Mechanistic-Empirical Pavement Design Oversight Committee

Kickoff Meeting
Construction Field Services
June 18, 2012

Mike Eacker
Outline

• What Is ME?
• Why Adopt ME?
• Work Completed To Date
• Current Work
• Goals Of The Committee
• Proposed Subcommittees
• Q&A/Discussion
What Is ME?
What Is ME?

- Mechanistic-Empirical pavement design (ME) is the latest generation of pavement design methodology
- Not a new concept
- Theory of mechanics – pavement response (stresses/strains) to applied load
- Empirical observations used to calibrate the mechanistic models
What Is ME?

- NCHRP Project 1-37A began 1998
- 1-37A completed 2004
- Version 1.0 of the software (MEPDG) delivered 2007 – AASHTO interim design method
- Version 2.0 of the software (DARWin-ME) delivered 2011 – AASHTO standard design method
- 27 states, 6 Canadian provinces, several others are licensing DARWin-ME (as of Jan. 2012)
What Is ME?

- Climate
- Structure & Materials
- Traffic
- Mechanistic Analysis
- EICM
- Transfer Functions
- Predicted Performance
What Is ME?

- Mechanistic models used to calculate pavement response (stresses and strains) with each passing axle load
- Response is converted to distress through transfer functions
- Incremental damage approach is used to sum damage over time
- Distresses (performance) predicted over time
Questions?
Why Adopt ME?
Why Adopt ME?

- Current design method, AASHTO 1993, based on AASHO Road Test from 1958-1960
Why Adopt ME?

- **AASHO Road Test**
 - 1950’s trucks, loads, tires, tire pressures
 - 1950’s test methods
 - Local materials (Ottawa, Illinois)
 - Local weather conditions
 - Local drainage conditions
 - Single Subgrade type
 - Limited traffic (~1.1 million applied ESAL’s)
Why Adopt ME?

<table>
<thead>
<tr>
<th></th>
<th>AASHTO 1993</th>
<th>ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Input</td>
<td>ESAL’s</td>
<td>Axle Load Spectra</td>
</tr>
<tr>
<td>Materials Input</td>
<td>Handful</td>
<td>Many</td>
</tr>
<tr>
<td>Climatic Effects</td>
<td>Very Limited</td>
<td>Integral</td>
</tr>
<tr>
<td>Performance Parameters</td>
<td>Present Serviceability Index</td>
<td>Typical Distresses</td>
</tr>
<tr>
<td>Output</td>
<td>Design Thickness</td>
<td>Performance Prediction</td>
</tr>
</tbody>
</table>
Why Adopt ME?

- Axle Load Spectra comes from WIM information

<table>
<thead>
<tr>
<th>Month</th>
<th>Class</th>
<th>Total</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
<th>9000</th>
<th>10000</th>
<th>11000</th>
<th>12000</th>
<th>13000</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>4</td>
<td>100</td>
<td>1.8</td>
<td>0.96</td>
<td>2.91</td>
<td>3.99</td>
<td>6.8</td>
<td>11.47</td>
<td>11.3</td>
<td>10.97</td>
<td>9.88</td>
<td>8.54</td>
<td>7.33</td>
</tr>
<tr>
<td>January</td>
<td>5</td>
<td>100</td>
<td>10.05</td>
<td>13.21</td>
<td>16.42</td>
<td>10.61</td>
<td>9.22</td>
<td>8.27</td>
<td>7.12</td>
<td>5.85</td>
<td>4.53</td>
<td>3.46</td>
<td>2.56</td>
</tr>
<tr>
<td>January</td>
<td>6</td>
<td>100</td>
<td>2.47</td>
<td>1.78</td>
<td>3.45</td>
<td>3.95</td>
<td>6.7</td>
<td>8.45</td>
<td>11.85</td>
<td>13.57</td>
<td>12.13</td>
<td>9.48</td>
<td>6.83</td>
</tr>
<tr>
<td>January</td>
<td>7</td>
<td>100</td>
<td>2.14</td>
<td>0.55</td>
<td>2.42</td>
<td>2.7</td>
<td>3.21</td>
<td>5.81</td>
<td>5.26</td>
<td>7.39</td>
<td>6.85</td>
<td>7.42</td>
<td>8.99</td>
</tr>
<tr>
<td>January</td>
<td>9</td>
<td>100</td>
<td>1.74</td>
<td>1.37</td>
<td>2.84</td>
<td>3.53</td>
<td>4.93</td>
<td>8.43</td>
<td>15.68</td>
<td>17.68</td>
<td>16.71</td>
<td>11.57</td>
<td>6.09</td>
</tr>
<tr>
<td>January</td>
<td>10</td>
<td>100</td>
<td>3.64</td>
<td>1.24</td>
<td>2.36</td>
<td>3.38</td>
<td>5.18</td>
<td>3.74</td>
<td>13.85</td>
<td>17.35</td>
<td>16.21</td>
<td>10.28</td>
<td>6.52</td>
</tr>
<tr>
<td>January</td>
<td>11</td>
<td>100</td>
<td>3.55</td>
<td>2.91</td>
<td>5.19</td>
<td>5.27</td>
<td>6.33</td>
<td>6.98</td>
<td>8.08</td>
<td>9.68</td>
<td>8.55</td>
<td>7.28</td>
<td>7.16</td>
</tr>
<tr>
<td>January</td>
<td>12</td>
<td>100</td>
<td>6.68</td>
<td>2.29</td>
<td>4.87</td>
<td>5.86</td>
<td>5.97</td>
<td>8.86</td>
<td>9.58</td>
<td>9.94</td>
<td>8.59</td>
<td>7.11</td>
<td>5.87</td>
</tr>
<tr>
<td>January</td>
<td>13</td>
<td>100</td>
<td>8.88</td>
<td>2.67</td>
<td>3.81</td>
<td>5.23</td>
<td>6.04</td>
<td>8.1</td>
<td>8.35</td>
<td>10.69</td>
<td>10.69</td>
<td>11.11</td>
<td>7.31</td>
</tr>
<tr>
<td>February</td>
<td>4</td>
<td>100</td>
<td>1.8</td>
<td>0.96</td>
<td>2.91</td>
<td>3.99</td>
<td>6.8</td>
<td>11.47</td>
<td>11.3</td>
<td>10.97</td>
<td>9.88</td>
<td>8.54</td>
<td>7.33</td>
</tr>
<tr>
<td>February</td>
<td>5</td>
<td>100</td>
<td>10.05</td>
<td>13.21</td>
<td>16.42</td>
<td>10.61</td>
<td>9.22</td>
<td>8.27</td>
<td>7.12</td>
<td>5.85</td>
<td>4.53</td>
<td>3.46</td>
<td>2.56</td>
</tr>
<tr>
<td>February</td>
<td>6</td>
<td>100</td>
<td>2.47</td>
<td>1.78</td>
<td>3.45</td>
<td>3.95</td>
<td>6.7</td>
<td>8.45</td>
<td>11.85</td>
<td>13.57</td>
<td>12.13</td>
<td>9.48</td>
<td>6.83</td>
</tr>
<tr>
<td>February</td>
<td>7</td>
<td>100</td>
<td>2.14</td>
<td>0.55</td>
<td>2.42</td>
<td>2.7</td>
<td>3.21</td>
<td>5.81</td>
<td>5.26</td>
<td>7.39</td>
<td>6.85</td>
<td>7.42</td>
<td>8.99</td>
</tr>
<tr>
<td>February</td>
<td>9</td>
<td>100</td>
<td>1.74</td>
<td>1.37</td>
<td>2.84</td>
<td>3.53</td>
<td>4.93</td>
<td>8.43</td>
<td>15.68</td>
<td>17.68</td>
<td>16.71</td>
<td>11.56</td>
<td>6.09</td>
</tr>
<tr>
<td>February</td>
<td>10</td>
<td>100</td>
<td>3.64</td>
<td>1.24</td>
<td>2.36</td>
<td>3.38</td>
<td>5.18</td>
<td>3.74</td>
<td>13.85</td>
<td>17.35</td>
<td>16.21</td>
<td>10.28</td>
<td>6.52</td>
</tr>
<tr>
<td>February</td>
<td>11</td>
<td>100</td>
<td>3.55</td>
<td>2.91</td>
<td>5.19</td>
<td>5.27</td>
<td>6.33</td>
<td>6.98</td>
<td>8.08</td>
<td>9.68</td>
<td>8.55</td>
<td>7.28</td>
<td>7.16</td>
</tr>
<tr>
<td>February</td>
<td>12</td>
<td>100</td>
<td>6.68</td>
<td>2.29</td>
<td>4.87</td>
<td>5.86</td>
<td>5.97</td>
<td>8.86</td>
<td>9.58</td>
<td>9.94</td>
<td>8.59</td>
<td>7.11</td>
<td>5.87</td>
</tr>
<tr>
<td>February</td>
<td>13</td>
<td>100</td>
<td>8.88</td>
<td>2.67</td>
<td>3.81</td>
<td>5.23</td>
<td>6.04</td>
<td>8.1</td>
<td>8.35</td>
<td>10.69</td>
<td>10.69</td>
<td>11.11</td>
<td>7.31</td>
</tr>
</tbody>
</table>
Why Adopt ME?

- Examples of new inputs that affect pavement performance, but are not in current method:
 - Tire pressures
 - Hourly traffic distribution
 - Location specific climate data
 - Concrete coeff. of thermal expansion
 - HMA dynamic modulus
 - Plasticity Index, gradation, etc. of base, subbase, subgrade materials
Why Adopt ME?

Michigan weather stations embedded in DARWin-ME
Why Adopt ME?

Predicted Asphalt Mid-Quintile Sub-layer Modulus

One year time frame

Modulus (psi)

Pavement Ages (date)

AC1(1) h = 0.5 in
AC1(2) h = 0.5 in
AC1(3) h = 1 in
AC2(4) h = 1 in
AC2(5) h = 1.5 in
AC3(6) h = 4 in
AC3(7) h = 2.5 in
Why Adopt ME?

- ME distresses match up closely with our PMS data:
 - Concrete distresses predicted: % slabs cracked, faulting, IRI
 - HMA distresses predicted: transverse cracking, longitudinal cracking, % fatigue cracking, rutting, IRI
- Present Serviceability Index has not been measured
Why Adopt ME?

- Can see the effect of many more materials properties on a pavement’s performance
- Can evaluate the effects of proposed changes to designs/materials during specification development or construction
- Significant changes in pavement materials and traffic can be investigated/quantified
- Changes in materials properties with time (aging, etc.) are incorporated
- Hierarchical input structure allows for customization of the quality of the inputs depending on resources required and project importance
Why Adopt ME?

- Damage being output over time provides possibility of planning future work
Questions?
Work Completed To Date
Work Completed To Date

• “Evaluation of the 1-37A Design Process for New and Rehabilitated JPCP and HMA Pavements”
 – Sensitivity of the inputs
 – Comparison of in-service pavement performance with ME predicted performance
 • Michigan LTPP sections, 5 JPCP projects, 5 HMA projects
 – Reasonableness of model results
Work Completed To Date

- “Characterization of Truck Traffic in Michigan for the New Mechanistic Empirical Pavement Design Guide”
 - Sensitivity of traffic inputs
 - Used TrafLoad software
 - Used data from all permanent traffic recorders (WIM and classification sites)
 - Looked at one week per month vs. full data set – very little difference
Work Completed To Date

• “Characterization of Truck Traffic…” (cont.)
 – Grouped the WIM’s into cluster of similar characteristics for most of the traffic inputs
 – Recommended input levels for each of the traffic inputs
 – Developed method for coming up with traffic inputs for areas not represented by a WIM
Work Completed To Date

• “Quantifying Coefficient of Thermal Expansion Values for Typical Hydraulic Cement Concrete Paving Mixtures”
 – Utilized eight different aggregate geologies typically used in Michigan
 – Recommend CTE values for different aggregate types
Work Completed To Date

• “Pavement Subgrade MR Design Values for Michigan’s Seasonal Changes”
 – Used soil maps to break the state into zones of different subgrade types
 – Used FWD and samples collected to obtain resilient modulus values
 – Developed equations to calculate modulus from other soil parameters (dry unit weight, % passing #200 sieve, etc.)
 – Recommended modulus values for each of the subgrade types
Work Completed To Date

• “Backcalculation of Unbound Granular Layer Moduli”
 – Used FWD data to backcalculate resilient modulus values of base and subbase layers
 – Recommended modulus values for different base types, subbase, and both as one layer

Questions?
Current Work

• “Preparation for Implementation of the Mechanistic-Empirical Pavement Design Guide in Michigan”
 – Part 1 – HMA Characterization
 • Test many different HMA mixes from around the state
 • Try to decide how to categorize the different mixes into typical inputs
 • Use Artificial Neural Networks to build a model to predict the dynamic modulus master curve
 • 70+ total samples will be collected representing 40+ different HMA mixes
Current Work

• “Preparation for Implementation…” (cont.)
 – Part 2 – Evaluate Rehab Designs
 • Evaluate whether ME rehab designs give reasonable results
 • Sensitivity of rehab specific inputs
 • Compare in-service pavement performance with ME predicted performance – typically at least 10 projects for each fix type
Current Work

- “Preparation for Implementation…” (cont.)
 - Part 3 – Calibration and Validation
 - Evaluation of our PMS readiness to support ME
 - Compare in-service pavement performance with ME predicted performance
 - Adjust calibration factors as needed
 - Check the adjusted calibration factors on a different set of pavements
 - Recommend database needs
Current Work

• Example of calibration factor adjustment – ME over predicting
Current Work

- **PrepME pooled fund project**
 - PrepME is a software tool for preparing and housing inputs for ME
 - Started as a tool for converting WIM data into applicable traffic inputs
 - Expanded to include climatic and materials inputs, including a database structure for storage
Current Work

• Implementation Plan
 – Review MDOT ME research reports
 – Learn from states already implementing
 – Literature review (anything ME related)

– ME oversight committee
 – Decide on reliability levels *
 – Decide on performance thresholds *
 – Develop acceptance protocol for designs *
Current Work

- Implementation Plan (cont.)
 - Run designs, run designs, run designs
 - Catalog all inputs
 - Decide which inputs are default and which are in-play as well as input level *
 - Review climatic data that came with the software
 - Investigate rehab designs
 - Calibration and validation
 - Where does the initial cross-section come from? *
Current Work

• Implementation Plan (cont.)
 – What should be in the output file
 – Organization of design files
 – Transition plan *
 – Overall design process *
 – Get the server version of DARWin-ME set up
 – Develop user’s manual
 – Conduct training class
Current Work

- Implementation Plan (cont.)
 - Develop research ideas *
 - Determine equipment needs *
 - Keep stakeholders updated

Questions?
Goals Of The Committee
Goals Of The Committee

Facilitate the implementation of ME as MDOT’s standard design method
Goals Of The Committee

• Facilitate business process changes for pavement design
 – Who provides the traffic data and how?
 – Which designs are central office and which are not?
 – etc.

• Decisions on equipment
 – CTE test
 – HMA dynamic modulus test
 – etc.
Goals Of The Committee

• Help with decisions on design criteria
 – Distress thresholds
 – Reliability levels,
 – etc.

• Decisions on input values
 – Time to 50% shrinkage (PCC)
 – 20 year/28 day PCC compressive strength ratio
 – HMA effective binder content
 – % air voids
 – etc.
Goals Of The Committee

• Expand department knowledge of the software and the impacts of different inputs and design decisions
• Explore research needs
• Facilitate industry participation
• Decide on and oversee subcommittees, including membership
Questions?
Proposed Subcommittees
Proposed Subcommittees

- Proposed Subcommittees
 - Traffic
 - HMA
 - Concrete
Proposed Subcommittees

- Subcommittee goals
 - Learn the materials/traffic inputs and their impacts in the software
 - Recommend equipment
 - Facilitate testing
 - Make recommendations on input values
Proposed Subcommittees

• Meeting Frequency
 – Oversight – every two to three months
 – Subcommittees – every four to six weeks
 – As we progress and subcommittees complete their work, Oversight committee will likely meet more often
Questions?