Propane Supply Alternatives: Preliminary Results Discussion Eric Pardini, Jill Steiner, and Maggie Pallone, Public Sector Consultants

Little Bear East Arena North and South Conference Rooms 275 Marquette St. St. Ignace, Michigan 49781 February 7, 2020, 10:00 ам-3:30 рм

PSC

Michigan Propane Study Objectives

- Model current propane supplies system based upon existing research that assesses Michigan's existing propane supply and distribution system throughout the state and with respect to each peninsula.
- Identify alternative approaches to meeting the propane needs of Michigan's residents and businesses to optimize the propane distribution network for reliability, cost, and emergency preparedness

2

Study Approach

- Document underlying inputs, assumptions, and methodologies
 - Conduct comparative analysis of existing studies
 - Survey industry partners
 - Define inputs, assumptions, and sensitivities
 - Develop and program propane supply model
- Develop and assess alternative propane pathways to optimize the propane distribution network
 - Assess demand for propane in the state
 - Identify supply alternatives
 - Model supply alternatives

Propane Industry Characteristics

- Michigan is a top propane consuming state and has the highest residential propane consumption in the U.S.
- Average consumption over the past five years was 473 million gallons.

PSC

Statewide Annual Propane Consumption

Source: Propane Education and Research Council

Propane Industry Characteristics

- The Lower Peninsula is responsible for 93 percent of statewide propane consumption.
- The remaining 7 percent of consumption occurs in the Upper Peninsula.
- Residential customers account for 78 percent of all propane consumption.

Annual Propane Consumption, 2017

Source: Propane Education and Research Council

Propane Supply

Primary Sources of Propane Supply

Upper Peninsula

- Production
 - Rapid River, MI
 - Superior, WI
 - Direct rail supply from Western Canada
- Storage
 - Kincheloe, MI

Lower Peninsula

Production

- Sarnia, ON Production
- Kalkaska, MI Production
- Marathon Refinery Detroit, MI
- Storage
 - Marysville, MI
 - St. Clair, MI
 - Alto, MI
- Neighboring States
 - Refineries in IL, IN, OH
 - Other propane producers and terminals

Propane Storage

- Michigan has significant propane storage capacity.
- Provided 21 percent of PADD 2 stocks on average for the past 5 years.

Michigan Propane Storage Capacity (gallons)					
Underground Storage	582,080,100				
Aboveground Storage	3,252,144				
Total	585,332,244				
Source: MPSC					

Propane Stocks

@PSCMICHIGAN

J

PUBLICSECTORCONSULTANTS.COM

8

f PUBLIC SECTOR CONSULTANTS

Scenarios Evaluated

- Scenario One: Supply Disruption on Enbridge's Lakehead system between Edmonton, Alberta to Superior, Wisconsin
- Scenario Two: Supply Disruption on Enbridge's Line 5 from Superior, Wisconsin to Sarnia, Ontario
- Scenario Three: Weather related supply disruption (including polar vortex and/or wet/ late drying season)

Scenario One – Enbridge Line 1 Disruption

Scenario One – Enbridge Line 1 Disruption

- The loss of propane production at Superior, Rapid River, and Sarnia in the event of a Line 1 disruption would impact between 34-55 percent of Michigan's statewide propane supply.
- Rapid River and Superior are estimated to provide up to 90 percent of propane supply in the Upper Peninsula.
- The Lower Peninsula would see up to half of its propane supplies impacted.*

* There are competing estimates as to the amount of Michigan's propane supply that is sourced from Line 5. Estimates range from 34 percent up to 55 percent of Michigan's total propane needs are provided via Line 5. PSC continues work to refine this number.

Scenario Two – Enbridge Line 5 Disruption

PSC

Scenario Two – Enbridge Line 5 Disruption

- The loss of propane production at Rapid River and Sarnia in the event of a Line 5 disruption would have a significant impact on Michigan's propane supply.
- Rapid River is estimated to provide 65 percent of the propane supply in the Upper Peninsula.
- The Lower Peninsula would see up to half of its propane supplies impacted.*

* There are competing estimates as to the amount of Michigan's propane supply that is sourced from Line 5. Estimates range from 34 percent up to 55 percent of Michigan's total propane needs are provided via Line 5. PSC continues work to refine this number.

Scenario Three – Extreme Weather Events

- Propane consumption is driven, in large part by weather. PSC estimates between 60-65 percent of total propane consumption is weather dependent.
- PSC calculated Michigan's weather normalized propane consumption as a basis for this analysis, but also developed a propane demand profile for Michigan that illustrates the potential increased demand resulting from an extreme cold snap.

Scenario Three – Extreme Weather Events

 For Scenario Three, PSC assumed that monthly heating degree days would be 20 percent higher than the 10-year average from 2010-2019. For comparison, 2014 was the 7th coldest year recorded since 1919. Compared to the average from 2010-2019, 2014 witnessed 15.3 percent more heating degree days.

Heating Degree Days

Period	January	February	March	April	Мау	June	July	August	September	October	November	December	Total
1919-2019	1,336.6	1,158.5	991.6	591.3	289.2	63.7	14.5	34.9	138.6	464.1	818.7	1,176.6	7,078.1
2010-2019	1,305.6	1,130.4	943.8	570.9	225.4	47.5	9.4	23.0	101.9	418.6	798.2	1,084.1	6,658.8
2014	1,549.0	1,368.0	1,233.0	580.0	253.0	40.0	40.0	31.0	146.0	462.0	938.0	1,036.0	7,676.0
Scenario 3	1,566.7	1,356.5	1,132.6	685.1	270.5	57.0	11.3	27.6	122.3	502.3	957.8	1,300.9	7,990.6

Scenario Three – Extreme Weather Events

Sensitivities Analysis

- Sensitivity One: Weather Variability Affecting Seasonal Heating Demand
 - Results in increase or decrease in propane demand based on seasonal temperatures (Scenarios 1&2)
- Sensitivity Two: Demand Reduction through Conservation
 - Results in decreased propane demand over the long run, estimated at 1.5 percent per year (All Scenarios)
- Sensitivity Three: Customer Storage Optimization
 - Results in increased propane stocks within the state that can potentially mitigate seasonal pricing impacts (All Scenarios)

Propane Modeling Process

- Inventory and characterize supply options
 - Existing options
 - Quantity and cost
 - Alternate options
 - Fuel, transportation, and other costs
- Develop demand curves
 - Weather-normalized, Flat, Extreme weather,
 - Statewide, Lower Peninsula, Upper Peninsula
 - Residential, commercial, industrial, agricultural, and transportation
- Calculate cost of supply alternatives from point of origin to delivery at designated points Michigan
- Estimate impact of scenarios (line outages or weather) on demand and supply
- Balance supply and demand with alternate options

Modeling Supply Alternatives

Different combinations of origination, transportation options, and sensitivities yield hundreds of permutations

PSC

Supply Alternatives – Sources of Propane

- North America has an abundance of propane. The question is how to get it to end users.
- Three major North American supply hubs
 - Edmonton, Alberta
 - Mont Belvieu, Texas
 - Conway, Kansas

Supply Alternatives – Transportation Options

Supply Alternatives – Transportation Options

PSC

Supply Alternatives – Regional Terminals

Source: OPIS/STALSBY Petroleum Terminal Encyclopedia

PSC

NGL and Propane Terminals

PSC

Map includes Alto, Rapid River, Kincheloe, and Kalkaska Facilities Source: OPIS/STALSBY Petroleum Terminal Encyclopedia

Delivery Points to Michigan

Western Upper Peninsula – Rapid River Eastern Upper Peninsula – Kincheloe Northern Lower Peninsula – Kalkaska Western Lower Peninsula – Alto Eastern Lower Peninsula – Marysville

NGL and Propane Terminals – Marysville

Ranges are approximate Source: OPIS/STALSBY Petroleum Terminal Encyclopedia

NGL and Propane Terminals – Alto

Ranges are approximate Source: OPIS/STALSBY Petroleum Terminal Encyclopedia

NGL and Propane Terminals – Kalkaska

Ranges are approximate Source: OPIS/STALSBY Petroleum Terminal Encyclopedia

PSC

NGL and Propane Terminals – Kincheloe

Ranges are approximate Source: OPIS/STALSBY Petroleum Terminal Encyclopedia

NGL and Propane Terminals – Rapid River

Ranges are approximate Source: OPIS/STALSBY Petroleum Terminal Encyclopedia

Demand Curves

- Determine weather-sensitive and non-weather-sensitive propane usage
 - Bottom-up analysis by sector end-use
 - Regression analysis
- Calculate weather-sensitive demand using "normal weather"
- Calibrate using actual weather data
- Allocate consumption between Upper and Lower Peninsulas

Weather-Normalized Demand Curve

Anticipated Impact of Scenarios

Impact of Scenario One on Michigan's Propane Supplies

Statewide	170-275 million gallons	34-55 percent*					
Upper Peninsula	30-35 million gallons	85-99 percent					
Lower Peninsula	140-240 million gallons	30-52 percent					
Impact of Scenario Two on Michigan's Propane Supplies							
Statewide	160-275 million gallons	30-55 percent*					
Upper Peninsula	20-30 million gallons	65-90 percent					
Lower Peninsula	140-240 million gallons	30-52 percent					
Impact of Scenario Three on Michigan's Propane Supplies							
Statewide	45-55 million gallons	9-11 percent					
Upper Peninsula	6-8 million gallons	15-20 percent					
Lower Peninsula	39-47 million gallons	8-10 percent					

* There are competing estimates as to the amount of Michigan's propane supply that is sourced from Line 5. Estimates range from 34 percent up to 55 percent of Michigan's total propane needs are provided via Line 5. PSC continues work to refine this number.

Preliminary Results

Preliminary Results

- Rapid River—\$0.65 to \$1.05 per gallon
- Alto—\$0.67 to \$1.05 per gallon
- Kalkaska—\$0.68 to \$1.04 per gallon
- Kincheloe—\$0.70 to \$1.05 per gallon
- Marysville—\$0.69 to \$0.99 per gallon

Next Steps

- Refine assumptions related to Michigan propane supply sources and disposition
- Refine transportation cost calculations
- Match supply alternatives to scenarios
- Assess risks for priority supply alternatives
- Calculate all-in costs for three scenarios
- Estimate impact of changes in supply cost on retail price and demand

PSC PUBLIC SECTOR CONSULTANTS

f PUBLIC SECTOR CONSULTANTS

🋫 @PSCMICHIGAN

PUBLICSECTORCONSULTANTS.COM