

STAKEHOLDER ENGAGEMENT MEETING Electric Vehicle Charger Placement Optimization in Michigan

June 14, 2018 8:30-10:00 AM

Agenda

- Welcome
- Opening Remarks (Michigan Energy Office)
- MSU Project Team Presentation
- Discussion
- Questions

Electric Vehicle Charger Placement Optimization Project

Dr. Mehrnaz Ghamami Dr. Ali Zockaie Dr. Steven Miller

June 14, 2018

This study is commissioned and funded by the Michigan Energy Office.

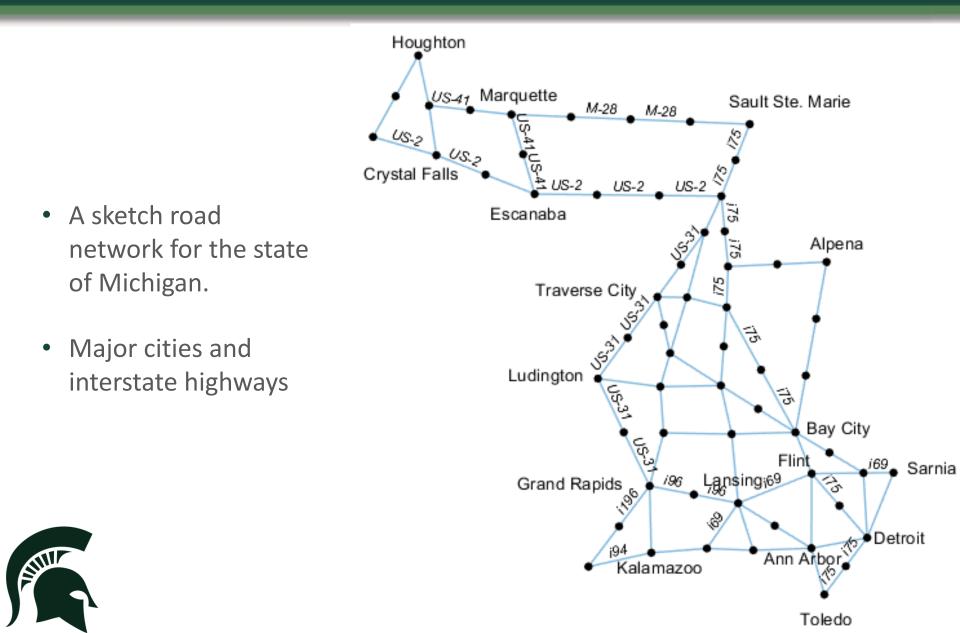
- Find the optimal infrastructure investment to support electric vehicle travel:
 - Where to deploy charging stations?
 - How many charging outlets must be built at each station?
- The modeling framework considers:
 - EV trip feasibility
 - Minimizing charging station investment cost
 - Minimizing travelers delay including:
 - Charging time
 - Queuing delay time
 - Detour time

The results presented here do not include tourism and seasonal variation results. Those are the next steps of this study.

Battery size: 100 kWh	(Average of all EVs in the market)	
Confident range = 0.8 ¹ deple	(Travelers would recharge when the battery is eted 80% of its capacity.)	
Charging efficiency = 1.3 ¹	(Converting energy/power ratio to charging time accounts for waste of energy while charging)	
Reduced battery	(Reduced battery capacity in Winter temperatures)	
Performance = 70% ²		
Value of time = $18/h^{1}$	(Based on users' willingness to pay)	
Battery charging limit = 0.8 ¹ (Users charge their vehicle up to 80 percent of its capacity as charging speed decreases significantly after this point)		
Charger power = 50 kW ³	(Current average power in fast charging facilities)	
	(Number of intercity trips between major cities in e state of Michigan (per day))	
Major city: Any city which has a population more than 50,000.		

¹Source: Ghamami, M., Zockaie, A., & Nie, Y. M. (2016). A general corridor model for designing plug-in electric vehicle charging infrastructure to support intercity travel. Transportation Research Part C, 68, 389-402 ² Source: <u>https://www.energy.gov/eere/electricvehicles/maximizing-electric-cars-range-extreme-temperatures</u>

³ Source: Discussion with stakeholders.


⁴ Source: Michigan Department of Transportation origin-destination travel data.

- Economic benefits are measured in the value of transactions captured at the charging station over a 10-year period (All estimates in 2018 dollars)
 - Fees for charging
 - \$0.15 per kWh for DC Fast charging about \$5.40 per connection
 - Expected ancillary expenditures while charging
 - Increasing in-store "dwell time" by 1% equates to a 1.3% increase in expenditures
 - Impacts arise from unplanned (new) stops generated by the DC Fast charger station
 - Average unplanned stop generates about \$12.48 in sales (may vary significantly depending on shopping options)
 - <u>Economic Impacts</u>
 - Economic impacts accounts for all direct and secondary transactions (multiplier effects)
 - Ancillary expenditures broken out into retail and food service (50/50). Net values of retail transactions attributed to impacts (only accounts for margins earned)
 - IMPLAN for Michigan used to calculate multipliers (secondary transactions)

Reference Road Network

MICHIGAN STATE

MICHIGAN STATE

Scenario 1: Rapid market growth

Houghton Assumptions Marquette Sault Ste. Marie EV market share: 6% EV trips: 178,784 (per day) Crystal Falls Results Alpena Number of Stations= 35 Traverse City Number of Chargers= 870 Electricity provision cost= \$3,793,695 Land acquisition cost= \$1,640,956 Ludington • Cost of chargers= \$21,750,000 Bay City Total cost= \$27,184,651 10 chargers Flin Sarnia **Total locational** Lansing 20 chargers Grand Rapids revenues= \$609.12M 40 chargers Detroit SIL Ann Arbor Kalamazoo 70 chargers Toledo

Scenario 1: Rapid market growth

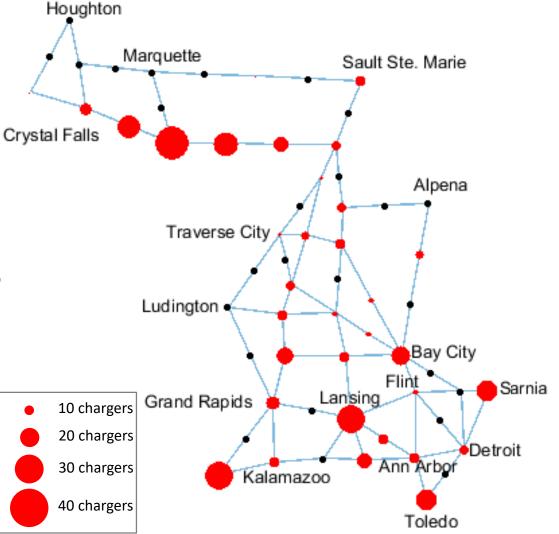
Economic Analysis

Daily user visits: 9,369 Daily user hours charging: 6,661 hours Daily kWh consumed: 333,046.4

<u>10-Year Transactions Impact:</u> Charge revenues: \$182.34M Ancillary revenues: \$426,78M Total locational revenues: \$609.12M

MICHIGAN STATE

Scenario 2: Slow market growth


Assumptions

EV market share: 3% EV trips: 89,392(per day)

Results

- Number of Stations= 34
- Number of Chargers= 434
- Electricity provision cost= \$3,622,025
- Land acquisition cost= \$816,923
- Cost of chargers= \$10,850,000
- Total cost= \$15,288,947
- Total locational

revenues= \$306.75M

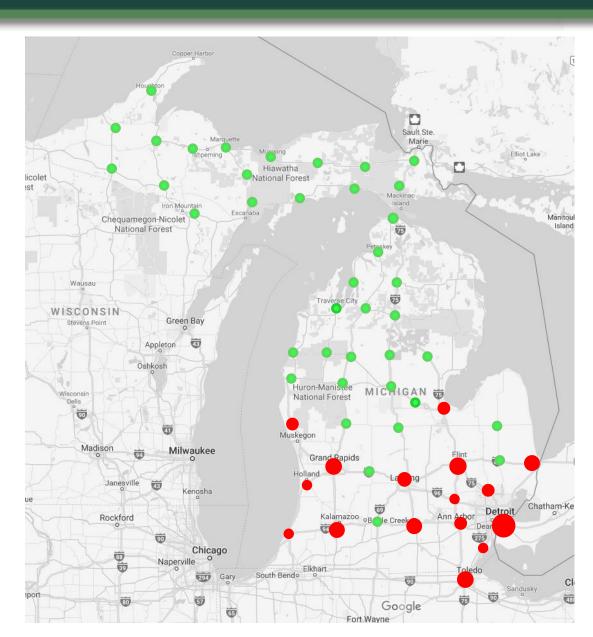
Scenario 2: Slow market growth

Economic Analysis

Daily user visits: 4,703 Daily user hours charging: 3,380 hours Daily kWh consumed: 168,976

<u>10-Year Transactions Impact:</u> Charge revenues: \$92.51M Ancillary revenues: \$214.23M Total locational revenues: \$306.75M

Land Price Distribution


MICHIGAN STATE

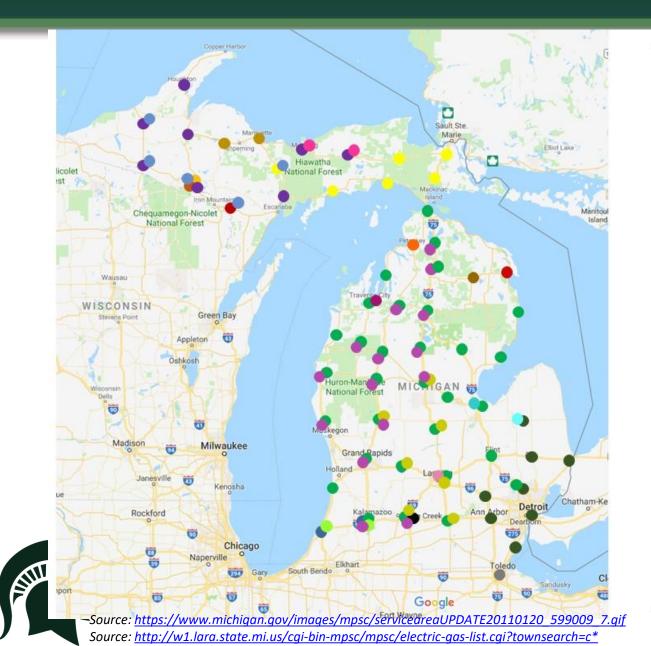
- Average price: 168,292 \$/acre
- Lowest price: 162,410 \$/acre
- Highest price: 250,175 \$/acre

Green: price below the average Red: price above the average

Circle size:

Relative price to the average value

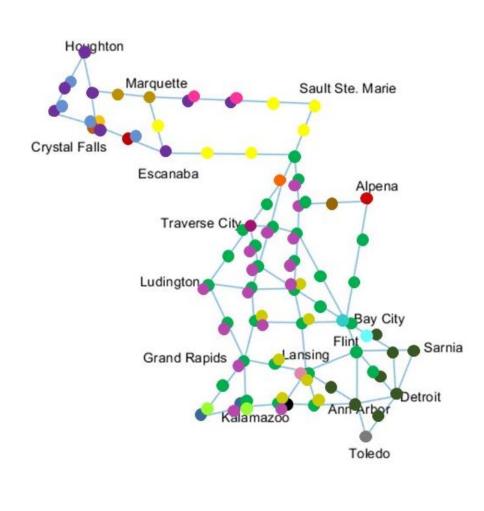
- Seasonal variation of the origin-destination travel demand
 - Currently estimating using traffic counts at 130 locations statewide
- Electric vehicles market share
 - Currently based on


Electric Vehicle Cost-Benefit Analysis- Plug-in Electric Vehicle Cost-Benefit Analysis: Michigan M.J. Bradley & Associates, LLC (MJB&A), July 2017

- Is there any other source or estimation available?
- Grid specification data
 - Inquire with utility companies

Project Data Requirements

MICHIGAN STATE



Legend	
Alger Delta Cooperative	•
Cloverland Electric Cooperative	
Crystal Falls Electric department	•
Norway L.D.	•
Upper Michigan Energy Resources Corp	•
Upper Peninsula Power Company	•
Marquette Board of Light and Power	٠
Utility billing Office	۲
Wisconsin Electric Power Company	•
Alpena Power Company	•
Bay City utility department	٠
Indiana Michigan Power Company	•
Cherryland Electric Cooperative	•
Consumers Energy	•
Detroit Edison company (DTE)	•
Great Lakes energy cooperative	0
Lansing Board of water and light	
Marshall C.W & E.W.	
Midwest Energy Cooperative	
Petoskey E.D.	•
Presque Isle electric and Gas Co-op	
Thumb Electric Cooperative	•
Tri-county Electric Cooperative	•

Project Data Requirements

MICHIGAN STATE

.

Source: <u>https://www.michigan.gov/images/mpsc/serviceareaUPDATE20110120_599009_7.gif</u> Source: <u>http://w1.lara.state.mi.us/cgi-bin-mpsc/mpsc/electric-gas-list.cgi?townsearch=c*</u>

Legend	
Alger Delta Cooperative	•
Cloverland Electric Cooperative	
Crystal Falls Electric department	•
Norway L.D.	
Upper Michigan Energy Resources Corp	• • • •
Upper Peninsula Power Company	•
Marquette Board of Light and Power	
Utility billing Office	۲
Wisconsin Electric Power Company	•
Alpena Power Company	•
Bay City utility department	•
Indiana Michigan Power Company	•
Cherryland Electric Cooperative	•
Consumers Energy	
Detroit Edison company (DTE)	•
Great Lakes energy cooperative	•
Lansing Board of water and light	
Marshall C.W & E.W.	
Midwest Energy Cooperative	
Petoskey E.D.	
Presque Isle electric and Gas Co-op	
Thumb Electric Cooperative	۲
Tri-county Electric Cooperative	

Thank you!

Mehrnaz Ghamami

Email: ghamamim@egr.msu.edu Phone: (517) 355-1288

Ali Zockaie

Email: <u>zockaiea@egr.msu.edu</u> Phone: (517) 355-8422

Steven Miller

Email: mill1707@anr.msu.edu Phone: (517) 355-2153

