FORT STREET BASCULE BRIDGE
GEOTECHNICAL CONSIDERATIONS

Richard O. Anderson, P.E., Dist M. ASCE
Somat Engineering, Inc.
INTRODUCTION

• This project involved the replacement of a 90 year old double leaf bascule bridge over the Rouge River in Southeast Michigan
• Owner = Michigan Department of Transportation (MDOT)
• Design Prime Consultant = Hardesty & Hanover, LLC (H&H)
• Geotechnical Consultant = Somat Engineering, Inc. (SEI)
• Many of the slides, diagrams and photographs in this presentation are used with permission of MDOT and H&H. Their assistance is greatly appreciated.
GENERAL LOCATION OF FORT STREET BRIDGE

Downtown Detroit

Fort Street Bridge

Rouge River

Detroit River
HISTORICAL PERSPECTIVE

• Prior to the 2nd decade of the 20th Century, the Rouge River in this area was a commercially non-navigable, low gradient, shallow river flowing through the marshy wetlands of Wayne County to the Detroit River.

• In 1915 Henry Ford bought 2000 acres along the banks of the Rouge River upstream of Fort Street to build a complex to make coke and smelt iron and make tractors.

• The site was serviced by railroads and the highway system, but water access was needed to bring in the heavy bulk materials.

• The existing bridges downriver over the Rouge River were impediments and the Rouge River was not accessible to the Great Lakes bulk carriers.
HISTORICAL PERSPECTIVE

• By 1917 the first large structure was built at the Rouge plant, as it came to be known

• Over the next 10 years, the Rouge complex grew tremendously and by 1927 this was the main manufacturing facility for Ford

• The answer to the challenges of marine access to the Rouge was to build new bridges and “fix” the river

• Concurrently, several new bridges were designed and constructed and the Rouge River was dredged, widened, and straightened
IMPROVEMENTS TO THE ROUGE RIVER

SOMAT ENGINEERING, INC.

6
THE “NEW” FORT STREET BASCULE BRIDGE

• The new bridge was designed and constructed from 1920 to 1922
• The main span was 164 feet and 278 feet overall
• Roadway width 56 feet and 74 feet overall
• 4 lanes of traffic
• 2 trolley lanes
• 8’-6” sidewalks
EXISTING FORT STREET BASCULE BRIDGE
FOUNDATIONS FOR THE BASCULE BRIDGE

- The bridge was supported on four 12 foot square caissons on each side of the river
WHY WAS A NEW BRIDGE NEEDED?

• The bridge was showing its age by the first decade of the 21st Century, corrosion and aging of the metal parts, deterioration of the bridge structure, etc.

• More importantly, the fingers on the closure joint of the bridge could no longer be adjusted to accommodate the lateral movement of the piers; the piers had been continuously moving closer together since it was constructed.

• Remember the deepening and the widening of the river to permit Great Lakes ore carriers to access the Rouge plant?
DREDGING OF THE ROUGE RIVER
MOVEMENT OF THE BRIDGE PIERS WITH TIME

Recorded Lateral Movement of the Bascule Bridge

- North Side
- South Side

Average Lateral Movement of 0.89" per 10 years

Average Lateral Movement of 0.11" per 10 years

2003 Data with GPS Equipment

Average Lateral Movement of 1.14" per 10 years

Average Lateral Movement of 0.01" per 10 years

SOMAT ENGINEERING, INC.
GEOTECHNICAL CONDITIONS

There was little doubt that the initial and subsequent periodic dredging of the river, in addition to the soil fill that was placed on the approaches, destabilized the banks of the river.
GEOTECHNICAL CONDITIONS

• Based on our previous experience with many projects in the immediate vicinity, we knew the soils along the Rouge River were extremely soft and normally consolidated in certain areas.

• In conjunction with H&H, SEI instituted an extensive geotechnical investigation at the site.

• 12 structure borings, including 4 from barges in the river.

• 6 of the borings were cored into the limestone bedrock from 3’ to 20’.
2010 SOIL BORING LOG FOR BASCULE BRIDGE

MEDIUM SAND, TRACE GRAVEL, OCCASIONAL SILTY CLAY, LAYERS, GRAY, MOIST (SM)
MIN. PILE TIP ELEV. 498.0

BORING TERMINATED ON APPARENT BEDROCK
BORING CONTINUED AS ROCK CORE B-102
END OF BORING 91.0 FT
BORING DATE: 12-15-10 TO 12-16-10 0.6 42.0
ARTESIAN CONDITION ENCOUNTERED ON TOP OF ROCK AND HAD A HEAD OF ABOUT 7 FEET ABOVE GRADE
SHELBY TUBE AT A DEPTH OF 48 FT (EL. 540.9) AND 68 FT (EL. 525.9) CONTAINED SAND AND SILT SEAMS AND COULD NOT BE TESTED

EST. PILE TIP ELEV. 493.9 PIER 2 AND ABUT. B.
HP 18X204 Rndr 850 KIPS PIER 2
HP 12X144 Rndr 500 KIPS ABUT. B.
SOUND TO EXTREMELY FRACUTURED, HARD, SLIGHTLY WEATHERED WITH FREQUENT HYDROCARBON STAINING, DARK GRAY, FINE GRAINED, AMORPHOUS LIMESTONE, OCCASIONAL STYLITES, TRACE FOSSILS, OCCASIONAL POROUS ZONES, STRONG HYDROCARBON ODOUR, REACTS STRONGLY WITH HCL.
GEOTECHNICALLY RELATED CHALLENGES

• Very soft clay
• Granular stratum below the clay above the bedrock
• Artesian groundwater in the granular stratum above the bedrock and in the limestone bedrock
• Hydrogen sulfide in the artesian groundwater
• Methane gas
• Contaminated soil
GENERALIZED SOIL PROFILE
ATTERBERG LIMITS

Generally a “CL” clay with more plasticity than the typical glacial till normally encountered in Southeast Michigan.
SHEAR STRENGTH
SHEAR STRENGTH IMPACT ON GLOBAL STABILITY

Chart #2 - Undrained Shear Strength (psf) Using Data from the Field Vane Shear Test and the Laboratory Unconfined Compressive Strength Test Using All Relevant Soil Borings from SOMAT Recent and Older Geotechnical Investigations

Model Value of shear strength = 550 psf
Minimum required shear strength to obtain the noted FS for the East Approach
PLAXIS ANALYSIS OF PARTICLE MOVEMENT
GLOBAL STABILITY

- The reinforcing effect of the piles was ignored
- Used both Bishop Simplified and Swedish Slip Circle with Circular and Sliding Block failure surfaces
- Calibration was accomplished by varying the parameters until the ambient factor of safety was in the range of from 0.85 to 1.0
- To improve the FS to consistently over 1.0, required a resisting force from the piers of 24 kips per foot of pier width
- To improve the FS to consistently over 1.2, required a resisting force from the piers of 55 kips per foot of pier width
- Current MDOT guidelines require a FS of 1.5+
TYPICAL GLOBAL STABILITY RESULT
GLOBAL STABILITY MODIFIED PROFILE

Slide Output #3
East Approach

Low water at elevation 571.42 ft
Cohesion of predominant silt clay = 500 psi
Angle of internal friction of predominant silt clay = 2 degrees
Without live surcharge load of 240 psi

Visible in the diagram:
- Triangular Wedge
- Slip Plane
GLOBAL STABILITY SENSITIVITY vs STRENGTH

Figure 3 - Sensitivity plot for the cohesion of the predominant silty clay layer
East Approach
with and without uniform live surcharge load of 240 psf

SOMAT ENGINEERING, INC.
GLOBAL STABILITY SENSITIVITY WITH Φ
CHANGE IN ALIGNMENT OF BRIDGE

- Original alignment proposed for new bridge was skewed to the river to improve the local traffic situation on both sides of the river
- Route had to revert to old alignment due to land acquisition problems
NEW “OLD” ALIGNMENT

• No significant difference in geotechnical conditions from skewed to perpendicular alignment
• Forces easier to design for with perpendicular alignment vs skewed alignment
• Now had to contend with foundations from old bridge & utility tunnels
• Not much room for improving the local traffic situations
EXISTING UTILITIES UNDER ALIGNMENT
HOW TO STABILIZE THE NEW BRIDGE

• Underwater concrete compression struts between the piers

• Improve the global stability
 • Increase the resisting force—not feasible with river
 • Decrease the driving force—excavate soil, replace with EPS foam, structural approach slabs for approaches

• Soil improvement

• Soil or rock anchors

• Structurally with the foundations
 • Existing piers—unknown bearing conditions
 • Drilled shafts
 • Driven piles
STRUCTURAL APPROACH SLAB
FINAL DESIGN RECOMMENDATION

132 HP 18 x 204
850 kip Steel
Piles
FINAL FOUNDATION PLAN
Now Tony Pietrangelo of MDOT will describe how the new bridge was constructed.

Thank You
M-85 (Fort Street) Bascule Bridge
Naturally Occurring Geotechnical Hazards During Construction

Tony Pietrangelo, P.E.,
Geotechnical Construction Support Engineer
October 18th, 2016
M-85 (Fort St.) Bascule Bridge - Special Provision for Plugging Artesian Flows

MICHIGAN DEPARTMENT OF TRANSPORTATION
SPECIAL PROVISION FOR PLUGGING ARTESIAN FLOW

DES: JAG 1 of 1 C/T APPR: XX-XX-12

a. Description. This work consists of designing, furnishing materials, and providing equipment to plug artesian flow that may occur along the surfaces of cofferdam piles, foundation piles, or fender system piles.

Refer to the special provision for Cofferdams, Special and to the Notice to Bidders Data Report on Geotechnical Investigation for information on artesian conditions observed at the site.

If artesian flow should occur and does not self-seal to the satisfaction of the Engineer, then the Engineer may, at his/her discretion, instruct the Contractor to take the necessary steps to plug the artesian flow.

b. Materials. Provide the appropriate grout or other material to plug artesian flow.

c. Construction. Prepare a plan to plug artesian flow if that occurs and does not self-seal. The plan must include a description of the proposed plugging materials and the methods to be used to plug artesian flow. Submit the plan to the Engineer for review and approval.

If and when directed by the Engineer, provide the materials and equipment as identified in the approved plan. Inject the plugging material until the artesian flow has stopped.

d. Measurement and Payment. The completed work, as described, will be measured and paid for at the contract unit price using the following pay items:

Pay Item
Pay Unit
Plugging Artesian Flow, H-Plines .. Each
Plugging Artesian Flow, Sheet Piles Foot

Payment for Plugging Artesian Flow, H-Plines will be for each successful plugging of artesian flow at an individual H-Pline as determined by the Engineer, and includes all labor, equipment, and materials.

Payment for Plugging Artesian Flow, Sheet Piles will be for each successful plugging of artesian flow along a sheet pile wall, measured along the plugged length of the wall as determined by the Engineer, and includes all labor, equipment, and materials.

801 of 82ST3
J.N. 55649 A
GENERAL FOUNDATION NOTES

1. COFFERDAMS ARE REQUIRED. CONSTRUCT PARTIAL OR FULL SHEET PILE ENCLOSURES IN ACCORDANCE WITH SECTION 704 OF THE STANDARD SPECIFICATIONS, PERMITS, AND ENVIRONMENTAL RESTRICTIONS NOTED ON THE PLANS. ALTERNATIVE MEANS AND METHODS OTHER THAN SHEET PILING AT SEWER TUNNELS, OR OTHER AREAS WILL NOT BE PAYED FOR SEPARATELY BUT ARE INCLUDED IN THE ITEM "COFFERDAM, SPECIAL 1801 OF 82073.1".

2. SUBMIT WORKING DRAWINGS AND CALCULATIONS FOR COFFERDAMS TO THE ENGINEER A MINIMUM OF 45 CALENDAR DAYS PRIOR TO ANTICIPATED START OF INSTALLATION.

3. MAINTAIN NAVIGATION IN ACCORDANCE WITH SPECIAL PROVISIONS AND U.S. COAST GUARD PERMIT.

4. NO WORK WITHIN THE RIVER (EXCEPT WITHIN COFFERDAMS) MARCH 1 TO MAY 31 EACH YEAR.

5. ELEVATE COFFERDAMS IN ACCORDANCE WITH PLANS AND SPECIAL PROVISIONS.

6. SHEET PILING MUST NOT BE DRIVEN INTO EXISTING TUNNELS.

7. UNDERGROUND METHANE GAS HAS BEEN ENCOUNTERED IN THE VICINITY OF THE PROJECT SITE. INCLUDE MEASURES FOR TRAINING, MONITORING, AND OTHER PRECAUTIONS IN THE SAFETY PLAN.

8. UNDERGROUND HYDROGEN SULFIDE HAS BEEN ENCOUNTERED IN THE VICINITY OF THE PROJECT SITE. INCLUDE MEASURES FOR TRAINING, MONITORING, AND OTHER PRECAUTIONS IN THE SAFETY PLAN.

9. ARTESIAN WATER MAY BE ENCOUNTERED DURING FILE DRIVING. HEAD MAY BE IN EXCESS OF 10 FEET.
M-85 (Fort St.) Bascule Bridge – Pier 2

- 850 Kip Nominal Pile Driving Resistance
- HP 18 X 204
- Full Length Piles
- New pier in same location as old pier and existing abutment and return walls supported on timber piles
- Timber piles in conflict with proposed piles
M-85 (Fort St.) Bascule Bridge

Existing layout showing foundation piles.
M-85 (Fort St.) Bascule Bridge

Construction Quick Facts

• **Abutment A and Pile Supported Approach**
 • 500 kips
 • HP 12X74 section
 • PDA Testing required
 • Installed using a BSP CX85 Hydraulic Hammer

• **Abutment B and Pile Supported Approach**
 • 500 kips
 • HP 12X74 section
 • PDA Testing required
 • Installed using a Pileco D30-32 OED Hammer

• **Pier 1**
 • 600 kips
 • HP 18X204 section
 • PDA Testing required
 • Installed using a BSP CX85 Hydraulic Hammer

• **Pier 2**
 • 850 kips
 • HP 18X204 section
 • PDA Testing required
 • Installed using a Pileco D46-32 OED Hammer
M-85 (Fort St.) Bascule Bridge

Construction Quick Facts

Construction Costs

- Cofferdams, Special – $1,900,000.00
- HP 18X204 Piling
 - 13,234.48 ft @ $170 per ft. = $2,249,861.60
- HP 12X74 Piling
 - 11,989.82 ft @ $48.53 per ft. = $581,865.96
- Pile Driving Equipment, Furn. - $125,000.00
- Pile Points, Steel
 - 303 @ $150 each = $45,450.00
- Test Pile Dynamic Analysis
 - 8 @ $1,200.00 each = $9,600.00
- Test Pile Furnish Dynamic Analysis Equipment
 - 8 @ $600.00 each = $4,800.00
M-85 (Fort St.) Bascule Bridge: HP 18 x 204
M-85 (Fort St.) Bascule Bridge: HP 18 x 204
M-85 (Fort St.) Bascule Bridge
M-85 (Fort St.) Bascule Bridge

• Received a call that a hydrogen sulfide gas artesian flow was encountered during pile driving
 – Result of conflict with the existing timber piles
 – Existing timber piles were driven to rock into/through the artesian bearing soil layer
 – Contractor removed one (1st) timber pile in conflict with proposed piling and the artesian flow, flowed up the vacant hole left be removing the timber pile
M-85 (Fort St.) Bascule Bridge

- Contractor attempted to place the timber pile back in the hole in an attempt to plug the artesian
 - Contractor had already cut the existing timber pile in to 20 ft. pieces to remove from site
 - Was able to place 40 ft. back in the hole, two pieces got jammed up, artesian still flowed
 - Site smelled like rotten eggs
 - Contractor notified their safety officer; all operations at pier 2 were suspended
 - Location was caution taped off
M-85 (Fort St.) Bascule Bridge

- Contractor put together a monitoring plan; employees had to wear gas monitoring devices.
- Once gas levels decreased to a safe level, the existing timber piles were surveyed for their exact locations and the proposed pile layout was revised accordingly.
 - Because these were special order pile sizes and lengths, designers had to revise the proposed layout using the same number and length of piles as the original design - no additional pile could be added.
 - Changes were received and pile driving continued…
M-85 (Fort St.) Bascule Bridge

– Noticed there were fewer battered piles than before???
– Revised PDF drawings that construction received did not show the battered pile arrows that were on the CADD drawings - battered piles appeared as vertical piles
– Re-revise proposed pile layout based on what was driven as vertical pile and keeping the same number and length as original
M-85 (Fort St.) Bascule Bridge

- Plugging the artesian
- SP included in contractor
- MDOT asked contractor for a plan to plug the artesian; contractor was reluctant to submit a plan to plug the artesian
- Bid the item at a dollar a piece
- Because the clay was so soft, the artesian was slowly decreasing until the soft clay completed closed off the artesian flow
- No additional plugging work was needed
- Because the contractor removed one existing timber pile…all the other artesian and construction related issues occurred
M-85 (Fort St.) Bascule Bridge
Completed Project
M-85 (Fort St.) Bascule Bridge
Completed Project
M-85 (Fort St.) Bascule Bridge

- Questions?