Chapter 2
BAY REGION SUMMARY
PROLOGUE

Since 2014, the Michigan Department of Transportation (MDOT) has used probe vehicle data to create an annual Freeway Congestion and Reliability Report. The probe vehicle data is collected anonymously from GPS enabled devices and in-vehicle telematics to provide real time speeds on roadways nationwide. Probe vehicles provide an enormous amount of data which can be difficult to manage, maintain, and analyze. The University of Maryland Center for Advanced Transportation Technology (CATT) Lab developed a visual analytics platform called the Regional Integrated Transportation Information System, or RITIS. This tool allows MDOT to monitor speeds, incidents, weather, special events, and many other data sources. Using the RITIS platform, data was downloaded, processed, and compiled into a report summarizing all freeway routes in Michigan.

This report is composed of eight chapters. The first chapter summarizes performance measures and statewide metrics. The remaining seven chapters use those performance metrics to characterize congestion in each of MDOT's seven regions. This document is for internal use to help MDOT regions, Transportation Service Centers (TSC), and planners understand how Michigan freeways are operating over time, as well as where potential improvement projects may be necessary. This report is typically used as a starting point for more detailed analysis incorporating additional probe data, as well as other MDOT resources. If your area has plans to share this information externally, please contact the Congestion and Reliability Unit to ensure the correct measures are being used.

The report was prepared by the Wayne State University Transportation Research Group under the guidance of the Congestion and Reliability Unit at MDOT. Please contact the Congestion and Reliability Unit if you have any questions/comments or would like to have the actual data for further analysis.

ACKNOWLEDGEMENTS

Jason Firman – Congestion and Reliability Manager
Lee Nederveld – Operations Engineer
John Engle – Operations Engineer
Kayla Smith – Student Assistant
Peggy Johnson – Departmental Analyst

WILLIAM-STATE UNIVERSITY

Jenna Kirsch – Graduate Research Assistant
Steve Remias – Assistant Professor
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>PERFORMANCE MEASURES DEFINITIONS</td>
<td>5</td>
</tr>
<tr>
<td>PERFORMANCE MEASURES VISUALIZATIONS</td>
<td>8</td>
</tr>
<tr>
<td>BAY REGION: OVERVIEW</td>
<td>16</td>
</tr>
<tr>
<td>BAY REGION: CORRIDOR GLOSSARY</td>
<td>24</td>
</tr>
<tr>
<td>I-69: Shiawassee, Genesee, Lapeer, and St. Clair</td>
<td>25</td>
</tr>
<tr>
<td>I-75: Genesee, Saginaw, Bay, and Arenac</td>
<td>36</td>
</tr>
<tr>
<td>I-94: St. Clair</td>
<td>46</td>
</tr>
<tr>
<td>I-475: Genesee</td>
<td>51</td>
</tr>
<tr>
<td>I-675: Saginaw</td>
<td>56</td>
</tr>
<tr>
<td>US-10: Clare, Isabella, Midland, and Bay</td>
<td>63</td>
</tr>
<tr>
<td>US-23: Genesee</td>
<td>70</td>
</tr>
<tr>
<td>US-127: Gratiot, Isabella, and Clare</td>
<td>75</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>64</td>
</tr>
<tr>
<td>CONTACT INFORMATION</td>
<td>85</td>
</tr>
</tbody>
</table>
INTRODUCTION

The purpose of this document is to provide a performance overview of Michigan freeways. Using probe vehicle data and systematic performance measures, a series of visualizations were created for each region in the state. Chapter 2 of this report provides an overview of the Bay Region. Bay Region is made up of 15 counties and contains the cities of Flint, Saginaw, Mt. Pleasant, and Clare. Eight freeways are analyzed in the section below.
PERFORMANCE MEASURES DEFINITIONS

The probe data alone provides representative speeds on predefined segments of roadway every minute. Although this data is rich, it provides limited use to engineers and practitioners without well-defined aggregation techniques. Performance measures are growing in the transportation arena to better monitor traffic conditions, improve traveler information, and identify congested areas with the aim of improving operations on roadways. A summary of the performance measures used in this report can be seen in Table 1.

The goal of these performance measures is to quantify the congestion, delay, and reliability of the freeway network in Michigan. Numerous metrics were used in this report to quantify the performance of the road network, including a new delay index. Delay is quantified when the speed drops below 60 MPH, which is at least 10 MPH lower than the posted speed limit for the freeways (Figure 1). On segments with a speed limit of 55 MPH, delay is calculated when speed falls below that threshold. The delay index presented in this report represents the total delay on each segment if one vehicle were to drive that segment every ten minutes. The lower the value, the better the freeway segment is operating. The other element of interest is reliability. Reliability is a measure of the consistency of a travel time on a roadway. A roadway that has the same travel time every day is said to be reliable, whereas a roadway that has varying travel times is said to be unreliable. MDOT’s goal is to provide reliable travel times with minimal delay. This is done through roadway improvement projects which can include additional lanes, pavement improvements, and intelligent transportation systems. These projects can reduce the travel time and also improve the travel time reliability. An example of this is shown in Figure 2.

![FIGURE 1. Delay Calculation](image)

FIGURE 1. Delay Calculation
FIGURE 2. Travel Time Average and Reliability Improvements
TABLE 1. Performance Measures of Interest

<table>
<thead>
<tr>
<th>PERFORMANCE MEASURE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELAY</td>
<td>Delay is calculated by taking the difference between actual speeds when they fall below 60 MPH and the posted speed limit. This is to take out the delay caused by the lower average speeds from commercial vehicles.</td>
</tr>
<tr>
<td>DELAY INDEX</td>
<td>Delay index is calculated by adding the delay if a probe vehicle drove every segment of roadway once every ten minutes. This value is then divided by the length of the roadway segment. This allows users to make comparisons between varying corridors and locate areas that cause the most delay.</td>
</tr>
<tr>
<td>MAXIMUM DELAY</td>
<td>Maximum delay is the maximum calculated delay per segment throughout a year.</td>
</tr>
<tr>
<td>AVERAGE SPEED</td>
<td>Average speed is determined by calculating the space mean speed of the worst ranked hour in the weekday AM peak (6:00 AM - 9:00 AM) and weekday PM peak (3:00 PM - 7:00 PM) periods for each segment of roadway. This is compared to the space mean speed of the previous five year period for the same hour.</td>
</tr>
<tr>
<td>CONGESTION SEVERITY</td>
<td>Congestion severity is calculated based on the worst hourly average speed experienced during the AM or PM peak period per traffic message channel (TMC) segment. A TMC segment is a standard for delivering real-time traffic information. They vary from tenths of a mile long to several miles long.</td>
</tr>
<tr>
<td>TRAVEL TIME RELIABILITY</td>
<td>Travel time reliability is a measure of travel time consistency over a period of time. When travel times are unreliable, customers are more likely to experience unexpected delays. Travel times are shown to be reliable when the 95th percentile travel time remains close to the average travel time.</td>
</tr>
<tr>
<td>AVERAGE TRAVEL TIME</td>
<td>The amount of time a customer should budget to be on-time on average.</td>
</tr>
<tr>
<td>95TH PERCENTILE TRAVEL TIME</td>
<td>The amount of time a customer should budget to be on-time 19 out of 20 days (95% of the time). The 95th percentile travel time is also known as the planning time.</td>
</tr>
<tr>
<td>LEVEL OF TRAVEL TIME RELIABILITY</td>
<td>Level of travel time reliability (LOTTR) is calculated as the ratio of the 80th percentile travel time to a “normal” travel time (50th percentile). LOTTR measures the consistency and dependability of road segments. The Federal Highway Administration (FHWA) deemed a road segment to be unreliable if its LOTTR value exceeds 1.50.</td>
</tr>
</tbody>
</table>

Note: May 1st through September 30th were used for the summer reliability calculations.
Performance measures visualizations provide an easy way to graphically represent the performance metrics listed above. In this report, five main visualizations are used. These five visualizations are explained in detail below.

DELAY INDEX

Figure 3 is an example of the delay index graph. This figure represents I-75 through Genesee County in the Bay Region. The delay index visualization displays which months are incurring the most delay, while comparing how delay patterns change from year-to-year. Figure 3 shows the following:

- a) Yearly delay index per mile totals (in minutes).
- b) Delay index per mile (in minutes).
- c) Month of year.
- d) Higher than normal delay index per mile values in December 2016 and December 2017.
- e) A delay index per mile value of 46 minutes in January 2018.

FIGURE 3. Example Delay Index Graph
Figure 4 is an example of the average speed graph. This figure represents eastbound I-69 through the Bay Region. This performance metric visualizes the speeds on a given corridor during the AM and PM peak periods, along with a 5-year historical average of those speeds. Average speed graphs can display how morning and evening peak speeds can vary by time and magnitude. The following criteria was used in the making of these graphs:

- Only weekdays (Monday – Friday) are included in the calculations.
- The AM peak hour is the worst ranked hour between 6:00 AM – 9:00 AM.
- The PM peak hour is the worst ranked hour between 3:00 PM – 7:00 PM.
- The worst ranked hour is based on the lowest average speed and minimum speed experienced during the peak hours.

Figure 4 shows the following:

a) Legend.
b) Location of interchanges by exit/mile marker number.
c) Specific significant interchanges.
d) Direction of travel.
e) Average speed in MPH.
f) Example of low speed area during the PM peak while approaching I-475 interchange.
g) Example of limited change in speed from year to year.
h) 2018 AM peak average speed is approximately 67 MPH at Exit 163.
i) Example of improvement in the current year as compared to the 5-year historical average.
FIGURE 4. Example Average Speed Graph

AVERAGE SPEED

- 2013-2017 AM Peak Average Speed
- 2013-2017 PM Peak Average Speed
- 2018 AM Peak Speed
- 2018 PM Peak Speed
CONGESTION SEVERITY

Figure 5 shows an example of the congestion severity map. This figure represents Bay Region during the AM peak hour. This performance metric displays the amount of congestion on corridors during AM and PM peak periods by representing speeds in a color gradient. The color gradient consists of three different categories to distinguish severity levels:

- Low (≥55 MPH).
- Moderate (≥35 MPH & <55 MPH).
- Severe (<35 MPH).

Figure 5 shows the following:

a) All roads are operating efficiently because there is low congestion.
TRAVEL TIME RELIABILITY

Figure 6 is an example of the travel time reliability graph. This figure represents a portion of southbound I-75 through the Bay Region. This performance metric displays the reliability of a given corridor over time. A segment is deemed “reliable” when the average and 95th percentile travel times are constant. A segment is deemed “unreliable” when the average and 95th percentile travel times differ by a large amount of time. Figure 6 shows the following:

a) The 95th percentile travel time reliability and the average (50th percentile) travel time reliability.
b) Amount of time it will take a vehicle to drive the entire corridor in minutes.
c) Time of day.
d) Small difference between average and 95th percentile travel times (reliable).
e) Large difference between average and 95th percentile travel times (unreliable).

FIGURE 6. Example Travel Time Reliability Graph
LEVEL OF TRAVEL TIME RELIABILITY

Figure 7 shows an example of the level of travel time reliability (LOTTR) figure. This figure represents northbound I-75 through the Bay Region. This performance metric displays the consistency and dependability of road segments by analyzing vehicular travel times from day-to-day or across different times of the day. LOTTR is defined as the ratio between the 80th-percentile travel time to the 50th-percentile travel time. In order to determine if a road segment has reliable travel times, LOTTR utilizes a threshold value of 1.50. Therefore, a segment providing a calculated LOTTR value less than 1.50 would claim to have reliable travel times. As delegated by FHWA, the following time periods were used in the making of these graphs:

- Weekdays between 6:00 AM – 10:00 AM.
- Weekdays between 10:00 AM – 4:00 PM.
- Weekdays between 4:00 PM – 8:00 PM.
- Weekends between 6:00 AM – 8:00 PM.

Figure 7 shows the following:

a) Legend.
b) Location of interchanges by exit/mile marker number.
c) Specific significant interchanges.
d) Direction of travel.
e) Level of travel time reliability.
f) Threshold value of 1.50.
g) This section of roadway has reliable travel times because the LOTTR values of the four time periods are below 1.50.
LEVEL OF TRAVEL TIME RELIABILITY

<table>
<thead>
<tr>
<th>I-475 Interchange</th>
<th>I-675 Interchange</th>
<th>US-23 Interchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holly Rd/Exit 108</td>
<td>MI-54/Dort Hwy/Exit 109</td>
<td>I-475/Exit 111</td>
</tr>
<tr>
<td>MI-121/Bristol Rd/Exit 116</td>
<td>M-57/Exit 116</td>
<td>US-23 MI-121/Bristol Rd/Exit 116</td>
</tr>
<tr>
<td>I-475/Exit 111</td>
<td>MI-61/Holland Ave/Exit 119</td>
<td>I-69 Miller Rd/Exit 117</td>
</tr>
<tr>
<td>MI-21/Corunna Rd/Exit 118</td>
<td>I-75/Exit 120</td>
<td>MI-21/Corunna Rd/Exit 118</td>
</tr>
<tr>
<td>US-23 MI-121/Bristol Rd/Exit 116</td>
<td>I-475/Exit 125</td>
<td>US-10/MI-25/Exit 162</td>
</tr>
<tr>
<td>I-675</td>
<td>MI-81/Exit 151</td>
<td>MI-13/Exit 164</td>
</tr>
<tr>
<td>MI-84/Exit 160</td>
<td>I-675/Exit 155</td>
<td>MI-61/Exit 195</td>
</tr>
<tr>
<td>MI-57/Exit 116</td>
<td>I-75</td>
<td>MI-33/Exit 202</td>
</tr>
<tr>
<td>MI-21/Corunna Rd/Exit 118</td>
<td>I-475</td>
<td>MI-61/Exit 195</td>
</tr>
<tr>
<td>US-10/MI-25/Exit 162</td>
<td>MI-13/Exit 164</td>
<td>Sterling Rd/Exit 196</td>
</tr>
<tr>
<td>MI-21/Corunna Rd/Exit 118</td>
<td>I-75</td>
<td>MI-33/Exit 202</td>
</tr>
<tr>
<td>MI-57/Exit 116</td>
<td>I-475</td>
<td>MI-21/Corunna Rd/Exit 118</td>
</tr>
<tr>
<td>MI-21/Corunna Rd/Exit 118</td>
<td>I-475</td>
<td>MI-21/Corunna Rd/Exit 118</td>
</tr>
<tr>
<td>US-10/MI-25/Exit 162</td>
<td>MI-13/Exit 164</td>
<td>MI-61/Exit 195</td>
</tr>
<tr>
<td>MI-21/Corunna Rd/Exit 118</td>
<td>I-75</td>
<td>MI-33/Exit 202</td>
</tr>
</tbody>
</table>

FIGURE 7. Example Level of Travel Time Reliability Figure

Figure 8 shows an example of the level of travel time reliability map. This figure represents Bay Region during weekdays between 6:00 AM – 10:00 AM. This performance metric displays the level of travel time reliability on corridors during the four time periods mentioned above. LOTTR is represented in a color gradient that consists of three different categories to distinguish severity levels:

- Low (<1.25 LOTTR).
- Moderate (≥1.25 LOTTR & <1.50 LOTTR).
- Severe (≥1.50 LOTTR).

Figure 8 shows the following:

a) All roads have very reliable travel times because the LOTTR values are below 1.25.
LEVEL OF TRAVEL TIME RELIABILITY

2018 Level of Travel Time Reliability (LOTTR)
- Low (<1.25 LOTTR)
- Moderate (≥1.25 LOTTR & <1.50 LOTTR)
- Severe (≥1.50 LOTTR)

FIGURE 8. Example Level of Travel Time Reliability Map
The following table ranks the Bay Region freeways based on the delay index. Each freeway segment is presented on a countywide or TSC basis, as appropriate.

TABLE 2. 2018 Bay Region Delay Index Data

<table>
<thead>
<tr>
<th>Rank</th>
<th>Location (Route, County)</th>
<th>2018 Delay Index per Mile (in minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>US-23 – Genesee County</td>
<td>512</td>
</tr>
<tr>
<td>2</td>
<td>I-69 – Genesee County</td>
<td>327</td>
</tr>
<tr>
<td>3</td>
<td>I-75 – Arenac County</td>
<td>323</td>
</tr>
<tr>
<td>4</td>
<td>I-675 – Saginaw County</td>
<td>311</td>
</tr>
<tr>
<td>5</td>
<td>US-10 – Bay County</td>
<td>308</td>
</tr>
<tr>
<td>6</td>
<td>I-75 – Genesee County</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>US-127 – Gratiot County</td>
<td>284</td>
</tr>
<tr>
<td>8</td>
<td>I-69 – St. Clair County</td>
<td>276</td>
</tr>
<tr>
<td>9</td>
<td>US-127 – Isabella County</td>
<td>273</td>
</tr>
<tr>
<td>10</td>
<td>I-69 – Lapeer County</td>
<td>269</td>
</tr>
<tr>
<td>11</td>
<td>I-94 – St. Clair County</td>
<td>263</td>
</tr>
<tr>
<td>12</td>
<td>US-127 – Clare County</td>
<td>257</td>
</tr>
<tr>
<td>13</td>
<td>I-69 – Shiawassee County</td>
<td>251</td>
</tr>
<tr>
<td>14</td>
<td>I-75 – Bay County</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>US-10 – Clare and Isabella County</td>
<td>242</td>
</tr>
<tr>
<td>16</td>
<td>I-475 – Genesee County</td>
<td>220</td>
</tr>
<tr>
<td>17</td>
<td>I-75 – Saginaw County</td>
<td>205</td>
</tr>
<tr>
<td>18</td>
<td>US-10 – Midland County</td>
<td>201</td>
</tr>
</tbody>
</table>
BAY REGION: CONGESTION SEVERITY

The following tables display the amount of congestion miles per region that fall into each severity level. Table 3 shows this data during the AM peak and Table 4 shows this data during the PM peak. These tables can be utilized to compare the amount and severity of congestion across all regions. Figures 9-10 represent this information specifically in the Bay Region. Figure 9 shows the congestion severity during the AM peak and Figure 10 shows the congestion severity during the PM peak.

TABLE 3. 2018 Congestion Miles by Severity - AM Peak

<table>
<thead>
<tr>
<th>Region</th>
<th>Low</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay</td>
<td>772.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Grand</td>
<td>668.9</td>
<td>36.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Metro</td>
<td>405.1</td>
<td>139.9</td>
<td>32.4</td>
</tr>
<tr>
<td>North</td>
<td>358.2</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Southwest</td>
<td>471.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Superior</td>
<td>95.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>University</td>
<td>715.8</td>
<td>37.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Total</td>
<td>3487.1</td>
<td>214.1</td>
<td>36.1</td>
</tr>
</tbody>
</table>

TABLE 4. 2018 Congestion Miles by Severity - PM Peak

<table>
<thead>
<tr>
<th>Region</th>
<th>Low</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay</td>
<td>770.3</td>
<td>2.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Grand</td>
<td>658.6</td>
<td>37.6</td>
<td>9.4</td>
</tr>
<tr>
<td>Metro</td>
<td>348.7</td>
<td>151.7</td>
<td>77.1</td>
</tr>
<tr>
<td>North</td>
<td>358.2</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Southwest</td>
<td>471.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Superior</td>
<td>95.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>University</td>
<td>719.9</td>
<td>24.7</td>
<td>11.8</td>
</tr>
<tr>
<td>Total</td>
<td>3422.0</td>
<td>216.9</td>
<td>98.3</td>
</tr>
</tbody>
</table>
BAY REGION: CONGESTION SEVERITY

2018 Congestion Severity

- Low
 (≥55 MPH)
- Moderate
 (≥35 MPH & <55 MPH)
- Severe
 (<35 MPH)

FIGURE 9. 2018 Bay Region AM Peak Congestion Severity
BAY REGION: CONGESTION SEVERITY

2018 Congestion Severity

- Low: (≥55 MPH)
- Moderate: (≥35 MPH & <55 MPH)
- Severe: (<35 MPH)

FIGURE 10. 2018 Bay Region PM Peak Congestion Severity
BAY REGION: LEVEL OF TRAVEL TIME RELIABILITY

The following figures display the level of travel time reliability (LOTTR) based on severity level in the Bay Region. Figures 11-13 display the LOTTR during weekdays between 6:00 – 10:00 AM, 10:00 AM – 4:00 PM, and 4:00 PM – 8:00 PM, respectively. Figure 14 displays the LOTTR during weekends between 6:00 AM – 8:00 PM.

2018 Level of Travel Time Reliability (LOTTR)

- Low: (<1.25 LOTTR)
- Moderate: (≥1.25 LOTTR & <1.50 LOTTR)
- Severe: (≥1.50 LOTTR)

FIGURE 11. 2018 Bay Region Level of Travel Time Reliability
(Weekdays between 6:00 AM – 10:00 AM)
FIGURE 12. 2018 Bay Region Level of Travel Time Reliability (LOTTR)
(Weekdays between 10:00 AM – 4:00 PM)
BAY REGION: LEVEL OF TRAVEL TIME RELIABILITY

FIGURE 13. 2018 Bay Region Level of Travel Time Reliability
(Weekdays between 4:00 PM – 8:00 PM)
BAY REGION: LEVEL OF TRAVEL TIME RELIABILITY

![Map of Bay Region with travel time reliability levels indicated]

2018 Level of Travel Time Reliability (LOTTR)
- **Low** (<1.25 LOTTR)
- **Moderate** (≥1.25 LOTTR & <1.50 LOTTR)
- **Severe** (≥1.50 LOTTR)

FIGURE 14. 2018 Bay Region Level of Travel Time Reliability
(Weekends between 6:00 AM – 8:00 PM)
BAY REGION: CORRIDOR GLOSSARY

I-69: Shiawassee, Genesee, Lapeer, and St. Clair Pg. 25
I-75: Genesee, Saginaw, Bay, and Arenac Pg. 36
I-94: St. Clair Pg. 46
I-475: Genesee Pg. 51
I-675: Saginaw Pg. 56
US-10: Clare, Isabella, Midland, and Bay Pg. 63
US-23: Genesee Pg. 70
US-127: Gratiot, Isabella, and Clare Pg. 75
I-69: SHIAWASSEE COUNTY DELAY INDEX

a) Segment Map

[Map showing counties and segments]

b) Delay Index Graph

[Graph showing delay index per mile for each month from 2013 to 2018]

FIGURE 15. Shiawassee County I-69 Corridor Delay Index
I-69: GENESEE COUNTY DELAY INDEX

FIGURE 16. Genesee County I-69 Corridor Delay Index
I-69: LAPEER COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 17. Lapeer County I-69 Corridor Delay Index
I-69: ST. CLAIR COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 18. St. Clair County I-69 Corridor Delay Index
FIGURE 19. Bay Region Eastbound I-69 Average Speed
FIGURE 20. Bay Region Westbound I-69 Average Speed
FIGURE 21. Travel Time Reliability: I-69
I-69: TRAVEL TIME RELIABILITY

FIGURE 22. Segment 1 - I-69 between I-75/US-23/Exit 133 and I-475/UAW Fwy/Exit 137
FIGURE 23. Segment 2 - I-69 between I-475/UAW Fwy/Exit 137 and M-15/Exit 145
I-69: LEVEL OF TRAVEL TIME RELIABILITY

FIGURE 24. Bay Region Eastbound I-69 Level of Travel Time Reliability
FIGURE 25. Bay Region Westbound I-69 Level of Travel Time Reliability
I-75: GENESEE COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 26. Genesee County I-75 Corridor Delay Index
I-75: SAGINAW COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 27. Saginaw County I-75 Corridor Delay Index
I-75: BAY COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 28. Bay County I-75 Corridor Delay Index
I-75: Arenac County Delay Index

a) Segment Map

b) Delay Index Graph

FIGURE 29. Arenac County I-75 Corridor Delay Index
I-75: AVERAGE SPEED

FIGURE 30. Bay Region Northbound I-75 Average Speed
I-75: AVERAGE SPEED

FIGURE 31. Bay Region Southbound I-75 Average Speed
I-75: TRAVEL TIME RELIABILITY

a) Bay Region

b) Flint, Michigan and Saginaw, Michigan

FIGURE 32. Travel Time Reliability: I-75
I-75: TRAVEL TIME RELIABILITY

FIGURE 33. Segment 1- I-75 between I-69 and US-10/M-25/Exit 162
(Summer)
I-75: LEVEL OF TRAVEL TIME RELIABILITY

FIGURE 34. Bay Region Northbound I-75 Level of Travel Time Reliability
FIGURE 35. Bay Region Southbound I-75 Level of Travel Time Reliability
FIGURE 36. St. Clair County I-94 Corridor Delay Index
I-94: AVERAGE SPEED

FIGURE 37. Bay Region Eastbound I-94 Average Speed
FIGURE 38. Bay Region Westbound I-94 Average Speed
FIGURE 39. Bay Region Eastbound I-94 Level of Travel Time Reliability
FIGURE 40. Bay Region Westbound I-94 Level of Travel Time Reliability
I-475: GENESEE COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 41. Genesee County I-475 Corridor Delay Index
I-475: AVERAGE SPEED

FIGURE 42. Bay Region Northbound I-475 Average Speed
I-475: AVERAGE SPEED

2013-2017 AM Peak Average Speed
2013-2017 PM Peak Average Speed
2018 AM Peak Speed
2018 PM Peak Speed

2013-2017 AM Peak Average Speed
2013-2017 PM Peak Average Speed
2018 AM Peak Speed
2018 PM Peak Speed

FIGURE 43. Bay Region Southbound I-475 Average Speed
FIGURE 44. Bay Region Northbound I-475 Level of Travel Time Reliability
I-475: LEVEL OF TRAVEL TIME RELIABILITY

FIGURE 45. Bay Region Southbound I-475 Level of Travel Time Reliability
I-675: SAGINAW COUNTY DELAY INDEX

a) Segment Map

![Segment Map Image]

b) Delay Index Graph

![Delay Index Graph Image]

FIGURE 46. Saginaw County I-675 Corridor Delay Index
FIGURE 47. Bay Region Northbound I-675 Average Speed
FIGURE 48. Bay Region Southbound I-675 Average Speed
I-675: TRAVEL TIME RELIABILITY

FIGURE 49. Travel time Reliability: I-675
I-675: TRAVEL TIME RELIABILITY

![Travel Time Reliability Diagram](image)

FIGURE 50. Segment 1 - I-675 between I-75/US-23 (FLINT) and I-75/US-23
FIGURE 51. Bay Region Northbound I-675 Level of Travel Time Reliability
FIGURE 52. Bay Region Southbound I-675 Level of Travel Time Reliability
US-10: CLARE AND ISABELLA COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 53. Clare and Isabella County US-10 Corridor Delay Index
US-10: MIDLAND COUNTY DELAY INDEX

a) Segment Map

- Clare
- Gladwin
- Isabella
- Midland
- Saginaw
- Shiawassee
- St. Clair
- Saginaw
- Tuscola
- Sanilac
- Lapeer
- Shiawassee
- Genesee
- Lapeer
- Genesee
- Saginaw
- Tuscola
- Sanilac
- Lapeer
- St. Clair

b) Delay Index Graph

- 2013 Delay/Mile: 30
- 2014 Delay/Mile: 40
- 2015 Delay/Mile: 30
- 2016 Delay/Mile: 180
- 2017 Delay/Mile: 270
- 2018 Delay/Mile: 210

FIGURE 54. Midland County US-10 Corridor Delay Index
US-10: BAY COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 55. Bay County US-10 Corridor Delay Index
US-10: AVERAGE SPEED

FIGURE 56. Bay Region Eastbound US-10 Average Speed
US-10: AVERAGE SPEED

FIGURE 57. Bay Region Westbound US-10 Average Speed
FIGURE 58. Bay Region Eastbound US-10 Level of Travel Time Reliability
US-10: LEVEL OF TRAVEL TIME RELIABILITY

FIGURE 59. Bay Region Westbound US-10 Level of Travel Time Reliability
US-23: GENESEE COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 60. Genesee County US-23 Corridor Delay Index
US-23: AVERAGE SPEED

FIGURE 61. Bay Region Northbound US-23 Average Speed
US-23: AVERAGE SPEED

FIGURE 62. Bay Region Southbound US-23 Average Speed
US-23: LEVEL OF TRAVEL TIME RELIABILITY

FIGURE 63. Bay Region Northbound US-23 Level of Travel Time Reliability
FIGURE 64. Bay Region Southbound US-23 Level of Travel Time Reliability
US-127: GRATIOT COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 65. Gratiot County US-127 Corridor Delay Index
US-127: ISABELLA COUNTY DELAY INDEX

a) Segment Map

b) Delay Index Graph

FIGURE 66. Isabella County US-127 Corridor Delay Index
US-127: CLARE COUNTY DELAY INDEX

FIGURE 67. Clare County US-127 Corridor Delay Index
US-127: AVERAGE SPEED

FIGURE 68. Bay Region Northbound US-127 Average Speed
US-127: AVERAGE SPEED

FIGURE 69. Bay Region Southbound US-127 Average Speed]
US-127: TRAVEL TIME RELIABILITY

FIGURE 70. Travel Time Reliability: US-127
US-127: TRAVEL TIME RELIABILITY

FIGURE 71. Segment 1 - US-127 between I-69/Exit 82 and US-10 (Non-Summer)

a) Northbound between January 1st and April 30th (Fridays only)

b) Northbound between October 1st and December 31st (Fridays only)
US-127: TRAVEL TIME RELIABILITY

a) Southbound between January 1st and April 30th (Sundays only)

b) Southbound between October 1st and December 31st (Sundays only)

FIGURE 72. Segment 1 - US-127 between I-69/Exit 82 and US-10 (Non-Summer)
US-127: LEVEL OF TRAVEL TIME RELIABILITY

FIGURE 73. Bay Region Northbound US-127 Level of Travel Time Reliability
FIGURE 74. Bay Region Southbound US-127 Level of Travel Time Reliability
CONCLUSION

This chapter summarizes the performance of the Bay Region. It is the Congestion and Reliability Unit’s goal that these performance measures are not just numbers and figures, but information to help MDOT personnel understand how traffic is operating on its freeways and make actionable decisions on improving traffic. These metrics could be used to help prioritize projects, determine where and when problems are occurring, and how significant these problems are. We intend to provide these performance measures on an annual basis to help identify trends on the system and to keep MDOT up to date on freeway operations. Various performance measures may change due to changing federal requirements or MDOT needs. As probe data improves, this may expand to non-freeway routes as well. The Congestion and Reliability Unit welcomes any feedback on this report to help us improve it in the future and maximize its usefulness.

CONTACT INFORMATION

Please contact the Congestion and Reliability Unit if you have any questions/comments or would like to have the actual data for further analysis.

Jason Firman, Congestion and Reliability Manager

517-388-3378 | firmanj@michigan.gov