MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

St. Joseph River Watershed Report

Water Resources Division

Surface Water Assessment Section Upper and Lower St. Joseph River Watersheds Berrien, Branch, Calhoun, Cass, Hillsdale, Kalamazoo, St. Joseph, and Van Buren Counties

John Matousek

January 10, 2020

TABLE OF CONTENTS

Та	able	of Co	ontents	i
1	Ir	ntrodu	iction	1
	1.1	Ρι	Irpose	1
2	V	Vaters	shed Description	1
	2.1	Na	atural Features	2
	2.2	La	and Use	3
	2.3	At	tainment Status	4
	2	.3.1	TMDLs	5
	2	.3.2	Fish Consumption Advisories	6
	2	.3.3	Permitted Discharges	6
	2.4	Inv	vasive Species	8
	2.5	W	atershed Management Plans (WMP)	8
	2	.5.1	St. Joseph River Watershed	9
	2	.5.2	Rocky River Watershed	10
	2	.5.3	Little Portage Creek Watershed	10
	2	.5.4	Portage River Watershed	10
	2	.5.5	Prairie River Watershed	10
	2	.5.6	Nottawa Creek Watershed	11
	2	.5.7	Dowagiac River Watershed	11
	2	.5.8	Swan Creek Watershed	11
	2	.5.9	Hog Creek Watershed	11
	2	.5.1	Hodunk-Messenger Chain of Lakes Watershed	11
	2.6	NF	PS Projects	12
3	Ν	1onito	ring	14
	3.1	Ri	ver and Stream Biological Surveys	14
	3	.1.1	Status and Trend Site Details	16
		3.1.1	1.1 Upper St. Joseph River (2015)	17
		3.1.1	1.2 Lower St. Joseph River (2016)	17
	3	.1.2	Targeted Monitoring	17
		3.1.2	2.1 Prairie River	17
		3.1.2	2.2 Old Bitty Creek	17

	3.1.3	Invasive Species	18
	3.1.4	MDNR River and Stream Monitoring	18
3	.2 Lak	es	19
	3.2.1	Lake Monitoring	19
3	.3 Con	itaminants	20
	3.3.1	Water Chemistry Monitoring Program (WCMP)	20
	3.3.2	Wildlife Contaminants	24
	3.3.3	Fish Contaminant Monitoring Program (FCMP)	25
3	.4 Free	shwater Mussels	27
4	Summar	у	27
5	Future M	Ionitoring Needs/Recommendations	28
6	Works C	Sited	29
App	endix A .		A-1
1	Macroin	vertebrate Data	A-1
2	Habitat [Data	A-10
App	endix B .		B-18

ST. JOSEPH RIVER WATERSHED REPORT

1 INTRODUCTION

1.1 Purpose

Many Michigan Department of Environment, Great Lakes, and Energy (EGLE) water quality monitoring and water pollution control programs are implemented according to a five-year rotating watershed cycle to promote program integration and effective watershed management. In line with this approach, water quality monitoring within this five-year cycle occurs two years prior to National Pollutant Discharge Elimination System (NPDES) watershed permit issuance or renewal. Status and trends are also determined using approximately 900 statewide probabilistically chosen river and stream locations over the five-year basin cycle period.

Michigan has 57 major watersheds based on the United States Geological Survey's (USGS) eight-digit Hydrologic Unit Codes (HUC). Water quality assessment efforts focus on a subset of these major watersheds each year.

Environmental monitoring within these major watersheds is an essential component of EGLE's mission. The main goals of EGLE, Surface Water Assessment Section (SWAS), monitoring efforts are to:

- 1. Assess the current status and condition of waters of the state and determine whether water quality standards (WQS) are being met.
- 2. Address monitoring requests submitted by internal and external customers
- 3. Evaluate biological community spatial and temporal water quality trends.
- 4. Identify new and emerging water quality problems.

The purpose of this report is to summarize the biological and habitat data collected during the 2015 and 2016 targeted watershed surveys, as well as document additional chemical, biological, and physical monitoring data generated by EGLE and its partners in recent years. This report covers the following eight-digit HUCs:

04050001--St. Joseph River Watershed

This area is referred to as the St. Joseph River Watershed (SJW) throughout this document. Because this watershed is so large, it has been separated into two parts to allow for adequate monitoring, which takes place over two years (Figure 1). The Upper St. Joseph River was sampled in 2015 and the Lower was sampled in 2016 by EGLE SWAS.

Note: The Michigan Department of Environmental Quality (MDEQ) was renamed EGLE in 2019. Reference to both agency names may be in this document depending on when the data was collected, surveys were conducted, or reports were completed.

2 WATERSHED DESCRIPTION

The SJW is the third largest river basin in Michigan and includes waters in Berrien, Branch, Calhoun, Cass, Hillsdale, Kalamazoo, St. Joseph, and Van Buren Counties in Michigan, as well as several counties in Indiana, and lies within the Southern Michigan/Northern Indiana Drift Plains Ecoregion (Albert, 1995). This large watershed originates in Hillsdale County at Baw Beese Lake and widens to include a portion of Indiana and eventually drain to Lake Michigan at St. Joseph, Michigan. The SJW drains approximately 4,685 square miles: 3,000 in Michigan and 1,685 in Indiana. This document will include information only pertaining to the Michigan portion of the SJW (Figure 1).

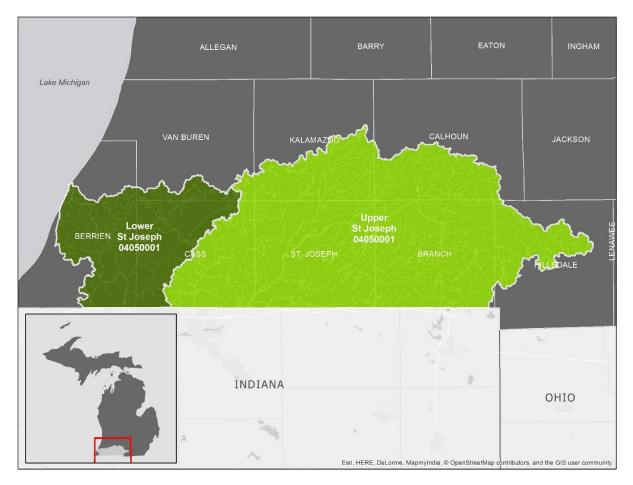
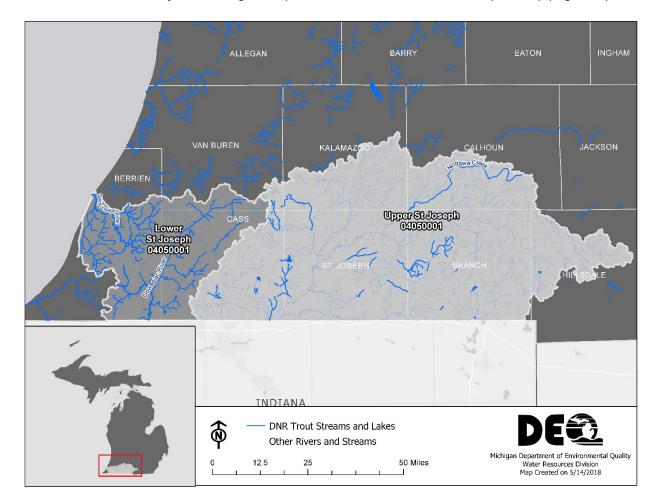



Figure 1. SJW including the division of the Upper and Lower sections.

2.1 Natural Features

Glacial retreat over 10,000 years ago shaped much of the SJW landscape leaving deposits consisting of a mosaic of outwash sands, sorted and unsorted sands and gravel, fine loam material, and lake plain. Over half of the surficial geology consists of outwash sand and gravel, which ranks third among Lower Peninsula watersheds behind only the Manistee and Boardman Rivers. Some of the highest elevations, reaching nearly 570 feet above Lake Michigan, are located near the headwaters in Hillsdale County. This upper area contains the highest gradient streams as well as a substantial number of swales, lakes, and wetlands supplying much of the cooler water to the system. The middle section, draining the majority of the SJW, goes from medium to large with considerably lower gradient. The lower section of the watershed is in a relatively confined valley as it cuts through the Kalamazoo moraine until the last eight miles where it flows across a lake plain to the mouth in St. Joseph Michigan (Albert, 1995) (Wesley &

Duffy, 1999). The lower SJW contains a considerable amount of designated trout (coldwater) streams as classified by the Michigan Department of Natural Resources (MDNR) (Figure 2).

Figure 2. Designated trout streams and lakes in the SJW.

2.2 Land Use

Prior to European settlement, the SJW consisted of large tracts of deciduous forest, streams, lakes, wetlands, and prairies. This natural landscape supported a very diverse population of fish and wildlife. Native Americans and Europeans found this fertile land with vast prairies easy to convert to agricultural use and the majority of forests were logged by the 1900s. Dams were constructed along the river to provide power to industry and a growing population and over 50 percent of wetlands have been lost to development. This extensive development within the watershed has led to a variety of water quality issues (Degraves, 2005).

Current land cover (Figure 3) in the SJW is dominated by cultivated crops (>49 percent) with wooded wetlands, deciduous forest, and pasture/hay making up much of the remaining land use (Jin et al., 2013).

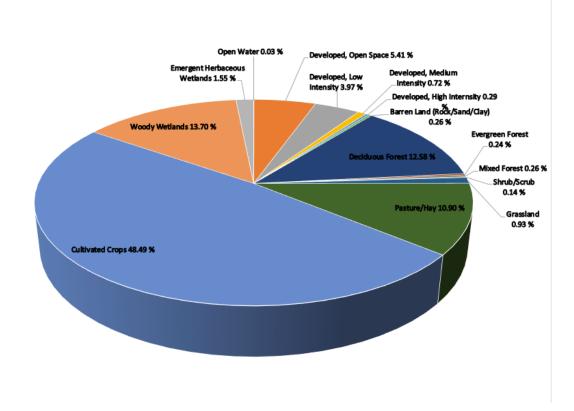


Figure 3. Current land use in the SJW (Jin, et al., 2013).

2.3 Attainment Status

The Federal Water Pollution Control Act (PL 92-500), also known as the Clean Water Act (CWA), requires states to provide the United States Environmental Protection Agency (USEPA) with an assessment of water quality. EGLE currently fulfills these reporting requirements through the submission of a biennial Integrated Report, which describes the attainment status of Michigan's surface waters relative to the designated uses specified in Michigan's WQS (MDEQ, 2006b) (see text box for description of designated uses).

Designated Uses

All surface waters of the state are designated and protected at a minimum for all of the following designated uses: agriculture, navigation, industrial water supply, warmwater fishery, other indigenous aquatic life and wildlife, partial body contact recreation, and fish consumption (R 323.1100[1][a]-[g] of the Part 4 Rules, WQS, promulgated under Part 31, Water Resources Protection, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended). In addition, all surface waters of the state are designated and protected for total body contact recreation from May 1 to October 1 (R 323.1100[2]). Specific rivers and inland lakes as well as all Great Lakes and specific Great Lakes Connecting Channels are designated and protected for coldwater fisheries (R 323.1100[4]-[7]). Several specific segments or areas of inland waters, Great Lakes, Great Lakes bays, and Connecting Channels are designated and protected as public water supply sources (R 323.1100[8]).

The Integrated Report (MDEQ, 2016) includes a chapter on assessment methodology (Chapter 4), which describes the data and information used to determine designated use support, explains how these data and information are used to determine designated use support for surface waters of the state, and describes how surface water resources are reported using five categories: fully supporting, partially supporting, not supporting, insufficient information, or not assessed. Waters that do not support their designated uses or meet WQS are considered impaired and require the development of a Total Maximum Daily Load (TMDL), unless it is determined the impairment is not caused by a pollutant (e.g., channelization) or other approved pollution control mechanisms (e.g. contaminated sediment cleanup) are in place and are expected to result in designated use attainment.

Beginning in 2016, the Water Resources Division (WRD) decreased the sampling effort used to develop statistical assessment evaluations of macroinvertebrate communities in rivers and streams at the watershed scale in favor of obtaining statewide estimates only. In 2015 and 2016, 16 randomly selected sites within the SJW watershed were sampled to support statewide attainment status calculation for the other indigenous aquatic life and wildlife designated use. Additionally, each of the sites sampled within the SJW watershed are used for assessing the designated use support status of their associated individual assessment units.

2.3.1 *TMDLs*

When a lake or stream does not meet WQS for a pollutant, a study must be completed to determine the amount of a pollutant that a water body can receive from point sources and nonpoint sources (NPS) and still meet WQS, including a margin of safety. A TMDL is a document that determines how much pollutant load a lake or stream can assimilate and allocates the loads to sources. The purpose of the TMDL is to gather data, identify pollutant sources, and develop appropriate goals and reasonable assurance that will ensure WQS are met and designated uses are restored (MDEQ, 2018f) (https://www.michigan.gov/egle/about/ Organization/Water-Resources/tmdls/statewide-mercury-tmdl).

The SJW currently has several TMDLs completed for *E. coli* for specific areas within the watershed. These TMDLs include 32 miles of the lower St. Joseph River (2004), Eau Claire Village Drain and Farmers Creek (2008), Pine and Mill Creeks (2009), and Little Portage Creek (2012). A statewide TMDL for *E. coli* with additional locations within the SJW has been completed and submitted to the USEPA. (MDEQ, 2018b) (MDEQ, 2018a)

Statewide TMDLs for Polychlorinated Biphenyls (PCB) and mercury have been submitted and approved by the USEPA. These TMDLs address inland water bodies listed as not attaining WQS in the SJW due to these two contaminants. Several water bodies are listed as not supporting the designated use of other indigenous aquatic life and wildlife due to ambient water concentrations of mercury and PCBs, which exceed WQS. These water bodies are addressed by the approved statewide mercury and PCB TMDLs developed by the MDEQ (MDEQ, 2018c) (MDEQ, 2018f)

The SJW has several water bodies that are listed as not supporting designated uses of fish consumption due to the bioaccumulation of chemicals in fish tissue.

2.3.2 FISH CONSUMPTION ADVISORIES

In addition to the statewide fish consumption advisory for mercury and PCBs, the Michigan Department of Health and Human Services (MDHHS) has placed specific consumption advisories on sections of the SJW. PCBs and mercury are the driving contaminants of these advisories. DDT and perfluorooctane sulfonate (PFOS) have also been cited as a cause for the advisory. Species collected for analysis include: Black Crappie, Bluegill, Brown Bullhead, Brown Trout, Carp, Channel Catfish, Largemouth Bass, Northern Hog Sucker, Northern Pike, Rock Bass, Smallmouth Bass, Sucker Species, and Walleye.

2.3.3 PERMITTED DISCHARGES

The NPDES permit process was initiated by the federal Water Pollution Control Act amendments of 1972. The purpose of the program is to control the discharge of pollutants into surface waters by imposing effluent limitations on point source discharges to protect human health and the environment (MDEQ, 2018e). Currently, authority for NPDES permit issuance rests with EGLE. All NPDES permits are written to ensure that surface waters that receive discharges will meet WQS. Michigan's WQS are designed to not only protect for aquatic life ("fishable") and recreation ("swimmable") uses, but also protect for other uses of the receiving waters, including agriculture, public and industrial water supply, and navigation.

There are 451 NPDES permits impacting surface water in the SJW. Locations of permitted facilities are presented in Figure 4 and additional information regarding specific permits can be found on the EGLE Web site (MDEQ, 2018d). Activities that are permitted include Wastewater Treatment Plants (WWTP), storm water discharge, concentrated animal feeding operations (CAFO), and industrial discharges.

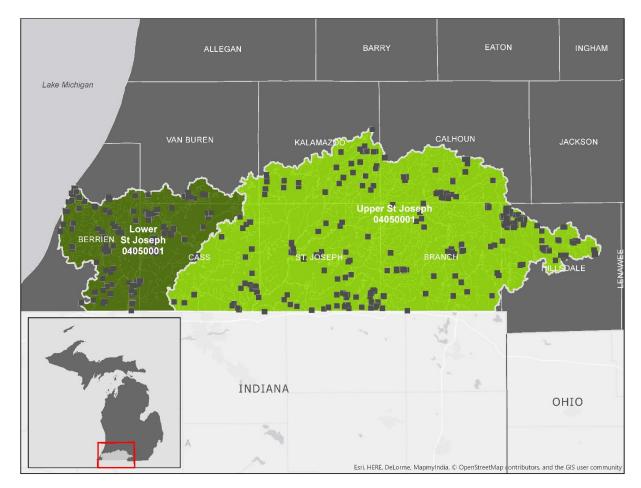


Figure 4. Location of NPDES permitted facilities within the SJW.

2.4 Invasive Species

An invasive species is defined as a species that is not native and whose introduction causes, or is likely to cause, economic or environmental harm, or harm to human health. Michigan's aquatic ecosystems are experiencing significant negative effects from aquatic invasive species (AIS) that are currently present in the state and are continually threatened by new invasions (MDEQ, 2014).

To assist with the tracking of currently established AIS and the potential discovery of undocumented species, EGLE biologists currently include an AIS survey component into their site assessments. The AIS survey conducted at each site is not exhaustive and it is possible that certain species may have been present and not observed. These surveys are compiled by SWAS AIS staff and the data are entered into the Midwest Invasive Species Information Network (MISIN). Additional species information as well as distribution information can be found on the MISIN Web site (MISIN, 2019).

2.5 Watershed Management Plans (WMP)

A WMP serves as a guide for communities to protect and improve water quality and considers all uses, pollutant sources, and impacts within a drainage area. More than 150 WMPs have been developed across Michigan at the local level utilizing EGLE grants awarded by the NPS Program. Grant funding for implementation of best management practices (BMP) identified within the WMPs is available through the federal CWA as well as the Clean Michigan Initiative (CMI) NPS Pollution Control Grant Program. The SJW contains seven (Figure 5) approved or pending WMPs (MDEQ, 2017). The SJW has an approved WMP for the entire watershed and there are six other WMPs within the SJW focused on smaller watersheds. More information can be found on EGLE's Web site under the NPS Section (MDEQ, 2019a). These WMPs were approved under the CMI administrative rules and were funded under Section 319 of the CWA (MDEQ, 2017).

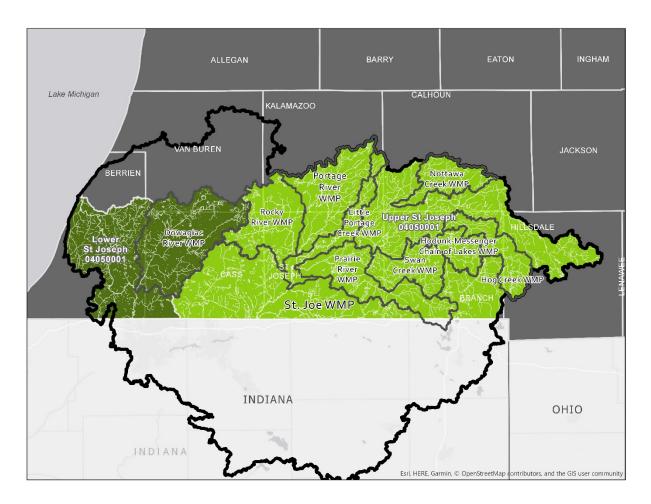


Figure 5. Locations of the Watershed Management Plans (WMP) within the SJW as well as the WMP covering the entire SJW.

2.5.1 St. JOSEPH RIVER WATERSHED

The St. Joseph River Watershed Management Plan was developed by the Friends of the St. Joe River Association and was approved as meeting both CMI and Section 319 criteria in 2005. The St. Joseph River watershed planning area is 2,998,400 acres in size and covers portions of Berrien, Branch, Calhoun, Cass, Hillsdale, Kalamazoo, St. Joseph, and Van Buren Counties, Michigan; and DeKalb, Elkhart, Kosciusko, Lagrange, Noble, St. Joseph, and Steuben Counties, Indiana. Land cover in the planning area is 70 percent agricultural, 17 percent forested, 6 percent wetland, 5 percent residential, and 2 percent water. Designated uses addressed within the planning area include agricultural water supply, navigation, warmwater fisheries, coldwater fisheries, other indigenous aquatic life and wildlife, partial body contact recreation, and total body contact recreation. Pollutants of concern in the watershed include sediment, nutrients, pathogens, pesticides, herbicides, and other toxins (MDEQ, 2017).

(The link provided was broken and has been removed.)

2.5.2 ROCKY RIVER WATERSHED

The Rocky River Watershed Management Plan was prepared by the St. Joseph County Conservation District and was approved as meeting CMI criteria in 2003 and Section 319 criteria in 2004. The planning area is in portions of Cass, St. Joseph, Van Buren, and Kalamazoo Counties and is approximately 112,100 acres in size. Land cover within the planning area is 64.6 percent agricultural, 21.8 percent forested, 9.9 percent wetland, 2.5 percent water, and 1.1 percent urban. Designated uses addressed within the planning area include navigation, warmwater fisheries, other indigenous aquatic life and wildlife, and partial and total body contact recreation. Pollutants of concern include sediment, nutrients, bacteria (*E. coli*), and hydrologic flow (MDEQ, 2017).

(The link provided was broken and has been removed.)

2.5.3 LITTLE PORTAGE CREEK WATERSHED

The Little Portage Creek Watershed Management Plan was developed by the Calhoun County Conservation District and was approved as meeting CMI and Section 319 criteria in 2016. The Little Portage Creek planning area is approximately 60,000 acres in size and located in St. Joseph, Kalamazoo, and Calhoun Counties. Land cover within the planning area is 71 percent agriculture, 14 percent forested, 5 percent open field, 4 percent urban, 3 percent water, and 3 percent wetland. Impaired designated uses include partial and total body contact recreation and warmwater fisheries. Primary pollutants of concern include sediment and *E. coli* (MDEQ, 2017).

https://docs.wixstatic.com/ugd/37b657_0c56351002fe4e13a16fa91e34763df9.pdf

2.5.4 PORTAGE RIVER WATERSHED

The Portage River Watershed Management Plan was developed by the Calhoun County Conservation District and was approved as meeting CMI and Section 319 criteria in 2016. The planning area is approximately 125,500 acres in size and located in Kalamazoo and St. Joseph Counties. Land cover within the planning area is 60 percent agriculture, 18 percent forested, 7 percent wetland, 6 percent urban, 5 percent open field, and 4 percent water. The impaired designated use within the watershed is total body contact. Pollutants of concern include pathogens, sediment, and hydrologic issues (MDEQ, 2017).

https://docs.wixstatic.com/ugd/37b657_6593fc0d944e4e24aec7351e143fe5b7.pdf

2.5.5 PRAIRIE RIVER WATERSHED

The Prairie River Watershed Management Plan was developed by the Branch County Conservation District and was approved as meeting both CMI and Section 319 criteria in 2014. The Prairie River planning area is 116,668 acres in size. The planning area is in portions of Branch and St. Joseph Counties, Michigan; and Steuben County, Indiana. Land cover in the planning area is 69 percent agricultural production, 12 percent forested, 12 percent wetland, 4 percent urban, and 3 percent water. No water bodies in the Prairie River watershed are currently identified as having impaired designated uses. The pollutant of concern in the watershed is *E. coli* (MDEQ, 2017).

A copy of the Prairie River watershed is available upon request.

2.5.6 NOTTAWA CREEK WATERSHED

The Nottawa Creek Watershed Management Plan was developed by the Calhoun Conservation District and received CMI approval in 2000. The planning area covers 59,196 acres. Land cover within the watershed is 68 percent agricultural, 13 percent forested, 10 percent wetland, and 9 percent nonfarm lands. Designated uses addressed within the planning area include warmwater fisheries, and partial and total body contact recreation. Pollutants include sediment, nutrients, pathogens, and pesticides (MDEQ, 2017).

https://docs.wixstatic.com/ugd/37b657_988a7146d1074984ba582e861a11657c.pdf

2.5.7 DOWAGIAC RIVER WATERSHED

The Dowagiac River Watershed Management Plan was developed by Cass Conservation District and was approved as meeting CMI criteria in 2002. The Dowagiac River planning area lies within the St. Joseph River Basin and located in Cass, Van Buren, and Berrien Counties. The planning area is 183,117 acres. Land cover within the planning area is 55 percent agricultural, 34 percent forest/wetlands, 6 percent residential, 0.3 percent industrial, 0.1 percent commercial, and 4 percent other. Designated uses addressed within the planning area include cold- and warmwater fisheries, other indigenous aquatic life and wildlife, and partial body contact recreation. The management plan addresses the following pollutants: sediment, nutrients, changes in hydrologic flow, and *E. coli* (MDEQ, 2017).

(The link provided was broken and has been removed.)

2.5.8 SWAN CREEK WATERSHED

The Swan Creek Watershed Management Plan was approved as meeting CMI criteria in 2000. The planning area is in portions of Branch and St. Joseph Counties and is 70,630 acres in size. Land cover within the planning area is 71 percent cropland, 18 percent forested, 5 percent wetland, 3 percent other, 1 percent pastureland, and 1 percent urban. Pollutants of concern within the planning area include sediment and phosphorus (MDEQ, 2017).

A copy of the Swan Creek WMP is available upon request.

2.5.9 HOG CREEK WATERSHED

The Hog Creek Watershed Project was developed by the Hillsdale Conservation District and was approved as meeting CMI and Section 319 criteria in 2005. The Hog Creek planning area is 68,928 acres in size. The planning area is in portions of Hillsdale and Branch Counties. Land cover within the planning area is 73 percent agriculture, 16 percent forested, 4 percent open fields, 4 percent water or wetland, and 3 percent urban. None of the designated uses are known to be impaired. The Hog Creek Watershed Management Plan addresses the sources of sediment and pathogens (MDEQ, 2017).

A copy of the Hog Creek WMP is available upon request.

2.5.1 HODUNK-MESSENGER CHAIN OF LAKES WATERSHED

The Hodunk-Messenger Chain of Lakes Watershed Management Plan was developed by the Branch County Conservation District and was approved as meeting both CMI and Section 319 criteria in 2009. The Hodunk-Messenger Chain of Lakes Watershed planning area covers 39,386 acres in Branch County. Land cover in the planning area is 70 percent agricultural,

15 percent forested, 7 percent urban, 4 percent wetland, and 3.5 percent water. Impaired designated uses in the watershed are other indigenous aquatic life and wildlife, and total body contact recreation. Pollutants of concern in the watershed are pathogens and sediment (MDEQ, 2017).

A copy of the Hodunk-Messenger Chain of Lakes WMP is available upon request.

2.6 NPS Projects

Although only one NPS project is currently active in the SJW, several have been implemented in the SJW since 1991. A list of projects dating back to 2005 is presented in Table 1. These projects have addressed watershed issues such as water contamination, sedimentation/erosion, and public education. NPS success stories are available for projects conducted within the SJW on the Dowagiac River and Rocky River. The Dowagiac River project reconnected a separated meander, which greatly improved in-stream habitat and macroinvertebrate populations. The Rocky River project eliminated an unrestricted cattle access point, which was impacting the physical habitat of the stream and its macroinvertebrate populations.

More project-specific information and short summaries of work completed can be found in the project fact sheets located on the EGLE Web site (MDEQ, 2019b).

Project Name	Organization	Project Description	End Date
Hog Creek Watershed Planning	Hillsdale Conservation District	The Hog Creek watershed covers 68,928 acres in western Hillsdale and eastern Branch Counties, eventually outletting to the Coldwater River at Hodunk, then onto the St. Joseph River at Union City. The designated uses are warmwater fishery, habitat for other indigenous aquatic life and wildlife, agriculture, and partial or total body contact recreation. Land use is 73 percent agricultural, 4 percent wetlands, 16 percent forested, 3 percent urban, and 4 percent open fields and other. Primary water quality concerns include sediment delivery from stream bank instability, road/stream crossings, agriculture and construction site runoff, nutrients and bacteria from livestock wastes and septic tank systems, and nutrient and pesticides from agricultural and other runoff. The project goal is to complete a watershed inventory, identify and prioritize NPS contaminants and their sources, and develop and write an approved comprehensive WMP.	6/30/2005
St. Joseph River SWAT Model	Friends of the St. Joe River Association	The Friends of the St. Joseph River was awarded an EGLE Section 319 NPS grant to develop a WMP for the St. Joseph River watershed. During the project, the USEPA issued new requirements for watershed management plans funded through Section 319 grant monies. These requirements call for additional quantification of sources of pollutants and expected reductions in pollutants with recommended BMPs. The project reported additional tasks beyond the planning project work plan to ensure the WMP meets the Nine Elements. It used a watershed GIS-based modeling approach to quantify potential load reductions and associated costs for nutrients and pesticides with BMPs applied in three agricultural tributary watersheds. Models used included SWAT (Soil and Water Assessment Tool) and Landscape Analyst.	6/30/2005
St. Joseph River Planning	Friends of the St. Joe River Association, Inc.	The St. Joseph River watershed spans the Michigan-Indiana border and empties into Lake Michigan at St. Joseph, Michigan. The watershed includes 3,742 river miles and drains 4,685 square miles from 14 counties in Michigan and Indiana. Over 1.5 million people live in this agricultural watershed. The watershed includes 32 impaired waters (included in Michigan's Section 303(d) list) with TMDLs not yet developed. The St. Joseph River is the largest contributor of atrazine to Lake Michigan. It has also been estimated that 5 percent of the sediment loading via tributaries into Lake Michigan is derived from the St. Joseph River. Several Section 319 projects have been conducted in subwatersheds in both Michigan and Indiana, yet no comprehensive planning effort for the entire watershed has been attempted. The chief goal of this watershed management planning proposal is to unite stakeholders in a concerted effort to address water quality concerns across jurisdictional boundaries by developing an approvable WMP for the St. Joseph River basin, including both Michigan and Indiana.	6/30/2005
Nottawa Creek BMP Implementatio n	Calhoun Conservation District	This project proposes to stabilize three eroding stream banks and implement BMPs at 11 agricultural sites. The proposed BMPs will be implemented as part of the Nottawa Creek Section 319 Watershed Project, which aims to reduce erosion and sedimentation in the Nottawa Creek watershed. The watershed project consists of 59,196 acres in Calhoun County. Land uses in the watershed consist of agriculture (dominant use), forestland, wetlands, and urban/rural non-farm. Sediment and nutrients are listed as the primary pollutants threatening water quality in Nottawa Creek.	9/30/2006
Dowagiac River MEANDR Restoration II	Cass Conservation District	The Dowagiac River is a unique coldwater stream in southern Michigan that shares characteristics to northern trout streams. The "Meeting the Ecological & Agricultural Needs within the Dowagiac River System" (MEANDERS) was formed in 1994. Their mission is to protect and restore the ecological function of the Dowagiac River system while maintaining an agricultural-based infrastructure to the community. Projects are being planned and implemented to protect the hydrology and the riparian corridor as well as managing animal waste and sediment in the watershed.	8/31/2007

Project Name	Organization	Project Description	End Date
Hog Creek Implementatio n	Hillsdale Conservation District	In order to meet its goals, the Hog Creek Watershed Project will choose specific BMPs and develop and implement a Resource Management System within the critical areas that pose the greatest risk to water quality. Priority will be placed on improving those sites that have severely eroded stream banks, uncontrolled livestock access, unstable channel grade, and poor land use practices. Along with this, an extensive Information and Education program will continue and expand, designed to build strong partnerships with stakeholders, landowners, and decision-makers to raise awareness about and accomplish sound watershed management. This will increase residents' understanding of resource concerns and possible solutions. Public participation will be strongly encouraged through Stream Search, Clean-up Days, Information Workshops, and student/volunteer water quality testing.	9/30/2008
Rocky River Watershed Implementatio n	St. Joseph County Conservation District	This project will protect the Rocky River through the implementation of land use planning tools, conservation practices, and stakeholder awareness and education programs.	6/30/2009
Hodunk- Messenger Chain of Lakes Watershed Planning	Branch Conservation District	The chief goal of this watershed management project is to protect and improve water quality through the development of EGLE-approvable Comprehensive WMP. This project will detail the resource concerns, problems, needs, and solutions for the distinctive yet threatened water and land resources in the Hodunk-Messenger Chain of Lakes watershed. It will then recommend mitigation, protection, restoration, and education efforts necessary to sustain and/or enhance water quality. The planning process and the resulting plan will be grounded in broad public participation and will have a diverse and focused information/education program and a long-range land use management plan.	7/31/2009
City of Sturgis Sustainable Storm Water Demonstration	City of Sturgis	This project will implement Low Impact Development practices for the Nye Drain, which is a subwatershed of the St. Joseph River watershed. Nye Drain is located in St. Joseph County and is approximately 17 percent urban.	9/30/2011
City of St Joseph ARRA TMDL Planning Grant	City of St. Joseph	This project will develop an implementation strategy for the city of St. Joseph to address the St. Joseph River TMDL (<i>E. coli</i> - 937 square miles). The numeric target of 130 <i>E. coli</i> per 100 milliliters (mL) will be used as the goal of the TMDL. A Quality Assurance Project Plan will outline the sampling design and professional crews will conduct wet-weather sampling at storm sewer outfall locations to identify sources of <i>E. coli</i> . A TMDL Compliance Plan will identify watershed-specific BMP implementation plans, including Green Infrastructure solutions; explain how to integrate urban storm water runofff management into the City's planning process for development and redevelopment; and promote public education and community engagement in preventing urban runoff pollution at the source. The project will include adding storm sewer feature classes to a GIS database for use in planning, illicit discharge elimination, spill response, and maintenance programs.	9/30/2011
City of Niles - TMDL Planning Grant	City of Niles	This project will develop an implementation strategy for the city of Niles to address the St. Joseph River TMDL (<i>E. coli</i> - 937 square miles). The numeric target of 130 <i>E. coli</i> per 100 mL will be used as the goal of the TMDL. A Quality Assurance Project Plan will outline the sampling design and professional crews will conduct wet-weather sampling at storm sewer outfall locations to quantify sources of <i>E. coli</i> . A TMDL Compliance Plan will identify watershed-specific BMP implementation plans, including Green Infrastructure solutions; explain how to integrate urban storm water runoff management into the City's planning process for development and redevelopment; and promote public education and community engagement in preventing urban runoff pollution at the source. The project will include adding storm sewer feature classes to a GIS database for use in planning, illicit discharge elimination, spill response, and maintenance programs.	9/30/2011
Hollywood Road Storm Water Basin Wetland Demo Facility	Drain	The Hollywood Road Storm Water Basin is in the Hollywood Drain, which is tributary to Hickory Creek and the St. Joseph River. An existing in-line detention basin within the Hollywood Drain currently provides virtually no treatment of the first flush, bank-full and small storm events and has increased localized flooding problems during larger storm events. As this Drain is upstream of Hickory Creek, a Section 303(d) listed water body for habitat modifications due to channelization, it is critical that this basin be retrofitted to control peak flows; reduction of suspended solids and nutrients is also desirable.	7/31/2011
Prairie River Watershed Planning	Branch Conservation District	The Prairie River watershed is a 176 square mile watershed in southern Branch and St. Joseph Counties. This project will focus on addressing known EGLE priority nonattainment impairments, and protecting/enhancing water quality. This watershed is a highly irrigated, agricultural area, where pathogens, sediment, nutrients, and increased hydrologic flow are concerns. This is the largest watershed in the St. Joseph River system without a watershed plan. Michigan's Integrated Report shows the Prairie River contains sections of acceptable/excellent water quality for macroinvertebrates, with sections of quality coldwater fishery. Land uses are 67 percent agriculture, 12 percent forested, 14 percent wetlands and 7 percent urban. Sources of pollution include agricultural/residential runoff, stream/lake banks, road crossings, construction, and septic systems. Key objectives will focus on conservation, mitigation, education, and land use planning to produce an EGLE-approvable watershed plan.	6/30/2014
Portage River/Little Portage Creek Watershed Planning	Calhoun Conservation District	Located in Kalamazoo and St. Joseph Counties, the Portage River and Little Portage Creek encompass 185,505 acres. Land uses in the Portage River are 14 percent wetland, 16 percent forest, 67 percent agriculture, and 2 percent urban. Little Portage Creek land uses are 3 percent wetland, 12 percent forest, 80 percent agriculture, and 0.6 percent urban. Both watersheds fail to support total and partial body contact recreation caused by <i>E. coli</i> . Little Portage Creek additionally fails to support its warmwater fishery due to other anthropogenic substrate alterations. Pollutant sources include agriculture, wildlife, faulty septic systems, and storm water runoff.	6/30/2015

Project Name	Organization	Project Description	End Date
Cass County Assessment Pilot Project	-	Install monitoring wells, conduct aquifer pumping tests, install staff gages in streams, collect miscellaneous stream flow measurements, use multiple methods to determine streambed conductance, create groundwater models.	12/31/2018
Ox Creek Low Impact Development - Phase I		The overall project goal is to reduce priority pollutants (sediment and flow) and begin Phase I of the restoration of an impaired water body (Ox Creek) and make substantial progress towards achieving TMDL total suspended solids load reduction targets. Below are specific goals and measurable objectives.	9/30/2021

3 MONITORING

3.1 River and Stream Biological Surveys

Monitoring by EGLE SWAS biologists generally follows a five-year rotating cycle, and the results are summarized in watershed reports such as this. Previous reports for the SJW were completed in 2007 (MDEQ, 2006a) and 2011 (MDEQ, 2011) for the lower SJW and 2005 (MDEQ, 2005) and 2010 (MDEQ, 2010) in the upper SJW. Invertebrate assessment scores from status and trend sites assessed during these previous sampling events are presented in Table 2.

Biological and physical habitat conditions of selected streams located in the SJW were most recently assessed by EGLE in 2015 and 2016. Qualitative macroinvertebrate community surveys were performed using Procedure 51 (MDEQ, 2008) on wadeable streams at 30 locations. Sample locations are presented in Figure 6.

Eleven trend sites were identified to determine watershed and statewide water quality trends. These sites will be monitored every five years to determine water quality trends within the watershed. Sixteen sites were selected using a stratified random selection process with the goal of addressing statewide and watershed-specific water quality concerns and attainment status.

Three sites were sampled as part of the SWAS targeted monitoring program. These sites were submitted to EGLE as locations of concern or needs for additional information.

The specific water bodies and the scores determined at each are presented in Table 2.

SITE ID ³	STORET	WATER BODY NAME	LATITUDE	LONGITUDE	COUNTY	HABITAT SCORE 2015-16 ¹	INVERT SCORE 2015-16 ²	INVERT SCORE 2010-11 ²	COMMENTS
1U	750337	Fawn River Drain	41.85342	-85.55999	St. Joseph	109	-1		Status
2U	120250	South Branch Hog Creek	42.02926	-84.97127	Branch	173	7		Status
3U	300295	Sand Creek	42.01466	-84.77151	Hillsdale	137	8		Status
4U	750338	Fawn River	41.80961	-85.57858	St. Joseph	156	4		Status
5U	120003	Swan Creek	41.89612	-85.22038	Branch	140	8		Status
6U	750339	Prairie River	41.84874	-85.31545	St. Joseph	141	4		Status
7U	120251	Sauk River	41.93562	-85.00986	Branch	165	8		Status
8U	750319	Bear Creek	42.05772	-85.35625	St. Joseph	146	5		Status
9U	300296	Beebe Creek	41.934592	-84.518353	Hillsdale	110	1		Status
10U	750340	Fawn River	41.82478	85.58104	St. Joseph	165	2		Status
11U	750341	Unnamed Trib to Prairie River	41.91297	-85.40957	St. Joseph	67	0		Status
12U	750341	Prairie River	41.854606	- 85.33094954	St. Joseph	151	4		Status
13U	120252	Sand Creek	41.95588	-84.728149	Hillsdale	171	6		Status
14U	750275	Spring Creek	42.06419	-85.60689	St. Joseph	179	2		Status
15U	120253	Unnamed Trib to Prairie River	41.85931	-85.23348	Branch	93	-2		Status
16U	750324	Spring Creek	42.03811	-85.64919	St. Joseph	139	3	3	Trend
17U	390607	Unnamed Trib to Portage River	42.19779	-85.41293	Kalamazoo	180	5	4	Trend
18U	750280	Rocky River	41.945093	-85.637014	St. Joseph	132	5	5	Trend
19U	120245	Blackwell Drain	42.02827	-85.19361	Branch	117	2	-3	Trend
20U	750327	Nottawa Creek	42.04024	-85.33234	St. Joseph	125	4	2	Trend
21U	120242	Hog Creek	42.02921	-85.04859	Branch	142	4	4	Trend
22U	750001	St. Joseph River	41.97248	-85.30265	St. Joseph	162	8	8	Trend
23U	750326	St. Joseph River	42.00758	-85.41126	Branch	156	8	4	Trend
1L	110804	Pipestone Creek	42.06007	-86.39644	Berrien	118	1		Status
2L	140111	Brandywine Creek	41.79741	-86.21458	Cass	177	3	1	Trend
3L	140168	Dowagiac River	42.04969	-86.06932	Cass	140	3	4	Trend
4L	110732	Hickory Creek	41.92757	-86.4704	Berrien	83	-5	-4	Trend
5L	110805	Old Bitty Creek	41.8565	-86.36527	Berrien	112	-1		Targeted
6L	130324	Prairie River	41.8019	-85.11673	Branch	93	0		Targeted
7L	120254	Prairie River	41.8391	-85.19303	Branch	153	5		Targeted

 Table 2. Location and scores of water bodies monitored in 2010-2011 and 2015-2016 by EGLE in the SJW.

¹Habitat scores (>154-Excellent, 105-154-Good, 56-104-Marginal, <56-Poor).

²Invertebrate assessment scores (+5 to +9-Excellent, +4 to -4-Acceptable, -5 to -9-Poor)

³Locations with "U' and "L" denote Upper and Lower SJW locations.

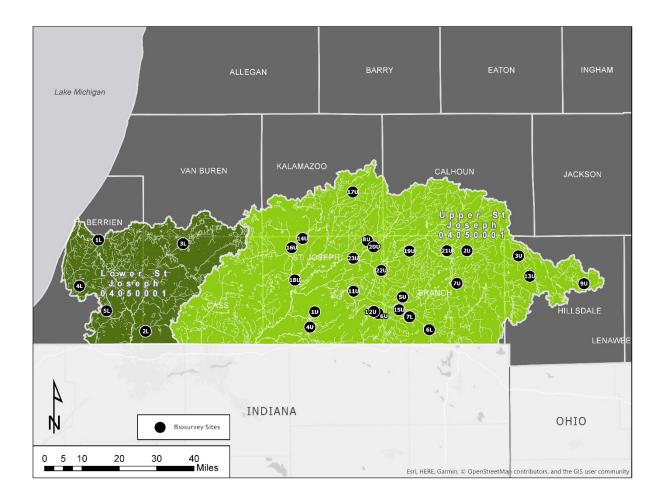


Figure 6. 2015-2016 biosurvey locations in the SJW.

3.1.1 STATUS AND TREND SITE DETAILS

Scores for all sites can be found in Table 2 and in Appendix A. For benthic invertebrates, 12 of the 30 sites scored Excellent; 17 of the 30 sites scored Acceptable, with 12 of those scoring in the upper half of the Acceptable range; only 3 were in the lower Acceptable range. One site scored Poor. In addition, stream habitat was Excellent at 10 locations, Good at 16, and Marginal at only 4 locations. No sites were rated Poor for habitat.

Eleven trend sites (Table 2) were resampled using Procedure 51 during 2015-2016. Nearly all locations scored within 3 points of the previous sampling effort (2010-2011), which is within typical margins of variation. Two locations (19U and 23U) were outside of this range, with 19U having a 5-point difference and 23U having a 4-point difference, both with higher scores in the more recently conducted surveys. These two locations will be monitored again during the next cycle.

3.1.1.1 UPPER ST. JOSEPH RIVER (2015)

Fifteen status locations and 8 trend locations were surveyed in the Upper St. Joseph River in 2015 (Figure 6, Table 2). All sites scored either Excellent or Acceptable. Site 15U (Unnamed tributary to Prairie River) was the only site that scored on the lower end of the Acceptable range with a score of -2. A habitat score of 93 (Marginal) was also documented at this location. This location is a maintained agricultural drain, which was noted as being somewhat recently dredged. The stream was channelized with agricultural fields running immediately adjacent to the stream on both sides. The lack of canopy cover, recent dredging, and significant vegetative growth in the stream channel likely are affecting invertebrate diversity.

3.1.1.2 LOWER ST. JOSEPH RIVER (2016)

One status and 3 trend locations were surveyed in the Lower St. Joseph River in 2016 (Figure 6, Table 2). All sites except one scored in the upper end of Acceptable for invertebrates. Site 4L (Hickory Creek) scored -5 (Poor) for invertebrates and 83 (Marginal) for habitat. The stream was noted as being very channelized, with less than 10 feet of vegetated buffer along the edge, which was immediately adjacent to an agricultural field on one side and an animal pasture on the other. This site also scored Poor for invertebrates when it was surveyed in 2011.

3.1.2 TARGETED MONITORING

3.1.2.1 PRAIRIE RIVER

Low flow conditions in 2012 severely impacted the population of naturally reproducing brown trout in this stream leading to several years of monitoring by the MDNR. The MDNR requested that 2 locations on Prairie River (6L-Bowers Road and 7L-Orland Road; Figure 6, Table 2) be sampled for habitat and invertebrates to supplement fisheries and temperature data collected by the MDNR since 2011. At location 6L at Bowers Road, the habitat scored 93 (marginal) and invertebrates scored 0 (acceptable). This location was found to be very sandy/silty with several areas of unstable substrate pockets. Long filamentous algae were also noted as prevalent within the sampling reach. The site was mainly open canopy along the edge of agricultural fields. Location 7L at Orland Road scored 153 (good) for habitat and 5 (excellent) for invertebrates. This location contained clean in-stream habitat consisting mainly of cobble and gravel.

3.1.2.2 OLD BITTY CREEK

Invertebrate and habitat data on Old Bitty Creek (5L) was requested by the MDNR to supplement fisheries data. Assessment was focused at this location in response to downstream sedimentation, which perhaps was due to land use practices near the creek or from a culvert replacement that took place upstream. Bank failures were noted at several locations within the reach as well as fine sediment covering much of the in-stream substrate. Several cement blocks were also noted in the stream reach. Habitat scored 112 (Good) and invertebrates scored -1 (Acceptable).

3.1.3 INVASIVE SPECIES

In August 2017, the WRD assisted the Nature Conservancy with an AIS early detection survey in the lower St. Joseph River. This was part of a larger AIS surveillance effort among the Great Lakes states through a Great Lakes Restoration Initiative- (GLRI) funded project. The surveillance is primarily focused on aquatic plants. The lower St. Joseph River was identified as one of Michigan's highest risk sites for new AIS introduction through a rigorous evaluation of Great Lake risk assessments (The Nature Conservancy, 2015).

Sampling was conducted over 3 days between the Lake Michigan confluence and the I-94 crossing. Most areas were depauperate or had low abundance of aquatic plants, likely a result of turbidity, flow, and boating traffic. The confluence of the Paw Paw and St. Joseph River was found to have a diverse aquatic plant community of both native and invasive species. The most notable invasive aquatic species found was Carolina Fanwort (Cobomba) in a backwater marina. No watch list AIS species were observed. A complete report of findings is still under development by the Nature Conservancy.

3.1.4 MDNR RIVER AND STREAM MONITORING

The MDNR, Fisheries Division, staff has conducted several fish collections on the rivers and tributaries (Table 3) in the SJW since 2013. These collections are spread throughout the SJW and are conducted for various purposes including stocking evaluations and population estimates. Completed water body reports (MDNR, 2019a) and survey-specific information can be requested through MDNR staff (MDNR, 2019b).

River/Tributary	Year	County	Purpose
25th Street Ditch	2017	Van Buren	General Survey
Dowagiac Creek	2017	Cass	Fish Survey
Curtis Creek	2017	St. Joseph	Fish Survey
Pokagon Creek	2016	Cass	Fish Survey
EB Paw Paw	2016	Van Buren	Fish Survey
Mill Creek	2016	Berrien	Fish Survey
Big Meadow Drain	2015	Berrien	Fish Survey
Pokagon Creek	2015	Cass	Fish Survey
Prairie River	2015	St. Joseph	Fish Survey
Fawn River	2014	St. Joseph	Fish Survey
Brush Creek	2014	Van Buren	Fish Survey
Prairie River	2014	St. Joseph	Fish Survey
Pokagon Creek	2014	Cass	Fish Survey
Old Bitty Creek	2014	Berrien	Fish Survey
McCoy Creek	2013	Berrien	Fish Survey
Pipestone Creek	2013	Berrien	Fish Survey
Fisher Creek	2013	Branch	Fish Survey
Prairie River	2013	St. Joseph	Fish Survey
Sand Creek	2013	Berrien	Fish Survey

Table 3. Rivers and Tributaries Surveyed by the MDNR, Fisheries Division, in the SJW from 2013-2017.

3.2 Lakes

3.2.1 LAKE MONITORING

From 2001-2010, with assistance from the USGS, EGLE monitored 729 public access lakes greater than 25 acres in size as part of the Lake Water Quality Assessment (LWQA) Program. The SJW contained 90 of these lakes (Figure 7). The primary objectives of the LWQA Program were to determine trophic conditions, identify waters of high and low quality, determine changes over time, identify emerging issues, and protect inland lake quality. Data are stored in the USGS National Water Information System (USGS, 2014).

In 2007, 2012, and 2017 the USEPA and its state, tribal, federal, and other partners implemented a survey of the nation's lakes, ponds, and reservoirs. The National Lakes Assessment (NLA) was designed to estimate the percentage of lakes that are in good, fair, or poor condition. The survey examined ecological, water quality, and recreational indicators with the goal of assessing how widespread key stressors (nitrogen, phosphorus, and acidification) are impacting the nation's lakes. Eight lakes in the SJW were surveyed in 2012 and 2017 during the NLA effort (Figure 7). Specific information can be found on the USEPA Web site (USEPA, 2019).

The Cooperative Lakes Monitoring Program (CLMP) is a volunteer monitoring program, which helps citizens monitor indicators of water quality in their lake and to document changes over time. The CLMP has monitored 28 lakes in the SJW since 2015 (Figure 7). Specific data can be found on the Michigan Clean Water Corps (MiCorps) Web site (MiCorps, 2019).

Six lakes (Figure 7) were sampled from 1999-2009 as part of the Michigan State University (MSU) sediment coring project funded through a grant by EGLE. Mercury concentrations were found to peak in the 1950s followed by a decrease until the late 1990s and then increase until the surface portion of the sample (Parsons et al., 2006). Individual lake information can be found on EGLE's Web site (EGLE, 2019b).

The MDNR, Fisheries Division, staff has conducted several fish collections on 46 lakes in the SJW since 2010. These collections are spread throughout the SJW (Figure 7) and are conducted for various purposes including stocking evaluations and population estimates. Completed water body reports and survey-specific information can be requested through MDNR staff (MDNR, 2019b).

A list of lakes sampled by each program is contained in Appendix B. Locations of the lakes sampled in the SJW are presented in Figure 7.

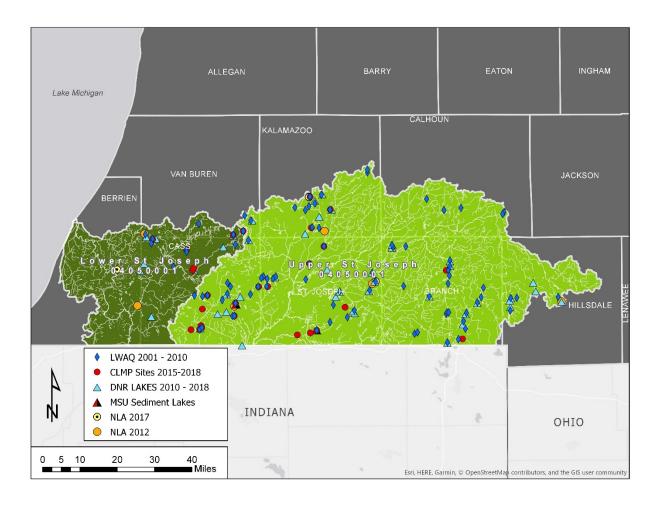


Figure 7. Lake monitoring efforts in the SJW.

3.3 Contaminants

3.3.1 WATER CHEMISTRY MONITORING PROGRAM (WCMP)

EGLE WCMP collects water samples across the state for the purpose of assessing current conditions, determining if WQS are being met, measuring spatial and temporal trends, evaluating program effectiveness, and identifying emerging issues.

The SJW has 4 locations (Table 4) that were sampled as part of the fixed station tributary monitoring from 2000-2013. The fixed station sampling concluded in 2013. The SJW also has several locations that are sampled as part of the probabilistic (random) design project of the WCMP, which is ongoing (Figure 8). Location descriptions and STOrage and RETrieval (STORET) numbers for WCMP locations within the SJW are located in Table 4. Summarized data below is focused on data collected from 2005-2016 (Table 4, Figure 9, Figure 10, and Figure 11). A map showing the locations of the sampled locations is presented in Figure 8.

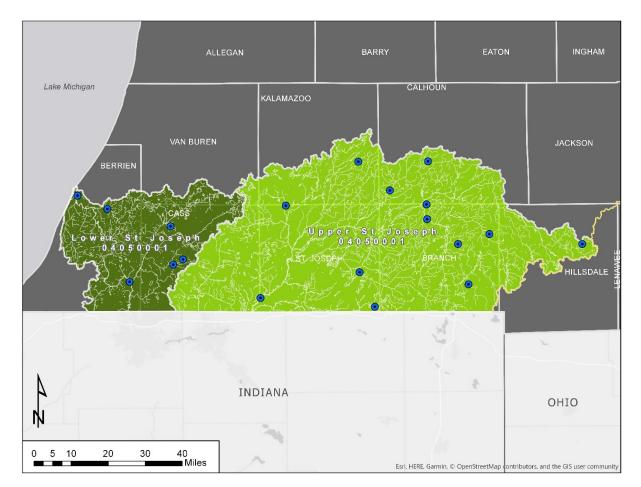


Figure 8. Probabilistic and fixed station sampling locations for the WCMP program in the SJW.

STORET	Prob/Fixed	River Name	Latitude	Longitude	Location/Township
110628	Fixed	St. Joseph River (Lower)	42.09642	-86.4712	Benton Twp
110745	Probabilistic	Saint Joseph River	41.84674	-86.2676	Niles Twp
110746	Probabilistic	Pipestone Creek	42.05786	-86.3547	Sodus Twp
120215	Fixed	Coldwater River	42.02848	-85.1066	Union Twp
120228	Probabilistic	Tallahassee Creek	41.83978	-84.9451	Algansee Twp
120229	Probabilistic	South Branch Hog Creek	41.98524	-84.8637	Quincy Twp
120247	Probabilistic	Trib to Cold Creek	41.9563	-84.9858	Coldwater Twp
120248	Probabilistic	Burnett Creek	42.07124	-85.1088	Union Twp
130357	Probabilistic	Pine Creek	42.1115	-85.2518	Athens Twp
130410	Probabilistic	Nottawa Creek	42.1956	-85.1031	Newton Twp
140110	Fixed	Pokagon Creek	41.91194	-86.0592	Lagrange Twp
140189	Probabilistic	Pokagon Creek	41.89671	-86.0977	Jefferson Twp
140198	Probabilistic	Unnamed Tributary to Dowagiac River	42.00768	-86.1081	Silver Creek Twp
300274	Probabilistic	Beebe Creek	41.9565	-84.5011	Adams
390610	Probabilistic	Johnson Drain	42.1945	-85.3752	Climax Twp
750273	Fixed	St. Joseph River (Upper)	41.80003	-85.7569	Mottville Twp
750285	Probabilistic	Prairie River	41.8747	-85.37	Burr Oak Twp
750331	Probabilistic	Fawn River	41.7746	-85.3107	Fawn River
750332	Probabilistic	Flowerfield Creek	42.06745	-85.6582	Flowerfield

Table 4. WCMP location descriptions, STORET numbers, and types (Probabilistic/Fixed) in the SJW.

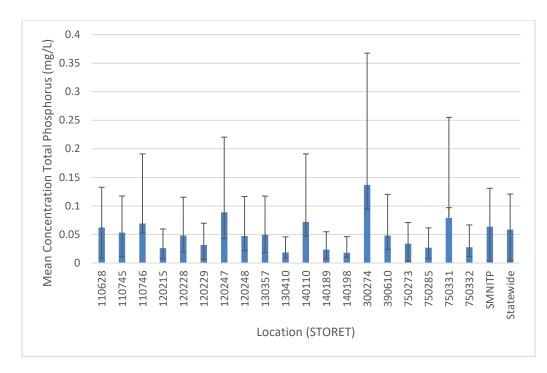


Figure 9. Mean total phosphorus concentrations (2005-2016) statewide, ecoregion, and for individual locations (Table 6) in the SJW. Values include 95 percent confidence interval.

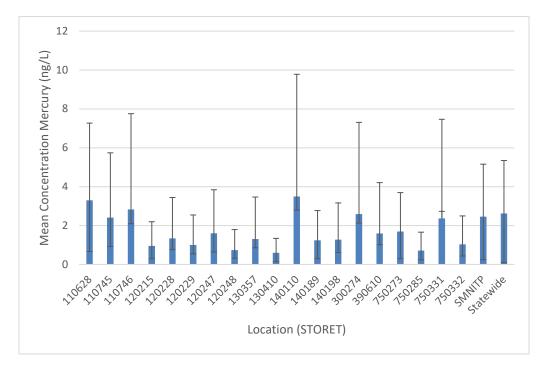


Figure 10. Mean concentration of mercury concentrations (2005-2016) statewide, ecoregion, and for individual locations (Table 6) in the SJW. Values include 95 percent confidence interval.

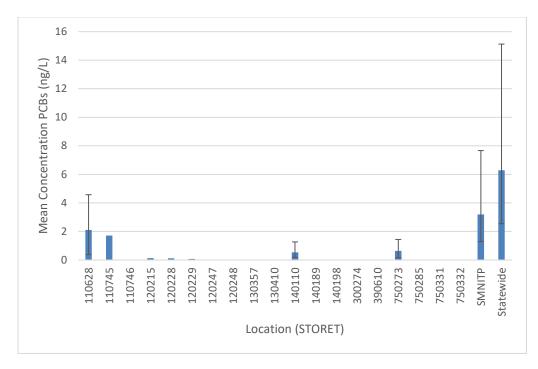


Figure 11. Mean concentration of PCBs (2005-2016) statewide, ecoregion, and for individual locations in the SJW. Values include 95 percent confidence interval.

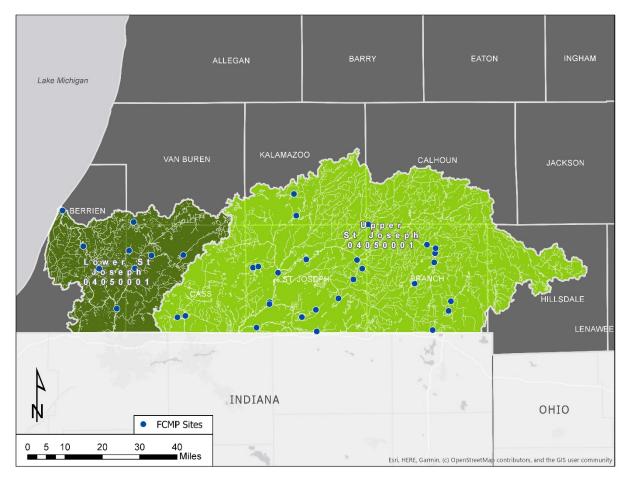
Mean concentrations of total phosphorus at most sites in the SJW sampled from 2005-2016 are below the statewide average, although averages at some (110628, 110746, 120228, 140110, 300274, and 750331) are higher than the statewide average as well as the ecoregion average (Figure 9, Table 4).

Mean mercury values from 2005-2016 at the majority of WCMP sites in the SJW are lower than the statewide average. Six sites (Figure 10) are near or exceed the statewide average.

PCB concentration analysis was limited across the SJW sites (2005-2016) to only 3 locations (10628, 140110, and 750273) that had more than 1 sample collected (Figure 11, Table 4). Concentrations at all sites were below the statewide average.

Links to additional data and reports can be found on EGLE's Web site (EGLE, 2019c).

3.3.2 WILDLIFE CONTAMINANTS


EGLE monitors the productivity and contaminant levels in fish-eating (piscivorous) wildlife as an indicator of the health of the Great Lakes ecosystem. Herring gull eggs and bald eagle plasma/feathers are analyzed for persistent bioaccumulative contaminants of concern such as mercury, PCBs, and chlorinated pesticides. Reports can be found on EGLE's Web site (MDEQ, 2019c).

No monitored herring gull colonies or eagle nests are in the SJW. In 2017 it was noted that there were only 7 active eagle territories in the SJW, none of which have been monitored for contaminants.

3.3.3 FISH CONTAMINANT MONITORING PROGRAM (FCMP)

Fish have been collected in the SJW as part of EGLE's FCMP. The FCMP program has been in existence since 1980 and allows for assessment of chemical contamination in fish from the state's surface waters.

Thirty-six locations have been sampled within the SJW as part of the FCMP program (Figure 12). Since 1986, 14 species of fish have been analyzed for several contaminants, including organo-pesticides, PCBs, mercury, and dioxins. More information and links to reports regarding the FCMP Program can be found on EGLE's Web site (EGLE, 2019a). Additionally, specific water body information can be found on the MDHHS's Web site (MDHHS, 2018).

Figure 12. FCMP locations within the SJW.

When northern pike fillet data from the SJW are compared to average statewide concentrations, mercury levels (Figure 13) are slightly higher in the SJW than those in the lower peninsula of Michigan, but lower than concentrations found in the upper peninsula. Average PCB concentrations (Figure 14) found in carp from the SJW are lower than concentrations found in the lower peninsula of Michigan. Carp PCB data is not available from the upper peninsula.

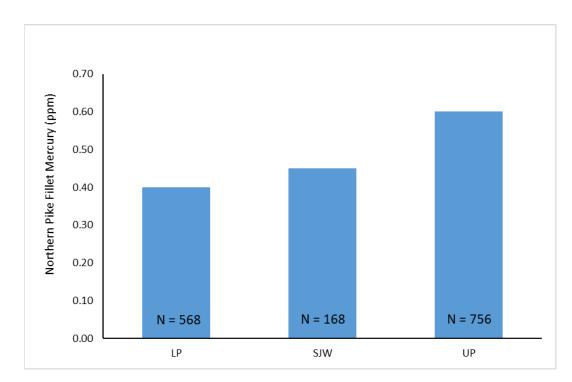


Figure 13. Mercury levels in Northern Pike in the SJW compared to levels found in the Lower Peninsula (LP) of Michigan and the Upper Peninsula (UP) of Michigan.

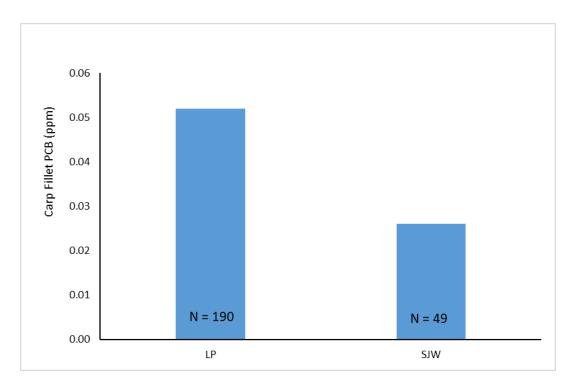


Figure 14. PCB levels in Common Carp in the SJW compared to levels found in the Lower Peninsula (LP) of Michigan and the Upper Peninsula (UP) of Michigan.

3.4 Freshwater Mussels

Native freshwater mussels (Unionidae) are an important component of aquatic ecosystems. They are long-lived (up to 50 years), generally sessile, filter feeders, and sensitive to contaminants. All of these traits make them a valuable indicator of water quality. Loss of species and historical community composition can be documented based on empty shells which can remain in a system for many years after death (Grabarkiewicz & Davis, 2008).

The Michigan Natural Features Inventory (MNFI) conducts various mussel surveys across Michigan and maintains a database of mussel species distribution based on surveys conducted and historical records. Species of concern found in the SJW and their current Michigan conservation status are presented in Table 5.

Common Name	Scientific Name	MI Conservation Status	Most Recent Observation
Elktoe	Alasmidonta marginata	Special Concern	2016
Slippershell	Alasmidonta viridis	Threatened	2015
Purple wartyback	Cyclonaias tuberculata	Threatened	2006
Snuffbox	Epioblasma triquetra	Endangered	2001
Eastern pondmussel	Ligumia nasuta	Endangered	
Black sandshell	Ligumia recta	Endangered	1930
Threehorn wartyback	Obliquaria reflexa	Endangered	
Round pigtoe	Pleurobema sintoxia	Special Concern	2016
Kidney shell	Ptychobranchus fasciolaris	Special Concern	1927
Lilliput	Toxolasma parvum	Endangered	2009
Deertoe	Truncilla truncata	Special Concern	2004
Rainbow	Villosa iris	Special Concern	2016
Paper pondshell	Utterbackia imbecillis	Special Concern	2016
Ellipse	Venustaconcha ellipsiformis	Special Concern	2016

Table 5. Species and conservation status of native freshwater mussels (Unionidae) found in the SJW.

Additional information and specifics regarding the surveys conducted by MNFI in the SJW can be found in several recent reports (Badra, 2010), (Badra, 2005), (Badra & Goforth, 2002).

4 SUMMARY

Based on recent data, overall water quality in the St. Joseph River watershed appears to be rather good. The 2015-2016 benthic invertebrate component of the watershed survey found all but 1 site (Table 2) supported the other indigenous aquatic life and wildlife designated use component of R 323.1100(1)(e) of the Michigan WQS using Procedure 51. For benthic invertebrates, nearly half (12 of the 30) sites scored Excellent; 12 scored in the upper half of the Acceptable range; and only 3 were in the lower Acceptable range. One site was scored as Poor. In addition, stream habitat was Excellent at 10 locations, 16 scored as Good, and only 4 fell in the Marginal scoring range. Eleven trend sites (Table 2) were resampled using Procedure 51 during 2015-2016, all but 2 locations scoring within 3 points of the previous sampling effort (2010-2011), which is within typical margins of variation.

Sites that scored poorly were typically noted as being directly adjacent to agricultural land or serving as a maintained drain. These sites typically have issues with excess nutrient expression, lack of tree canopy (higher temps/excessive sunlight), channelization, and sedimentation from runoff. These issues would be expected in a watershed where well over half of the land use is agricultural (Figure 3). Phosphorus levels were also found to be over the statewide average at several locations around the SJW (Figure 9).

FCMP sampling shows mercury levels to be slightly higher than the lower peninsula average, but lower than the upper peninsula average. Fish levels of PCBs are shown to be lower than the comparable average found in the lower peninsula.

Freshwater mussels of special concern are commonly found in the SJW. Future monitoring efforts as well as proposed projects within the watershed should pay particular attention to the location of these species.

5 FUTURE MONITORING NEEDS/RECOMMENDATIONS

- Status and trend monitoring will continue in the next round of sampling in 2020 and 2021.
- Requests for targeted monitoring will be solicited prior to the 2020 and 2021 watershed surveys. The lead biologist should consult with NPDES; NPS; FCMP; Area of Concern; and MDNR, Fisheries Division, staff to identify possible monitoring needs. Specifically, the 3 locations submitted for sampling during 2016 by the MDNR (5L, 6L, 7L) should be discussed for revisiting during 2021.
- Follow-up monitoring of any completed NPS projects should be considered and subsequent success stories should be completed.
- Because the SJW is considered a particularly vulnerable watershed, AIS monitoring should continue with the purpose of tracking currently established AIS and identifying undocumented species.
- Due to the significant number of threatened and endangered species present in the SJW, additional mussel surveys should be considered during future sampling events.

6 WORKS CITED

- Albert, D. A. (1995). Regional landscape ecosystems of Michigan, Minnesota, and Wisconsin: a working map and classification. Gen. Tech. Rep. NC-178. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station. Retrieved from Jamestown, ND: Northern Prairie Wildlife Research Center Online: (The link provided was broken and has been removed) (Version 03JUN1998)
- Badra, P. J. (2005). *Freshwater mussel surveys of Great Lakes Tributary Rivers in Michigan. Report number MNFI2005-13.* Lansing, MI: Michigan Dept. of Environmental Quality, Coastal Management Program.
- Badra, P. J. (2010). Assessment of the Status and Distribution of Native Mussels (Unionidae) in Michigan, and Results of Unionid Surveys in the Eastern Upper Penninsula and Huron-Clinton Metroparks. Report number MNFI 2010-11. Lansing, MI: Michigan Department of Natural Resources and Environment, Water Bureau.
- Badra, P. J., & Goforth, R. R. (2002). Surveys of Native Freshwater Mussels in the Lower Reaches of Great Lakes Tributary Rivers in Michigan. Report Number 2002-03. Lansing, MI: Michigan Department of Environmental Quality, Coastal Zone Management Unit.
- Degraves, A. (2005). *St. Joseph River Watershed Management Plan.* Athens, Michigan: Friends of the St. Joe River Association.
- EGLE. (2019a). *Fish Contaminants*. Retrieved October 20, 2012, from Michigan Department of Environment, Great Lakes, and Energy: *(The link provided was broken and has been removed)*
- EGLE. (2019b). *Sediment Chemistry*. Retrieved from Michigan Department of Environment, Great Lakes, and Energy: https://www.michigan.gov/egle/about/Organization/Water-Resources/glwarm/sediment-chemistry
- EGLE. (2019c). *Water Chemistry*. Retrieved from Michigan Department of Environment, Great Lakes, and Energy: https://www.michigan.gov/egle/about/Organization/ Water-Resources/glwarm/water-chemistry
- Grabarkiewicz, J., & Davis, W. (2008). *An introduction to freshwater mussels as biological indicators. EPA-260-R-08-015.* Washington, D.C.: U.S. Environmental Protection Agency, Office of Environmental Information.
- Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., & Xian, G. (2013). A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sensing Environment.

- MDEQ. (2005). A Biological Survey of Sites in the Upper St. Joseph River Watershed Branch, Calhoun, Cass, Hillsdale, Kalamazoo, and St. Joseph Counties, Michigan. Lansing, MI: Michigan Department of Environmental Quality.
- MDEQ. (2006a). A Biological Survey of Sites in the Lower St. Joseph River Watershed Berrien and Cass Counties, Michigan. Lansing, MI: Michigan Department of Environmental Quality.
- MDEQ. (2006b). Department of Environmental Quality Water Bureau Water Resources Protection Part 4. Water Quality Standards. Lansing: Michigan Department of Environmental Quality. (The link provided was broken and has been removed.)
- MDEQ. (2008). SWAS Procedure WRD-SWAS-051. Qualitative Biological and Habitat Survey Protocols for Wadeable Streams and Rivers, April 24, 1990. Revised June 1991, August 1996, January 1997, May 2002, and December 2008. Reformatted May 2014. Lansing: Michigan Department of Environmental Quality.
- MDEQ. (2010). A Biological Survey of Sites in the Upper St. Joseph River Watershed Branch, Calhoun, Cass, Hillsdale, Kalamazoo, and St. Joseph Counties, Michigan. Lansing, MI: Michigan Department of Environmental Quality.
- MDEQ. (2011). A Biological Survey of Sites in the Lower St. Joseph River Watershed Berrien, Cass, and Van Buren Counties, Michigan. Lansing, MI: Michigan Department of Environmental Quality.
- MDEQ. (2014). Water Quality and Pollution Control in Michigan 2014 Sections 303(d), 305(b), and 314 Integrated Report (*MI/DEQ/WRD-14/001*). Lansing: Michigan Department of Environmental Quality.
- MDEQ. (2016). Water Quality and Pollution Control in Michigan 2016 Sections 303(d), 305(b), and 314 Intebrated Report (MI/DEQ/WRD-16/001). Lansing, MI: Michigan Department of Environmental Quality.
- MDEQ. (2017). Nonpoint Source Program Approved and Pending Watershed Plans. Lansing: Michigan Department of Environmental Quality. Retrieved from (The link provided was broken and has been removed)
- MDEQ. (2018a). *EPA Approved Total Maximum Daily Loads (TMDLs)*. Retrieved from Michigan Department of Environmental Quality: https://www.michigan.gov/egle/about/ Organization/Water-Resources/tmdls/epa-approved-tmdls
- MDEQ. (2018b). *Michigan's Statewide E. coli Total Maximum Daily Load*. Retrieved from Michigan Department of Environmental Quality: https://www.michigan.gov/egle/about/ Organization/Water-Resources/tmdls/statewide-e-coli-tmdl

- MDEQ. (2018c). *Michigan's Statewide PCB Total Maximum Daily Load*. Retrieved from Michigan Department of Environmental Quality: (*The link provided was broken and has been removed*)
- MDEQ. (2018d). *MiWaters*. Retrieved from Michigan Department of Environmental Quality: (*The link provided was broken and has been removed*)
- MDEQ. (2018e). *National Pollutant Discharge Elimination System NPDES*. Retrieved from Michigan Department of Environmental Quality: (*The link provided was broken and has been removed*)
- MDEQ. (2018f). *Statewide Mercury Information*. Retrieved from Michigan Department of Environmental Quality: https://www.michigan.gov/egle/about/ Organization/Water-Resources/tmdls/statewide-mercury-tmdl
- MDEQ. (2019a). *NonPoint Source Pollution*. Retrieved from Michigan Department of Environmental Quality: (*The link provided was broken and has been removed*)
- MDEQ. (2019b). *Nonpoint Source Project Fact Sheets*. Retrieved from Michigan Department of Environmental Quality: https://www.michigan.gov/egle/about/Organization/Water-Resources/nonpoint-source/Project-Summaries
- MDEQ. (2019c). Wildlife Contaminants. Retrieved from Michigan Department of Environmental

Quality: https://www.michigan.gov/egle/about/Organization/Water-Resources/glwarm/ wildlife-contaminants

- MDHHS. (2018). Eat Safe Fish. Retrieved from Michigan Department of Health and Human Services: https://www.michigan.gov/mdhhs/safety-injury-prev/environmental-health/ topics/eatsafefish
- MDNR. (2019a). *Fisheries Division Library*. Retrieved from Michigan Department of Natural Resources: (The link provided was broken and has been removed)
- MDNR. (2019b). *Michigan DNR Customer Service Centers*. Retrieved from Michigan Department of Natural Resources: (The link provided was broken and has been removed)
- MiCorps. (2019). *Lake Monitoring*. Retrieved from Michigan Clean Water Corps: https://micorps.net/lake-monitoring/
- MISIN. (2019). *Midwest Invasive Species Network*. Retrieved from Midwest Invasive Species Network: misin.msu.edu/
- The Nature Conservancy. (2015). Aquatic Invasive Species Surveillance Plan for the U. S. Waters of the Great Lakes (DRAFT).
 - USEPA. (2019). *National Lakes Assessment*. Retrieved from United States Environmental Assessment Agency: https://www.epa.gov/national-aquatic-resource-surveys/nla

- USGS. (2014). *USGS Water Data for the Nation*. Retrieved from United State Geological Survey: http://waterdata.usgs.gov/nwis
- Wesley, J., & Duffy, J. (1999). *St. Joseph River Assessment. Michigan Department of Natural Resources, Fisheries Division, Special Report 24.* Ann Arbor, Michigan.

Appendix A

1 MACROINVERTEBRATE DATA

	Fawn River Drain S Featherstone Rd. 9/1/2015	outh Branch Hog Creek D/S Girard Road 7/16/2015	Sand Creek Sterling Rd. 7/15/2015	Fawn River Dickinson Rd. 9/1/2015
TAXA	1U	2U	3U	4U
PLATYHELMINTHES (flatworms)				
Turbellaria	68			
ANNELIDA (segmented worms)				
Hirudinea (leeches) Oligochaeta (worms)	4 30	1	1	5
ARTHROPODA	50	1	1	5
Crustacea				
Amphipoda (scuds)	10	68	42	4
Decapoda (crayfish)	1	2	1	
Isopoda (sowbugs)	23			
Arachnoidea	10	2		
Hydracarina usecta	18	2	11	15
Ephemeroptera (mayflies)				
Baetiscidae			3	
Baetidae	1	6	4	130
Caenidae			2	1
Ephemeridae		2		1
Heptageniidae		17	2	11
Isonychiidae				1
Siphlonuridae		8	11	15
Tricorythidae			7	32
Odonata				
Anisoptera (dragonflies)	1	1	5	
Aeshnidae Gomphidae	1	1	2	1
Zygoptera (damselflies)			2	1
Calopterygidae	1		2	
Coenagrionidae	1		-	7
Plecoptera (stoneflies)				
Perlidae		15	1	
Pteronarcyidae		1		
Hemiptera (true bugs)				
Belostomatidae	1			
Corixidae	1		3	1
Gerridae	1	1		1
Mesoveliidae Notonectidae	1		1	
Saldidae	1			2
Veliidae	1	1	1	1
Megaloptera		1	1	1
Sialidae (alder flies)		1		
Trichoptera (caddisflies)				
Brachycentridae		1	10	5
Helicopsychidae		2		
Hydropsychidae	8	89	55	5
Hydroptilidae	3			
Lepidostomatidae		1		
Leptoceridae			29	4
Linnephilidae Philopotamidae			1	1
Phryganeidae		1		1
Polycentropodidae		1	1	
Uenoidae				1
Lepidoptera (moths)				•
Pyralidae				1
Coleoptera (beetles)				
Dytiscidae (total)	1			
Gyrinidae (adults)				1
Haliplidae (adults)	1			
Elmidae		34	5	2
Psephenidae (larvae)		5		
Diptera (flies)	4	1		1
Ceratopogonidae Chironomidae	4 78	1 21	33	1 18
Culicidae	70	1	55	10
Dixidae	1	1	1	1
Simuliidae	64	5	43	88
Tabanidae	1	3		
Tipulidae	-	1		
IOLLUSCA				
Gastropoda (snails)				
Ancylidae (limpets)		1	1	9
Lymnaeidae	1		1	
Physidae		5	1	3
Planorbidae	2			1
Pleuroceridae				4
Pelecypoda (bivalves)				
Corbiculidae	0		2	1
Pisidiidae	8	1	2	1

A-1

	Fawn River Drain Featherstone Rd. 9/1/2015 1U		South Branch Hog Creek D/S Girard Road 7/16/2015 2U		Sand Creek Sterling Rd. 7/15/2015 3U		Fawn River Dickinson Rd. 9/1/2015 4U	
METRIC	Value	Score	Value	Score	Value	Score	Value	Score
TOTAL NUMBER OF TAXA	29	1	30	1	30	1	34	1
NUMBER OF MAYFLY TAXA	1	0	4	1	6	1	7	1
NUMBER OF CADDISFLY TAXA	2	0	5	1	5	1	5	1
NUMBER OF STONEFLY TAXA	0	-1	2	1	1	1	0	-1
PERCENT MAYFLY COMPOSITION	0.30	-1	11.07	0	10.28	0	50.93	1
PERCENT CADDISFLY COMPOSITION	3.27	-1	31.54	1	34.04	1	4.27	0
PERCENT DOMINANT TAXON	23.21	0	29.87	0	19.50	1	34.67	0
PERCENT ISOPOD, SNAIL, LEECH	8.93	0	2.01	1	1.06	1	4.53	0
PERCENT SURFACE AIR BREATHERS	2.38	1	1.01	1	1.77	1	1.60	1
TOTAL SCORE		-1		7		8		4

	Swan Creek Burr Oak Rd 7/16/2015	Prairie River Main St. 9/2/2015	Sauk River Race St. 7/16/2015	Bear Creek Longnecker Road 8/6/2015
TAXA	5U	6U	7U	8U
PLATYHELMINTHES (flatworms)				
Turbellaria		4		
ANNELIDA (segmented worms) Hirudinea (leeches)				1
Oligochaeta (worms)	7	3	52	7
ARTHROPODA		-		
Crustacea				
Amphipoda (scuds)	14	5	35	71
Decapoda (crayfish) Isopoda (sowbugs)	3	1	2	4
Arachnoidea			2	
Hydracarina	7	26		12
Insecta				
Ephemeroptera (mayflies)				
Baetiscidae Baetidae	1 24	126	35	11
Caenidae	8	120	1	14
Ephemeridae	1		1	1
Heptageniidae	7	1	22	24
Isonychiidae		1		
Siphlonuridae	4	1	4	
Tricorythidae Odonata	12	1		
Anisoptera (dragonflies)				
Aeshnidae	2		1	
Gomphidae	1	1		1
Zygoptera (dams elflies)				
Coenagrionidae		3		
Plecoptera (stoneflies) Perlidae	1		7	3
Hemiptera (true bugs)				2
Corixidae	1	2		1
Gerridae		1		1
Mesoveliidae Notonectidae		1		1
Pleidae		1		11
Veliidae				12
Megaloptera				
Corydalidae (dobson flies)	1			
Sialidae (alder flies) Trichoptera (caddis flies)				1
Brachycentridae	13	1		12
Helicopsychidae	15		1	5
Hydropsychidae	30	11	87	17
Hydroptilidae	2			
Lepidostomatidae	10	10	1	
Leptoceridae Linnephilidae	19	40	1	2
Philopotamidae			15	2
Phryganeidae	1			
Polycentropodidae	3	9		
Uenoidae	1		2	
Coleoptera (beetles)		1		
Gyrinidae (adults) Haliplidae (adults)		1		
Elmidae	15	1	26	11
Diptera (flies)				
Ceratopogonidae			1	
Chironomidae	39	33	34	45
Culicidae Simuliidae	43	109	8	1
Stratiomyidae	43	107	9	1
Tipulidae	1			2
MOLLUSCA				
Gastropoda (snails)		-		
Ancylidae (limpets) Bithyniidae	1	2		1
Lymnaeidae	1		3	3
Physidae	7	1	1	4
Planorbidae	1	2		
Viviparidae		1		
Corbiculidae Pisidiidae	1	1	1	2
risidildae	5	1	1	2

	Swan Creek 7/16/2015		Prairie River 9/2/2015		Sauk River 7/16/2015		8/6/	Creek /2015
METRIC	5 Value	Score	Value	6U Score	Value	7U Score	Value	3U Score
TOTAL NUMBER OF TAXA	35	1	30	1	25	1	32	1
NUMBER OF MAYFLY TAXA	7	1	4	1	5	1	4	1
NUMBER OF CADDISFLY TAXA	7	1	4	0	7	1	5	1
NUMBER OF STONEFLY TAXA	1	1	0	-1	1	1	1	1
PERCENT MAYFLY COMPOSITION	20.43	1	32.66	1	18.31	1	16.56	0
PERCENT CADDISFLY COMPOSITION	24.73	0	15.44	0	31.69	1	12.58	0
PERCENT DOMINANT TAXON	15.41	1	31.90	0	25.29	0	23.51	0
PERCENT ISOPOD, SNAIL, LEECH	3.58	1	1.52	1	1.74	1	2.98	1
PERCENT SURFACE AIR BREATHERS	0.72	1	1.52	1	0.00	1	8.94	0
TOTAL SCORE		8		4		8		5
MACROINVERTEBRATE COMMUNITY RATING		Excellent		Acceptable		Excellent		Excellent

	Beebe Creek			River Prairie River
	Dewey Rd. 7/15/2015	Haybridge Rd. 9/1/2015	M66 9/2/2015	Middle Colon Rd. 9/2/2015
ΓAXA	9U	9/1/2015 10U	9/2/2015 11U	9/2/2015 12U
PLATYHELMINTHES (flatworms)				
Turbellaria			1	2
ANNELIDA (segmented worms)				
Hirudinea (leeches)	1		11	
Oligochaeta (worms)	1	2	21	3
ARTHROPODA				
Crustacea				
Amphipoda (scuds)	105	5		25
Decapoda (crayfish)	1			
Isopoda (sowbugs)			1	
Arachnoidea				
Hydracarina		21	38	15
nsecta				
Ephemeroptera (mayflies)				
Baetiscidae		147	76	1
Baetidae	2	147	76	73
Caenidae		6		
Heptageniidae		1		
Siphlonuridae	4	1		
Tricorythidae		23		
Odonata				
Anisoptera (dragonflies)				
Aeshnidae	1	1	1	1
Gomphidae		1		1
Zygoptera (damselflies)				1
Coenagrionidae	1	25	35	1
Plecoptera (stoneflies)				
Perlidae	2			
Hemiptera (true bugs)		_		
Corixidae		5	4	
Gerridae	1	1		
Mesoveliidae			1	
Nepidae		1		
Pleidae		1		
Trichoptera (caddisflies)				
Brachycentridae	17	3	1	1
Hydropsychidae	47	1	1	27
Hydroptilidae		17	2	4
Leptoceridae		17		16
Limnephilidae	1		1	
Phryganeidae		2	1	,
Polycentropodidae		2		3
Coleoptera (beetles)				
Dytiscidae (total)	1		1	
Haliplidae (adults)	4		4	
Elmidae	4	3		1
Gyrinidae (larvae)		1		1
Diptera (flies)			6	
Ceratopogonidae	1	20	6	21
Chironomidae	34	29	68	21
Dixidae	142	4	1	05
Simuliidae	142	45	7	95
Tipulidae				1
Gastropoda (snails)				
Ancylidae (limpets)	1	12		1
Hydrobiidae			2	
Physidae	10	11	7	4
Pleuroceridae		1		
Pelecypoda (bivalves)				
G 11 F1				1
Corbiculidae				-
Corbiculidae Pisidiidae	1		1	2

	Dewey Rd. 7/15/2015 9U		Haybridge Rd. 9/1/2015 10U		M66 9/2/2015 11U		9/2	Colon Rd. 2/2015 12U
METRIC	Value	Score	Value	Score	Value	Score	Value	Score
TOTAL NUMBER OF TAXA	22	0	31	1	25	1	26	1
NUMBER OF MAYFLY TAXA	2	0	5	1	1	-1	2	0
NUMBER OF CADDISFLY TAXA	2	0	4	0	3	0	5	1
NUMBER OF STONEFLY TAXA	1	1	0	-1	0	-1	0	-1
PERCENT MAYFLY COMPOSITION	1.65	-1	47.34	1	25.17	1	23.49	1
PERCENT CADDISFLY COMPOSITION	13.22	0	6.12	0	1.32	-1	16.19	0
PERCENT DOMINANT TAXON	39.12	-1	39.10	-1	25.17	0	30.16	0
PERCENT ISOPOD, SNAIL, LEECH	3.86	1	6.91	0	9.27	0	1.90	1
PERCENT SURFACE AIR BREATHERS	0.55	1	2.93	1	4.97	1	0.95	1
TOTAL SCORE		1		2		0		4
MACROINVERTEBRATE COMMUNITY RATING		Acceptable		Acceptable		Acceptable		Acceptable

	Sand Creek	Spring Creek Unnamed Trib to Prairie River Spring Creek					
	Bean Rd. 7/15/2015	Muskrat Lake Road Prairie River Rd. Johnson Roa 8/7/2015 8/6/2015 9/3/2015					
TAXA	13U	8/7/2015 14U	8/6/2015 15U	9/3/2015 16U			
	150	140		100			
PLATYHELMINTHES (flatworms)							
Turbellaria		26		2			
ANNELIDA (segmented worms)			7				
Hirudinea (leeches)	3	1 2	13	3			
Oligochaeta (worms)	5	2	13	3			
ARTHROPODA							
Crustacea	50	21	2	190			
Amphipoda (scuds)	50 2	21	2	190			
Decapoda (crayfish)	2 4	59		1			
Isopoda (sowbugs) Arachnoidea	4	59					
		52	8	10			
Hydracarina Insecta		52	8	10			
Ephemeroptera (mayflies)							
Baetiscidae				1			
	14	50	19				
Baetidae Caenidae	21	50	19	28 4			
	21	1		4			
Heptageniidae Isonychiidae	7	1		4			
Siphlonuridae	1 8	10					
Tricorythidae	8	10		1			
Odonata	2			1			
Anisoptera (dragonflies) Aeshnidae	5	1	1	1			
Gomphidae	1	1	1	1			
Zygoptera (damselflies)	1			1			
Calopterygidae	11	16		35			
Coenagrionidae	2	10		1			
Plecoptera (stoneflies)	-	1					
Perlidae	1						
Hemiptera (true bugs)	1						
Corixidae	11	1	3	2			
Gerridae	11	1	5	1			
Mesoveliidae		2		1			
Pleidae		-		2			
Veliidae	1			2			
Megaloptera							
Sialidae (alder flies)		1					
Neuroptera (spongilla flies)							
Sisyridae	1						
Trichoptera (caddisflies)	-						
Brachycentridae	3	3		16			
Hydropsychidae	26	22	2	9			
Hydroptilidae		4	-	3			
Leptoceridae	12	1		5			
Limnephilidae		1	1	5			
Molannidae	1	-	-				
Philopotamidae	2						
Polycentropodidae	5			2			
Lepidoptera (moths)	-			-			
Pyralidae	1						
Coleoptera (beetles)							
Gyrinidae (adults)				3			
Hydrophilidae (total)			1				
Elmidae	3		1	1			
Gyrinidae (larvae)	2		-	1			
Diptera (flies)				-			
Ceratopogonidae	1		1				
Chironomidae	27	44	160	46			
Dixidae	3			1			
Simuliidae	67	33	15				
Tabanidae			1				
Tipulidae	1						
Gastropoda (snails)							
Bithyniidae	1						
Lymnaeidae			1				
Planorbidae			2	1			
Pelecypoda (bivalves)							
Pisidiidae	1	1	1	1			
Unionidae (mussels)	1						
Unionidae (musseis)							

	Sand Creek Spring Creek 7/15/2015 8/7/2015		named Trib to Prairie R 8/6/2015		Spring Creek 9/3/2015			
METRIC	Value	Score	Value	Score	Value	Score	Value	Score
TOTAL NUMBER OF TAXA	35	1	26	1	20	1	30	1
NUMBER OF MAYFLY TAXA	6	1	3	0	1	0	5	1
NUMBER OF CADDISFLY TAXA	6	1	6	1	2	0	5	1
NUMBER OF STONEFLY TAXA	1	1	0	-1	0	-1	0	-1
PERCENT MAYFLY COMPOSITION	17.38	0	17.13	0	7.25	0	10.05	0
PERCENT CADDISFLY COMPOSITION	16.07	0	8.99	0	1.15	-1	9.26	0
PERCENT DOMINANT TAXON	21.97	0	16.57	1	61.07	-1	50.26	-1
PERCENT ISOPOD, SNAIL, LEECH	2.62	1	16.85	-1	11.07	-1	0.53	1
PERCENT SURFACE AIR BREATHERS	3.93	1	1.12	1	3.05	1	2.38	1
TOTAL SCORE		6		2		-2		3
MACROINVERTEBRATE COMMUNITY RATING		Excellent		Acceptabl	e	Acceptable		Acceptable

Tankelinin212121Handine (schele)11<	ГАХА	Unnamed Tributary to Portage River 36th A venue 9/3/2015 17U	Rocky River Memory Isle Park 9/2/2015 18U	Blackwell Drain Girard Road 9/15/2015 19U	Nottawa Creek Correll Road 9/15/2015 20U
NNNLIDA (cognetical worm)ii <td>PLATYHELMINTHES (flatworms)</td> <td></td> <td></td> <td></td> <td></td>	PLATYHELMINTHES (flatworms)				
Handaen (scheks)111Amphapok (schek)3221Amphapok (schek)74130Castaca371430Amphapok (schek)371430Amphapok (schek)371430Amphapok (schek)371430Amphapok (schek)371430Amphapok (schek)371430Amphapok (schek)371430Amphapok (schek)371430Amphapok (schek)333032Castaca3131030Sphoannake121030Ambhanke121030Ambhanke13542Ambhanke13542Ambhanke13542Ambhanke13542Ambhanke13542Ambhanke13542Ambhanke1244Ambhanke111Ambhanke13542Ambhanke1244Ambhanke1111Ambhanke13341Ambhanke11111Ambhanke11111 <t< td=""><td>Turbellaria</td><td>2</td><td>1</td><td>2</td><td>1</td></t<>	Turbellaria	2	1	2	1
Objection (norm)32221Citatica	Hirudinea (leeches)	1	1	1	
ChartaceJeapably of (ary fab)JJeapably of (ary fab)JJeapably of (ary fab)JJeapably of (ary fab)Jeapably of (ary fab)Jea	Oligochaeta (worms)	3	2	22	1
Amp iso (sorobug)74139Lapopda (sorobug)<					
Decipation (complish)12Aachnoide12Aachnoide13Insecta71433Insecta21Battiafe70156332Caenda313101Heptagenidie313101Sphonnadae161330Tricory thale16133Otomata1211Consida13542Perspectra (consellists)13542Consellista13542Perspectra (consellists)1111Corridate1244Corridate1241Perspectra (consellists)1111Perspectra (consellists)1111Corridate12911Meadopter21111Saldae (laber files)11111Perspectra (consellists)11311Perspectra (consellists)11111Perspectra (consellists)111111Perspectra (consellists)11311111111111111111		7	41		20
Isopedia (cowbigs)4512Hydnexinin371433Hydnexinin371433Betterida70156332Eaterida70156332Eaterida70156332Eptermidae3103131Eptermidae113131Eptermidae11332Febremidae11332Compliade1243345Compliade3345424Compliade133245Picopret (targenfles)124Compliade13344Picopret (targenfles)111Compliade1244Compliade124Picopret (targenfles)111Compliade1244Picopret (targenfles)111Compliade1244Picopret (targenfles)111Compliade1293Picopret (targenfles)111Picolate1111Notercitale1111Picolate1111Picolate11111Picolate11 </td <td>Decapoda (cravfish)</td> <td>1</td> <td></td> <td></td> <td>2</td>	Decapoda (cravfish)	1			2
Hydnexina371433Taketaria2Taketaria2Bactiaka70156332Canada71633Ephacencida3131031Sphorncidae1233Chonata123343Computade13342Computade13342Computade13342Computade13342Computade13342Computade13342Persone (nomefliks)13424Constration1111Constration1111Persone (nomefliks)1111Persone (nomefliks)1111Persone (nomefliks)1111Persone (nomeflike)1111Persone (nomeflike)1111Persone (nomeflike)1111Persone (nomeflike)1111Persone (nomeflike)1111Persone (nomeflike)1111Persone (nomeflike)1111Persone (nomeflike)1111Persone (nomeflike)1111	Isopoda (sowbugs)		4	5	
neck 2 Bacticycle 2 Bacticycle 3 32 Caenida 3 3 Ephemerida 1 1 Heptagenidae 1 3 Sphloundae 1 3 Tricorythike 16 1 3 Consta 2 3 3 Asispites 1 2 3 Compliade 1 2 4 Compliade 3 3 45 4 Compliade 3 3 4 4 Compliade 3 45 4 4 Compliade 3 5 4 4 Picopere (stomeflis) - - 1 5 Corridae 1 2 4 1 1 Resolutiae 1 1 1 1 1 Notometrike 1 1 1 1 1 Resolythida					
Ephemsiphe2Bactiskike2Bactiskike3Canalae3Ephemsike3Ephemsike3Sphomsike1Hengagnike1Sphomsike1Constrat1Sphomsike1Computate1Asinopten (dagonflis)1Technike1Computate1 <td></td> <td>3</td> <td>7</td> <td>14</td> <td>33</td>		3	7	14	33
Bacticka2Bacticka332Caenida33Bephomerida33Heptagenidae33Heptagenidae13Onotat13Anisopera (degonfles)12Anisopera (degonfles)12Caenidae3451Compliade3542Compliade3542Compliade124Compliade124Picopera (trace)(trace)(trace)11Compliade124Compliade124Picopera (trace)(trace)(trace)11Condidae124Condidae111Heniyera (trace)(trace)(trace)111Veidae1111Veidae1111Veidae1111Veidae1111Trace)(trace)(trace)1111Veidae11111Picoperade11111Picoperade11111Picoperade111111Picoperade1111111Picoperade1111111111 <td></td> <td></td> <td></td> <td></td> <td></td>					
Carcialan Note Note Note Heptagenidae 1 1 Heptagenidae 1 1 Tricotypikale 16 1 3 Okonata 1 2 1 Anisopera (degonfles) 1 2 1 Anisopera (degonfles) 1 2 1 Comphidae 1 3 45 1 Comphidae 3 45 1 2 Comphidae 1 1 1 1 Pecopter (demonfles) 1 2 4 4 Pecopter (demonfles) 1 1 1 1 Hemister (true bugs) 1 1 1 1 Coridae 1 2 4 4 Resouchidae 1 1 1 1 Notonectule 1 1 1 1 Notonectule 1 1 1 1 Resouchidae (dobon files)	Baetiscidae				
EphonemiadeIISphoundae11Sphoundae13Consta12Consta12Asinopter (dagonfles)12Tocoythide3451Complide3451Constration13542Prefac34511Constration13542Prefac1241Constration1241Constration1111Prefac1241Constration1111Mathemister1111Prefac1111Mathemister1111Prefac1111Prefac1111Prefac1111Prefac1111Prefac1111Prefac1111Prefac1111Prefac1111Prefac1111Prefac1331Prefac1111Prefac1331Prefac1333Prefac1333 <td></td> <td>70</td> <td></td> <td>3</td> <td></td>		70		3	
Ippequation310Tricory thate1613Otomata121Anisopera (degonfles)121Comphaids33451Comphaids33451Comprision3542Pecopera (stancilles)124Consequination13542Pecopera (stancilles)124Constrain124Pecopera (stancilles)111Crividas124Geridas124Geridas124Mesove liade (obson fles)111Velidae (obson fles)111Techografica6631Updays/thafe66311Hydops/thafe1411Hydops/thafe1111Hydops/thafe1111Hydops/thafe1111Hydops/thafe1111Hydops/thafe1111Hydops/thafe1111Hydops/thafe1111Hydops/thafe1111Hydops/thafe1111Hydops/thafe1111Hydops/thafe111 </td <td></td> <td></td> <td>3</td> <td></td> <td></td>			3		
Sphlomnidae11Otonsta12Otonsta12Arsinopter (dagonffis))12Zygerter (damseffisk)13542Perdae13542Perdae13542Perdae1244Compilade1244Perdae12444Revisiter (true bugs)1111Perdae111111Revisiter (true bugs)111111Revisiter (true bugs)111 </td <td></td> <td>3</td> <td>13</td> <td></td> <td></td>		3	13		
AdonabiteIAssingue (fagonfiles)IZygotre (damsetfiles)IZygotre (damsetfiles)IExclaptery gides345Compilade135Peridae135Peridae124Constrained124Constrained124Constrained111Peridae124Constrained111Messocialize111Messocialize111Peridae2111Messocialize1111Messocialize1111Peridae11111Messocialize14133Messocialize11111Peridae131333Messocialize11111Peridae137211Messocialize111<	Siphlonuridae	ĩ			1
Anisopric (arigoniles)2Camphake12Complex (amediles)34542Comparison (amediles)124Pecoper (atometiles)124Peridise124Cariada411Hemiper (atometiles)124Crinda124Crinda124Crinda111Mesove liada111Notone cikles111Velidae111Velidae111Velidae663Techore caddifiles)111Techore caddifiles133Techore caddifiles141Hydopsychilae6631Hydopsychilae1111Hydopsychilae1111Hydopsychilae1111Hydopsychilae1111Hydopsychilae1111Hydopsychilae1111Hydopsychilae1372Hydopsychilae1111Hydopsychilae1372Hydopsychilae1111Hydopsychilae1372Hydopsidae1111<	Tricorythidae		1		
Ashnaba12Complais13542Zygotre (damsellies)13542Perkiae13542Perkiae1244Corindate124Geridate2111Mesore (isotenelies)111Corindate1241Mesore (isotenelies)111Mesore (isotenelies)111Visitate1111Mesore (isotenelies)1111Visitate11111Mesore (isotenelies)11111Visitate66315111Mesore (isotenelies)11413111	Odonata				
Genplade1Cabpter glates334512Congrajonida3542Pecopter (storeffes)124Perifus124Corrida411Hemjere (rue bug)111Croinda211Mesove likita211Notone citika111Velidae111Velidae111Velidae111Velidae111Velidae111Tehopter (addiffies)111Tehopter (addiffies)111Tehopter (addiffies)111Tehopter (addiffies)111Tehopter (addiffies)111Tehopter (addiffies)111Tehopter (addiffies)111Tehopter (addiffies)111Hydopsychidae111Hydopsychidae111Tehopter (addiffies)111Tehopter (addiffies)111Phylogaetidae111Phylogaetidae111Phylogaetidae111Tehopter (addiffies)111Tehopter (addiffies)111Tehopter (addiffies)111 </td <td></td> <td>1</td> <td></td> <td>,</td> <td></td>		1		,	
Zyoperia damedifies)3451Conspiration on the second of			1	2	
Comparisantance I 3 5 42 Persides 1 2 4 1	Zygoptera (damselflies)				
Precises of the set of	Calopterygidae				
Perkine"IRenixer (ner kers)I2ICoridateIIIMesoveliate2IIIMesoveliate2IIIPicta2IIIINotonectilateIIIIVeilateIIIIISaldat (dbro files)IIIIISaldat (dbrofiles)III	Coenagrionidae	1	3	5	42
Coridade124Coridade11Mesoveliale11Notoacctidae11Pickia11Veliale11Stakia (alber fles)11Stakia (alber fles)29Techoptera (acdiffles)29Beckycentrade663Hydopsychiake111Hydopsychiake111Lamophilae6315Immeghilae111Phisporandae111Phisporandae111Uenodae111Uenodae111Uenodae111Uenodae372Optierationes111Uenodae111Uenodae372Optierationes211Uenodae372Optierationes211Uenodae357Optierationes211Uenodae357Optierationes121Uenodae357Optierationes131Uenodae357Optierationes131Uenodae3513Uenodae3512 </td <td></td> <td></td> <td>1</td> <td></td> <td></td>			1		
Carniala11Natoacciliala11Natoacciliala11Veliala11Veliala11Veliala11Kajabar11Cony dalka (obson files)11Tehopera (caddifiles)29Helcony yeliala663Bachy yentinda663Lepocerala136Hydopsychilae143Lepocerala143Lepocerala136Phyganetilae133Lenosphilae113Lenosphilae133Colorating111Phyganetilae111Lenoshilae111Lenoshilae111Lenoshilae111Lenoshilae111Colorating111Lenoshilae111Lenoshilae111Lenoshilae111Lenoshilae111Lenoshilae111Lenoshilae111Lenoshilae111Lenoshilae111Lenoshilae111Lenoshilae111Lenoshilae111<	Hemiptera (true bugs)				
Mesove islake211Picia11Picia11Subtac (botom fites)11Subtac (botom fites)29Subtac (botom fites)29Brachycerunida663Hydropsychida17712510Hydropsychida17712510Lebicosychida (fites)136315Hydropsychida1631516Lumophilda11111616Pilopotandae11316 <td>Corixidae</td> <td></td> <td>2</td> <td></td> <td></td>	Corixidae		2		
Notonecidale1Velidae1Velidae1Weidaptern1Corydalkae (obson files)1Tehoptern (caddifiles)1Brachycentridae2Brachycentridae66613Heicopychilae677Phydporychilae633Europerlidae1Hydporychilae114Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111Phydporychilae111111<			,		1
Picialize1Visilize1Coydallale (obson files)1Saklar (alder files)2Saklar (alder files)2Tichoptera (caddifiles)2Brackycentridae6Brackycentridae7Pickiosychidae7Pickiosychidae7Pickiosychidae1Urpoterationa1Laptoceridae1Urpoteridae1Piliopotandae1Urpoteridae1Piliopotandae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae1Urpoteridae3Urpoteridae3Urpoteridae2Urpoteridae3Urpoteridae1Urpoteridae3Urpoteridae3Urpoteridae3Urpoteridae3Urpoteridae3Urpoteridae3Urpoteridae3Urpoteridae3Urpoteridae3Urpoteridae3Urpoteridae <t< td=""><td></td><td>2</td><td>1</td><td>1</td><td>1</td></t<>		2	1	1	1
Magabaptera 1 Sakiac (abor files) 1 Sakiac (abor files) 2 9 Brachycentidad (files) 2 9 Brachycentidad (files) 2 9 Brachycentidae 6 6 3 Hydropythidae 17 7 125 10 Hydropythidae 17 7 125 10 Leptoceridae 31 6 3 15 Leptoceridae 31 6 3 15 Phydropitidae 1 1 1 3 Leptoceridae 1 1 3 1 3 Uenoida 1 1 1 3 1					
Confidile (obton flies) 1 Techoper (addisfles) 4 Techoper (addisfles) 2 9 Heicopychida 6 6 3 Brachycentrida 1 7 7 125 10 Hydpopychida 17 7 125 10 1<		1			
Sahifa (aldar flies) 4 Brachycentrida 6 6 Brachycentrida 7 7 125 10 Helicosychida 17 7 125 10 Hydoprytha 17 7 125 10 Hydoprytha 10 3 6 3 15 Leptocerida 31 6 3 15 Leptocerida 1 1 1 Philoportanida 1 1 3 Uenolda 1 1 3 Uenolda 1 1 3 Uenolda 1 3 7 Uenolda 1 1 1 Uenolda 1 3 7 Uenolda 1 3 7 Uenolda 1 3 7 Uenolda 1 3 7 Uenolda 3 7 2 Oprimatic (otanis) 1 1 1 Uenolda 1 3 7 Uenolda 3 5 75 Uenolda 3 5 7 Uenolda 3 5 1 Uenolda 3 5 <td></td> <td></td> <td></td> <td></td> <td></td>					
Techoper (addisfies) Techoper (addisfies) Phachyopy childa 6 6 6 Hidopy cychilda 17 7 2 125 10 Hydopy childa 4 Explore critica 31 6 3 15 Expreser Jack 7 Hydopita 1 Phydopita 1 Phydopita 1 Phydopita 1 Lamophilda 1 Phydopita 1 Lamophilda 1 La			1		4
Interconversion 6 6 3 Hydropsychikae 17 7 125 30 Hydropsychikae 4 3 3 Lennophikae 1 4 3 Lennophikae 1 4 3 Lennophikae 1 4 3 Phygonadkae 1 3 3 Phygonadkae 1 3 3 Polycentropodikae 4 1 3 Cologiera (meths) 1 1 3 Optiscides (toths) 1 1 1 Dytrice (toteks) 1 3 7 2 Optiscides (toths) 1 1 1 1 Endage 1 3 7 2 Optiscides (toths) 1 1 3 8 Cologiera (toths) 1 3 8 1 Optiscide (toths) 1 3 8 1 Optiscide (toths) 1	Trichoptera (caddisflies)				
Hydnopythide 17 7 12.5 10 Laploceridie 3 6 3 15 Lampohilde 1 4 1 3 Molanidae 1 4 1 3 Molanidae 1 4 1 3 Phipopartide 1 1 3 1 3 Uenoida 1 1 3 1 1 1 Phipopartide (oth) 1 <	Brachycentridae				
Hydnopfikke 4 3 Lepocerkike 3 6 3 15 Lamophikke 1 4 1 16 <td>Helicopsychidae</td> <td></td> <td></td> <td></td> <td></td>	Helicopsychidae				
Lapocaria 31 6 3 15 Lamophila 1 4 1 1 Molanida 1 1 3 1 1 Phipoparafida 1 1 3 1 3 Unoida 1 1 3 1 3 Unoida 1 1 3 1 1 Unoida 1 1 1 1 1 1 Oprindica (duths) 1 <t< td=""><td></td><td></td><td>7</td><td>125</td><td></td></t<>			7	125	
Immeghilide I 4 Molannida I I Phiyopancida I I Physipancida I I Physipancida I I Physipancida I I Physipancida I I I Physipancida I I I Uenoidae I I I Pynidae I I I Optiencia (noths) I I I Constance (noths) I I I Contact (noths) I I I I Contact (noths) I I I I Coptindat (note) I I <td>Leptoceridae</td> <td></td> <td>6</td> <td>3</td> <td></td>	Leptoceridae		6	3	
Philopeandae 1 Polycancidae 1 3 Polycancidae 1 3 Lenoidae 1 3 Lepidopeca (moths) - - Pynalidae 1 3 Cokoptera (moths) - - Dynikadie (aduths) 1 1 1 Chroidea (aduths) 1 1 1 Endiade (aduths) 1 1 1 Endiade (aduths) 1 1 1 Carlopognidae 2 7 2 Carlopognidae 2 1 3 8 Carlopognidae 2 1 3 8 Tabunidae 9 1 3 8 Carlopognidae 2 1 3 8 Carlopognidae 2 1 3 8 Carlopognidae 2 1 3 8 Carlopognicabith/ 1 2 1 3 <	Linnephilidae				
Physicalization I Ucroidia I I Ucroidia I I Ucroidia I I Physication I I Pysication I I Pysication I I Oprination (dutalis) I I Haliplake (dutalis) I I Ucroidia (dutalis) I					1
Polycatropodiale 4 1 3 Lepidopter (moths) 1 3 Lepidopter (moths) 7 3 Colopter (moths) 1 1 Pyrnlade 1 3 7 Colopter (moths) 1 1 1 Dyritscide (totals) 1 1 1 Dyritscide (totals) 1 3 7 2 Catolytic (duths) 1 1 1 1 Elmidae 1 3 7 2 Catolytic (duths) 1 3 8 1 Catolytic (duths) 1 3 8	Philopotamidae Phrygonoidae				
Ucnoidaé I I Pandiaé 3 Octopotera (conta) 1 1 Oprindia (conta) 1 1 Halpidate (conta) 1 3 7 Emidiae (conta) 1 3 7 Halpidate (conta) 1 3 7 Emidiae (conta) 1 3 7 Uprintiae (conta) 3 7 2 Oprintiae (conta) 3 7 4 Uprice (files) 2 7 4 Christiae (conta) 3 5 7 4 Christiae (conta) 3 5 7 4 Simuliae (conta) 3 5 7 4 Cuticade (conta) 3 5 7 4 Cuticade (conta) 3 5 7 4 Cuticade (conta) 3 5 1 2 Cuticade (conta) 1 2 3 2 Phydobidae				1	3
Pyndae 3 Pyndae 1 Colopera (focda) 1 Thisolate (tota) 1 Halipkae (aduts) 1 Halipkae (aduts) 1 Halipkae (aduts) 1 Halipkae (aduts) 1 Tabaniska (arvae) 1 Dytera (files) 2 Carlos (aduts) 3 Simulika (arvae) 3 Simulika 3 Simulika (arvae) 1 Simulika 9 Simulika (afvae) 1 Simulika (afvae) 1 Simulika (afvae) 2 Simulika (afvae) 1 Simulika (afvae) 1 <	Uenoidae		1	•	
Coloryten beecks) Coloryten beecks) Optiscate (todults) 1 Sprinkate (todults) 1 Haliplate (todults) 1 Buildake (todults) 1 Sprinkate (todults) 1 Buildake (todults) 1 Optienating (todults) 1 Buildake (toruts) 1 Cateropagnidae 3 Cateropagnidae 3 Samulidae 3 Samulidae 5 Samulidae 2 Tabandae 2 Sattopool (toruts) 8 Cattopool (toruts) 8 Cattopool (toruts) 8 Cattopool (toruts) 8 Planobidae 1 2 Planobidae 1 2 Planobidae 1 2 Planobidae 1 3 Planobidae 1 3 Planobidae 1 3 Planobidae 1 1 Planobidae 1 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Dyticatication 1	Pyralidae				3
Gyrinika (aduks) 1 1 1 Hanjaka (aduks) 1 1 1 Emidae 1 3 7 2 Gyrinika (tarva) 1 1 1 1 Deters (tids) 1 3 7 2 Chrionomidae 33 53 75 47 Chrionomidae 3 53 75 47 Chrionomidae 3 53 75 47 Simulialae 95 11 3 8 Tabanalae 2 1 1 1 Catury of a (snik) 1 2 1 3 Catury of a (snik) 1 2 1 3 Planobidae 2 1 3 1 2 Planobidae 2 1 3 1 2 3 1 2 3 1 3 3 3 3 3 3 3 3 3 3 <td>Dytiscidae (total)</td> <td>1</td> <td></td> <td></td> <td></td>	Dytiscidae (total)	1			
Halipka (adults) 1 1 1 1 Binklae (adults) 1 3 7 2 Cyrinika (urvae) 3 7 3 7 Dietra (files) 2 2 4 7 2 Chrisongikae 33 53 75 47 7 2 4 7 2 1					1
Qrinita (urac) 1 Qrinita (urac) 2 Centopopoida 3 Chionomida 33 Simulida 3 Simulida 9 Simulida 9 Tabanisa 2 Tabanisa 3 Cuto (data) 3 Simulida 9 Cuto (data) 1 Phythobida 1 Qui (data) 1 Phythobida 2 Phanobida 2 Phanobida 3 Phanobida 3 Phanobida 3 Phonobida 1 <	Haliplidae (adults)				
Dipter (lifes) 2 Chrionoponidae 2 2 Chrionomádae 33 53 75 47 Simulidae 33 5 1 3 8 Simulidae 95 11 3 8 1		1	3	7	
Centopognidae 2 Chrionognidae 33 53 75 47 Culic dae 3 5 75 47 Simmlidae 95 11 3 8 Tabanishe 2 1 1 1 Tubulidae 2 1 8 1 Culic dingenshi 1 2 1 5 Guttopod (maih) 1 2 1 2 Phydobidae 1 2 1 2 Phydobidae 2 1 3 8 Viviparidae 6 5 1 2 1 3 8 Viviparidae 1 2 1 3 8 3 1	Oyrinidae (larvae) Dintera (flies)				1
Chrionománe 33 53 75 47 Culcidae 3 3 5 1 3 8 Simulídae 95 11 3 8 1 <	Ceratopogonidae			2	
Simuliáca 95 11 3 8 Tabanidac 2 1 1 Tpuldac 8 1 1 OLULSCA 8 1 1 Gastropoda (snaih) 1 2 1 5 Hydobidac 1 2 1 2 Phydobidac 2 1 3 2 Phydobidac 2 1 3 2 Phonobidac 2 1 3 3 Peucocidac 3 3 3 3 Peucocidac 1 3 3 3 Peucocidac 2 1 3 3 Peucocidac 3 3 3 3 3 Peucocida (iovalves) 5 5 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td>Chironomidae</td> <td>33</td> <td>53</td> <td>75</td> <td>47</td>	Chironomidae	33	53	75	47
Tabanisác 2 1 1 Topuldac 8 OLLUSCA 8 Castençod (naih) 1 2 1 5 Ancylika (füngets) 1 2 1 2 Phytobida 2 1 3 - Plunothac 2 1 3 - Plunothac 1 - 3 - Plunothac 1 - 3 - Plunothac 2 3 6 -					
Tipulidae 8 OLUISCA 3 OLUISCA 1 Ancyldae (inquets) 1 2 Hydrobitac 1 7 Phunothalae 2 1 3 Pinotoblac 2 3 3 Vivipandrae 1 5 3 Petrocolidio 3 5 3 Orbiculdae 1 5 3 Petrocolidiovalves) 5 5 5 Corbiculdae 1 1 1 Piskidae 2 3 6			11		
JOLLISCA Ancylika (füngets) 1 2 1 5 Ancylika (füngets) 1 2 1 2 Phydobida 2 1 2 1 2 Phunoblae 2 1 3 3 3 Pleurocolade 3 3 3 3 Pleurocolado diviavias) 1 1 1 1 Posididae 2 3 6 3		2			1
Ancylika (dingets) 1 2 1 5 Hydrobida 1 1 2 Physkika 6 5 1 2 Phunotha 2 1 3 Pleurocoidae 1 5 3 Petersoda drivalvas) - 5 5 Corbiculdae 1 5 5 Petersoda drivalvas) - 1 1 Pskididae 2 3 6	IOLLUSCA				
Hydrobidać 1 Hydrobidać 6 5 1 2 Planobidać 2 1 3 3 Plaucecridac 3 3 3 3 Vrijandiac 1 8 3 3 Peteryoda (biralves) 5 1 1 1 Orbiculdac 1 1 1 1 Piskidae 2 3 6					
Physidac 6 5 1 2 Phunoblac 2 1 3 Pleurocendae 3 3 Pleuroda (biralves) 3 3 Corbiculdae 1 1 1 Pisididae 2 3 6		1	2	1	5
Phonobilae 2 1 3 Pleunochidae 3 3 Vivjanda 1 8 Pelecyodida (biralves) 2 3 Corbiculdae 2 3 6		6		1	2
Pleuroceridae 3 Viviparidae 1 8 Pelecypoda (biralves) 1 1 Corbiculdae 1 1 Pisdidae 2 3 6	Planorbidae	2	1		
Pekeypoda (bivalves) Corbiculdae 1 1 Pisididae 2 3 6	Pleuroceridae				
Corbiculdae 1 1 Pisididae 2 3 6	Viviparidae	1			8
Pisidiidae 2 3 6	Petecypoda (bivalves)		1		1
				3	
	FOTAL INDIVIDUALS	360	344	338	328

	Portag 36th A 9/3/	Tributary to ge River Avenue /2015 7U	Memory 9/2	y River / Isle Park /2015 8U	Gira 9/1	well Drain rd Road 5/2015 19U	Corr 9/1	wa Creek ell Road 5/2015 20U
METRIC	Value	Score	Value	Score	Value	Score	Value	Score
TOTAL NUMBER OF TAXA	35	1	34	1	25	1	40	1
NUMBER OF MAYFLY TAXA	4	1	5	1	1	0	6	1
NUMBER OF CADDISFLY TAXA	8	1	6	1	4	0	8	1
NUMBER OF STONEFLY TAXA	0	-1	1	1	0	-1	0	-1
PERCENT MAYFLY COMPOSITION	25.00	1	50.87	1	0.89	-1	15.85	0
PERCENT CADDISFLY COMPOSITION	18.06	0	6.69	0	39.35	1	13.72	0
PERCENT DOMINANT TAXON	26.39	0	45.35	-1	36.98	0	14.33	1
PERCENT ISOPOD, SNAIL, LEECH	3.06	1	4.07	0	3.25	1	9.15	0
PERCENT SURFACE AIR BREATHERS	3.61	1	1.16	1	0.59	1	2.74	1
TOTAL SCORE		5		5		2		4
MACROINVERTEBRATE COMMUNITY RATING		Excellent		Excellent		Acceptable		Acceptable

	Hog Creek	St. Joseph River	St. Joseph River St. Joseph River Pipestone C					
	Girard Road 9/15/2015	Stowell Road M 9/15/2015	-66 at 28140 Talon Dri 9/25/2015	on Drive Wildwood Dr 9/22/2016				
TAXA	21U	22U	23U	1L				
PLATYHELMINTHES (flatworms) Turbellaria	1							
ANNELIDA (segmented worms)	1							
Oligochaeta (worms)	9	1	2	4				
ARTHROPODA								
Crustacea								
Amphipoda (scuds)	68 1	3	22	4				
Decapoda (crayfish) Isopoda (sowbugs)	1		4	2				
Arachnoidea	1		4					
Hydracarina		3	4	15				
isecta								
phemeroptera (mayflies)								
Baetiscidae		1	1					
Baetidae	4	58	37	38				
Caenidae	5	2						
Ephemeridae		2						
Heptageniidae	16	14	13	4				
Isonychiidae Potamanthidae		5 3	1 8					
Siphlonuridae	1	3	ð					
Tricorythidae	1	20	17					
Ddonata		20	17					
Anisoptera (dragonflies)								
Aeshnidae	1			3				
Gomphidae	1	3	1					
Zygoptera (damselflies)								
Calopterygidae	11	1	12	4				
Coenagrionidae	1	7	40					
Plecoptera (stoneflies)								
Perlidae	1	1	1					
Pteronarcyidae Hemiptera (true bugs)	1	1	1					
Belostomatidae		1						
Corixidae	13		9					
Gerridae	15	1	3	1				
Mesoveliidae	1	1	5					
Aegaloptera		-						
Corydalidae (dobson flies)	1							
Trichoptera (caddisflies)								
Brachycentridae	1	6	1					
Glossosomatidae		1						
Helicopsychidae	2							
Hydropsychidae	15	17	33	82				
Hydroptilidae		20	1					
Leptoceridae Limnephilidae	1	38	30 1					
Philopotamidae	1	2	3					
Polycentropodidae	1	3	4					
Uenoidae	1	5	4					
Lepidoptera (moths)	1							
Pyralidae		1	1					
Coleoptera (beetles)								
Dytiscidae (total)		1						
Gyrinidae (adults)		1	1					
Elmidae	12	10	7	11				
Psephenidae (larvae)	1		1					
Diptera (flies) Chironomidae	123	45	34	32				
Chironomidae	123	45	34	32				
Dixidae		1						
Simuliidae	4	30	13	52				
Tabanidae	2	40 AV						
Tipulidae	-			1				
OLLUSCA								
àstropoda (snails)								
Ancylidae (limpets)	12			1				
Lymnaeidae	2							
Physidae				1				
Pleuroceridae			4					
Viviparidae	1							
Pelecypoda (bivalves)								
Corbiculidae	1	1 7	1					
Dreissenidae Pisidiidae	13	/	1	1				
Unionidae (mussels)	15	1	1	1				
,		-						
DTAL INDIVIDUALS	330	295	314	256				

	Hog Creek Girard Road 9/15/2015 21U		St. Joseph River Stowell Road 9/15/2015 22U		St. Joseph River -66 at 28140 Talon Dri 9/25/2015 23U		Wild 9/2	one Creek wood Dr 2/2016 1L
METRIC	Value	Score	Value	Score	Value	Score	Value	Score
TOTAL NUMBER OF TAXA	35	1	37	1	35	1	17	0
NUMBER OF MAYFLY TAXA	5	1	9	1	6	1	2	0
NUMBER OF CADDISFLY TAXA	6	1	6	1	8	1	1	-1
NUMBER OF STONEFLY TAXA	2	1	2	1	1	1	0	-1
PERCENT MAYFLY COMPOSITION	8.18	0	35.93	1	24.52	1	16.41	0
PERCENT CADDISFLY COMPOSITION	6.36	0	22.71	0	23.57	0	32.03	1
PERCENT DOMINANT TAXON	37.27	-1	19.66	1	12.74	1	32.03	0
PERCENT ISOPOD, SNAIL, LEECH	4.85	0	0.00	1	2.55	1	0.78	1
PERCENT SURFACE AIR BREATHERS	4.24	1	2.03	1	4.14	1	0.39	1
TOTAL SCORE		4		8		8		1
MACROINVERTEBRATE COMMUNITY RATING		Acceptable		Excellent		Excellent		Acceptable

ТАХА	Brandywine Creek US-12 8/29/2016 2L	Dowagiac River Atwood Road 9/23/2016 3L	Hickory Creek Upstream Snow Road 9/22/2016 4L	Old Bitty Creek Red Bud Tr 8/29/2016 5L
PLATYHELMINTHES (flatworms)				
Turbellaria			3	4
ANNELIDA (segmented worms)			2	
Hirudinea (leeches)		1	3	
Oligochaeta (worms)	1	14	17	1
ARTHROPODA				
Crustacea				
Amphipoda (scuds)	52	21	34	87
Decapoda (crayfish)		1		
Isopoda (sowbugs)	1		115	58
Arachnoidea	,	27	,	<i>,</i>
Hydracarina Insecta	5	27	5	6
Ephemeroptera (mayflies)				
Baetidae	64	18		15
Caenidae	04	10	4	1.5
Heptageniidae		8	-	
Odonata		0		
Anisoptera (dragonflies)				
Aeshnidae	1	2		
Zygoptera (damselflies)				
Calopterygidae	1	26	3	
Coenagrionidae	6	5	15	
Hemiptera (true bugs)				
Belostomatidae	1	3	2	
Corixidae	1	29	90	
Gerridae	1	1		8
Mesoveliidae	5	4		6
Nepidae	1	3	1	
Notonectidae	1			1
Pleidae	2		1	
Megaloptera		,		
Corydalidae (dobson flies)		1		1
Sialidae (alder flies) Trichoptera (caddisflies)				1
Brachycentridae	11	2		
Hydropsychidae	30	22	1	31
Hydroptilidae	50	22	8	1
Leptoceridae	3	3	1	1
Limnephilidae	1	3		9
Phryganeidae	1	1	2	1
Coleoptera (beetles)		-	-	-
Dytiscidae (total)	1	2		
Haliplidae (adults)	1	2	2	
Elmidae	1	12	2	1
Diptera (flies)				
Chironomidae	37	37	24	4
Culicidae			3	
Ptychopteridae	1			
Simuliidae	39	12		34
Strationyidae		5		2
Tabanidae			1	1
Tipulidae				3
MOLLUSCA				
Gastropoda (snails)		4	1	
Ancylidae (limpets)		4	1	,
Hydrobiidae Physidae	2		64	1
Planorbidae	2		64 9	1
Pelecypoda (bivalves)	2		7	
Pisidiidae	1	3	1	
	1	2	1	
TOTAL INDIVIDUALS	274	272	412	276

	Brandywine Creek Dowagiac River US-12 Atwood Road 8/29/2016 9/23/2016 2L 3L		ood Road 3/2016	Hickory Creek Upstream Snow Road 9/22/2016 4L		Old Bitty Creek Red Bud Tr 8/29/2016 5L		
METRIC	Value	Score	Value	Score	Value	Score	Value	Score
TOTAL NUMBER OF TAXA	29	1	29	1	26	1	22	0
NUMBER OF MAYFLY TAXA	1	-1	2	0	1	-1	1	0
NUMBER OF CADDISFLY TAXA	5	1	5	1	4	0	4	0
NUMBER OF STONEFLY TAXA	0	-1	0	-1	0	-1	0	-1
PERCENT MAYFLY COMPOSITION	23.36	1	9.56	0	0.97	-1	5.43	0
PERCENT CADDISFLY COMPOSITION	16.79	0	11.40	0	2.91	-1	15.22	0
PERCENT DOMINANT TAXON	23.36	0	13.60	1	27.91	0	31.52	0
PERCENT ISOPOD, SNAIL, LEECH	1.82	1	1.84	1	46.60	-1	21.74	-1
PERCENT SURFACE AIR BREATHERS	5.47	1	18.01	0	24.03	-1	6.16	1
TOTAL SCORE		3		3		-5		-1
MACROINVERTEBRATE COMMUNITY RATING		Acceptable		Acceptabl	e	Poor		Acceptable

ANNELIDA (segmented worms) 1 Initadinea (leeches) 1 Oligochaeta (worms) 17 3 ARTHROPODA		Prairie River Bowers Rd 8/31/2016	Prairie River Orland Rd 8/31/2016
Hindinga (leeches) 1 Oligochata (worms) 17 3 ARTHROPODA - Crustacea - Amphipoda (scuds) 79 64 Decapoda (caryfish) 1 1 Isopada (sowbugs) - 2 Arachnoidea - - Hydracarina 3 1 Insecta 53 8 Ephearoptera (myflies) - 1 Bactidae 53 8 Heptagenidae 4 2 Isonychidae 1 - Anisoptera (dragonflies) - - Anisoptera (dragonflies) - - Calopterygidae 6 8 Connaita - - Zygoptera (dansefflies) - - Calopterygidae 6 8 Coenagrionidae 1 - Coridae 1 - Cotridae 1 - Coridae 1 - Velididae (dobson flies) 1 - <th>TAXA</th> <th>6L</th> <th>7L</th>	TAXA	6L	7L
Oligochacta (worms)173ARTHROPODA7964Custacea11Isopoda (soubjs)2Arnchnoidea11Hydracarina31Insecta38Heptagenidae442Isonychiñdae442Isonychiñdae442Isonychiñdae41Odonata11Arshnidae41Gomphidae71Zygoptera (damseffics)68Corradae71Edistae38Hemiptera (true bugs)11Edistae11Meniptera (true bugs)11Edistae11Notonectidae11Velidae38Helicopsychidae11Trichoptera (cadis files)11Trichoptera (cadis files)11Hydropsychidae1563Hydropsychidae120Uptera (files)11Corrodae120Diptera (files)120Usidae120Usidae120Usidae120Usidae120Usidae120Usidae120Usidae120Usidae120Usidae120Usidae120Usid	ANNELIDA (segmented worms)		
ARTHROPODA Crustacea Amphipoda (scuds) 79 64 Decapoda (rayfish) 1 1 Isopoda (sowbugs) 2 Arachnoida 1 Hydracarina 3 1 insceta 53 8 Ephemeroptera (mayfiles) 1 1 Batidae 53 8 Heptagenidae 4 42 Isonychüdae 1 1 Odonata 1 1 Anisoptera (dragonflies) 2 1 Zygopten (damselflies) 1 2 Zygopten (damselflies) 1 2 Cotoridae 20 13 Gerridae 1 1 Megaloptera 1 1 Corydaldae (dobson flies) 1 1 Megaloptera 1 1 Corydatae 9 18 Helicopsychidae 15 63 Hydropsychidae 1 20 Upriscidae (total) 1 20 Dytiscidae (total) <t< td=""><td>Hirudinea (leeches)</td><td></td><td></td></t<>	Hirudinea (leeches)		
Crustacea 79 64 Amphipoda (scuds) 1 1 lsopoda (sowbugs) 2 Arachnoidea 1 Hydracarina 3 1 Insecta 3 8 Ephemeroptern (mayflies) 1 2 Ephemeroptern (mayflies) 1 2 Anisoptera (dragonflies) 1 2 Asinida 4 42 3 Soonychidae 1 1 2 Odonata 1 2 2 1 Asinidae 4 1 1 2 Asinidae 4 1 1 1 Zygoptern (dragonflies) 1 1 2 1 Zygoptern (dragonflies) 1 1 2 1 1 Zygoptern (dragonflies) 1		17	3
Amphipoda (scuds) 79 64 Decapoda (crayfish) 1 1 lsopoda (crayfish) 1 1 lsopoda (crayfish) 3 1 isopoda (crayfish) 3 1 Hydracarina 3 1 insecta 53 8 Ephemeroptera (mayflics) 4 42 bonychildae 1 2 donata 1 1 Odonata 1 1 Colopterigidae 6 8 Comphidae 1 1 Zygoptera (damselfies) - - Caloptery gidae 6 8 Coenagrionidae 1 - Coridae 20 13 Gerridae 1 - Notonectidae 1 - Velidae 1 - Hydropsychidae 9 18 Hydropsychidae 9 3 Hydropsychidae 1 - Leptocerida 2 7 Limanephildae 1			
Decapoda (crayfish) 1 1 Isopoda (cowbugs) 2 Arachnoidea 2 Hydracarina 3 1 insecta 3 1 Esceta 53 8 Heptagenidiae 4 42 Isonychidae 1 1 Odonata 1 1 Anisoptera (dragonflies) 1 1 Zygoptera (damselflies) 1 1 Calonterygidae 6 8 6 Corada 7 1 1 Memiptera (true bugs) 1 1 1 Belostomatidae 1 1 1 1 Orridae 20 13 1 1 Megaloptera 1 1 1 1 Corydalidae (dobson flies) 1 1 1 1 Megaloptera 1 1 1 1 Corydalidae (dobson flies) 1 1 1 1 Hydropsychidae 9 3 1 1 Uptoceri		-0	
Isopoda (sowbugs) 2 Arachnoidea 1 Hydracarina 3 1 Insecta 3 1 Ephemeroptera (mayflies) 8 4 42 Baetida 53 8 4 42 Isonychiidae 4 42 43 44 42 Isonychiidae 4 41 6 6 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td></td> <td></td>			
Arachnoidea Hydracarina 3 1 Insecta 53 8 Ephemeroptera (mayflies) 4 42 Baetidae 53 8 Heptagenidae 4 42 konychiidae 1 6 Conata 1 6 Anisoptera (dragonflies) 1 1 Acshnidae 6 8 6 Comphidae 7 1 1 Copagrionidae 7 1 1 Concargionidae 7 1 1 1 Corbidae 20 13 3 1 Notonectidae 1 1 1 1 Velidae 1 1 1 1 Velidae 3 8 1 1 Hydropsychidae 9 3 1 1 Heicosychidae 9 3 1 1 Heicosychidae 9 3 1 1 Hydropsychidae 1 1 20 1 1		1	
Hydracarina 3 1 Insecta I Ephemeroptera (mayflies) 8 Baetidae 53 8 Heptageniidae 4 42 Sonychiidae 1 1 Odonata 1 1 Anisoptera (dragonflies) 4 1 Zygoptera (damseflies) 6 8 Coengarjonidae 7 1 Zygoptera (damseflies) 1 1 Corridae 1 1 1 Corridata 1 1 1 Corridatae 1 1 1 1 Megaloptera 1 1 1 1 Corridaliae (dobson flies) 1 1 1 1 Megaloptera 3 8 1 1 1 Corididae (dobson flies) 1 1 1 1 1 Hydropsytidae 15 63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<			2
Insecta Image is a state i		2	1
Ephemeroptera (mayflies) 3 8 Bactidae 53 8 Heptagenidae 4 42 Isonychidae 1 Odonata 1 Anisoptera (dragonflies) 4 1 Aeshnidae 4 1 Gomphidae 1 Zygoptera (damsefflies) 7 1 1 Coenagrionidae 7 1 1 Coenagrionidae 7 1 1 Corrigidae 20 13 1 Corrigidae 20 13 1 Corridae 1 1 1 Coridadae 1 1 1 Velidae 1 1 1 Corydalidae (dobson flies) 1 1 1 Trichoptera (caddis flies) 1 1 1 Brachycentridae 3 8 1 Helicopsychidae 15 63 1 Hydropsychidae 1 2 1	2	5	1
Bactidae538Heptageniidae442konychiidae1Odonata1Anisoptera (dragonflies)1Zygoptera (damseflies)1Zygoptera (damseflies)6Calopterygidae6Coragrionidae7Hemiptera (true bugs)1Eclostomatidae1Corvidale1Notonectidae1Velidae911Megaloptera1Corvidalidae (dobson flies)1Trichoptera (caddis flies)1Brachycentridae3Helicopsychidae911Hydropsychidae111Oloptera (cota)1Corvididae271Hydropsychidae1120Digtera1Coloptera (beetles)1120Digtera (flies)1120Digtera (flies)1120Digtera (flies)1120Digtera (flies)227Limindae1226Cuicidae1120Digtera (flies)322Catoptogonidae111Molannidae111Corionomidae222Cuicidae111 <tr< td=""><td></td><td></td><td></td></tr<>			
Heptageniidae 4 42 konychiidae 1 Odonata 1 Anisoptera (dragonflics) 1 Ashnidae 4 1 Gomphidae 1 Zygoptera (damselflics) 6 8 Coenagrionidae 7 1 Corisidae 20 13 Gerridae 1 1 Ordydidae (dobson flics) 1 1 Velidae 3 8 Hekicopsychidae 9 18 Hydropsychidae 9 3 Hydropsychidae 1 1 Oloston flics) 1 1 Hekicopsychidae 9 3 Hydropsychidae 9 3 Hydropsychidae 1 1 Oloston (total) 1 1 Molannidae 1 2 Ocitade 1 2 Dyticadae (total) 1 1 Halipidae (adults) 6 1 Einsidae 1 2 Olostorae 1 2 Otomoridae 1 2 Olostorae 1 2 Olostorae 1 1 Simul		53	8
konychiidae 1 Odonata Anisoptera (dragonflies) Aeshnidae 4 Aisoptera (dragonflies) Aeshnidae 4 Caoptery gidae 6 Coenagrionidae 7 Caloptery gidae 6 Coenagrionidae 7 Hemiptera (true bugs) Belostomatidae 1 Corixidae 20 Corixidae 1 Corixidae 20 Corixidae 1 Corixidae 3 Redicoptery intervention 1 Notonectidae 1 Cory dalidae (dobson flies) Trichoptera (cadis flies) Brachycentridae 3 Helicopsychidae 9 Helicopsychidae 9 Helicopsychidae 1 Autor 1 Auto			
Odonata Anisoptera (dragonflies) Aeshnidae 4 Gomphidae 1 Zygoptera (damseflies) 1 Zygoptera (damseflies) 6 8 Caenagrionidae 7 1 Hemiptera (true bugs) 1 1 Belostomatidae 1 1 Corridae 20 13 Gerridae 1 1 Notonectidae 1 1 Velidae 1 1 Megaloptera 1 1 Corydalidae (dobson flies) 1 1 Trichoptera (eaddisflies) 3 8 Hydropsychidae 9 18 Hydropsychidae 1 2 Vergaloptera 1 1 Cocleoptera (beetles) 1 1 Molannidae 1 2 Coleoptera (beetles) 1 20 Diftera (flies) 6 2 Emidae 1 1 Chironomidae 42 26 Culcidae 1 <td< td=""><td></td><td>•</td><td></td></td<>		•	
Anisoptera (dragonflies) 4 1 Aeshnidae 4 1 Comphidae 1 Zigoptera (damselflies) 7 Caloptery gidae 6 8 Coenagrionidae 7 Hemiptera (true bugs) 1 Corividae 20 13 Corridae 1 1 Notonectidae 1 1 Velidae 1 1 Corydalidae (dobson flies) 1 1 Trichoptera (caddis flies) 1 1 Brachycentridae 3 8 Hydropsychidae 9 18 Hydropsychidae 9 3 Leptoceridae 2 7 Limnephilidae 1 1 Oolesptera (betles) 1 20 Dytiscidae (total) 1 1 Corydalidae (dotals) 6 1 Hydropsychidae 1 20 Dytiscidae (total) 1 20 Dytiscidae (total) 1 20 Diftera (flies) 3 22 Colaptera (betles) 3 22 Dytiscidae (total) 1 1 Didiae 1 1			
Aeshnidae41Gomphidae1Zygopten (damselflies)1Caloptery gidae6Coenagrionidae7Hemijtera (true bugs)1Belostomatidae1Corixidae1Corixidae1Ocrixidae1Welidae1Notonectidae1Velidae1Megaloptera1Cory dalidae (dobson flies)1Brachycentridae3Brachycentridae9Jydropsychidae9Hydropsychidae9Hydropsychidae1Coleoptera (betles)1Corydidae2Jytiscidae (total)1Hydropsychidae2Dytiscidae (total)1Elmidae1202Dytiscidae (total)1120Dytiscidae (total)1120Dytiscidae (total)1120Dytiscidae (total)1120Diptera (flies)3226Culicidae111Molanda1226Culicidae111Moltude322Catopogonidae111Moltude322Colicidae111Moltude322Panorbid			
Gomphidae 1 Zygoptera (damsellies) - Caloptery gidae 6 8 Coenagrionidae 7 - Hemiptera (true bugs) - - Belostomatidae 1 - Corridae 20 13 Corridae 1 - Notonecidae 1 - Velidae 1 - Megaloptera - - Corydalidae (dobson flies) 1 - Trichoptera (caddisflies) - - Brachycentridae 3 8 Hydropsychidae 15 63 Hydropsychidae 1 - Leptoceridae 2 7 Linnephildae 1 - Oclosptera (betles) - - Zotaptogonidae 1 - Emidae 11 20 Diptera (flies) - - Catoptogonidae 1 - Evan		4	1
Zygoptera (damselflies) 6 8 Cachagrionidae 7 1 Belostomatidae 1 2 Corivalae 20 13 Corrivalae 20 13 Corrivalae 1 2 Notonectidae 1 1 Velidae 1 1 Oravidae 1 1 Velidae 1 1 Corrivalidae (dobson flies) 1 1 Trichoptera (caddis flies) 1 1 Cordididae (dobson flies) 1 1 Heicopsychidae 9 18 Hydropsychidae 9 3 Leptoceridae 2 7 Limnephilidae 1 1 Ologotar (betles) 1 20 Dytiscidae (total) 1 20 Diptera (flies) 1 20 Colaptar (betles) 2 26 Culicidae 1 20 Diptera (flies) 3			1
Calopterygidae 6 8 Coenagrionidae 7 7 Belostomatidae 1 7 Belostomatidae 20 13 Corixidae 20 13 Corixidae 1 1 Notonectidae 1 1 Velidiae 1 1 Megaloptera 1 1 Corydalidae (dobson flies) 1 1 Trichoptern (caddis flies) 1 1 Brachycentridae 3 8 Helicopsychidae 9 18 Hydropsychidae 9 3 Leptoceridae 2 7 Limnephildae 1 20 Dytiscidae (total) 1 20 Dytiscidae (total) 1 20 Dytiscidae (total) 1 20 Diptera (flies) 6 1 Chironomidae 42 26 Culicidae 1 1 Dixidae 1 1 </td <td></td> <td></td> <td></td>			
Hemiptera (rtue bugs) Belostomatidae 1 Corridae 20 13 Corridae 1 1 Notonectidae 1 1 Velidae 1 1 Megaloptera 0 1 Corridalidae (dobson flies) 1 1 Trichoptera (caddis flies) 1 1 Brachycentridae 3 8 Hydropsychidae 9 18 Hydropsychidae 9 3 Leptoceridae 2 7 Limnephilidae 1 1 Olastica (total) 1 1 Malannidae 1 20 Dyticidae (total) 1 20 Digtera (flies) 6 1 Coleoptera (betles) 1 20 Digtera (flies) 6 2 Chironomidae 42 26 Culicidae 1 1 Dibtera (flies) 3 22 Tabanidae 1 1 MOLUSCA 1 1 <		6	8
Belostomatidae1Corridae2013Corridae1Notonectidae1Velidae1Megaloptera1Corrydalidae (dobson flies)1Trichoptera (caddis flies)8Helicopsychidae9Hydropytidae15Hydropytidae9Hydropytidae1Hydroptidae1Corogenidae2Patherentridae1Doptera (heetles)1Haliphidae1Ootpetra (heetles)1Dytiscidae (total)1Haliphidae (adults)6Elmidae1Corionomidae2Catopogonidae1Chironomidae2Disdae1Tabanidae1Simulidae3Actopoda (snails)3Ancylidae (impets)3Actopoda (snails)3Ancylidae (impets)3Pelecypoda (bivalves)3Pelecypoda (bivalves)4Pristee14Hanorbidae1Pristee14Hanorbidae1Pristee14Pristee14Pristee14Pristee14Pristee14Pristee14Pristee14Pristee14Pristee14Pristee14Pristee14Pristee14Pristee14Pristee <td< td=""><td>Coenagrionidae</td><td>7</td><td></td></td<>	Coenagrionidae	7	
Corixidae 20 13 Gerridae 1 Notonectidae 1 Velidae 1 Megaloptera 1 Corydalidae (dobson flies) 1 Trichoptera (caddis flies) 1 Brachycentridae 3 8 Helicopsychidae 9 18 Hydropsychidae 9 3 Leptoceridae 2 7 Linnephilidae 1 7 Ologentar (betles) 1 1 Octividae (total) 1 1 Haliplidae (adults) 6 6 Elmidae 1 20 Diftera (flies) 1 20 Coticodae 1 20 Diptera (flies) 6 6 Elmidae 1 20 Diptera (flies) 3 22 Catoropogonidae 1 1 MOLUSCA 1 1 MOLUSCA 1 1 Castropoda			
Gerridae 1 Notonectidae 1 Velidac 1 Megaloptera 1 Corydalidae (dobson flies) 1 Brachycentridae 3 8 Helicopsychidae 9 18 Hydropsychidae 9 3 Leptoceridae 2 7 Limnephildae 1 1 Oolgottera (betles) 1 20 Dytiscidae (total) 1 20 Digtera (flies) 6 1 Elmidae 1 20 Digtera (flies) 6 1 Coleoptera (betles) 1 20 Digtera (flies) 6 1 Chironomidae 42 26 Culicidae 1 20 Digtera (flies) 3 22 Tabanidae 1 1 MOLLUSCA 1 1 Gastropoda (snails) 3 2 Ancylidae (limpets) 3 2 Planorbidae 3 2 Planorbidae <			
Notonectidae1Velidae1Megaloptera1Corydalidae (dobson flies)1Trichoptera (caddis flies)8Brachycentridae38Helicopsychidae918Hydropytildae93Leptoceridae27Limnephilidae11Molannida11Coleoptera (beetles)11Dytiscidae (total)11Halipikae (adults)61Emidae120Diptera (flies)226Culicidae11Dibtae11Simulidae322Tabanidae11MOLUSCA11MOLUSCA32Lymaeidae32Lymaeidae32Physidae32Planorbidae32Pelecypoda (snails)32Pelecypoda (bivalves)32Pelecypoda (bivalves)32Pel		20	
Veliädae 1 Megaloptera - Corydalidae (dobson flies) 1 Trichoptera (caddis flies) - Brachycentridae 3 8 Hydropsychidae 9 18 Hydropsychidae 9 3 Leptoceridae 2 7 Linnephilidae 1 - Molannidae 1 - Ocloeptera (betles) 1 - Dytiscidae (total) 1 20 Emidae 11 20 Digtera (flies) 6 - Emidae 1 20 Digtera (flies) 6 - Cartopogonidae 1 20 Digtera (flies) 1 - Cartopogonidae 1 - Simulidae 3 22 Tabanidae 1 - MOLUSCA 1 - Castropoda (snäls) - - Ancylidae (impets) 3 2 Lymaeidae 3 2 Planorbidae 3 2 Planorbidae 3 2 Planorbidae 3 2 Planorbidae 3 2 <			
Megaloptera 1 Corydalidae (dobson files) 1 Brachycentridae 3 8 Helicopsychidae 9 18 Hydropsychidae 9 3 Leptoceridae 2 7 Linnephilidae 1 1 Colsopter (betles) 1 1 Dytiscidae (total) 1 1 Enhidae 1 20 Dytiscidae (total) 1 20 Diptera (files) 6 1 Chironomidae 42 26 Culicidae 1 20 Diptera (files) 1 20 Chironomidae 42 26 Culicidae 1 20 Disidae 1 21 Disidae 1 21 Oticidae 1 1 MOLLUSCA 1 1 Moltulusch 3 22 Lymaeidae 36 4 Phonobidae 36 <td></td> <td></td> <td></td>			
Corydalidae (dobson flies) 1 Trichoptera (addis flies) 8 Brachycentridae 3 8 Helicopsychidae 9 18 Hydroptildae 9 3 Leptoceridae 2 7 Limnephildae 1 1 Molannida 1 1 Coleoptera (beetles) 1 1 Dytiscidae (total) 1 1 Ibitera (adults) 6 6 Elmidae 1 20 Diptera (flies) 1 20 Colicoptera (beetles) 6 2 Diptera (flies) 2 26 Cluiconomidae 42 26 Cluicidae 1 1 Disdae 1 1 Simulidae 3 22 Tabanidae 1 1 MOLUSCA 1 1 Gastropoda (snails) 3 2 Lymnacidae 36 4 Planorbi			1
Trichoptera (caddis files) Brachycentridae 3 8 Helicopsychidae 9 18 Hydropsychidae 15 63 Hydropsychidae 9 3 Leptoceridae 2 7 Linnephilidae 1 7 Kolonephilidae 1 7 Molannidae 1 7 Coleoptera (betles) 1 7 Dytiscidae (total) 1 1 Elmidae 11 20 Digtera (files) 6 6 Ceratopogonidae 1 20 Obiedae 1 20 Digtera (files) 6 2 Castropogonidae 1 20 Didtae 1 1 Simulidae 3 22 Tabanidae 1 1 MOLUSCA 1 1 Quernedae 3 2 Lymnacidae 3 2 Lymnacidae 3 2 Pelsopoda (snäls) 3 2 Ancylidae (impets) 3 2 Planorbidae 3 2 Pelsopoda (bivalives) 3 2 Pelsopoda (bivalives)			
Brachycentridae 3 8 Helicopsychidae 9 18 Hydropsychidae 15 63 Hydropsychidae 9 3 Leptoceridae 2 7 Linnephildae 1 0 Molannidae 1 1 Colcoptera (beetles) 1 20 Dytiscidae (total) 1 20 Digtera (flics) 6			1
Helicopsychidae 9 18 Hydropsychidae 15 63 Hydroptildae 9 3 Leptoceridae 2 7 Limnephildae 1 7 Molannida 1 1 Colcoptera (beetles) 1 1 Dytiscidae (total) 1 1 Halipidae (adults) 6 6 Elmidae 1 20 Diptera (files) 6 1 Ceratopogonidae 1 26 Culicidae 1 26 Disidae 1 21 Disidae 1 1 OLUSCA 1 1 Gastropoda (snails) 3 22 Lymnacidae 1 1 Physidae 3 2 Pelanorbidae 3 2 Pelecypoda (bivalves) 3 2 Pelecypoda (bivalves) 3 2		2	0
Hydropsychidae 15 63 Hydropytiklae 9 3 Leptoceridae 2 7 Limnephilidae 1 1 Molannidae 1 2 Dytiscidae (total) 1 1 Elmidae 11 20 Ditter (flies) 6 1 Ceratopogonidae 1 2 Chironomidae 42 26 Culicidae 1 20 Distera (flies) 3 22 Catatopogonidae 1 1 Diodae 1 1 Didae 1 2 Culicidae 1 1 MOLLUSCA 1 1 MOLLUSCA 3 2 Lymnaeidae 36 4 Phynotidae 36 2 Pelsorbidae 3 2 Pelsorbidae 3 2 Pelsorbidae 3 2 Pelsorbidae 3 </td <td></td> <td></td> <td></td>			
Hydroptilidae 9 3 Leptoceridae 2 7 Limmephilidae 1 1 Molannidae 1 2 Oclosptera (beetles) 1 1 Dytiscidae (total) 1 20 Elmidae 1 20 Diptera (fics) 6 2 Ceratopogonidae 1 2 Chironomidae 42 26 Culicidae 1 1 Dividae 1 2 Chironomidae 3 22 Tabanidae 1 1 MOLUSCA 1 1 Gastropoda (snails) 3 2 Ancytidae (impets) 3 2 Planorbidae 3 2 Pelecypoda (bivalves) 3 2 Pelecypoda (bivalves) 3 2		· · · ·	
Leptoceridae 2 7 Limnephildae 1			
Limnephilidae 1 Molannidae 1 Oclooptera (beetles) 1 Dytiscidae (total) 1 Halipidae (adults) 6 Elmidae 11 20 Diptera (flies) 1 20 Ceratopogonidae 1 20 Chironomidae 42 26 Culicidae 1 1 Diodae 1 2 Simulifae 3 22 Tabanidae 1 1 MOLLUSCA 1 1 MOLLUSCA 3 2 Lymnaeidae 36 4 Physidae 36 4 Physidae 36 4 Planorbidae 3 2 Pelecypoda (bivalves) 3 2 Pelecypoda (bivalves) 3 2			
Molannidae 1 Coleoptera (beetles) 1 Coleoptera (beetles) 1 Haliplidae (adults) 6 Elmidae 1 Diptera (files) 1 Ceratopogonidae 1 Chrionomidae 42 Cubicidae 1 Dixidae 1 Dixidae 1 Tabanidae 1 Tipulidae 1 Ancylidae (impets) 3 2 Lymnacidae 1 1 Physidae 36 44 Planorbidae 3 2 Pelceypoda (bivalves) 3 2 Pelceypoda (bivalves) 3 2			/
Coleoptera (beetles) 1 Dytiscidae (total) 6 Halipikale (aduts) 6 Emidae 11 20 Diptera (files) 1 20 Ceratopogonidae 1 20 Chironomidae 42 26 Culicidae 1 1 Disdae 1 1 Simulidae 3 22 Tabanidae 1 1 MOLUSCA 1 1 Ancylidae (impets) 3 2 Lymnacidae (impets) 3 2 Planorbidae 3 2 Pelecypoda (bivalves) 3 2 Pelecypoda (bivalves) 3 2		1	1
Dytiscidae (total) 1 Halipidae (adults) 6 Elmidae 11 20 Dipter (flies) 1 20 Ceratopogonidae 1 2 Chironomidae 42 26 Culicidae 1 1 Diddea 1 2 Simulidae 3 22 Tabanidae 1 1 MOLLUSCA 1 1 MOLLUSCA 3 2 Lymnacidae 3 2 Planorbidae 36 4 Planorbidae 3 2 Pelecypoda (bivalves) 3 2 Pisidiidae 14 1			1
Halipidae (adults) 6 Elmidae 11 20 Diptera (lics) 1 Ceratopogonidae 1 Chironomidae 42 26 Culicidae 1 Dixidae 1 Dixidae 1 Tabanidae 1 Tipulidae 1 Ancylidae (impets) 3 Ancylidae (impets) 3 Physidae 3 Planorbidae 3 Pelceypoda (bivalves) 1		1	
Elmidae1120Diptera (flies)-Ceratopogonidae1Chironomidae4226Culicidae1Disidae322Tabanidae11OLLUSCA11Gastropoda (snails)-1Ancylidae (impets)32Lymnacidae11Planorbidae32Pelceypoda (bivalves)-2Pistididae11			
Diptera (flies) 1 Ceratopogonidae 1 Chironomidae 42 26 Culicidae 1 1 Dixidae 3 22 Tabanidae 1 1 Tiguidae 1 1 Gastropoda (snaik) 3 2 Ancylidae (limpets) 3 2 Lymacidae 1 1 Physidae 36 4 Planorbidae 3 2 Pelscypoda (bivalves) 3 2 Pisididae 16 4			20
Ceratopogonidae 1 Chironomidae 42 26 Culicidae 1 1 Dixidae 1 2 Tabanidae 1 1 Tipulidae 1 1 Gastropoda (snails) 3 2 Ancylidae (impets) 3 2 Lymnaeidae 1 1 Physidae 36 4 Planorbidae 3 2 Pelceypoda (bivalves) 3 2 Pisididae 1 1			
Chironomidae 42 26 Cuicidae 1 Dixidae 1 Simuliadae 3 22 Tabanidae 1 1 Tipulidae 1 1 MOLLUSCA - - Castropoda (snaik) - - Ancylidae (impets) 3 2 Lymnacidae 1 1 Physidae 36 4 Planorbidae 3 2 Pelecypoda (bivalves) - - Prisidiadae 14 1		1	
Dixidae1Simulidae322Tabanidae11Tipulidae11MOLLUSCA32Gastropoda (snails)32Lymnacidae11Physidae364Planorbidae32Pelceypoda (bivalves)141		42	26
Simulidae322Tabanidae11Tipulidae11MOLLUSCAAncylidae (impets)32Lymnacidae (impets)32Lymnacidae364Planorbidae32Pelecypoda (bivalves)32Pisididae141	Culicidae	1	
Tabanidae 1 Tipuldae 1 Tipuldae 1 MOLLUSCA Gastropoda (snails) Ancylidae (impets) 3 2 Lymnaeidae 1 Physidae 36 4 Planorbidae 3 2 Pelecypoda (bivalves) 3 2 Pisididae 14 1	Dixidae	1	
Tipulidae 1 1 MOLLUSCA			22
MOLLUSCA Gastropoda (snäis) Ancylidae (limpets) 3 2 Lymnaeidae 1 Physidae 36 4 Planorbidae 3 2 Pelecypoda (bivalves) Pisidiidae 14 1			
Gastropoda (snails) 3 2 Ancylidac (impets) 3 2 Lymnaeidae 1 1 Physidae 36 4 Planorbidae 3 2 Pelceypoda (bivalves) 1 1		1	1
Ancylidae (limpets) 3 2 Lymnacidae 1 Physidae 36 4 Planorbidae 3 2 Pelecypoda (bivalves) 3 2 Pisidiidae 14 1	MOLLUSCA		
Lymnaeidae 1 Physidae 36 4 Planorbidae 3 2 Pelecypoda (bivalves) Pisidiidae 14 1			
Physidae 36 4 Planorbidae 3 2 Pelecypoda (bivalves) 1 1		3	
Planorbidae 3 2 Pelecypoda (bivalves) Pisidiidae 14 1			
Pelecypoda (bivalves) Pisidiidae 14 1			
Pisidiidae 14 1		3	2
		14	1
TOTAL INDIVIDUALS 359 328	PISIGIIdae	14	1
	TOTAL INDIVIDUALS	359	328

	Prairie River Bowers Rd 8/31/2016 6L		Prairie River Orland Rd 8/31/2016 7L	
METRIC	Value	Score	Value	Score
TOTAL NUMBER OF TAXA	32	1	31	1
NUMBER OF MAYFLY TAXA	2	0	3	0
NUMBER OF CADDISFLY TAXA	6	1	6	1
NUMBER OF STONEFLY TAXA	0	-1	0	-1
PERCENT MAYFLY COMPOSITION	15.88	0	15.55	0
PERCENT CADDISFLY COMPOSITION	10.86	0	30.49	1
PERCENT DOMINANT TAXON	22.01	0	19.51	1
PERCENT ISOPOD, SNAIL, LEECH	11.98	-1	3.35	1
PERCENT SURFACE AIR BREATHERS	8.08	0	4.88	1
TOTAL SCORE		0		5
MACROINVERTEBRATE COMMUNITY RATING		Acceptable	:	Excellent

2 ΗΑΒΙΤΑΤ **D**ΑΤΑ

	Ul	U2	U3	U4	
	Fawn River Drain	South Branch Hog Creek	Sand Creek	Fawn River	
	Featherstone Rd.	D/S Girard Road	Sterling Rd.	Dickinson Rd.	
	9/1/2015	7/16/2015	7/15/2015	9/1/2015	
	GLIDE/POOL	RIFFLE/RUN	GLIDE/POOL	GLIDE/POOL	
IABITAT METRIC					
ubstrate and Instream Cover					
Epifaunal Substrate/ Avail Cover (20)	5	19	13	7	
Embeddedness (20)*		18			
Velocity/Depth Regime (20)*		16			
Pool Substrate Characterization (20)**	11		15	19	
Pool Variability (20)**	9		17	12	
Channel Morphology					
Sediment Deposition (20)	14	19	15	5	
Flow Status - Maint. Flow Volume (10)	10	10	9	10	
Flow Status - Flashiness (10)	9	8	10	10	
Channel Alteration (20)	10	20	11	20	
Frequency of Riffles/Bends (20)*		18			
Channel Sinuosity (20)**	0		1	17	
Riparian and Bank Structure					
Bank Stability (L) (10)	9	9	8	9	
Bank Stability (R) (10)	8	9	8	9	
Vegetative Protection (L) (10)	9	6	8	9	
Vegetative Protection (R) (10)	7	9	8	9	
Riparian Vegetation Zone Width (L) (10)	4	8	5	10	
Riparian Vegetation Zone Width (R) (10)	4	4	9	10	
TOTAL SCORE (200):	109	173	137	156	
IABITAT RATING:	GOOD	EXCELLENT	GOOD	EXCELLENT	
Date:	9/1/2015	7/16/2015	7/15/2015	9/1/2015	
Veather:	Sunny	Partly Cloudy	Sunny	Sunny	
Air Temperature: ^o F	85	65	80	65	
	73	68	74	66	
Vater Temperature: °F Ave. Stream Width: Feet		68 40.234	24.928	66 63.413	
we. Stream Width: Feet	6.56 0.619	40.234	24.928	63.413 1.546	
Surface Velocity: Feet/Second	0.019	1.209	1.00/	1.340	
stimated Flow: Cubic Feet/Second				<u>├</u>	
tream Modifications:	Dredged	None	Dredged	None	
Juisance Plants (Y/N):	N	None	N	None	
TORET No.:	750337	120250	300295	750338	
County Code:	75	120230	30	75	
RS:	07S11W23	05S06W23	05S04W28	08S11W03	
Latitude (dd):	41.85342	42.02926	42.01466	41.80961	
.ongitude (dd):	-85.55999	-84.97127	-84.77151	-85.57858	
coregion:	-83.33999 SMNITP	SMNITP	SMNITP	SMNITP	
tream Type:	Warmwater	Warmwater	Warmwater	Warmwater	
			4050001	4050001	
SGS Basin Code:	4050001	4050001			

	4U	5U	6U	7U	
	Swan Creek	Prairie River	Sauk River	Bear Creek	
	Burr Oak Rd	Main St.	Race St.	Longnecker Road	
	7/16/2015	9/2/2015	7/16/2015	8/6/2015	
	GLIDE/POOL	GLIDE/POOL	RIFFLE/RUN	RIFFLE/RUN	
HABITAT METRIC					
Substrate and Instream Cover					
Epifaunal Substrate/ Avail Cover (20)	10	13	19	12	
Embeddedness (20)*			19	13	
Velocity/Depth Regime (20)*			18	15	
Pool Substrate Characterization (20)**	13	15			
Pool Variability (20)**	15	15			
Channel Morphology					
Sediment Deposition (20)	10	15	17	11	
Flow Status - Maint. Flow Volume (10)	8	10	10	7	
Flow Status - Flashiness (10)	5	10	4	7	
Channel Alteration (20)	19	15	20	20	
Frequency of Riffles/Bends (20)*	16	14	20	11	
Channel Sinuosity (20)** Riparian and Bank Structure	16	14			
Bank Stability (L) (10)	7	10	6	7	
Bank Stability (L) (10) Bank Stability (R) (10)	7	10	6	7	
Vegetative Protection (L) (10)	7	5	7	8	
Vegetative Protection (R) (10)	7	5	7	8	
Riparian Vegetation Zone Width (L) (10)	8	2	6	10	
Riparian Vegetation Zone Width (E) (10)	8	2	6	10	
TOTAL SCORE (200):	140	141	165	146	
HABITAT RATING:					
	GOOD	GOOD	EXCELLENT	GOOD	
Date:	7/16/2015	9/2/2015	7/16/2015	8/6/2015	
Weather:	Cloudy	Sunny	Partly Cloudy	Sunny	
Air Temperature: °F	65	75	58	75	
Water Temperature: °F	70	66	65	72	
Ave. Stream Width: Feet	28.54	48.1067	41.765	27.989	
Ave. Stream Depth: Feet	2.06	0.89435	0.0676	0.5772	
Surface Velocity: Feet/Second					
Estimated Flow: Cubic Feet/Second					
Stream Modifications:	None	None	None	None	
Nuisance Plants (Y/N):	Ν	N	N	N	
STORET No.:	120003	750339	120251	750319	
County Code:	12	75	12	75	
TRS:	07S08W03	07S09W23	06S06W21	05S09W04	
Latitude (dd):	41.89612	41.84874	41.93562	42.05772	
Longitude (dd):	-85.22038	-85.31545	-85.00986	-85.35625	
Ecoregion:	SMNITP	SMNITP	SMNITP	SMNITP	
Stream Type:	Warmwater	Warmwater	Warmwater	Warmwater	
			4050001	4050001	
USGS Basin Code:	4050001	4050001		4030001	
ISGS Basin Code: * Applies only to Riffle/Run stream Surveys Note: Individual metrics may better describe cond	** Applies only to G	de/Pool stream Survey	s		

9U	10U	11U	12U	
Beebe Creek	Fawn River	Unnamed Trib to Prairie River	Prairie River	
Dewey Rd.	Haybridge Rd.	M66	Middle Colon Rd.	
7/15/2015	9/1/2015	9/2/2015	9/2/2015	
RIFFLE/RUN	GLIDE/POOL	GLIDE/POOL	GLIDE/POOL	
10	10	1	18	
15				
11				
	16	8	18	
	15	3	19	
16	10	3	15	
9	10	9	9	
9	9	3	3	
9	20	11	17	
10				
	20	1	16	
5	10	4	6	
8	7	4	8	
1	10	5	2	
5	8	5	10	
1	10	5	0	
1	10	5	10	
110	165	67	151	
GOOD	EXCELLENT	MARGINAL	GOOD	
7/15/2015	9/1/2015	9/2/2015	9/2/2015	
0.892	2.715	0.80469	1.41915	
+ <u> </u>		D · · ·		
		~		
4050001	4050001	4050001	4050001	
	ide/Pool stream Survey	1		
	Beebe Creek Dewey Rd. 7/15/2015 RIFFLE/RUN 10 15 11 1 16 9 9 10 5 8 1 10 5 8 1 10 5 8 1 10 68 64 7.653 0.892 0 Dredged N 300296 30 06802W04 41.934592 -84.518353 SMNITP Warmwater	Beebe Creek Fawn River Dewey Rd. Haybridge Rd. 7/15/2015 9/1/2015 RIFFLE/RUN GLIDE/POOL 10 10 15 11 16 10 9 10 9 10 9 10 9 10 9 20 10 20 5 10 8 7 1 10 5 8 1 10 10 165 8 7 1 10 5 8 1 10 10 165 GOOD EXCELLENT 7/15/2015 9/1/2015 Sunny Sunny 68 80 64 63 7.653 54.12 0.892 2.715 0 10 0 10	Beebe Creek Fawn River Unnamed Trib to Prairie River Dewey Rd. Haybridge Rd. M66 7/15/2015 9/1/2015 9/2/2015 RIFFLE/RUN GLIDE/POOL GLIDE/POOL 10 10 1 15	Beebe Creek Fawn River Unnamed Trib to Prairie River Prairie River Dewey Rd. Haybridge Rd. M66 Middle Colon Rd. 7/15/2015 9/1/2015 9/2/2015 9/2/2015 RIFFLE/RUN GLIDE/POOL GLIDE/POOL GLIDE/POOL 10 10 1 18 15

	13U	14U	15U	16U	
	Sand Creek	Spring Creek	Unnamed Trib to Prairie River	Spring Creek	
	Bean Rd.	Muskrat Lake Road	Prairie River Rd.	Johnson Road	
	7/15/2015	8/7/2015	8/6/2015	9/3/2015	
	GLIDE/POOL	GLIDE/POOL	GLIDE/POOL	GLIDE/POOL	
HABITAT METRIC					
Substrate and Instream Cover					
Epifaunal Substrate/ Avail Cover (20)	10	18	6	5	
Embeddedness (20)*					
Velocity/Depth Regime (20)*					
Pool Substrate Characterization (20)**	15	14	8	13	
Pool Variability (20)**	16	15	5	5	
Channel Morphology					
Sediment Deposition (20)	19	15	16	5	
Flow Status - Maint. Flow Volume (10)	10	9	8	10	
Flow Status - Flashiness (10)	10	9	8	10	
Channel Alteration (20)	20	20	5	20	
Frequency of Riffles/Bends (20)*					
Channel Sinuosity (20)**	19	19	1	11	
Riparian and Bank Structure					
Bank Stability (L) (10)	9	10	8	10	
Bank Stability (R) (10)	9	10	8	10	
Vegetative Protection (L) (10)	9	10	7	10	
Vegetative Protection (R) (10)	8	10	7	10	
Riparian Vegetation Zone Width (L) (10)	9	10	3	10	
Riparian Vegetation Zone Width (R) (10)	8	10	3	10	
FOTAL SCORE (200):	171	179	93	139	
HABITAT RATING:	EXCELLENT	EXCELLENT	MARGINAL	GOOD	
Date:	7/15/2015	8/7/2015	8/6/2015	9/3/2015	
Weather:	Sunny	Sunny	Sunny	Sunny	
Air Temperature: ^o F	80	70	72	85	
Water Temperature: °F	78	62	65	74	
Ave. Stream Width: Feet	17.1653	15.744	5.576	28.536	
Ave. Stream Depth: Feet	1.41259	0.56197	0.76096	2.276	
Surface Velocity: Feet/Second	1.11255	0.50177	0.70050	2.270	
Estimated Flow: Cubic Feet/Second					
Stream Modifications:	None	None	Dredged	None	
Nuisance Plants (Y/N):	N	N	N	N	
STORET No.:	120252	750275	120253	750324	
County Code:	30	75	120200	75	
TRS:	06W04W13	05S11W04	07S08W15	05S12W13	
Latitude (dd):	41.95588	42.06419	41.85931	42.03811	
Longitude (dd):	-84.728149	-85.60689	-85.23348	-85.64919	
Ecoregion:	SMNITP	SMNITP	SMNITP	SMNITP	
Stream Type:	Warmwater	Warmwater	Warmwater	Warmwater	
USGS Basin Code:	4050001	4050001	4050001	4050001	
* Applies only to Riffle/Run stream Surveys		lide/Pool stream Surveys			
		the biological communi			

Unnamed Tributary to Portage RiverRocky RiverBlack well DrainNottawa Creek36th AvenueMemory Isle ParkGirard RoadCorrell Road9/3/20159/2/20159/15/20159/15/2015HARTAT METRICGLIDE/POOLRIFFLFRUNGLIDE/POOLEpifumal Substrated Avail Cover (20)181010Enheddedness (20)*141610Pool Substrate Characterization (20)**181616Pool Substrate Characterization (20)**181611Channel Merphology10111110Pool Substrate Characterization (20)**181616Pool Substrate Characterization (20)**1610108Flow Status - Flashiness (10)10916Channel Merphology15151316Flow Status - Flashiness (10)10927Bank Stability (20)*20181111Channel Merphology20181116Channel Merphology1093716Rifter-Reda (20)*1093716Channel Substration (20)1093718Negatiare Potection (1,10)817616Right and Bank Structure180112117125Hank Stability (2)(10)109255Channel Substration Avanterian (30)8176Righta		17U	18U	19U	20U	
9/3/2015 9/3/2015 9/15/2015 9/15/2015 ABITAT METRIC CLDE/POOL GLDE/POOL RIFFLF/RUN GLDE/POOL Subtrate and Instream Cover - - - - Epifaunal Substrate/ Avail Cover (20) 18 10 10 13 - Pool Substrate Characterization (20)** 18 15 - - - Pool Substrate Characterization (20)** 19 10 - <td< th=""><th></th><th></th><th>Rock y River</th><th>Black well Drain</th><th>Nottawa Creek</th><th></th></td<>			Rock y River	Black well Drain	Nottawa Creek	
GLIDE/POOL GLIDE/POOL RIFFLE/RUN GLIDE/POOL ABITAT METRIC		36th Avenue	Memory Isle Park	Girard Road	Correll Road	
HABITAT METRIC Image: Control of the second se		9/3/2015	9/2/2015	9/15/2015	9/15/2015	
Substrate and Instream Cover Epifaunal Substrate/ Avail Cover (20) 18 10 10 13 Enheddedness (20)* 15 16 14 Velocity/Depth Rggme (20)* 18 15 16 Pool Substrate Characterization (20)** 19 10 11 Sediment Deposition (20) 16 10 10 8 Sediment Deposition (20) 16 10 9 1 6 Flow Status - Hashness (10) 10 9 1 6 Channel Abrevator (20) 19 15 15 13 Trequency ORBIB's Rends (20)* 10 9 2 7 Ribramel Subity (10,10) 10 9 3 7 Reparation Regetation Zone Width (10,10) 8 2 5 5 Vegetative Protection (10,10) 8 2		GLIDE/POOL	GLIDE/POOL	RIFFLE/RUN	GLIDE/POOL	
Epifounal Substrate/ Avail Cover (20) 18 10 10 13 Enheddedness (20)* 15 15 16 Velocity/Depth Regime (20)* 18 15 16 Pool Variability (20)** 19 10 11 Channel Morphology 11 11 11 Sediment Deposition (20) 16 10 10 8 Flow Status - Maint, Flow Volume (10) 10 10 6 9 Channel Aleration (20) 19 15 15 13 Frequency of Etifies/Bends (20)* 11 6 11 Channel Sinuosity (20)** 20 18 11 11 Riparian and Back Structure 2 7 18 11 11 Bank Stability (1) (10) 10 9 3 7 8 16 Vegetative Protection (1,1(10) 8 8 1 7 6 Riparian Vegetation Zone Width (1,1(10) 6 6 7 5 5 IDAL SCORE (20):	IABITAT METRIC					
Embeddedness (20)* 15 16 Velocity/Depth Regime (20)* 14 14 14 Pool Substruct Characterization (20)** 18 15 16 Pool Substruct Characterization (20)** 19 10 11 Sediment Deposition (20) 16 10 10 8 Flow Status - Riashiness (10) 10 9 1 6 Prequency of Riffles/Bends (20)* 15 13 13 Channel Markstructure 15 13 11 Bark Stability (1) (10) 10 9 2 7 Bank Stability (1) (10) 10 9 3 7 Vegetative Protection (1) (10) 8 8 7 8 Vegetative Protection (1) (10) 8 2 5 5 Riparia and Bank Structure 117 125 14 ABBTAT RATING: EXCELLENT GOOD GOOD GOOD Weather: 93/2015 9/2015 9/152015 9/152015 Wit remperature: "F	ubstrate and Instream Cover					
Velocity/Depth Regime (20)* 14 14 Pool Variability (20)** 18 15 16 Pool Variability (20)** 19 10 11 Schimet Deposition (20) 16 10 10 8 Schimet Deposition (20) 16 10 10 8 Schimet Deposition (20) 16 10 10 8 Flow Status - Maint. Flow Volume (10) 10 9 1 6 Channel Akerston (20) 19 15 15 13 Channel Akerstenet (10) 10 9 2 7 Bank Stability (1) (10) 10 9 3 7 Bank Stability (1) (10) 10 9 3 7 Vegetative Protection (1) (10) 8 8 7 8 Riparian Vegetation Zone Width (1) (10) 6 6 7 5 Riparian Vegetation Zone Width (1) (10) 8 2 5 5 OTAL SCORG (20): 180 132 117 125	Epifaunal Substrate/ Avail Cover (20)	18	10	10	13	
Pool Substrate Characterization (20)** 18 15 16 Pool Variability (20)** 19 10 11	Embeddedness (20)*			15		
Pool Variability (20)** 19 10 11 Channel Morphology	Velocity/Depth Regime (20)*			14		
Channel Morphology Image: Channel Morphology Image: Channel Microbiology Image: Ch	Pool Substrate Characterization (20)**	18	15		16	
Sediment Deposition (20) 16 10 10 8 Flow Status - Maint, Flow Volume (10) 10 10 6 9 Flow Status - Flashiness (10) 10 9 1 6 Channel Alteration (20) 19 15 13 16 Channel Snuosity (20)** 20 18 11 17 Bank Stability (L) (10) 10 9 2 7 18 Bank Stability (L) (10) 10 9 3 7 10 10 10 9 3 7 10 10 10 10 9 3 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 11 10 11 10 10 10 11 10 11 10 11 10 11 10 11 10 11 10 <td< td=""><td></td><td>19</td><td>10</td><td></td><td>11</td><td></td></td<>		19	10		11	
Flow Status - Maint, Flow Volume (10) 10 10 6 9 Flow Status - Flashiness (10) 10 9 1 6 Channel Alteration (20) 19 15 15 13 Frequency of Riffles/Bends (20)* 15 11 Riffles/Bends (20)* Channel Shuosity (20)** 20 18 11 Right (20)* Bank Stability (L) (10) 10 9 2 7 Bank Stability (R) (10) 10 9 3 7 Vegetative Protection (L) (10) 8 8 7 8 Vegetative Protection (L) (10) 6 6 7 5 IOTAL SCORE (200): 180 132 117 125 IABITAT RATING: EXCELLENT GOOD GOOD GOOD GOOD Weather: 80 Sunny Sunny Sunny Sunny Sunny Air Temperature: °F 72 76 60.5 66 2.27 Surface Velocity: Feet 0.903 0.848 0						
Flow Status - Flashiness (10) 10 9 1 6 Channel Alteration (20) 19 15 15 13 Frequency ORifles/Bends (20)* 15 11 11 Riparian and Bank Structure 11 11 11 Bank Stability (B) (10) 10 9 2 7 Bank Stability (B) (10) 10 9 2 7 Bank Stability (B) (10) 10 9 3 7 Vegetative Protection (B) (10) 8 8 7 8 Vegetative Protection (B) (10) 8 2 5 5 TOTAL SCORE (200): 180 132 117 125 HABITAT RATING: FXCELLENT GOOD GOOD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Channel Alteration (20) 19 15 15 13 Frequency of Rifles/Bends (20)* 15 15 11 Channel Sinuosity (20)* 20 18 11 Bank Stability (L) (10) 10 9 2 7 Bank Stability (L) (10) 10 9 3 7 Vegetative Protection (L) (10) 8 8 7 8 Riparian Vegetation Zone Width (L) (10) 6 6 7 5 Riparian Vegetation Zone Width (L) (10) 8 2 5 5 Riparian Vegetation Zone Width (R) (10) 8 2 5 5 TOTAL SCORE (200): 180 132 117 125 HABITAT RATING: EXCELLENT GOOD GOOD Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Water Temperature: "F 72 85 74 85 Water Temperature: "F 72 76 60.5 66 Ave. Stream Depth: Feet 0.033 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>			-			
Frequency of Rifles/Bends (20)* 15 Channel Sinuosity (20)** 20 18 11 Riparian and Bank Structure 10 9 2 7 Bank Stability (1) (10) 10 9 3 7 Bank Stability (R) (10) 10 9 3 7 Vegetative Protection (L) (10) 8 8 7 8 Vegetative Protection (R) (10) 8 1 7 6 Riparian Vegetation Zone Width (L) (10) 6 6 7 5 Riparian Vegetation Zone Width (R) (10) 8 2 5 5 TOTAL SCORE (200): 180 132 117 125 HABITAT RATING: EXCELLENT GOOD GOOD GOOD Date: 9/3/2015 9/15/2015 9/15/2015 9/15/2015 Waterremperature: °F 72 76 60.5 66 Ave: Stream Width: Feet 10.933 77.627 6.997 94.03 Ave: Stream Width: Feet 0.903 0.848			,			
Channel Sinuosity (20)** 20 18 11 Riparian and Bank Structure		19	15		13	
Riparian and Bank Structure Bank Stability (L) (10) 10 9 2 7 Bank Stability (L) (10) 10 9 3 7 Vegetative Protection (L) (10) 8 8 7 8 Vegetative Protection (R) (10) 8 1 7 6 Riparian Vegetation Zone Width (L) (10) 6 6 7 5 IOTAL SCORE (200): 180 132 117 125 HABITAT RATING: EXCELLENT GOOD GOOD GOOD Weather: %0 Sunny Sunny Sunny Mir Temperature: ^o F 72 85 74 85 Water Temperature: ^o F 72 76 60.51 2.27 Surface Velocity: Feet/Second				15		
Bank Stability (L) (10) 10 9 2 7 Bank Stability (R) (10) 10 9 3 7 Wegetative Protection (L) (10) 8 8 7 8 Vegetative Protection (R) (10) 8 1 7 6 Riparian Vegetation Zone Width (L) (10) 6 6 7 5 Riparian Vegetation Zone Width (R) (10) 8 2 5 5 IOTAL SCORE (200): 180 132 117 125 HABITAT RATING: EXCELLENT GOOD GOOD GOOD Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Water Temperature: ^o F 72 85 74 85 Water Temperature: ^o F 72 76 60.5 66 Ave. Stream Width: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second Extended How: Cubic Feet/Second 2.27 5 Stream Modifications: None None None None		20	18		11	
Bank Stability (R) (10) 10 9 3 7 Vegetative Protection (L) (10) 8 8 7 8 Vegetative Protection (R) (10) 8 1 7 6 Riparian Vegetation Zone Width (L) (10) 6 6 7 5 Riparian Vegetation Zone Width (R) (10) 8 2 5 5 IOTAL SCORE (200): 180 132 117 125 HABITAT RATING: EXCELLENT GOOD GOOD GOOD Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Obte: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Weather: 80 Sunny Sunny Sunny Kir Temperature: °F 72 76 60.5 66 Wee Stream Width: Feet 10.933 77.627 6.997 94.03 wer Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second Str						
Vegetative Protection (L) (10) 8 8 7 8 Vegetative Protection (R) (10) 8 1 7 6 Riparian Vegetation Zone Width (L) (10) 6 6 7 5 Riparian Vegetation Zone Width (R) (10) 8 2 5 5 FOTAL SCORE (200): 180 132 117 125 HABITAT RATING: FXCELLENT GOOD GOOD GOOD Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Weather: 80 Sunny Sunny Sunny Nir Temperature: °F 72 85 74 85 Weather: 0.903 0.848 0.651 2.27 Surface Velocity: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second Simated How: Cubic Feet/Second Simated How: Cubic Feet/Second Simated How: Cubic Feet/Second Stream Modifications: None Canopy Removal Dredged None Stormated How: Cubic Feet/Second 39 75 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Vegetative Protection (R) (10) 8 1 7 6 Riparian Vegetation Zone Width (L) (10) 6 6 7 5 Riparian Vegetation Zone Width (R) (10) 8 2 5 5 IOTAL SCORE (200): 180 132 117 125 HABITAT RATING: EXCELLENT GOOD GOOD GOOD Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Weather: 80 Sunny Sunny Sunny Air Temperature: °F 72 85 74 85 Water Temperature: °F 72 76 60.5 66 Ave. Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second Externed Modifications: None Canopy Removal Dredged None Stream Modifications: None Canopy Removal Dredged None 75 12 75 Stream M						
Riparian Vegetation Zone Width (L) (10) 6 6 7 5 Riparian Vegetation Zone Width (R) (10) 8 2 5 5 IOTAL SCORE (200): 180 132 117 125 HABITAT RATING: EXCELLENT GOOD GOOD GOOD Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Matter: 80 Sunny Sunny Sunny Air Temperature: °F 72 85 74 85 Weather: 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second Estimated Flow: Cubic Feet/Second 6 5 Stream Modifications: None Canopy Removal Dredged None Stream Koff 39 75 12 75 75 Stress: 035009/19 06511/118 05508/24 05509/14 Latitude (dd): 42.19779 41.945093 42.02827 42.04024 Longitude (dd): -85.41293 -85.637014 -85.19361 <td< td=""><td></td><td></td><td>-</td><td></td><td>-</td><td></td></td<>			-		-	
Riparian Vegetation Zone Width (R) (10) 8 2 5 5 IOTAL SCORE (200): 180 132 117 125 HABITAT RATING: EXCELLENT GOOD GOOD GOOD Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Meather: 80 Sunny Sunny Sunny Air Temperature: °F 72 85 74 85 Water Temperature: °F 72 76 60.5 66 Ave. Stream Width: Feet 10.933 77.627 6.997 94.03 Ave. Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second Estimated Flow: Cubic Feet/Second Stream Modifications: None Canopy Removal Dredged None Storear Modifications: N N N N N Streaw Gody: 390607 750280 120245 750327 County Code: 39 75 12 75 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
TOTAL SCORE (200): 180 132 117 125 HABITAT RATING: EXCELLENT GOOD GOOD GOOD Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Weather: 80 Sunny Sunny Sunny Air Temperature: °F 72 85 74 85 Water Temperature: °F 72 76 60.5 66 Ave. Stream Widh: Feet 10.933 77.627 6.997 94.03 Surface Velocity: Feet/Second Estimated Flow: Cubic Feet/Second Estimated Flow: Cubic Feet/Second Estimated Flow: Cubic Feet/Second Dredged None STORET No.: 390607 750280 120245 750327 County Code: 39 75 12 75 TRS: 03509W19 06S11W18 05S08W24 05S09W14 42.0924 Latitude (dd): 42.19779 41.945093 42.02827 42.04024 Longitude (dd): SMNITP SMNITP SMNITP SMNITP Stream Type: Warm						
HABITAT RATING: EXCELLENT GOOD GOOD GOOD Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Mare Temperature: °F 72 85 74 85 Water Temperature: °F 72 76 60.5 66 Ave. Stream Width: Feet 10.933 77.627 6.997 94.03 Ave. Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second	· · · · · · · · · · · · · · · · · · ·					
EXCELLENT GOOD GOOD GOOD Date: 9/3/2015 9/2/2015 9/15/2015 9/15/2015 Weather: 80 Sunny Sunny Sunny Air Temperature: °F 72 85 74 85 Water Temperature: °F 72 76 60.5 66 Ave. Stream Width: Feet 10.933 77.627 6.997 94.03 Ave. Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second Stream Modifications: None Canopy Removal Dredged None StroRET No.: 390607 750280 120245 750327 County Code: 39 75 12 75 TRS: 03509W19 06S11W18 05508W24 05S09W14 Latitude (dd): -85.41293 -85.637014 -85.19361 -85.3234 Ecoregion: SMNITP SMNITP SMNITP SMNITP Stream Type:		180	132	117	125	
Weather: 80 Sunny Sunny Sunny Air Temperature: °F 72 85 74 85 Water Temperature: °F 72 76 60.5 66 Ave. Stream Width: Feet 10.933 77.627 6.997 94.03 Ave. Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second	IABITAT RATING:	EXCELLENT	GOOD	GOOD	GOOD	
Weather: 80 Sunny Sunny Sunny Air Temperature: °F 72 85 74 85 Water Temperature: °F 72 76 60.5 66 Ave. Stream Width: Feet 10.933 77.627 6.997 94.03 Ave. Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second	ate.	9/3/2015	9/2/2015	9/15/2015	9/15/2015	
Air Temperature: °F 72 85 74 85 Water Temperature: °F 72 76 60.5 66 Ave. Stream Width: Feet 10.933 77.627 6.997 94.03 Ave. Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second						
Water Temperature: °F 72 76 60.5 66 Ave. Stream Width: Feet 10.933 77.627 6.997 94.03 Ave. Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second				-	· · · · ·	
Ave. Stream Width: Feet 10.933 77.627 6.997 94.03 Ave. Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second 0.903 0.848 0.651 2.27 Stream Modifications: None Canopy Removal Dredged None Nisiance Plants (Y/N): N N N N STORET No.: 390607 750280 120245 750327 County Code: 39 75 12 75 TRS: 03509W19 06S11W18 05S08W24 05S09W14 Latitude (dd): 42.19779 41.945093 42.02827 42.04024 Longitude (dd): -85.41293 -85.637014 -85.133214 -85.33234 Ecoregion: SMNITP SMNITP SMNITP SMNITP SMNITP Stream Type: Warmwater Warmwater Warmwater Warmwater Warmwater	•					
Ave. Stream Depth: Feet 0.903 0.848 0.651 2.27 Surface Velocity: Feet/Second						
Surface Velocity: Feet/Second Image: Cubic Feet/Second Image: Canopy Removal Dredged None Stream Modifications: None Canopy Removal Dredged None Nuisance Plants (V/N): N N N N Stream Modifications: None Canopy Removal Dredged None STORET No.: 390607 750280 120245 750327 County Code: 75 12 75 County Code: 39 75 12 75 Image: Canopy Removal 05508W24 05509W14 Latitude (dd): 42.19779 41.945093 42.02827 42.04024 Image: Canopy Removal Image: Canopy Removal Res.3234 Image: Canopy Removal Res.3234 <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td>					,	
Estimated Flow: Cubic Feet/Second None Canopy Removal Dredged None Stream Modifications: None Canopy Removal Dredged None Nuisance Plants (V/N): N N N N STORET No.: 390607 750280 120245 750327 County Code: 39 75 12 75 TRS: 03509W19 06S11W18 05S08W24 05S09W14 Latitude (dd): 42.19779 41.945093 42.02827 42.04024 Longitude (dd): -85.41293 -85.637014 -85.19361 -85.33234 Ecoregion: SMNITP SMNITP SMNITP SMNITP Stream Type: Warmwater Warmwater Warmwater USGS Basin Code: 4050001 4050001 4050001 4050001		0.903	0.848	0.651	2.27	
Stream Modifications: None Canopy Removal Dredged None Nuisance Plants (Y/N): N N N N N N N STORET No.: 390607 750280 120245 750327 Image: County Code: 39 75 12 75 Image: County Code: 03509W19 06S11W18 05S08W24 05S09W14 Image: County Code: 42.09779 41.945093 42.02827 42.04024 Image: County Code: 42.019779 41.945093 42.02827 42.04024 Image: County Code: 45.41293 -85.637014 -85.13961 -85.33234 Image: County Code: SMNITP SMSMarket Warmwater						
Nuisance Plants (Y/N): N N N N N N N N STORET No.: 390607 750280 120245 750327 County Code: 39 75 12 75 County Code: 39 75 12 75 County Code: 03509W19 06S11W18 05S08W24 05S09W14 Latitude (dd): 42.09779 41.945093 42.02827 42.04024 County Code: County Code: Statitude (dd): -85.41293 -85.637014 -85.19361 -85.33234 Corregion: SMNITP S		Nona	Conony Domoval	Deadaad	Nono	
STORET No.: 390607 750280 120245 750327 County Code: 39 75 12 75 TRS: 03509W19 06S11W18 05S08W24 05S09W14 Latitude (dd): 42.19779 41.945093 42.02827 42.04024 Longitude (dd): -85.41293 -85.637014 -85.19361 -85.33234 Ecoregion: SMNITP SMNITP SMNITP SMNITP Stream Type: Warmwater Warmwater Warmwater USGS Basin Code: 4050001 4050001 4050001						
County Code: 39 75 12 75 TRS: 03S09W19 06S11W18 05S08W24 05S09W14 Latitude (dd): 42.19779 41.945093 42.02827 42.04024 Longitude (dd): -85.41293 -85.637014 -85.19361 -85.33234 Ecoregion: SMNITP SMNITP SMNITP Stream Type: Warmwater Warmwater Warmwater USGS Basin Code: 4050001 4050001 4050001			-			
TRS: 03S09W19 06S11W18 05S08W24 05S09W14 Latitude (dd): 42.19779 41.945093 42.02827 42.04024 Longitude (dd): -85.41293 -85.637014 -85.19361 -85.33234 Ecoregion: SMNITP SMNITP SMNITP SMNITP Stream Type: Warmwater Warmwater Warmwater USGS Basin Code: 4050001 4050001 4050001						
Latitude (dd): 42.19779 41.945093 42.02827 42.04024 Longitude (dd): -85.41293 -85.637014 -85.19361 -85.33234 Ecoregion: SMNITP SMNITP SMNITP SMNITP Stream Type: Warmwater Warmwater Warmwater Warmwater USGS Basin Code: 4050001 4050001 4050001 4050001	•					
Longitude (dd): -85.41293 -85.637014 -85.19361 -85.33234 Ecoregion: SMNITP SMNITP SMNITP SMNITP Stream Type: Warmwater Warmwater Warmwater Warmwater USGS Basin Code: 4050001 4050001 4050001 4050001						
Ecoregion: SMNITP SMNITP SMNITP Stream Type: Warmwater Warmwater Warmwater USGS Basin Code: 4050001 4050001 4050001						
Stream Type: Warmwater Warmwater Warmwater USGS Basin Code: 4050001 4050001 4050001						
USGS Basin Code: 4050001 4050001 4050001 4050001	8					
* Applies only to Riffle/Run stream Surveys ** Applies only to Glide/Pool stream Surveys					1020001	

	21U	22U	23U	1L	
	Hog Creek	St. Joseph River	St. Joseph River	Pipestone Creek	
	Girard Road	Stowell Road	M-66 at 28140 Talon Drive	Wildwood Dr	
	9/15/2015	9/15/2015	9/25/2015	9/22/2016	
	RIFFLE/RUN	RIFFLE/RUN	GLIDE/POOL	RIFFLE/RUN	
IABITAT METRIC					
ubstrate and Instream Cover					
Epifaunal Substrate/ Avail Cover (20)	14	17	17	15	
Embeddedness (20)*	15	15		11	
Velocity/Depth Regime (20)*	15	18		14	
Pool Substrate Characterization (20)**			15		
Pool Variability (20)**			10		
Channel Morphology					
Sediment Deposition (20)	16	15	13	10	
Flow Status - Maint. Flow Volume (10)	9	9	10	9	
Flow Status - Flashiness (10)	2	3	9	2	
Channel Alteration (20)	20	20	20	20	
Frequency of Riffles/Bends (20)*	6	16		18	
Channel Sinuosity (20)**			18		
Riparian and Bank Structure					
Bank Stability (L) (10)	6	7	8	5	
Bank Stability (R) (10)	7	9	8	5	
Vegetative Protection (L) (10)	8	7	8	2	
Vegetative Protection (R) (10)	8	9	8	2	
Riparian Vegetation Zone Width (L) (10)	8	7	6	2	
Riparian Vegetation Zone Width (R) (10)	8	10	6	3	
TOTAL SCORE (200):	142	162	156	118	
IABITAT RATING:	GOOD	EXCELLENT	EXCELLENT	GOOD	
Date:	9/15/2015	9/15/2015	9/25/2015	9/22/2016	
Veather:	Partly Cloudy	Sunny	Sunny	Cloudy	
xir Temperature: ⁰F	72	80	75	82	
•	60.4	70.2	70	68	
Vater Temperature: °F					
we. Stream Width: Feet	37.449	113.05	329.64	26.896	
Ave. Stream Depth: Feet Surface Velocity: Feet/Second	1.034	2.06	1.404	1.176	
stimated Flow: Cubic Feet/Second				2 51	
	News	News	News		
tream Modifications:	None	None N	None N	None N	
Nuisance Plants (Y/N): TORET No.:	N 120242	N 750001	N 750326	N 110804	
County Code:	120242	75	750326	110804	
RS:	05S06W18	/5 06S09W01	05S10W25	55S18W03	
				55818W 03 42.060079	
Latitude (dd):	42.02921 -85.04859	41.97248 -85,30265	42.00758		
Longitude (dd):			-85.41126	-86.396446	
Coregion:	SMNITP	SMNITP	SMNITP	SMNITP	
tream Type:	Warmwater	Warmwater	Warmwater	4050001	
ISGS Basin Code:	4050001	4050001	4050001	4050001	
Applies only to Riffle/Run stream Surveys	A A A 1 1 1 00	ide/Pool stream Survey	1	1	

2L	3L	4L	5L	
Brandywine Creek	Dowagiac River	Hickory Creek	Old Bitty Creek	
US-12	Atwood Road	Upstream Snow Road	Red Bud Tr	
8/29/2016	9/23/2016	9/22/2016	8/29/2016	
GLIDE/POOL	GLIDE/POOL	GLIDE/POOL	RIFFLE/RUN	
14	8	1	8	
			16	
			19	
17	8	11		
15	14	11		
19	18	6	11	
10	10	7	8	
10	1	9	0	
20	20	0	19	
			16	
16	17	0		
10	8	9	4	
10	6	9	1	
9	9	9	7	
9	6	9	0	
9	9	1	3	
9	6	1	0	
177	140	83	112	
EXCELLENT	GOOD	MARGINAL	GOOD	
8/29/2016	9/23/2016	9/22/2016	8/29/2016	
		U		
			SMNITP	
Coldwater	Coldwater	Coldwater		
4050001 ** Applies only to Glid	4050001	4050001	4050001	
	Brandywine Creek US-12 8/29/2016 GLIDE/POOL 14 14 17 15 19 10 10 20 16 10 20 16 10 10 20 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Brandywine Creek Dowagiac River US-12 Atwood Road 8/29/2016 9/23/2016 GLIDE/POOL GLIDE/POOL 14 8 17 8 15 14 19 18 10 10 10 1 20 20 16 17 10 8 10 6 9 9 6 9 9 6 9 9 6 177 140 8 10 10 120 20 20 20 10 14 10 8 100 6 9 9 10 6 9 9 10 8 100 8 100 6 9 10 12.79 28.86	Brandywine Creek Dowagiac River Hickory Creek US-12 Atwood Road Upstream Snow Road 8/29/2016 9/23/2016 9/22/2016 GLDE/POOL GLDE/POOL GLDE/POOL 14 8 1 17 8 11 15 14 11 9 18 6 10 10 7 10 1 9 20 20 0 16 17 0 10 6 9 9 9 9 9 6 9 9 6 1 177 140 83 EXCELLENT GOOD MARGINAL 8/29/2016 9/23/2016 9/22/2016 9/23/2016 9/22/2016 9/22/2016 Sunny Cloudy Sunny 80 75 85 65 64 64 12.79 28.86 14.76	Brandywine Creek Dowagiac River Hickory Creek Old Bitty Creek US-12 Atwood Road Upstream Snow Road Red Bud Tr 8/29/2016 9/23/2016 9/22/2016 8/29/2016 GLIDE/POOL GLIDE/POOL GLIDE/POOL RIFFLE/RUN 14 8 1 8 10 16 16 17 8 11 15 14 11 10 10 7 8 10 19 18 6 11 10 1 9 0 0 20 20 0 19 16 16 17 0 16 17 10 8 9 4 10 10 8 9 4 10 9 9 1 3 112 9 6 1 0 11 9 9 1 3 112 9

	6L	7L			
	Prairie River	Prairie River			
	Bowers Rd	Orland Rd			
	8/31/2016	8/31/2016			
	GLIDE/POOL	RIFFLE/RUN			
HABITAT METRIC					
Substrate and Instream Cover					
Epifaunal Substrate/ Avail Cover (20)	8	16			
Embeddedness (20)*		19			
Velocity/Depth Regime (20)*		15			
Pool Substrate Characterization (20)**	11				
Pool Variability (20)**	6				
Channel Morphology					
Sediment Deposition (20)	5	20			
Flow Status - Maint. Flow Volume (10)	9	9			
Flow Status - Flashiness (10)	1	9			
Channel Alteration (20)	15	20			
Frequency of Riffles/Bends (20)*		17			
Channel Sinuosity (20)**	5				
Riparian and Bank Structure					
Bank Stability (L) (10)	5	9			
Bank Stability (R) (10)	5	9			
Vegetative Protection (L) (10)	6	2		_	
Vegetative Protection (R) (10)	6	3			
Riparian Vegetation Zone Width (L) (10)	4	2			
Riparian Vegetation Zone Width (R) (10)	7	3			
TOTAL SCORE (200):	93	153			
HABITAT RATING:	MARGINAL	GOOD			
Date:	8/31/2016	8/31/2016			
Weather:	Partly Cloudy	Cloudy			
Air Temperature: [°] F	75	75			
Water Temperature: ^o F	69	68			
Ave. Stream Width: Feet	31.816	21.43			
Ave. Stream Depth: Feet	0.711	0.3			
Surface Velocity: Feet/Second	2	1			
Estimated Flow: Cubic Feet/Second	39	27			
Stream Modifications:	anopy Removal/Dredge	None			
Nuisance Plants (Y/N):	N	N			1
STORET No.:	130324	120254			
County Code:	12	120201			
TRS:	08S07W03	07S08W25			
Latitude (dd):	41.80182	41.8391			
Longitude (dd):	-85.11642	-85.19303			
Ecoregion:	SMNITP	SMNITP			
Stream Type:	Warmwater		1		
USGS Basin Code:	4050001	4050001			
* Applies only to Riffle/Run stream Surveys	** Applies only to Glid	e/Pool stream Surve	ys	1	
Note: Individual metrics may better describe con				t Rating describes the	general riverine
environment at the site(s).		-		-	

Appendix B

Lake Name	County	Program	Year Sampled
Barton	Kalamazoo	CLMP	2018
Birch (Fallon)	Cass	CLMP	2018
Birch (Temple)	Cass	CLMP	2015
Cedar	Van Buren	CLMP	2018
Christiana	Cass	CLMP	2018
Corey	St. Joseph	CLMP	2018
Diamond	Cass	CLMP	2018
Eagle	Cass	CLMP	2018
Fishers	St. Joseph	CLMP	2018
Grass	St. Joseph	CLMP	2018
Gravel	Van Buren	CLMP	2018
Harwood	Cass	CLMP	2016
Huyck	Branch	CLMP	2016
Indian	Kalamazoo	CLMP	2018
Juno	Cass	CLMP	2018
Kelsey (Big)	Cass	CLMP	2018
Kelsey (Little)	Cass	CLMP	2018
Klinger	St. Joseph	CLMP	2018
Magician	Cass	CLMP	2018
Painter	Cass	CLMP	2018
Perrin	St. Joseph	CLMP	2018
Portage	St. Joseph	CLMP	2018
Puterbaugh	Cass	CLMP	2018
Randall	Branch	CLMP	2015
Shavehead	Cass	CLMP	2018
Twin (Big-North)	Cass	CLMP	2016
Wahbememe	St. Joseph	CLMP	2018
West	Kalamazoo	CLMP	2017
Long	Hillsdale	DNR	2018
Long	Kalamazoo	DNR	2018
Lime Lakes	Cass	DNR	2017
Donnell Lake	Cass	DNR	2017
Bunker	Cass	DNR	2017
S Sand Lake	Hillsdale	DNR	2017
N Sand Lake	Hillsdale	DNR	2017
Hemlock Lake	Hillsdale	DNR	2017
Carpenter Lake	Hillsdale	DNR	2017
Sunset Lake	Kalamazoo	DNR	2017
Painter	Cass	DNR	2017

Lake Name	County	Program	Year Sampled
Juno (Christiana) Lakes	Cass	DNR	2017
Fish Lake	St Joseph	DNR	2017
Magician Lake	Cass	DNR	2017
Day Lake	Cass	DNR	2016
Curtis Lake	Cass	DNR	2016
Chain Lake	Cass	DNR	2016
Oliverda (Clayton, Kirby) Lake	Branch	DNR	2016
Kenyon Lake	Branch	DNR	2016
Fourth (Foot, Bass) Lake	Hillsdale	DNR	2016
Gravel Lake	Hillsdale	DNR	2016
Hemlock Lake	Cass	DNR	2016
Pleasant Lake	St Joseph	DNR	2015
Coldwater Lake	Branch	DNR	2015
Indian Lake	Cass	DNR	2015
Little Crooked Lake	Cass	DNR	2015
Lake Lavine	Branch	DNR	2015
Indiana Lake	Cass	DNR	2014
Lake Templine	Branch	DNR	2013
Howard Lake	Kalamazoo	DNR	2012
Morrison Lake	Branch	DNR	2012
Craig Lake	Branch	DNR	2012
Sand Lake	St Joseph	DNR	2012
Cary Lake	Branch	DNR	2012
Indian Lake	Kalamazoo	DNR	2011
Kelsey Lake	Cass	DNR	2011
Sturgeon Lake	St Joseph	DNR	2011
Palmer Lake	St Joseph	DNR	2011
East Long Lake	Branch	DNR	2011
Archer Lake	Branch	DNR	2011
Long Lake (Colon Twp)	St Joseph	DNR	2011
Bankson Lake	Van Buren	DNR	2011
Barron Lake	Cass	DNR	2010
Austin Lake	Kalamazoo	DNR	2010
Sturgis Impoundment	St Joseph	DNR	2010
Prairie River Lake	St Joseph	DNR	2010
Gull Lake	Kalamazoo	MSU Sediment	1999 and 2005
Paw Paw Lake	Berrien	MSU Sediment	2001 and 2007
Birch Lake	Cass	MSU Sediment	2003
Bird Lake	Hillsdale	MSU Sediment	2009
Klinger Lake	St. Joseph	MSU Sediment	2009

Lake Name	County	Program	Year Sampled
Cora Lake	Van Buren	MSU Sediment	2009
Round Lake	Van Buren	NLA	2012
Palmer Lake	St. Joseph	NLA	2012 and 2017
West Lake	Kalamazoo	NLA	2012 and 2017
Fourth Lake	Hillsdale	NLA	2012
Pond Near Birch Lake	Cass	NLA	2012
Pond Near Mud Lake	Kalamazoo	NLA	2012
Dowagiac Impoundment	Cass	NLA	2012
Coldwater Lake	Branch	LWQA	2010
Randall Lake	Branch	LWQA	2011
Marble Lake	Branch	LWQA	2005
Marble Lake	Branch	LWQA	2005
Rose Lake	Branch	LWQA	2010
Rose Lake	Branch	LWQA	2010
Rose Lake	Branch	LWQA	2010
Coldwater Lake	Branch	LWQA	2010
Gilead Lake	Branch	LWQA	2009
Gilead Lake	Branch	LWQA	2009
Lake Lavine	Branch	LWQA	2009
Matteson Lake	Branch	LWQA	2005
Union Lake	Branch	LWQA	2005
Archer Lake	Branch	LWQA	2010
Cary Lake	Branch	LWQA	2005
Craig Lake	Branch	LWQA	2010
North Lake	Branch	LWQA	2010
South Lake	Branch	LWQA	2005
Morrison Lake	Branch	LWQA	2010
Silver Lake	Branch	LWQA	2005
East Long Lake	Branch	LWQA	2010
Oliverda Lake	Branch	LWQA	2010
Kenyon Lake	Branch	LWQA	2005
Nottawa Lake	Calhoun	LWQA	2005
Lee Lake	Calhoun	LWQA	2005
Warners Lake	Calhoun	LWQA	2005
Homer Lake	Calhoun	LWQA	2005
Homer Lake	Calhoun	LWQA	2005
Diamond Lake	Cass	LWQA	2001
Diamond Lake	Cass	LWQA	2001
Fish Lake	Cass	LWQA	2006
Hemlock Lake	Cass	LWQA	2005

Lake Name	County	Program	Year Sampled
Christiana Lake	Cass	LWQA	2006
Donnell Lake	Cass	LWQA	2006
Juno Lake	Cass	LWQA	2006
Belas Lake	Cass	LWQA	2001
Birch Lake	Cass	LWQA	2006
Harwood Lake	Cass	LWQA	2005
Magician Lake	Cass	LWQA	2006
Mill Pond	Cass	LWQA	2005
Paradise Lake	Cass	LWQA	2006
Baldwins Lake	Cass	LWQA	2001
Stone Lake	Cass	LWQA	2001
North Twin Lake	Cass	LWQA	2006
Shavehead Lake	Cass	LWQA	2006
Shavehead Lake	Cass	LWQA	2006
Kirk Lake	Cass	LWQA	2001
Dewey Lake	Cass	LWQA	2006
Driskels Lake	Cass	LWQA	2005
South Twin Lake	Cass	LWQA	2001
Long Lake	Hillsdale	LWQA	2005
Hemlock Lake	Hillsdale	LWQA	2009
Baw Beese Lake	Hillsdale	LWQA	2005
Round Lake	Hillsdale	LWQA	2005
Austin Lake	Kalamazoo	LWQA	2005
Barton Lake	Kalamazoo	LWQA	2009
Indian Lake	Kalamazoo	LWQA	2010
Long Lake	Kalamazoo	LWQA	2010
Barton Lake	Kalamazoo	LWQA	2009
Sugarloaf Lake	Kalamazoo	LWQA	2009
Portage Lake	Kalamazoo	LWQA	2005
Portage Lake	Kalamazoo	LWQA	2005
West Lake	Kalamazoo	LWQA	2010
Hogset Lake	Kalamazoo	LWQA	2005
Gourdneck Lake	Kalamazoo	LWQA	2009
Long Lake	St. Joseph	LWQA	2009
Palmer Lake	St. Joseph	LWQA	2010
Klinger Lake	St. Joseph	LWQA	2005
Fishers Lake	St. Joseph	LWQA	2010
Corey Lake	St. Joseph	LWQA	2010
Pleasant Lake	St. Joseph	LWQA	2010
Pleasant Lake	St. Joseph	LWQA	2010

Lake Name	County	Program	Year Sampled
Big Fish Lake	St. Joseph	LWQA	2010
Long Lake	St. Joseph	LWQA	2010
Long Lake	St. Joseph	LWQA	2010
Crotch (Omena)	St. Joseph	LWQA	2010
Sand Lake	St. Joseph	LWQA	2005
Sturgeon Lake	St. Joseph	LWQA	2005
Thompson Lake	St. Joseph	LWQA	2009
Three Rivers Impoundment	St. Joseph	LWQA	2010
Clear Lake	St. Joseph	LWQA	2010
Portage Lake	St. Joseph	LWQA	2005
Prairie River Lake	St. Joseph	LWQA	2010
Bankson Lake	Van Buren	LWQA	2009
Lake of the Woods	Van Buren	LWQA	2006
Cedar Lake	Van Buren	LWQA	2001
Round Lake	Van Buren	LWQA	2006
Gravel Lake	Van Buren	LWQA	2001
Huzzy Lake	Van Buren	LWQA	2005
Corey Lake	Van Buren	LWQA	2010