Appendix D

Data Collection
<table>
<thead>
<tr>
<th>Project No.</th>
<th>Alternative No.</th>
<th>Route</th>
<th>Pavement Type</th>
<th>C.S.</th>
<th>J.N.</th>
<th>Submitted Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>I-75</td>
<td>JRCP</td>
<td>82191 & 82194</td>
<td>45699</td>
<td>12-Jun-01</td>
</tr>
<tr>
<td>2</td>
<td>2A</td>
<td>I-96</td>
<td>JRCP</td>
<td>23152</td>
<td>45640</td>
<td>20-Mar-01</td>
</tr>
<tr>
<td></td>
<td>2B</td>
<td></td>
<td>JRCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td></td>
<td>JRCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>I-69</td>
<td>JPCP</td>
<td>12033 & 12034</td>
<td>49921</td>
<td>16-Apr-01</td>
</tr>
<tr>
<td>4</td>
<td>2A</td>
<td>US-127</td>
<td>JPCP</td>
<td>38111</td>
<td>43497</td>
<td>27-Nov-00</td>
</tr>
<tr>
<td></td>
<td>2B</td>
<td></td>
<td>JPCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td></td>
<td>JPCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>M-39</td>
<td>JPCP</td>
<td>82192</td>
<td>45702</td>
<td>5-Jul-00</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>US-127</td>
<td>JRCP</td>
<td>82011 & 82061</td>
<td>45688</td>
<td>20-Mar-00</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>US-24</td>
<td>JRCP</td>
<td>63031</td>
<td>45714</td>
<td>1-Nov-99</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>I-96</td>
<td>JPCP</td>
<td>41024</td>
<td>51908</td>
<td>30-Aug-99</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>I-496</td>
<td>JRCP</td>
<td>33045</td>
<td>51396</td>
<td>19-Jul-00</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>I-75</td>
<td>JRCP</td>
<td>09034 & 09035</td>
<td>46575</td>
<td>1-Apr-00</td>
</tr>
</tbody>
</table>
Table D-2: Summary of pavement data from MDOT

<table>
<thead>
<tr>
<th>Proj. No.</th>
<th>Date</th>
<th>Route</th>
<th>Alt. No.</th>
<th>Pavement Type</th>
<th>PCC Thickness (mm)</th>
<th>Base Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mainline</td>
<td>Outside Shoulder</td>
</tr>
<tr>
<td>1</td>
<td>12-Jun-01</td>
<td>I-75</td>
<td>2</td>
<td>JRCP</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>20-Mar-01</td>
<td>I-96</td>
<td>2A</td>
<td>JRCP</td>
<td>280</td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2B</td>
<td>JRCP</td>
<td>280</td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2C</td>
<td>JRCP</td>
<td>280</td>
<td>AC</td>
</tr>
<tr>
<td>3</td>
<td>16-Apr-01</td>
<td>I-69</td>
<td>2</td>
<td>JPCP</td>
<td>280</td>
<td>AC</td>
</tr>
<tr>
<td>4</td>
<td>27-Nov-00</td>
<td>US-127</td>
<td>2A</td>
<td>JPCP</td>
<td>240</td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2B</td>
<td>JPCP</td>
<td>240</td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2C</td>
<td>JPCP</td>
<td>260</td>
<td>Valley Gutter</td>
</tr>
<tr>
<td>5</td>
<td>5-Jul-00</td>
<td>M-39</td>
<td>2</td>
<td>JPCP</td>
<td>260</td>
<td>Valley Gutter</td>
</tr>
<tr>
<td>6</td>
<td>20-Mar-00</td>
<td>US-127</td>
<td>2</td>
<td>JRCP</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>7</td>
<td>1-Nov-99</td>
<td>US-24</td>
<td>2</td>
<td>JRCP</td>
<td>240</td>
<td>Valley Gutter</td>
</tr>
<tr>
<td>8</td>
<td>30-Aug-99</td>
<td>I-96</td>
<td>2</td>
<td>JPCP</td>
<td>260</td>
<td>AC</td>
</tr>
<tr>
<td>9</td>
<td>19-Jul-00</td>
<td>I-496</td>
<td>2</td>
<td>JRCP</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td>10</td>
<td>1-Apr-00</td>
<td>I-75</td>
<td>2</td>
<td>JRCP</td>
<td>260</td>
<td>260</td>
</tr>
</tbody>
</table>
Table D-2 (continued): Summary of pavement data from MDOT

<table>
<thead>
<tr>
<th>Proj. No.</th>
<th>Date</th>
<th>Route No.</th>
<th>Alt. No.</th>
<th>Subbase1 Thickness</th>
<th>Subbase1 Type</th>
<th>Subbase2 Thickness</th>
<th>Subbase2 Type</th>
<th>MR of soils (kPa)</th>
<th>Jt. Spa Width (m)</th>
<th>Inner shoulder/lanes/outer shoulder</th>
<th>DARWin Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thickness</td>
<td>Type</td>
<td>Thickness</td>
<td>Type</td>
<td>(kPa)</td>
<td>(m)</td>
<td>Sc (kPa)</td>
<td>E (kPa)</td>
</tr>
<tr>
<td>1</td>
<td>12-Jun-01</td>
<td>I-75</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>20,684</td>
<td>8</td>
<td>2.4/3.6/3.6/3.0/3.0</td>
<td>4,620</td>
</tr>
<tr>
<td>2</td>
<td>20-Mar-01</td>
<td>I-96</td>
<td>2A</td>
<td>300</td>
<td>Sand</td>
<td>NA</td>
<td>NA</td>
<td>22,260</td>
<td>8</td>
<td>3.0(AC)/3.6/3.6/3.0/3.0(AC)</td>
<td>4,620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2B</td>
<td>46</td>
<td>Sand</td>
<td>254</td>
<td>Ex. Subbase</td>
<td>22,260</td>
<td>8</td>
<td>3.0(AC)/3.6/3.6/3.0/3.0(AC)</td>
<td>4,620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2C</td>
<td>300</td>
<td>Sand</td>
<td>NA</td>
<td>NA</td>
<td>22,260</td>
<td>8</td>
<td>3.0(AC)/3.6/3.6/3.0/3.0(AC)</td>
<td>4,620</td>
</tr>
<tr>
<td>3</td>
<td>16-Apr-01</td>
<td>I-69</td>
<td>2</td>
<td>300</td>
<td>Sand</td>
<td>NA</td>
<td>NA</td>
<td>26,890</td>
<td>4.5</td>
<td>1.2(FSO)/3.6/4.2/2.4(FSO)</td>
<td>4,620</td>
</tr>
<tr>
<td>4</td>
<td>27-Nov-00</td>
<td>US-127</td>
<td>2A</td>
<td>305</td>
<td>Ex. Subbase</td>
<td>NA</td>
<td>NA</td>
<td>31,000</td>
<td>4.5</td>
<td>1.2(FSO)/3.6/4.2/2.4(FSO)</td>
<td>4,620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2B</td>
<td>182</td>
<td>Sand</td>
<td>305</td>
<td>Ex. Subbase</td>
<td>31,000</td>
<td>4.5</td>
<td>1.2(FSO)/3.6/4.2/2.4(FSO)</td>
<td>4,620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2C</td>
<td>300</td>
<td>Sand</td>
<td>NA</td>
<td>NA</td>
<td>31,000</td>
<td>4.5</td>
<td>1.2(FSO)/3.6/4.2/2.4(FSO)</td>
<td>4,620</td>
</tr>
<tr>
<td>5</td>
<td>5-Jul-00</td>
<td>M-39</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>24,475</td>
<td>4.5</td>
<td>NA/3.6/3.6/3.6/NA</td>
<td>4,620</td>
</tr>
<tr>
<td>6</td>
<td>20-Mar-00</td>
<td>US-127</td>
<td>2</td>
<td>300</td>
<td>Sand</td>
<td>NA</td>
<td>NA</td>
<td>20,680</td>
<td>8</td>
<td>1.5/3.6/3.6/3.0</td>
<td>4,620</td>
</tr>
<tr>
<td>8</td>
<td>30-Aug-99</td>
<td>I-96</td>
<td>2</td>
<td>280</td>
<td>Ex. Sand</td>
<td>NA</td>
<td>NA</td>
<td>26,200</td>
<td>4.5</td>
<td>1.2(AC)/3.6/3.6/3.0(AC)</td>
<td>4,620</td>
</tr>
<tr>
<td>9</td>
<td>19-Jul-00</td>
<td>I-496</td>
<td>2</td>
<td>219</td>
<td>Ex. Subbase</td>
<td>NA</td>
<td>NA</td>
<td>20,684</td>
<td>8</td>
<td>2.4/3.6/3.6/3.6/3.0</td>
<td>4,620</td>
</tr>
<tr>
<td>10</td>
<td>1-Apr-00</td>
<td>I-75</td>
<td>2</td>
<td>300</td>
<td>Sand</td>
<td>NA</td>
<td>NA</td>
<td>27,500</td>
<td>8</td>
<td>2.4/3.6/3.6/3.6/3.6</td>
<td>4,620</td>
</tr>
<tr>
<td>Inputs</td>
<td>MDOT</td>
<td>Other sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab width (outer), in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Slab width (next to outer), in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Outer shoulder width (if PCC), in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Outer shoulder width (if AC), in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Joint spacing, in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PCC thickness, in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PCC elastic modulus, psi</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PCC CTE, in./in./°F</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PCC unit weight, lb/in³</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PCC Poisson's ratio</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>AC elastic modulus (AC shoulder), psi</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Interface condition</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Base thickness, in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Base elastic modulus, psi</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Base CTE, in./in./°F</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Base unit weight, lb/in³</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Base Poisson's ratio</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Subbase thickness, in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Subbase elastic modulus, psi</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Subbase CTE, in./in./°F</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Subbase unit weight, lb/in³</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Subbase Poisson's ratio</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>k-value, psi/in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Dowel bar diameter, in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Dowel bar spacing, in</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>LTE lane/lane (AGG), psi</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>LTE lane/shoulder (AGG), psi</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table D-4: Additional inputs used in ISLAB2000 analysis

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Possible Range</th>
<th>Selected Value</th>
<th>Reason for Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>PCC CTE, in./in./°F</td>
<td>3.3x10^-6</td>
<td>6.7x10^-6</td>
<td>5.0x10^-6</td>
</tr>
<tr>
<td>PCC unit weight, lb/in^3</td>
<td>0.07</td>
<td>0.104</td>
<td>0.087</td>
</tr>
<tr>
<td>PCC Poisson's ratio</td>
<td>0.15</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>AC elastic modulus (AC shoulder), psi</td>
<td>300,000</td>
<td>600,000</td>
<td>300,000</td>
</tr>
<tr>
<td>Interface condition</td>
<td>unbonded</td>
<td>bonded</td>
<td>unbonded</td>
</tr>
<tr>
<td>Base elastic modulus, psi</td>
<td>15,000</td>
<td>45,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Base CTE, in./in./°F</td>
<td>3.0x10^-6</td>
<td>6.0x10^-6</td>
<td>3.0x10^-6</td>
</tr>
<tr>
<td>Base unit weight, lb/in^3</td>
<td>0.049</td>
<td>0.070</td>
<td>0.061</td>
</tr>
<tr>
<td>Base Poisson's ratio</td>
<td>0.30</td>
<td>0.40</td>
<td>0.35</td>
</tr>
<tr>
<td>Subbase elastic modulus, psi</td>
<td>10,000</td>
<td>25,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Subbase CTE, in./in./°F</td>
<td>3.0x10^-6</td>
<td>6.0x10^-6</td>
<td>3.0x10^-6</td>
</tr>
<tr>
<td>Subbase unit weight, lb/in^3</td>
<td>0.049</td>
<td>0.070</td>
<td>0.061</td>
</tr>
<tr>
<td>Subbase Poisson's ratio</td>
<td>0.30</td>
<td>0.45</td>
<td>0.35</td>
</tr>
<tr>
<td>LTE lane/lane (AGG), psi</td>
<td>1.00</td>
<td>1,000,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>LTE lane/shoulder (AGG), psi</td>
<td>1.00</td>
<td>1,000,000</td>
<td>1,000,000 (AC shoulder)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,000,000 (PCC shoulder)</td>
</tr>
</tbody>
</table>
Table D-5: Summary of inputs used in ISLAB2000 analysis

<table>
<thead>
<tr>
<th>Inputs</th>
<th>1/2</th>
<th>2/2A</th>
<th>2/2B</th>
<th>2/2C</th>
<th>3/2</th>
<th>4/2A</th>
<th>4/2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab width (outer), in</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>165</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>Slab width (next to outer), in</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td>Outer shoulder width (if PCC), in</td>
<td>118</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Outer shoulder width (if AC), in</td>
<td>0</td>
<td>118</td>
<td>118</td>
<td>118</td>
<td>94</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Joint spacing, in.</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>177</td>
<td>177</td>
<td>177</td>
</tr>
<tr>
<td>PCC thickness, in</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>PCC elastic modulus, psi</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
</tr>
<tr>
<td>PCC CTE, in./in./°F</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
</tr>
<tr>
<td>PCC unit weight, lb/ft^3</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
</tr>
<tr>
<td>PCC Poisson's ratio</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>AC elastic modulus (for AC shoulder), psi</td>
<td>300,000</td>
<td>300,000</td>
<td>300,000</td>
<td>300,000</td>
<td>300,000</td>
<td>300,000</td>
<td>300,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface condition</th>
<th>unbonded</th>
<th>unbonded</th>
<th>unbonded</th>
<th>unbonded</th>
<th>unbonded</th>
<th>unbonded</th>
<th>unbonded</th>
</tr>
</thead>
</table>

Most realistic simulation							
Base thickness, in	15.75	3.94	3.94	3.94	3.94	3.94	3.94
Base elastic modulus, psi	30,000	30,000	30,000	30,000	30,000	30,000	30,000
Base CTE, in./in./°F	2.0x10^-6						
Base unit weight, lb/ft^3	0.061	0.061	0.061	0.061	0.061	0.061	0.061
Base Poisson's ratio	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Subbase thickness, in	0	11.8	11.8	11.8	11.8	12.0	19.2
Subbase elastic modulus, psi	15.000	15.000	15.000	15.000	15.000	15.000	15.000
Subbase CTE, in./in./°F	2.0x10^-6						
Subbase unit weight, lb/ft^3	0.061	0.061	0.061	0.061	0.061	0.061	0.061
Subbase Poisson's ratio	0.35	0.35	0.35	0.35	0.35	0.35	0.35

Combined base/subbase							
Base thickness, in	15.75	9.60	9.60	9.60	9.60	9.75	15.31
Base elastic modulus, psi	30,000	30,000	30,000	30,000	30,000	30,000	30,000
Base CTE, in./in./°F	2.0x10^-6						
Base/subbase unit weight, lb/ft^3	0.061	0.061	0.061	0.061	0.061	0.061	0.061
Base/subbase Poisson's ratio	0.35	0.35	0.35	0.35	0.35	0.35	0.35

<p>| Simplified simulation | | | | | | | |
| No subbase layer | | | | | | | |
| Base thickness, in | 15.75 | 3.94 | 3.94 | 3.94 | 3.94 | 3.94 | 3.94 |
| Base elastic modulus, psi | 30,000 | 30,000 | 30,000 | 30,000 | 30,000 | 30,000 | 30,000 |
| Base CTE, in./in./°F | 2.0x10^-6 |
| Base unit weight, lb/ft^3 | 0.061 | 0.061 | 0.061 | 0.061 | 0.061 | 0.061 | 0.061 |
| Base Poisson's ratio | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
| Subbase layer | No |
| k-value, psi/ft | 99.5 | 128.9 | 128.9 | 128.9 | 169.5 | 158.4 | 158.4 |
| Dowel bar diameter, in. | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
| Dowel bar spacing, in. | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Dowel bar in shoulder | No |
| LTE lane/lane (AGG), psi | 1x10^6 |
| LTE lane/shoulder (AGG), psi | 1x10^6 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 |</p>
<table>
<thead>
<tr>
<th>Inputs</th>
<th>4/2C</th>
<th>5/2</th>
<th>6/2</th>
<th>7/2</th>
<th>8/2</th>
<th>9/2</th>
<th>10/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab width (outer), in</td>
<td>165</td>
<td>142</td>
<td>142</td>
<td>144</td>
<td>142</td>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td>Slab width (next to outer), in</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>144</td>
<td>142</td>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td>Outer shoulder width (if PCC), in</td>
<td>94</td>
<td>0</td>
<td>12</td>
<td>18</td>
<td>0</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Outer shoulder width (if AC), in</td>
<td>177</td>
<td>177</td>
<td>315</td>
<td>135</td>
<td>177</td>
<td>315</td>
<td>315</td>
</tr>
<tr>
<td>PCC thickness, in</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>PCC elastic modulus, psi</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
<td>4.2x10^6</td>
</tr>
<tr>
<td>PCC CTE, in./in./°F</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
<td>5.0x10^-6</td>
</tr>
<tr>
<td>PCC unit weight, lb/in^3</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
<td>0.087</td>
</tr>
<tr>
<td>PCC Poisson's ratio</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>AC elastic modulus (for AC shoulder), psi</td>
<td>300,000</td>
<td>0</td>
<td>0</td>
<td>300,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interface condition</td>
<td>unbonded</td>
<td>unbonded</td>
<td>unbonded</td>
<td>unbonded</td>
<td>unbonded</td>
<td>unbonded</td>
<td>unbonded</td>
</tr>
<tr>
<td>Base thickness, in</td>
<td>3.94</td>
<td>15.75</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
</tr>
<tr>
<td>Base elastic modulus, psi</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Base CTE, in./in./°F</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
</tr>
<tr>
<td>Base unit weight, lb/in^3</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
</tr>
<tr>
<td>Base Poisson's ratio</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Subbase thickness, in</td>
<td>11.8</td>
<td>0</td>
<td>11.8</td>
<td>29.6</td>
<td>11.0</td>
<td>8.6</td>
<td>11.8</td>
</tr>
<tr>
<td>Subbase elastic modulus, psi</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Subbase CTE, in./in./°F</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
</tr>
<tr>
<td>Subbase unit weight, lb/in^3</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
</tr>
<tr>
<td>Subbase Poisson's ratio</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Combined base/subbase thickness, in</td>
<td>9.60</td>
<td>15.75</td>
<td>9.60</td>
<td>23.54</td>
<td>9.01</td>
<td>7.25</td>
<td>9.60</td>
</tr>
<tr>
<td>Combined base/subbase elastic modulus, psi</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Combined base/subbase CTE, in./in./°F</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
</tr>
<tr>
<td>Combined base/subbase unit weight, lb/in^3</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
</tr>
<tr>
<td>Combined base/subbase Poisson's ratio</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Base thickness, in</td>
<td>3.94</td>
<td>15.75</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
</tr>
<tr>
<td>Base elastic modulus, psi</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Base CTE, in./in./°F</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
<td>2.0x10^-6</td>
</tr>
<tr>
<td>Base unit weight, lb/in^3</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
<td>0.061</td>
</tr>
<tr>
<td>Base Poisson's ratio</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Subbase thickness, in</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Subbase thickness, in</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Slab width (outer), in</td>
<td>158.4</td>
<td>221.0</td>
<td>128.9</td>
<td>140.0</td>
<td>158.4</td>
<td>88.4</td>
<td>151.0</td>
</tr>
<tr>
<td>Dowel bar diameter, in</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>Dowel bar spacing, in</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Dowel bar in shoulder</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>LTE lane/lane (AGG), psi</td>
<td>1x10^6</td>
<td>1x10^6</td>
<td>1x10^6</td>
<td>1x10^6</td>
<td>1x10^6</td>
<td>1x10^6</td>
<td>1x10^6</td>
</tr>
<tr>
<td>LTE lane/shoulder (AGG), psi</td>
<td>1.00</td>
<td>1x10^6</td>
<td>1x10^6</td>
<td>1x10^6</td>
<td>1.00</td>
<td>1x10^6</td>
<td>1x10^6</td>
</tr>
</tbody>
</table>
Figure D-1: Example of truck configuration (M1-9)

Figure D-2: Example of pavement feature with PCC/AC shoulder in ISLAB2000 analysis
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure D-3: Example of pavement feature with widened lane in ISLAB2000 analysis

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure D-4: Example of pavement feature with valley gutter in ISLAB2000 analysis