6. SIMPLIFIED UHPC JOINTS FOR BRIDGE CONSTRUCTION

6.1. OVERVIEW

This chapter investigates the use of UHPC for bridge joint connections between precast, regular concrete bridge deck elements. The proposed joints make use of UHPC’s superior bond characteristics in order to provide a simple and effective method for the assembly of precast bridge elements. A total of 12 beams with joint widths of 4” (100 mm), 6” (150 mm), and 8” (200 mm) were constructed for physical testing and subsequently modeled. Of the twelve, 8 beams were tested under pure flexure. The four remaining beams were evaluated under combined shear and flexure loading conditions. Findings show that the beams with joint widths of 4” (100 mm) failed to sufficiently transfer load between the precast desks in both pure flexure and combined shear and flexure testing, resulting in splitting failure in the joint. Beams with joints at 6” (150 mm) and 8” (200 mm) were sufficient for achieving the required force transfer between the precast deck elements and were suitable for applications requiring simplified and expedited construction. Finite element simulations used to explore the effect of joint topology on system performance indicate that structural response hardly changes for the three types of joints considered.

6.2. DESIGN OF THE EXPERIMENTAL PROGRAM

As seen in Chapter 5, UHPCs exceptional ability to bond to steel bar reinforcement allows for small bar development lengths and, therefore, splice lengths. This characteristic enables smaller and simpler joints, which promote accelerated bridge construction methods. The objective of the
test program in this chapter is to probe the lower limits of joint size in order to gain a better understanding of UHPC joint response.

6.2.1. Pure Flexure vs. Combined Shear and Flexure Testing

Two different testing set ups were implemented in this study. The first, a four-point bending test set up seen in Figure 6-1a places the UHPC joint in pure flexure. The second test type, an offset three-point bending set up (Figure 6-1b), subjects the UHPC joint to shear forces and moments. The shear and moments that develop along the length of the beam during testing are shown in Figure 6-1. The pure flexure test is intended to study the response of the joined beam under real world loading conditions where the influence of shear force is minimal. The combined shear and flexure test investigates response when a higher shear-moment ratio is present.
6.2.2. Joint Details & Selection

Currently the width of a joint for lap splice connection is determined by the lap length which is a function of the development length of the reinforcing bar, and is prescribed by ACI Committee 318 (2005). Equation 6-1 shows the current method for determining the development length for straight bar reinforcement for #6 (19 mm) bars and smaller:

\[L_d = \frac{f_y \psi_t \psi_e \lambda}{25 \sqrt{f_c'}} d_b \]

Equation 6-1: Development Length for Straight Bar Reinforcement (ACI 318)

Where \(f_y \) = yield strength of the reinforcement (psi), \(\psi_t \) = reinforcement location factor, \(\psi_e \) = reinforcement coating factor, \(\lambda \) = lightweight concrete aggregate factor, \(f_c' \) = compressive strength of the concrete, and \(d_b \) = nominal diameter of the bar reinforcement. Equation 6-1 indicates that the required development length decreases with the square root of the compressive strength of the material. Although not explicitly developed or permitted for use with UHPC, it is interesting to note that the bond required for 25 ksi UHPC versus a regular 5 ksi concrete should be just under half of that required for regular concrete according to Equation 6-1.

Similarly, AASHTO LFRD design requires a development length for No. 11 bars or smaller to equal:
Where A_b is the area of the bar in in\(^2\), f_y is the specified yield strength of the reinforcing bars (ksi), f'_{c} is the specified compressive strength of the concrete at 28 days (ksi) and d_b is diameter of the bar in inches.

6.2.3. Specimen Design

For ease of construction, non-contact lap splices are used in this study. Generally, contact lap splices are constructed such that the reinforcing bars are touching and tied together, minimizing displacements during the pouring of concrete. This is not a concern in precast element constructions as the bars are already embedded in the precast concrete and not able to move in relation to each other. While the new low-cost alternative UHPC mix formulations used in this study have lower material costs than previous UHPC mixes, it is important to minimize the joint width as the alternative UHPC used to fill the joint still carries a higher cost as compared to conventional concrete.

Figure 6-2 shows the reinforcement and joint details for the specimens studied. For the pure flexure tests, each precast deck element measures 60” (1500 mm) in length, 18” (457 mm) wide and 6” (150 mm) deep. Joint lengths vary between 4”, 6” and 8” (100, 150 and 200 mm). Longitudinal reinforcement is spaced at 6.3” (160 mm) along the width of the deck. Transverse reinforcement is spaced at 7.8” (200 mm) along the length of the deck. Reinforcement at the lower layer is placed at a depth of 3.5” (89 mm) and 1.5” (39 mm) for the upper layer.

Similarly, for the combined shear and flexure specimens, one of the precast deck element measures 60” (1500 mm) in length, 18” (457 mm) wide and 6” (150 mm) deep. The other precast
element measures 13” (330 mm) long, with a width of 18” (457 mm) and depth of 6” (150 mm). Joint width is held constant at 4” (100 mm). Longitudinal reinforcement is spaced at 6.3” (160 mm) along the width of the deck. Transverse reinforcement is spaced at 7.8” (200 mm) along the length of the deck. Reinforcement at the lower layer is placed at a depth of 3.5” (89 mm) and 1.5” (39 mm) for the upper layer.

Figure 6-2: Joint Dimensions and Reinforcement Details
6.2.4. Specimens Tested and Material Parameters

Table 6-1 summarizes the main variables for the specimens tested in this study. The naming convention for the specimens is as follows: test type – joint width – fiber volume content – and test number. For example, an F-100-1P-1 mean the specimen was tested in pure flexure, with a 4” (100 mm) joint, containing 1.0% fiber volume content UHPC and was the first test in the series. All tests were performed after 28 days of concrete curing. Figure 6-2(a and b) provide a more detailed view of the lap spliced joint used for this study. The joint features a shear key design, minimizing the joint at the opening, expanding slightly in the center. This increased width at mid-depth enables an increased splice length while maintaining a small joint opening and minimizing total required volume of UHPC. Figure 6-2c shows the lap splice connection used for all of the specimens tested.

<table>
<thead>
<tr>
<th>Name</th>
<th>Test Type</th>
<th>Lap Length, inches (mm) (Designed)</th>
<th>Lap Length, inches (Constructed)</th>
<th>Fiber Volume Content (%)</th>
<th>Inter-bar Spacing, inches</th>
<th>(F_c') (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-100-1P-1</td>
<td>Flexure</td>
<td>4” (100.0)</td>
<td>3.9</td>
<td>1.0%</td>
<td>6.3</td>
<td>26.1</td>
</tr>
<tr>
<td>F-100-1P-2</td>
<td>Flexure</td>
<td>4” (100.0)</td>
<td>3.8</td>
<td>1.0%</td>
<td>6.3</td>
<td>26.1</td>
</tr>
<tr>
<td>F-100-2P-1</td>
<td>Flexure</td>
<td>4” (100.0)</td>
<td>3.9</td>
<td>2.0%</td>
<td>6.3</td>
<td>27.7</td>
</tr>
<tr>
<td>F-100-2P-2</td>
<td>Flexure</td>
<td>4” (100.0)</td>
<td>3.9</td>
<td>2.0%</td>
<td>6.3</td>
<td>27.7</td>
</tr>
<tr>
<td>F-150-2P-1</td>
<td>Flexure</td>
<td>6” (150.0)</td>
<td>6.0</td>
<td>2.0%</td>
<td>6.3</td>
<td>27.7</td>
</tr>
<tr>
<td>F-150-2P-2</td>
<td>Flexure</td>
<td>6” (150.0)</td>
<td>5.3</td>
<td>2.0%</td>
<td>6.3</td>
<td>27.7</td>
</tr>
<tr>
<td>F-200-2P-1</td>
<td>Flexure</td>
<td>8” (200.0)</td>
<td>7.4</td>
<td>2.0%</td>
<td>6.3</td>
<td>27.7</td>
</tr>
<tr>
<td>F-200-2P-2</td>
<td>Flexure</td>
<td>8” (200.0)</td>
<td>7.5</td>
<td>2.0%</td>
<td>6.3</td>
<td>27.7</td>
</tr>
<tr>
<td>SF-100-1P-1</td>
<td>Combined</td>
<td>4” (100.0)</td>
<td>3.9</td>
<td>1.0%</td>
<td>6.3</td>
<td>26.1</td>
</tr>
<tr>
<td>SF-100-1P-2</td>
<td>Combined</td>
<td>4” (100.0)</td>
<td>3.9</td>
<td>1.0%</td>
<td>6.3</td>
<td>26.1</td>
</tr>
<tr>
<td>SF-100-2P-1</td>
<td>Combined</td>
<td>4” (100.0)</td>
<td>3.9</td>
<td>2.0%</td>
<td>6.3</td>
<td>27.7</td>
</tr>
<tr>
<td>Name</td>
<td>Test Type</td>
<td>Lap Length, inches (mm) (Designed)</td>
<td>Lap Length, inches (Constructed)</td>
<td>Fiber Volume Content (%)</td>
<td>Inter-bar Spacing, inches</td>
<td>Fc' (ksi)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SF-100-2P-2</td>
<td>Combined</td>
<td>4” (100.0)</td>
<td>3.8</td>
<td>2.0%</td>
<td>6.3</td>
<td>27.7</td>
</tr>
</tbody>
</table>

Table 6-1: Main Variable of Beam Specimens

Figure 6-3 Joint Shape Details for the 4 in (a), 6 in (b) 8 in (c) joint, Lap Splice Connection Detail (d)
6.3. EXPERIMENTAL PROCEDURE

6.3.1. Test Set Up

All specimens were simply supported. Supports were placed 2” (50 mm) from either edge of the deck. Two rollers applied the load and were placed 12” (300 mm) from either edge of the joint in the pure flexure cases. A single roller was applied 4” (100 mm) from the joint interface in the combined shear and flexure case. Load was applied using a 100 kip INSTRON hydraulic loading machine. A displacement controlled load was applied quasi-statically at 0.001 in/sec (0.0254 mm/sec).

6.3.2. Instrumentation

Load was recorded using a 100 kip load cell integrated with the hydraulic machine. Displacements were measured at the locations shown in Figure 6-4a using the Optotrack measurement system. This system uses a set of cameras to track the relative displacements of the markers shown in three dimensions. Additionally, in each of the precast segments of the beam, for the F-100 and F-200 specimens, strain gauges were placed on the lower layer of reinforcing steel, 1” (25.4 mm) from the edge of the joint interface, Figure 6-4b.

Digital imagine correlation (DIC) was used in order to map the strain developing in the UHPC joint, Figure 6-4c. In DIC, random speckle patterns are applied to the surface of the concrete, being sure to cross the UHPC-Regular concrete joint interface. A high resolution, high frame rate, camera then records the surface of the concrete, specifically the speckles, at a fixed frame rate throughout the test procedure. These images are then uploaded, and the DIC software maps the locations and movements of the speckled pattern. Measuring the relative movements and
calculating displacements between the speckles allows for an accurate, 2-D, depiction of the strains occurring in the specimen, clearly highlighting crack patterns.

![Figure 6-4: Instrumentation of the Precast Bridge Deck Beams](image)

Data collected from the strain gauges placed on the deformed bars was used to verify the point during the test at which steel yielded. Data from the Optotrack system and DIC were used to measure deflections and strains occurring throughout the joint during testing. Data collected on the load and displacements were then plotted. The resulting curves were then processed through a moving average filter to account for minute changes due to the sensitivity of the equipment.

6.4. MATERIALS
The concrete used to construct the precast bridge deck elements consists of regular 5000 psi (35 MPa) concrete, with a 6” (150 mm) slump and maximum aggregate size of 0.78” (19 mm). The deformed bars all consisted of grade 60, epoxy coated steel and can be seen in Figure 6-5.
The UHPC mix design used to fill the joint and complete the lap splice follows the low-cost mix recommended in Chapter 3 (GG-25-00). The performance parameters for this mix can be found in Table 3-4.

6.5. CONSTRUCTION OF THE PRECAST CONCRETE SPECIMENS

Construction of the specimens for this study was performed in a simple, and easy to replicate process. Wood forms were first constructed with dimensions as designed. Once the rebar was placed, the shape of the joint’s interface was created using a high-density foam and cut to the according dimensions (Figure 6-6b). Once the bars were in place and the bars were properly instrumented, the regular concrete was poured into the forms. Vibration was used to ensure proper installation of the regular concrete. After pouring, the surface of the concrete was smoothed and leveled so as to provide an adequate loading surface.

Twenty-four hours after the regular concrete had been cast; the foam was removed, exposing the inner surface of the joint. The two precast sections were brought together, and the splice properly aligned and measured. The bars were cleaned of any dirt and debris that had accumulated during the casting of the decks. The UHPC was then mixed and poured as described in Section 3.2.2. For this study, the UHPC was poured so as to favor fiber orientation in parallel to the deformed bars (Figure 6-6c). The specimens were then allowed to cure at room temperature for 28 days.
Following the prescribed curing time, the forms were removed and the speckles were painted onto the joint surface for the DIC measurements (Figure 6-6d).

Figure 6-6: Forms and Placed Bars (a), Lap Splice (b), Poured UHPC Joint (c), and Set up with DIC (d)
6.6. RESULTS AND DISCUSSION

A summary of the results from the experimental testing for all of the specimens can be seen in Table 6-2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Embedded Length</th>
<th>Splice Length</th>
<th>Failure Mode</th>
<th>Force at Failure kips (Force/2)</th>
<th>Bond Stress ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-100-1P-1</td>
<td>4</td>
<td>3.5</td>
<td>Splitting</td>
<td>4.3</td>
<td>2.1</td>
</tr>
<tr>
<td>F-100-1P-2</td>
<td>4</td>
<td>3.5</td>
<td>Splitting</td>
<td>4.3</td>
<td>2.1</td>
</tr>
<tr>
<td>F-100-2P-1</td>
<td>4</td>
<td>3.5</td>
<td>Splitting</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>F-100-2P-2</td>
<td>4</td>
<td>3.5</td>
<td>Splitting</td>
<td>4.8</td>
<td>2.3</td>
</tr>
<tr>
<td>F-150-2P-1</td>
<td>6</td>
<td>5.9</td>
<td>Steel Yield</td>
<td>6.5</td>
<td>2.1</td>
</tr>
<tr>
<td>F-150-2P-2</td>
<td>6</td>
<td>5.8</td>
<td>Steel Yield</td>
<td>6.3</td>
<td>2.3</td>
</tr>
<tr>
<td>F-200-2P-1</td>
<td>8</td>
<td>7.8</td>
<td>Steel Yield</td>
<td>6.3</td>
<td>1.8</td>
</tr>
<tr>
<td>F-200-2P-2</td>
<td>8</td>
<td>7.8</td>
<td>Steel Yield</td>
<td>6.8</td>
<td>1.8</td>
</tr>
<tr>
<td>SF-100-1P-1</td>
<td>4</td>
<td>3.7</td>
<td>Splitting</td>
<td>15.2</td>
<td>2.1</td>
</tr>
<tr>
<td>SF-100-1P-2</td>
<td>4</td>
<td>3.9</td>
<td>Splitting</td>
<td>13.1</td>
<td>1.8</td>
</tr>
<tr>
<td>SF-100-2P-1</td>
<td>4</td>
<td>3.8</td>
<td>Splitting</td>
<td>16.3</td>
<td>2.2</td>
</tr>
<tr>
<td>SF-100-2P-2</td>
<td>4</td>
<td>3.8</td>
<td>Splitting</td>
<td>18.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 6-2: Summary of Results from Experimental Testing

6.6.1. Comparison of Calculated Bar Stress versus Measured Bar Stress

Figure 6-7 shows the computed bar stresses calculated from the peak load recorded by the load cell compared to the measured strain (converted to stress) from the instrumented deformed bars. From the scatter, the calculated and measured data show no significant variation, though the calculated bar stresses generally measure slightly higher than those measured with the strain gauge. Thus the data is reliable and can be used for evaluation of the test data.
6.6.2. F-100 Specimen Tests

Figure 6-8c and Figure 6-8d shows the force-displacement behavior of the four F-100 specimens subjected to flexural loading. For all tests, the load-displacement relation remained linear up to about 80% of the peak load. At this point, the load began to drop, corresponding to initial cracking at the center of the joint as can be seen by the horizontal cracks in Figure 6-8a and Figure 6-8b. The first crack to develop was the horizontal crack spanning the UHPC joint followed by a crack at the interface between the UHPC and regular concrete. For the rest of the loading, all deflections in the beam were localized at this interface. Figure 6-8a also shows the DIC images from the beams. As seen, all of the damage occurred in the joint, and that the corresponding crack pattern shows that a splitting failure occurred, where the reinforcement steel separated from the UHPC. No significant crushing in the regular concrete or UHPC was observed prior to the steel bar yielding. The peak force averaged 8.2 kips (36.5 KN) for specimens with 1% fibers (F-100-1P) by volume and 9.1 kips (40.5 KN) for those with 2% fibers (F-100-2P) by volume.
Figure 6-8: (a) DIC of 100 mm joint specimens, (b) Splitting Failure in deformed specimen, (c) Load-Deflection Curves for 100 mm specimens with 2% fibers and (d) 100 mm specimens with 1% fibers.

6.6.3. F-150 and F-200 Specimens

Both F-150-2P and F-200-2P specimens were able to transfer the load in the joint past steel bar yield in the specimens. Figure 6-9c shows the load-displacement curve for both of the F-150-2P specimens tested. The load-deflection begins with an elastic increase in the load being applied. This is followed by a region of decreased slope in the load-deflection, caused by yielding of the steel reinforcement. As steel yielded, flexural cracking was observed in the regular concrete.
regions of the deck. Load continues to climb until reaching a maximum average value of 13.3 kips (59.2 KN). At this point, a sudden crushing of the regular concrete at the UHPC joint interface occurs, observed in the load-deflection curve as the drop off in the load occurring at 2.55” (65 mm) of midspan deflection. At this point the beam was no longer able to carry additional load, and began to gradually drop towards zero. No damage was observed in the UHPC joint.

Figure 6-9d shows the load-displacement curve for both of the F-200-2P specimens tested. Similarly to the F-150-2P specimens, the load-deflection begins with an elastic increase in the load being applied. Again, this is followed by a region of decreased slope in the load-deflection, caused by yielding of the steel reinforcement. Flexural cracking in the regular concrete regions of the deck were also observed. Load continued to climb until reaching a maximum average value of 12.6 kips (56.0 KN). Again, at the point of maximum load, a sudden crushing of the regular concrete at the UHPC joint interface occurs, observed in the load-deflection curve as the drop off in the load occurring at 65 mm of mid-span deflection for F-200-2P-1 and 3.2” (80 mm) for F-200-2P-2. At this point the beams were no longer able to carry additional load, and began to gradually drop towards zero. As in the F-150-2P tests, no damage was observed in the UHPC joint.

Figure 6-9a shows the results from the DIC typical for both F-150-2P and F-200-2P specimens. The figure clearly shows that all of the deformation in the beam is occurring at the UHPC joint – regular concrete interface, and not across the joint itself as observed in the F-100 tests, confirming that the UHPC and steel reinforcement remained bonded throughout testing. Additionally, Figure 6-9b shows that the same lack of damage and cracking occurs on the other side of the beam, with small crack openings visible the UHPC-regular concrete interfaces.
6.6.4. Effect of Fiber Content in Pure Flexure

As discussed in the previous sections, F-100-1P and F-100-2P specimens were both unable to successfully join the two precast regular concrete deck elements, resulting in a bar pull out failure to occur within the joint. The difference of 1% fibers by volume accounted for an average decrease in maximum force (and bond stress) of 8%. Cracked section calculations at the joint shows that at the point of maximum load, F-100-1P specimens experienced average bar force of 36.5 kips (162.3 KN) and F-100-2P specimens experienced an average bar stress of 40.5 kips.
Figure 6-10 plots the maximum force reached for the two tests with respect to the fiber volume content of the UHPCs. Extrapolating from the existing data and assuming no problems with mix workability due to increased fiber content, a UHPC with a minimum fiber content of 3.5% would be required if using a 100 mm wide joint in order to successfully connect two pre-cast regular concrete elements. This represents an increase of 75% fibers versus F-100-2P specimens, and a 25% increase in fibers versus the F-150-2P. As previously discussed in chapter 3, fibers are the most costly components of UHPC, and thus the use of a wider joint width becomes more economical than the smaller joint with an increase in fibers.

![Graph showing maximum force in F-100 decks at a function of fiber volume content.](image)

Figure 6-10: Maximum Force in F-100 Decks at a Function of Fiber Volume Content

6.6.5. Effect of Joint Size

Unlike F-100-1P and 2P specimens, both the F-150-2P and F-200-2P specimens were able to complete the joint connection. Figure 6-11 shows the moment (KN-m) at the joint as a function of the joint width for all tests with UHPC containing 2% fibers by volume. At 4” (100 mm), the maximum average moment achieved, 9 kip-ft. (12.2 KN-m), is the lowest. At 6” (150 mm) the average maximum moment achieved is 12.4 kip-ft. (16.9 KN-m) and 13.2 kip-ft. (17.8 KN-m) at 8” (200 mm). The increased width of 50 mm (a 34% increase in width and subsequently,
quantity of UHPC needed) between the F-150 and F-200 specimens only achieved an increase in moment capacity of 5.5%. In order to minimize required quantity of UHPC, the F-150-2P joints would provide the best UHPC use – beam strength ratio, despite the marginal gain in moment capacity.

![Figure 6-11: Moment at Joint as a function of Joint Width](image)

6.6.6. Combined Shear and Flexure Testing

For the SF-100-1P specimens the load-displacement curve remained linear up to about 95% of the peak load. At this point, the load began to drop, corresponding to initial cracking at the center of the joint as can be seen by the horizontal cracks in Figure 6-12a and Figure 6-12b. The first crack to develop was the horizontal crack spanning the UHPC joint followed by a crack at the interface between the UHPC and regular concrete. For the rest of the loading, all deflections in the beam were at this interface. Figure 6-12a also shows the DIC images from the beams. Similarly to the F-100-1P and F-100-2P specimens, all of the damage occurred in the joint, and that the corresponding crack pattern shows that a splitting failure occurred, where the
reinforcement steel separated from the UHPC. No significant crushing in the regular concrete or UHPC was observed prior to the steel bar yielding. The peak force averaged 13.7 kips (61 KN) for specimens with 1% fibers (SF-100-1P) by volume and 16.9 (75.5 KN) for those with 2% fibers (SF-100-2P) by volume. Damage showed in Figure 6-12a and Figure 6-12b were representative for SF-100-1P-1, 2 and SF-100-2P-2. For SF-100-2P-1, the concrete between the UHPC joint and the closest support experienced a splitting crack, reducing the overall force achieved in the beam. This event can be seen as the sudden drop off in force on the load displacement curve.

6.6.7. Effect of Fiber Content in Combined Shear and Flexure

On average, SF-100-1P specimens containing 1% fibers by volume achieved 19% less force prior to failure than their SF-100-2P counterparts. This result is unsurprising as bonding in UHPC is directly related to the steel fiber contents, as discussed in Chapter 5. SF specimens containing 1% steel fibers by volume averaged 8% less bar force at failure that their pure flexure counterpart with 1% fibers by volume. At 2% fibers by volume, the difference in bar forces achieved between F-100-2P and SF-100-2P specimens was less pronounced, suggesting that the UHPC’s capacity in shear increases non-linearly with increases with fiber content. More testing on UHPC specimens in shear should be conducted in order to further clarify these results.
Figure 6-12: (a) DIC of 100 mm joint, SF specimens, (b) Splitting Failure in deformed specimen, (c) Load-Deflection Curves for 100 mm specimens, 1% fiber by vol. and (d) 100 mm specimens, 2% fiber by vol.

6.7. FINITE ELEMENT MODEL AND PARAMETRIC STUDY

6.7.1. Model Setup

A two dimensional finite element model was developed for the LS-DYNA platform. The model makes use of 2-D plane stress elements. The model was discretized and meshed using
Hypermesh, and can be seen in Figure 6-13. Each model consists of three components; 2 precast regular concrete elements and 1 UHPC joint. Specimen dimensions and reinforcement details follow those prescribed previously for the F-150-2P and F-200-2P specimens.

Reinforcing steel was modeled using one dimensional, linear beam elements. The steel bars and surrounding concrete were assumed to be perfectly bonded. As only reinforcing steel from the F-150-1P and F-200-2P specimens remained fully bonded, only those two specimens were used in this portion of the study.

Steel material behavior was modeled using a piecewise linear plasticity model (LS-DYNA card #24). Steel material properties were determined through experimental testing, with the following parameters: yield stress, $\sigma_y = 67$ ksi (450 MPa) with a young’s modulus, $E = 29000$ ksi (200 GPa). After yield, the tangent modulus E_{tan} was set to 175 ksi (1.2 GPa). Figure 6-12 shows the finite element model (a) and mesh (b) developed for use in this study for the F-150-2P specimens (at 6”).

![Figure 6-13: (a) Finite Element Model and (b) Mesh for F-150-2P Specimens](image)

6.7.2. UHPC and Concrete Material Models

The concrete material model used in this study was previously developed model for high performance fiber reinforced composites (Hung, 2010), and calibrated for use with UHPC based on the experimental results previously reported. The model, based upon a hybrid rotating/fixed
crack approach, allows perpendicular cracking of the concrete and is capable of modeling the tensile and compressive response for UHPC. The tensile response is characterized by three regions, a linear elastic portion followed by some strain hardening and then a softening of the concrete. Figure 6-14a shows the typical tensile response of uniaxial testing on UHPC specimens as well the material model response used in this study. Figure 6-14b shows the compressive response of UHPC under loading experimentally as well as the model’s material response. For the regular concrete material, the same hybrid rotating/fixed crack model was employed, calibrating it with typical concrete responses. Table 6-3 outlines the material properties used.

![Figure 6-14: Typical UHPC Tensile Response for Joint Fill Material (a) tension and (b) compression](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Tensile Pre-Cracking Stress (Strain)</th>
<th>Tensile Post-Cracking Stress (Strain)</th>
<th>Elastic Modulus</th>
<th>F’c (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHPC</td>
<td>0.75 ksi (0.0001)</td>
<td>1.2 ksi (0.0002)</td>
<td>751 ksi</td>
<td>26.8</td>
</tr>
<tr>
<td>Regular Concrete</td>
<td>0.35 ksi (0.0001)</td>
<td>0.01 ksi (0.0002)</td>
<td>157 ksi</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Table 6-3: Material Parameters for FEM
6.7.3. Parametric Study

The finite element model was validated using the experimental data and from there, a parametric study was performed to determine the effect of the joint’s surface topology on the overall performance of the beams. Three different joint designs were modeled and analyzed and can be seen in Figure 6-15. For each joint type, modeling was performed for a 6” (150 mm) joint as well as an 8” (200 mm) joint. Figure 6-15a shows the original joint design tested experimentally and used for the model validation (F-150-2P). Figure 6-15b shows a non-tapered (NT) joint design, and Figure 6-15c shows the flat surface (FS) joint design modeled for the parametric study. The NT and FS joint designs were selected, as they both are more easily constructed designs. A summary of the simulations performed can be found in Table 6-4.

Figure 6-15: (a) Original Joint Design for FEA, (b) non-tapered joint design, and (c) flat joint design.
<table>
<thead>
<tr>
<th>Name</th>
<th>Joint Type</th>
<th>Joint Size inches (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-150</td>
<td>Flexure (as F-150-2P)</td>
<td>6” (150)</td>
</tr>
<tr>
<td>NT-150</td>
<td>Non-Tapered</td>
<td>6” (150)</td>
</tr>
<tr>
<td>FS-150</td>
<td>Flat Surface</td>
<td>6” (150)</td>
</tr>
<tr>
<td>F-200</td>
<td>Flexure (as F-200-2P)</td>
<td>8” (200)</td>
</tr>
<tr>
<td>NT-200</td>
<td>Non-Tapered</td>
<td>8” (200)</td>
</tr>
<tr>
<td>FS-200</td>
<td>Flat Surface</td>
<td>8” (200)</td>
</tr>
</tbody>
</table>

Table 6-4: Summary of Simulated Beams

6.7.4. Model Validation

Results from the experimental testing of beams F-150-2P and F-200-2P were used for model validation. From Figure 6-16a, the numerical results (red line) show good correlation with the results from the experimental testing (black line), including capturing the steel yield, and later on the concrete crushing which occurs for the F-150-2P specimens. Additionally, the deformed shape matches well with the observed experimental deformations (Figure 6-17). While some discrepancies exist, the values from the simulation match reasonably well with the experimental values, and the minor discrepancies between the simulation and experimental data are attributed to experimental scatter. The same conclusion can be reached for the results of the F-200-2P model validation seen in Figure 6-16b.

6.7.5. Results of Parametric Study

For the 150 mm joints, the results from the FEA showed little variation between the F-150, NT-150 and FS-150 joints. All three load-displacement curves began elastically, up until 80% of their max load, at which point the steel reinforcement began to yield. Yielding continued, with the load increasing until approximately 65 mm midpoint deflection. At this point, the concrete at
the top of the UHPC-regular concrete interface was crushed, resulting in a drop off in the force capacity of the beam. There was no noticeable difference between the F, NT and FS joints.

Similarly, the F-200, NT-200 and FS-150 joints show little variation. Again, all three load-displacement curves began elastically, up until 80% of their max load, at which point the steel reinforcement began to yield. Yielding continued, with the load increasing until approximately 70 mm midpoint deflection. At this point, the concrete at the top of the UHPC-regular concrete interface was crushed, resulting in a drop off in the force capacity of the beam.

As these simulations were performed under pure flexure for all three joint types, their respective topologies were not fully engaged leading to the primarily flexure failure mechanism. In a more realistic scenario, the shear strength of the UHPC at the joint interface would become important, as more joints are not solely subjected to flexure. Results from the combined shear and flexure testing could not be used for model validation as the primary failure modes in those tests was a bar pull out failure in the joint and thus, a parametric study could not be done for the combined shear and flexure case. UHPC specimens under shear should be further studied to gain more insight into the behavior.
Figure 6-16: Experimental FEA Load-Deflection for (a) 150 mm joints and (b) 200 mm joints

Figure 6-17: (a) Un-deformed shape, (b) deformed shape and (c) von Mises Strain for 150 mm, (d) Plot of the cracks developed and (e) and Damaged Beam after Testing, Actual joint
6.8. CONCLUSION

The objective of the study in this chapter was to evaluate the use of ultra-high performance concrete for simplified joint connections between precast bridge deck elements. The study evaluated three different joint widths, two different fiber volume content UHPCs and two separate loading schemes to simulate real-world loading conditions. The conclusions are as follow:

- All F-100 and SF-100 (4” joint) specimens failed with a splitting failure occurring at the UHPC joints. Bond between the UHPC and deformed bars was insufficient, causing the beams to reach failure prematurely.
- F-150 and F-200 (6” and 8” joints) specimens all failed through steel yield in the deformed bars, followed much later on by crushing in the regular concrete. These specimens were able to carry load through the joints all the way through the desired failure mode.
- F-100 (4” joint) specimens containing 1% fibers by volume achieved an average of 8% lower capacity (and hence bond stress in the joints) than those containing 2% fibers. Extrapolating the test results suggests that a 4” (100 mm) joint may be possible when utilizing a greater steel fiber ratio (~3%). However, increased fiber content leads to greater cost and, possibly, problems with mix workability. Mixes with such high fiber contents were not tested in this work.
- SF-100 (4” joint) beams performed worse than F-100 beams at 1% fibers by volume, though the difference at 2% fibers by volume was non-apparent. This suggests the increase in shear strength in UHPC increases non-linearly with an increase in steel fiber content compared to flexure strength and should be investigated further.
• Changes in the topology of the joint showed no difference in structural performance in the parametric study, under pure flexural loading.
7. SUMMARY, MAJOR CONCLUSIONS AND FUTURE RESEARCH

7.1. SUMMARY AND MAJOR CONCLUSIONS

The primary objectives of this project were: 1) to develop a cost-optimized version of non-proprietary UHPC and characterize its mechanical and durability properties, and 2) investigate the possibility of using UHPC for field-cast joints that commonly occur in precast construction. To achieve these objectives, the first phase of the work looked into the material components of non-proprietary UHPC, and through an analysis of their costs, quantities, and availabilities, a new low-cost alternative UHPC mix formulation was designed. The material cost of this alternative mix is half of the original UHPC mix. Using the new alternative low cost mix, and a select few seen as reduced cost alternatives, a detailed investigation of their mechanical and durability properties was conducted. Mechanical property characterization focused on quantifying tensile properties and compressive strength, while durability studies addressed the material’s air voids, resistance to freeze-thaw and chloride penetration. All tested mixes had exceptional mechanical and durability properties.

The proposed mix deviates from traditional UHPC mixtures in that it uses a 50:50 mix of Portland Type I and Ground Granulated Blast Furnace Slag (GGBS) as a binder, lacks any Silica Powder (inert filler) and requires no post-placing treatment. The use of GGBS improves the material’s ‘greenness’ making it a more sustainable cementitious product. Specifications for making the new UHPC were proposed.

UHPC derives its unique properties from its high packing density, which is achieved by carefully controlling the size and distribution of the constituent particles, and incorporating steel fibers. For example, unlike regular concrete which relies on having sufficient void space to allow water
to expand, the high freeze-thaw resistance in UHPCs is due to water being prevented from entering the material in the first place.

The test results suggest that fiber volume contents of 1.0% or 1.5% could significantly reduce the chance for crack localization under dead load or working conditions, respectively, in structural applications. Coupled with the material’s inherent resistance to chloride ion penetration, controlling crack localization further limits the ingress of chloride ions and protects steel reinforcement from corrosion.

Following material characterization, the next phase of the research investigated the bonding performance between steel reinforcement and UHPC. The study spanned several experimental parameters (embedment, bar size & type, UHPC fiber content/orientation, etc.), and ultimately led to a design guideline for achieving specific bar stresses when reinforcement is embedded in UHPC. This was then followed by a series of beam tests using two precast regular concrete sections joined together with a UHPC joint. The results of this testing showed that a 150 mm (6”) UHPC was sufficient for precast bridge construction.

7.2. PROMISE AND COMMERCIAL POTENTIAL OF UHPC

The non-proprietary UHPC developed in this work has strong potential for use in structures that will be significantly more durable than currently possible with conventional materials. Therefore, every structure built at the moment using current technology is an opportunity lost to start building a longer lasting infrastructure that is considerably cheaper to maintain in the long run.

The current cost of a cubic yard of the nonproprietary UHPC developed in this work is $267/yd³ for the cementitious material alone. The addition of fibers at 1.5% by volume would enable the use of UHPC for structural applications, while minimizing the fiber cost. Each cubic yard of
UHPC requires 193 lbs. of steel fibers. Ordering from a supplier within the United States currently costs $1.98 per pound. Adding this $382/yd3 fibers cost to the base $267/yd3 brings the total cost to $659/yd3, roughly 5x the present cost of regular concrete.

Several suppliers outside of the United States produce steel fibers at a reduced unit cost, as low as $0.30 per pound (e.g. http://tinyurl.com/h474res, accessed on 12/30/2015). Using these suppliers, and assuming that the fiber quality is similar to the US products, will reduce the current cost of UHPC (including fibers) to $325 per cubic yard, which is only about twice the cost of regular concrete.

7.3. AN OPPORTUNITY FOR THE STATE OF MICHIGAN

One of the reasons for the high US fiber costs is the lack of demand. As UHPC usage increases and demand for steel fibers surges, it is expected that the cost will drop. The State of Michigan, with its focus on vehicle manufacturing, is well suited to be major fiber industry hub given that steel fibers are made from chopped high strength wires that are used in steel-belted tire products.

7.4. A BRIGHT FUTURE

For an initial increase in material cost compared to regular concrete, whether 2x or even 5x, the benefits of UHPC can be substantial compared to traditional concrete products. With UHPC’s enhanced strength in tension and compression, thinner and more elegant structures can be built. Not only that, the use of GGBS in the proposed mix improves the material’s ‘greenness’ making it a more sustainable cementitious product. With durability that boasts no deterioration after 60+ cycles of freeze-thaw and virtually no chloride penetration, UHPC structures will have extremely
low maintenance requirements, and therefore costs, for lifespans that are substantially longer than currently possible.

7.5. FUTURE RESEARCH NEEDS

To achieve the promise of UHPC as the material for the next generation of infrastructure, research is needed on multiple fronts. Fibers properties need to be optimized and the effect of fiber coatings on UHPC response explored. Commercial production of UHPC remains a challenge. At present, UHPC must be mixed in a paddle mixer and cannot be made and delivered in a ready-mix concrete truck. Research is needed to explore innovative mixing methods that require only small incremental changes to existing mixing technology so that widespread adoption of the material can be facilitated. Research into alternative high range water reducers is also needed so as to ensure that the UHPC described herein is not dependent on a single source. Also, research on UHPC structures and structural components is rare in the literature and research efforts are needed to ensure that established design methods apply to UHPC systems and develop new ones, as needed.
8. REFERENCES

ACI Committee 318-05 (2005). Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05), American Concrete Institute Committee 318, Farmington Hills, MI.

ACI Committee 408 (2003). Bond and Development of Straight Reinforcing Bars in Tension. ACI 408R-03, American Concrete Institute Committee 408, Farmington Hills, MI.

Innovative Field-Cast Uhpc Joints For Precast Bridge Decks - Highways for LIFE - FHWA.

Kok Seng Chia, Min-Hong Zhang, “Water permeability and chloride penetrability of high-strength lightweight aggregate concrete”, Cement and Concrete Research, 32 (2002) 639-645

publication in the RILEM Materials and Structures Journal. DOI: 10.1617/s11527-015-0581-y.

Wipf, T., Sritharan, Sri,, “Iowa’s UHPC Implementation” Iowa Research, Bureau of Research and Technology, April, 2011

