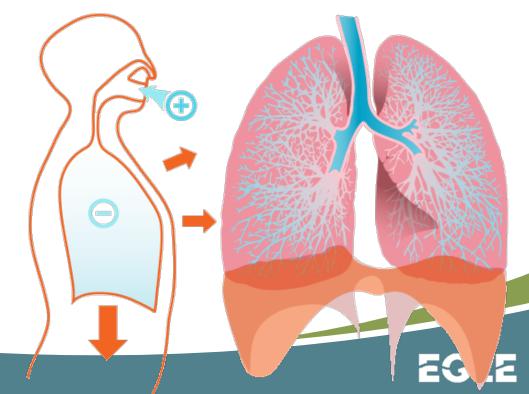


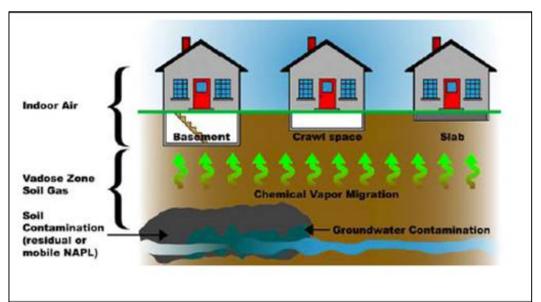
MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

Michigan Petroleum Storage Tank Conference Volatilization to the Indoor Air Pathway (VIAP)

Matthew Williams
Remediation and Redevelopment Division
517.284.5171 williamsm13@michigan.gov


Key Terms for the Volatilization to the Indoor Air Pathway (VIAP)

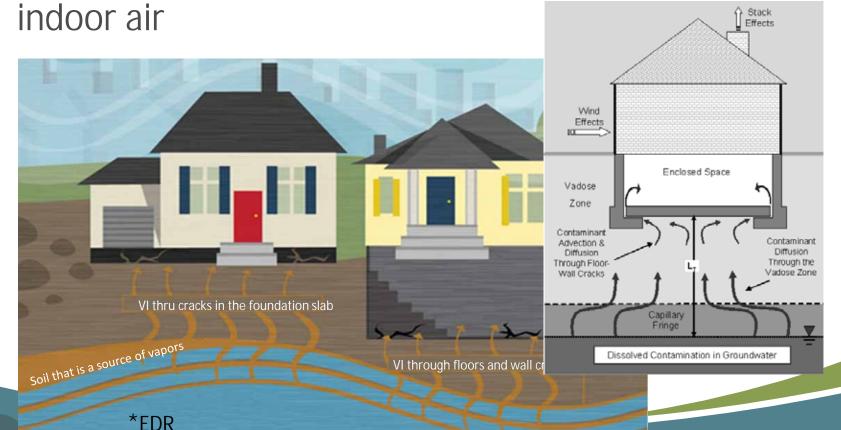
- Volatilization to the Indoor Air Pathway (VIAP)
- Vapor Intrusion vs Direct Volatilization to the Indoor Air
- Vapor Source or Source of Vapors


What is the Volatilization to the Indoor Air Pathway (VIAP)?

 Pathway describing the inhalation of hazardous substance vapors volatilizing from a vapor source to indoor air

Vapor Source

 A concentration that above which a hazardous substance may form vapors that have the potential to migrate to a structure and cause an unacceptable human health risk.

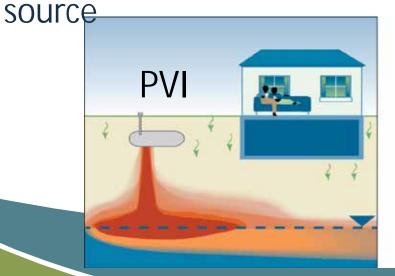

- Groundwater
- Soil contamination
- NAPL (at or above the water table surface)

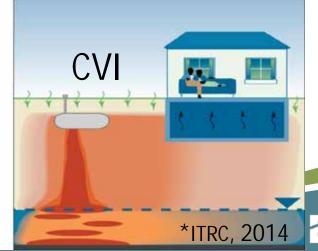
*USEPA, 2012

Vapor Intrusion (VI) Vapor Source Outside Structure

 Vapor Intrusion (VI) is the process by which chemicals in soil or groundwater migrate to the

Direct Volatilization Vapor Source Inside Structure

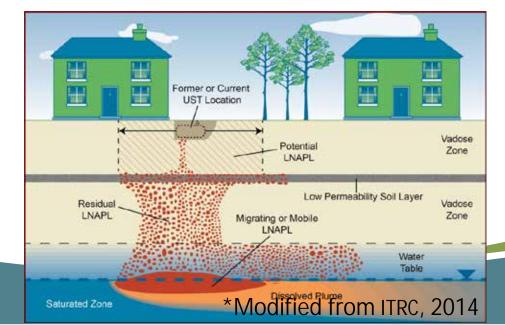

 Hazardous substances that based on their location will volatilize directly into the structure without migrating through soil



Petroleum vs. Chlorinated Vapor Intrusion PVI vs. CVI

- Both are types of VI
 - Petroleum vapor intrusion (PVI) is a subset of VI that deals exclusively with releases from a petroleum source
 - Chlorinated vapor intrusion (CVI) is a subset of VI that deals with chlorinated hydrocarbons and includes mixed releases that may also contain a petroleum

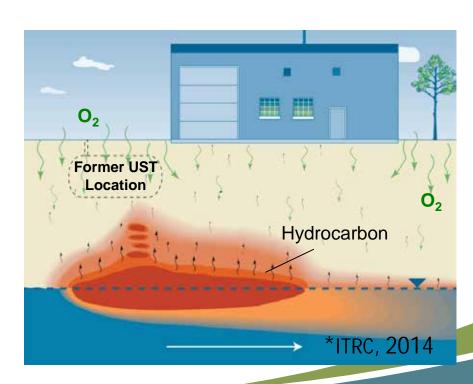
Part 213, the Risk-Based Corrective Action (RBCA) Process and the VIAP


- Assessing the VIAP will likely impact:
 - How you categorize a site
 - Where or how you allocate resources
 - The level and urgency of response required at a site

Part 213, RBCA, and the VIAP Conceptual Site Model

- RBCA is incorporated in Part 213
 - Sec. 21303(g)
- Part 213 requires a conceptual site model (CSM)
 - Sec. 21303(g)/ASTM E 2531-06

CSMs are considered a critical element for assessing


the VIAP

Conceptual Site Model CSM

- Preliminary CSM based on available data
 - Pre-existing data (existing site)
 - Data collected during an initial site assessment (new site)
- Gather sufficient info on:
 - Sources
 - Pathways
 - Receptors
- Identify gaps in the
 - Data
 - Update as necessary

Part 213, RBCA, and the VIAP Need to Immediately Address Vapor Hazards

- Sec 21307 requires the owner or operator that is liable identify and mitigate immediate fire, explosion hazards, and acute vapor hazards
 - Hazard needs to be mitigated, confirmation of the risk is not required
- Sec. 21326(1)(b) requires past or present contents of the underground storage tank system
 - Contents of petroleum are known to contain short term hazardous substances like toluene and ethanol

Part 213, RBCA, and the VIAP Need to Immediately Address Vapor Hazards

- Focus must be the mitigation of the potential exposure to the acute vapor hazard
 - Mitigation may include measures to minimize exposures or the contamination may be remediated
- Additional assessment and/or long-term remediation may be proposed after the hazard is mitigated
 - Additional assessment (not mitigation or remediation)
 may not be good cause for an extension
- More information will follow

Recommended Parameters Sec. 21326(1)(b)

Appendix B

Recommended Parameters For Common Petroleum Products

Parameters	Leaded Gasolin e ¹	Unlead ed Gasoli ne ²	Petr o. Solv ³	Light Distill ate Oils ⁴	Resid ual Oils ⁵	Use d Mot or	Was te Oils ⁷	Unkno wn
BTEX	X	X	X	Х		X	X	X
Trimethylbenzene Isomers (TMB) ⁸	X	Х	Х	Х	Х	Х	Х	X
MTBE		Х						X
1,2-Dibromoethane ¹ (ethylene dibromide)	X					Х	Х	X
1,2-Dichloroethane ¹	Х					Х	Х	Х
PNAs ⁹			Χ	Х	Х	Х		X
Naphthalene/ 2-methylnaphthalene	Х	Х						Х
Cadmium ¹⁰						Х	Х	Х
Chromium ¹⁰						Х	Χ	Х
Lead ¹⁰	Х					Х	Χ	Х
Volatile Halocarbons ¹¹						Х	Х	Х
PCBs							Х	Х
Diesel Range Organics (DRO) ¹²			Х	Х	Х	Х	Х	Х
Gasoline Range Organics (GRO) ¹²	X	Х	Х					X
Oil Range Organics (ORO) ¹²					Х	X	Х	Х

Application of Target Detection Limits and Designated Analytical Methods

Remediation and Redevelopment Division Resource Materials

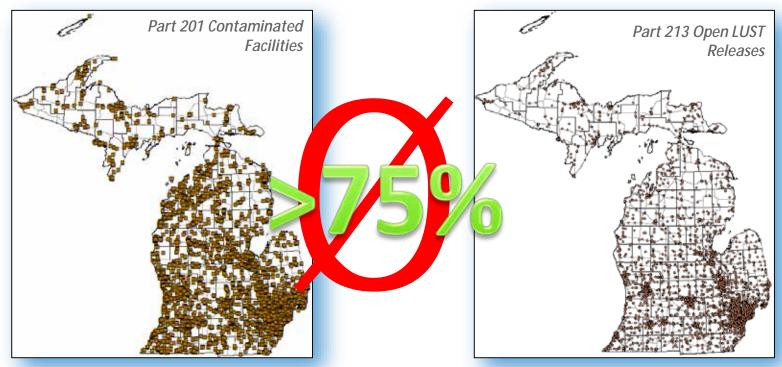
*Under Evaluation

Unacceptable Risks Associated with the VIAP

- Typically unavoidable and involuntary (inhalation)
- High "intake" rates lead to <u>low</u> acceptable levels
 - 20,000 L/day of air compared to 2 L/day of water
- Typically below odor thresholds
 - Benzene 1,000x less
 - TCE 2,500x less
- Low concentrations in soil and groundwater may pose a risk
- Risk level is established by statute across all pathway at 10-5 and hazard quotient of 1

Documented Risks to the VIAP

- Documented risks are most often commonly associated with:
 - Nonaqueous Phase Liquids (NAPL) close to a structure
 - Preferential pathway that directly connects a vapor source to a structure
 - Dissolved petroleum source within 5' of a structure
 - NAPL or a dissolved source of petroleum directly in contact or within a structure



What Criteria Do I Use?

- Risk Based Screening Levels (RBSLs)
- Key Assumptions in the Development of RBSLs
 - Groundwater (R 299.14)
 - Water table is greater than 3 meters below ground surface
 - Concrete block or poured concrete floor and walls
 - Presence of a sump not isolated from the soil
 - Soil (R 299.24)
 - Concrete block or poured concrete floor and walls
 - Presence of a sump not isolated from the soil
 - Development of the RBSLS does not account for the presence of NAPL

Application of RBSLs

Application limiting factors:

- Depth to groundwater < 3m
- Presence of a sump
- Presence of NAPL
- Building construction

What Criteria Do I Use? RBSLs use when NAPL is present

- Total petroleum hydrocarbons (TPH), gasoline range organics (GRO), diesel range organics (DRO), and/or oil range organics (ORO), can be used to estimate the degree of NAPL saturation
 - NAPL Not Present
 - Gasoline GRO ≤ 250 mg/kg in the soil
 - Diesel DRO ≤ 250 mg/kg in the soil
- Generic RBSLs for the VIAP may be used when:
 - The site has been appropriately characterized
 - Gasoline GRO ≤ 350 mg/kg in the soil
 - Diesel DRO ≤ 500 mg/kg in the soil

What Criteria Do I Use? VIAP

For more information on NAPL or ways NAPL can be

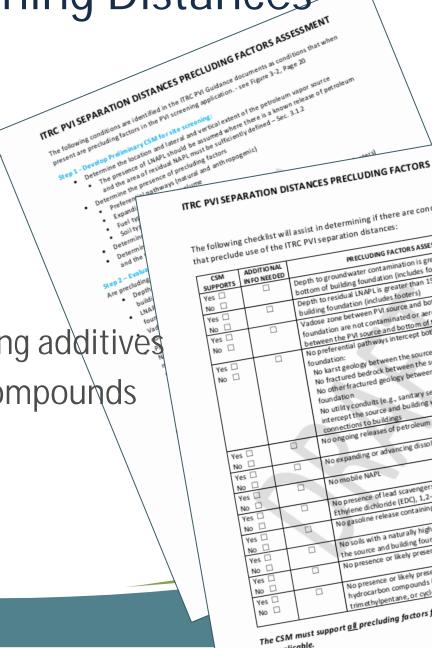
identified please see:

 June 2014 Non-Aqueous Phase Liquid (NAPL) Characterization, Remediation, and Management for Petroleum Releases

Available at:
 https://www.michigan.gov/documents/deq/deq-rrd-uments/deq/deq-rrd-NAPLResourceDocument_4644
 72_7.pdf

What Criteria Do I Use? Site-Specific Target Level (SSTL)

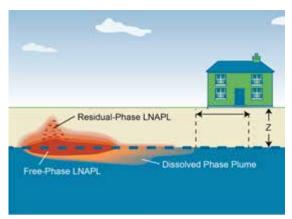
- SSTL Restricted and Unrestricted
- Concentrations below an unrestricted residential criteria is not a source of vapors
- SSTLs are required under statute to be developed by the party proposing the response action!
 - Party may elect to use or propose their own
 - EGLE has been assisting in their development
 - All SSTLs must be approved by EGLE
- EGLE's SSTLs are for soil, groundwater and vapor
 - Party must demonstrate compliance with <u>all 3 media</u>



What Criteria Do I Use? What's on the horizon for SSTLs

- Under Part 213 EGLE can only review a FAR or a CAP
 - No way to get preapproval of SSTLs
- Working on a process to get SSTLs
 - Will realign with Part 213 and allow for the values to be audited in a FAR or CAP
 - On-line calculator will identify the values for a party
 - The submitted FAR and CAP will contain the information necessary to support the values and to complete the audit

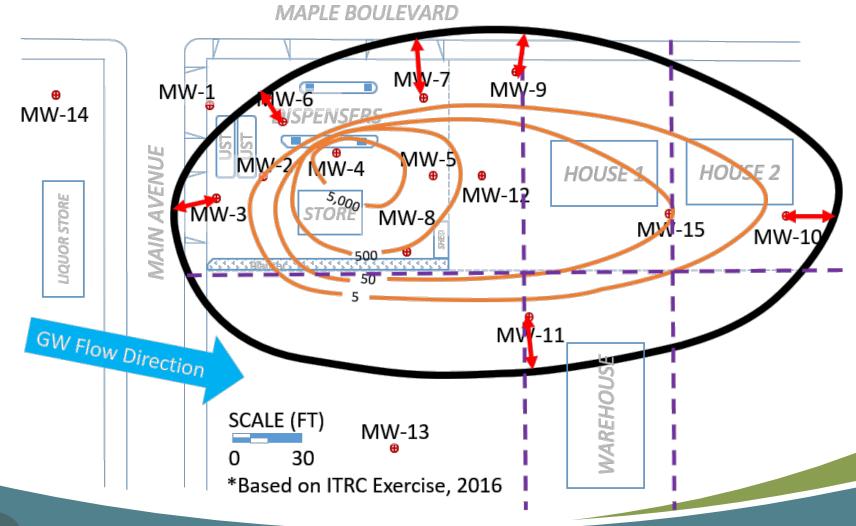
Use of ITRC's Screening Distances


- Limiting factors
 - On-going releases
 - Mobile NAPL
 - Depth to groundwater
 - Preferential pathways
 - Presence of non-biodegrading additives
 - ...Presence of chlorinated compounds
 - More...
- Checklist distributed to staff

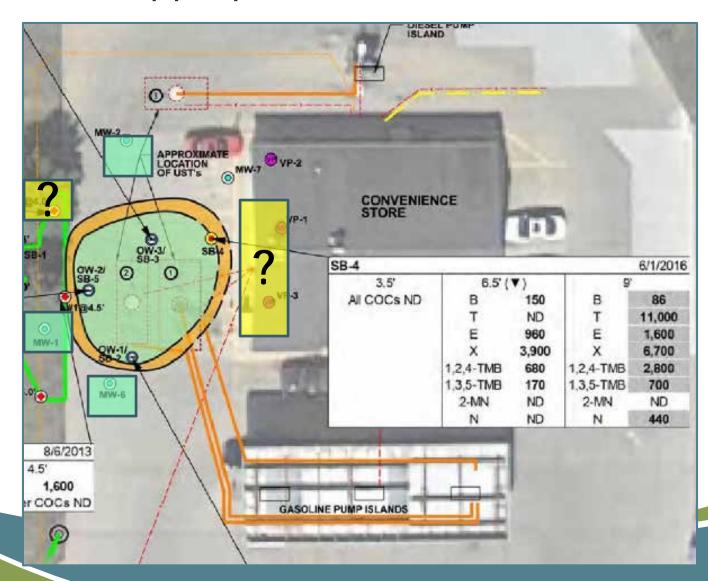
Distance Vapors Will Travel

Lateral Inclusion Zone

PVI - 30'



 The horizontal distance beyond a vapor source that may make a property or structure vulnerable to the migration of vapors


CVI - 100'

Lateral Inclusion Zone Appropriate Characterization is Key

Lateral Inclusion Zone Appropriate Characterization

Mitigations System's and Closures Under Part 213

- On-going discussions with the AG, MPA and other key stakeholders
- Stay tuned...

VIAP Point of Contact (POCs)

Christopher Austin, Marquette District 906-235-8039

AustinC@michigan.gov

Jarrett Hale, Cadillac District 231-876-4484

HaleJ5@michigan.gov

Christiaan Bon, Gaylord District 989-705-3444
BonC@michigan.gov

Jay L. Eichberger, Grand Rapids District 616-446-4043

EichbergerJ@michigan.gov

Melissa Yuvan, Bay City District 989-894-6244

YuvanM@michigan.gov

Barbara Cowles, Lansing District 517-284-5081

CowlesB@michigan.gov

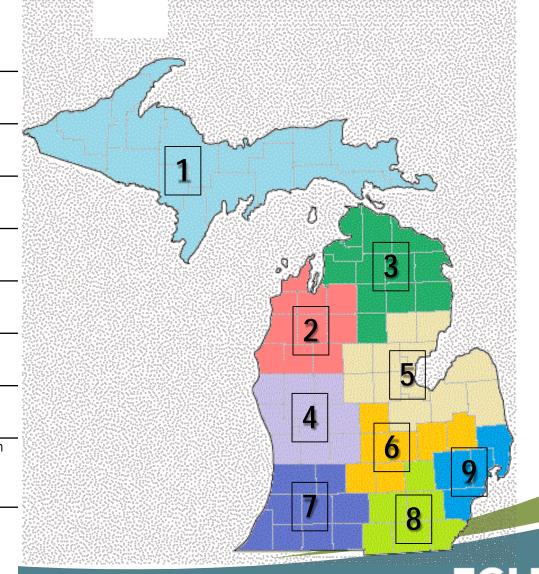
Ray Spaulding, Kalamazoo District 269.567.3532

SpauldingR1@michigan.gov

Indu Jayamani, Jackson District 517-898-6388

Jayamanil1@michigan.gov

Jeanne Schlaufman, Southeast Michigan District


586-753-3823

SchlaufmanJ1@michigan.gov

Laura Badalamenti, Southeast Michigan
District

586-429-8772

BadalamentiL1@michigan.gov

Additional Resources

Technical Resources					
Matthew Williams	VIAP Specialist				
517-284-5171	Sampling and Mitigation				
WIIIiamsM13@michigan.gov					
Jeanne Schlaufman, Southeast Michigan District	Due Care Specialist				
586-753-3823					
<u>SchlaufmanJ1@michigan.gov</u>					
Shane Morrison	Toxicologist				
517-284-5063	Inhalation - Indoor				
<u>MorrisonS5@michigan.gov</u>					
Divinia Ries	Toxicologist				
517-284-5142	Inhalation - VSIC and PSIC				
RiesD@michigan.gov					

Vapor Intrusion Technical Assistance Support Team (VITAPS)

Jay L. Eichberger, Team Leader

616-446-4043

EichbergerJ@michigan.gov

Michigan Department of

Environment, Great Lakes, and Energy

800-662-9278 Michigan.gov/EGLE

Follow us at: Michigan.gov/EGLEConnect

