MICHIGAN ENERGY OFFICE

Electric Vehicle Charger Placement Optimization in Michigan: Phase 1 - Michigan Highways

MiEIBC EV Convening December 19, 2018 12:00 – 1:00 PM

Note: Revised on 02/13/2019 to reflect final findings.

Agenda

- Welcome & Introduction
- Background & Stakeholder Process
- Methodology
- Scenarios & Findings
- Results & Discussion
- Next Steps
- Questions

Electric Vehicles – Planning for the Future

Michigan Energy Office initiated steps towards developing an effective DC fast charging network ensuring worry-free EV travel through Michigan by 2030.

- Develop bare-bones system
- Provide complete connectivity

Electric Vehicles – Infrastructure

Michigan has limited charging infrastructure.¹

- <2% of U.S. DC fast charger ports
- 2.2% of U.S. Level 2 ports

However, Michigan has:

- Autonomous vehicle support (PA 332 of 2016)
- Investment in EVs from business sector (GM, Ford, Toyota, etc.), utilities, and others.

Multi-Phase Project for EV Charger Placement.

Phase

- Phase I: Intercity EV Trips (Highways)
 - Phase 1 Supplements
 - Full Tourism Analysis
 - Economic Impacts Analysis
- Phase II: Urban EV Trips (Select Cities)

Timeline

December 2018 Spring 2019

Fall 2019

Many Thanks to Participating Stakeholders.

Auto Companies

- General Motors
- Ford Motor Company
- Toyota

Transmission and Utility Companies

- American Transmission Company
- Cherryland Electric Cooperative
- Consumers Energy
- DTE Energy
- Great Lakes Energy Cooperative
- Indiana Michigan Power
- ITC Transmission Company
- Lansing Board of Water and Light
- Michigan Electric Cooperative Association
- Michigan Municipal Electric Association
- Wolverine Power Cooperative

Charging Station Companies

- ChargePoint
- Greenlots

National Organizations

- National Association of State Energy Officials
- Electrify America

State of Michigan Departments

- Michigan Department of Environmental Quality
- Michigan Department of Natural Resources
- Michigan Department of Transportation
- Michigan Economic Development Corporation
- Michigan Public Service Commission

Many Thanks to Participating Stakeholders.

Other

- Corrigan Oil
- 5 Lakes Energy
- Center for Automotive Research
- Clean Fuels Michigan
- Ecology Center

EV Drivers and Owners

- Michigan Energy Innovation Business Council
- Michigan Environmental Council
- NextEnergy
- Sierra Club

Electric Vehicle Charger Placement Optimization Project

December 19, 2018

Dr. Mehrnaz Ghamami
Dr. Ali Zockaie
Dr. Steven Miller

Acknowledgement

This study is commissioned and funded by the Michigan Energy Office.

Problem Statement

Find the optimal DC fast charging infrastructure investment to support electric vehicle travel in Michigan to ensure travel continuity:

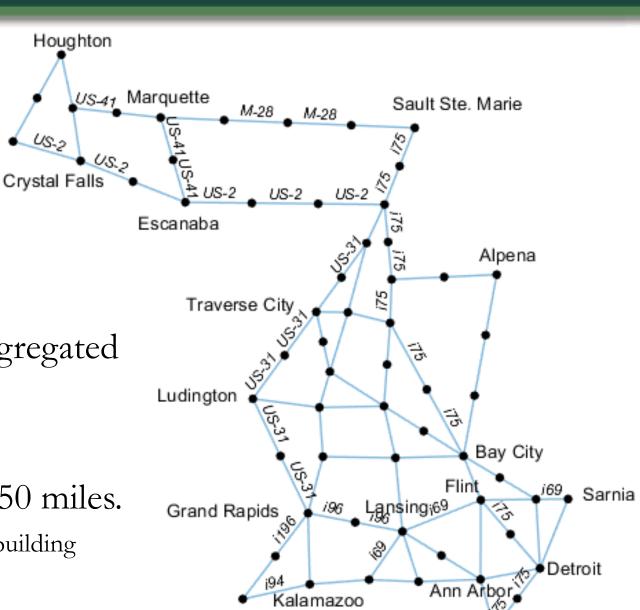
- Where to deploy charging stations?
- How many charging outlets must be built at each station?
- What is the approximate investment cost?

Model Seeks Feasible EV Travel at Least Cost.

Modeling framework considers:

- EV trip feasibility
- Minimizing costs
 - Charging station investment cost
 - Traveler delay cost includes:
 - Charging time
 - Queuing delay time
 - Detour time

Simplified Reference Road Network

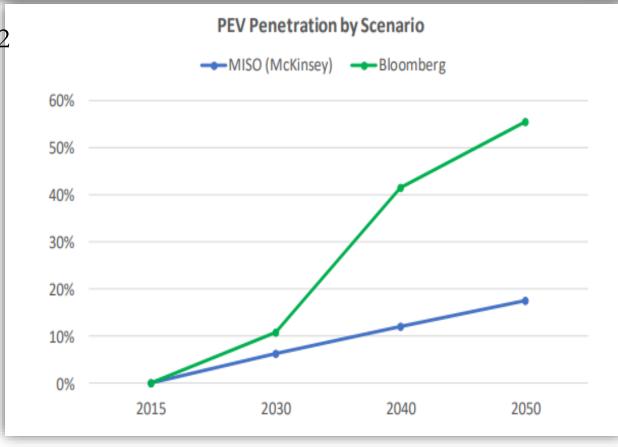

Reference road network:

- Includes major cities & interstate highways.
- Focuses on travel between cities.

Simplification Process:

- Travel demand around major cities aggregated to city center.
- Travel demand within cities excluded.
- Distance between candidate points < 50 miles.

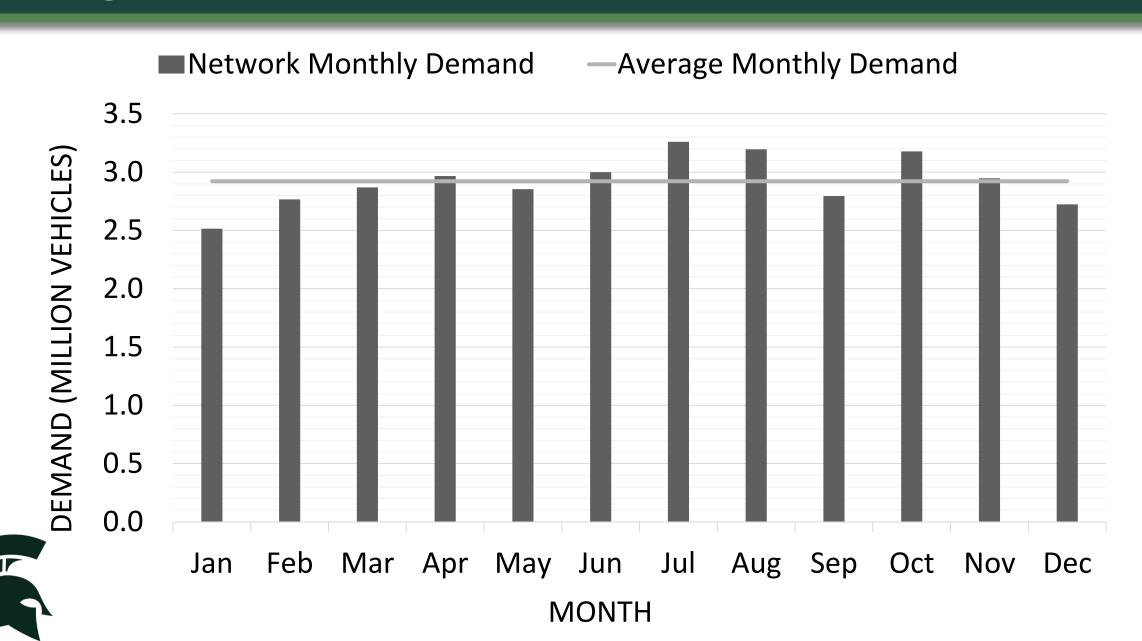
Candidate points may or may not be selected for building charging stations



Conservative MI EV Market Projections Used.

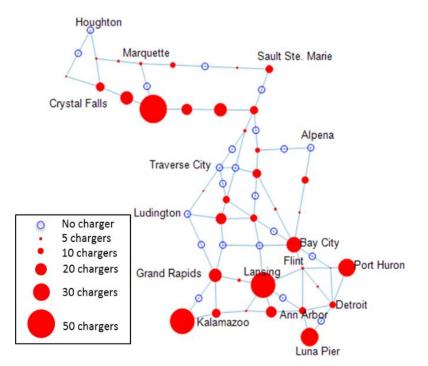
Two sources for MI EV projections:²

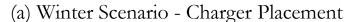
- MISO scenario:
 - 2020: 1.49%
 - 2025: 3.74%
 - 2030: 6%
- Bloomberg scenario:
 - 2020: 2.46%
 - 2025: 6.56%
 - 2030: 12%

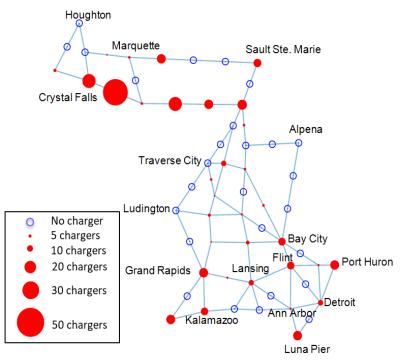


where EV market share is the proportion of EVs to all vehicles on the road.

Average Travel Demand/Month Used.




Seasonal Demand & Performance Examined.



Two scenarios examined impact of winter battery performance and seasonal travel demand.

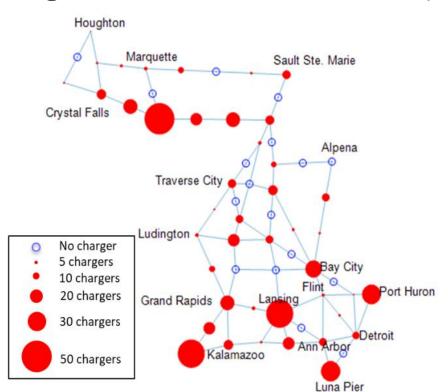
- Summer travel demand with 100% battery performance
- Winter travel demand with 70% battery performance

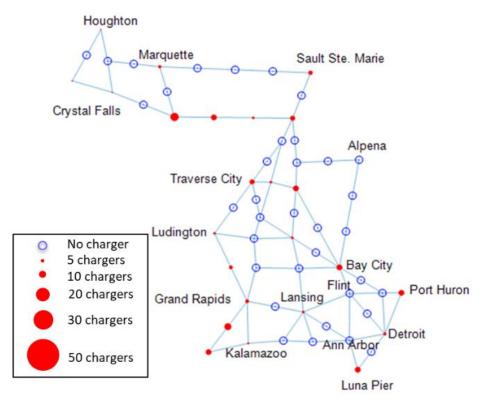
(b) Summer Scenario - Charger Placement

Winter Scenario Allows EV Travel Year Round. MIC

Optimization Model Outputs	Winter Scenario	Summer Scenario	Summer Demand in Winter Scenario
Number of Stations	38	38	33
Number of Charging Outlets	552	552	315
Total Delay (hr)	3642	2314	2078
Total investment cost (million \$)	25.6	25.6	16.2

- Winter demand is not feasible with summer solution.
- Summer demand is feasible with winter solution.
 - → All main scenarios use the winter season.


High & Low-Tech Scenarios Analyzed.



Two technology scenarios analyzed for 2020, 2025, & 2030:

• Low-Tech: 70 kWh battery with 50 kW charger

• High-Tech: 100 kWh battery with 150 kW charger

(a) 2030: Low-Tech Scenario

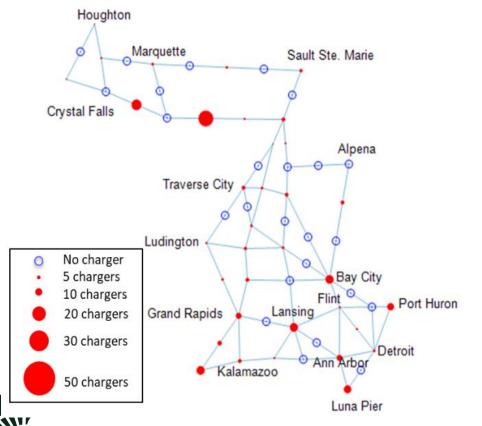
(b) 2030: High-Tech Scenario

2030 High Tech Scenario is Lower Cost.

High-tech scenario is lower cost with less EV user delay.

- Though 150 kW stations more expensive, less are required.
- User delay from 30.67 to 12.38 minutes by moving to 150 kW chargers.

2020 Sagnatia Outputa	Low-tech: 70 kWh	High-tech: 100 kWh	
2030 Scenario Outputs	Battery & 50 kW Charger	Battery & 150 kW Charger	
Optimum Charger Placement			
Number of charging stations	43	24	
Number of chargers	600	131	
Investment cost			
Charging station cost (million dollars)	6.64	4.37	
Land cost (million dollars)	1.13	0.25	
Charger cost (million dollars)	20.3	9.99	
Total cost (million dollars)	28.0	14.6	
Delay time			
Average delay (min)	30.7	12.4	



Mixed Technology Scenario is Recommended. MICHIGA

Mixed scenario considered: 70 kWh battery, 150 kW charger

Vehicles with smaller batteries or degraded batteries will be on road.

2020	3 f' 1	\circ	•
7030.	Mixed	Cen	12410
4000.	MIACU	\mathcal{O}	ши

	Low-tech	High-tech	Mixed
Scenario Specification			
EV market share (%)	6	6	6
Charging power (kw)	50	150	150
Battery energy (kwh)	70	100	70
Optimum Charger Placement			
Number of charging stations	43	24	35
Number of charging outlets	600	131	196
Investment Cost			
Charging station cost (Million dollars)	6.64	4.37	6.47
Land cost (Million dollars)	1.13	0.25	0.37
Charging outlet cost (Million dollar)	20.3	9.99	15.0
Total cost (Million dollar)	28.0	14.6	21.8

This is an Opportunity for Michigan.

VW settlement funds provide opportunity to build DC fast charging infrastructure in Michigan.

• If used thoughtfully, optimized DC fast charging network is possible, especially if costs are shared.

Michigan Energy Office seeks to partner with utilities and site hosts to support infrastructure placement according to optimized placement findings.

• For both highways and communities.

Michigan Energy Office will post RFP for DC fast charging infrastructure placement in 2019.

- Initially start with a few recipients to test the VW settlement payment system and timeline
- Once familiar with VW settlement payment process, more will be awarded.

Thank you!

Michigan State University Mehrnaz Ghamami

Email: ghamamim@egr.msu.edu

Phone: (517) 355-1288

Ali Zockaie

Email: zockaiea@egr.msu.edu

Phone: (517) 355-8422

Steven Miller

Email: mill1707@anr.msu.edu

Phone: (517) 355-2153

Michigan Energy Office Robert Jackson

Email: jacksonr20@michigan.gov

Phone: (517) 930-6163

Joy Wang

Email: wangj3@michigan.gov

Phone: (517) 284-6894

References

- 1. Atlas EV Hub. (2018). Retrieved from: https://www.atlasevhub.com/materials/market-data/
- 2. Electric Vehicle Cost Benefit Analysis. (2017). Retrieved from: https://www.nrdc.org/sites/default/files/mi-pev-cb-analysis.pdf.

