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Highly pathogenic avian H5N1 influenza A viruses have spread throughout Asia, Europe, and Africa, raising serious
worldwide concern about their pandemic potential. Although more than 250 people have been infected with these
viruses, with a consequent high rate of mortality, the molecular mechanisms responsible for the efficient
transmission of H5N1 viruses among humans remain elusive. We used a mouse model to examine the role of the
amino acid at position 627 of the PB2 viral protein in efficient replication of H5N1 viruses in the mammalian
respiratory tract. Viruses possessing Lys at position 627 of PB2 replicated efficiently in lungs and nasal turbinates,
as well as in cells, even at the lower temperature of 33 8C. Those viruses possessing Glu at this position replicated less
well in nasal turbinates than in lungs, and less well in cells at the lower temperature. These results suggest that Lys
at PB2–627 confers to avian H5N1 viruses the advantage of efficient growth in the upper and lower respiratory tracts
of mammals. Therefore, efficient viral growth in the upper respiratory tract may provide a platform for the
adaptation of avian H5N1 influenza viruses to humans and for efficient person-to-person virus transmission, in the
context of changes in other viral properties including specificity for human (sialic acid a-2,6-galactose containing)
receptors.
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Introduction

The first outbreak in humans caused by the highly
pathogenic H5N1 influenza A virus was reported in Hong
Kong in 1997, and resulted in the deaths of six of 18 infected
people [1–3]. This event demonstrated for the first time the
direct transmission of a highly pathogenic avian influenza
virus from birds to humans with a fatal outcome. In
December 2003, this virus began to spread widely in poultry
in Vietnam, Indonesia, and Thailand and has since spread to
countries in the Middle East, Europe, and Africa, resulting in
huge economic losses in the poultry industries of the affected
regions. More than 250 human infections have been
identified, of which more than 150 have been fatal [4], raising
serious worldwide concern about a catastrophic influenza
pandemic. Fortunately, efficient human-to-human transmis-
sion of this virus has not yet occurred, lending impetus to
efforts to identify the molecular mechanisms that might
promote the transmission and resulting pandemic strain of
this highly pathogenic H5N1 influenza virus.

The receptor specificity of the surface glycoprotein
haemmaglutinin (HA) is thought to be one of the determi-
nants for efficient person-to-person transmission of influenza
A virus. Avian influenza viruses preferentially recognize
receptors with saccharide terminating in sialic acid a-2,3-
galactose (SAa2,3Gal) on avian cells, and human viruses
preferentially bind to receptors with saccharide ending in
sialic acid a-2,6-galactose (SAa2,6Gal) on human cells [5–8].
Indeed, the first human isolates from the 1957 and 1968
pandemics preferentially recognize SAa2,6Gal despite the fact

that their HAs were derived from avian viruses. In
spite of their preference, or at least partial preference, for
SAa2,6Gal [9–11], some of the H5N1 viruses isolated from
humans still failed to spread efficiently among humans [9].
Hence, amino acid substitutions in viral proteins other than
the HA might
be required for the efficient growth and person-to-person
transmission of avian H5N1 influenza virus in humans.
To understand why H5N1 influenza virus infection leads to

severe pneumonia [12] in humans but to only limited human-
to-human transmission [12], we focused on two human H5N1
influenza viruses isolated from the same patient and
compared their growth in mice and cells. We defined the
contribution of the amino acid at position 627 of the PB2 of
H5N1 influenza virus to efficient replication of this virus in
the respiratory tracts of mice.

Editor: Edward C. Holmes, The Pennsylvania State University, United States of
America

Received May 17, 2007; Accepted July 26, 2007; Published October 5, 2007

Copyright: � 2007 Hatta et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: HA, haemmaglutinin; MDCK, Mardin-Darby canine kidney; MLD50,
the dose required to kill 50% of mice; NHBE, bronchial/tracheal epithelia; PFU,
plaque-forming unit; SAa2,3Gal, sialic acid a-2,3-galactose; SAa2,6Gal, sialic acid a-
2,6-galactose; SAE, small airway epithelia

* To whom correspondence should be addressed. E-mail: kawaokay@svm.vetmed.
wisc.edu

[ These authors contributed equally to this work.

PLoS Pathogens | www.plospathogens.org October 2007 | Volume 3 | Issue 10 | e1330001



Results/Discussion

Differences in the Replication of A/Vietnam/1203/2004
and A/Vietnam/1204/2004 Viruses in Mice

Two H5N1 variants isolated from the same patient in
Vietnam in 2004 [13]—A/Vietnam/1203/2004 (VN1203; upper
respiratory, pharyngeal swab) and A/Vietnam/1204/2004
(VN1204; lower respiratory tract, tracheal aspirate)—differ
by six amino acids (two in PB2, three in PA, and one in NS1;
Table S1). We found one of these amino acid differences,
position 627 of PB2, highly intriguing. VN1203 possesses Lys
at this position (PB2-627Lys), while VN1204 possesses Glu
(PB2-627Glu). The vast majority of authentic human influen-
za A viruses (i.e., H1N1 and H3N2 subtypes) characterized to
date have Lys at this position (a few have Arg), and avian
isolates generally have Glu (with some exceptions, noted
below). The amino acid at position 627 has been associated
with the host specificity of influenza A viruses [14–16].
Moreover, PB2-627Lys has been linked to the high virulence
of H5N1 viruses in mice [17] and to an H7N7 virus isolated

from a human case of fatal influenza in the Netherlands in
2003, although neither the isolate from a patient with
conjunctivitis or those from chickens examined during that
outbreak had Lys at this position [18]. The amino acid at PB2–
627 also affects the efficiency of RNA polymerase activity at a
low temperature in certain types of cells [19]. However, no
direct experimental evidence demonstrates that the Glu-to-
Lys mutation at PB2–627 supports efficient growth of avian
influenza viruses in the upper respiratory tracts of mammals
or efficient transmission among them. We, therefore, inves-
tigated the biologic properties of these two H5N1 isolates in a
mouse model, with the intent of assessing the contribution of
the PB2–627 amino acid in efficient replication of H5N1
influenza viruses in the human respiratory tract.
The VN1203 isolate possessing PB2-627Lys was slightly

more pathogenic in mice than VN1204 possessing PB2-
627Glu, as indicated by an MLD50 (the dose required to kill
50% of mice) of 0.7 plaque-forming units (PFU), as compared
with an MLD50 of 2.1 PFU for VN1204 (Table 1). In mice
intranasally infected with 100 PFU of virus, VN1203
replicated systemically and VN1204 replicated mainly in
respiratory organs. Although both viruses replicated well in
the lungs, only VN1203 replicated to a high titer in nasal
turbinates in all animals tested (Table 1). To test the role of
the amino acid at position 627 of PB2 in replicative capacity,
we generated mutants of VN1203 and VN1204 characterized
by the following changes at PB2–627: VN1203PB2-627Glu
virus possessing Glu at this position in the background of
VN1203 and VN1204PB2-627Lys virus possessing Lys in the
background of VN1204. When their replication was tested in
mice (Table 1), VN1204PB2-627Lys virus was isolated at high
titers from a variety of organs, including nasal turbinates
(unlike the parent VN1204). VN1203PB2-627Glu was attenu-
ated by two log units (MLD50 of 67.6 PFU) as compared with
that of wild-type VN1203 (MLD50, 0.7 PFU), as expected based
on our previous findings [17,20]. VN1203PB2-627Glu gen-
erally showed restricted replication in all organs except the
lungs, where it replicated as well as wild-type VN1203. In
nasal turbinates, the VN1203PB2-627Glu virus was isolated
from only one mouse, but from a variety organs in that
animal, including the brain at 6 d post-infection. Interest-
ingly, a revertant virus with Lys at position 627 of PB2 was

Table 1. Biological Properties of H5N1 Viruses and Their PB2 Mutants in Mice

Virus Amino Acid

at Position

627 of PB2

MLD50

(PFU)

Days after

Infection

Virus Titer (mean log PFU 6 SD/g) in:

Lungs Nasal

Turbinates

Spleen Heart Kidneys Brain Pancreas Colon Liver

A/Vietnam/1203/2004 Lys 0.7 3 7.260.2 4.6, 5.6 4.960.03 2.1, 3.0 2.0, 4.3 — — 2.2, 2.2 —

6 6.460.1 4.960.7 2.560.4 5.560.1 3.760.8 4.161.3 — 3.1 1.6

A/Vietnam/1204/2004 Glu 2.1 3 5.760.5 2.3 — 3.4 — — — — —

6 6.560.4 — 2.761.1 3.4 — — — — —

VN1203PB2-627E Glu 67.6 3 3.3 — 2.1 — — — — — —

6 6.461.3 5.3 2.3, 3.9 6.0 4.8 1.8, 4.8 — 2.7 —

VN1204PB2-627Ka Lys 0.6 3 8.260.2 6.660.1 7.360.2 6.860.2 6.060.3 5.860.1 4.261.7 6.360.6 5.060.3

aAll mice infected with VN1204PB2-627Lys died on day 4 post-infection.
Balb/c mice, anesthetized with isoflurane, were infected intranasally with 50 ll of virus (100 PFU). Three mice from each group were euthanized at days 3 and 6 post-infection for virus
titration. When virus was not recovered from all three mice, individual titers were recorded.
—, virus not isolated.
doi:10.1371/journal.ppat.0030133.t001
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Author Summary

Highly pathogenic avian H5N1 influenza A viruses have spread
around the world since 2003, raising serious worldwide concern
about their pandemic potential. Although efficient human-to-
human transmission of this virus has not yet occurred, the potential
of these viruses to acquire the ability is evident. The receptor
specificity of the haemmaglutinin (HA) protein is considered a main
factor affecting efficient transmission of H5N1 viruses. Yet, some
H5N1 viruses isolated from humans that possess human receptor
specificity have still failed to spread efficiently among humans.
Therefore, amino acid substitutions in viral proteins other than the
receptor-binding HA protein must be necessary for efficient growth
and person-to-person transmission of avian H5N1 influenza virus. In
our study, we defined the contribution of the amino acid at position
627 of the PB2 to efficient replication of H5N1 influenza viruses in
the upper respiratory tracts of mice as a mammalian model. Because
efficient viral growth in the upper respiratory tract of humans can
facilitate virus excretion by coughing and sneezing, a mutation of
PB2 amino acid 627, which contributes to efficient growth at this
site in a mammal, may be prerequisite for efficient human-to-human
transmission.



detected in the nasal turbinates and lungs of this animal
(unpublished data), suggesting that systemic infection in this
mouse might have been caused by the revertant virus. These
results indicate that the amino acid at position 627 of PB2
contributed to the efficient growth of the virus in mice, as
previously demonstrated [17], and to the efficient replication
of this virus in the upper respiratory tract. VN1204PB2-
627Lys virus replicated to appreciably higher titers than did
VN1203, which also has lysine at PB2–627, suggesting that
other amino acid differences between the two viruses may
contribute to the increased growth efficiency.

Replication of VN1203 and VN1204 Viruses in Cells at
Different Temperatures
In their 2001 publication, Massin et al. reported that the

amino acid at 627 of PB2 affects viral transcription at a low
temperature in some cells [19]; hence, the difference in tissue
tropism in mice between VN1203 and VN1204 may arise
partly from a difference in optimal growth temperatures. To
test this hypothesis, we infected cells of different origins at
different temperatures and examined the growth properties
of VN1203 and VN1204. We found that the viruses replicated
equally well in chicken embryo fibroblasts at all temperatures
tested (Figure 1A). However, in two mammalian cell lines
(Mardin-Darby canine kidney [MDCK] and human embryonic
kidney 293 cells), the VN1203 virus replicated more efficiently
than did VN1204 at 33 8C, with no substantial differences in
their growth found at 37 8C and 41 8C. These results indicate
that PB2-627Lys confers a growth advantage to the virus at 33
8C in these cell lines. Viral growth was also compared in two
types of human primary cells: small airway epithelia (SAE;
representing lung cells) and bronchial/tracheal epithelia
(NHBE). At temperatures commonly found in the lower
respiratory tract (.37 8C), VN1203 and VN1204 did not show
any substantial differences in growth in SAE cells. At 33 8C,
the virus with Lys at position 627 replicated slightly better
than the Glu variant in these cells, although the standard
deviation was too broad to support a significant difference.
By contrast, the Lys variant replicated better than the Glu
variant in NHBE cells at all temperatures tested.
To prove that the cell type– and growth temperature–

dependent difference in replicative ability between VN1203
and VN1204 originated from an amino acid shift at PB2–627,
we examined the growth properties of the VN1204 mutant
possessing PB2-627Lys (VN1204PB2-627Lys) in these cells,
using wild-type VN1204 as the control. This comparison
yielded essentially the same results as found for VN1204
versus VN1203 (Figure 1B), demonstrating that a single
substitution at PB2–627 does indeed account for the
phenotypic difference between VN1203 and VN1204. Hence,
the acquisition of this mutation by an avian H5N1 influenza
virus would likely promote better replication in a wider range
of cell types (as observed by viral replication in NHBE; Figure
1A) and at a lower temperature than found in the upper
respiratory tract, possibly allowing the virus to be readily
spread by sneezing and coughing.

Effect of PB2–627 Amino Acid on Growth Properties of
Other Influenza A Viruses in Mice
To determine whether the Lys at amino acid position 627

of PB2 enhances growth of other influenza A viruses in the
upper respiratory tract, we intranasally inoculated mice with
106 PFU of viruses isolated from a human (A/Memphis/8/88
(H3N2) (Mem/88)) possessing Lys at this position or from
birds (A/mallard duck/New York/6750/78 (H2N2) (Mal/NY), A/
chicken/Vietnam/NCVD5/2003 (H5N1) (VD5), and A/muscovy
duck/Vietnam/NCVD18/2003 (H5N1) (VD18)) possessing Glu.
We collected samples from their nasal turbinates and lungs
on day 3 post-inoculation for virus titration. The results
indicate that all virus strains used in this study replicated in
lung, with virus titers ranging from 103.1 to 107.5 PFU/g (Table
2), while their growth properties in nasal turbinates differed
widely. Human influenza A virus Mem/88 possessing PB2-
627Lys was recovered at 106.1 PFU/g from this source, but two

Figure 1. Growth Properties of Viruses at Different Temperatures in

Diverse Cell Types

(A) VN1203 (red) and VN1204 (green) viruses. (B) VN1204 (green) and
VN1204PB2-627Lys (orange) viruses. Cells were infected with virus at a
multiplicity of infection of 10�5 and incubated at 33, 37, or 41 8C. Aliquots
of the supernatants were titrated on MDCK cells by plaque assay. The
values are means (6 standard deviation) of three independent
determinations.
doi:10.1371/journal.ppat.0030133.g001
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of the avian influenza viruses (Mal/NY and VD5, both
possessing PB2-627Glu) were not detected. Another avian
influenza virus VD18 possessing PB2-627Glu was, however,
detected in nasal turbinates at relatively high titers. To
determine if the efficient replication of VD18 in nasal
turbinates originated from the emergence of a mutant virus
possessing the Glu-to-Lys mutation at PB2–627, we molecu-
larly cloned the PB2 genes of viruses from animals infected
with VD18 (Table 3). Interestingly, a substantial population
of a mutant VD18 virus, which possesses an amino acid
mutation from Glu to Lys at position 627 of the PB2, was
found in nasal turbinates and lung tissues. In addition, the
virus titers in the nasal turbinates were correlated with the
prevalence of a mutant virus with PB2-627Lys; virus titers in
this organ were high in mice (mouse 1 and 3) when the
prevalence of PB2-627Lys variant was also high, while the
virus titer was low when the prevalence of PB2-637Lys
variant was also low (mouse 2; Table 3). This finding further
indicates that PB2-627Lys is associated with the efficient
growth in upper respiratory tracts.

Next, we generated mutants of the avian viruses, converting
Glu to Lys at PB2–627 by reverse genetics (Mal/NYPB2-
627Lys, VD5PB2-627Lys, and VD18PB2-627Lys), and exam-
ined their growth properties in mice. Although Glu-to-Lys
mutation at PB2–627 enhanced replication of Mal/NY and
VD5 in lungs, the effect was more dramatic in nasal
turbinates (see Mal/NYPB2-627Lys and VD5PB2-627Lys in
Table 2). The effect of the Glu-to-Lys mutation at PB2–627 in

viral replication in nasal turbinates was not as dramatic with
the VD18 virus as that observed with Mal/NY and VD5 viruses.
Even so, the mutation enhanced viral replication in nasal
turbinates by two log units, while the increase of virus titers
in lungs was fewer than one log unit (Table 2). This less
dramatic enhancement of viral replication in nasal turbinates
by PB2-627Lys mutation in VD18 likely originates from
increased virus replication caused by PB2-627Lys variant that
naturally emerged in mice infected with VD18 (Table 3). We
conclude that Lys at position 627 of PB2 confers to some
influenza A viruses the ability to replicate efficiently in the
upper respiratory tracts of mice and suggest that it might also
enhance the transmissibility of these viruses among humans.
We show here that a mutation in the PB2 protein, from Glu

to Lys at position 627, can expand the cell tropism of H5N1
avian influenza A viruses (see results of viral replication in
NHBE; Figure 1A) and enable them to grow at a lower
temperature. This mutation, together with HA mutations that
confer viral SAa2,6Gal recognition [9], could promote the
replication of avian influenza viruses in the upper respiratory
tracts of humans, although other amino acid substitutions are
likely needed to confer full pandemic potential. Indeed,
multiple amino acid changes have been identified in the so-
called Spanish influenza virus, which is thought to be derived
from an avian antecedent [21–23], as compared with the
consensus sequences of avian viruses [24–26]. We find it
worrisome, in this context, that some H5N1 isolates from
humans recognize SAa2,6Gal in addition to SAa2,3Gal [9,10].
Moreover, unlike other avian influenza viruses, H5N1 viruses
isolated from wild waterfowl and their descendants during the
May 2005 Qinghai Lake outbreak in China possess PB2-627Lys
[27,28], suggesting that the acquisition of such mutations may
provide a platform for evolution to a pandemic status.
Furthermore, we found that PB2-627Glu mutants of VD18
wild-type and VN1203PB2-627Glu viruses, but not those of
VN1204, VD5, and Mal/NY viruses, mutated to Lys during
replication in mice. This variation among viral strains suggests
that other amino acid differences in this or other viral
proteins may contribute to the extent of Glu-to-Lys mutation
at this position of the PB2. Thus, to acquire the capacity for
efficient human-to-human transmission, H5N1 avian influen-
za A viruses likely must undergo a series of genetic changes
resulting in the ability to replicate at lower temperatures and
in a wider range of cell types (a trait controlled by the PB2
protein), to recognize human sialyloligosaccharide receptors
(a trait controlled by HA molecules), and other unknown
phenotypic changes controlled by other viral proteins.

Table 2. Effect of PB2 Mutation on Virus Titers in Nasal
Turbinates and Lungs

Virus Titer (mean log PFU 6 SD/g) in:

Nasal Turbinates Lungs

Mal/NY — 6.0 6 1.3

Mal/NYPB2-627Lys 5.5 6 0.1 6.8 6 0.1

VD5 — 3.1 6 0.9

VD5PB2-627Lys 5.3 6 0.3 5.8 6 0.1

VD18 4.9 6 1.5 6.8 6 0.2

VD18PB2-627Lys 6.9 6 0.2 7.5 6 0.1

Mem/88 6.1 6 0.2 4.6 6 0.2

Balb/c mice, anesthetized with isoflurane, were infected intranasally with 50 ll of virus
(106 PFU). Three mice from each infected group were euthanized on day 3 post-infection
for virus titration.
—, virus not isolated.
doi:10.1371/journal.ppat.0030133.t002

Table 3. Amino Acid at Position 627 of the PB2 of VD18 (A/chicken/Vietnam/NCVD18/2003) Virus Isolated from Mouse Organs

Mouse Nasal Turbinates Lungs

Amino Acid at Position 627 Virus Titer (log PFU/g) Amino Acid at Position 627 Virus Titer (log PFU/g)

Lys Glu Lys Glu

1 10/12 2/12 6.53 12/12 0/12 7.62

2 1/12 11/12 3.96 9/12 3/12 5.49

3 12/12 0/12 5.13 8/12 4/12 5.3

Amino acid at position 627 of PB2 was determined as described in Materials and Methods. Twelve clones from virus isolated from the lungs and nasal turbinates of each individual mouse
3 d post-infection were sequenced. The numbers of clones possessing Lys or Glu in a total of 12 clones are indicated.
doi:10.1371/journal.ppat.0030133.t003
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Materials and Methods

Viruses. The highly pathogenic H5N1 viruses used in this study (A/
Vietnam/1203/2004 (VN1203), A/Vietnam/1204/2004 (VN1204), A/
chicken/Vietnam/NCVD5/2003 (VD5), and A/muscovy duck/Vietnam/
NCVD18/2003 (VD18)) were kindly provided by the Centers for
Disease Control and Prevention. Human isolates were grown in
MDCK cells maintained in minimal essential medium with 5%
newborn calf serum. Duck isolates were amplified in 10-d-old
embryonated chicken eggs. All experiments with live viruses and
with transfectants generated by reverse genetics were performed in a
biosafety level 3 containment laboratory approved for such use by the
Centers for Disease Control and Prevention and the US Department
of Agriculture.

Cells. Human embryonic kidney 293 and 293T cells (a derivative of
the 293 line into which the gene for simian virus 40 T antigen was
inserted) were maintained in Dulbecco’s modified Eagle’s medium
with 10% fetal calf serum and antibiotics at 37 8C with 5% CO2.
Chicken embryo fibroblasts were prepared from 10-d-old embryo-
nated eggs and maintained in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal calf serum. Human primary SAE and
human primary NHBE cells were purchased from Cambrex Corpo-
ration (http://www.cambrex.com/) and maintained at 37 8C with 5%
CO2, according to the manufacturer’s manual.

Virus growth kinetics in cell culture. Cells were infected with virus
at a multiplicity of infection of 10�5 and incubated at 33, 37, or 41 8C.
Aliquots of the supernatants were collected at 12, 24, 36, 48, 60, and
72 h post-infection and titrated on MDCK cells by plaque assay.

Mouse experiments. Four- to six-wk-old Balb/c mice (The Jackson
Laboratory, http://www.jax.org/) were used for the experiments. The
dose lethal to 50% of mice (MLD50) was determined as previously
described [29]. For virus titration in organs, mice were infected
intranasally with 100 PFU of virus and euthanized on days 3 and 6
post-infection for virus titration. For the experiments using A/
Memphis/8/88 (H3N2) (Mem/88), A/mallard duck/New York/6750/78
(H2N2) (Mal/NY), VD5, and VD18 viruses, all of which were generated
by reverse genetics, the mice were intranasally inoculated with 106

PFU of viruses and euthanized on day 3 post-infection. The virus
titers in nasal turbinates and lungs were assayed by plaque assays.

Plasmid construction and reverse genetics. The cDNAs of the
VN1203, VN1204, VD5, and VD18 viruses were synthesized by reverse
transcription of viral RNA with an oligonucleotide (Uni 12)
complementary to the conserved 3’ end of viral RNA, as previously
described [17]. The cDNA was amplified by PCR with gene-specific
oligonucleotide primers and then sequenced. The generation of
plasmid constructs for viral RNA production (pPolI), containing the
genes of VN1203, VN1204, VD5, and VD18 viruses flanked by the
human RNA polymerase I promoter and the mouse RNA polymerase
I terminator, is described in a previous publication [30]. The mutant
PB2 pPolI constructs possessing a mutation with amino acid at
position 627 of PB2 (VN1203PB2-627Glu, VN1204PB2-627Lys, Mal/
NYPB2-627Lys, VD5PB2-627Lys, and VD18PB2-627Lys) were pro-
duced by PCR amplification with the primers possessing mutations
(primer sequences will be provided upon request). All constructs were
sequenced to ensure the absence of unwanted mutations. Automated
sequencing was performed at the University of Wisconsin-Madison
Biotechnology Center. The reverse genetics systems for Mem/88 and
Mal/NY viruses are described in previous reports [31]. The produc-
tion of all transfectant viruses by reverse genetics was performed as
described by Neumann et al [30].

Sequence analysis of the viruses in mouse organs. RNA was
extracted from the supernatants of organ homogenates from
infected mice using the RNeasy Mini Kit (Qiagen, http://www.
qiagen.com/). The cDNAs were synthesized by reverse transcription
of viral RNA with an oligonucleotide (Uni 12) complementary to the
conserved 3’ end of viral RNA, as described above. The cDNA was
amplified by PCR with gene-specific oligonucleotide primers for the
PB2 fragment of nucleotide region 1260 to 2341 and cloned into
pSTBlue-1 AccepTor or pT7Blue blunt vector (EMD Biosciences,
http://www.emdbiosciences.com/). Twelve clones of each virus were
sequenced.

Supporting Information

Table S1. Amino Acid Differences between A/Vietnam/1203/2004 and
A/Vietnam/1204/2004 Viruses

Found at doi:10.1371/journal.ppat.0030133.st001 (31 KB DOC).

Accession Numbers

The Influenza Sequence Database (http://www.flu.lanl.gov/) accession
numbers for the genes described in this paper are ISDN242716 (A/
chicken/Vietnam/NCVD5/2003, PB2 gene), ISDN242717 (A/chicken/
Vietnam/NCVD5/2003, PB1 gene), ISDN242718 (A/chicken/Vietnam/
NCVD5/2003, PA gene), ISDN242719 (A/chicken/Vietnam/NCVD5/
2003, HA gene), ISDN242720 (A/chicken/Vietnam/NCVD5/2003, NP
gene), ISDN242721 (A/chicken/Vietnam/NCVD5/2003, NA gene),
ISDN242722 (A/chicken/Vietnam/NCVD5/2003, M gene), ISDN242723
(A/chicken/Vietnam/NCVD5/2003, NS gene), ISDN242724 (A/musco-
vyduck/Vietnam/NCVD18/2003, PB2 gene), ISDN242725 (A/muscovy-
duck/Vietnam/NCVD18/2003, PB1 gene), ISDN242726 (A/
muscovyduck/Vietnam/NCVD18/2003, PA gene), ISDN242727 (A/
muscovyduck/Vietnam/NCVD18/2003, HA gene), ISDN242728 (A/
muscovyduck/Vietnam/NCVD18/2003, NP gene), ISDN242729 (A/
muscovyduck/Vietnam/NCVD18/2003, NA gene), ISDN242730 (A/
muscovyduck/Vietnam/NCVD18/2003, M gene), ISDN242731 (A/mus-
covyduck/Vietnam/NCVD18/2003, NS gene).
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