

Eileen Donovan, MD Pediatric Physical Medicine and Rehabilitation

Definition

- Disorder of the development of posture and movement, causing activity limitations that are attributed to nonprogressive disturbances that occurred in the developing fetal or infant brain
- It is the most common motor disability of childhood

Definition

- 3 major criteria
 - A neuromotor control deficit that alters movement or posture
 - A non-progressive brain lesion
 - Brain injury either before birth or in the first year(s) of life

What it is NOT

- Progressive
- Genetic/Hereditary
- Traumatic

Cerebral Palsy

 Although the brain lesion in not progressive, the musculoskeletal pathology is certainly progressive

Musculoskeletal progression in CP

Static (Brain lesion)

Progressive (Musculoskeletal deformity)

Spasticity and weakness Spastic muscles don't grow as fast as bones Fixed contracture Bony torsion (twist) Joint instability Dislocation or degenerative changes

Progressive musculoskeletal deformities

Incidence

- 2-3 per 1000 live births
- 700,000 children and adults with CP in USA
- Relatively constant despite medical advancements in maternal, perinatal and NICU care
- Possibly due to improving survival rates in very premature infants

In the majority of cases in full term infants, the etiology is unknown

- Prematurity <37 wks</p>
 - Risk increases with increasing prematurity
- 34 weeks 3 important developments for survival
 - Lungs are developed
 - Suck reflex has developed
 - Germinal matrix of the brain is mature; blood vessels less likely to "leak"
- CSHCS doesn't use gestational age for eligibility

- Low birth weight (< 2500 gm) or very low birth weight (<1500 gm)
 - Incident in premature and LBW infants is 40-150/1000 live births
 - 1/3 of children with CP had a birth weight <2500 grams
 - Incidence is 30 times higher if birth weight <1500 grams
- Children <999 gm (approx 2 lbs) are eligible for CSHCS

- Intraventricular hemorrhage
 - 90% of premies, 20% of full term infants with CP
- Intrauterine stroke

Ventricular system of the brain

- 4 interconnected cavities in the brain where cerebrospinal fluid is produced
- Connected to central canal of spinal cord
- Tracts that control movement of the LE lie closest to the edge of the ventricle
- The bigger the bleed, the greater the brain damage

Ventricular system of the brain

Intraventricular hemorrhages

- Grade I A small amount of blood; stays in the ventricle
- Grade II A larger amount of blood; intraventricular; normal ventricle size
- Usually have <u>no</u> neurological sequella

Intraventricular hemorrhages

- Grade III Even larger amount of blood; intraventricular; ventricular dilation
- Grade IV Blood spills outside of the ventricle and into the actual brain tissue
- Usually <u>have</u> neurological sequella, and this qualifies a child for CSHCS

Periventricular leukomalacia

Figure 1

- Intrauterine infections/chorioamnionitis
 TORCH
- Hyperbilirubinemia
 - Kernicterus associated with dystonic CP and neurosensory hearing loss
- Multiple gestation
- "Vanishing twin" phenomenon
- Twin-to-twin transfusion

Hypoxia?

- <10% of children with CP have history of anoxia/hypoxia</p>
- Documented anoxia/hypoxia is a risk factor
 - Acidosis, bradycardia
 - Neonatal encephalopathy
 - Hypoxic ischemic encephalopathy (HIE) on MRI
 - Eligible for CSHCS
 - Respiratory difficulties, abnormal tone, seizures

Anoxic brain damage

Some parts of the brain are more susceptible to anoxia

- Basal ganglia (dystonic cerebral palsy)
- Auditory nuclei (neurosensory hearing loss)

CP can be associated with:

- Cognitive impairment (50%)
- Seizures (50%)
- Learning disabilities
- Visual problems
 - Strabismus (75%), ROP, cortical blindness (HIE), hemianopsia (HP)
- Incontinence

CP can be associated with:

- Speech delays / hearing problems
 - Sensorineural deafness in hypoxia, TORCH, kernicteris, bacterial meningitis
- GERD / Constipation / Failure to thrive
 - Aspiration pneumonia
- Orthopedic complications
 - Dislocated hips, scoliosis, joint contracture
 - Decreased bone density

Functional Problems

- Gross motor/Mobility
- Learning
- Fine motor
- Feeding

Classification of CP

- Type of movement disorder
- Anatomic distribution

Type of movement disorder

- Spastic 70-85%
- Dyskinetic (dystonic, athetoid) 5-10%
- Ataxic 5%
- Mixed 10%
- Hypotonic 3%
- Often overlapping/not clear cut

Hypotonic/Ataxic

 Rare, therefore all children should receive a thorough diagnostic work-up for other neurological conditions

Spasticity

- Increased tone/resistance to movement
- Assessed by
 - Deep tendon reflexes
 - Passive mobilization
 - Movement through the full ROM should take less than one second

Anatomic distribution of CP

Quadriplegia (32%)

Diplegia (24%)

Hemiplegia (30%)

Spastic Quadriplegia

- All 4 extremities spastic; hypotonic trunk
- Grade IV IVH
- Majority with cognitive impairment
- Seizures in >50%
- High risk of aspiration pneumonia
- Highest risk for orthopedic complications (scoliosis, hip dislocation)
- 50% achieve minimal ambulatory skills with an assistive device

Spastic Diplegia

- Lower extremities more spastic than upper extremities
- Grade III IVH
- 25-33% have seizures or cognitive impairment
- 80-90% are ambulatory with or without AD

Spastic Hemiplegia

- One side affected, upper extremity more than lower extremity
- Right HP:Left HP = 2:1
- Full-term, intrauterine strokes involving MCA
- 50-70% have seizures
- 25% are cognitively impaired
- Leg length discrepancy
- Almost 100% ambulate, but late (not until 18-24 mo)
- Sensory deficits common

Common Presentations of CP

- Delayed development of motor milestones
- Early handedness
- Persistence of primitive reflexes
- Presence of pathologic reflexes
- Failure to develop protective extension responses
 - Russman BS, etal, Spasticity 2002

Diagnosis

- History, physical exam
- No laboratory tests are diagnostic
- EEG may be indicated
- Head imaging may be helpful
 - Ultrasound, MRI
 - >80% of kids with CP have abnormal findings
- BAERs if indicated

Examination

- Early hypotonia (especially trunkal)
- Spasticity in extremities, develops over time
- Brisk DTRs
- Clonus
- Upgoing plantar reflexes (Babinski)
- Synergistic movement patterns
- Joint contractures

Orthopedic problems

- Scoliosis
- Hip subluxation/dislocation
- Knee flexion contractures
- Patella alta
- Foot deformities

Scoliosis

- Neuromuscular
- Risk increases with severity
 - 70% in quads
- Curves over 40 degrees tend to progress
- Complicated by skin breakdown, joint contractures, pelvic tilt

Hip subluxation

Hip dislocation

_

Risks for hip dislocation

- Scissoring pattern adduction, often with hip flexion
 - Hip abduction < 35 degrees
 - Hip flexion contractures >20 degrees are risk factors
- Persistent coxa valga
- Excessive femoral anteversion
- Shallow acetabulum

Risks for hip dislocation

- Diagnosis
 - Quadriplegia 80%
 - Dystonia 40%
 - Diplegia 20%
 - Hemiplegia 1%
- Ambulatory Status
 - Non-ambulatory 70-90%
 - Ambulatory 0-40%
 - Graham, AACPDM presentation, 2006

Knee problems

- Knee flexion contractures
- Patella alta
 - Abnormally high patella
 - In CP, caused by prolonged positioning in flexion or by overactive quadriceps in crouch gait
 - In adolescence, can be painful

Foot Deformities in Child with Cerebral Palsy

- Pronation
- Supination

Pronation in CP

From Dormans

Supination Deformity in CP

Why don't all kids with CP qualify for CSHCS?

- Chronic
- ✓ Sub-specialist-PM&R, Neuro, Ortho
- Severity-(here's the stopper!)
 - Therapy is not considered an indicator of severity
 - So we are looking for the need for interventions like equipment, spasticity medication, Botox injections, alcohol blocks, serial casting, surgery, etc

Treatment options

- Therapy/Orthotics/
 Least invasive Equipment
- Oral medications
- Chemodenervation
 - Botulinum toxin/ Phenol blocks
- Neurosurgery
 - ITB
 - SDR
- Orthopedic surgery

Most invasive

Therapy (very simplified!!)

Occupational therapy

- Fine motor skills, Activities of Daily Living
- Equipment
- Physical therapy
 - Gross motor skills
 - Equipment
- Speech therapy
 - Language, communication
 - Augmentative communication devices

Serial casting for joint contractures

- A series of casts is applied weekly to gradually stretch the muscle
- Might use Botox before
- Bracing or splinting afterward
- Preferable to a muscle lengthening surgery

Bracing (Orthotics)

SWASH Orthosis

- Standing, Walking and Sitting Hip Orthosis
- Controls dynamic hip scissoring

Other Equipment

- Bathseats/shower seats
- Strollers
- Wheelchairs
- Standers
- Walking assistive device
- Safe hospital beds
- Augmentative Communication devices

Strollers/Wheelchairs

Standers

- Standing helps develop the hip joint
- Prevents contractures
- Improves bone density
- Standing 1 hour/day reduces hip dislocation by 60%
- Serve a different purpose than walkers

Safe Hospital Beds

- It's easy to see how a child could get entrapped in a standard hospital bed
- The FDA identified 7 zones of entrapment
- Safer bed technology was developed

Safe Hospital Beds

- Beds by George
- Sleep Safe
- Pedicraft

Treatment of Scoliosis

- Bracing
- Surgery

Bracing/positioning for scoliosis

Treating spasticity

If spasticity interferes with

- Functioning
- Positioning
- Comfort
- Care
- If spasticity is not useful (ie: transfers)
- If treatment is expected to provide improvement

Treating spasticity

- Positioning
- Oral medication
- Chemodenervation
- Surgery

Orthotics/Positioning

- Bracing / Splinting
 - Positioning biomechanical alignment is key!
 - Consider skin tolerance and wearing time

Effects of Biomechanical Alignment on Spasticity

From Cusick

Oral medications

- Treat systemic spasticity, but have systemic side effects
- Most common side effect is drowsiness

Oral medications

- Benzodiazepines (Valium, Klonopin)
- Baclofen (Lioresal)
- Dantrolene sodium (Dantrium)
- Tizanidine (Zanaflex)
- Clonidine (Catapres)

Chemodenervation

- Injectable therapy which results in local muscle weakening
- Temporary and titratable

- Botulinum toxin
- Phenol or ethyl alcohol

Botulinum toxin

Temporarily weakens a muscle (3 months)

- Creates a "window of opportunity"
 - Adjunct to serial casting, intense therapy
- Don't need to use anesthesia (vs alcohol blocks)
 - Topical anesthetic

Phenol/Ethyl Alcohol Injections

- Motor nerve block or motor point block
 - Can only be used on motor nerves (not sensory)
 - Obturator and musculocutaneous nerves
- Causes axonal protein denaturation
- Results usually last 6-12 months
- Done under anesthesia

Surgical Treatments

- Intrathecal Baclofen Pump
- Selective Dorsal Rhizotomy
- Orthopedic surgeries

Intrathecal baclofen pump

intrathecal baclofen pump system
Intrathecal Baclofen Pump

- Implantable, programmable pump, controlled by telemetry
- Baclofen dosing significantly less that oral dose, so "no" side effects
- Medication stable in pump up to 6 months
- Lots of flexibility in dosing
- Reduces risk of hip dislocation

Selective Dorsal Rhizotomy

- EMG guided sectioning of afferent nerve rootlets from L2-S2
- Interruption of reflex arc
- Often "unmasks" underlying weakness
- Not flexible dosing
- Not done (locally) as much as ITB pump

Orthopedic Surgery

- Lengthening Procedures (Muscular)
 - Tendo-achilles lengthening
 - Hip adductor lengthening
 - Hamstring lengthening
 - Selective Percutaneous Myofascial Lenghtening (Percs); New Jersey

Orthopedic Surgery

- Rotational surgeries (Bony)
 - Varus Derotation Osteotomy (VDRO)
 - Tibia / fibula osteotomy

Contact me with questions

- edonovanlopez@gmail.com
- 313-268-7377