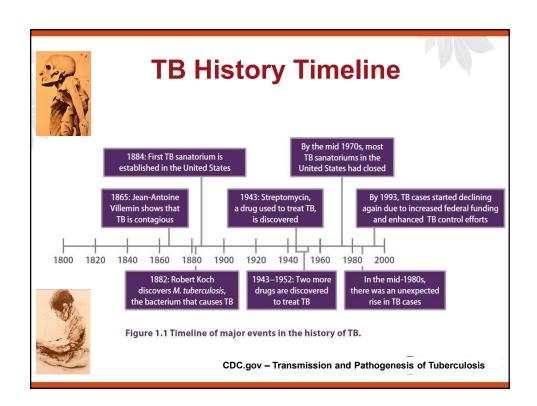
Transmission and Pathogenesis of Tuberculosis

July 16, 2019

Shu-Hua Wang, MD, PharmD, MPH

Professor, Infectious Diseases Department of Internal Medicine The Ohio State University Medical Director, Ben Franklin TB Program TB Consultant, Ohio Department of Health



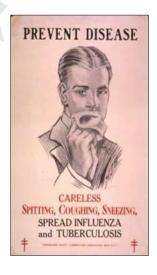
Learning Objectives

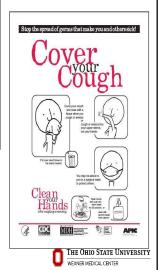
- Explain how TB is spread (transmission)
- Explain the difference between latent TB infection (LTBI) and active TB disease
- Explain how LTBI develops (pathogenesis)
- Explain how active TB disease develops (pathogenesis)

Definitions

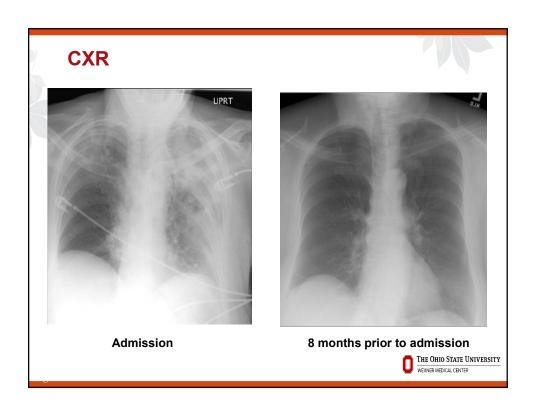
<u>Transmission</u> = Spread of an organism, such as *M. tuberculosis*, from one person to another (an event).

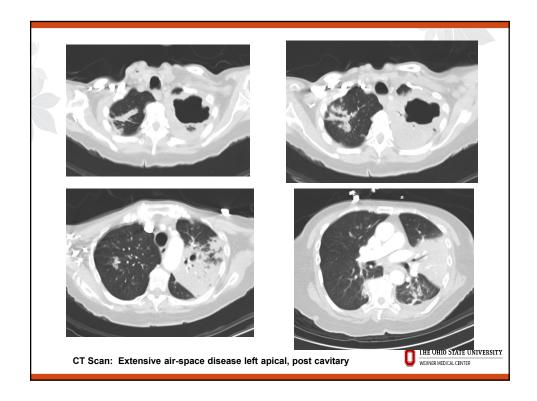
Infectiousness = the characteristic of the disease that concerns the ease with which it is transmitted (a capacity)


<u>Pathogenesis</u> = the way an infection or disease develops in the body.



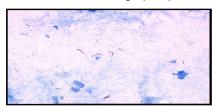
Early Disease Prevention → Modern Cough Etiquette




Elderly Patient with Chronic Cough & Weight Loss

HOPI

- 74 year-old female
- Seen in Emergency Room with complaints of shortness of breath and progressive weakness
- Increasing shortness of breath over the last 4 days
- Associated with fevers, chills, cough, with purulent sputum
- Family noted history of cough and weight loss over last several months



Hospital Course

- Admitted to inpatient ward Community Acquired Pneumonia
- Treated: ampicillin/sulbactam/azithromycin
- Respiratory failure → Intubated 24 hours later
- Blood and routine sputum cultures negative.
- Bronchial alveloar lavage (BAL)

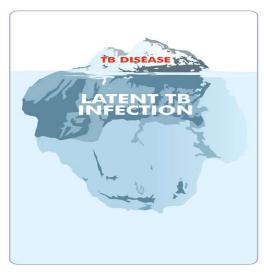
5/5 respiratory specimens "Heavy AFB Positive"

- Family History
 - -Patient's mother died productive cough and weight loss

Case 1: Transmission Questions

- Where and how was she infected?
- Is she infectious?
- Who has been exposed?

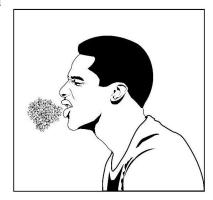
TB Facts


- TB is contagious and spreads through the air
- if not treated, each person with active TB infects ~ 10 to 15 people every year
- Every one second someone is newly infected with TB

THE OHIO STATE UNIVERSITY

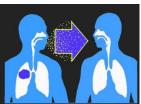
N/AV# = 1 **=** 1

The Hidden Epidemic – Latent TB Infection

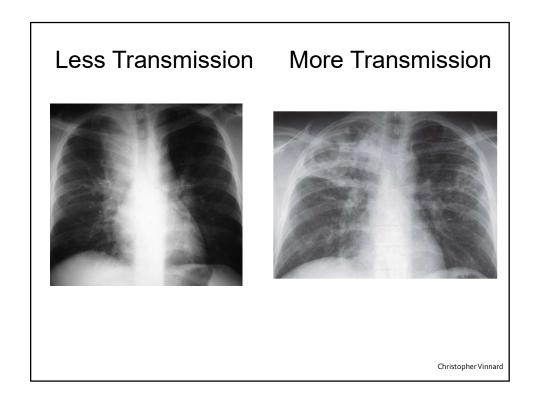

- •Two billion people, 1/3 of the world's total population, are infected with TB
- One in 10 people infected with TB bacilli will develop active TB

TB Transmission

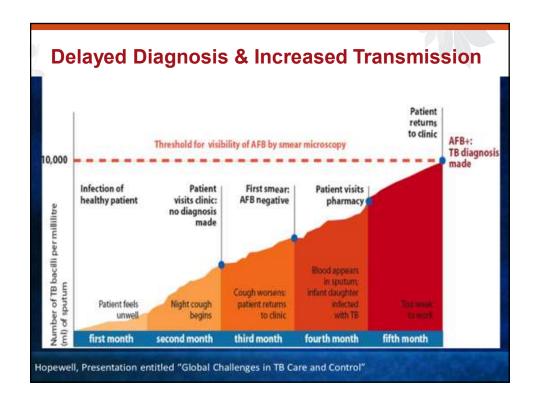
- TB is spread person to person through the air via droplet nuclei
- M. tuberculosis may be expelled when an infectious person:
 - Coughs
 - Speaks
 - Sings
- Transmission occurs when another person inhales droplet nuclei



CDC.gov - Transmission and Pathogenesis of Tuberculosis


Factors InfluencingTransmission

- Transmission is airborne from patients with <u>active</u> pulmonary TB
- Infectiousness of source patient
 - Vehicle: droplet nucleus (coughing, talking, sneezing); size (1-5 μm)
 - Quantity of organisms; high with cavitary disease
- Duration of exposure
- Virulence of M. tuberculosis strain
- Environment: spread is enhanced by crowded, poorly ventilated conditions

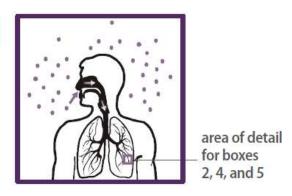

Less Transmission More Transmission

SAMJ, S. Afr. med. j. vol.102 n.8 Cape Town Aug. 2012

Christopher Vinnard

Reducing TB transmission

- The best way to stop transmission is to:
 - Provide effective <u>treatment</u> to infectious persons as soon as possible
 - Decreases bacterial burden
 - Decreases symptoms
 - 2 weeks of effective therapy decreases contagion dramatically
 - Isolate infectious persons while contagious
 - Smear negative samples implies less contagion
 - Smear negative, on therapy, clinically improving---?
 Discontinue isolation
 - Zero transmission occurs once the index case is culture negative


Slide courtesy Dr. E. Jane Carter

"The patient in the next bed is highly infectious. Thank God for these curtains."

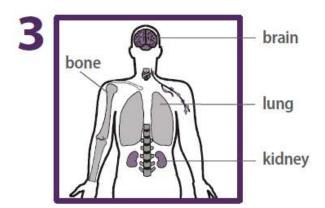
TB Pathogenesis

1

Droplet nuclei containing tubercle bacilli are inhaled, enter the lungs, and travel to small air sacs (alveoli)

CDC.gov - Transmission and Pathogenesis of Tuberculosis

23

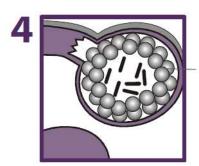

TB Pathogenesis

bronchiole blood vessel tubercle bacilli alveoli

Tubercle bacilli multiply in alveoli, where infection begins

Module 1 - Transmission and Pathogenesis of Tuberculosis

TB Pathogenesis

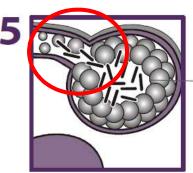


A small number of tubercle bacilli enter bloodstream and spread throughout body

Module 1 - Transmission and Pathogenesis of Tuberculosis

25

TB Pathogenesis LTBI



special immune cells form a barrier shell (in this example, bacilli are in the lungs)

- Within 2 to 8 weeks the immune system produces special immune cells called macrophages that surround the tubercle bacilli
- These cells form a barrier shell that keeps the bacilli contained and under control (LTBI)

Module 1 – Transmission and Pathogenesis of Tuberculosis

TB Pathogenesis TB Disease

shell breaks down and tubercle bacilli escape and multiply (in this example, TB disease develops in the lungs)

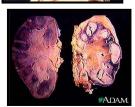
- If the immune system CANNOT keep tubercle bacilli under control, bacilli begin to multiply rapidly and cause TB disease
- This process can occur in different places in the body

Module 1 - Transmission and Pathogenesis of Tuberculosis

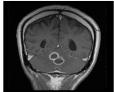
27

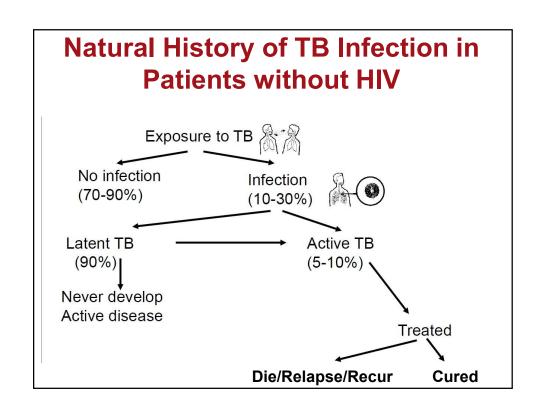
Active TB Disease

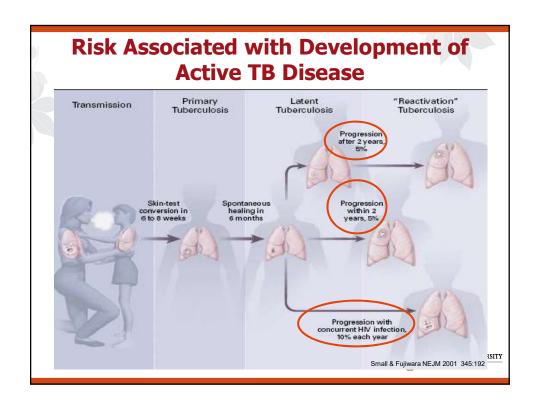
Pulmonary

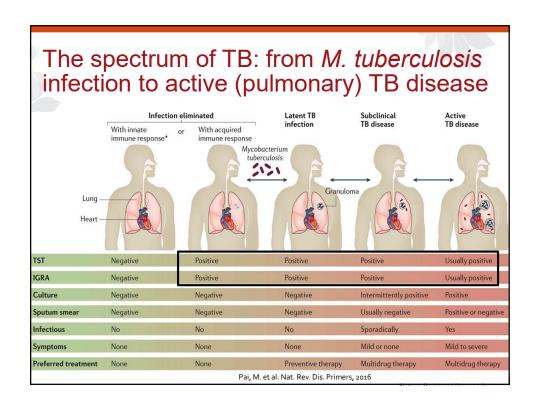

Lungs

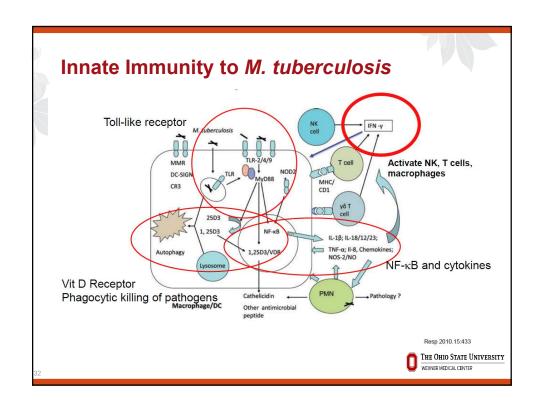
Extrapulmonary

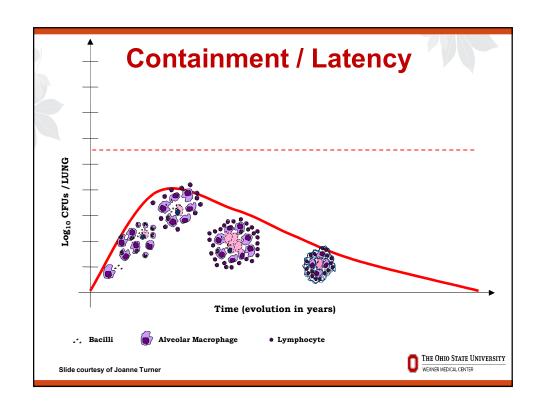

- Lymphatic system
- Kidney
- Central nervous system
- Bones (Potts)
- Disseminated (miliary TB)

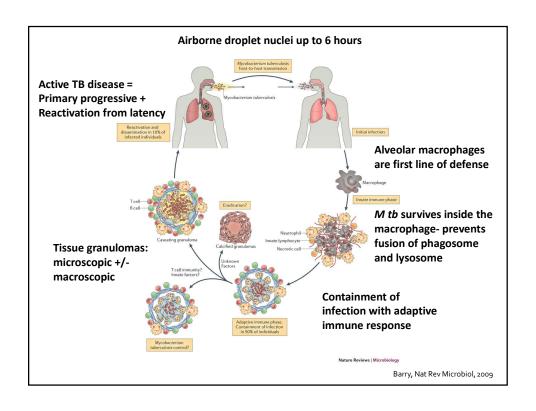


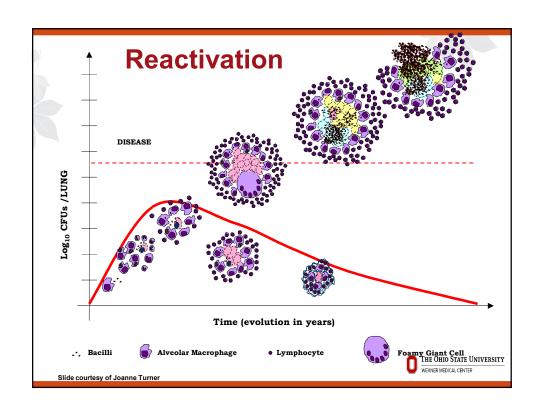


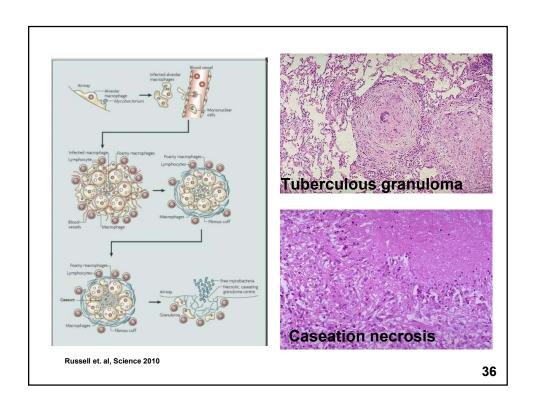


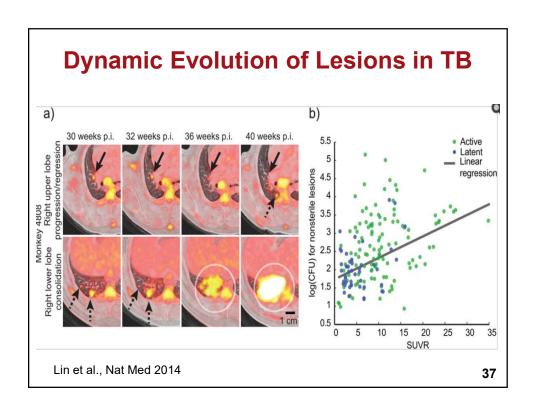


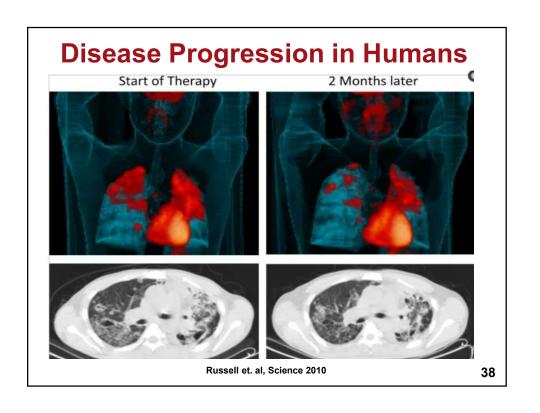












TB infection and no risk factors (about 10% over a lifetime)	TB infection and diabetes (about 30% over a lifetime)	TB infection and HIV infection (a very large risk over a lifetime)
For people with TB infection and no risk factors, the risk is about 5% in the first 2 years after infection and about 10% over a lifetime.	For people with TB infection and diabetes, the risk is 3 times greater, or about 30% over a lifetime.	For people with TB infection and HIV infection (not on HIV treatment), the risk is about 7% to 10% PER YEAR, a very large risk over a lifetime.

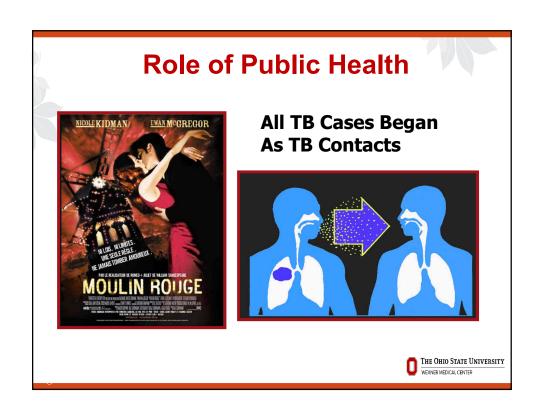
	Risk Factor and Study	Relative Risk (95% CI)	
		%	
Advanced HIV	Advanced, untreated HIV infection		
Advanced HIV	Moss et al.10	9.9 (8.7–11)	
	Pablos-Méndez et al.10	9.5 (3.6–25)	
Close contact	Close contact with a person with infectious tuberculosis†		
	Ferebee ¹⁷	6.1 (5.5-6.8)	
CXR evidence of old	Radiographic evidence of old, healed tuberculosis that was not treated		
TB (untreated)	Ferebee ¹⁷	5.2 (3.4-8.0)	
i z (ania casca)	Treatment with ≥15 mg of prednisone per day‡		
	Jick et al. ¹⁸	2.8 (1.7-4.6)	
Chronic renal dz	Chronic renal failure		
	Pablos-Méndez et al. ¹⁶	2.4 (2.1–2.8)	
TNF-alpha inhibitor	Treatment with TNF- $lpha$ inhibitor		
	Askling et al. 19	2.0 (1.1–3.5)	
Deculy controlled DAA	Poorly controlled diabetes		
Poorly controlled DM	Pablos-Méndez et al. ¹⁶	1.7 (1.5–2.2)	
	Weight ≥10% below normal		
Underweight	Palmer et al. ²⁰	1.6 (1.1-2.2)	
•	Smoking		
Smoking	Bates et al. ²¹	1.5 (1.1–2.2)	
	NEJM 2011;	364(15): 1441-8	

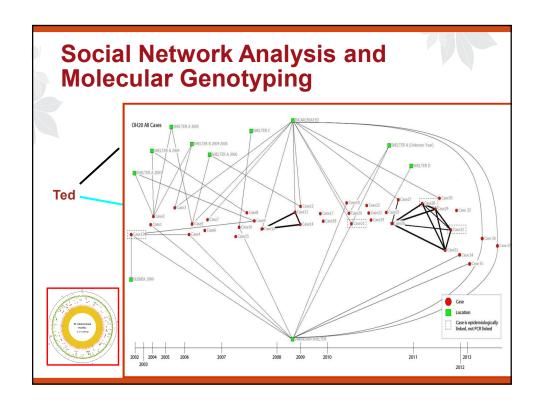
TB and HIV

In an HIV-infected person, TB can develop in one of two ways:

- Person with LTBI becomes infected with HIV and then develops TB disease as the immune system is weakened
- Person with HIV infection becomes infected with M. tuberculosis and then rapidly develops TB disease

Image credit: Mississippi State Department of Health


41


TB Infection vs. TB Disease

A Person with Latent TB Infection A Person with Active TB Disease

- √ Has no symptoms
- ✓ Does not feel sick
- ✓ Cannot spread TB to others
- ✓ Usually has a positive skin test
- ✓ Has a normal CXR and sputum test
- ✓ Has symptoms that may include:
 - · a bad cough that lasts longer than 2 weeks
 - · pain in the chest
 - · coughing up blood or sputum
 - · weakness or fatigue
 - · weight loss
 - · no appetite
 - · chills
 - fever
 - night sweats
- ✓ May spread TB to others
- √ Usually has a positive skin
- ✓ May have an abnormal chest x-ray, or positive sputum smear or culture

WEXNER MEDICAL CENTER

Acknowledgements

- Stacey Rizza
- James Sunstrum
- Christopher Vinnard

