis to an increasing trend for this report update.

USGS Gage 04136500, Au Sable River at Mio, MI
- Drainage Area (square miles): 1361
- Basin Number: 2
- Characteristic R-B Index Value: 0.057
- Rank: Lowest
- First Water Year: 1953
- First Water Year Analyzed, if different: 1980
- Last Water Year: 2011
- Number of Water Years Analyzed: 32

Comments: Flow regulated by Mio Dam 500 feet upstream.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04136900, Au Sable River near McKinley, MI
- Drainage Area (square miles): 1513
- Basin Number: 2
- Characteristic R-B Index Value: 0.049
- Rank: Lowest
- First Water Year: 1997
- Last Water Year: 2011
- Number of Water Years Analyzed: 15

USGS Gage 04137005, Au Sable River near Curtisville, MI
- Drainage Area (square miles): 1598
- Basin Number: 2
- Characteristic R-B Index Value: 0.061
- Rank: Lower Middle
- Trend: increase, p value: 0.03
- First Water Year: 1997
- Last Water Year: 2011
- Number of Water Years Analyzed: 15

Comments:
- Flow completely regulated by Alcona Dam 300 feet upstream.
- Initially published no trend for this gage. Additional data revises the analysis to an increasing trend for this report update.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04137500, Au Sable River near Au Sable, MI
- Drainage Area (square miles): 1739
- Basin Number: 2
- Characteristic R-B Index Value: 0.079
- Rank: Upper Middle
- First Water Year: 1988
- First Water Year Analyzed, if different: 2001
- Last Water Year: 2011
- Number of Water Years Analyzed: 11

Comments:
- Flow regulated by Foote Dam 0.6 miles upstream.
- Initially published decreasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04138000, East Branch Au Gres River at McIvor, MI
- Drainage Area (square miles): 84
- Basin Number: 1
- Characteristic R-B Index Value: 0.137
- Rank: Lower Middle
- First Water Year: 1951
- Last Water Year: 1973
- Number of Water Years Analyzed: 23

Comments: Some intermittent regulation at low and medium flow by dam 2.5 miles above station during period 1952-1966.

USGS Gage 04138500, Au Gres River at Cox Road near National City, MI
- Drainage Area (square miles): 154
- Basin Number: 1
- Characteristic R-B Index Value: 0.223
- Rank: Highest
- First Water Year: 1951
- Last Water Year: 1981
- Number of Water Years Analyzed: 31

Comments: Some regulation at low flows.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04139000, Houghton Creek near Lupton, MI
- Drainage Area (square miles): 29.7
- Basin Number: 30
- Characteristic R-B Index Value: 0.126
- Rank: Lowest
- First Water Year: 1951
- Last Water Year: 1972
- Number of Water Years Analyzed: 22
- Comments: Intermittent regulation at low flow by sawmill on Sandback Creek at Rose City prior to June 1955 and since November 1958.

USGS Gage 04139000, Houghton Creek near Lupton, MI
- Drainage Area (square miles): 29.7
- Basin Number: 30
- Characteristic R-B Index Value: 0.126
- Rank: Lowest
- First Water Year: 1951
- Last Water Year: 1972
- Number of Water Years Analyzed: 22
- Comments: Intermittent regulation at low flow by sawmill on Sandback Creek at Rose City prior to June 1955 and since November 1958.

USGS Gage 04139500, Rifle River at "The Ranch" near Lupton, MI
- Drainage Area (square miles): 56.8
- Basin Number: 30
- Characteristic R-B Index Value: 0.101
- Rank: Lower Middle
- First Water Year: 1951
- Last Water Year: 1972
- Number of Water Years Analyzed: 22
- Comments: Intermittent regulation at low flow by sawmill on Sandback Creek at Rose City prior to June 1955 and since November 1958.

USGS Gage 04140000, Prior Creek near Selkirk, MI
- Drainage Area (square miles): 21.4
- Basin Number: 30
- Characteristic R-B Index Value: 0.237
- Rank: Lower Middle
- First Water Year: 1951
- Last Water Year: 1972
- Number of Water Years Analyzed: 22
- Comments: Some regulation from dam at lake outlet.

USGS Gage 04140000, Prior Creek near Selkirk, MI
- Drainage Area (square miles): 21.4
- Basin Number: 30
- Characteristic R-B Index Value: 0.237
- Rank: Lower Middle
- First Water Year: 1951
- Last Water Year: 1972
- Number of Water Years Analyzed: 22
- Comments: Some regulation from dam at lake outlet.

USGS Gage 04140500, Rifle River at State Road at Selkirk, MI
- Drainage Area (square miles): 117
- Basin Number: 30
- Characteristic R-B Index Value: 0.108
- Rank: Upper Middle
- p value: 0.02
- First Water Year: 1951
- Last Water Year: 1982
- Number of Water Years Analyzed: 32
- Comments: Some regulation by dams above station.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04141000, South Branch Shepards Creek near Selkirk, MI
- Drainage Area (square miles): 1.15
- Basin Number: 30
- Characteristic R-B Index Value: 0.627
- Rank: Highest
- First Water Year: 1952
- Last Water Year: 1978
- Number of Water Years Analyzed: 27

USGS Gage 04141500, West Branch Rifle River near Selkirk, MI
- Drainage Area (square miles): 51
- Basin Number: 30
- Characteristic R-B Index Value: 0.184
- Rank: Upper Middle
- First Water Year: 1952
- Last Water Year: 1963
- Number of Water Years Analyzed: 12
- Comments: Occasional regulation from mill about seven miles upstream.

USGS Gage 04142000, Rifle River near Sterling, MI
- Drainage Area (square miles): 320
- Basin Number: 30
- Characteristic R-B Index Value: 0.155
- Rank: Highest
- First Water Year: 1938
- First Water Year Analyzed, if different: 1991
- Last Water Year: 2011
- Number of Water Years Analyzed: 21
- Comments: Occasional regulation by dams upstream from station.

USGS Gage 04143500, North Branch Kawkawlin River near Kawkawlin, MI
- Drainage Area (square miles): 101
- Basin Number: 18
- Characteristic R-B Index Value: 0.197
- Rank: Highest
- First Water Year: 1952
- First Water Year Analyzed, if different: 1962
- Last Water Year: 1982
- Number of Water Years Analyzed: 21
- Comments: Some diversions above station for irrigation. Some regulation during low flows by dams above station.
USGS Gage 04143900, Shiawassee River at Linden, MI
- Drainage Area (square miles): 83.7
- Basin Number: 32
- Characteristic R-B Index Value: 0.070
- Rank: Lowest
- First Water Year: 1968
- Last Water Year: 2003
- Number of Water Years Analyzed: 29

USGS Gage 04144000, Shiawassee River at Owosso, MI
- Drainage Area (square miles): 538
- Basin Number: 32
- Characteristic R-B Index Value: 0.134
- Rank: Upper Middle
- First Water Year: 1932
- First Water Year Analyzed, if different: 1988
- Last Water Year: 2011
- Number of Water Years Analyzed: 24
- Comments: Flow regulated approximately 800 cubic feet per second by power plant at Shiawassee town prior to February 1953, occasional regulation at low stages since.

USGS Gage 04144000, Shiawassee River at Byron, MI
- Drainage Area (square miles): 365
- Basin Number: 32
- Characteristic R-B Index Value: 0.096
- Rank: Lower Middle
- First Water Year: 1948
- First Water Year Analyzed, if different: 1967
- Last Water Year: 1983
- Number of Water Years Analyzed: 17
- Comments: Low flow slightly regulated at times by mills above station.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04145000, Shiawassee River near Fergus, MI
- Drainage Area (square miles): 637
- Basin Number: 32
- Characteristic R-B Index Value: 0.141
- Rank: Upper Middle
- First Water Year: 1941
- Last Water Year: 2011
- Number of Water Years Analyzed: 60
- Comments: Some regulation at low stages by power plant at Shiawassee town prior to February 1953, occasional regulation at low stages since.

USGS Gage 04146000, Farmers Creek near Lapeer, MI
- Drainage Area (square miles): 55.3
- Basin Number: 32
- Characteristic R-B Index Value: 0.130
- Rank: Lower Middle
- First Water Year: 1934
- Last Water Year: 2011
- Number of Water Years Analyzed: 34
- Comments: Prior to 1941 occasional regulation caused by Dam upstream from station.

USGS Gage 04145500, Bad River at Hemlock Road near Brant, MI
- Drainage Area (square miles): 89
- Basin Number: 32
- Characteristic R-B Index Value: 0.422
- Rank: Highest
- First Water Year: 1950
- Last Water Year: 1959
- Number of Water Years Analyzed: 10

USGS Gage 04146063, South Branch Flint River near Columbiaville, MI
- Drainage Area (square miles): 221
- Basin Number: 32
- Characteristic R-B Index Value: 0.134
- Rank: Upper Middle
- First Water Year: 1981
- Last Water Year: 2011
- Number of Water Years Analyzed: 31
Streams Tributary to Lake Huron (cont.)

USGS Gage 04147500, Flint River near Otisville, MI
- Drainage Area (square miles): 530
- Basin Number: 32
- Characteristic R-B Index Value: 0.140
- Rank: Upper Middle
- Trend: increase, p value: 0.01
- First Water Year: 1953
- Last Water Year: 2011
- Number of Water Years Analyzed: 58
- Comments: Flow regulated by Holloway reservoir 1.5 miles upstream from station. From 1954 to 1991 annual mean discharge and runoff adjusted for change in contents in Holloway Reservoir.

USGS Gage 04147990, Butternut Creek near Genesee, MI
- Drainage Area (square miles): 34.7
- Basin Number: 32
- Characteristic R-B Index Value: 0.284
- Rank: Upper Middle
- First Water Year: 1971
- Last Water Year: 1983
- Number of Water Years Analyzed: 13

USGS Gage 04148000, Flint River at Genesee, MI
- Drainage Area (square miles): 593
- Basin Number: 32
- Characteristic R-B Index Value: 0.135
- Rank: Upper Middle
- First Water Year: 1931
- First Water Year Analyzed, if different: 1937
- Last Water Year: 1952
- Number of Water Years Analyzed: 16
USGS Gage 04148140, Kearsley Creek near Davison, MI
- Drainage Area (square miles): 99.4
- Basin Number: 32
- Characteristic R-B Index Value: 0.190
- Rank: Upper Middle
- Trend: increase, p value: 0.01
- First Water Year: 1966
- Last Water Year: 2011
- Number of Water Years Analyzed: 46
- Comments:
 - Some diurnal fluctuation caused by small dams and occasional diversion from irrigation upstream from station.
 - Initially published no trend for this gage. Additional data revises the analysis to an increasing trend for this report update.

USGS Gage 04148160, Gilkey Creek near Flint, MI
- Drainage Area (square miles): 6.43
- Basin Number: 32
- Characteristic R-B Index Value: 0.693
- Rank: Highest
- First Water Year: 1971
- Last Water Year: 1983
- Number of Water Years Analyzed: 13

USGS Gage 04148200, Swartz Creek near Holly, MI
- Drainage Area (square miles): 12.1
- Basin Number: 32
- Characteristic R-B Index Value: 0.149
- Rank: Lowest
- First Water Year: 1957
- First Water Year Analyzed, if different: 1967
- Last Water Year: 1975
- Number of Water Years Analyzed: 9
Streams Tributary to Lake Huron (cont.)

USGS Gage 04148300, Swartz Creek at Flint, MI
- Drainage Area (square miles): 115
- Basin Number: 32
- Characteristic R-B Index Value: 0.287
- Rank: Highest
- First Water Year: 1971
- Last Water Year: 1983
- Number of Water Years Analyzed: 13

USGS Gage 04148440, Thread Creek near Flint, MI
- Drainage Area (square miles): 54.4
- Basin Number: 32
- Characteristic R-B Index Value: 0.216
- Rank: Upper Middle
- First Water Year: 1971
- Last Water Year: 1983
- Number of Water Years Analyzed: 13

USGS Gage 04148500, Flint River near Flint, MI
- Drainage Area (square miles): 956
- Basin Number: 32
- Characteristic R-B Index Value: 0.189
- Rank: Highest
- Trend: increase, p value: 0.01
- First Water Year: 1933
- First Water Year Analyzed, if different: 1978
- Last Water Year: 2011
- Number of Water Years Analyzed: 34
- Comments: Some regulation by small reservoirs upstream from station and by Holloway reservoir. From 1954 to 1991 annual mean discharge and runoff figures adjusted for change in contents in Holloway Reservoir. Occasional diversion for industrial use. Since 1967 flow contains up to fifty cubic feet per second as sewage effluent which originates outside the basin.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04148720, Brent Run near Montrose, MI
- Drainage Area (square miles): 20.8
- Basin Number: 32
- Characteristic R-B Index Value: 0.496
- Rank: Highest
- First Water Year: 1971
- Last Water Year: 1983
- Number of Water Years Analyzed: 13

Comments:
- Prior to October 1, 1992 water stage records include flow of Birch Run, some regulation by reservoirs upstream from the City of Flint.
- Initially published a decreasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04149000, Flint River near Fosters, MI
- Drainage Area (square miles): 1153
- Basin Number: 32
- Characteristic R-B Index Value: 0.170
- Rank: Highest
- First Water Year: 1940
- Last Water Year: 2011
- Number of Water Years Analyzed: 61

Comments:
- Prior to October 1, 1992 water stage records include flow of Birch Run, some regulation by reservoirs upstream from the City of Flint.
- Initially published a decreasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04150000, South Branch Cass River near Cass City, MI
- Drainage Area (square miles): 238
- Basin Number: 32
- Characteristic R-B Index Value: 0.397
- Rank: Highest
- First Water Year: 1949
- Last Water Year: 1980
- Number of Water Years Analyzed: 32
USGS Gage 04150500, Cass River at Cass City, MI
- Drainage Area (square miles): 359
- Basin Number: 32
- Characteristic R-B Index Value: 0.333
- Rank: Highest
- First Water Year: 1948
- First Water Year Analyzed, if different: 1967
- Last Water Year: 2011
- Number of Water Years Analyzed: 41

Comments: Some regulation by dam at Michigan Sugar Company 1.9 miles upstream from station.

USGS Gage 04150800, Cass River at Wahjamega, MI
- Drainage Area (square miles): 645
- Basin Number: 32
- Characteristic R-B Index Value: 0.275
- Rank: Highest
- First Water Year: 1969
- Last Water Year: 1994
- Number of Water Years Analyzed: 26
Comments: Some regulation by dam at Michigan Sugar Company 1.9 miles upstream from station.

USGS Gage 04151000, Cass River at Vassar, MI
- Drainage Area (square miles): 710
- Basin Number: 32
- Characteristic R-B Index Value: 0.266
- p value: 0.04
- First Water Year: 1949
- Last Water Year: 1970
- Number of Water Years Analyzed: 22
Comments: Some regulation by dam at Michigan Sugar Company 12.6 miles above station.

USGS Gage 04151500, Cass River at Frankenmuth, MI
- Drainage Area (square miles): 841
- Basin Number: 32
- Characteristic R-B Index Value: 0.244
- Rank: Highest
- First Water Year: 1936
- First Water Year Analyzed, if different: 1962
- Last Water Year: 2011
- Number of Water Years Analyzed: 50
Comments: Occasional regulation by dams upstream from station. Prior to 1950 regulation at low and medium flows by mill upstream from station.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04152238, South Branch Tobacco River near Beaverton, MI
- Drainage Area (square miles): 160
- Basin Number: 32
- Characteristic R-B Index Value: 0.180
- Rank: Highest
- First Water Year: 1988
- Last Water Year: 2011
- Number of Water Years Analyzed: 24

USGS Gage 04152500, Tobacco River at Glidden Road at Beaverton, MI
- Drainage Area (square miles): 487
- Basin Number: 32
- Characteristic R-B Index Value: 0.149
- Rank: Upper Middle
- p value: 0.00
- First Water Year: 1949
- Last Water Year: 1982
- Number of Water Years Analyzed: 34
- Comments: Prior to February 21, 1961 regulation at all stages by hydroelectric power plant one mile above station, occasional regulation since.

USGS Gage 04153500, Salt River near North Bradley, MI
- Drainage Area (square miles): 138
- Basin Number: 32
- Characteristic R-B Index Value: 0.402
- Rank: Highest
- First Water Year: 1935
- Last Water Year: 1971
- Number of Water Years Analyzed: 37

USGS Gage 04154000, Chippewa River near Mount Pleasant, MI
- Drainage Area (square miles): 416
- Basin Number: 32
- Characteristic R-B Index Value: 0.089
- Rank: Lower Middle
- First Water Year Analyzed, if different: 1978
- Last Water Year: 2011
- Number of Water Years Analyzed: 33
- Comments: Diurnal fluctuation below 750 cubic feet per second caused by power plant at Mount Pleasant prior to 1962, occasional regulation at low flow since. Since July 30, 1968 occasional regulation from control structures on lake outlets.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04154500, Chippewa River near Midland, MI
- Drainage Area (square miles): 597
- Basin Number: 32
- Characteristic R-B Index Value: 0.112
- Rank: Upper Middle
- First Water Year: 1948
- Last Water Year: 1972
- Number of Water Years Analyzed: 25
- Comments: Diurnal fluctuation below 750 cubic feet per second caused by power plant at Mount Pleasant prior to 1962, occasional regulation at low flow since. Since July 30, 1968 occasional regulation from control structures on lake outlets.

USGS Gage 04155000, Pine River at Alma, MI
- Drainage Area (square miles): 288
- Basin Number: 32
- Characteristic R-B Index Value: 0.121
- Rank: Upper Middle
- First Water Year: 1931
- Last Water Year: 2011
- Number of Water Years Analyzed: 32
- Comments: Flow regulated by dam 0.6 miles upstream from station, and by variable backwater from power plant at St. Louis 5.2 miles downstream.

USGS Gage 04155500, Pine River near Midland, MI
- Drainage Area (square miles): 390
- Basin Number: 32
- Characteristic R-B Index Value: 0.178
- Rank: Highest
- First Water Year: 1935
- Last Water Year: 2011
- Number of Water Years Analyzed: 64
- Comments: Regulation at low and medium flows by hydroelectric power plant at St. Louis. Some diversions from station for irrigation.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04156000, Tittabawassee River at Midland, MI
- Drainage Area (square miles): 2400
- Basin Number: 32
- Characteristic R-B Index Value: 0.229
- Rank: Highest
- First Water Year: 1937
- Last Water Year: 2011
- Number of Water Years Analyzed: 75

Comments: Prior to 1992 a diversion was used in computing annual mean discharge and runoff figures, extremes and daily discharge were not adjusted for diversion. Prior to May 20, 1970 discharge below 4,000 cubic feet per second regulated by dam 2,000 feet upstream from station; fixed crest dam.

USGS Gage 04157500, Sebewaing River State Drain near Sebewaing, MI
- Drainage Area (square miles): 67.3
- Basin Number: 33
- Characteristic R-B Index Value: 0.630
- Rank: Highest
- First Water Year: 1940
- Last Water Year: 1954
- Number of Water Years Analyzed: 15

USGS Gage 04158000, Columbia Drain at Gettel Road near Sebewaing, MI
- Drainage Area (square miles): 33.9
- Basin Number: 33
- Characteristic R-B Index Value: 0.638
- Rank: Highest
- First Water Year: 1941
- Last Water Year: 1990
- Number of Water Years Analyzed: 16

Comments: Some regulation by dam at Michigan Sugar Company 1.9 miles upstream from station.
Streams Tributary to Lake Huron (cont.)

USGS Gage 04158500, Pigeon River near Owendale, MI
- Drainage Area (square miles): 53.2
- Basin Number: 26
- Characteristic R-B Index Value: 0.390
- Rank: Highest
- First Water Year: 1953
- Last Water Year: 1982
- Number of Water Years Analyzed: 21

USGS Gage 04159010, Pigeon River near Caseville, MI
- Drainage Area (square miles): 125
- Basin Number: 26
- Characteristic R-B Index Value: 0.375
- Rank: Highest
- First Water Year: 1987
- Last Water Year: 1993
- Number of Water Years Analyzed: 7
- Comments: Some diversions at low flows for agricultural irrigation.

Streams Tributary to St. Clair River

USGS Gage 04159492, Black River near Jeddo, MI
- Drainage Area (square miles): 464
- Basin Number: 6
- Characteristic R-B Index Value: 0.429
- Rank: Highest
- First Water Year: 1945
- Last Water Year: 2011
- Number of Water Years Analyzed: 17
- Comments:
 - Diurnal fluctuation principally during low flow, caused by an unknown source upstream from station.
 - Initially published an increasing trend for this gage. Additional data revises the analysis to no trend for this report update.
Streams Tributary to St. Clair River (cont.)

USGS Gage 04159500, Black River near Fargo, MI
- Drainage Area (square miles): 480
- Basin Number: 6
- Characteristic R-B Index Value: 0.335
- Rank: Highest
- First Water Year: 1945
- First Water Year Analyzed, if different: 1963
- Last Water Year: 1991
- Number of Water Years Analyzed: 29

USGS Gage 04159900, Mill Creek near Avoca, MI
- Drainage Area (square miles): 169
- Basin Number: 6
- Characteristic R-B Index Value: 0.279
- Rank: Highest
- First Water Year: 1964
- First Water Year Analyzed, if different: 1963
- Last Water Year: 1991
- Number of Water Years Analyzed: 29

USGS Gage 04160000, Mill Creek near Abbotsford, MI
- Drainage Area (square miles): 208
- Basin Number: 6
- Characteristic R-B Index Value: 0.200
- Rank: Highest
- p value: 0.00
- First Water Year: 1948
- Last Water Year: 1964
- Number of Water Years Analyzed: 17

USGS Gage 04160050, Black River near Port Huron, MI
- Drainage Area (square miles): 684
- Basin Number: 6
- Characteristic R-B Index Value: 0.323
- Rank: Highest
- First Water Year: 1933
- Last Water Year: 1943
- Number of Water Years Analyzed: 11
Streams Tributary to St. Clair River (cont.)

USGS Gage 04160570, North Branch Belle River at Imlay City, MI
- Drainage Area (square miles): 18
- Basin Number: 3
- Characteristic R-B Index Value: 0.294
- Rank: Lower Middle
- First Water Year: 1966
- Last Water Year: 2011
- Number of Water Years Analyzed: 36
- Comments: Some diversion by pumping for sprinkler irrigation.

Streams Tributary to Lake St. Clair

USGS Gage 04160800, Sashabaw Creek near Drayton Plains, MI
- Drainage Area (square miles): 20.9
- Basin Number: 12
- Characteristic R-B Index Value: 0.136
- Rank: Lowest
- First Water Year: 1960
- Last Water Year: 2009
- Number of Water Years Analyzed: 50

USGS Gage 04160600, Belle River at Memphis, MI
- Drainage Area (square miles): 151
- Basin Number: 3
- Characteristic R-B Index Value: 0.338
- Rank: Highest
- Trend: increase, p value: 0.00
- First Water Year: 1963
- Last Water Year: 2001
- Number of Water Years Analyzed: 49

USGS Gage 04160900, Clinton River near Drayton Plains, MI
- Drainage Area (square miles): 79.2
- Basin Number: 12
- Characteristic R-B Index Value: 0.079
- Rank: Lowest
- First Water Year: 1960
- First Water Year Analyzed, if different: 1981
- Last Water Year: 2009
- Number of Water Years Analyzed: 29
- Comments: Some regulation and occasional diversion for lake-level control at many lakes upstream from station.
Streams Tributary to Lake St. Clair (cont.)

USGS Gage 04161000, Clinton River at Auburn Heights, MI
- Drainage Area (square miles): 123
- Basin Number: 12
- Characteristic R-B Index Value: 0.164
- Rank: Upper Middle
- First Water Year: 1936
- First Water Year Analyzed, if different: 2002
- Last Water Year: 2011
- Number of Water Years Analyzed: 8

Comments:
- Some regulation by many lakes upstream from station. Flow includes sewage effluent, most of which originates from sources outside the Basin.
- Initially published an increasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04161100, Galloway Creek near Auburn Heights, MI
- Drainage Area (square miles): 17.9
- Basin Number: 12
- Characteristic R-B Index Value: 0.419
- Rank: Upper Middle
- Trend: increase, p value: 0.00
- First Water Year: 1960
- First Water Year Analyzed, if different: 1972
- Last Water Year: 1991
- Number of Water Years Analyzed: 20
Streams Tributary to Lake St. Clair (cont.)

USGS Gage 04161500, Paint Creek near Lake Orion, MI
- Drainage Area (square miles): 38.5
- Basin Number: 12
- Characteristic R-B Index Value: 0.094
- Rank: Lowest
- Trend: decrease, p value: 0.02
- First Water Year: 1956
- First Water Year Analyzed, if different: 1966
- Last Water Year: 1991
- Number of Water Years Analyzed: 13
- Comments:
 - Occasional regulation by Lake Orion.
 - Initially published no trend for this gage. Cusum analysis revises the analysis to a decreasing trend for this report update.

USGS Gage 04161540, Paint Creek at Rochester, MI
- Drainage Area (square miles): 70.9
- Basin Number: 12
- Characteristic R-B Index Value: 0.209
- Rank: Upper Middle
- Trend: increase, p value: 0.00
- First Water Year: 1960
- Last Water Year: 2011
- Number of Water Years Analyzed: 52
- Comments: Occasional regulation by Lake Orion.

USGS Gage 04161580, Stony Creek near Romeo, MI
- Drainage Area (square miles): 25.6
- Basin Number: 12
- Characteristic R-B Index Value: 0.195
- Rank: Lower Middle
- Trend: increase, p value: 0.01
- First Water Year: 1965
- First Water Year Analyzed, if different: 1984
- Last Water Year: 2011
- Number of Water Years Analyzed: 28
Streams Tributary to Lake St. Clair (cont.)

USGS Gage 04161800, Stony Creek near Washington, MI
- Drainage Area (square miles): 68.2
- Basin Number: 12
- Characteristic R-B Index Value: 0.130
- Rank: Lower Middle
- First Water Year: 1959
- Last Water Year: 2011
- Number of Water Years Analyzed: 53
- Comments: Occasional diurnal fluctuation caused by mills upstream from station prior to February 1963, occasional regulation by Stony Lake since.

USGS Gage 04161820, Clinton River at Sterling Heights, MI
- Drainage Area (square miles): 309
- Basin Number: 12
- Characteristic R-B Index Value: 0.201
- Rank: Highest
- First Water Year: 1979
- Last Water Year: 2011
- Number of Water Years Analyzed: 11
- Comments: Diversions from Big Beaver Creek Basin via Henry-Graham Drain started in 1976 is ongoing and increasing with further development of new drains.
Streams Tributary to Lake St. Clair (cont.)

USGS Gage 04162900, Big Beaver Creek near Warren, MI
- Drainage Area (square miles): 23.5
- Basin Number: 12
- Characteristic R-B Index Value: 0.957
- Rank: Highest
- First Water Year: 1959
- First Water Year Analyzed, if different: 1982
- Last Water Year: 1988
- Number of Water Years Analyzed: 7

Comments:
- Diversions from the Henry-Graham Drain started in 1976 is ongoing and increasing with further development for new drains.
- Initially published an increasing trend for this gage. Cusum analysis revises the analysis to no trend for this report update.

USGS Gage 04163400, Plum Brook at Utica, MI
- Drainage Area (square miles): 16.5
- Basin Number: 12
- Characteristic R-B Index Value: 0.546
- Rank: Highest
- First Water Year: 1966
- Last Water Year: 2011
- Number of Water Years Analyzed: 44

Comments: Prior to 1998 occasional diversion for sprinkler irrigation.

USGS Gage 04163500, Plum Brook near Utica, MI
- Drainage Area (square miles): 22.9
- Basin Number: 12
- Characteristic R-B Index Value: 0.419
- Rank: Upper Middle
- p value: 0.03
- First Water Year: 1955
- Last Water Year: 1966
- Number of Water Years Analyzed: 12
Streams Tributary to Lake St. Clair (cont.)

USGS Gage 04164000, Clinton River near Fraser, MI
- Drainage Area (square miles): 444
- Basin Number: 12
- Characteristic R-B Index Value: 0.305
- Rank: Highest
- Trend: increase, p value: 0.00
- First Water Year: 1948
- Last Water Year: 2011
- Number of Water Years Analyzed: 65

USGS Gage 04164010, North Branch Clinton River at Almont, MI
- Drainage Area (square miles): 10
- Basin Number: 12
- Characteristic R-B Index Value: 0.420
- Rank: Upper Middle
- First Water Year: 1963
- Last Water Year: 1968
- Number of Water Years Analyzed: 6

USGS Gage 04164050, North Branch Clinton River at 33 Mile Road near Romeo, MI
- Drainage Area (square miles): 49.7
- Basin Number: 12
- Characteristic R-B Index Value: 0.412
- Rank: Highest
- First Water Year: 1965
- Last Water Year: 1969
- Number of Water Years Analyzed: 5

USGS Gage 04164100, East Pond Creek at Romeo, MI
- Drainage Area (square miles): 21.8
- Basin Number: 12
- Characteristic R-B Index Value: 0.162
- Rank: Lower Middle
- First Water Year: 1959
- Last Water Year: 2011
- Number of Water Years Analyzed: 53
 Comments: Occasional regulation upstream from station.
Streams Tributary to Lake St. Clair (cont.)

USGS Gage 04164150, North Branch Clinton River at 27 Mile Road near Meade, MI
- Drainage Area (square miles): 89.6
- Basin Number: 12
- Characteristic R-B Index Value: 0.325
- Rank: Highest
- First Water Year: 1968
- Last Water Year: 1972
- Number of Water Years Analyzed: 5
- Comments: Occasional regulation at low flow by Mill Pond above station.

USGS Gage 04164200, Coon Creek at North Avenue near Armada, MI
- Drainage Area (square miles): 9.56
- Basin Number: 12
- Characteristic R-B Index Value: 0.489
- Rank: Upper Middle
- First Water Year: 1966
- Last Water Year: 1970
- Number of Water Years Analyzed: 5
- Comments: Occasional diversion for sprinkler irrigation.

USGS Gage 04164250, Tupper Brook at Ray Center, MI
- Drainage Area (square miles): 8.62
- Basin Number: 12
- Characteristic R-B Index Value: 0.669
- Rank: Highest
- First Water Year: 1960
- Last Water Year: 1964
- Number of Water Years Analyzed: 5

USGS Gage 04164300, East Branch Coon Creek at Armada, MI
- Drainage Area (square miles): 13
- Basin Number: 12
- Characteristic R-B Index Value: 0.633
- Rank: Highest
- First Water Year: 1959
- Last Water Year: 2011
- Number of Water Years Analyzed: 53
Streams Tributary to Lake St. Clair (cont.)

USGS Gage 04164350, Highbank Creek at 32 Mile Road near Armada, MI
- Drainage Area (square miles): 14.9
- Basin Number: 12
- Characteristic R-B Index Value: 0.537
- Rank: Highest
- p value: 0.05
- First Water Year: 1966
- Last Water Year: 1970
- Number of Water Years Analyzed: 5
- Comments: Occasional diversion for sprinkler irrigation.

USGS Gage 04164360, East Branch Cook Creek at 29-Mile Road near New Haven, MI
- Drainage Area (square miles): 36.1
- Basin Number: 12
- Characteristic R-B Index Value: 0.336
- Rank: Highest
- p value: 0.05
- First Water Year: 1968
- Last Water Year: 1982
- Number of Water Years Analyzed: 5

USGS Gage 04164400, Deer Creek at 25½ Mile Road near Meade, MI
- Drainage Area (square miles): 12.7
- Basin Number: 12
- Characteristic R-B Index Value: 0.760
- Rank: Highest
- First Water Year: 1961
- Last Water Year: 1965
- Number of Water Years Analyzed: 5

USGS Gage 04164450, McBride Drain at 24 Mile Road near Macomb, MI
- Drainage Area (square miles): 5.79
- Basin Number: 12
- Characteristic R-B Index Value: 0.682
- Rank: Highest
- First Water Year: 1960
- Last Water Year: 1964
- Number of Water Years Analyzed: 5
Streams Tributary to Lake St. Clair (cont.)

USGS Gage 04164500, North Branch Clinton River near Mount Clemens, MI
- Drainage Area (square miles): 199
- Basin Number: 12
- Characteristic R-B Index Value: 0.346
- Rank: Highest
- First Water Year: 1948
- First Water Year Analyzed, if different: 1972
- Last Water Year: 2011
- Number of Water Years Analyzed: 41
- Comments:
 - Some regulation by mill upstream.
 - Initially published an increasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04164600, Middle Branch Clinton River at Schoenherr Road near Macomb, MI
- Drainage Area (square miles): 22.2
- Basin Number: 12
- Characteristic R-B Index Value: 0.441
- Rank: Upper Middle
- First Water Year: 1965
- Last Water Year: 1969
- Number of Water Years Analyzed: 5

USGS Gage 04164800, Middle Branch Clinton River at Macomb, MI
- Drainage Area (square miles): 41
- Basin Number: 12
- Characteristic R-B Index Value: 0.439
- Rank: Highest
- First Water Year: 1963
- Last Water Year: 1982
- Number of Water Years Analyzed: 19

USGS Gage 04165200, Gloede Ditch near Waldenburg, MI
- Drainage Area (square miles): 16
- Basin Number: 12
- Characteristic R-B Index Value: 0.461
- Rank: Upper Middle
- First Water Year: 1960
- Last Water Year: 1964
- Number of Water Years Analyzed: 5
Streams Tributary to Lake St. Clair (cont.)

USGS Gage 04165500, Clinton River at Moravian Drive at Mount Clemens, MI
- Drainage Area (square miles): 734
- Basin Number: 12
- Characteristic R-B Index Value: 0.303
- Rank: Highest
- Trend: increase, p value: 0.00
- First Water Year: 1935
- First Water Year Analyzed, if different: 1971
- Last Water Year: 2004
- Number of Water Years Analyzed: 34

Streams Tributary to Detroit River

USGS Gage 04166000, River Rouge at Birmingham, MI
- Drainage Area (square miles): 33.3
- Basin Number: 31
- Characteristic R-B Index Value: 0.426
- Rank: Highest
- First Water Year: 1951
- First Water Year Analyzed, if different: 1998
- Last Water Year: 2011
- Number of Water Years Analyzed: 14

Comments:
- Occasional regulation by Quarton Lake upstream from station.
- Initially published an increasing trend for this gage. Additional data revises the analysis to no trend for this report update.
Streams Tributary to Detroit River (cont.)

USGS Gage 04166100, River Rouge at Southfield, MI
- Drainage Area (square miles): 87.9
- Basin Number: 31
- Characteristic R-B Index Value: 0.479
- Rank: Highest
- First Water Year: 1959
- First Water Year Analyzed, if different: 1995
- Last Water Year: 2011
- Number of Water Years Analyzed: 17
- Comments: Initially published an increasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04166200, Evans Ditch at Southfield, MI
- Drainage Area (square miles): 9.49
- Basin Number: 31
- Characteristic R-B Index Value: 0.892
- Rank: Highest
- First Water Year: 1959
- First Water Year Analyzed, if different: 1998
- Last Water Year: 2009
- Number of Water Years Analyzed: 12
- Comments: Initially published an increasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04166300, Upper River Rouge at Farmington, MI
- Drainage Area (square miles): 17.5
- Basin Number: 31
- Characteristic R-B Index Value: 0.423
- Rank: Upper Middle
- First Water Year: 1959
- First Water Year Analyzed, if different: 1998
- Last Water Year: 2011
- Number of Water Years Analyzed: 14
- Comments: Initially published an increasing trend for this gage. Additional data revises the analysis to no trend for this report update.
Streams Tributary to Detroit River (cont.)

USGS Gage 04166470, Upper River Rouge at Detroit, MI
- Drainage Area (square miles): 67.3
- Basin Number: 31
- Characteristic R-B Index Value: 0.545
- Rank: Highest
- First Water Year: 1998
- Last Water Year: 2005
- Number of Water Years Analyzed: 8

USGS Gage 04166500, River Rouge at Detroit, MI
- Drainage Area (square miles): 187
- Basin Number: 31
- Characteristic R-B Index Value: 0.492
- Rank: Highest
- First Water Year: 1931
- First Water Year Analyzed, if different: 1990
- Last Water Year: 2011
- Number of Water Years Analyzed: 22

Comments:
- Regulation by water retention structure upstream from station and some diversion by pumping for sprinkler irrigation.
- Initially published an increasing trend for this gage. Additional data revises the analysis to no trend for this report update.
Streams Tributary to Detroit River (cont.)

USGS Gage 04167000, Middle River Rouge near Garden City, MI
- Drainage Area (square miles): 99.9
- Basin Number: 31
- Characteristic R-B Index Value: 0.377
- Rank: Highest
- First Water Year: 1931
- Last Water Year: 2011
- Number of Water Years Analyzed: 14
- Comments:
 - Regulation by storm water retention structures and occasional regulation by reservoirs upstream of the station since 1956.
 - Initially published an increasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04167150, Middle River Rouge at Dearborn, MI
- Drainage Area (square miles): 110
- Basin Number: 31
- Characteristic R-B Index Value: 0.399
- Rank: Highest
- First Water Year: 1998
- Last Water Year: 2005
- Number of Water Years Analyzed: 8
- Comments: Regulation by storm water retention structures and occasional regulation by reservoirs upstream from station.

USGS Gage 04168000, Lower River Rouge at Inkster, MI
- Drainage Area (square miles): 83.2
- Basin Number: 31
- Characteristic R-B Index Value: 0.400
- Rank: Highest
- Trend: decrease, p value: 0.00
- First Water Year: 1948
- Last Water Year: 2011
- Number of Water Years Analyzed: 64
- Comments: Since 1995 flow contains effluent sewage treatment plant which originates outside the basin.
Streams Tributary to Detroit River (cont.)

USGS Gage 04168400, Lower River Rouge at Dearborn, MI
- Drainage Area (square miles): 91
- Basin Number: 31
- Characteristic R-B Index Value: 0.370
- Rank: Highest
- First Water Year: 1998
- Last Water Year: 2004
- Number of Water Years Analyzed: 7
- Comments: Flow contains effluent from sewage treatment plant, which originates outside the basin.

USGS Gage 04168580, Ecorse River at Dearborn Heights, MI
- Drainage Area (square miles): 10
- Basin Number: 31
- Characteristic R-B Index Value: 0.821
- Rank: Highest
- First Water Year: 2003
- Last Water Year: 2011
- Number of Water Years Analyzed: 9
- Comments: Gage added for this report update.

Streams Tributary to Lake Erie

USGS Gage 04169500, Huron River at Commerce, MI
- Drainage Area (square miles): 57.3
- Basin Number: 15
- Characteristic R-B Index Value: 0.054
- Rank: Lowest
- First Water Year: 1947
- Last Water Year: 1975
- Number of Water Years Analyzed: 29
- Comments: Some regulation by dams operated for lake level control of Pontiac, Oxbow, and Union Lakes.
Streams Tributary to Lake Erie (cont.)

USGS Gage 04170000, Huron River at Milford, MI
- Drainage Area (square miles): 132
- Basin Number: 15
- Characteristic R-B Index Value: 0.075
- Rank: Lowest
- First Water Year: 1949
- First Water Year Analyzed, if different: 1960
- Last Water Year: 2011
- Number of Water Years Analyzed: 52
- Comments: Flow regulation about 300 cubic feet per second regulated by power plant 1.5 miles upstream from station prior to May 29, 1957. Occasional regulation for lake level control since.

USGS Gage 04170500, Huron River near New Hudson, MI
- Drainage Area (square miles): 148
- Basin Number: 15
- Characteristic R-B Index Value: 0.075
- Rank: Lowest
- First Water Year: 1949
- First Water Year Analyzed, if different: 1968
- Last Water Year: 2011
- Number of Water Years Analyzed: 44
- Comments: Occasional regulation by Kent Lake.

USGS Gage 04171500, South Ore Creek at Hamburg Road near Brighton, MI
- Drainage Area (square miles): 33.7
- Basin Number: 15
- Characteristic R-B Index Value: 0.080
- Rank: Lowest
- First Water Year: 1951
- Last Water Year: 1968
- Number of Water Years Analyzed: 18
- Comments: Occasional regulation by lakes above station.
Streams Tributary to Lake Erie (cont.)

USGS Gage 04172000, Huron River near Hamburg, MI
- Drainage Area (square miles): 308
- Basin Number: 15
- Characteristic R-B Index Value: 0.054
- Rank: Lowest
- First Water Year: 1952
- First Water Year Analyzed, if different: 1967
- Last Water Year: 2011
- Number of Water Years Analyzed: 45
- Comments: Occasional regulation by Kent Lake 11 miles upstream.

USGS Gage 04172500, Portage River at Tiplady Road near Pinckney, MI
- Drainage Area (square miles): 79.1
- Basin Number: 15
- Characteristic R-B Index Value: 0.058
- Rank: Lowest
- First Water Year: 1946
- Last Water Year: 2009
- Number of Water Years Analyzed: 27
- Comments: Regulation by Hiland Lake 2.5 miles above station. Data point for 2009 is from MDEQ data.

USGS Gage 04173000, Huron River near Dexter, MI
- Drainage Area (square miles): 522
- Basin Number: 15
- Characteristic R-B Index Value: 0.143
- Rank: Upper Middle
- p value: 0.00
- First Water Year: 1947
- First Water Year Analyzed, if different: 1962
- Last Water Year: 1977
- Number of Water Years Analyzed: 13

USGS Gage 04173500, Mill Creek near Dexter, MI
- Drainage Area (square miles): 128
- Basin Number: 15
- Characteristic R-B Index Value: 0.196
- Rank: Highest
- First Water Year: 1953
- First Water Year Analyzed, if different: 1995
- Last Water Year: 2011
- Number of Water Years Analyzed: 17
- Comments: Initially published a decreasing trend for this gage. Additional data revises the analysis to no trend for this report update.
Streams Tributary to Lake Erie (cont.)

USGS Gage 04174500, Huron River at Ann Arbor, MI
- Drainage Area (square miles): 729
- Basin Number: 15
- Characteristic R-B Index Value: 0.094
- Rank: Lower Middle
- First Water Year: 1915
- First Water Year Analyzed, if different: 1999
- Last Water Year: 2011
- Number of Water Years Analyzed: 12

Comments:
- Prior to 1955 diversion upstream from station from Ann Arbor municipal supply had negligible effect on natural flow, annual mean discharge and runoff figures adjusted for diversion from 1955 to 1991. Flow regulation by power plants prior to May 1962. From June 1962 to 1975 occasional regulation for lake level control operations upstream from station. Since 1975 extensive regulation of flow exists due to automation of gates at dams upstream from station.
- Initially published a decreasing trend for this gage. Additional data revises the analysis to no trend for this report update.

USGS Gage 04174800, Huron River at Ypsilanti, MI
- Drainage Area (square miles): 807
- Basin Number: 15
- Characteristic R-B Index Value: 0.104
- Rank: Lower Middle
- Trend: decrease, p value: 0.00
- First Water Year: 1975
- Last Water Year: 1994
- Number of Water Years Analyzed: 15

Comments: Considerable regulation caused by many dams upstream from station.

USGS Gage 04175340, Stony Creek at Oakville, MI
- Drainage Area (square miles): 68
- Basin Number: 35
- Characteristic R-B Index Value: 0.335
- Rank: Highest
- First Water Year: 1971
- Last Water Year: 2003
- Number of Water Years Analyzed: 12
Streams Tributary to Lake Erie (cont.)

USGS Gage 04175600, River Raisin near Manchester, MI
- Drainage Area (square miles): 132
- Basin Number: 29
- Characteristic R-B Index Value: 0.092
- Rank: Lower Middle
- First Water Year: 1971
- Last Water Year: 2011
- Number of Water Years Analyzed: 37
- Comments: Occasional regulation caused by many dams upstream from station.

USGS Gage 04175700, River Raisin near Tecumseh, MI
- Drainage Area (square miles): 267
- Basin Number: 29
- Characteristic R-B Index Value: 0.106
- Rank: Upper Middle
- p value: 0.00
- First Water Year: 1957
- Last Water Year: 1980
- Number of Water Years Analyzed: 24
- Comments: Diurnal fluctuation caused by power plant 5.5 miles above station prior to June 27, 1968

USGS Gage 04176000, River Raisin near Adrian, MI
- Drainage Area (square miles): 463
- Basin Number: 29
- Characteristic R-B Index Value: 0.176
- Rank: Highest
- Trend: increase, p value: 0.04
- First Water Year: 1954
- First Water Year Analyzed, if different: 1972
- Last Water Year: 2011
- Number of Water Years Analyzed: 27
- Comments: Diurnal fluctuation caused by power plant at Tecumseh, 11 miles upstream from station prior to June 27, 1968. Occasional regulation since.
Streams Tributary to Lake Erie (cont.)

USGS Gage 04176400, Saline River near Saline, MI
- Drainage Area (square miles): 94.6
- Basin Number: 29
- Characteristic R-B Index Value: 0.308
- Rank: Highest
- First Water Year: 1966
- Last Water Year: 1977
- Number of Water Years Analyzed: 12
- Comments: Slight regulation for lake level control. Pumpage for irrigation diverts an indeterminate amount of water. Saline’s sewage effluent, which originates as ground water, is included in flow.

USGS Gage 04176500, River Raisin near Monroe, MI
- Drainage Area (square miles): 1042
- Basin Number: 29
- Characteristic R-B Index Value: 0.160
- Rank: Highest
- First Water Year: 1938
- First Water Year Analyzed, if different: 1972
- Last Water Year: 2011
- Number of Water Years Analyzed: 40
- Comments: Diurnal fluctuation caused by power plants upstream from station prior to June 27, 1968. At times flow is affected by irrigation pumpage.

USGS Gage 04176605, Otter Creek at Lasalle, MI
- Drainage Area (square miles): 51
- Basin Number: 29
- Characteristic R-B Index Value: 0.471
- Rank: Highest
- First Water Year: 1988
- Last Water Year: 2011
- Number of Water Years Analyzed: 24
Statistical Analysis Summary

Details of the R-B flashiness statistical analysis for each gaged site are provided in Table 9. The sites are ordered by gage number, which places them in the following order:

1. Streams Tributary to Lake Superior
2. Streams Tributary to Lake Michigan, Upper Peninsula
3. Streams Tributary to Lake Michigan, Southern Lower Peninsula
4. Streams Tributary to Lake Michigan, Northern Lower Peninsula
5. Streams Tributary to Lake Huron
6. Streams Tributary to St. Clair River
7. Streams Tributary to Lake St. Clair
8. Streams Tributary to Detroit River
9. Streams Tributary to Lake Erie

Table 9 lists R-B Index values and related statistics as calculated for all of the data and also as calculated for a selected portion of the data for those gages where cusum analysis indicated a trend change in the data. Total Water Years may be less than the ending water year minus the starting water year because of gaps in the data. The flashiness trend in the table is based on the trend slopes. Statistical significance is based on the ‘p’ value of the regression line. A p value of 0.05 or less equates to 95 percent statistical significance. The table also includes the major watershed number, as shown on the map of Michigan’s Major Watersheds, Appendix B, or www.michigan.gov/documents/deq/wrd-mi-watersheds_559937_7.pdf.
Table 9 - R-B Flashiness Statistical Analysis Details – Ordered by Gage Number.

<table>
<thead>
<tr>
<th>Gage Number</th>
<th>Gage Description</th>
<th>Total Drainage Area (sq. mi.)</th>
<th>Major Watershed</th>
<th>Watershed Number</th>
<th>Characteristic R-B Index Value</th>
<th>Quartile Rank</th>
<th>Flashiness Trend</th>
<th>p Value</th>
<th>First Water Year of Record</th>
<th>First Water Year Analyzed, if different</th>
<th>Last Water Year</th>
<th>Water Years Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>04001000</td>
<td>Washington Creek at Windigo, MI</td>
<td>13</td>
<td>Portage</td>
<td>55</td>
<td>0.225</td>
<td>Lower Middle</td>
<td>1965</td>
<td>2003</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04028000</td>
<td>Montreal River at Ironwood, MI</td>
<td>61</td>
<td>Montreal</td>
<td>51</td>
<td>0.284</td>
<td>Upper Middle</td>
<td>1919</td>
<td>1954</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04029000</td>
<td>West Branch Montreal River at Gile, WI</td>
<td>78</td>
<td>Montreal</td>
<td>51</td>
<td>0.174</td>
<td>Upper Middle</td>
<td>1919</td>
<td>1947</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04029990</td>
<td>Montreal River at Saxon Falls near Saxon, WI</td>
<td>261</td>
<td>Montreal</td>
<td>51</td>
<td>0.179</td>
<td>Highest</td>
<td>1939</td>
<td>2010</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04030000</td>
<td>Montreal River near Saxon, WI</td>
<td>264</td>
<td>Montreal</td>
<td>51</td>
<td>0.144</td>
<td>Upper Middle</td>
<td>1939</td>
<td>1970</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04031000</td>
<td>Black River near Bessemer, MI</td>
<td>200</td>
<td>Presque Isle</td>
<td>56</td>
<td>0.220</td>
<td>Highest</td>
<td>1955</td>
<td>2010</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04031500</td>
<td>Presque Isle River at Marenisco, MI</td>
<td>171</td>
<td>Presque Isle</td>
<td>56</td>
<td>0.113</td>
<td>Upper Middle</td>
<td>1946</td>
<td>1982</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04032000</td>
<td>Presque Isle River near Tula, MI</td>
<td>261</td>
<td>Presque Isle</td>
<td>56</td>
<td>0.138</td>
<td>Upper Middle</td>
<td>1946</td>
<td>1973</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04032500</td>
<td>Iron River near White Pine, MI</td>
<td>98</td>
<td>Presque Isle</td>
<td>56</td>
<td>0.266</td>
<td>Upper Middle</td>
<td>1953</td>
<td>1957</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04033000</td>
<td>Middle Branch Ontonagon River near Paulding, MI</td>
<td>164</td>
<td>Ontonagon</td>
<td>53</td>
<td>0.081</td>
<td>Lower Middle</td>
<td>1943</td>
<td>1976</td>
<td>2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04034500</td>
<td>Middle Branch Ontonagon River near Trout Creek, MI</td>
<td>203</td>
<td>Ontonagon</td>
<td>53</td>
<td>0.049</td>
<td>Lowest decrease</td>
<td>0.02</td>
<td>1943</td>
<td>2011</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04035000</td>
<td>East Branch Ontonagon River near Mass, MI</td>
<td>272</td>
<td>Ontonagon</td>
<td>53</td>
<td>0.170</td>
<td>Upper Middle</td>
<td>1943</td>
<td>1979</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04035500</td>
<td>Middle Branch Ontonagon River near Rockland, MI</td>
<td>671</td>
<td>Ontonagon</td>
<td>53</td>
<td>0.233</td>
<td>Highest</td>
<td>1943</td>
<td>2008</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04036000</td>
<td>West Branch Ontonagon River near Bergland, MI</td>
<td>162</td>
<td>Ontonagon</td>
<td>53</td>
<td>0.060</td>
<td>Lowest decrease</td>
<td><0.01</td>
<td>1943</td>
<td>1978</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04037500</td>
<td>Cisco Branch Ontonagon River at Cisco Lake Outlet, MI</td>
<td>51</td>
<td>Ontonagon</td>
<td>53</td>
<td>0.281</td>
<td>Upper Middle</td>
<td>increase</td>
<td><0.01</td>
<td>1945</td>
<td>1977</td>
<td>2011</td>
<td>35</td>
</tr>
<tr>
<td>04039500</td>
<td>South Branch Ontonagon River at Ewen, MI</td>
<td>348</td>
<td>Ontonagon</td>
<td>53</td>
<td>0.141</td>
<td>Upper Middle</td>
<td>1943</td>
<td>1971</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04040000</td>
<td>Ontonagon River near Rockland, MI</td>
<td>1340</td>
<td>Ontonagon</td>
<td>53</td>
<td>0.181</td>
<td>Highest</td>
<td>1943</td>
<td>2010</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04040500</td>
<td>Sturgeon River near Sidnaw, MI</td>
<td>171</td>
<td>Portage</td>
<td>55</td>
<td>0.153</td>
<td>Upper Middle</td>
<td>1944</td>
<td>2010</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04041500</td>
<td>Sturgeon River near Alston, MI</td>
<td>346</td>
<td>Portage</td>
<td>55</td>
<td>0.123</td>
<td>Upper Middle</td>
<td>decrease</td>
<td><0.01</td>
<td>1933</td>
<td>1963</td>
<td>2011</td>
<td>49</td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>p Value</td>
<td>First Water Year of Record</td>
<td>First Water Year Analyzed, if different</td>
<td>Last Water Year</td>
<td>Water Years Analyzed</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>04042500</td>
<td>Otter River near Elo, MI</td>
<td>162</td>
<td>Portage</td>
<td>55</td>
<td>0.176</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1943</td>
<td>1972</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>04043000</td>
<td>Sturgeon River near Arnheim, MI</td>
<td>705</td>
<td>Portage</td>
<td>55</td>
<td>0.095</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1943</td>
<td>1973</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>04043050</td>
<td>Trap Rock River near Lake Linden, MI</td>
<td>28</td>
<td>Portage</td>
<td>55</td>
<td>0.233</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1967</td>
<td>2010</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>04043150</td>
<td>Silver River near L'Anse, MI</td>
<td>65</td>
<td>Falls</td>
<td>48</td>
<td>0.250</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>2002</td>
<td>2010</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>04043244</td>
<td>East Branch Salmon Trout River near Dodge City, MI</td>
<td>10</td>
<td>Falls</td>
<td>48</td>
<td>0.144</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>2006</td>
<td>2010</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>04043275</td>
<td>Yellow Dog River near Big Bay, MI</td>
<td>32</td>
<td>Falls</td>
<td>48</td>
<td>0.117</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>2006</td>
<td>2010</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>04044400</td>
<td>Carp River at US Highway 41 near Negaunee, MI</td>
<td>51</td>
<td>Dead</td>
<td>45</td>
<td>0.088</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1962</td>
<td>1985</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>04044583</td>
<td>Cherry Creek near Harvey, MI</td>
<td>4.5</td>
<td>Chocolay</td>
<td>43</td>
<td>0.005</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1966</td>
<td>1981</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04044724</td>
<td>AuTrain River at Forest Lake, MI</td>
<td>81</td>
<td>Au Train</td>
<td>39</td>
<td>0.046</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1994</td>
<td>2011</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>04045500</td>
<td>Tahquamenon River near Paradise, MI</td>
<td>790</td>
<td>Tahquamenon</td>
<td>60</td>
<td>0.055</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1954</td>
<td>2010</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>

Streams Tributary to Lake Michigan, Upper Peninsula

<table>
<thead>
<tr>
<th>Gage Number</th>
<th>Gage Description</th>
<th>Total Drainage Area (sq. mi.)</th>
<th>Major Watershed</th>
<th>Watershed Number</th>
<th>Characteristic R-B Index Value</th>
<th>Quartile Rank</th>
<th>Flashiness Trend</th>
<th>p Value</th>
<th>First Water Year of Record</th>
<th>First Water Year Analyzed, if different</th>
<th>Last Water Year</th>
<th>Water Years Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>04046000</td>
<td>Black River near Garnet, MI</td>
<td>28</td>
<td>Carp</td>
<td>41</td>
<td>0.128</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1952</td>
<td>2011</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>04049500</td>
<td>Manistique River at Germfask, MI</td>
<td>341</td>
<td>Manistique</td>
<td>49</td>
<td>0.040</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1939</td>
<td>1970</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>04054500</td>
<td>Duck Creek near Blaney, MI</td>
<td>92</td>
<td>Manistique</td>
<td>49</td>
<td>0.092</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1939</td>
<td>1954</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>04055000</td>
<td>Manistique River at Cookson Bridge near Blaney, MI</td>
<td>704</td>
<td>Manistique</td>
<td>49</td>
<td>0.048</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1938</td>
<td>1970</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>04056000</td>
<td>West Branch Manistique River near Manistique, MI</td>
<td>322</td>
<td>Manistique</td>
<td>49</td>
<td>0.058</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1939</td>
<td>1956</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>04056500</td>
<td>Manistique River near Manistique, MI</td>
<td>1100</td>
<td>Manistique</td>
<td>49</td>
<td>0.050</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1939</td>
<td>2009</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>04057000</td>
<td>Indian River near Manistique, MI</td>
<td>302</td>
<td>Manistique</td>
<td>49</td>
<td>0.029</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1939</td>
<td>1965</td>
<td>1993</td>
<td>8</td>
</tr>
<tr>
<td>04057510</td>
<td>Sturgeon River near Nahma Junction, MI</td>
<td>183</td>
<td>Sturgeon</td>
<td>58</td>
<td>0.089</td>
<td>Lower Middle</td>
<td>decrease 0.01</td>
<td>96</td>
<td>1967</td>
<td>1984</td>
<td>2009</td>
<td>26</td>
</tr>
<tr>
<td>04057800</td>
<td>Middle Branch Escanaba River at Humboldt, MI</td>
<td>46</td>
<td>Escanaba</td>
<td>46</td>
<td>0.153</td>
<td>Lower Middle</td>
<td>decrease 0.03</td>
<td>96</td>
<td>1960</td>
<td>2009</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>04057820</td>
<td>Middle Branch Escanaba River near Greenwood, MI</td>
<td>73</td>
<td>Escanaba</td>
<td>46</td>
<td>0.101</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1973</td>
<td>1982</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>04057900</td>
<td>Black River near Republic, MI</td>
<td>34</td>
<td>Escanaba</td>
<td>46</td>
<td>0.154</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1962</td>
<td>1968</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>04058000</td>
<td>Middle Branch Escanaba River near Ishpeming, MI</td>
<td>128</td>
<td>Escanaba</td>
<td>46</td>
<td>0.131</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1955</td>
<td>1975</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>p Value</td>
<td>First Water Year of Record</td>
<td>First Water Year Analyzed, if different</td>
<td>Last Water Year</td>
<td>Water Years Analyzed</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>04058100</td>
<td>Middle Branch Escanaba River near Princeton, MI</td>
<td>210</td>
<td>Escanaba</td>
<td>46</td>
<td>0.090</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1962</td>
<td>1996</td>
<td>2011</td>
<td>15</td>
</tr>
<tr>
<td>04058200</td>
<td>Schweitzer Creek near Palmer, MI</td>
<td>24</td>
<td>Escanaba</td>
<td>46</td>
<td>0.204</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1961</td>
<td>2009</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>04058300</td>
<td>Warner Creek near Palmer, MI</td>
<td>14</td>
<td>Escanaba</td>
<td>46</td>
<td>0.195</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1962</td>
<td>1978</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>04058400</td>
<td>Goose Lake Outlet near Sands Station, MI</td>
<td>38</td>
<td>Escanaba</td>
<td>46</td>
<td>0.084</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1966</td>
<td>1982</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>04058500</td>
<td>East Branch Escanaba River at Gwinn, MI</td>
<td>124</td>
<td>Escanaba</td>
<td>46</td>
<td>0.133</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1955</td>
<td>1980</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>04059000</td>
<td>Escanaba River at Cornell, MI</td>
<td>870</td>
<td>Escanaba</td>
<td>46</td>
<td>0.103</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1951</td>
<td>1996</td>
<td>2009</td>
<td>14</td>
</tr>
<tr>
<td>04059400</td>
<td>Ten Mile Creek at Perronville, MI</td>
<td>39</td>
<td>Ford</td>
<td>47</td>
<td>0.165</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1972</td>
<td>1977</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>04059500</td>
<td>Ford River near Hyde, MI</td>
<td>450</td>
<td>Ford</td>
<td>47</td>
<td>0.113</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1955</td>
<td>2009</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>04060500</td>
<td>Iron River at Highway 424 at Caspian, MI</td>
<td>92</td>
<td>Menominee</td>
<td>50</td>
<td>0.069</td>
<td>Lowest</td>
<td>decrease <0.01</td>
<td></td>
<td>1949</td>
<td>2009</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>04060993</td>
<td>Brule River at US-2 near Florence, WI</td>
<td>366</td>
<td>Menominee</td>
<td>50</td>
<td>0.080</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1915</td>
<td>2009</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>04061500</td>
<td>Paint River at Crystal Falls, MI</td>
<td>597</td>
<td>Menominee</td>
<td>50</td>
<td>0.109</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1945</td>
<td>1996</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>04062000</td>
<td>Paint River near Alpha, MI</td>
<td>631</td>
<td>Menominee</td>
<td>50</td>
<td>0.051</td>
<td>Lowest</td>
<td>decrease <0.01</td>
<td></td>
<td>1953</td>
<td>1981, 2011</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>04062011</td>
<td>Brule River near Commonwealth, WI</td>
<td>1020</td>
<td>Menominee</td>
<td>50</td>
<td>0.072</td>
<td>Lower Middle</td>
<td>decrease <0.01</td>
<td></td>
<td>1990</td>
<td>2011</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>04062100</td>
<td>Peshekee River near Michigamme, MI</td>
<td>67</td>
<td>Menominee</td>
<td>50</td>
<td>0.197</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1962</td>
<td>1995</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>04062200</td>
<td>Peshekee River near Champion, MI</td>
<td>133</td>
<td>Menominee</td>
<td>50</td>
<td>0.169</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1962</td>
<td>2001, 2009</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>04062230</td>
<td>Michigamme River near Michigamme, MI</td>
<td>194</td>
<td>Menominee</td>
<td>50</td>
<td>0.061</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1969</td>
<td>1982, 1986</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>04062270</td>
<td>Michigamme River near Champion, MI</td>
<td>231</td>
<td>Menominee</td>
<td>50</td>
<td>0.065</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1969</td>
<td>1969, 2011</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>04062300</td>
<td>Michigamme River at Republic, MI</td>
<td>240</td>
<td>Menominee</td>
<td>50</td>
<td>0.083</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1962</td>
<td>1964, 1975</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>04062400</td>
<td>Michigamme River near Witch Lake, MI</td>
<td>316</td>
<td>Menominee</td>
<td>50</td>
<td>0.075</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1965</td>
<td>1980</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>04062500</td>
<td>Michigamme River near Crystal Falls, MI</td>
<td>656</td>
<td>Menominee</td>
<td>50</td>
<td>0.048</td>
<td>Lowest</td>
<td>decrease <0.01</td>
<td></td>
<td>1945</td>
<td>1972, 2011</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>04063000</td>
<td>Menominee River near Florence, WI</td>
<td>1760</td>
<td>Menominee</td>
<td>50</td>
<td>0.086</td>
<td>Upper Middle</td>
<td>decrease <0.01</td>
<td></td>
<td>1915</td>
<td>1952, 2011</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>p Value</td>
<td>First Water-Year of Record</td>
<td>First Water-Year Analyzed, if different</td>
<td>Last Water-Year Analyzed</td>
<td>Water Years Analyzed</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>--------</td>
<td>--------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>04063500</td>
<td>Menominee River at Twin Falls near Iron Mt, MI</td>
<td>1800</td>
<td>Menominee</td>
<td>50</td>
<td>0.076</td>
<td>Lower Middle</td>
<td>decrease</td>
<td><0.01</td>
<td>1915</td>
<td>1963</td>
<td>2011</td>
<td>49</td>
</tr>
<tr>
<td>04063700</td>
<td>Popple River near Fence, WI</td>
<td>139</td>
<td>Menominee</td>
<td>50</td>
<td>0.098</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1964</td>
<td>2011</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>04064000</td>
<td>Pine River near Florence, WI</td>
<td>510</td>
<td>Menominee</td>
<td>50</td>
<td>0.067</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1914</td>
<td>1923</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>04064500</td>
<td>Pine River below Pine River Powerplant near Florence, WI</td>
<td>533</td>
<td>Menominee</td>
<td>50</td>
<td>0.106</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1924</td>
<td>1997</td>
<td>2011</td>
<td>14</td>
</tr>
<tr>
<td>04065106</td>
<td>Menominee River at Niagara, WI</td>
<td>2470</td>
<td>Menominee</td>
<td>50</td>
<td>0.069</td>
<td>Lower Middle</td>
<td>decrease</td>
<td><0.01</td>
<td>1993</td>
<td>2011</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>04065300</td>
<td>West Branch Sturgeon River near Randville, MI</td>
<td>56</td>
<td>Menominee</td>
<td>50</td>
<td>0.183</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1959</td>
<td>1981</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>04065393</td>
<td>East Branch Sturgeon River below Skunk Creek near Felch, MI</td>
<td>62</td>
<td>Menominee</td>
<td>50</td>
<td>0.137</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1974</td>
<td>1984</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>04065397</td>
<td>East Branch Sturgeon River at Hardwood, MI</td>
<td>91</td>
<td>Menominee</td>
<td>50</td>
<td>0.093</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1978</td>
<td>1983</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>04065500</td>
<td>Sturgeon River near Foster City, MI</td>
<td>237</td>
<td>Menominee</td>
<td>50</td>
<td>0.109</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1955</td>
<td>1980</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>04065600</td>
<td>Pine Creek near Iron Mountain, MI</td>
<td>17</td>
<td>Menominee</td>
<td>50</td>
<td>0.156</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1972</td>
<td>1961</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>04065722</td>
<td>Menominee River near Vulcan, MI</td>
<td>2900</td>
<td>Menominee</td>
<td>50</td>
<td>0.089</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1989</td>
<td>2011</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>04066003</td>
<td>Menominee River below Pemene Creek near Pembine, WI</td>
<td>3140</td>
<td>Menominee</td>
<td>50</td>
<td>0.080</td>
<td>Upper Middle</td>
<td>decrease</td>
<td><0.01</td>
<td>1950</td>
<td>2011</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>04066030</td>
<td>Menominee River at White Rapids Dam near Banat, MI</td>
<td>3190</td>
<td>Menominee</td>
<td>50</td>
<td>0.102</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1999</td>
<td>2011</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>04066500</td>
<td>Pike River at Amberg, WI</td>
<td>255</td>
<td>Menominee</td>
<td>50</td>
<td>0.090</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1915</td>
<td>2011</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>04066800</td>
<td>Menominee River at Koss, MI</td>
<td>3700</td>
<td>Menominee</td>
<td>50</td>
<td>0.090</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1914</td>
<td>1999</td>
<td>2011</td>
<td>12</td>
</tr>
<tr>
<td>04067500</td>
<td>Menominee River near McAllister, WI</td>
<td>3930</td>
<td>Menominee</td>
<td>50</td>
<td>0.081</td>
<td>Upper Middle</td>
<td>decrease</td>
<td>0.01</td>
<td>1946</td>
<td>1980</td>
<td>2011</td>
<td>24</td>
</tr>
</tbody>
</table>

Streams Tributary to Lake Michigan, Southern Lower Peninsula

<table>
<thead>
<tr>
<th>Gage Number</th>
<th>Gage Description</th>
<th>Total Drainage Area (sq. mi.)</th>
<th>Major Watershed</th>
<th>Watershed Number</th>
<th>Characteristic R-B Index Value</th>
<th>Quartile Rank</th>
<th>Flashiness Trend</th>
<th>p Value</th>
<th>First Water-Year of Record</th>
<th>First Water-Year Analyzed, if different</th>
<th>Last Water-Year Analyzed</th>
<th>Water Years Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>04096015</td>
<td>Galien River near Sawyer, MI</td>
<td>81</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.304</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1996</td>
<td>2010</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>04096100</td>
<td>Galena River near Laporte, IN</td>
<td>17</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.229</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1970</td>
<td>2003</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>04096272</td>
<td>Beebe Creek at Moore Road near Hillsdale, MI</td>
<td>42</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.173</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1975</td>
<td>1980</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>04096405</td>
<td>St. Joseph River at Burlington, MI</td>
<td>206</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.063</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1963</td>
<td>2011</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>Trend</td>
<td>p Value</td>
<td>First Water Year of Record</td>
<td>First Water Year Analyzed, if different</td>
<td>Last Water Year</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>04096500</td>
<td>Sauk River at Jay Street at Coldwater, MI</td>
<td>60</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.100</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1938</td>
<td>1962</td>
<td>25</td>
</tr>
<tr>
<td>04096515</td>
<td>South Branch Hog Creek near Allen, MI</td>
<td>49</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.141</td>
<td>Lower Middle</td>
<td>increase</td>
<td><0.01</td>
<td>1970</td>
<td>1970</td>
<td>2010</td>
<td>42</td>
</tr>
<tr>
<td>04096600</td>
<td>Coldwater River near Hodunk, MI</td>
<td>293</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.078</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td></td>
<td>1963</td>
<td>1989</td>
<td>27</td>
</tr>
<tr>
<td>04096900</td>
<td>Nottawa Creek near Athens, MI</td>
<td>162</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.084</td>
<td>Lower Middle</td>
<td>increase</td>
<td>0.02</td>
<td>1967</td>
<td>1997</td>
<td>1997</td>
<td>31</td>
</tr>
<tr>
<td>04097170</td>
<td>Portage River at W Avenue near Vicksburg, MI</td>
<td>68</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.047</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1947</td>
<td>1965</td>
<td>1979</td>
</tr>
<tr>
<td>04097200</td>
<td>Gourdneck Creek near Schoolcraft, MI</td>
<td>7.3</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.094</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1965</td>
<td>1972</td>
<td>8</td>
</tr>
<tr>
<td>04097500</td>
<td>St. Joseph River at Three Rivers, MI</td>
<td>1350</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.062</td>
<td>Lower Middle</td>
<td>decrease</td>
<td>0.01</td>
<td>1954</td>
<td>2011</td>
<td>1954</td>
<td>49</td>
</tr>
<tr>
<td>04097540</td>
<td>Prairie River near Nottawa, MI</td>
<td>106</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.056</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1963</td>
<td>2010</td>
<td>48</td>
</tr>
<tr>
<td>04097970</td>
<td>Lime Lake Outlet at Panama, IN</td>
<td>18</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.062</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1970</td>
<td>1986</td>
<td>17</td>
</tr>
<tr>
<td>04098500</td>
<td>Fawn River near White Pigeon, MI</td>
<td>192</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.051</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1958</td>
<td>1975</td>
<td>18</td>
</tr>
<tr>
<td>04099000</td>
<td>St. Joseph River at Mottville, MI</td>
<td>1866</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.050</td>
<td>Lowest</td>
<td>decrease</td>
<td><0.01</td>
<td>1925</td>
<td>2011</td>
<td>1925</td>
<td>87</td>
</tr>
<tr>
<td>04099510</td>
<td>Pigeon Creek near Angola, IN</td>
<td>106</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.079</td>
<td>Lower Middle</td>
<td>decrease</td>
<td>0.04</td>
<td>1946</td>
<td>1996</td>
<td>1946</td>
<td>2011</td>
</tr>
<tr>
<td>04099610</td>
<td>Pretty Lake Inlet near Stroh, IN</td>
<td>2.0</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.281</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td></td>
<td>1964</td>
<td>1981</td>
<td>18</td>
</tr>
<tr>
<td>04099750</td>
<td>Pigeon River near Scott, IN</td>
<td>307</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.068</td>
<td>Lower Middle</td>
<td>increase</td>
<td><0.01</td>
<td>1969</td>
<td>2011</td>
<td>1969</td>
<td>43</td>
</tr>
<tr>
<td>04099808</td>
<td>Little Elkhart River at Middlebury, IN</td>
<td>92</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.154</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td></td>
<td>1980</td>
<td>2003</td>
<td>24</td>
</tr>
<tr>
<td>04099850</td>
<td>Pine Creek near Elkhart, IN</td>
<td>31</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.200</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td></td>
<td>1980</td>
<td>2003</td>
<td>24</td>
</tr>
<tr>
<td>04100222</td>
<td>North Branch Elkhart River at Cosperville, IN</td>
<td>142</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.053</td>
<td>Lowest</td>
<td>decrease</td>
<td>0.05</td>
<td>1972</td>
<td>2011</td>
<td>1972</td>
<td>40</td>
</tr>
<tr>
<td>04100252</td>
<td>Forker Creek near Burr Oak, IN</td>
<td>19</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.198</td>
<td>Lower Middle</td>
<td>increase</td>
<td>0.04</td>
<td>1970</td>
<td>2003</td>
<td>1970</td>
<td>34</td>
</tr>
<tr>
<td>04100295</td>
<td>Rimmell Branch near Albion, IN</td>
<td>11</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.446</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td></td>
<td>1981</td>
<td>2001</td>
<td>21</td>
</tr>
<tr>
<td>04100377</td>
<td>Solomon Creek near Syracuse, IN</td>
<td>36</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.108</td>
<td>Lower Middle</td>
<td>increase</td>
<td>0.02</td>
<td>1988</td>
<td>2003</td>
<td>1988</td>
<td>16</td>
</tr>
<tr>
<td>04100465</td>
<td>Turkey Creek at Syracuse, IN</td>
<td>44</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.065</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1970</td>
<td>1987</td>
<td>18</td>
</tr>
<tr>
<td>04100500</td>
<td>Elkhart River at Goshen, IN</td>
<td>594</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.102</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td></td>
<td>1932</td>
<td>1955</td>
<td>2011</td>
</tr>
<tr>
<td>04101000</td>
<td>St. Joseph River at Elkhart, IN</td>
<td>3370</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.051</td>
<td>Lowest</td>
<td>decrease</td>
<td><0.01</td>
<td>1948</td>
<td>2011</td>
<td>1948</td>
<td>64</td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>p Value</td>
<td>First Water Year of Record</td>
<td>First Water Year Analyzed, if different</td>
<td>Last Water Year</td>
<td>Water Years Analyzed</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td>------------------------</td>
<td>--</td>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>04101370</td>
<td>Juday Creek near South Bend, IN</td>
<td>38</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.093</td>
<td>Lowest</td>
<td>decrease</td>
<td><0.01</td>
<td>1993</td>
<td>2010</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>04101500</td>
<td>St. Joseph River at Niles, MI</td>
<td>3666</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.059</td>
<td>Lowest</td>
<td>decrease</td>
<td><0.01</td>
<td>1931</td>
<td>2011</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>04101800</td>
<td>Dowagiac River at Summerville, MI</td>
<td>255</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.092</td>
<td>Lower</td>
<td>Middle</td>
<td><0.01</td>
<td>1961</td>
<td>1973</td>
<td>2011</td>
<td>39</td>
</tr>
<tr>
<td>04102000</td>
<td>St. Joseph River at Berrien Springs, MI</td>
<td>4081</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.085</td>
<td>Upper</td>
<td>Middle</td>
<td>1902</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>04102500</td>
<td>Paw Paw River at Riverside, MI</td>
<td>390</td>
<td>St. Joseph</td>
<td>34</td>
<td>0.070</td>
<td>Lower</td>
<td>Middle</td>
<td><0.01</td>
<td>1952</td>
<td>1971</td>
<td>2011</td>
<td>41</td>
</tr>
<tr>
<td>04102700</td>
<td>South Branch Black River near Bangor, MI</td>
<td>84</td>
<td>Black</td>
<td>7</td>
<td>0.191</td>
<td>Upper</td>
<td>Middle</td>
<td>0.01</td>
<td>1967</td>
<td>2011</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>04102776</td>
<td>Middle Branch Black River near South Haven, MI</td>
<td>83</td>
<td>Black</td>
<td>7</td>
<td>0.129</td>
<td>Lower</td>
<td>Middle</td>
<td>1995</td>
<td></td>
<td>2010</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>04102850</td>
<td>South Branch Kalamazoo River near Albion, MI</td>
<td>146</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.052</td>
<td>Lowest</td>
<td></td>
<td>1972</td>
<td>1976</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04103010</td>
<td>Kalamazoo River near Marengo, MI</td>
<td>267</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.063</td>
<td>Lowest</td>
<td></td>
<td>1987</td>
<td></td>
<td>2011</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>04103500</td>
<td>Kalamazoo River at Marshall, MI</td>
<td>449</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.074</td>
<td>Lower</td>
<td>Middle</td>
<td>1949</td>
<td>2002</td>
<td>2011</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>04104945</td>
<td>Wanadoga Creek near Battle Creek, MI</td>
<td>48</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.198</td>
<td>Upper</td>
<td>Middle</td>
<td>0.01</td>
<td>1995</td>
<td>2011</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>04105000</td>
<td>Battle Creek at Battle Creek, MI</td>
<td>241</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.126</td>
<td>Upper</td>
<td>Middle</td>
<td><0.01</td>
<td>1935</td>
<td>1962</td>
<td>2011</td>
<td>50</td>
</tr>
<tr>
<td>04105500</td>
<td>Kalamazoo River near Battle Creek, MI</td>
<td>824</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.089</td>
<td>Lower</td>
<td>Middle</td>
<td>0.01</td>
<td>1937</td>
<td>1994</td>
<td>2011</td>
<td>18</td>
</tr>
<tr>
<td>04105700</td>
<td>Augusta Creek near Augusta, MI</td>
<td>39</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.105</td>
<td>Lower</td>
<td>Middle</td>
<td><0.01</td>
<td>1965</td>
<td>1972</td>
<td>2011</td>
<td>40</td>
</tr>
<tr>
<td>04105800</td>
<td>Gull Creek at 37th Street near Galesburg, MI</td>
<td>38</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.060</td>
<td>Lowest</td>
<td></td>
<td>1965</td>
<td></td>
<td>1972</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>04106000</td>
<td>Kalamazoo River at Comstock, MI</td>
<td>1010</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.077</td>
<td>Lower</td>
<td>Middle</td>
<td>0.02</td>
<td>1933</td>
<td>2011</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>04106180</td>
<td>Portage Creek at Portage, MI</td>
<td>17</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.091</td>
<td>Lowest</td>
<td>increase</td>
<td>0.01</td>
<td>1983</td>
<td>2006</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>04106300</td>
<td>Portage Creek near Kalamazoo, MI</td>
<td>22</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.109</td>
<td>Lowest</td>
<td></td>
<td>1965</td>
<td>1988</td>
<td>2008</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>04106320</td>
<td>West Fork Portage Creek near Oshtemo, MI</td>
<td>13</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.098</td>
<td>Lowest</td>
<td>increase</td>
<td><0.01</td>
<td>1973</td>
<td>1996</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>04106400</td>
<td>West Fork Portage Creek at Kalamazoo, MI</td>
<td>19</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.088</td>
<td>Lowest</td>
<td></td>
<td>1960</td>
<td>1995</td>
<td>2011</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>04106500</td>
<td>Portage Creek at Kalamazoo, MI</td>
<td>47</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.121</td>
<td>Lower</td>
<td>Middle</td>
<td>0.01</td>
<td>1948</td>
<td>1986</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>04108500</td>
<td>Kalamazoo River near Fennville, MI</td>
<td>1600</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.108</td>
<td>Highest</td>
<td></td>
<td>1930</td>
<td></td>
<td>1993</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>04108600</td>
<td>Rabbit River near Hopkins, MI</td>
<td>71</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.269</td>
<td>Upper</td>
<td>Middle</td>
<td><0.01</td>
<td>1966</td>
<td>2011</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>p Value</td>
<td>First Water Year of Record</td>
<td>First Water Year Analyzed, if different</td>
<td>Last Water Year</td>
<td>Water Years Analyzed</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>--------</td>
<td>--------------------------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>04108670</td>
<td>Kalamazoo River near New Richmond, MI</td>
<td>1994</td>
<td>Kalamazoo</td>
<td>17</td>
<td>0.071</td>
<td>Lower Middle</td>
<td>1995</td>
<td>2010</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04108800</td>
<td>Macatawa River near Zeeland, MI</td>
<td>66</td>
<td>Macatawa</td>
<td>8</td>
<td>0.571</td>
<td>Highest</td>
<td>1961</td>
<td>2011</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04109000</td>
<td>Grand River at Jackson, MI</td>
<td>174</td>
<td>Grand</td>
<td>14</td>
<td>0.095</td>
<td>Lower Middle</td>
<td>1936</td>
<td>2011</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04109500</td>
<td>Portage River at Portage Lake Road near Munith, MI</td>
<td>55</td>
<td>Grand</td>
<td>14</td>
<td>0.101</td>
<td>Lowest</td>
<td>1945</td>
<td>1956</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04110000</td>
<td>Orchard Creek at State Highway 106 at Munith, MI</td>
<td>49</td>
<td>Grand</td>
<td>14</td>
<td>0.226</td>
<td>Upper Middle</td>
<td>1945</td>
<td>1956</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04111000</td>
<td>Grand River at Eaton Rapids, MI</td>
<td>661</td>
<td>Grand</td>
<td>14</td>
<td>0.087</td>
<td>Lower Middle</td>
<td>1951</td>
<td>1996</td>
<td>2011</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04111379</td>
<td>Red Cedar River near Williamston, MI</td>
<td>163</td>
<td>Grand</td>
<td>14</td>
<td>0.174</td>
<td>Highest increase</td>
<td>0.04</td>
<td>1976</td>
<td>2011</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04111500</td>
<td>Deer Creek near Dansville, MI</td>
<td>16</td>
<td>Grand</td>
<td>14</td>
<td>0.370</td>
<td>Upper Middle</td>
<td>1954</td>
<td>2011</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04112000</td>
<td>Sloan Creek near Williamston, MI</td>
<td>9.3</td>
<td>Grand</td>
<td>14</td>
<td>0.460</td>
<td>Upper Middle</td>
<td>1955</td>
<td>2011</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04112500</td>
<td>Red Cedar River at East Lansing, MI</td>
<td>355</td>
<td>Grand</td>
<td>14</td>
<td>0.175</td>
<td>Highest increase</td>
<td>0.02</td>
<td>1932</td>
<td>1988</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04112850</td>
<td>Sycamore Creek at Holt Road near Holt, MI</td>
<td>81</td>
<td>Grand</td>
<td>14</td>
<td>0.229</td>
<td>Upper Middle</td>
<td>1976</td>
<td>1997</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04113000</td>
<td>Grand River at Lansing, MI</td>
<td>1230</td>
<td>Grand</td>
<td>14</td>
<td>0.127</td>
<td>Highest</td>
<td>1901</td>
<td>1965</td>
<td>2011</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04113097</td>
<td>Carrier Creek near Lansing, MI</td>
<td>12</td>
<td>Grand</td>
<td>14</td>
<td>0.451</td>
<td>Upper Middle</td>
<td>1976</td>
<td>1980</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04114000</td>
<td>Grand River at Portland, MI</td>
<td>1385</td>
<td>Grand</td>
<td>14</td>
<td>0.122</td>
<td>Highest</td>
<td>1953</td>
<td>2011</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04114498</td>
<td>Looking Glass River near Eagle, MI</td>
<td>280</td>
<td>Grand</td>
<td>14</td>
<td>0.100</td>
<td>Lower Middle</td>
<td>1945</td>
<td>2011</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04115000</td>
<td>Maple River at Maple Rapids, MI</td>
<td>434</td>
<td>Grand</td>
<td>14</td>
<td>0.114</td>
<td>Upper Middle</td>
<td>1945</td>
<td>2011</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04115265</td>
<td>Fish Creek near Crystal, MI</td>
<td>40</td>
<td>Grand</td>
<td>14</td>
<td>0.180</td>
<td>Upper Middle</td>
<td>1988</td>
<td>2011</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04116000</td>
<td>Grand River at Ionia, MI</td>
<td>2840</td>
<td>Grand</td>
<td>14</td>
<td>0.098</td>
<td>Upper Middle decrease</td>
<td><0.01</td>
<td>1952</td>
<td>2011</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04116500</td>
<td>Flat River at Smyrna, MI</td>
<td>528</td>
<td>Grand</td>
<td>14</td>
<td>0.066</td>
<td>Lowest decrease</td>
<td><0.01</td>
<td>1951</td>
<td>1986</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04117000</td>
<td>Quaker Brook near Nashville, MI</td>
<td>7.6</td>
<td>Grand</td>
<td>14</td>
<td>0.301</td>
<td>Upper Middle</td>
<td>1955</td>
<td>2011</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04117500</td>
<td>Thornapple River near Hastings, MI</td>
<td>385</td>
<td>Grand</td>
<td>14</td>
<td>0.112</td>
<td>Upper Middle</td>
<td>1945</td>
<td>1978</td>
<td>2011</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Trend</td>
<td>Flashiness Trend</td>
<td>p Value</td>
<td>First Water Year of Record</td>
<td>First Water Year Analyzed, if different</td>
<td>Last Water Year Water Years Analyzed</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td>------------------------</td>
<td>--</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>04118000</td>
<td>Thornapple River near Caledonia, MI</td>
<td>773</td>
<td>Grand</td>
<td>14</td>
<td>0.110</td>
<td>Upper Middle</td>
<td>increase</td>
<td><0.01</td>
<td>1952</td>
<td>1971 2011</td>
<td>1994 22</td>
<td></td>
</tr>
<tr>
<td>04118500</td>
<td>Rogue River near Rockford, MI</td>
<td>234</td>
<td>Grand</td>
<td>14</td>
<td>0.104</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1953</td>
<td>2011</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>04119000</td>
<td>Grand River at Grand Rapids, MI</td>
<td>4900</td>
<td>Grand</td>
<td>14</td>
<td>0.074</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1902</td>
<td>1989 2011</td>
<td>2011 23</td>
<td></td>
</tr>
</tbody>
</table>

 Streams Tributary to Lake Michigan, Northern Lower Peninsula

<table>
<thead>
<tr>
<th>Gage Number</th>
<th>Gage Description</th>
<th>Total Drainage Area (sq. mi.)</th>
<th>Major Watershed</th>
<th>Watershed Number</th>
<th>Characteristic R-B Index Value</th>
<th>Quartile Trend</th>
<th>Flashiness Trend</th>
<th>p Value</th>
<th>First Water Year of Record</th>
<th>First Water Year Analyzed, if different</th>
<th>Last Water Year Water Years Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>04121000</td>
<td>Muskegon River near Merritt, MI</td>
<td>355</td>
<td>Muskegon</td>
<td>22</td>
<td>0.040</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1947</td>
<td>1973</td>
<td>27</td>
</tr>
<tr>
<td>04121300</td>
<td>Clam River at Vogel Center, MI</td>
<td>243</td>
<td>Muskegon</td>
<td>22</td>
<td>0.079</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1967</td>
<td>2011</td>
<td>45</td>
</tr>
<tr>
<td>04121500</td>
<td>Muskegon River at Evart, MI</td>
<td>1433</td>
<td>Muskegon</td>
<td>22</td>
<td>0.057</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1935 1960</td>
<td>2011</td>
<td>52</td>
</tr>
<tr>
<td>04121900</td>
<td>Little Muskegon River near Morley, MI</td>
<td>121</td>
<td>Muskegon</td>
<td>22</td>
<td>0.109</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1967 1979 1996</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>04121944</td>
<td>Little Muskegon River near Oak Grove, MI</td>
<td>345</td>
<td>Muskegon</td>
<td>22</td>
<td>0.108</td>
<td>Upper Middle</td>
<td>increase</td>
<td>0.05</td>
<td>1996</td>
<td>2011</td>
<td>16</td>
</tr>
<tr>
<td>04121970</td>
<td>Muskegon River near Croton, MI</td>
<td>2313</td>
<td>Muskegon</td>
<td>22</td>
<td>0.077</td>
<td>Lower Middle</td>
<td>increase</td>
<td>0.01</td>
<td>1996</td>
<td>2011</td>
<td>16</td>
</tr>
<tr>
<td>04122000</td>
<td>Muskegon River at Newaygo, MI</td>
<td>2350</td>
<td>Muskegon</td>
<td>22</td>
<td>0.098</td>
<td>Upper Middle</td>
<td>decrease</td>
<td>0.01</td>
<td>1910</td>
<td>1993</td>
<td>1993 71</td>
</tr>
<tr>
<td>04122100</td>
<td>Bear Creek near Muskegon, MI</td>
<td>17</td>
<td>Muskegon</td>
<td>22</td>
<td>0.172</td>
<td>Lower Middle</td>
<td>decrease</td>
<td><0.01</td>
<td>1966</td>
<td>2011</td>
<td>2011 46</td>
</tr>
<tr>
<td>04122200</td>
<td>White River near Whitehall, MI</td>
<td>406</td>
<td>White</td>
<td>37</td>
<td>0.066</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1958</td>
<td>2011</td>
<td>54</td>
</tr>
<tr>
<td>04122500</td>
<td>Pere Marquette River at Scottville, MI</td>
<td>681</td>
<td>Pere Marquette</td>
<td>25</td>
<td>0.055</td>
<td>Lowest</td>
<td>increase</td>
<td><0.01</td>
<td>1940</td>
<td>2011</td>
<td>2011 74</td>
</tr>
<tr>
<td>04123000</td>
<td>Big Sable River near Freesoil, MI</td>
<td>127</td>
<td>Big Sable</td>
<td>5</td>
<td>0.037</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1943</td>
<td>1972</td>
<td>30</td>
</tr>
<tr>
<td>04123500</td>
<td>Manistee River near Grayling, MI</td>
<td>123</td>
<td>Manistee</td>
<td>20</td>
<td>0.026</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1943</td>
<td>1973</td>
<td>31</td>
</tr>
<tr>
<td>04124000</td>
<td>Manistee River near Sherman, MI</td>
<td>857</td>
<td>Manistee</td>
<td>20</td>
<td>0.041</td>
<td>Lowest</td>
<td>increase</td>
<td><0.01</td>
<td>1903</td>
<td>2011</td>
<td>90</td>
</tr>
<tr>
<td>04124200</td>
<td>Manistee River near Mesick, MI</td>
<td>1018</td>
<td>Manistee</td>
<td>20</td>
<td>0.047</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1998</td>
<td>2011</td>
<td>14</td>
</tr>
<tr>
<td>04124500</td>
<td>East Branch Pine River near Tustin, MI</td>
<td>60</td>
<td>Manistee</td>
<td>20</td>
<td>0.195</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1953</td>
<td>2011</td>
<td>31</td>
</tr>
<tr>
<td>04125000</td>
<td>Pine River near Leroy, MI</td>
<td>128</td>
<td>Manistee</td>
<td>20</td>
<td>0.114</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1953 1963</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>04125460</td>
<td>Pine River at High School Bridge, near Hoxeyville, MI</td>
<td>245</td>
<td>Manistee</td>
<td>20</td>
<td>0.066</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1953</td>
<td>2011</td>
<td>45</td>
</tr>
<tr>
<td>04125550</td>
<td>Manistee River near Wellston, MI</td>
<td>1451</td>
<td>Manistee</td>
<td>20</td>
<td>0.050</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1997</td>
<td>2011</td>
<td>15</td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>p Value</td>
<td>First Water Year of Record</td>
<td>First Water Year Analyzed, if different</td>
<td>Last Water Year Analyzed</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------</td>
<td>--------------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>04126000</td>
<td>Manistee River near Manistee, MI</td>
<td>1677</td>
<td>Manistee</td>
<td>20</td>
<td>0.066</td>
<td>Lower Middle</td>
<td>decrease</td>
<td><0.01</td>
<td>1952</td>
<td>1983</td>
<td>1993</td>
</tr>
<tr>
<td>04126200</td>
<td>Little Manistee River near Freesoil, MI</td>
<td>178</td>
<td>Manistee</td>
<td>20</td>
<td>0.037</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1957</td>
<td>1975</td>
<td>19</td>
</tr>
<tr>
<td>04126740</td>
<td>Platte River at Honor, MI</td>
<td>125</td>
<td>Platte</td>
<td>28</td>
<td>0.039</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1991</td>
<td>2011</td>
<td>2011</td>
</tr>
<tr>
<td>04126970</td>
<td>Boardman River above Brown Bridge Road, near Mayfield, MI</td>
<td>141</td>
<td>Boardman</td>
<td>9</td>
<td>0.040</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1988</td>
<td>2011</td>
<td>2011</td>
</tr>
<tr>
<td>04127000</td>
<td>Boardman River near Mayfield, MI</td>
<td>182</td>
<td>Boardman</td>
<td>9</td>
<td>0.091</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1953</td>
<td>1989</td>
<td>1989</td>
</tr>
<tr>
<td>04127800</td>
<td>Jordan River near East Jordan, MI</td>
<td>68</td>
<td>Pine</td>
<td>10</td>
<td>0.055</td>
<td>Lowest</td>
<td>decrease</td>
<td>0.01</td>
<td>1967</td>
<td>1984</td>
<td>2011</td>
</tr>
<tr>
<td></td>
<td>Streams Tributary to Lake Huron</td>
<td></td>
</tr>
<tr>
<td>04127918</td>
<td>Pine River near Rudyard, MI</td>
<td>184</td>
<td>Pine</td>
<td>54</td>
<td>0.184</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1973</td>
<td>2010</td>
<td>2010</td>
</tr>
<tr>
<td>04127997</td>
<td>Sturgeon River at Wolverine, MI</td>
<td>192</td>
<td>Cheboygan</td>
<td>11</td>
<td>0.079</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1943</td>
<td>1973</td>
<td>2011</td>
</tr>
<tr>
<td>04128990</td>
<td>Pigeon River at Sturgeon Valley Road near Vanderbilt, MI</td>
<td>58</td>
<td>Cheboygan</td>
<td>11</td>
<td>0.158</td>
<td>Lower Middle</td>
<td>increase</td>
<td><0.01</td>
<td>1951</td>
<td>2011</td>
<td>2011</td>
</tr>
<tr>
<td>04129500</td>
<td>Pigeon River at Afton, MI</td>
<td>139</td>
<td>Cheboygan</td>
<td>11</td>
<td>0.094</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1942</td>
<td>1946</td>
<td>1981</td>
</tr>
<tr>
<td>04130000</td>
<td>Cheboygan River near Cheboygan, MI</td>
<td>889</td>
<td>Cheboygan</td>
<td>11</td>
<td>0.036</td>
<td>Lowest</td>
<td>decrease</td>
<td><0.01</td>
<td>1943</td>
<td>1982</td>
<td>1982</td>
</tr>
<tr>
<td>04130500</td>
<td>Black River near Tower, MI</td>
<td>311</td>
<td>Cheboygan</td>
<td>11</td>
<td>0.105</td>
<td>Lowest</td>
<td>decrease</td>
<td><0.01</td>
<td>1943</td>
<td>1955</td>
<td>2000</td>
</tr>
<tr>
<td>04131000</td>
<td>Rainy River near Onaway, MI</td>
<td>79</td>
<td>Cheboygan</td>
<td>11</td>
<td>0.114</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1943</td>
<td>1952</td>
<td>1952</td>
</tr>
<tr>
<td>04131500</td>
<td>Rainy River near Ocqueoc, MI</td>
<td>88</td>
<td>Cheboygan</td>
<td>11</td>
<td>0.134</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1953</td>
<td>1979</td>
<td>1979</td>
</tr>
<tr>
<td>04132000</td>
<td>Black River near Cheboygan, MI</td>
<td>597</td>
<td>Cheboygan</td>
<td>11</td>
<td>0.063</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1944</td>
<td>1974</td>
<td>1974</td>
</tr>
<tr>
<td>04132500</td>
<td>Thunder Bay River near Hillman, MI</td>
<td>232</td>
<td>Thunder Bay</td>
<td>36</td>
<td>0.077</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1946</td>
<td>1957</td>
<td>1972</td>
</tr>
<tr>
<td>04133501</td>
<td>Thunder Bay River at Herron Road near Bolton, MI</td>
<td>586</td>
<td>Thunder Bay</td>
<td>36</td>
<td>0.086</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1946</td>
<td>2003</td>
<td>2011</td>
</tr>
<tr>
<td>04134000</td>
<td>North Branch Thunder Bay River near Bolton, MI</td>
<td>184</td>
<td>Thunder Bay</td>
<td>36</td>
<td>0.144</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1946</td>
<td>1980</td>
<td>1980</td>
</tr>
<tr>
<td>04135000</td>
<td>Thunder Bay River near Alpena, MI</td>
<td>1238</td>
<td>Thunder Bay</td>
<td>36</td>
<td>0.188</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1902</td>
<td>1993</td>
<td>1993</td>
</tr>
<tr>
<td>04135500</td>
<td>Au Sable River at Grayling, MI</td>
<td>110</td>
<td>Au Sable</td>
<td>2</td>
<td>0.052</td>
<td>Lowest</td>
<td>increase</td>
<td><0.01</td>
<td>1956</td>
<td>1993</td>
<td>1993</td>
</tr>
<tr>
<td>04135600</td>
<td>East Branch Au Sable River at Grayling, MI</td>
<td>76</td>
<td>Au Sable</td>
<td>2</td>
<td>0.048</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1958</td>
<td>1984</td>
<td>1984</td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>p Value</td>
<td>First Water Year of Record</td>
<td>First Water Year Analyzed, if different</td>
<td>Last Water Year</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td>------------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>04135700</td>
<td>South Branch Au Sable River near Luzerne, MI</td>
<td>401</td>
<td>Au Sable</td>
<td>2</td>
<td>0.047</td>
<td>Lowest</td>
<td>increase</td>
<td>0.02</td>
<td>1967</td>
<td>2011</td>
<td>44</td>
</tr>
<tr>
<td>04136000</td>
<td>Au Sable River near Red Oak, MI</td>
<td>1108</td>
<td>Au Sable</td>
<td>2</td>
<td>0.050</td>
<td>Lowest</td>
<td>increase</td>
<td>0.05</td>
<td>1909</td>
<td>2011</td>
<td>22</td>
</tr>
<tr>
<td>04136500</td>
<td>Au Sable River at Mio, MI</td>
<td>1361</td>
<td>Au Sable</td>
<td>2</td>
<td>0.057</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1953</td>
<td>1980, 2011</td>
<td>32</td>
</tr>
<tr>
<td>04136900</td>
<td>Au Sable River near McKinley, MI</td>
<td>1513</td>
<td>Au Sable</td>
<td>2</td>
<td>0.049</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1997</td>
<td>2011</td>
<td>15</td>
</tr>
<tr>
<td>04137005</td>
<td>Au Sable River near Curtisville, MI</td>
<td>1598</td>
<td>Au Sable</td>
<td>2</td>
<td>0.061</td>
<td>Low/Middle</td>
<td>increase</td>
<td>0.03</td>
<td>1997</td>
<td>2011</td>
<td>15</td>
</tr>
<tr>
<td>04137500</td>
<td>Au Sable River near Au Sable, MI</td>
<td>1739</td>
<td>Au Sable</td>
<td>2</td>
<td>0.079</td>
<td>Upper/Middle</td>
<td></td>
<td></td>
<td>1988</td>
<td>2001, 2011</td>
<td>11</td>
</tr>
<tr>
<td>04138000</td>
<td>East Branch Au Gres River at McIlvor, MI</td>
<td>84</td>
<td>Au Gres</td>
<td>1</td>
<td>0.137</td>
<td>Low/Middle</td>
<td></td>
<td></td>
<td>1951</td>
<td>1973</td>
<td>23</td>
</tr>
<tr>
<td>04138500</td>
<td>Au Gres River at Cox Road near National City, MI</td>
<td>154</td>
<td>Au Gres</td>
<td>1</td>
<td>0.223</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1951</td>
<td>1981</td>
<td>31</td>
</tr>
<tr>
<td>04139000</td>
<td>Houghton Creek near Lupton, MI</td>
<td>30</td>
<td>Rifle</td>
<td>30</td>
<td>0.126</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1951</td>
<td>1972</td>
<td>22</td>
</tr>
<tr>
<td>04139500</td>
<td>Rifle River at "The Ranch" near Lupton, MI</td>
<td>57</td>
<td>Rifle</td>
<td>30</td>
<td>0.101</td>
<td>Low/Middle</td>
<td></td>
<td></td>
<td>1951</td>
<td>1971</td>
<td>21</td>
</tr>
<tr>
<td>04140000</td>
<td>Prior Creek near Selkirk, MI</td>
<td>21</td>
<td>Rifle</td>
<td>30</td>
<td>0.237</td>
<td>Low/Middle</td>
<td></td>
<td></td>
<td>1951</td>
<td>1972</td>
<td>22</td>
</tr>
<tr>
<td>04140500</td>
<td>Rifle River at State Road at Selkirk, MI</td>
<td>117</td>
<td>Rifle</td>
<td>30</td>
<td>0.108</td>
<td>Upper/Middle</td>
<td></td>
<td></td>
<td>1951</td>
<td>1982</td>
<td>32</td>
</tr>
<tr>
<td>04141000</td>
<td>South Branch Shepards Creek near Selkirk, MI</td>
<td>1.2</td>
<td>Rifle</td>
<td>30</td>
<td>0.627</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1952</td>
<td>1978</td>
<td>27</td>
</tr>
<tr>
<td>04141500</td>
<td>West Branch Rifle River near Selkirk, MI</td>
<td>51</td>
<td>Rifle</td>
<td>30</td>
<td>0.184</td>
<td>Upper/Middle</td>
<td></td>
<td></td>
<td>1952</td>
<td>1963</td>
<td>12</td>
</tr>
<tr>
<td>04142000</td>
<td>Rifle River near Sterling, MI</td>
<td>320</td>
<td>Rifle</td>
<td>30</td>
<td>0.155</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1938</td>
<td>1991, 2011</td>
<td>21</td>
</tr>
<tr>
<td>04143500</td>
<td>North Branch Kawkawlin River near Kawkawlin, MI</td>
<td>101</td>
<td>Kawkawlin</td>
<td>18</td>
<td>0.197</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1952</td>
<td>1962, 1982</td>
<td>21</td>
</tr>
<tr>
<td>04143900</td>
<td>Shiawassee River at Linden, MI</td>
<td>84</td>
<td>Saginaw</td>
<td>32</td>
<td>0.070</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1968</td>
<td>2003</td>
<td>29</td>
</tr>
<tr>
<td>04144000</td>
<td>Shiawassee River at Byron, MI</td>
<td>365</td>
<td>Saginaw</td>
<td>32</td>
<td>0.096</td>
<td>Low/Middle</td>
<td></td>
<td></td>
<td>1948</td>
<td>1967, 1983</td>
<td>17</td>
</tr>
<tr>
<td>04144500</td>
<td>Shiawassee River at Owosso, MI</td>
<td>538</td>
<td>Saginaw</td>
<td>32</td>
<td>0.134</td>
<td>Upper/Middle</td>
<td></td>
<td></td>
<td>1932</td>
<td>1988, 2011</td>
<td>24</td>
</tr>
<tr>
<td>04145000</td>
<td>Shiawassee River near Fergus, MI</td>
<td>637</td>
<td>Saginaw</td>
<td>32</td>
<td>0.141</td>
<td>Upper/Middle</td>
<td></td>
<td></td>
<td>1941</td>
<td>2011</td>
<td>60</td>
</tr>
<tr>
<td>04145500</td>
<td>Bad River at Hemlock Road near Brant, MI</td>
<td>89</td>
<td>Saginaw</td>
<td>32</td>
<td>0.422</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1950</td>
<td>1959, 10</td>
<td></td>
</tr>
<tr>
<td>04146000</td>
<td>Farmers Creek near Lapeer, MI</td>
<td>55</td>
<td>Saginaw</td>
<td>32</td>
<td>0.130</td>
<td>Low/Middle</td>
<td></td>
<td></td>
<td>1934</td>
<td>2011</td>
<td>34</td>
</tr>
<tr>
<td>04146063</td>
<td>South Branch Flint River near Columbiaville, MI</td>
<td>221</td>
<td>Saginaw</td>
<td>32</td>
<td>0.134</td>
<td>Upper/Middle</td>
<td></td>
<td></td>
<td>1981</td>
<td>2011</td>
<td>31</td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>p Value</td>
<td>First Water Year of Record</td>
<td>First Water Year Analyzed, if different</td>
<td>Last Water Year</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td>--------------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>04147500</td>
<td>Flint River near Otisville, MI</td>
<td>530</td>
<td>Saginaw</td>
<td>32</td>
<td>0.140</td>
<td>Upper Middle</td>
<td>increase</td>
<td>0.01</td>
<td>1953</td>
<td>2011</td>
<td>58</td>
</tr>
<tr>
<td>04147990</td>
<td>Butternut Creek near Genesee, MI</td>
<td>35</td>
<td>Saginaw</td>
<td>32</td>
<td>0.284</td>
<td>Upper Middle</td>
<td>1971</td>
<td>1983</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04148000</td>
<td>Flint River at Genesee, MI</td>
<td>593</td>
<td>Saginaw</td>
<td>32</td>
<td>0.135</td>
<td>Upper Middle</td>
<td>1931</td>
<td>1952</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04148140</td>
<td>Kearsley Creek near Davison, MI</td>
<td>99</td>
<td>Saginaw</td>
<td>32</td>
<td>0.190</td>
<td>Upper Middle</td>
<td>increase</td>
<td>0.01</td>
<td>1966</td>
<td>2011</td>
<td>46</td>
</tr>
<tr>
<td>04148160</td>
<td>Gilkey Creek near Flint, MI</td>
<td>6.4</td>
<td>Saginaw</td>
<td>32</td>
<td>0.693</td>
<td>Highest</td>
<td>1971</td>
<td>1983</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04148200</td>
<td>Swartz Creek near Holly, MI</td>
<td>12</td>
<td>Saginaw</td>
<td>32</td>
<td>0.149</td>
<td>Lowest</td>
<td>1957</td>
<td>1975</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04148300</td>
<td>Swartz Creek at Flint, MI</td>
<td>115</td>
<td>Saginaw</td>
<td>32</td>
<td>0.287</td>
<td>Highest</td>
<td>1971</td>
<td>1983</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04148440</td>
<td>Thread Creek near Flint, MI</td>
<td>54</td>
<td>Saginaw</td>
<td>32</td>
<td>0.216</td>
<td>Upper Middle</td>
<td>1971</td>
<td>1983</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04148500</td>
<td>Flint River near Flint, MI</td>
<td>956</td>
<td>Saginaw</td>
<td>32</td>
<td>0.189</td>
<td>Highest</td>
<td>increase</td>
<td>0.01</td>
<td>1933</td>
<td>1978</td>
<td>2011</td>
</tr>
<tr>
<td>04148720</td>
<td>Brent Run near Montrose, MI</td>
<td>21</td>
<td>Saginaw</td>
<td>32</td>
<td>0.496</td>
<td>Highest</td>
<td>1971</td>
<td>1983</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04149000</td>
<td>Flint River near Fosters, MI</td>
<td>1153</td>
<td>Saginaw</td>
<td>32</td>
<td>0.170</td>
<td>Highest</td>
<td>1940</td>
<td>2011</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04150000</td>
<td>South Branch Cass River near Cass City, MI</td>
<td>238</td>
<td>Saginaw</td>
<td>32</td>
<td>0.397</td>
<td>Highest</td>
<td>1949</td>
<td>1980</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04150500</td>
<td>Cass River at Cass City, MI</td>
<td>359</td>
<td>Saginaw</td>
<td>32</td>
<td>0.333</td>
<td>Highest</td>
<td>1948</td>
<td>1967</td>
<td>2011</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>04150800</td>
<td>Cass River at Wahjamega, MI</td>
<td>645</td>
<td>Saginaw</td>
<td>32</td>
<td>0.275</td>
<td>Highest</td>
<td>1969</td>
<td>1994</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04151000</td>
<td>Cass River at Vassar, MI</td>
<td>710</td>
<td>Saginaw</td>
<td>32</td>
<td>0.266</td>
<td>Highest</td>
<td>1949</td>
<td>1970</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04151500</td>
<td>Cass River at Frankenmuth, MI</td>
<td>841</td>
<td>Saginaw</td>
<td>32</td>
<td>0.244</td>
<td>Highest</td>
<td>1936</td>
<td>1962</td>
<td>2011</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>04152238</td>
<td>South Branch Tobacco River near Beaverton, MI</td>
<td>160</td>
<td>Saginaw</td>
<td>32</td>
<td>0.180</td>
<td>Highest</td>
<td>1988</td>
<td>2011</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04152500</td>
<td>Tobacco River at Glidden Road at Beaverton, MI</td>
<td>487</td>
<td>Saginaw</td>
<td>32</td>
<td>0.149</td>
<td>Upper Middle</td>
<td>1949</td>
<td>1982</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04153500</td>
<td>Salt River near North Bradley, MI</td>
<td>138</td>
<td>Saginaw</td>
<td>32</td>
<td>0.402</td>
<td>Highest</td>
<td>1935</td>
<td>1971</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04154000</td>
<td>Chippewa River near Mount Pleasant, MI</td>
<td>416</td>
<td>Saginaw</td>
<td>32</td>
<td>0.089</td>
<td>Lower Middle</td>
<td>1934</td>
<td>1978</td>
<td>2011</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>04154500</td>
<td>Chippewa River near Midland, MI</td>
<td>597</td>
<td>Saginaw</td>
<td>32</td>
<td>0.112</td>
<td>Upper Middle</td>
<td>1948</td>
<td>1972</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04155000</td>
<td>Pine River at Alma, MI</td>
<td>288</td>
<td>Saginaw</td>
<td>32</td>
<td>0.121</td>
<td>Upper Middle</td>
<td>1931</td>
<td>1980</td>
<td>2011</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>04155500</td>
<td>Pine River near Midland, MI</td>
<td>390</td>
<td>Saginaw</td>
<td>32</td>
<td>0.178</td>
<td>Highest</td>
<td>1935</td>
<td>2011</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04156000</td>
<td>Tittabawassee River at Midland, MI</td>
<td>2400</td>
<td>Saginaw</td>
<td>32</td>
<td>0.229</td>
<td>Highest</td>
<td>1937</td>
<td>2011</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04156500</td>
<td>Tittabawassee River at Freeland, MI</td>
<td>2530</td>
<td>Saginaw</td>
<td>32</td>
<td>0.189</td>
<td>Highest</td>
<td>1931</td>
<td>1936</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>p Value</td>
<td>First Water-Year of Record</td>
<td>First Water-Year Analyzed, if different</td>
<td>Last Water-Year</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>04157500</td>
<td>Sebewaing River State Drain near Sebewaing, MI</td>
<td>67</td>
<td>Sebewaing</td>
<td>33</td>
<td>0.630</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1940</td>
<td>1954</td>
<td>15</td>
</tr>
<tr>
<td>04158000</td>
<td>Columbia Drain at Gettel Road near Sebewaing, MI</td>
<td>34</td>
<td>Sebewaing</td>
<td>33</td>
<td>0.638</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1941</td>
<td>1990</td>
<td>16</td>
</tr>
<tr>
<td>04158500</td>
<td>Pigeon River near Owendale, MI</td>
<td>53</td>
<td>Pigeon</td>
<td>26</td>
<td>0.390</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1953</td>
<td>1982</td>
<td>21</td>
</tr>
<tr>
<td>04159010</td>
<td>Pigeon River near Caseville, MI</td>
<td>125</td>
<td>Pigeon</td>
<td>26</td>
<td>0.375</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1987</td>
<td>1993</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Streams Tributary to St. Clair River</td>
<td></td>
</tr>
<tr>
<td>04159492</td>
<td>Black River near Jeddo, MI</td>
<td>464</td>
<td>Black</td>
<td>6</td>
<td>0.429</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1945</td>
<td>2011</td>
<td>17</td>
</tr>
<tr>
<td>04159500</td>
<td>Black River near Fargo, MI</td>
<td>480</td>
<td>Black</td>
<td>6</td>
<td>0.335</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1945</td>
<td>1963</td>
<td>1991</td>
</tr>
<tr>
<td>04159900</td>
<td>Mill Creek near Avoca, MI</td>
<td>169</td>
<td>Black</td>
<td>6</td>
<td>0.279</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1964</td>
<td>1988</td>
<td>2011</td>
</tr>
<tr>
<td>04160000</td>
<td>Mill Creek near Abbotsford, MI</td>
<td>208</td>
<td>Black</td>
<td>6</td>
<td>0.200</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1948</td>
<td>1964</td>
<td>17</td>
</tr>
<tr>
<td>04160050</td>
<td>Black River near Port Huron, MI</td>
<td>684</td>
<td>Black</td>
<td>6</td>
<td>0.323</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1933</td>
<td>1943</td>
<td>11</td>
</tr>
<tr>
<td>04160570</td>
<td>North Branch Belle River at Imlay City, MI</td>
<td>18</td>
<td>Belle</td>
<td>3</td>
<td>0.294</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1966</td>
<td>2001</td>
<td>36</td>
</tr>
<tr>
<td>04160600</td>
<td>Belle River at Memphis, MI</td>
<td>151</td>
<td>Belle</td>
<td>3</td>
<td>0.338</td>
<td>Highest</td>
<td>increase</td>
<td><0.01</td>
<td>1963</td>
<td>2011</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Streams Tributary to Lake St. Clair</td>
<td></td>
</tr>
<tr>
<td>04160800</td>
<td>Sashabaw Creek near Drayton Plains, MI</td>
<td>21</td>
<td>Clinton</td>
<td>12</td>
<td>0.136</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1960</td>
<td>2009</td>
<td>50</td>
</tr>
<tr>
<td>04160900</td>
<td>Clinton River near Drayton Plains, MI</td>
<td>79</td>
<td>Clinton</td>
<td>12</td>
<td>0.079</td>
<td>Lowest</td>
<td></td>
<td></td>
<td>1960</td>
<td>1981</td>
<td>2009</td>
</tr>
<tr>
<td>04161000</td>
<td>Clinton River at Auburn Heights, MI</td>
<td>123</td>
<td>Clinton</td>
<td>12</td>
<td>0.164</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1936</td>
<td>2002</td>
<td>2011</td>
</tr>
<tr>
<td>04161100</td>
<td>Galloway Creek near Auburn Heights, MI</td>
<td>18</td>
<td>Clinton</td>
<td>12</td>
<td>0.419</td>
<td>Upper Middle</td>
<td>increase</td>
<td><0.01</td>
<td>1960</td>
<td>1972</td>
<td>1991</td>
</tr>
<tr>
<td>04161500</td>
<td>Paint Creek near Lake Orion, MI</td>
<td>39</td>
<td>Clinton</td>
<td>12</td>
<td>0.094</td>
<td>Lowest</td>
<td>decrease</td>
<td>0.02</td>
<td>1956</td>
<td>1966</td>
<td>1991</td>
</tr>
<tr>
<td>04161540</td>
<td>Paint Creek at Rochester, MI</td>
<td>71</td>
<td>Clinton</td>
<td>12</td>
<td>0.209</td>
<td>Upper Middle</td>
<td>increase</td>
<td><0.01</td>
<td>1960</td>
<td>2011</td>
<td>52</td>
</tr>
<tr>
<td>04161580</td>
<td>Stony Creek near Romeo, MI</td>
<td>26</td>
<td>Clinton</td>
<td>12</td>
<td>0.195</td>
<td>Lower Middle</td>
<td>increase</td>
<td>0.01</td>
<td>1965</td>
<td>1984</td>
<td>2011</td>
</tr>
<tr>
<td>04161800</td>
<td>Stony Creek near Washington, MI</td>
<td>68</td>
<td>Clinton</td>
<td>12</td>
<td>0.130</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1959</td>
<td>2011</td>
<td>53</td>
</tr>
<tr>
<td>04161820</td>
<td>Clinton River at Sterling Heights, MI</td>
<td>309</td>
<td>Clinton</td>
<td>12</td>
<td>0.201</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1979</td>
<td>1997</td>
<td>2011</td>
</tr>
<tr>
<td>04162010</td>
<td>Red Run near Warren, MI</td>
<td>34</td>
<td>Clinton</td>
<td>12</td>
<td>1.009</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1980</td>
<td>1988</td>
<td>9</td>
</tr>
<tr>
<td>04162900</td>
<td>Big Beaver Creek near Warren, MI</td>
<td>24</td>
<td>Clinton</td>
<td>12</td>
<td>0.957</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1959</td>
<td>1982</td>
<td>1988</td>
</tr>
<tr>
<td>04163400</td>
<td>Plum Brook at Utica, MI</td>
<td>17</td>
<td>Clinton</td>
<td>12</td>
<td>0.546</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1966</td>
<td>2011</td>
<td>44</td>
</tr>
<tr>
<td>Gage Number</td>
<td>Gage Description</td>
<td>Total Drainage Area (sq. mi.)</td>
<td>Major Watershed</td>
<td>Watershed Number</td>
<td>Characteristic R-B Index Value</td>
<td>Quartile Rank</td>
<td>Flashiness Trend</td>
<td>Trend p Value</td>
<td>First Water Year of Record</td>
<td>First Water Year Analyzed, if different</td>
<td>Last Water Year of Record</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>04163500</td>
<td>Plum Brook near Utica, MI</td>
<td>23</td>
<td>Clinton</td>
<td>12</td>
<td>0.419</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1955</td>
<td>1966</td>
<td>12</td>
</tr>
<tr>
<td>04164000</td>
<td>Clinton River near Fraser, MI</td>
<td>444</td>
<td>Clinton</td>
<td>12</td>
<td>0.305</td>
<td>Highest</td>
<td>increase <0.0</td>
<td><0.01</td>
<td>1948</td>
<td>2011</td>
<td>65</td>
</tr>
<tr>
<td>04164010</td>
<td>North Branch Clinton River at Almont, MI</td>
<td>10</td>
<td>Clinton</td>
<td>12</td>
<td>0.420</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1963</td>
<td>1968</td>
<td>6</td>
</tr>
<tr>
<td>04164050</td>
<td>North Branch Clinton River at 33 Mile Road near Romeo, MI</td>
<td>50</td>
<td>Clinton</td>
<td>12</td>
<td>0.412</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1965</td>
<td>1969</td>
<td>5</td>
</tr>
<tr>
<td>04164100</td>
<td>East Pond Creek at Romeo, MI</td>
<td>22</td>
<td>Clinton</td>
<td>12</td>
<td>0.162</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td>1959</td>
<td>2011</td>
<td>53</td>
</tr>
<tr>
<td>04164150</td>
<td>North Branch Clinton River at 27 Mile Road near Meade, MI</td>
<td>90</td>
<td>Clinton</td>
<td>12</td>
<td>0.325</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1968</td>
<td>1972</td>
<td>5</td>
</tr>
<tr>
<td>04164200</td>
<td>Coon Creek at North Avenue near Armada, MI</td>
<td>9.6</td>
<td>Clinton</td>
<td>12</td>
<td>0.489</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1966</td>
<td>1970</td>
<td>5</td>
</tr>
<tr>
<td>04164250</td>
<td>Tupper Brook at Ray Center, MI</td>
<td>8.6</td>
<td>Clinton</td>
<td>12</td>
<td>0.669</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1960</td>
<td>1964</td>
<td>5</td>
</tr>
<tr>
<td>04164300</td>
<td>East Branch Coon Creek at Armada, MI</td>
<td>13</td>
<td>Clinton</td>
<td>12</td>
<td>0.633</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1959</td>
<td>2011</td>
<td>53</td>
</tr>
<tr>
<td>04164350</td>
<td>Highbank Creek at 32 Mile Road near Armada, MI</td>
<td>15</td>
<td>Clinton</td>
<td>12</td>
<td>0.537</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1966</td>
<td>1970</td>
<td>5</td>
</tr>
<tr>
<td>04164360</td>
<td>East Branch Cook Creek at 29-Mile Road near New Haven, MI</td>
<td>36</td>
<td>Clinton</td>
<td>12</td>
<td>0.336</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1968</td>
<td>1982</td>
<td>5</td>
</tr>
<tr>
<td>04164400</td>
<td>Deer Creek at 25 1/2 Mile Road near Meade, MI</td>
<td>13</td>
<td>Clinton</td>
<td>12</td>
<td>0.760</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1961</td>
<td>1965</td>
<td>5</td>
</tr>
<tr>
<td>04164450</td>
<td>McBride Drain at 24 Mile Road near Macomb, MI</td>
<td>5.8</td>
<td>Clinton</td>
<td>12</td>
<td>0.682</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1960</td>
<td>1964</td>
<td>5</td>
</tr>
<tr>
<td>04164500</td>
<td>North Branch Clinton River near Mount Clemens, MI</td>
<td>199</td>
<td>Clinton</td>
<td>12</td>
<td>0.346</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1948</td>
<td>1972, 2011</td>
<td>41</td>
</tr>
<tr>
<td>04164600</td>
<td>Middle Branch Clinton River at Schoenherr Road near Macomb, MI</td>
<td>22</td>
<td>Clinton</td>
<td>12</td>
<td>0.441</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1965</td>
<td>1969</td>
<td>5</td>
</tr>
<tr>
<td>04164800</td>
<td>Middle Branch Clinton River at Macomb, MI</td>
<td>41</td>
<td>Clinton</td>
<td>12</td>
<td>0.439</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1963</td>
<td>1982</td>
<td>19</td>
</tr>
<tr>
<td>04165200</td>
<td>Gloede Ditch near Waldenburg, MI</td>
<td>16</td>
<td>Clinton</td>
<td>12</td>
<td>0.461</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1960</td>
<td>1964</td>
<td>5</td>
</tr>
<tr>
<td>04165500</td>
<td>Clinton River at Moravian Drive at Mount Clemens, MI</td>
<td>734</td>
<td>Clinton</td>
<td>12</td>
<td>0.303</td>
<td>Highest</td>
<td>increase <0.0</td>
<td><0.01</td>
<td>1935</td>
<td>1971, 2004</td>
<td>34</td>
</tr>
</tbody>
</table>

Streams Tributary to Detroit River

<table>
<thead>
<tr>
<th>Gage Number</th>
<th>Gage Description</th>
<th>Total Drainage Area (sq. mi.)</th>
<th>Major Watershed</th>
<th>Watershed Number</th>
<th>Characteristic R-B Index Value</th>
<th>Quartile Rank</th>
<th>Flashiness Trend</th>
<th>Trend p Value</th>
<th>First Water Year of Record</th>
<th>First Water Year Analyzed, if different</th>
<th>Last Water Year of Record</th>
<th>Last Water Year Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>04166000</td>
<td>River Rouge at Birmingham, MI</td>
<td>33</td>
<td>Rouge</td>
<td>31</td>
<td>0.426</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1951</td>
<td>1998</td>
<td>2011</td>
<td>14</td>
</tr>
<tr>
<td>04166100</td>
<td>River Rouge at Southfield, MI</td>
<td>88</td>
<td>Rouge</td>
<td>31</td>
<td>0.479</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1959</td>
<td>1995, 2011</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>04166200</td>
<td>Evans Ditch at Southfield, MI</td>
<td>9.5</td>
<td>Rouge</td>
<td>31</td>
<td>0.892</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1959</td>
<td>1998, 2009</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>04166300</td>
<td>Upper River Rouge at Farmington, MI</td>
<td>18</td>
<td>Rouge</td>
<td>31</td>
<td>0.423</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td>1959</td>
<td>1998</td>
<td>2011</td>
<td>14</td>
</tr>
<tr>
<td>04166470</td>
<td>Upper River Rouge at Detroit, MI</td>
<td>67</td>
<td>Rouge</td>
<td>31</td>
<td>0.545</td>
<td>Highest</td>
<td></td>
<td></td>
<td>1998</td>
<td>2005</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

139
<table>
<thead>
<tr>
<th>Gage Number</th>
<th>Gage Description</th>
<th>Total Drainage Area (sq. mi.)</th>
<th>Major Watershed</th>
<th>Watershed Number</th>
<th>Characteristic R-B Index Value</th>
<th>Quartile Rank</th>
<th>Flashiness Trend</th>
<th>Trend</th>
<th>p Value</th>
<th>First Water Year of Record</th>
<th>First Water Year Analyzed, if different</th>
<th>Last Water Year Analyzed</th>
<th>Water Years Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>04166500</td>
<td>River Rouge at Detroit, MI</td>
<td>187</td>
<td>Rouge</td>
<td>31</td>
<td>0.492</td>
<td>Highest</td>
<td></td>
<td></td>
<td></td>
<td>1931</td>
<td>1990</td>
<td>2011</td>
<td>22</td>
</tr>
<tr>
<td>04167000</td>
<td>Middle River Rouge near Garden City, MI</td>
<td>100</td>
<td>Rouge</td>
<td>31</td>
<td>0.377</td>
<td>Highest</td>
<td></td>
<td></td>
<td></td>
<td>1931</td>
<td>1998</td>
<td>2011</td>
<td>14</td>
</tr>
<tr>
<td>04167150</td>
<td>Middle River Rouge at Dearborn, MI</td>
<td>110</td>
<td>Rouge</td>
<td>31</td>
<td>0.399</td>
<td>Highest</td>
<td></td>
<td></td>
<td></td>
<td>1998</td>
<td>2005</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>04168000</td>
<td>Lower River Rouge at Inkster, MI</td>
<td>83</td>
<td>Rouge</td>
<td>31</td>
<td>0.400</td>
<td>Highest</td>
<td>decrease</td>
<td><0.01</td>
<td></td>
<td>1948</td>
<td>2011</td>
<td>2011</td>
<td>64</td>
</tr>
<tr>
<td>04168400</td>
<td>Lower River Rouge at Dearborn, MI</td>
<td>91</td>
<td>Rouge</td>
<td>31</td>
<td>0.370</td>
<td>Highest</td>
<td></td>
<td></td>
<td></td>
<td>1998</td>
<td>2004</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>04168580</td>
<td>Ecorse River at Dearborn Heights, MI</td>
<td>10</td>
<td>Rouge</td>
<td>31</td>
<td>0.821</td>
<td>Highest</td>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td>2011</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Streams Tributary to Lake Erie</td>
<td></td>
</tr>
<tr>
<td>04169500</td>
<td>Huron River at Commerce, MI</td>
<td>57</td>
<td>Huron</td>
<td>15</td>
<td>0.054</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1947</td>
<td>1975</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>04170000</td>
<td>Huron River at Milford, MI</td>
<td>132</td>
<td>Huron</td>
<td>15</td>
<td>0.075</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1949</td>
<td>1960</td>
<td>2011</td>
<td>52</td>
</tr>
<tr>
<td>04170500</td>
<td>Huron River near New Hudson, MI</td>
<td>148</td>
<td>Huron</td>
<td>15</td>
<td>0.075</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1949</td>
<td>1968</td>
<td>2011</td>
<td>44</td>
</tr>
<tr>
<td>04171500</td>
<td>South Ore Creek at Hamburg Road near Brighton, MI</td>
<td>34</td>
<td>Huron</td>
<td>15</td>
<td>0.080</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1951</td>
<td>1968</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>04172000</td>
<td>Huron River near Hamburg, MI</td>
<td>308</td>
<td>Huron</td>
<td>15</td>
<td>0.054</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1952</td>
<td>1967</td>
<td>2011</td>
<td>45</td>
</tr>
<tr>
<td>04172500</td>
<td>Portage River at Tiplady Road near Pinckney, MI</td>
<td>79</td>
<td>Huron</td>
<td>15</td>
<td>0.058</td>
<td>Lowest</td>
<td></td>
<td></td>
<td></td>
<td>1946</td>
<td>2009</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>04173000</td>
<td>Huron River near Dexter, MI</td>
<td>522</td>
<td>Huron</td>
<td>15</td>
<td>0.143</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td></td>
<td>1947</td>
<td>1962</td>
<td>1977</td>
<td>13</td>
</tr>
<tr>
<td>04173500</td>
<td>Mill Creek near Dexter, MI</td>
<td>128</td>
<td>Huron</td>
<td>15</td>
<td>0.196</td>
<td>Highest</td>
<td></td>
<td></td>
<td></td>
<td>1953</td>
<td>1995</td>
<td>2011</td>
<td>17</td>
</tr>
<tr>
<td>04174500</td>
<td>Huron River at Ann Arbor, MI</td>
<td>729</td>
<td>Huron</td>
<td>15</td>
<td>0.094</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td></td>
<td>1915</td>
<td>1999</td>
<td>2011</td>
<td>12</td>
</tr>
<tr>
<td>04174800</td>
<td>Huron River at Ypsilanti, MI</td>
<td>807</td>
<td>Huron</td>
<td>15</td>
<td>0.104</td>
<td>Lower Middle</td>
<td>decrease</td>
<td><0.01</td>
<td></td>
<td>1975</td>
<td>1994</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>04175340</td>
<td>Stony Creek at Oakville, MI</td>
<td>68</td>
<td>Stony Creek</td>
<td>35</td>
<td>0.335</td>
<td>Highest</td>
<td></td>
<td></td>
<td></td>
<td>1971</td>
<td>2003</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>04175600</td>
<td>River Raisin near Manchester, MI</td>
<td>132</td>
<td>Raisin</td>
<td>29</td>
<td>0.092</td>
<td>Lower Middle</td>
<td></td>
<td></td>
<td></td>
<td>1971</td>
<td>2011</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>04175700</td>
<td>River Raisin near Tecumseh, MI</td>
<td>267</td>
<td>Raisin</td>
<td>29</td>
<td>0.106</td>
<td>Upper Middle</td>
<td></td>
<td></td>
<td></td>
<td>1957</td>
<td>1980</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>04176000</td>
<td>River Raisin near Adrian, MI</td>
<td>463</td>
<td>Raisin</td>
<td>29</td>
<td>0.176</td>
<td>Highest</td>
<td>increase</td>
<td>0.04</td>
<td></td>
<td>1954</td>
<td>1972</td>
<td>2011</td>
<td>27</td>
</tr>
<tr>
<td>04176400</td>
<td>Saline River near Saline, MI</td>
<td>95</td>
<td>Raisin</td>
<td>29</td>
<td>0.308</td>
<td>Highest</td>
<td></td>
<td></td>
<td></td>
<td>1966</td>
<td>1977</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>04176500</td>
<td>River Raisin near Monroe, MI</td>
<td>1042</td>
<td>Raisin</td>
<td>29</td>
<td>0.160</td>
<td>Highest</td>
<td></td>
<td></td>
<td></td>
<td>1938</td>
<td>1972</td>
<td>2011</td>
<td>40</td>
</tr>
<tr>
<td>04176605</td>
<td>Otter Creek at Lasalle, MI</td>
<td>51</td>
<td>Raisin</td>
<td>29</td>
<td>0.471</td>
<td>Highest</td>
<td></td>
<td></td>
<td></td>
<td>1988</td>
<td>2011</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>
References

Appendices

Appendix A: Explanation of Cusum Analysis

Visual examination of the gage data plots indicates that some gages have experienced trend changes. To identify where the trend change occurs, a cumulative sum statistical technique, termed cusum, was then applied to the data. For each gage in question, the differences between the yearly R-B Index value and the average R-B Index value were cumulatively summed, as shown in Table A1 and Figure A1. Cusum curve inflection points, rather than extremes, indicate the timing of trend changes, as shown in Figures A2 and A3. Taking the first derivative of the cusum curve therefore helps identify trend change points.

In order to eliminate some of the annual variability associated with actual gage data, the first derivative of a five-year moving average of the cusum data was used for the flashiness analysis. Example graphs from trend analyses for two gages are shown in Figures A4 through A7. Gage 04127997 has a statistically significant increasing trend when evaluating all of the data, but no trend when performing a regression analysis on the data since 1973, Figures A4 and A5. Gage 04165500 has no statistically significant trend when evaluating all of the data, but a statistically significant increasing trend when performing a regression analysis on the 1972 to 2004 data, Figures A6 and A7. Both breakpoints are extremes on the first derivative cusum plots. Best professional judgment is applied to selection of breakpoints that best represent the gage.

Table A1 – Sample Data and Cusum Calculation.

<table>
<thead>
<tr>
<th>Year</th>
<th>R-B Index Value</th>
<th>Average</th>
<th>Difference</th>
<th>Cusum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>0.115</td>
<td>0.100</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>1996</td>
<td>0.115</td>
<td>0.100</td>
<td>0.015</td>
<td>0.030</td>
</tr>
<tr>
<td>1997</td>
<td>0.100</td>
<td>0.100</td>
<td>0.000</td>
<td>0.030</td>
</tr>
<tr>
<td>1998</td>
<td>0.100</td>
<td>0.100</td>
<td>0.000</td>
<td>0.030</td>
</tr>
<tr>
<td>1999</td>
<td>0.100</td>
<td>0.100</td>
<td>0.000</td>
<td>0.030</td>
</tr>
<tr>
<td>2000</td>
<td>0.115</td>
<td>0.100</td>
<td>0.015</td>
<td>0.045</td>
</tr>
<tr>
<td>2001</td>
<td>0.092</td>
<td>0.100</td>
<td>-0.008</td>
<td>0.037</td>
</tr>
<tr>
<td>2002</td>
<td>0.068</td>
<td>0.100</td>
<td>-0.032</td>
<td>0.005</td>
</tr>
<tr>
<td>2003</td>
<td>0.085</td>
<td>0.100</td>
<td>-0.015</td>
<td>-0.010</td>
</tr>
<tr>
<td>2004</td>
<td>0.110</td>
<td>0.100</td>
<td>0.010</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Figure A1 – Sample Data and Cusum Plots.
Figure A2 – Example of Cusum Analysis Showing no Trend Change.

Figure A3 – Example of Cusum Analysis Showing Trend Change at 1980.
Figure A4 – USGS Gage 04127997 R-B Index Values.

Statistically significant increasing trend overall, but no statistically significant trend starting in 1974.

Figure A5 – Cusum Analysis, Defining Potential Breakpoint at 1974.
Figure A6 – USGS Gage 04165500 R-B Index Values.

Statistically significant increasing trend starting in 1972

Figure A7 – Cusum Analysis, Defining Potential Breakpoint at 1972.

Minimum at 1972
Appendix B: Michigan’s Major Watersheds