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Design Selection 
 

 Design of the side by side box beam bridge followed requirements described in the 

MDOT Bridge Design Manual, MDOT Bridge Design Guides and the AASHTO LRFD 

Bridge Design Specifications.  

 The proposed span length of the bridge is 60 feet. The width of the deck that was used in 

design was 45 feet. This allows for one lane of traffic in each direction and two shoulders 

with a width of 10 feet. 

 A cross section of 36”W x 27”D was selected for use on this project. The beam is 

dimensioned according to the MDOT Bridge Design Guides 6.65.10A. Fifteen beams 

were used in the design of this bridge. 

 According to the MDOT Bridge Design Manual 7.01.03 and 7.02.03.A.1, a concrete 

strength of 5000 – 7000 psi must be used in the construction of prestressed box beams. 

Concrete compressive strength specified and used in this design is 7,000 psi.  

 In section 7.02.18.B.2 the center to center spacing of side by side prestressed box beams 

is the nominal width of the beam plus 1.5 inches.  

 The steel prestressing strands are Gr. 270 low relaxed strands. This has been selected 

according to 7.01.03 of the MDOT Bridge Design Manual. Strand diameter used in the 

design is 0.6” and the equivalent area is 0.217 in2. 

 Mild steel longitudinal and stirrups for the prestressed box beam reinforcement is 

required to be Gr. 60. This has been selected according to 7.01.03 of the MDOT Bridge 

Design Manual.  

 Side by side box beams shall have a wearing course of six inches as specified in 

7.02.18.B.6.a of the MDOT Bridge Design Manual and 6.29.06A of the MDOT Bridge 

Design Guides. This bridge was designed with a 6 inch thick reinforced concrete deck. 

The compressive strength of concrete in the bridge deck is specified as 4000 psi. 

 As stated in 7.02.18.B.5 of the MDOT Bridge Design Manual and 6.65.13A of the 

MDOT Bridge Design Guides, traverse post-tensioning ducts shall be placed at mid-

depth of the beam if the box beam has a depth of less than 33 inches.  
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 Traverse post-tensioning tendons shall be placed at one (1) at each end of the beam, one 

(1) at center span and one (1) at each quarter point for beams between 50 and 62 feet in 

length. (MDOT Bridge Design Guides 6.65.13A) Post-tensioning tendons are arranged 

according to this specification. 

 The size of the end block and intermediate diaphragms was determined in accordance 

with 6.65.12, 6.65.12A and 6.65.13 of the MDOT Bridge Design Guides. Each end block 

must have a minimum width of 2 feet (end block design was taken as 2 feet). The 

intermediate diaphragms have a width of 1’-2”.  

 The loading placed on the bridge followed specification of section 3.6.1.2.2 and 3.6.1.2.4 

of the AASHTO. This section states that a truck with two 32 kip axels and one 8 kip axel 

spaced at 14 feet apart shall be placed on the bridge. A uniformly distributed load of 0.64 

kips per linear foot in the longitudinal direction is also used in design.   

 In this design, the barrier wall placed on the bridge was assumed to be 400 pounds per 

linear foot.  

 Shear stirrups shall project from the beams into the slab to provide composite action as 

specified in section 7.02.18.B.6a. The stirrups will extend 2.75 inches above the top 

flange of the box beams to develop a composite section with the deck slab. 

Notation: 

a = depth of the equivalent rectangular stress block 

Ab = area of the beam    

Ao = area enclosed by the centerline of the element  

Aps = area of prestressing steel 

Apst = total area of prestressing steel (all strands included) 

Atr = transformed area (calculated by multiply by the modular ratio) 

beff = lateral dimension of the effective bearing area (effective flange width) 

bv = effective web width 
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c = distance from the extreme compression fiber and the neutral axis 

dbeam = depth of the beam 

de = effective depth from the extreme compression fiber to the centroid of the tensile 

force in the tensile reinforcement 

deckthick = thickness of the bridge deck  

deckwidth = width of the bridge deck  

DFM = distribution factor for moment on the interior girders 

DFS = distribution factor for shear on the interior girders 

dp = depth from the extreme compression fiber to the centroid of the tension steel 

dstrand = diameter of the prestressing steel strand 

dv = effective shear depth 

e = eccentricity of the prestressing steel to the centroid of the cross section 

Ecb = modulus of elasticity of the beam concrete  

Eci = modulus of elasticity of the concrete at transfer 

Ecs = modulus of elasticity of slab concrete 

em = average eccentricity of the prestressing steel at midspan 

Ep = modulus of elasticity of the prestressing steel tendons 

fcb = concrete compressive strength of the beam 

fcpe = compressive stress in concrete due to effective prestress force only 

fcs = concrete compressive strength of the slab 

fpe = effective stress in the prestressing steel after losses 
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fpi = stress in prestressing steel immediately prior to transfer 

fps = average stress in prestressing steel at time in question 

fpt = stress in prestressing steel immediately at transfer 

fpu = specified tensile strength of prestressing steel 

fpy = yield strength of prestressing steel 

fr = modulus of rupture of the concrete  

fts/cs = allowable stresses in the concrete at transfer and service 

fys = minimum yield strength of compression reinforcment 

H = average ambient humidity  

IB3N  = moment of inertia resisting superimposed dead loads 

Ibeam = moment of inertia for the beam cross section  

IN = moment of inertia resisting live loads 

J = St. Venant torsional inertia 

Mcr = cracking Moment 

Mr = factored flexural resistance of a section in bending 

Mu = factored moment at the section (applied moment) 

n = modular ratio 

Nb = number of beams 

Ns = number of strands 

Pe = effective prestressing force at midspan after losses 

Pt = prestressing force at transfer 
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S = average spacing of mild steel reinforcement  

Sb/St = section modulus of the beam (bottom or top, respectively) 

SB3N/ST3N = section modulus of the beam resisting superimposed dead loads (bottom or top, 

respectively) 

SBN/STN = section modulus of the beam resisting live loads (bottom or top, respectively) 

Span = span of the beam  

Vc = nominal shear resistance provided by the tensile stresses in the concrete 

Vp = applied shear of the effective prestressing force 

Vs = shear resistance provided by shear reinforcement  

Vu = factored shear force at section (applied shear) 

yb/yt  = distance from the neutral axis to the extreme tension or compression fiber 

ytcs = distance to the extreme top fiber of the composite section 

ΔfpES = loss in prestressing steel due to elastic shortening  

ΔfpLT = long term prestress losses due to creep of concrete, shrinkage of concrete and 

relaxation of steel strands 

ΔfpR = an estimate of relaxation loss (taken as 2.4 ksi for low relaxation strands) 
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Design Calculations for a Box Beam used in Laboratory NDE Testing

Design Selections:

fcb 7 ksi Compressive Strength of Concrete for the Beam

fcs 4 ksi Compressive Strength of Concrete for the Bridge Deck

dstrand 0.6 in Diameter of Steel Prestressing Strand

fpu 270 ksi Tensile Strength of Steel Prestressing Strand

Span 60 ft deckwidth 45 ft

deckthick 6 in Side by Side Box Beam Bridges use a 6" Wearing Surface

Using a Box Beam with Dimensions of 36"W x 27"D the properties are as follows:

dbeam 27 in wbeam 36 in Wbeam 530
lbf

ft


Ab 509 in
2 yt 13.43 in yb 13.57 in

St 3520 in
3 Sb 3480in

3 Ibeam 47300 in
4

Figure 1: 36"   W x 27"  D Box Beam Section
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Check Maximum Span to Depth Ratio:

Using Simple Span Adjacent Box Beams (AASHTO Table 2.5.2.6.3-1):

Mindepth 0.030 Span 21.6 in

if Mindepth dbeam deckthick "ok" "notok"  "ok"

Composite Section Properties:

For adjacent box beam, the effective flange width is equal to the width of the section.

bspac 36 in

beff min bspac Span  36 in Section 4.6.2.6

Modulus of Elasticity:

Unitless values for use in elastic modulus equations

wc 0.150 fcs1 4 fcb1 7

Ecs 33000 wc
1.5 fcs1 ksi 3834.3 ksi Equation 5.4.2.4-1

Ecb 33000 wc
1.5 fcb1 ksi 5072.2 ksi

Modular Ratio:

n
Ecs

Ecb
0.756

Slab Transformed Width:

str beff n 27.213 in

Composite Section Resisting Superimposed Dead Loads:

k 3

Atr

str deckthick

k
54.427 in

2 Transformed area 

Islab

str

3
deckthick

3

12
163.281 in

4 Moment of Inertia of the slab
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Distance from bottom of section to the
centroid of the slab

yslab dbeam

deckthick

2
 30 in

Element Area (in2) Y(in) AY (in3) AY2 (in3)

Ab 509 in
2 yb 13.57 in Ab yb 6907.1 in

3 Ab yb
2 93729.8 in

4Girder

Slab Atr 54.427 in
2 yslab 30 in Atr yslab 1632.8 in

3 Atr yslab
2 48984.2 in

4

A Ab Atr 563.427 in
2

AY Ab yb Atr yslab 8.54 10
3 in

3

AY 2 Ab yb
2 Atr yslab

2 142713.9 in
4

ybar3N
AY

A
15.157 in

Iz Islab Ibeam AY 2 190177.2 in
4

Moment of Inertia of 
Composite Section

I3N Iz A ybar3N
2 60736.3 in

4

ytcs dbeam deckthick ybar3N 17.843 in Distance to Extreme Top Fiber of
Composite Section

SB3N

I3N

ybar3N
4007.1 in

3 Bottom Section Modulus

ST3N

I3N

ytcs
3404 in

3 Top Section Modulus
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Composite Section Resisting Live Loads: 

k 1

Atr

str deckthick

k
163.281 in

2 Transformed area 

Islab

str

k
deckthick

3

12
489.842 in

4 Moment of Inertia of the slab

yslab dbeam

deckthick

2
 30 in Distance from bottom of section to the

centroid of the slab

Element Area (in2) Y(in) AY (in3) AY2 (in3)

Ab 509 in
2 yb 13.57 in Ab yb 6907.1 in

3 Ab yb
2 93729.8 in

4Girder

Slab Atr 163.281 in
2 yslab 30 in Atr yslab 4898.4 in

3 Atr yslab
2 146952.6 in

4

A Ab Atr 672.281 in
2

AY Ab yb Atr yslab 1.181 10
4 in

3

AY 2 Ab yb
2 Atr yslab

2 240682.3 in
4

ybarN
AY

A
17.56 in

Iz Islab Ibeam AY 2 288472.2 in
4

IN Iz A ybarN
2 81161.4 in

4 Moment of Inertia of Composite
Section

ytcs dbeam deckthick ybarN 15.44 in Distance to Extreme Top Fiber of 
Composite Section

SBN

IN

ybarN
4621.8 in

3 Bottom Section Modulus

STN

IN

ytcs
5256.7 in

3 Top Section Modulus
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Determine Distribution Factors 

In order to determine the equations for the load distribution factors a common deck
superstructure must be chosen from Table 4.6.2.2.1-1. For this design the typical cross
section f was chosen: precast solid, voided or cellular concrete boxes with shear keys and
traverse post-tensioning. The type of deck is cast in place overlay.

Figure 2: Typical Deck Cross-Section F
From Table 4.6.2.2.1-1

Determine the number of beams in the cross section:

deckwidth 45 ft wbeam 36 in

Nb

deckwidth

wbeam
15 beams

Live Load Distribution Factors for Moment in an Interior Girder

Note: Exterior girders were not considered in this design. They are not required for the
scope of the Non-Destructive evaluation covered in this project.

Using table 4.6.2.2.2b-1, determine if design criteria meets range of applicability requireme

if 35 in wbeam 60 in "ok" "not ok"  "ok"

if 20 ft Span 120 ft "ok" "not ok"( ) "ok"

if 5 Nb 20 "ok" "not ok"  "ok"

N
Ecb

Ecs
1.323 Equation 4.6.2.2.1-2 

Equation in Table 4.6.2.2.2b-1 ( Under
section, Concrete Beams used in Multi
beam Decks as Type of Superstructure)

k max 2.5 Nb  0.2 1.5



 1.5

Determine A o which is defined as the area enclosed by the centerlines of the elements.

Ao wbeam 4.5 in  dbeam
4.5 in

2


5 in
2







 700.875 in
2
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hhhhh 

J
4 Ao

2


s

t


Equation C4.6.2.2.1-3

s = length of a side element (in) s 27 in

t = thickness of plate-like element
(in)

t 4.5 in

J
4 Ao

2

2
s

t






163741.9 in

4

One Lane Loaded (Live Load Distribution Factors for Moment):

The equation for live load moment distribution factors is found in Table 4.6.2.2.2b-1.

DFM1Lane k
wbeam

33.3 Span









0.5


Ibeam

J









0.25



For this equation given in AASHTO, the constants are developed around specific units (s
in feet and beam width in inches). Since Mathcad incorporates units, the equation below 
been simplified to take out the effect of units and obtain the correct live load factors.

DFM1Lane k
wbeam

2.75 Span









0.5


Ibeam

J









0.25

 0.148

Two Lane or More Lanes Loaded (Live Load Distribution Factors for Moment):

The equation for live load moment distribution factors is found in Table 4.6.2.2.2b-1

DFM2Lane k
wbeam

305









0.6


wbeam

12 Span









0.2


Ibeam

J









0.06



For this equation given in AASHTO, the constants are developed around specific units (sp
in feet and beam width in inches). Since Mathcad incorporates units, the equation below h
been simplified to take out the effect of units and obtain the correct live load factors.

DFM2Lane k
wbeam

305 in









0.6


wbeam

Span









0.2


Ibeam

J









0.06

 0.212
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hhhhh Live Load Distribution Factors for Shear in an Interior Girder:

Using table 4.6.2.2.3a-1, determine if design criteria meets range of applicability requirem

if 35 in wbeam 60 in "ok" "not ok"  "ok"

if 20 ft Span 120 ft "ok" "not ok"( ) "ok"

if 5 Nb 20 "ok" "not ok"  "ok"

if 25000 in
4 J 610000 in

4 "ok" "not ok"  "ok"

if 40000 in
4 Ibeam 610000 in

4 "ok" "not ok"



 "ok"

One Lane Loaded (Live Load Distribution Factor for Shear):

The equation for live load shear distribution factors is found in Table
4.6.2.2.3a-1.

DFS1Lane

wbeam

130 Span









0.15
Ibeam

J









0.05



For this equation given in AASHTO, the constants are developed around specific units (s
in feet and beam width in inches). Since Mathcad incorporates units, the equation below 
been simplified to take out the effect of units and obtain the correct live load factors.

DFS1Lane

wbeam

10.833 Span









0.15
Ibeam

J









0.05

 0.419

Two Lane or More Lanes Loaded (Live Load Distribution Factors for Moment):

DFS2Lane

wbeam

156









0.4
wbeam

12 Span









0.1


Ibeam

J









0.05


wbeam

48











wbeam

48
1.0

wbeam

48 in
0.75

Since w beam/48 is less than 1.0, use 1.0

For this equation given in AASHTO, the constants are developed around specific units (s
in feet and beam width in inches). Since Mathcad incorporates units, the equation below 
been simplified to take out the effect of units and obtain the correct live load factors.

DFS2Lane

wbeam

156 in









0.4
wbeam

Span









0.1


Ibeam

J









0.05

 0.387
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Live Load Distribution Factors Summary

Moment Factors: DFM1Lane 0.148 DFM2Lane 0.212

DFM max DFM1Lane DFM2Lane  0.212

Shear Factors: DFS1Lane 0.419 DFS2Lane 0.387

DFS max DFS1Lane DFS2Lane  0.419

Dead Load Moments on the Girder

Moment due to the Self Weight of the Beam:

beam
Wbeam Span

2

8
238.5 ft kip

Moment due to the Weight of the Slab:

Wslab 150
lbf

ft
3



slab
Wslab wbeam deckthick  Span

2

8
101.25 kip ft

Load due to the Weight of the Wearing Surface:

Wws 0.025
kip

ft
2



WS
deckwidthWws

Nb
0.075

kip

ft


Load due to the Weight of Barrier Wall:

Wbarrier 400
lbf

ft


barrier
Wbarrier 2

Nb
0.053

kip

ft


Non-composite Dead Load Moments:

MDC1 beam slab 339.75 kip ft
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Composite Dead Load Moments:

MDC2
barrier Span

2
8

24 kip ft

Moment due to the Wearing Surface Load:

MDW
WS Span

2
2

135 kip ft

Moment due to Dead Load of Structural Components and Nonstructural attachments:

MDC MDC1 MDC2 363.75 kip ft

Live Load Moments on the Girders:

Using the AASHTO Design truck from section 3.6.1.2.2 the truck has two 32 kip axles 
one 8 kip axle spaced at 14 feet apart. This truck is placed at midspan of the beam to
determine the live load moment.

Figure 3: AASHTO Design
Truck
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Figure 4: Influence Line for Maximum moment at Midspan

Design Lane Load Section 3.6.1.2.4:

This section states that the design lane load shall consist of a load of 0.64klf uniform
distributed in the longitude direction.

Dynamic Load Allowance Factors come from Table 3.6.2.1-1:

Fatigue and Fracture Limit State: IMfatigue 1.15

All other limit states: IM 1.33

MDT1 IM 8 kip

Span

2
14 ft

2











 32 kip
Span

4






 32 kip

Span

2
14 ft

2

























MDT2

0.64
kip

ft
 Span

2

8


MDT MDT1 MDT2 1352kip ft

Live Load Moment when distribution factors are taken into account.

MLLI MDT DFM 286.884 kip ft
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Load Combinations for Moment:

All load combinations are obtained from Section 3.4.1, specifically Table 3.4.1-1 and Table 3.4

Strength I: Basic load combination relating the normal vehicular use of the bridge without 

LCST1 1.25 MDC 1.50 MDW 1.75 MLLI 1159.2 kip ft

Strength IV: Load combination relating to very high dead load to live load force effect rati

LCST4 1.25 MDC 1.5 MDW 657.2 kip ft

Service III: Load combination for longitudinal analysis relating to tension in prestressed
concrete superstructures.

LCSV1 1.0 MDC 1.0 MDW 0.8 MLLI 728.3 kip ft

The governing load combination is Strength I with a design moment of 1159.2 kip-ft.

Mu max LCST1 LCST4 LCSV1  1159.2 kip ft

Dead Load Shears on Girders

Load due to Self Weight of the Beam:

beam Wbeam 0.53
kip

ft


Load due to the Weight of the Slab:

Wslab 150
lbf

ft
3



slab Wslab wbeam deckthick  0.225
kip

ft


Load due to the Wearing Surface:

Wws 0.025
kip

ft
2



WS
deckwidthWws

Nb
0.075

kip

ft

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Load due to the Weight of Barrier Wall:

Wbarrier 400
lbf

ft


barrier
Wbarrier 2

Nb
0.053

kip

ft


Non-composite Dead Loads:

DC1 beam slab 0.755
kip

ft


Composite Dead Loads:

DC2 barrier 0.053
kip

ft


Wearing Surface Load:

DW WS 0.075
kip

ft


 Shears due to Dead Load of Structural Components and Nonstructural attachments:

VDC
DC1 DC2( ) Span

2
24.25 kip

Shears due to Dead Load of the Wearing Surface:

VDW
DW Span

2
2.25 kip

Live Load Shears on the Girders:

Using the AASHTO Design truck from section 3.6.1.2.2 the truck has two 32 kip axles 
one 8 kip axle spaced at 14 feet apart. This truck is placed with the heavy axle at the en
the beam to determine the live load shear for the girder. A lane load of 0.64 kips/ft is
applied to the entire beam per 3.6.1.2.4. The distribution of loads on the girder is shown
below in Figure 5.

Figure 5: Distribution of Loads to Determine Shear
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Design Lane Load Section 3.6.1.2.4:

This section states that the design lane load shall consist of a load of 0.64klf unifor
distributed in the longitude direction.

Dynamic Load Allowance Factors come from Table 3.6.2.1-1:

Fatigue and Fracture Limit State: IMfatigue 1.15

All other limit states: IM 1.33

VDT IM 32 kip 32 kip
Span 14 ft

Span






 8 kip
Span 28 ft

Span













0.64

kip

ft
 Span

2


VDT 100.064 kip

Live Load Moment when distribution factors are taken into account.

VLLI VDT DFS 41.971 kip

Load Combinations for Shear:

All load combinations are obtained from Section 3.4.1, specifically Table 3.4.1-1 and Table 3.4

Strength I: Basic load combination relating the normal vehicular use of the bridge without w

LCST1 1.25 VDC 1.50 VDW 1.75 VLLI 107.1 kip

Strength IV: Load combination relating to very high dead load to live load force effect ratio

LCST4 1.25 VDC 1.5 VDW 33.7 kip

Service III: Load combination for longitudinal analysis relating to tension in prestressed
concrete superstructures.

LCSV1 1.0 VDC 1.0 VDW 0.8 VLLI 60.1 kip

The governing load combination is Strength I with a design shear of 107.1 kip.

Vu max LCST1 LCST4 LCSV1  107.1 kip
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Prestressing Steel

Check the theoretical number of strands using the Service III Load Combination:

For this process, the ECE 5783 Lecture 5: Prestressed Concrete Superstructure Design
developed by Matt Chynoweth was followed.

fb

MDC1

Sb

MDC2 MDW

SBN


0.8 MLLI

SBN










 2.18 ksi

Tensile stress limit at service after losses:

Limit found from Table 5.9.4.2.2-1. It is considered "Other than Segmentally Construct
in an area that is not worse than moderate corrosion conditions for bonded prestressing
tendons. 

Tlimit 0.19
fcb

ksi










 ksi 0.503 ksi

Excess Tension in Bottom Fiber due to applied loads:

fp fb Tlimit 1.678 ksi

Assume a center of gravity location to be between 5% and 15% of beam depth. In this c
8% has been assumed in the process of determining the number of strands.

ybs 0.08 dbeam 2.16 in from the bottom fiber of the beam

Determine the strand eccentricity:

yb 13.57 in Beam Center of Gravity  

e yb ybs 11.41 in Strand Eccentricity 

Determine Pe which is the effective final prestress force after all losses.

Fp

Pe

Ab

Pe e

Sb


Pe

Ab fp Sb

Sb Ab e









 319.941 kip

Stress Limit Prior to Transfer:

This limit is found in Table 5.9.3-1. It is considered pretensioning low relaxed tendon
immediately prior to transfer. 

fpi 0.75 fpu 202.5 ksi
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Assume 25% final prestressing losses per 0.6" diameter strand

Apsc 0.20 in
2 Conservative value used when determining the number of strands 

Aps 0.217 in
2 MDOT Standard Specifications Section 905.07

fpe Apsc fpi 1 0.25( ) 30.375 kip

Number of strands: Ns

Pe

fpe
10.533 Use 12-0.6" Diameter Strands

Prestress Losses

Instantaneous  Losses - Elastic Shortening 

f pES

Ep

Ect
fcgp AASHTO Equation 5.9.5.2.3

Ns 12

Apst Ns Aps 2.604 in
2 Total Area of Prestressing Steel

fpi 0.75 fpu 202.5 ksi Stress in Prestressing Steel prior to Transfer

em yb 2 in 11.57 in Prestressing Steel Eccentricity at Midspan

Eci Ecb 5072.2 ksi Concrete Elastic Modulus at Transfer

Ep 28500 ksi Elastic Modulus of Prestressing Steel Tendon

Mbeam

Wbeam Span
2

8
2862 kip in

f pES

Apst fpi Ibeam em
2

Ab



 em Mbeam Ab

Apst Ibeam em
2

Ab





Ab Ibeam Eci

Ep


 AASHTO Equation
C5.9.5.2.3a-1

f pES 9.599 ksi

Prestress Force at Transfer

fpt fpi f pES 192.901 ksi

Pt Ns Aps fpt 502.3 kip
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Time Dependant Losseshhhh 
H 75 AASHTO Figure 5.4.2.3.3-1

 h 1.7 0.01 H AASHTO Equation 5.9.5.3-2

 h 0.95

 st
5

1
fcb

ksi


0.625 AASHTO Equation 5.9.5.3-3

f pR 2.4

f pLT 10
fpi Apst

Ab
  h  st 12 ksi  h  st f pR ksi AASHTO Equation

5.9.5.3-1

f pLT 15.676 ksi

Effective Prestressing Force at Midspan

fpe fpi f pLT f pES 177.225 ksi

Pe Ns Aps fpe 461.493 kip

Determine f'ci

f'ci is defined as the specified compressive strength of the concrete at time of transfer

and is assumed to be 0.8f' c

fci 0.8 fcb 5.6 ksi

fci1 0.8
fcb

ksi
 5.6 just a unitless value for ease of calculation

Allowable Stresses for Concrete

Initial allowable tensile stress is found in Table 5.9.4.1.2-1. This beam is considered
other than segmentally constructed in areas with bonded reinforcement sufficient to
resist the tensile force in the concrete computed assuming an uncracked section.

ftsi 0.24 fci1 ksi 0.568 ksi

Initial allowable compressive stress is found in Section 5.9.4.1.1. It states that the
compressive stress limit for pretensioned concrete components is 0.60f' ci

fcsi 0.6 fci 3.36 ksi
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hhhhh Final allowable tensile stress is found in Table 5.9.4.2.2-1. The bridge type is other t
segmentally constructed bridges. The location is assumed to be for components with
bonded prestressing tendons or reinforcement that are subjected to not worse than
moderate corrosion conditions.

ftsf 0.19 fci1 ksi 0.45 ksi

Final allowable compressive stress is found in Table 5.9.4.2.1-1. The location is
assumed as other than segmentally constructed bridges due to the sum of effective
prestress and permanent loads. 

fcsf 0.45 fci 2.52 ksi

Initial Stresses at the End of the Beam

Stress in the Top of the Beam at Beam End

(for checks made at the end of the beam, the moment is zero)

MBend 0 kip ft e em 11.57 in

ftiend

Pt

Ab

Pt e

St


MBend

St
 0.664 ksi

if ftiend ftsi "ok" "not ok"  "not ok"

Try debonding 2 strands to lower stress at the end of the beam. 

Ndebond 2

Nsend Ns Ndebond 10 Number of bonded strands at end of beam

Aps 0.217 in
2

Pt2 Nsend Aps fpt 418.595 kip

ftiend2

Pt2

Ab

Pt2 e

St


MBend

St
 0.554 ksi

if ftiend2 ftsi "ok" "not ok"  "ok"

Stresses in the Bottom of the Beam at Beam End

fciend

Pt

Ab


Pt e

Sb


MBend

Sb
 2.657 ksi
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hh if fciend fcsi "ok" "not ok"  "ok"

Check to Ensure Stresses are okay at Bottom of Beam when Two Strands are 
Debonded

fciend2

Pt2

Ab


Pt2 e

Sb


MBend

Sb


fciend2 2.214 ksi

if fciend2 fcsi "ok" "not ok"  "ok"

Initial Stresses at the Midspan of the Beam

Stresses in top of the Beam at Midspan

Mbeam 238.5 kip ft

ftimid

Pt

Ab

Pt e

St


Mbeam

St


ftimid 0.149 ksi

if ftimid ftsi "ok" "not ok"  "ok"

Stresses in Bottom of the Beam at Midspan

fcimid

Pt

Ab

Pt e

Sb


Mbeam

Sb


fcimid 1.834 ksi

if fcimid fcsi "ok" "not ok"  "ok"

Final Stresses at the Midspan of the Beam

MDC1 339.75 kip ft MDW 135 kip ft

MDC2 24 kip ft MLLI 286.884 kip ft
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Stresses in the Top of the Beam at Midspan

fcfmid

Pe

Ab

Pe e

St


MDC1

St


MDC2 MDW

SB3N


MLLI

SBN


fcfmid 1.769 ksi

if fcimid fcsf "ok" "not ok"  "ok"

Stresses in the Bottom of the Beam at Midspan

ftfmid

Pe

Ab

Pe e

Sb


MDC1

Sb


MDC2 MDW

SB3N


MLLI

SBN


ftfmid 0.048 ksi

if ftfmid ftsf "ok" "not ok"  "ok"

Check Flexural Resistance

Mu 1159.2 kip ft

Flexural Resistance Equation Considering just Prestressing Steel

Mn Aps Fps Dp
a

2








Values needed to calculate the moment capacity.

Aps 0.217 in
2 fpu 270 ksi

fcs 4 ksi b beff 36 in

Determine ß1 based on AASHTO Section 5.7.2.2

The factor ß 1 shall be taken as 0.85 for concrete strengths not exceeding 4.0 ksi. Fo

concrete strengths exceeding 4.0 ksi, ß1 shall be reduced at a rate of 0.05 for each

1.0 ksi of strength in excess of 4.0 ksi, except ß 1 shall not be taken less than 0.65.

 1 0.85 for concretes less than or equal to 4ksi

k 2 1.04
fpy

fpu










 AASHTO Equation 5.7.3.1.1-2
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h h fpy

fpu
0.9 Table C5.7.3.1.1-1 for low relaxation strands

k 2 1.04 0.90( ) 0.28 Value can also be found on table C5.7.3.1.1-1

Determine the depth to the prestressing steel based on the beam depth plus the deck
thickness

dp dbeam deckthick 2 in 31 in

Determine c: distance between the neutral axis and the compressive face for rectangular
sections.

c
Aps Ns fpu

0.85 fcs  1 b k Aps Ns
fpu

dp











 AASHTO Equation 5.7.3.1.1-4

c 6.369 in

Determine the depth of the equivalent rectangular stress block. a is defined in Section
5.7.3.2.2

a  1 c 5.414 in

a is within the slab so the rectangular section assumption is valid.

Determine the average stress in the prestressing steel

fps fpu 1 k
c

dp









 AASHTO Equation 5.7.3.1.1-1

fps 254.468 ksi

Determine the factored moment resistance

? is found based on Section 5.5.4.2.1. This section is considered a tension-controlled
prestressed concrete sections.

 1.0

Nominal Moment Resistance

Mn Apst fps dp
a

2






 AASHTO Equation 5.7.3.2.2-1

Mn 1562.3 kip ft

Factored Moment Resistance 

Mr  Mn 1562.3 kip ft
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h h Calculate Minimum Reinforcement 

The amount of prestressed and nonprestressed tensile reinforcement shall be
adequate to develop a factored flexural resistance, Mr, at least equal to the lesser of
1.2 time the cracking moment, Mcr, or 1.33 times the factored moment required by
the applicable strength load combinations. This is described in Section 5.7.3.3.2. In
equation form:

M n min 1.2 Mcr 1.33 Mu 

Cracking Moment 

Mcr Sc fr fcpe  Mdnc

Sc

Snc
1









 Sc fr AASHTO Equation
5.7.3.3.2-1

Determine the Modulus of Rupture

Modulus of ruputure for normal weight concrete shall be taken as 0.37(f'c)
1/2 when

calculating the cracking moment of a member in Article 5.7.3.3.2. This is describ
in Section 5.4.2.6.

fr 0.37 fcb1 ksi 0.979 ksi

fcpe

Pt

Ab

Pt e

Sb
 2.657 ksi

Mcr1 SBN fr fcpe  MDC1

SBN

Sb
1









 1288.9 kip ft

Mcr2 SBN fr 377.037 kip ft

Mcr max Mcr1 Mcr2  1288.9 kip ft

1.2 Mcr 1546.7 kip ft

Determine the value for 1.33 times the factored moment required by the applicable
strength load combinations specified in Table 3.4.1-1

Mu133 1.33 Mu 1541.8 kip ft

Minimum Reinforcement
Check

if Mr max 1.2 Mcr 1.33 Mu  "ok" "not ok"  "ok"

Mr 1562.3 kip ft
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Shear Design

Determine the Critical Section for Shear

Find dv which is defined as the effective shear depth. It is taken as the distance

measured perpendicular to the neutral axis, between the resultants of the tensile and
compressive forces due to flexture and can be taken less than the greater tof 0.9de o
0.72h. This is defined in Section 5.8.3.9.

dv

Mn

Apst fps
 AASHTO Equation C5.8.2.9-1

dv 28.293 in

de

Apst fps dp

Apst fps
31 in AASHTO Equation 5.8.2.9-2

dv can also be written as:

dv1 de
a

2
 28.293 in

0.9 de 27.9 in

0.72 dbeam deckthick  23.76 in

dv max dv1 0.9 de 0.72 dbeam deckthick   28.293 in

Assume that the shear at the end of the beam is equal to the shear in this section.

Vu 107.136 kip

Determine  s  value to use for shear and torsion

Found in section 5.5.4.2.1 under shear and torsion for normal weight concrete.

 s 0.9

Shear Stress on the Concrete

vu

Vu V p

 bv dv
AASHTO Equation 5.8.2.9-1

Vp is described as the component of prestressing force in the direction of the she
force. This force is considered to be 0 for straight tendons. (AASHTO Section
5.8.2.4)

V p 0 kip Vp 0 kip
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p p

h h Bv is the effective web withd taken as the minimum web width, measured parallel 
the neutral axis, between the resultants of the tensile and compressive forces due to
flexure. This is found in Section 5.8.2.9 of the AASHTO Code.

bw 4.5 in

bv 2 bw 9 in

Shear stress on the concrete

vu

Vu V p

 bv dv


vu 0.421 ksi

Ratio of applied factored shear to concrete cpmpressive strength

vu

fcb
0.06

Determine ß and 

These angles are determined based the the general procedure found in Section
5.8.3.4.2. For sections containing the at least the minimum amout of reinforcement
and   can be found by.


4.8

1 750  s
AASHTO Equation 5.8.3.4.2-1

 29 3500  s AASHTO Equation 5.8.3.4.2-3

Determine the net longitudinal tensile strain in the section at the centriod of the
tension reinforcement,  s.  s is required to determine ß and 

 s

Mu

dv
0.5 Nu Vu Vp Aps fpo

Es As Ep Aps
AASHTO Equation
5.8.3.4.2-4

Determine the f  po according to Section 5.8.3.4.2

fpo 0.7 fpu

To be conserative, the contribution from the mild steel is ignored.

Es As 0

Axial load is assumed to be 0

Nu 0



260 
 

Determine e shh h

 s

Mu

dv
0.5 Nu Vu Vp Apst fpo

Ep Apst


 s 0.00144

Determine ß


4.8

1 750  s
  2.31

Determine 

 29 3500  s  34.03

Nominal Shear Resistance

Determine the nominal shear resistance provided by the tensile stresses in the
concrete.

Vc 0.0316  fcb1 ksi bv dv AASHTO Equation 5.8.3.3-3

Vc 49.182 kip

Determine the tensile stresses in the traverse reinforcement.

Vs

Av fy dv cot ( )

s
AASHTO Equation C5.8.3.3-1

Determine if Shear Reinforcement is required in the cross-section of the beam.
According to Section 5.8.2.4, reinforcement shall be provided where:

Vu 0.5  s Vc Vp  AASHTO Equation 5.8.2.4-1

if Vu 0.5  s Vc Vp  "shear stirrups required" "no stirrups"  "shear stirrups required"

Determine Spacing of the Shear Reinforcement

The nominal shear resistance V n must be greater than or equal to applied shear V   u

Vn Vu

Vn Vc Vs Vp AASHTO Equation 5.8.3.3-1
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Shear stirrups are Grade 60 #04 Bars.

fys 60 ksi

As 0.2 in
2

Determine the required spacing of shear stirrups.

Vs

Vu

 s
Vc 69.858 kip

Av As 2 0.4 in
2 There are two sections resisting shear

Reorganize the Vs equation (Equation C5.8.3.3-1) to determine spacing

s
Av fys dv cot  deg( )

Vs


s 14.395 in

Determine the maximum spacing based on Section 5.8.2.7

If vu 0.125 fc
AASHTO Equation 5.8.2.7-1

Smax 0.8dv 24 in

If vu 0.125 fc
AASHTO Equation 5.8.2.7-2

Smax 0.4dv 12 in

if vu 0.125 fcb min 0.8 dv 24 in  "use Equation 5.8.2.7-2"  22.635 in

if vu 0.125 fcb min 0.4 dv 12 in  "use Equation 5.8.2.7-1"  "use Equation 5.8.2.7-1"

Therefore use spacing determined by Vs equation or the Maximum MDOT spacing

of 12" as defined in MDOT Bridge Design Guides 6.65.10A

s 12 in

Vs

Av fys dv cot  deg( )

s
83.799 kip

if Av 0.0316 fcb1 ksi
bv s

fys
 "ok" "not ok"









"ok"

Vn Vs Vc 132.981 kip
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Bursting Reinforcement (Splitting Resistance)

The splitting resistance of pretensioned anchorage zones provided by reinforcement in
the ends of pretensioned beams shall be taken as: 

Pr fs As AASHTO Equation 5.10.10.1-1

The resistance shall not be taken less than 4% of the prestressing force at transfer.

Pr 0.04 Pt 20.093 kip

Determine the stress in the steel. (not to exceed 20 ksi)

fs 20 ksi

Find the area of steel required to meet the minimum resistance.

Asb

Pr

fs
1.005 in

2

Determine the number of stirrups

Nstb

Asb

Av
2.512 use Nstb 3

For pretensioned box or tub girders, As shall be taken as the total area of

vertical reinforcement or horizontal reinforcement located within a distance h/4
from the end of the member, where h is the lesser of the overall width or height
of the member (in).

x
dbeam

4
6.75 in

Spacing of the bursting reinforcement

sb
x

Nstb
 sb 2.25 in

Confinement Reinforcement

Confinement reinforcement must be provided for a distance 1.5d from the end of the
beam. This is stated in Section 5.10.10.2. For box beams, traverse reinforcement
shall be provided and anchored by extending the leg of the stirrup into the web of the
girder.

Lc 1.5 dbeam 40.5 in Lc 3.375 ft

Space Stirrups at 6.0 in for 3.5 ft along the beam
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APPENDIX D 

 

 SAMPLE CALCULATIONS FOR RESIDUAL STRENGTH OF MDOT 
SALVAGED BOX BEAM (J11) 
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1. Residual Ultimate Load. 

psi 6100  fin      21 din      36bfeet      42L c   

Information from chart 

Area, A = 467 in2       

Self-weight, 
feet

kip
  486.0

1000

486
w  

yt = 10.6 in     yb = 10.4 in    ST = 2320 in3        SB = 2360 in3      I = 24600 in4 

Modulus of Elasticity for beam,  psi 10452.4f5700E 5
cb   

Loads (Beam dead load moment) 

ft-kip 163.107
8

Lw
M

2

D.beam 


  

Calculating Mn: assuming all 10 strands are in good condition 

Aps = 1.53 in2     fpu = 270 ksi     dp = 19 in     As.prime = 1.323 in2    fyprime = 60 ksi      

dsprime = 2 in     k = 2(1.04 - 0.9) =0.28     fc = 6100 psi     β = 0.75     b = 36 in 

As = 0     fy = 60 ksi 

in 6531.2

d

1000f
-Akbf0.85

1000fA-1000fA1000fA
c

p

pu
psc

yprimesprimeyspups 








 

a = 0.8 × c = 2.122 in 

ksi 443.295
d

ck
1ff

p
pups 









 
  

in-kip 10046.7
2

a
dfA

2

a
dfAM 3

sprimeyprimesprimeppspsn 





 






   

  in-kip 105.7612MM 3
DbeamLL  Mn  
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For 4-point loading: kips 529.50
1219

2M
P LL 




  

 

Calculating Mn: assuming all 8 strands are in good condition 

N = 8     A1ps = N×1.53 = 1.224 in2      

in 9963.1

d

1000f
-Akbf0.85

1000fA-1000fA1000fA
c

p

pu
1psc

yprimesprimeyspu1ps
1 








 

a = 0.8 × c1 = 1.597 in 

ksi 057.262
d

ck
1ff

p

1
pups 









 
  

in-kip 10743.5
2

a
dfA

2

a
dfAM 3

sprimeyprimesprimeppsps1n 





 






   

  in-kip 104.45712MM 3
DbeamLL  Mn  

For 4-point loading: kips 096.39
1219

2M
P LL 




  

  

Calculating Mn: assuming all 8 strands with 5% loss in cross-sectional area  

N = 8     A1ps = N×1.53 = 1.224 in2          A2ps = 0.95×N×1.53 = 1.165 in2      

in 8649.1

d

1000f
-Akbf0.85

1000fA-1000fA1000fA
c

p

pu
2psc

yprimesprimeyspu2ps
2 








 

a = 0.8 × c2 = 1.492 in 

ksi 58.262
d

ck
1ff

p

2
pups 









 
  
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in-kip 1074.4.5
2

a
dfA

2

a
dfAM 3

sprimeyprimesprimeppsps2n 





 






   

  in-kip 104.18812MM 3
DbeamLL  Mn  

For 4-point loading: kips 737.36
1219

2M
P LL 




  

 

Calculating Mn: assuming all 8 strands with 10% loss in cross-sectional area  

N = 8     A1ps = N×1.53 = 1.224 in2          A3ps = 0.90×N×1.53 = 1.102 in2      

in 7335.1

d

1000f
-Akbf0.85

1000fA-1000fA1000fA
c

p

pu
3psc

yprimesprimeyspu3ps
3 








 

a = 0.8 × c3 = 1.387 in 

ksi 102.263
d

ck
1ff

p

3
pups 









 
  

in-kip 10202.5
2

a
dfA

2

a
dfAM 3

sprimeyprimesprimeppsps3n 





 






   

  in-kip 103.91612MM 3
DbeamLL  Mn  

For 4-point loading: kips 353.34
1219

2M
P LL 




  

 

Calculating Mn: assuming all 8 strands with 20% loss in cross-sectional area  

N = 8     A1ps = N×1.53 = 1.224 in2          A4ps = 0.80×N×1.53 = 0.979 in2      

in 4708.1

d

1000f
-Akbf0.85

1000fA-1000fA1000fA
c

p

pu
4psc

yprimesprimeyspu4ps
4 








 

a = 0.8 × c4 = 1.177 in 
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ksi 148.264
d

ck
1ff

p

4
pups 









 
  

in-kip 1065.4
2

a
dfA

2

a
dfAM 3

sprimeyprimesprimeppsps4n 





 






   

  in-kip 103.36412MM 3
DbeamLL  Mn  

For 4-point loading: kips 511.29
1219

2M
P LL 




  

 

2. Residual Cracking Load. 

ksi 270f     ksi 29000E     psi 6100  ffeet      42L upsc        

 psi 10452.4f5700E 5
cb         0.0093 

E

f
ε

s

up
p    

 ksi 586.0
1000

1
f5.7fr c     h1 = 21 in     b1 = 36 in     h2 = 11 in     b2 = 26 in 

      in 470bhbhA 2
22111   

 in 102.49
12

hb

12

hb
I 44

3
22

3
11

1 
































  

 

Beam centroid from top. 

yt = 10.5 in 

Effective depth 

dp = 21 – 2 = 19 in 

yb = h1 – yt = 10.5 in 
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Eccentricity of prestressing from centroid 

e0 = dp – yt = 8.5 in 

ρ = 0.150 kip/ft3 

Dead load, 
ft

kip
 0.49 

144

A
ρw 1   

 
in-kip 101.29512 

8

42
wM 3

2

D   

Considering all 10 strands in good condition, N = 10 

Prestressing force per strand, Pf = 30.75 ksi 

Total prestressing force, P = N × Pf = 307.5 ksi 

 

Calculating the cracking moment for original design beam as at the time of design 

 
I

yM

I

ybM

I

yeP
-

A

P
σ

1

bLL

1

D

1

b0
bot








  ,      ksi 0.586frσbot   

in-kip 10259.4
y

I
 

I

yM

I

yeP

A

P
σM 3

b

1

1

bD

1

b0

1
botLL 







 



  

Mcr = MLL × 1000 = 4.259 × 106    Ib-in 

 

Calculating the cracking load for original design beam as at the time of design 

Ib 01958.2 
288

Mcr
2.P 4

cr   

 

Calculating the cracking moment after assumed 20% loss per strand with only 8 remaining 
strands with 2 strands tone by corrosion. 

N = 8, Prestressing force per strand, Pf = 30.75 ksi 

Total prestressing force, P = 0.8 × 8 × Pf = 196.80 ksi 
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I

yM

I

ybM

I

yeP
-

A

P
σ

1

bLL

1

D

1

b0
bot








  ,      ksi 0.586frσbot   

in-kip 10759.2
y

I
 

I

yM

I

yeP

A

P
σM 3

b

1

1

bD

1

b0

1
botLL 







 



  

Mcr = MLL × 1000 = 2.759 × 106    Ib-in 

 

Calculating the cracking load for original design beam as at the time of design 

Ib 01916.1 
288

Mcr
2.P 4

cr   

 

Calculating the Yielding Moment 

Considering, fup = 270 ksi 

Yield stress, ksi 230σ yield   

Total strain, ksi107.931 3-
yield 

s

yield

E


  

Total strain = strain due to prestressing +strain due to loading 

Prestressing force per strand, ksi 24.6
8

P
Pfs        Ap = 0.153 in2 

Strain due to prestressing,  105.544
EA

P
ε 3-

sp

fs
pre    

Strain due to loading,  10387.2εεε -3
preyieldload   

Compressive Force = Tension Force + Prestressing Force 

For 6100 psi concrete, β1 = 0.75     b = 36 in 

Fcomp = 0.85 × fc × β1 × c × b,     Es = 2.9 × 107 psi 

 0472.88εF -3
loadten  ps AE  
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 0968.11000F 5
 pres  P  

Therefore, 

 

 

in 2.011
bβf0.85

FF
c

1c

presten 





 

a = β1 × c = 1.508 in 

  in-kip 10137.5
2

a
dM 6

pyield 





  presten FF  

Yield Moment due to 2-point load 

in-kip 10841.30001MMM 6
Dyieldyield2pt   

Ib 01667.2 
144

M
P 4yield2pt

yield   


