TB Laboratory Testing & Case Studies

April 8, 2016
Angie Schooley, MT
James Sunstrum, M.D.

Objectives

- Review the cascade of laboratory tests a clinician may order to diagnose TB disease
- Integrate molecular assays with culture results
- Demonstrate the proper use of TB diagnostic tests using 3 sample cases of TB disease (easy, medium & difficult)

Disclosures

None

NAA

Amplification

MGIT

MTD

PCR

Pyrosequencing

Molecular

mutation

HPLC

MALDI-Tof

Gene Xpert

What do all the words mean? WGS 16 S Sequencing

∘ Prevent Disease ∘ Promote Wellness ∘ Improve Quality of Life ∘

Status of the tuberculosis problem in 2014.

Madhukar Pai, and Marco Schito J Infect Dis. 2015:211:S21-S28

Does this patient have TB disease?

CLINICAL CLUES

- Cough > 2 weeks
- Fever > 2weeks
- Exposure to TB
- Chronic immune suppression
- Endemic country
- Abnormal physical exam

LABORATORY TESTS

- PPD
- IGRA
- Sputum studies:

AFB Cultures

Molecular studies

- X-rays
- Biopsies

Recommended diagnostic options for pulmonary TB

See the bugs [AFB microscopy]

Multiply the bugs [NAATs]

Grow the bugs [cultures]

Courtesy of Prof. Madhukar Pai, MD, PhD Mayo TB Center Webinar March 2016

Mycobacterial Examination

Mycobacterial examination has 6 stages:

- 1. Proper specimen collection
- 2. Examination of acid-fast bacilli (AFB) smears
- 3. Direct identification (NAAT-nucleic acid amplification test)
- 4. Specimen culturing and final identification
- 5. Drug susceptibility testing
- 6. TB genotyping

TB is difficult to diagnose

High Accuracy for Diagnosis of HIV in Contrast to TB DISEASE

Studies Michigan 2015 pulmonary TB cases....N= 87

Test	% POSITIVE	COMMENT
AFB smear	44%	Negative smear does not rule out TB
NAAT on AFB+ smear	84%	May be performed on AFB smear negative sputums
AFB culture confirms <i>M. tb</i>	78%	Gold standard, not always positive
IGRA	89%	May be negative even with positive cultures!

Specimen Sources

- Sputum (primary)
- Pulmonary aspiration (secondary)
- Body fluids (CSF, pleural, peritoneal, etc)
- Tissue biopsy
- Blood
- Urine
- Gastric aspirate
- Stool (special request)
- Other

Sputum and AFB smears

"See the bugs"

Specimen Collection

Pulmonary Specimen (sputum)

- Early morning specimens = highest yield of AFB
- Collect at least three consecutive specimens at 8-24 hr intervals (at least 1 early morning specimen)
- Recommended volume for testing is 5-10 ml, less may compromise recovery of AFB
- Infection control precautions during specimen collection
- If patient cannot produce sputum by coughing, consider other methods: sputum induction, bronchoscopy, or gastric aspiration
- All persons suspected of TB disease should have sputum cultured

Specimen Collection

- Collect in sterile, leak proof containers
- Seal with tape
- Refrigerate specimen to reduce overgrowth of contaminating bacteria during transit to lab
- Deliver specimen to TB lab within 24 hrs
- Always include patient name on both test request form and the specimen container

Acid-fast Bacilli (AFB) smear

- Least sensitive of all AFB Tests (20-75% positivity)
- Requires 10,000 AFB/ml to be positive
- Positive slide does not differentiate TB from atypical mycobacteria (i.e. M. avium)
- Reported within 24 hours of receiving the specimen in the laboratory

Fluorescent AFB Smear Using Auramine-O Staining

- Very sensitive, takes minutes to read
- Not all that is fluorescent is AFB (need a careful eye)
- Chemical fluorescence, <u>not</u> an immune stain or Direct Fluorescent Antibody
- Can be confirmed with Ziehl-Neelson (ZN) smear

Auramine-O staining of AFB under Fluorescence Microscopy

Nucleic Acid Amplification (NAA) or PCR

"Multiply the bugs"

New CDC Guidelines of Use of NAA MMWR January 16, 2009

- "NAA testing should be performed on at least one respiratory specimen from each patient with signs and symptoms of pulmonary TB for whom a diagnosis of TB is being considered but has not yet been established, and for whom the test result would alter case management or TB control activities."
- NAAT should be performed on <u>all</u> new AFB+ sputum specimens

MTD-Hologic and Gene Xpert-Cepheid are the only FDA approved methods methods

MTD

Gene XPERT

NAA tests are available that are not FDA approved,

such as real time PCR assays

MDHHS performs a real time lab developed PCR test to detect Mtb and MAC using the ABI 7500 Fast DX

GenExpert Assay Procedure for the MTB/RIF Test.

Boehme CC et al. N Engl J Med 2010;363:1005-1015.

AFB Cultures

"Grow the bugs"

AFB Culture Test

- More sensitive than AFB smear
- 10 AFB/ml can produce a positive result, whereas AFB smear needs 10,000 AFB/ml
- Culture may be AFB positive even if smear was negative for AFB

Tests Performed on Growth in Mycobacteria Culture

- Accuprobe DNA test (not amplified)
- HPLC (high performance liquid chromatography)
- MALDI-TOF
- Biochemical Identification Confirmation
- Drug Susceptibility

Susceptibility Testing of M. tuberculosis

When to test

- All new *M. tb* isolates
- Repeat after 90 days of therapy, if specimens continue to produce *M. tb*
- Relapse or failed therapy

Additional Molecular Tests for TB

CDC – Molecular Detection of TB Drug Resistance (MDDR)

- Rapid testing for DNA mutations associated with drug resistance
- NAAT (+) sputum specimens or culture isolates (prior approval)
- Must meet the following criteria:
 - Known Rifampin resistance
 - Known MDR
 - High risk of Rifampin resistance or MDR-TB
 - High profile patient (e.g. daycare worker, nurse)
 - Mixed or non-viable culture
 - Drug Adverse reaction (e.g. Rifampin allergy)

CDC MDDR

- First-line MDDR to detect MDR-TB
- rpoB (Rifampin)
- inhA and katG (Isoniazid)
- Second-line MDDR to detect XDR-TB
- *gyrA* (Fluoroquinolones)
- rrs (Kanamycin, Amikacin, Capreomycin)
- eis (Kanamycin)
- tlyA (Capreomycin)
- pncA (Pyrazinamide)
- embB(Ethambutol)

TB DNA Genotyping Universally Offered by CDC

DNA "Fingerprint" of each isolate

 Michigan Department of Health & Human Services laboratory runs genotype on <u>all TB</u> <u>cultures in United States and territories</u>

Mycobacterium tuberculosis Genotyping To Prioritize Tuberculosis Outbreak Control Activities

Maegan Ashworth et al. J. Clin. Microbiol. 2008;46:856-862

Journal of Clinical Microbiology

Demographics of Selected Genotype Clusters in Southeast Michigan, 2008 – 2012

	PCR00012 (MI_0002) n = 58	PCR00291 (MI_0008) n = 48	PCR04678 (MI_0047) n =23
Race	63% African-American 16% White	97% African-American	100% African-American
Ethnicity	11% Hispanic	3% Hispanic	0% Hispanic
Homeless	37%	44%	27%
Alcohol	32%	35%	27%
Drug	42%	29%	46%
Incarceration	0%	6%	9%
HIV positive	16%	15%	0%
MDR	0%	6%	0%

^{*} All clusters were majority 45 - 64 yrs of age; male and US-borneaumont

Epidemic Curve of Investigation of a Multistate TB Outbreak

3 Sample Cases

Case #1 EASY

From: Current Approaches to Tuberculosis in the United States

JAMA. 2012;308(3):283-289. doi:10.1001/jama.2012.7505

Figure Legend:

Admission chest radiograph showing bilateral lung infiltrates with prominence in the right upper lobe and lingula of the left lung.

APRIL	2016 "E	ASY" CASE			1 TB suspected	2 Sputum PPD/IGRA
3 AFB smear positive	4 PPD 15 mm	5 NAAT positive	6 INH, RIF, PZA, EMB	7	8	9
10	11	12 AFB in broth DNA probe+	13	14	15	16
17	18	19	20	21	22 Drug susceptibility	23
24	25	26 DNA genotype	27	28	29	30

#2 case MEDIUM

57 yr male

- Routine cultures negative
- No improvement
- Bronchoscopy AFB smear negative
- HIV +
- CD4 478 cells/mm³

APRIL	2016 "N	iEDIUM" (CASE		1 HIV+ TB suspected	2 Sputum PPD/IGRA
3 AFB smear negative	4 PPD 0 mm 2 nd smear negative	5	6 IGRA negative	7 NAAT positive	8 INH, RIF, PZA, EMB	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

Case #3 Difficult

- Patient from Africa
- History of 3 prior episodes of pulmonary TB
- Coughing, sick again

APRIL	2016 "D	IFFICULT"	CASE		1 MDR-TB suspected	2 Sputum IGRA
3 AFB smear positive	4 IGRA positive	5 NAAT positive	6 INH, RIF, PZA, EMB ???	7	8 MDDR from CDC positive*	9
10	11 MDR regimen started	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

Centers for Disease Control and Prevention National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention (NCHSTP)

Division of Tuberculosis Elimination (DTBE)

Mycobacteriology Laboratory Branch Reference Laboratory

Report Status: Interim

CLIA ID # 11D0668319

Original Submitter:	Submitter to CDC:
	Michigan Dept. of Community Health / Labs
	Angle Schooley/ Lab Peter Davidson/ Program
CDC Specimen ID: Specimen: M. tuberculosis complex isolate Medium: MGIT	Date Collected: 1/17/2012 Date Received: 1/31/2012 Date Reported: 2/1/2012
Patient: So	ubmitter Specimen Identifiers:

Results for Molecular Detection of Drug Resistance; Conventional Drug Susceptibility Test in progress.

Locus (region) examined*	Result	interpretation (based on in-house evaluation of 254 clinical isolates)
rpoB (RRDR)	Mutetion: TCG>TTG; Ser531Lou	Rifampin resistant. (100% of Isolates in our In-house evaluation of 254 clinical Isolates with this mutation are RMP-R.)
inhA (promoter)	No mutation	Isoniazid resistant. (100% of isolates in our in-house evaluation of 254 clinical isolates
katG (ser315 codon)	Mutation: AGC>ACC; Ser316Thr	with this mutation are INH-R.)
ornibB (Met306,Gly405)	Mutation: GAC>GCC; Asp354Ala	Probably Ethambutol resistant. (84% of isolates in our in-house evaluation of 254 clinical isolates with this mutation are EMB-R.)
pricA (promoter, coding region)	No mutation	Cannot rule out PZA resistance,
gyrA (QRDR)	No mutation	Cannot rule out fluoroquinolone resistance. (86% of FQ-R isolates in our in-house evaluation of 254 clinical isolates have a mutation at this locus.)
rrs (1400 region)	No mutation	Cannot rule out resistance to injectable drugs (kanamycin, capreomycin, amikacin). (In our in-house evaluation of 254 clinical isolates:
els (promoter)	No mutation	88% of AMK-R isolates have a mutation in the rrs locus;
ora (provincial)	No manage	 58% of KAN-R isolates have a mutation in the ris locus; an additional 29% of KAN-R isolates have a mutation in the els locus;
flyA (entire ORF)	No mutation	 46% of CAP-R isolates have a mutation in the ris locus; an additional 5% of CAP-R isolates have a mutation in the flyA locus.)

[&]quot;A negative results (e.g., no mutation) does not rule out contributory mutations present elsewhere in the genome.

Testing performed using in-house developed assays.

MDCH Lab Confirmation of 2nd Line Drugs

INH	R
Rifampin	R
PZA	R
Ethambutol	R
Ofloxacin	S
Ethionamide	R
Streptomycin	S
Kanamycin	S
Amikacin	S
Capreomycin	S
Cycloserine	S
PAS	S

IN CONCLUSION

See the bugs [AFB microscopy]

Multiply the bugs [NAATs]

Grow the bugs [cultures]

• Kill the bugs