# Distribution Planning Stakeholder Meeting #3

Michigan Public Service Commission Lake Michigan Hearing Room September 18, 2019 9 AM – 4 PM



### Meeting Agenda



| 9:00 a.m.  | Welcome & Introduction                                                                        | Patrick Hudson, Manager, Smart Grid Section               |
|------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 9:10 a.m.  | Hosting Capacity Analyses                                                                     | Yochi Zakai, IREC                                         |
| 9:40 a.m.  | Break                                                                                         |                                                           |
| 9:50 a.m.  | Tying it All Together - A Vision for Integrated Distribution Planning                         | Curt Volkmann, GridLab                                    |
| 10:20 a.m. | Break                                                                                         |                                                           |
| 10:30 p.m. | Reliability and Resilience Metrics, and Reliability Value-Based Planning                      | Joseph Eto, Lawrence Berkeley National Lab                |
| 12:00 p.m. | Lunch (local restaurants available)                                                           |                                                           |
| 1:15 p.m.  | Consumers Energy: Response to Pilot Proposal Comments                                         | Consumers Energy                                          |
| 1:30 p.m.  | DTE: Response to Pilot Proposal Comments                                                      | DTE                                                       |
| 1:45 p.m.  | I&M: Response to Pilot Proposal Comments                                                      | Indiana Michigan Power                                    |
| 2:00 p.m.  | Michigan Utility Reliability Reports                                                          | Joseph Eto, Lawrence Berkeley National Lab                |
| 2:45 p.m.  | Break                                                                                         |                                                           |
| 3:00 p.m.  | Stakeholder Discussion: Resiliency in Michigan –<br>What Matters and How Should it be Valued? | Facilitator: Joseph Eto<br>Lawrence Berkeley National Lab |
| 3:50 p.m.  | Closing Statements & Docket Responses                                                         | MPSC Staff                                                |
| 4:00 p.m.  | Adjourn                                                                                       |                                                           |

## **Distribution Planning Recap**

#### • June 27, 2019

- Modern Distribution Planning
- Load & DER Forecasting
- Non-Wires Alternatives
- Hosting Capacity
- Cost Benefit Analysis
- August 14, 2019
  - Cost Benefit Analysis
  - Risk Informed Decision Making/Performance Metrics
  - Regulatory Innovations with Operating Expenses
  - Preliminary Look at Utility Pilots
- September 18, 2018
- October 16, 2019
- November 19, 2019







## Update from Commission Order

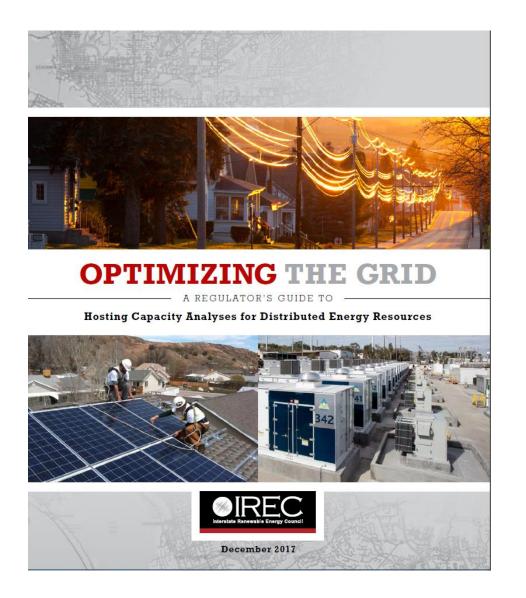


- Commission order in U-20147 on Sept. 11, 2019 tie-in to the State Energy Assessment
  - The title "Five-Year Distribution Plans" has been replaced with "Distribution Investment and Maintenance Plans"
  - SCHEDULE ADJUSTMENT: staff report filing in the docket: April 1, 2010
  - SCHEDULE ADJUSTMENT: Alignment of IRP's with Distribution Plans: next Distribution Plan filing for DTE & Consumers Energy - moved from June 30, 2020 to June 30, 2021
  - Additional clarification for I&M (referencing the criteria in the Nov. 21, 2018 order, filing date set for June 30, 2021)
  - Emphasis on resiliency in future utility distribution plans

## Hosting Capacity Analyses (HCA)

**Yochi Zakai** Shute, Mihaly & Weinberger, LLP Attorney for IREC




Five-Year Distribution Planning Stakeholder Meeting Michigan Public Service Commission

September 18, 2018

### Today's discussion

- What are the key process steps to develop a hosting capacity analysis?
  - What are the use cases for hosting capacity analysis?
  - What are some criteria to guide implementation?
  - What methodologies are available?
- Case Study: Phased Implementation
- Conclusion:
  - IREC's Response to Proposed Pilots
  - IREC's Recommendations for Michigan: Phased Implementation
- Q&A





#### Free Downloads available at: <u>www.irecusa.org/publications/</u>

## **HCA Process Steps**

- Establish a stakeholder process
- Select and define use cases
- Identify criteria to guide HCA implementation
- Select HCA methodology
- Perform analysis
- Validate results
- Share HCA data
- Track, Learn & Evolve

### **Case Study: Minnesota**

The Xcel hosting capacity proceeding illustrates the drawbacks of performing the HCA analysis before establishing goals and a use case.

Concerns raised regarding: 1) accuracy of Xcel's methodology and 2) the usefulness of its results.

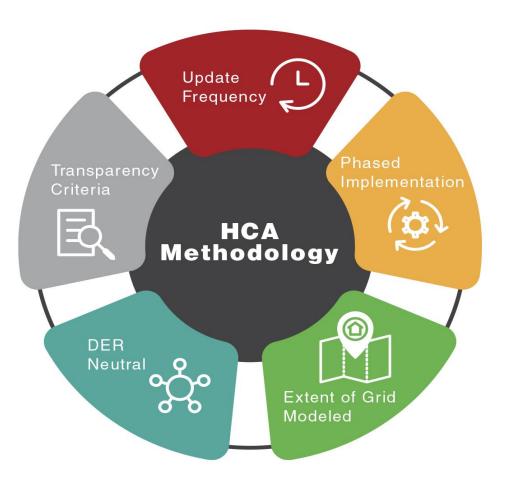
It remains to be seen whether the DRIVE tool can be tailored to meet the needs of the use cases ultimately selected.


Significant costs and delays could be avoided by beginning with the broader policy discussion.



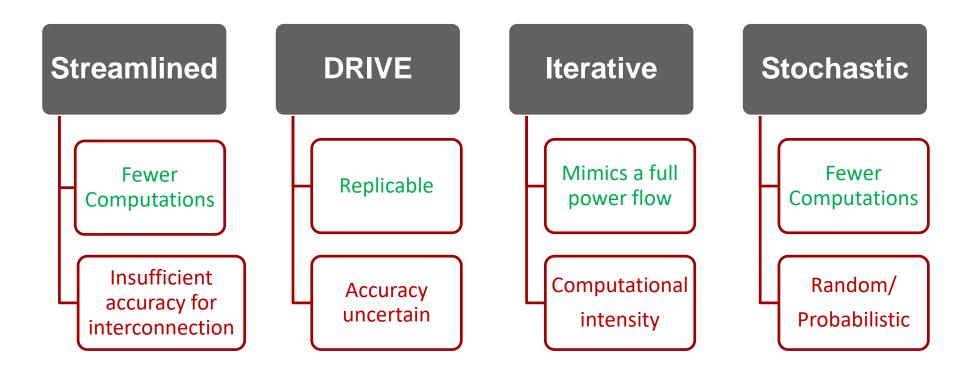
## **HCA Process Steps**

- Establish a stakeholder process
- Select and define use cases
- Identify criteria to guide HCA implementation
- Select HCA methodology
- Perform analysis
- Validate results
- Share HCA data
- Track, Learn & Evolve


### **HCA Use Cases**



Hosting Capacity Use Cases



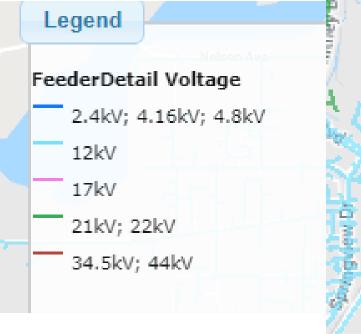

### **Criteria to Guide Methodology**





### Select & Refine Methodology

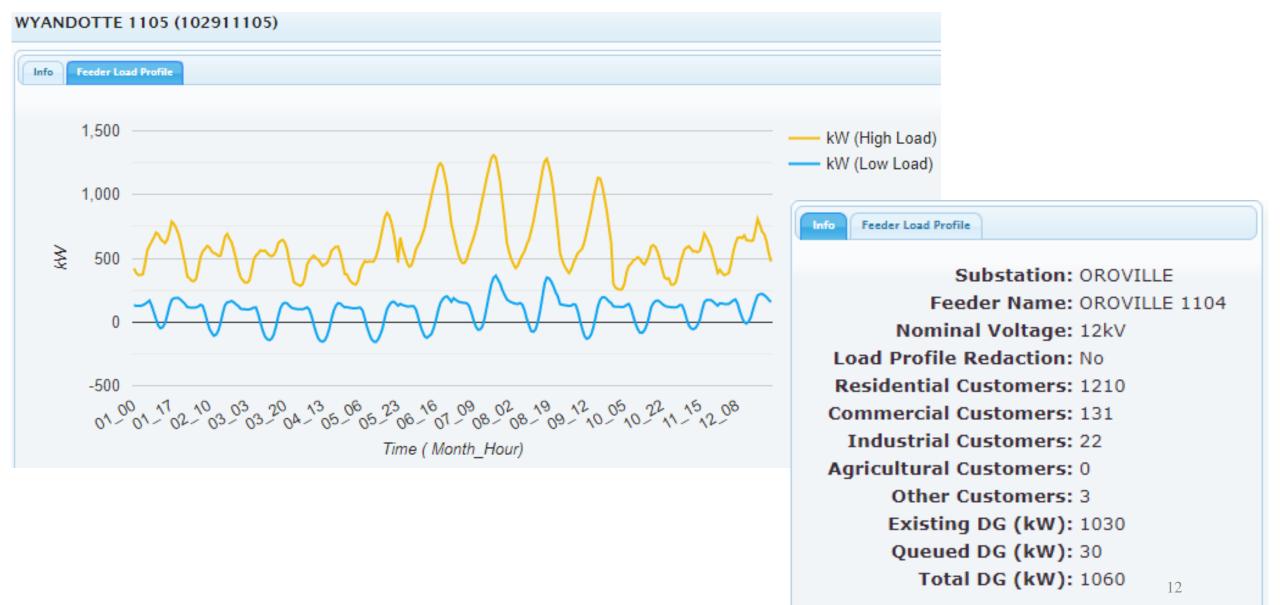




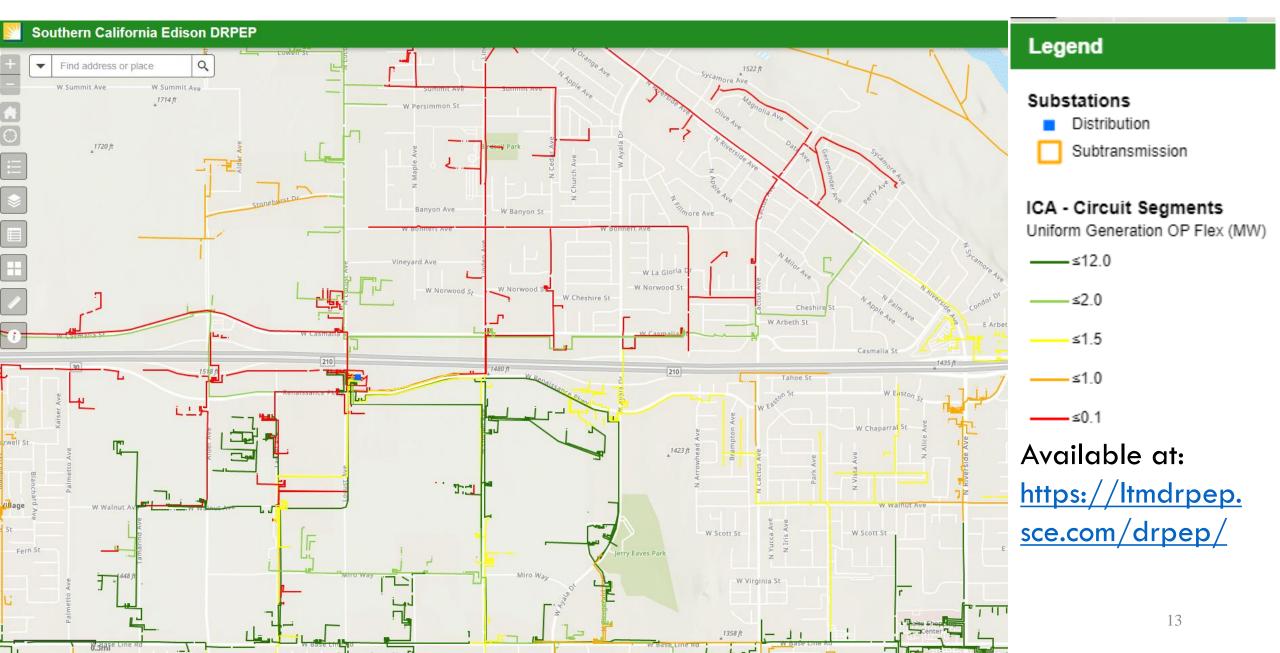

## **Phased Implementation**

- Start by providing basic system information in a map and spreadsheet format.
- Provide utilities time to develop and clean up their GIS data to be accurate enough for use in an analysis that matches the Commission's selected use case.
- Prevents a utility from expending ratepayer funds on a pilot project using a methodology that the Commission and stakeholders have not vetted as sufficient to meet the needs of the selected use case.

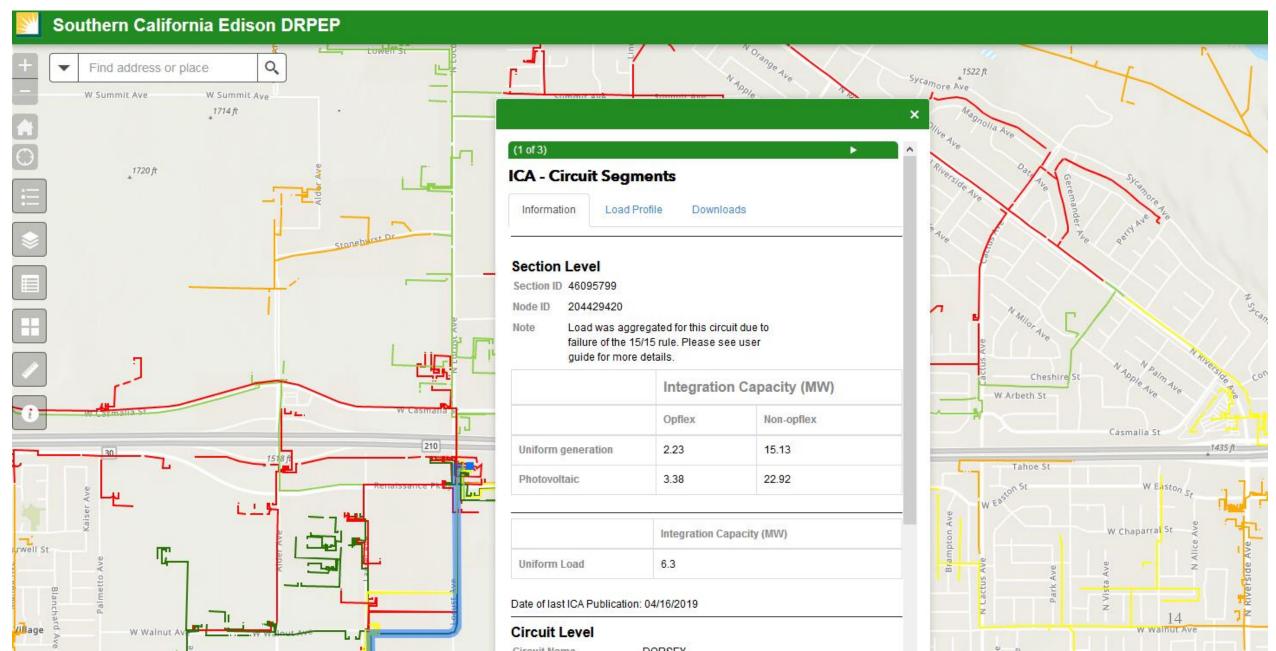



### **Case Study: Phased Implementation**









### **Phased Implementation: Feeder & Substation Data**



### What does full deployment look like?



### **Circuit Segment Data**



#### Data Download

|             | N Orange Ave                                 | 1522 ft<br><sup>Vca</sup> more Ave |
|-------------|----------------------------------------------|------------------------------------|
|             | (1 of 3)                                     | × Magnolia Ave                     |
|             | ICA - Circuit Segments                       | Side Ave                           |
| Jeburst Dr  | Information Load Profile Downloads           | Geremander Ave                     |
|             | Circuit Load Profile Substation Load Profile |                                    |
|             | ICA Results                                  | N Allor Ave                        |
|             |                                              | Cheshire St                        |
| w casmana a |                                              | W Albedi St                        |



### Hosting Capacity Results (Downloadable)

|    | Circuit |          |       |      | Load Profile | Uniform         | Solar PV | Thermal | SSV    | Voltage          | Protection |
|----|---------|----------|-------|------|--------------|-----------------|----------|---------|--------|------------------|------------|
| 1  | Name    | Node ID  | Month | Hour | Туре         | Generation (kW) | (kW)     | (kW)    | (kW)   | Fluctuation (kW) | (kW)       |
| 21 | EDWIN   | 51008697 | 6     | 22   | MIN          | 7784.1          | 31136.4  | 9626.2  | 12625  | 7784.1           | 20000      |
| 22 | EDWIN   | 51008697 | 6     | 22   | MAX          | 7547.8          | 30191.2  | 9490.4  | 14334  | 7547.8           | 20000      |
| 23 | EDWIN   | 51008697 | 6     | 23   | MIN          | 7764.3          | 31057.2  | 9610.7  | 12933  | 7764.3           | 20000      |
| 24 | EDWIN   | 51008697 | 6     | 23   | MAX          | 7546.2          | 30184.8  | 9465    | 14808  | 7546.2           | 20000      |
| 25 | EDWIN   | 51008697 | 7     | 0    | MAX          | 5798.3          | 23193.2  | 9724    | 5798.3 | 8062.9           | 20000      |
| 26 | EDWIN   | 51008697 | 7     | 0    | MIN          | 7888            | 31552    | 9684    | 13602  | 7888             | 20000      |
| 27 | EDWIN   | 51008697 | 7     | 1    | MIN          | 7899.7          | 31598.8  | 9685.8  | 13304  | 7899.7           | 20000      |
| 28 | EDWIN   | 51008697 | 7     | 1    | MAX          | 5655.4          | 22621.6  | 9720.8  | 5655.4 | 8096.3           | 20000      |
| 29 | EDWIN   | 51008697 | 7     | 2    | MAX          | 7867.9          | 31471.6  | 9683.9  | 12496  | 7867.9           | 20000      |

| 1 | Uniform        | Thermal   | Volt Variation | SSV Load |
|---|----------------|-----------|----------------|----------|
|   | Load (kW)      | Load (kW) | Load (kW)      | (kW)     |
| ) | 6694.1         | 8645.49   | 6694.1         | 13021.4  |
| ) | 6507.8         | 7323      | 6507.8         | 11518.6  |
| ) | 6677.4         | 8752.74   | 6677.4         | 12813.5  |
| 1 | <u> 6500 7</u> | 7610.07   | 6E00 7         | 11006.0  |



### **IREC's Response to Proposed HCA Pilots**

- Indiana Michigan Power lacks AMI.
  - SCADA data can be used as an input to the HCA instead of AMI data.
- Consumers Energy proposes to create a "Solar Zone."
  - An HCA is intended to provide information about the system to inform customers and help them choose the best location for their projects.
  - If GIS data is not sufficiently accurate to perform system modeling, Consumers should prioritize cleaning up GIS data.
- DTE proposes to use the DRIVE tool
  - DRIVE's limitations are documented in NY, MN and CA.
  - Better to wait for the Commission to select a use case and methodology



### **Conclusion:**

#### Know Where You Are and Where You're Going

✓ Establish a stakeholder process

#### Select and define use cases

- Identify criteria to guide HCA implementation
- Select HCA methodology
- Perform analysis
- Validate results
- Share HCA data
- Track, Learn & Evolve



### **IREC's Recommendations for Michigan**

- The Commission should consider adopting the interconnection use case, and proceeding with a phased implementation.
- First Phase
  - Utilities publish basic distribution system information in a map and spreadsheet format. See Appendix.
  - Utilities focus on quality control of their GIS and distribution system models, not performing hosting capacity analysis.
  - The Commission solicits stakeholder feedback on criteria by which it will evaluate the different HCA methodologies.
- Second Phase
  - The Commission orders utilities to implement a system-wide HCA using a methodology based on the selected criteria and use case.

### Thank you! Questions?

Yochi Zakai Shute, Mihaly & Weinberger, LLP Attorneys for IREC yzakai@smwlaw.com

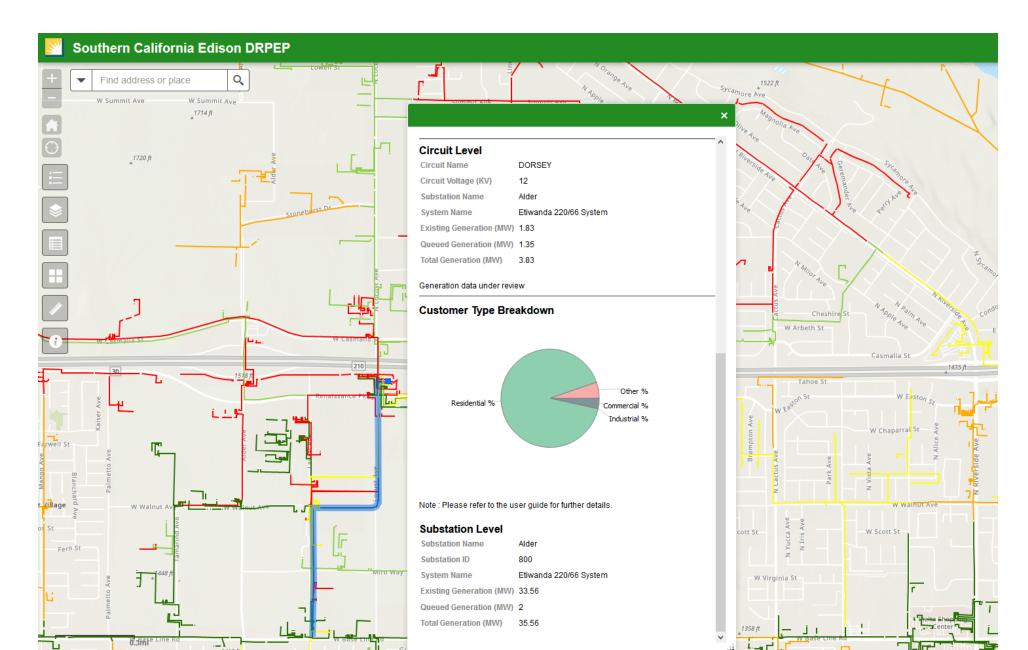
For IREC Regulatory Program Inquiries: Sara Baldwin Vice President - Regulatory sarab@irecusa.org (801) 651-7177



### Appendix: IREC's Suggested Phase 1 Maps and Spreadsheets

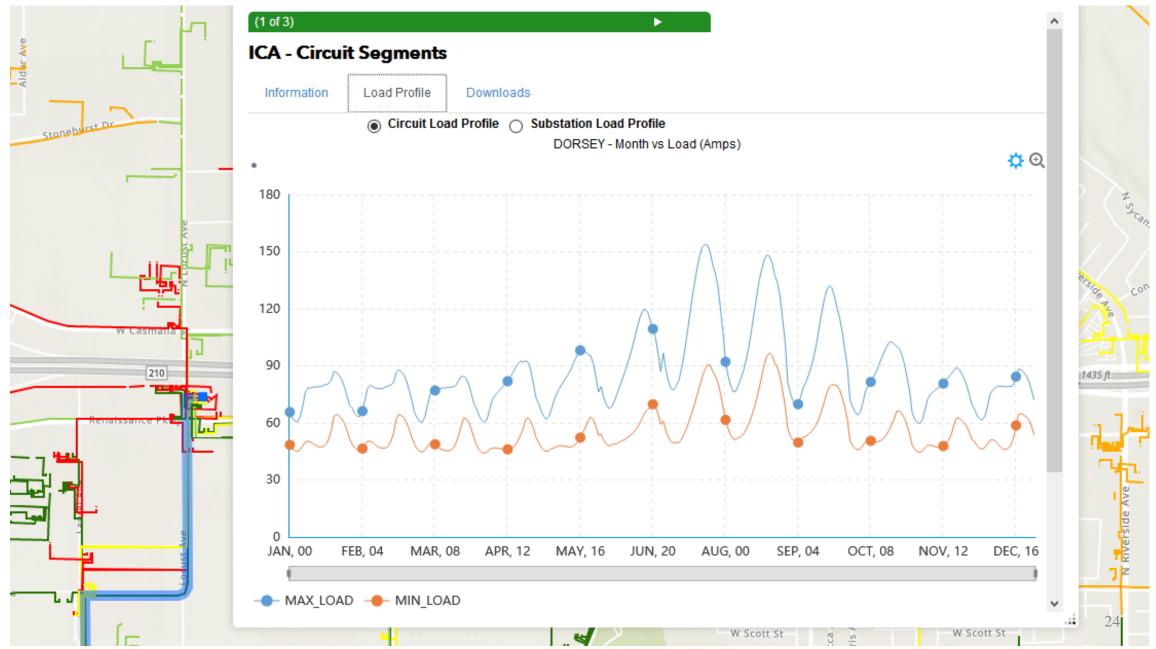


## **Data Fields for a First Phase Map and Spreadsheet**


#### **Substation**

Name Voltages **Existing Generation Queued Generation** Total Generation Load profile Percentage of residential, commercial, industrial customers Currently scheduled upgrades Notes (include any other relevant information to help guide interconnection applicants, including electrical restrictions, known constraints, etc.)

#### Feeder


Name of substation line connects to Line voltage Number of phases **Existing Generation Queued Generation** Total Generation Load profile Percentage of residential, commercial, industrial customers Currently scheduled upgrades Notes (include any other relevant information to help guide interconnection applicants, including electrical restrictions, known constraints, etc.) 22

#### **Circuit and Substation Data**



23

### **Load Profile**



MORNING BREAK 9:40 – 9:50 AM

Distribution Planning Stakeholder Meeting Michigan Public Service Commission Lake Michigan Hearing Room September 18, 2019



### Meeting Agenda

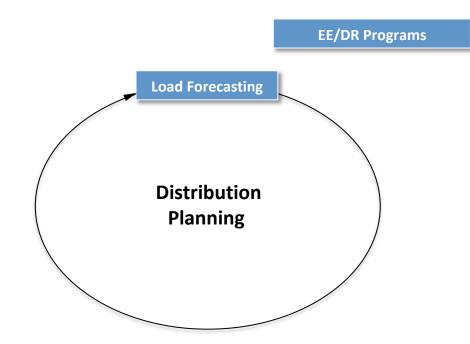


| 9:00 a.m.  | Welcome & Introduction                                                                        | Patrick Hudson, Manager, Smart Grid Section               |
|------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 9:10 a.m.  | Hosting Capacity Analyses                                                                     | Yochi Zakai, IREC                                         |
| 9:40 a.m.  | Break                                                                                         |                                                           |
| 9:50 a.m.  | Tying it All Together - A Vision for Integrated Distribution Planning                         | Curt Volkmann, GridLab                                    |
| 10:20 a.m. | Break                                                                                         |                                                           |
| 10:30 p.m. | Reliability and Resilience Metrics, and Reliability Value-Based Planning                      | Joseph Eto, Lawrence Berkeley National Lab                |
| 12:00 p.m. | Lunch (local restaurants available)                                                           |                                                           |
| 1:15 p.m.  | Consumers Energy: Response to Pilot Proposal Comments                                         | Consumers Energy                                          |
| 1:30 p.m.  | DTE: Response to Pilot Proposal Comments                                                      | DTE                                                       |
| 1:45 p.m.  | I&M: Response to Pilot Proposal Comments                                                      | Indiana Michigan Power                                    |
| 2:00 p.m.  | Michigan Utility Reliability Reports                                                          | Joseph Eto, Lawrence Berkeley National Lab                |
| 2:45 p.m.  | Break                                                                                         |                                                           |
| 3:00 p.m.  | Stakeholder Discussion: Resiliency in Michigan –<br>What Matters and How Should it be Valued? | Facilitator: Joseph Eto<br>Lawrence Berkeley National Lab |
| 3:50 p.m.  | Closing Statements & Docket Responses                                                         | MPSC Staff                                                |
| 4:00 p.m.  | Adjourn                                                                                       |                                                           |



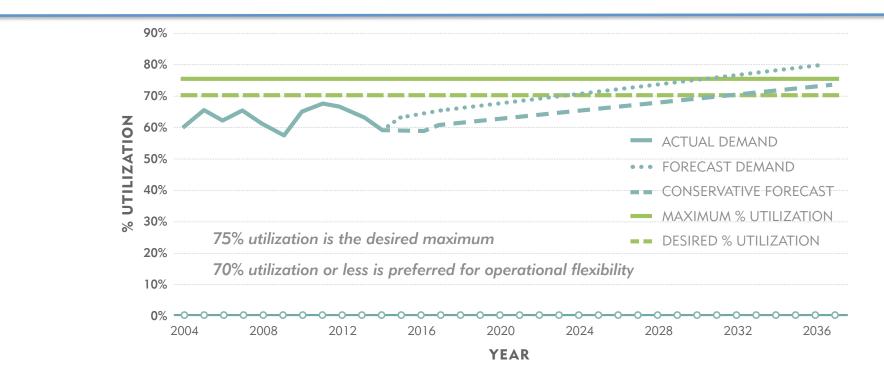
#### Tying it All Together – A Vision for Integrated Distribution Planning

Curt Volkmann

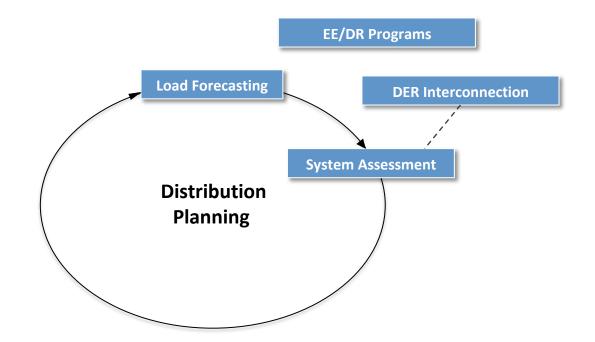

President, New Energy Advisors, LLC curt@newenergy-advisors.com www.newenergy-advisors.com

September 18, 2019

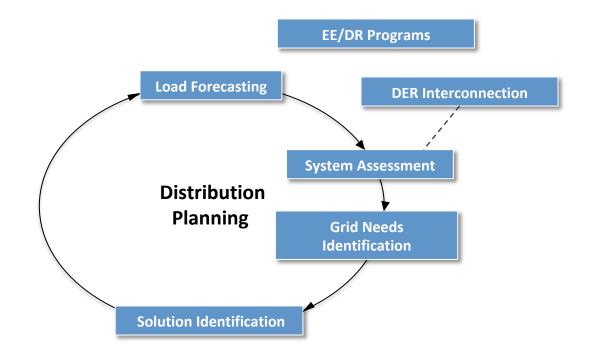



- Significant growth in distributed generation, EE, DR, CHP, EVs, energy storage, microgrids
- Increased complexity of distribution system planning and operations
- New opportunities for customers and third parties to provide *Local Distribution Grid Services*, reducing the need for conventional ratepayer-funded capital investments
  - Distribution capacity or peak load reduction
  - Voltage regulation
  - Reliability/resilience
  - Hosting capacity



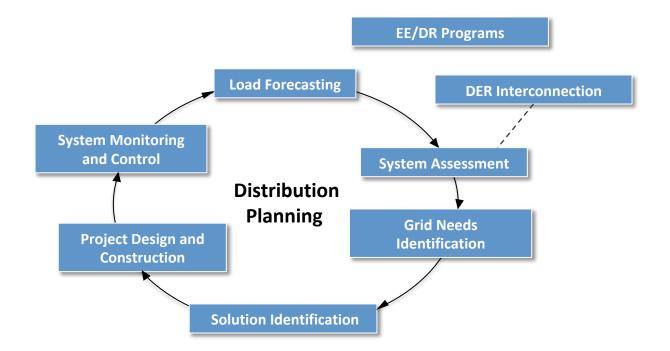




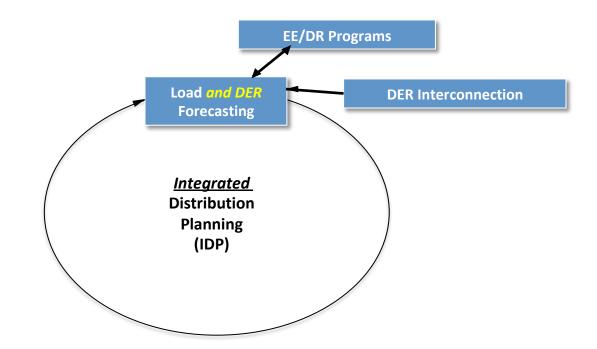


#### Typical Load Forecasting Today



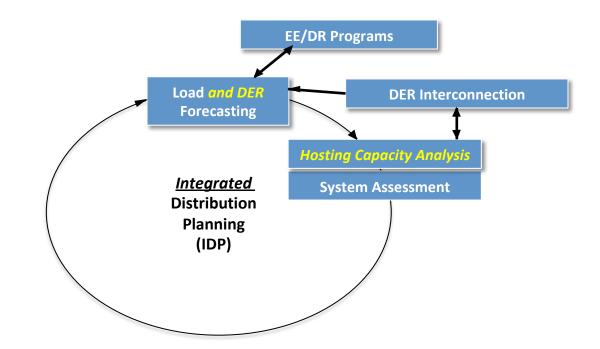




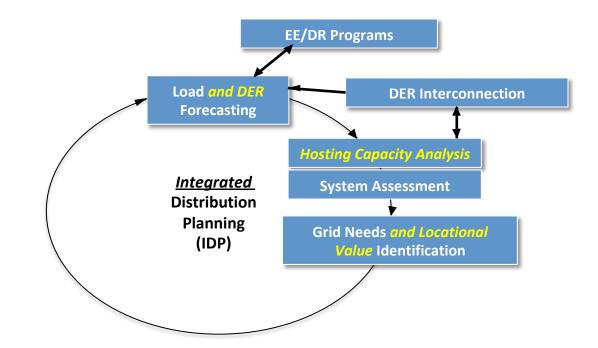


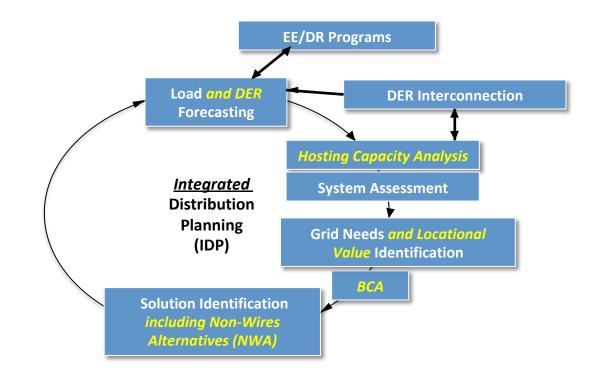

## From today's Distribution Planning ...



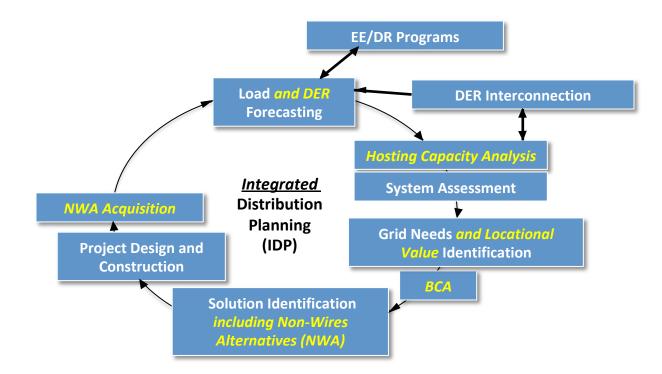


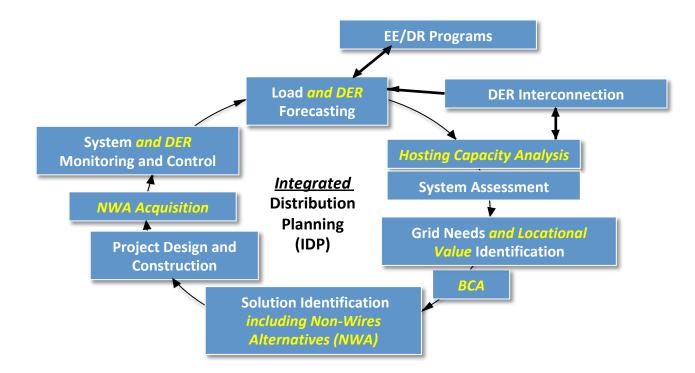


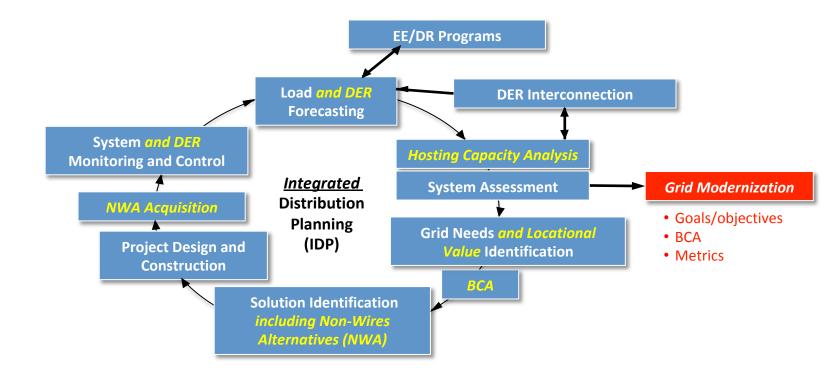

















### New IDP Capabilities



| Capability                                  | Description                                                                                                                                                                                                                               |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) Advanced Forecasting and System Modeling | Probabilistic planning and DER adoption scenario analyses; more granular load and power flow modeling; enhanced modeling of new smart inverter capabilities; and the ability to monitor, manage and optimize DER connected to the system. |



| Capability                                  | Description                                                                                                                                                                                                                               |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) Advanced Forecasting and System Modeling | Probabilistic planning and DER adoption scenario analyses; more granular load and power flow modeling; enhanced modeling of new smart inverter capabilities; and the ability to monitor, manage and optimize DER connected to the system. |
| 2) Hosting Capacity Analysis                | Determining how much additional DER each distribution circuit can accommodate without requiring upgrades.                                                                                                                                 |



| Capability                                       | Description                                                                                                                                                                                                                               |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) Advanced Forecasting and System Modeling      | Probabilistic planning and DER adoption scenario analyses; more granular load and power flow modeling; enhanced modeling of new smart inverter capabilities; and the ability to monitor, manage and optimize DER connected to the system. |
| 2) Hosting Capacity Analysis                     | Determining how much additional DER each distribution circuit can accommodate without requiring upgrades.                                                                                                                                 |
| 3) Disclosure of Grid Needs and Locational Value | Identification and publication of locations where DER can provide grid services as non-<br>wires alternatives (NWA).                                                                                                                      |



| Capability                                       | Description                                                                                                                                                                                                                               |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) Advanced Forecasting and System Modeling      | Probabilistic planning and DER adoption scenario analyses; more granular load and power flow modeling; enhanced modeling of new smart inverter capabilities; and the ability to monitor, manage and optimize DER connected to the system. |
| 2) Hosting Capacity Analysis                     | Determining how much additional DER each distribution circuit can accommodate without requiring upgrades.                                                                                                                                 |
| 3) Disclosure of Grid Needs and Locational Value | Identification and publication of locations where DER can provide grid services as non-<br>wires alternatives (NWA).                                                                                                                      |
| 4) New Solution Acquisition                      | Acquiring or sourcing DER to provide grid services using pricing, programs or procurement.                                                                                                                                                |



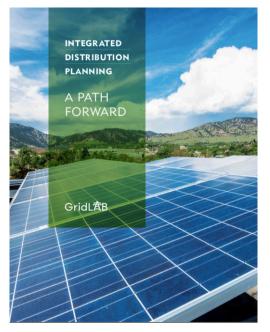
| Capability                                       | Description                                                                                                                                                                                                                               |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) Advanced Forecasting and System Modeling      | Probabilistic planning and DER adoption scenario analyses; more granular load and power flow modeling; enhanced modeling of new smart inverter capabilities; and the ability to monitor, manage and optimize DER connected to the system. |
| 2) Hosting Capacity Analysis                     | Determining how much additional DER each distribution circuit can accommodate without requiring upgrades.                                                                                                                                 |
| 3) Disclosure of Grid Needs and Locational Value | Identification and publication of locations where DER can provide grid services as non-<br>wires alternatives (NWA).                                                                                                                      |
| 4) New Solution Acquisition                      | Acquiring or sourcing DER to provide grid services using pricing, programs or procurement.                                                                                                                                                |
| 5) Meaningful Stakeholder Engagement             | Establishing processes for open dialogue, transparent information sharing, collaboration, and consensus building among stakeholders.                                                                                                      |



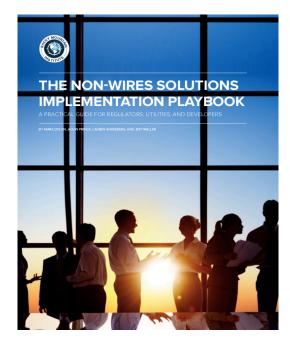
- DER adoption and growth scenarios
- NWA suitability criteria
- HCA use cases, identification of appropriate HCA methodology
- Data sharing policy, process and tools
- Smart inverter required functions and settings



#### **Hosting Capacity Analysis**


- Define use cases, then methodology (ideally common across MI)
- Develop plans & timeline for publication of basic system information
- Don't wait to get started
  - Data clean up, distribution system model enhancements

#### **Non-Wires Alternatives**


- Define and publish grid needs and locational value
- Define and publish suitability criteria
- Include procurement of service solutions utilizing non-utility owned resources

### Additional resources ...





https://gridlab.org/publications/



https://rmi.org/insight/non-wires-solutions-playbook/



## Thank you!

#### Curt Volkmann

President, New Energy Advisors, LLC curt@newenergy-advisors.com www.newenergy-advisors.com MORNING BREAK 10:20 – 10:30 AM

Distribution Planning Stakeholder Meeting Michigan Public Service Commission Lake Michigan Hearing Room September 18, 2019



# Meeting Agenda



| 9:00 a.m.  | Welcome & Introduction                                                                        | Patrick Hudson, Manager, Smart Grid Section               |
|------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 9:10 a.m.  | Hosting Capacity Analyses                                                                     | Yochi Zakai, IREC                                         |
| 9:40 a.m.  | Break                                                                                         |                                                           |
| 9:50 a.m.  | Tying it All Together - A Vision for Integrated Distribution Planning                         | Curt Volkmann, GridLab                                    |
| 10:20 a.m. | Break                                                                                         |                                                           |
| 10:30 p.m. | Reliability and Resilience Metrics, and Reliability Value-Based Planning                      | Joseph Eto, Lawrence Berkeley National Lab                |
| 12:00 p.m. | Lunch (local restaurants available)                                                           |                                                           |
| 1:15 p.m.  | Consumers Energy: Response to Pilot Proposal Comments                                         | Consumers Energy                                          |
| 1:30 p.m.  | DTE: Response to Pilot Proposal Comments                                                      | DTE                                                       |
| 1:45 p.m.  | I&M: Response to Pilot Proposal Comments                                                      | Indiana Michigan Power                                    |
| 2:00 p.m.  | Michigan Utility Reliability Reports                                                          | Joseph Eto, Lawrence Berkeley National Lab                |
| 2:45 p.m.  | Break                                                                                         |                                                           |
| 3:00 p.m.  | Stakeholder Discussion: Resiliency in Michigan –<br>What Matters and How Should it be Valued? | Facilitator: Joseph Eto<br>Lawrence Berkeley National Lab |
| 3:50 p.m.  | Closing Statements & Docket Responses                                                         | MPSC Staff                                                |
| 4:00 p.m.  | Adjourn                                                                                       |                                                           |

# Reliability and Resilience Metrics and Reliability Value-Based Planning

## Joseph H. Eto

Lawrence Berkeley National Laboratory

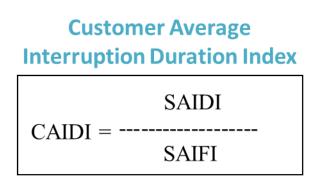
**Five-Year Distribution Planning Stakeholder Meeting** 

Lansing, MI, September 18, 2019



ENERGY TECHNOLOGIES AREA

# **Overview of this presentation**


- Reliability Metrics
- IEEE Standard 1366 Identification of Major Events
- Reliability vs. Resilience
- Resilience Metrics
- Value-Based Reliability Planning
- The Interruption Cost Estimate (ICE) Calculator
- LBNL Bibliography



# Electricity reliability is measured by the duration and frequency of the times when the lights are out

#### System Average Interruption Duration Index

| total duration of sustained customer |
|--------------------------------------|
| interruptions ( $\geq$ 5min each)    |
| SAIDI =                              |
| number of customers served           |



#### System Average Interruption Frequency Index

|         | frequency of sustained customer<br>interruptions (≥ 5min each) |
|---------|----------------------------------------------------------------|
| SAIFI = | number of customers served                                     |

#### **Momentary Average Interruption Frequency Index**

MAIFI = frequency of momentary customer interruptions (< 5min each)

number of customers served



ENERGY TECHNOLOGIES AREA

# SAIDI, SAIFI, and CAIDI represent aggregations of customers' experiences with power interruptions

Example: Circuit 3 Outage History

| Circuit   | Customers<br>Served | Outage<br>Number | Customers<br>Interrupted | Outage<br>Duration in<br>Minutes | Customer-<br>Minutes<br>Interrupted |
|-----------|---------------------|------------------|--------------------------|----------------------------------|-------------------------------------|
| Circuit 3 | 3,000               | 1                | 1,500                    | 90                               | 135,000                             |
| Circuit 3 | 3,000               | 2                | 750                      | 150                              | 112,500                             |
| Circuit 3 | 3,000               | 3                | 3,000                    | 120                              | 360,000                             |
| Circuit 3 | 3,000               | 4                | 750                      | 150                              | 112 500                             |
| Total     | 3,000               |                  | 6,000                    |                                  | 720,000                             |

Example: SAIFI Calculations (Assume system serves 2,000,000 customers)

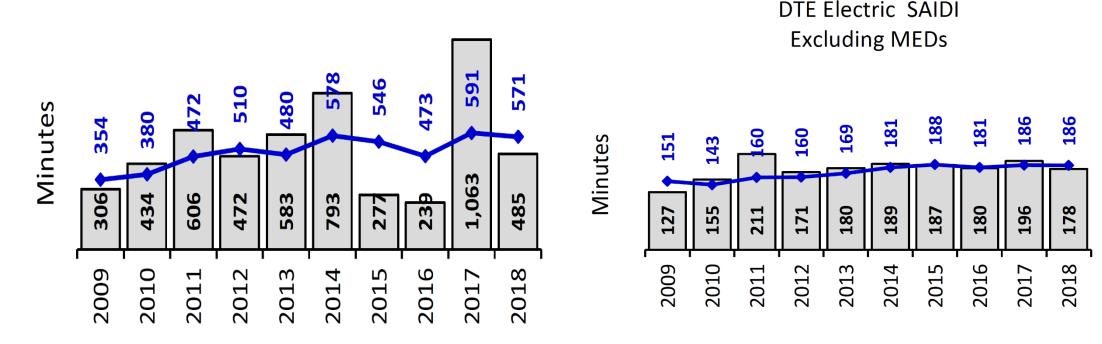
|           |             | Circuit   | Circuit       | System    | System     |
|-----------|-------------|-----------|---------------|-----------|------------|
|           | Customer    | Customers | SAIFI         | Custome s | SAIFI      |
| Circuit   | Interrupted | Served    |               | Se ved    |            |
| Circuit 1 | 1,000       | 500       | = 1,000/500   | 2,000,000 | = 1,000/2M |
|           |             |           | = 2.0         |           | = 0.0005   |
| Circuit 2 | 4,000       | 2,000     | = 4,000/2,000 | 2,000,000 | = 4,000/2M |
| circuit 2 | 4,000       | 2,000     | = 2.0         | 2,000,000 | = 0.0020   |
| Circuit 3 | 6,000       | 3,000     | = 6,000/3,000 | 2,000,000 | = 6,000/2M |
| Circuit 5 | 6,000       | 5,000     | = 2.0         | 2,000,000 | = 0.0030   |
|           |             |           |               |           |            |

Example: SAIDI Calculations (Assume system serves 2,000,000 customers)

| Circuit   | Customer-<br>Minutes<br>Interrupted | Circuit<br>Cu: tomer <i>s</i><br>Served | Circuit<br>SAIDI           | System<br>Customers<br>Served | System<br>SAIDI         |
|-----------|-------------------------------------|-----------------------------------------|----------------------------|-------------------------------|-------------------------|
| Circuit 1 | 120,000                             | 500                                     | = 120,000/500<br>= 240.0   | 2,000,000                     | = 120,000/2M<br>= 0.060 |
| Circuit 2 | 480,000                             | 2,000                                   | = 480,000/2,000<br>= 240.0 | 2,000,000                     | = 480,000/2M<br>= 0.240 |
| Circuit 3 | 720,000                             | 3,000                                   | = 720,000/3,000<br>= 240.0 | 2,000,000                     | = 720,000/2M<br>= 0.360 |



Source: DTE Electric Company's Distribution Operations Five-Year (2018-2022) Investment and Maintenance Plan Final Report, January 31, 2018

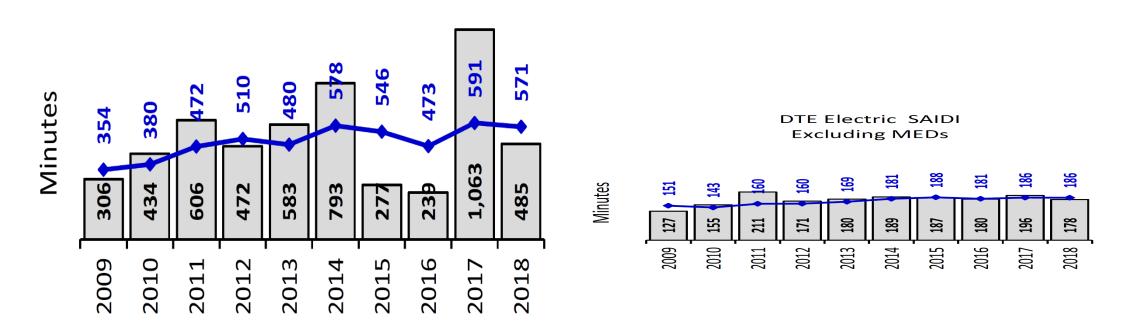

# Exclusions or major events will vary from year to year—yet account for a measurable portion of overall utility reliability

| EIA Form 861 for calendar 2015                                  | Investor<br>Owned | Cooperative | Municipal |
|-----------------------------------------------------------------|-------------------|-------------|-----------|
| Number of utilities reporting<br>(following IEEE Standard 1366) | 137               | 296         | 117       |
| % of U.S. sales by type of utility                              | 51%               | 47%         | 43%       |
| SAIDI with Major Events                                         | 237               | 302         | 115       |
| SAIDI without Major Events                                      | 136               | 159         | 50        |
| SAIFI with Major Events                                         | 1.4               | 2.8         | 0.9       |
| SAIFI without Major Events                                      | 1.2               | 2.1         | 0.7       |



# IEEE Std. 1366 facilitates year-on-year comparisons of by removing major events, which vary on a yearly basis

DTE Electric SAIDI All Weather



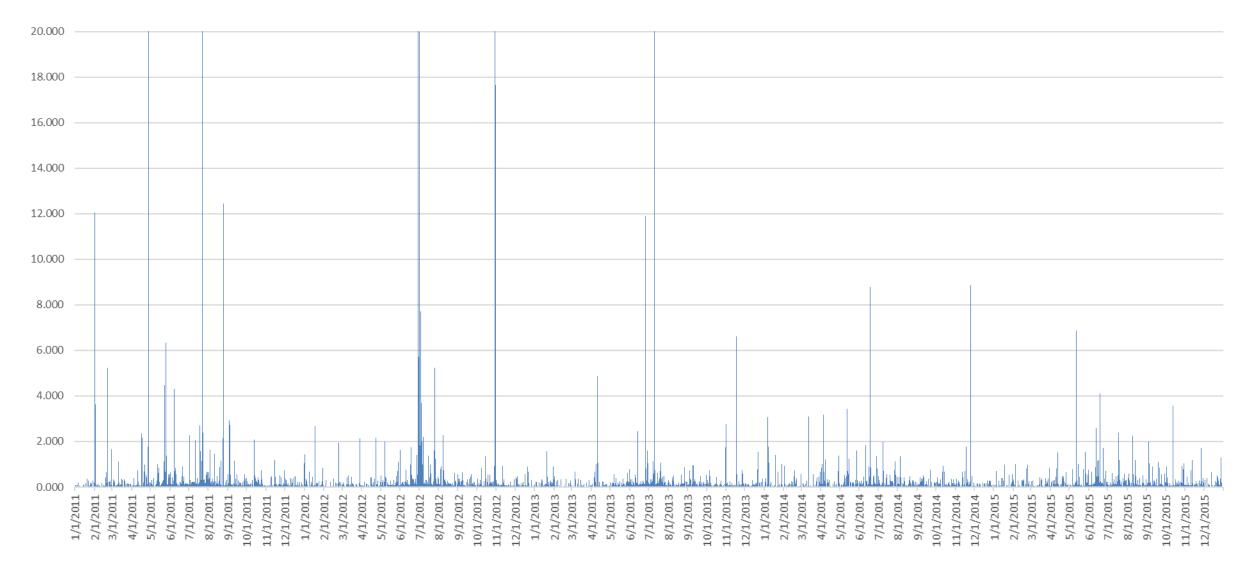



S ENERGY TECHNOLOGIES AREA

# IEEE Std. 1366 facilitates year-on-year comparisons of by removing major events, which vary on a yearly basis

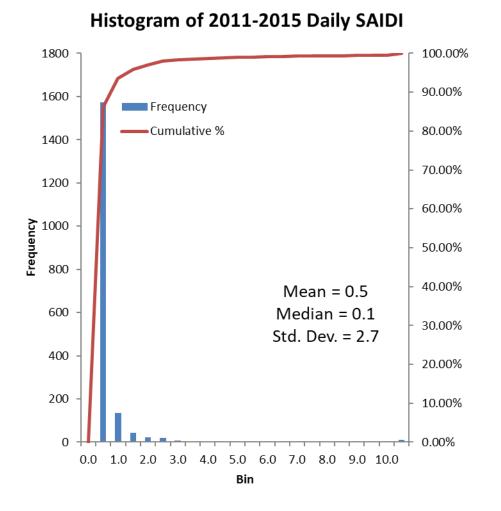
DTE Electric SAIDI All Weather



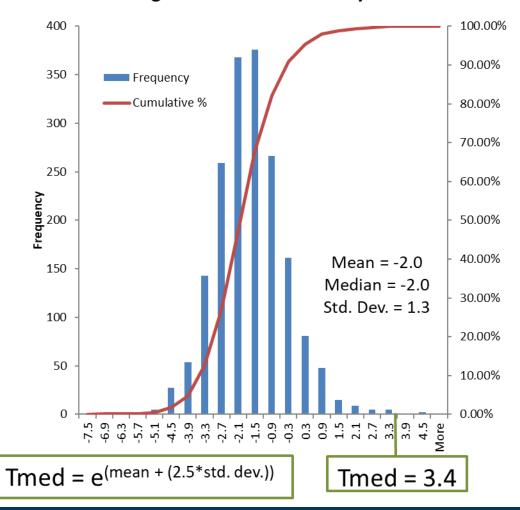



## **IEEE Standard 1366**

- First developed in 1998 to define reliability indices; amended in 2003 to add a consistent approach for segmenting Major Event Days (amended again in 2012; MED definition unchanged)
- Uses 2.5\*beta to estimate a threshold daily SAIDI, Tmed, above which a Major Event Day is identified
  - Tmed = exp ( $\alpha$ +2.5 $\beta$ )
  - Beta = log-normal standard deviation
  - Alpha = log-normal statistical mean
- For a *normal* distribution:
  - Multiplying beta (the standard deviation) by 2.5 covers 99.379% of the expected observations (assuming a one-sided confidence interval)
  - For a year of daily observations, this translates to an expectation of 2.3 Major Event Days per year
- But, not all utility daily SAIDI data are distributed "normally"




# Daily SAIDI for 5 years (2011-2015)

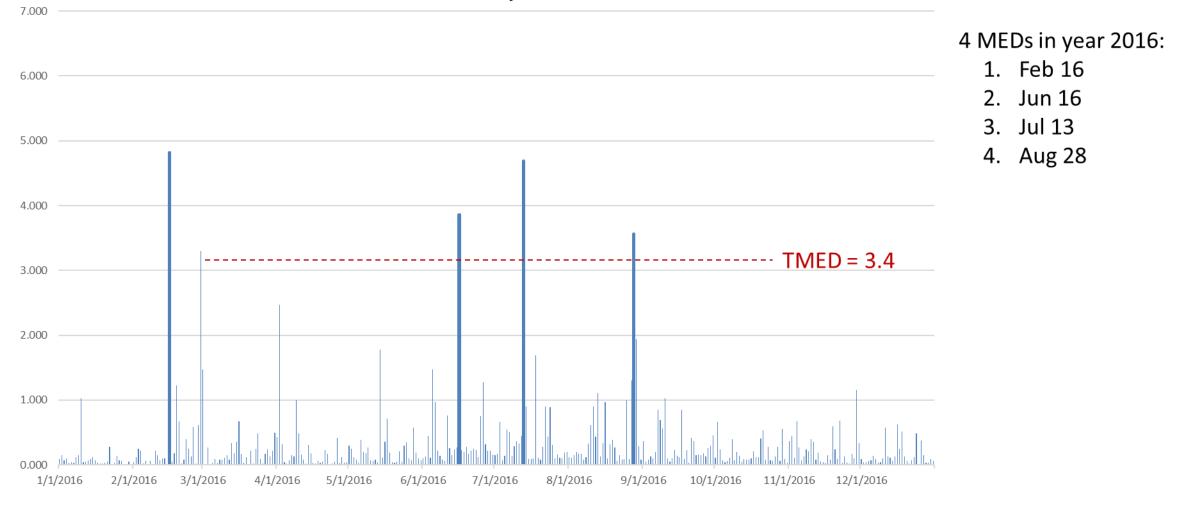





# **Daily SAIDI Re-Ordered from Lowest to Highest**



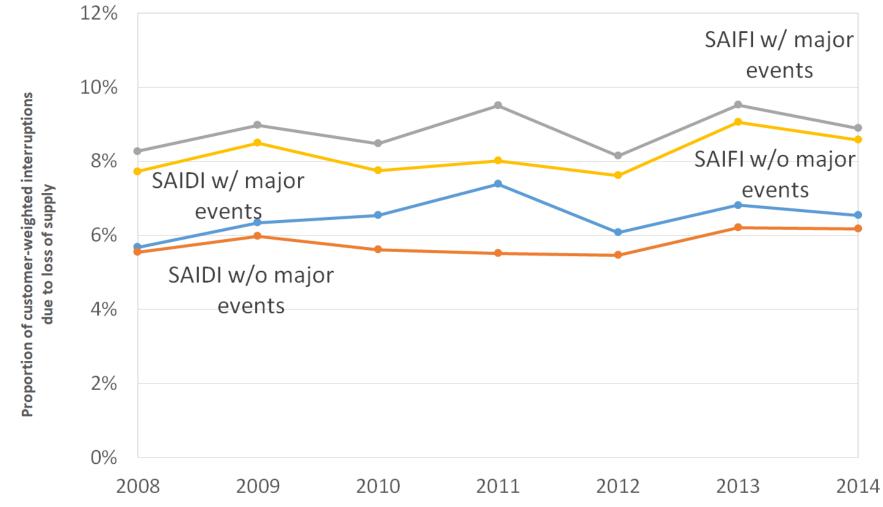
Histogram of 2011-2015 Daily Ln SAIDI






**ENERGY TECHNOLOGIES AREA** 

## Daily SAIDI for 2016 $\rightarrow$ 4 MEDs


#### U1 Year 2016 Daily SAIDI





**ENERGY TECHNOLOGIES AREA** 

# Reliability oversight is shared between Federal and State regulators



#### Customer-weighted proportion of SAIDI and SAIFI due to loss of supply (IEEE DRWG data 2008-2014, n = 73)



Source: Eto, J., K. Hamachi-LaCommare, H. Caswell, and D. Till. "Distribution System vs. Bulk Power System: Identifying the Source of Electric Service Interruptions in the U.S." *IET Generation, Transmission, and Distribution, Volume 13, Issue 5, 12 March 2019, p. 717 – 723* 

Int ENERGY TECHNOLOGIES AREA

## Reliability oversight is shared between Federal and State regulators



Maximum distribution voltage

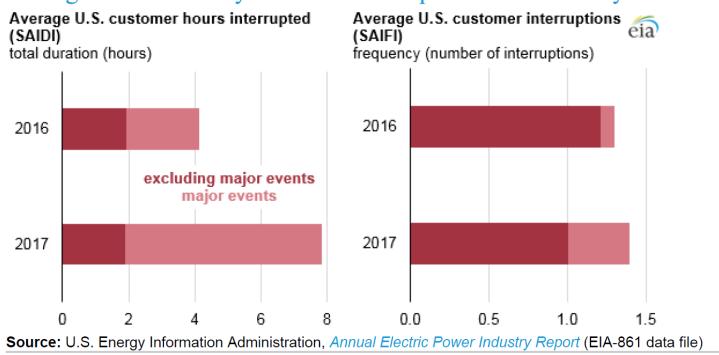
Source: Eto, J., K. Hamachi-LaCommare, H. Caswell, and D. Till. "Distribution System vs. Bulk Power System: Identifying the Source of Electric Service Interruptions in the U.S." *IET Generation, Transmission, and Distribution, Volume 13, Issue 5, 12* March 2019, p. 717 – 723



**ENERGY TECHNOLOGIES AREA** 

## Concerns Regarding the Resilience of the U.S. Electric Power System are Growing




U.S. Energy Information Administration

"More major events such as hurricanes and winter storms occurred in 2017, and the total duration of interruptions caused by major events was longer"

#### Today in Energy

November 30, 2018

### Average U.S. electricity customer interruptions totaled nearly 8 hours in 2017





# **Reliability vs. Resilience: features, metrics, actions**

|                 | Reliability                                    | Resilience                                            |
|-----------------|------------------------------------------------|-------------------------------------------------------|
| Common          | Routine, expected, normally localized, shorter | Infrequent, unexpected, widespread/long duration      |
| features/       | duration interruptions of electric service     | power interruptions, often with significant corollary |
| characteristics | Larger events will make it into the local      | impacts                                               |
|                 | headlines                                      | Almost always "event" based                           |
|                 |                                                | Always national headline worthy                       |
| Metrics         | Well-established, annualized (SAIDI, SAIFI,    | Familiar, but non-standardized, and generally event-  |
|                 | MAIFI), with provisions for "major events"     | based (number of customers affected; hours without    |
|                 | Rarely include non-electricity impacts         | electric service)                                     |
|                 |                                                | Routinely also include non-electricity impacts (e.g., |
|                 |                                                | costs to firms; health and safety impacts)            |
| Actions to      | 1. Plan and prepare;                           | No qualitative difference                             |
| improve         | <ol><li>Manage and endure event(s);</li></ol>  | But generally larger in scope/cost (see below)        |
|                 | 3. Recover and restore; and                    |                                                       |
|                 | 4. Assess, learn, and update plan.             |                                                       |
|                 |                                                |                                                       |

ENERGY TECHNOLOGIES AREA

# **Reliability vs. Resilience: decision-making**

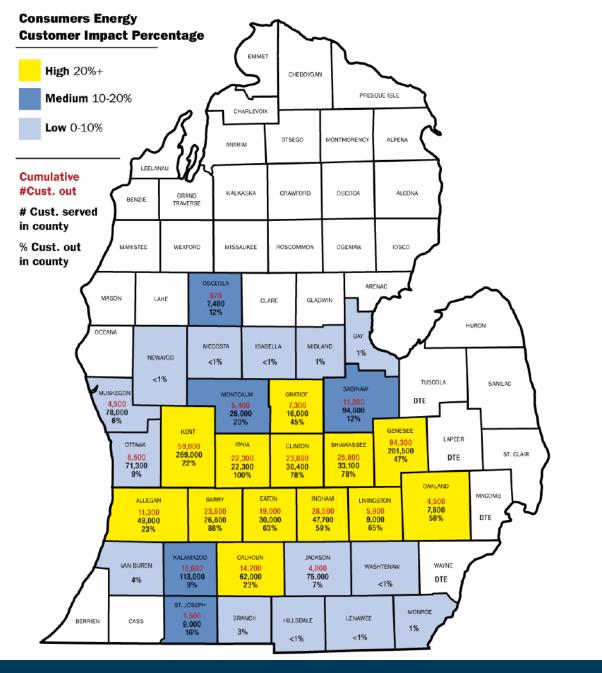
|                                         | Reliability                                                                                                                                                                                       | Resilience                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entities involved in<br>decision making | Electric utility and its regulator/oversight board, primarily                                                                                                                                     | Electric utility and regulator; sometimes acting in response<br>to State legislative direction or Governor's orders<br>Routinely in conjunction with parties that have<br>responsibilities for other critical infrastructures, including<br>local/regional/state/federal agencies/authorities, and<br>communities/elected officials |
| Factors affecting<br>decision making    | Actuarial records on frequency of<br>exposure – widely understood risks:<br>insurable<br>Well-understood/tested<br>practices/approaches<br>Understood to be an expected cost of<br>doing business | No actuarial basis to establish likelihood of occurrence –<br>widely varying perceptions of risk/exposure: "un-<br>insurable" risk<br>Limited opportunities to test strategies<br>Large dollar amounts/extraordinary expenditures may<br>require special approval/vote<br>Political judgements essential                            |



## Grid Modernization Lab Consortium metrics: Resilience

| GMLC Resilience Metrics                                                    | Data Requirements                                                                     |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Cumulative customer-hours of outages                                       | customer interruption duration (hours)                                                |
| Cumulative customer energy demand not served                               | total kVA of load interrupted                                                         |
| Avg (or %) customers experiencing an outage during a specified time period | total kVA of load served                                                              |
| Cumulative critical customer-hours of outages                              | critical customer interruption duration                                               |
| Critical customer energy demand not served                                 | total kVA of load interrupted for critical customers                                  |
| Avg (or %) of critical loads that experience an outage                     | total kVA of load severed to critical customers                                       |
| Time to recovery                                                           |                                                                                       |
| Cost of recovery                                                           |                                                                                       |
| Loss of utility revenue                                                    | outage cost for utility (\$)                                                          |
| Cost of grid damages (e.g., repair or replace lines, transformers)         | total cost of equipment repair                                                        |
| Avoided outage cost                                                        | total kVA of interrupted load avoided                                                 |
|                                                                            | \$ / kVA                                                                              |
| Critical services without power                                            | number of critical services without power                                             |
|                                                                            | total number of critical services                                                     |
| Critical services without power after backup fails                         | total number of critical services with backup power                                   |
|                                                                            | duration of backup power for critical services                                        |
| Loss of assets and perishables                                             |                                                                                       |
| Business interruption costs                                                | avg business losses per day (other than utility)                                      |
| Impact on GMP or GRP                                                       |                                                                                       |
| Kou production facilities w/o power                                        | total number of key production facilities w/o power (how is this different from total |
| Key production facilities w/o power                                        | kVA interrupted for critical customers?)                                              |
| Key military facilities w/o power                                          | total number of military facilities w/o power (same comment as above)                 |




## **Consumers Energy Company December 2013 ice storm restoration timeline**





ENERGY TECHNOLOGIES AREA

Consumers Energy Company December 2013 ice storm customer impacts by county





## Introducing Value-Based Reliability Planning

- The pace of electricity grid modernization efforts will be determined by decisions made by electric utilities, their customers, and local communities/states to adopt new technologies and practices
- An important motivation for these actions will be maintaining or improving the reliability and resiliency of electric service
- From an economic perspective, the justification for these actions will therefore, depend, at least in part, on:
  - The cost of the actions under consideration;
  - The impact they are expected to have on reliability or resilience; and
  - The value these impacts have to the utility, its customers, and the community/state
- Better information will enable, but does not guarantee, better decisions and remember... we will never have perfect information



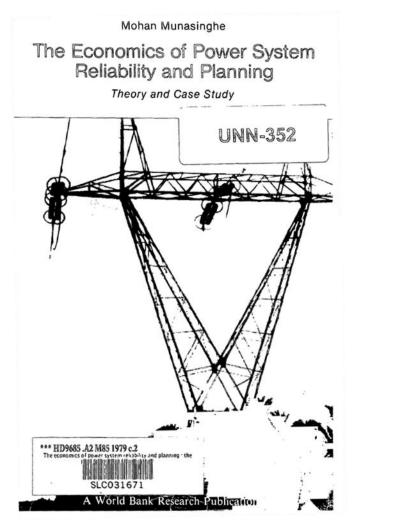
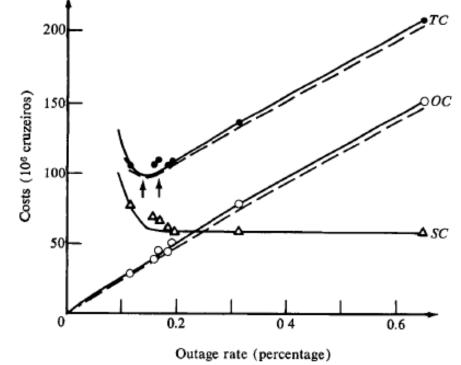




Figure 13.1. Optimization of the Outage System: Costs Versus Outage Rate



Note: SC = distribution system supply costs; OC = global outage costs; and TC = total costs. The plotted data points and solid lines refer to efficiency priced costs; the broken lines indicate the costs in terms of social prices.



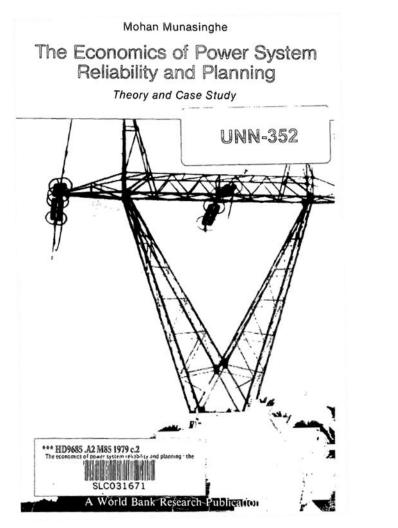
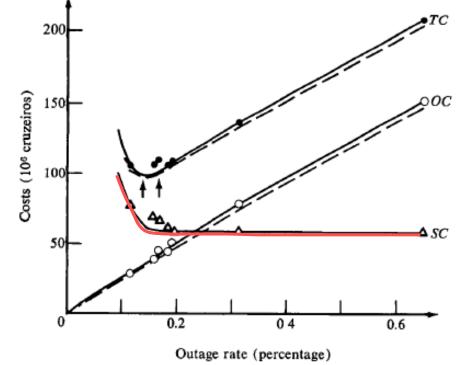




Figure 13.1. Optimization of the Outage System: Costs Versus Outage Rate



Note: SC = distribution system supply costs; OC = global outage costs; and TC = total costs. The plotted data points and solid lines refer to efficiency priced costs; the broken lines indicate the costs in terms of social prices.



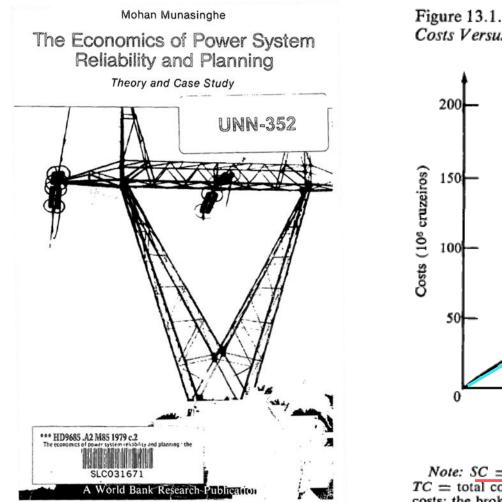
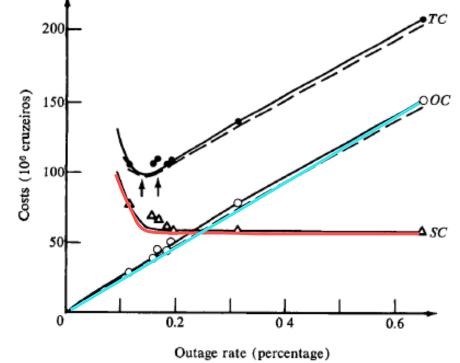




Figure 13.1. Optimization of the Outage System: Costs Versus Outage Rate



Note: SC = distribution system supply costs; OC = global outage costs; and TC = total costs. The plotted data points and solid lines refer to efficiency priced costs; the broken lines indicate the costs in terms of social prices.



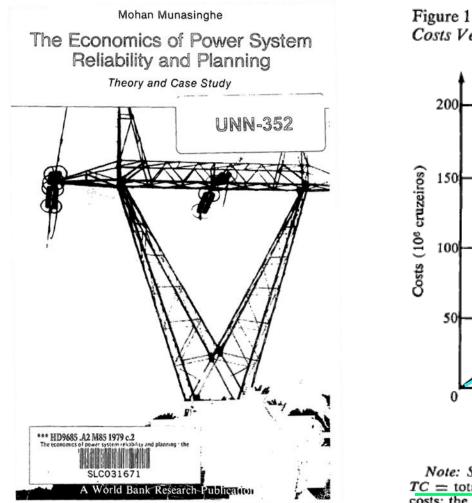
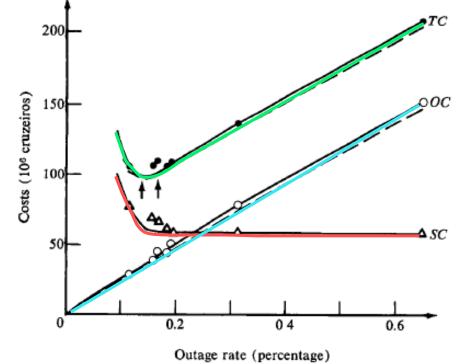




Figure 13.1. Optimization of the Outage System: Costs Versus Outage Rate



Note: SC = distribution system supply costs; OC = global outage costs; and TC = total costs. The plotted data points and solid lines refer to efficiency priced costs; the broken lines indicate the costs in terms of social prices.



ENERGY TECHNOLOGIES AREA

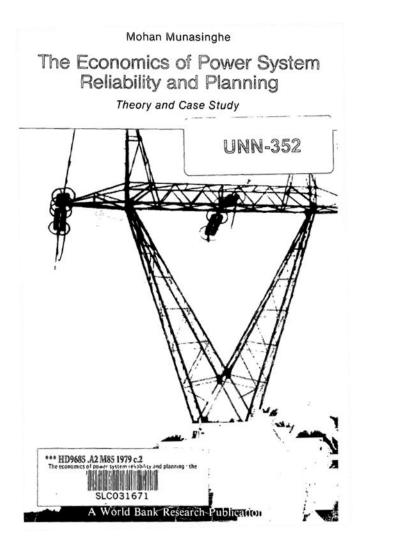
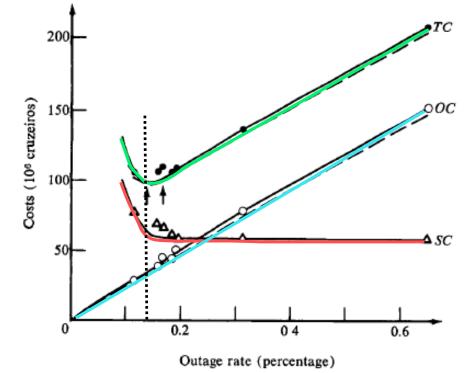
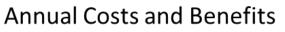




Figure 13.1. Optimization of the Outage System: Costs Versus Outage Rate



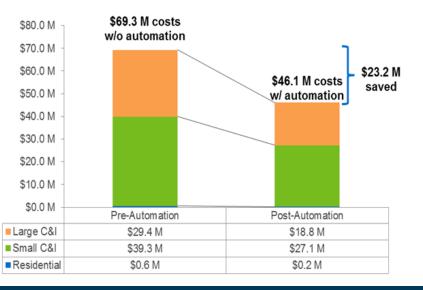

Note: SC = distribution system supply costs; OC = global outage costs; and TC = total costs. The plotted data points and solid lines refer to efficiency priced costs; the broken lines indicate the costs in terms of social prices.



ENERGY TECHNOLOGIES AREA

### Value-Based Reliability Planning example: Distribution Automation

- Utility: EPB of Chattanooga
- Customers Impacted: 174,000 customers (entire territory)
- Investment: 1,200 automated circuit switches and sensors on 171 circuits
- Reliability Improvement:
  - SAIDI ↓45% (from 112 to 61.8 minutes/year)
  - SAIFI ↓51% (from 1.42 to 0.69 interruptions/year) (between 2010 and 2015)




Avoided customer outage costs



Utility

#### Avoided Cost of Severe Storm





## **The Costs of Power Interruptions**

#### Varies by type of customer and depends on when and for how long their lights are out

|                      | Interruption Duration |            |          |          |                   |
|----------------------|-----------------------|------------|----------|----------|-------------------|
| Interruption Cost    | Momentary             | 30 minutes | 1 hour   | 4 hours  | 8 hours           |
| Medium and Large C&I |                       |            |          |          |                   |
| Morning              | \$8,133               | \$11,035   | \$14,488 | \$43,954 | \$70,190          |
| Afternoon            | \$11,756              | \$15,709   | \$20,360 | \$59,188 | \$93 <i>,</i> 890 |
| Evening              | \$9,276               | \$12,844   | \$17,162 | \$55,278 | \$89,145          |
| Small C&I            |                       |            |          |          |                   |
| Morning              | \$346                 | \$492      | \$673    | \$2,389  | \$4,348           |
| Afternoon            | \$439                 | \$610      | \$818    | \$2,696  | \$4,768           |
| Evening              | \$199                 | \$299      | \$431    | \$1,881  | \$3,734           |
| Residential          |                       |            |          |          |                   |
| Morning              | \$3.7                 | \$4.4      | \$5.2    | \$9.9    | \$13.6            |
| Afternoon            | \$2.7                 | \$3.3      | \$3.9    | \$7.8    | \$10.7            |
| Evening              | \$2.4                 | \$3.0      | \$3.7    | \$8.4    | \$11.9            |



## Interruption Cost Estimate (ICE) Calculator



ICE Calculator Home Model Builder Interruption Cost Model Reliability Improvement Model Quick Interruption Cost Model Quick Reliability Improvement Model

#### **Estimate Interruption Costs**

This module provides estimates of cost per interruption event, per average kW, per unserved kWh and the total cost of sustained electric power



#### http://www.icecalculator.com/

- ICE Calculator is an interactive tool for estimating customer interruption costs for a circuit, region, or utility service territory
- The ICE Calculator was developed using customer survey responses from 34 utilitysponsored Customer Interruption Cost (Value of Loss Load) studies



ENERGY TECHNOLOGIES AREA

### Utility "Value of Lost Load" surveys used to develop the ICE Calculator are old and not representative of the entire US

| 114124             |             | Num                  | Max.      |             |                     |
|--------------------|-------------|----------------------|-----------|-------------|---------------------|
| Utility<br>Company | Survey Year | Med and<br>Large C&I | Small C&I | Residential | Duration<br>(hours) |
| Southeast-1        | 1997        | 90                   |           |             | 1                   |
| Southeast-2        | 1993        | 3,926                | 1,559     | 3,107       | 4                   |
|                    | 1997        | 3,055                | 2,787     | 3,608       | 12                  |
| Southeast-3        | 1990        | 2,095                | 765       |             | 4                   |
|                    | 2011        | 7,941                | 2,480     | 3,969       | 8                   |
| Midwest-1          | 2002        | 3,171                |           |             | 8                   |
| Midwest-2          | 1996        | 1,956                | 206       |             | 4                   |
| West-1             | 2000        | 2,379                | 3,236     | 3,137       | 8                   |
| West-2             | 1989        | 2,025                | 5         |             | 4                   |
|                    | 1993        | 1,790                | 825       | 2,005       | 4                   |
|                    | 2005        | 3,052                | 3,223     | 4,257       | 8                   |
|                    | 2012        | 5,342                | 4,632     | 4,106       | 24                  |
| Southwest          | 2000        | 3,991                | 2,247     | 3,598       | 4                   |
| Northwest-1        | 1989        | 2,2                  | 210       | 2,126       | 8                   |
| Northwest-2        | 1999        | 7,0                  | 91        | 4,299       | 12                  |

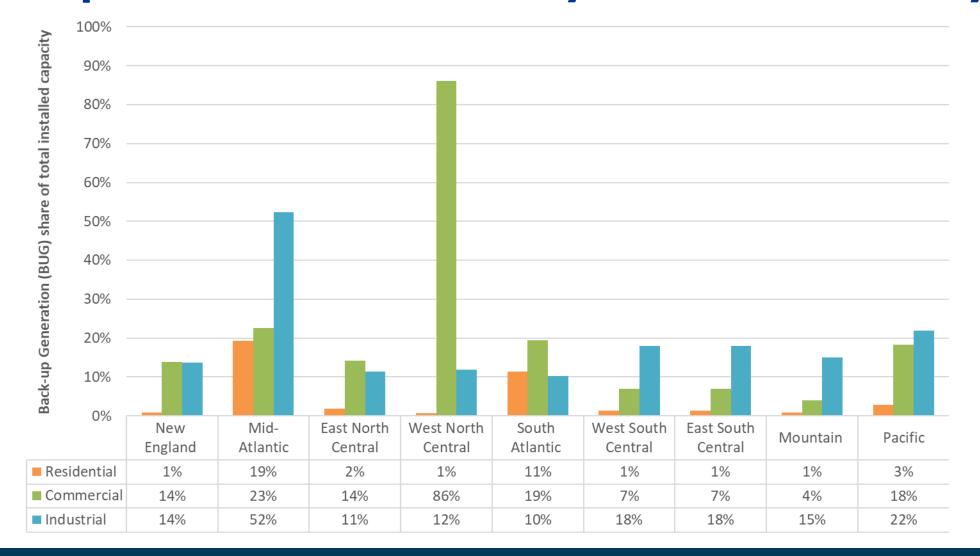


## **Interruption Cost Guidebook for Utilities**

- DOE-funded guidebook for utilities interested in conducting customer interruption cost surveys
- Details how to design and conduct survey(s) of power interruption costs for residential, commercial, and industrial customers
- Coordination with staff from multiple DOE offices, including Energy Information Administration
- https://emp.lbl.gov/publications/estimatingpower-system-interruption



#### Estimating Power System Interruption Costs


A Guidebook for Electric Utilities

Michael Sullivan Myles T. Collins Josh Schellenberg Nexant, Inc. Peter H. Larsen





## Customer adoption of back-up generation "reveals" an aspect of how much they "value" reliability






ENERGY TECHNOLOGIES AREA

Source: Frost and Sullivan. 2015. "Analysis of the US Power Quality Equipment Market." Berkeley California: Lawrence Berkeley National Laboratory. LBNL-1003990. August. Accessible at: http://eetd.lbl.gov/sites/all/files/lbnl-1003990.pdf

### **Challenges with Estimating Economic Metrics**

- Resilience/reliability metrics related to economic impacts of power interruptions are necessary to justify the cost-effectiveness of utility investments in reliability/resilience
- Customer costs from short-term, limited geographic-scale power disruptions have been estimated by utilities using survey-based elicitation techniques—but available survey-based information (e.g., ICE Calculator) is dated, possibly biased, and not well-suited for long duration/widespread interruptions
- Significant interest in estimating economic impacts from power interruptions that are of longer duration (days, weeks, or longer) and of a larger geographic scope (entire metropolitan areas or regions which may extend across multiple service territories)—but regional economic models have not be used in regulatory proceedings, are data intensive, can be difficult to interpret, and do not consider non-commercial economic issues
- Improved estimates of the direct and indirect economic impacts of power interruptions will help justify future investments in reliability/resilience



| Frontiers in the Economics   | E |
|------------------------------|---|
| of Widespread, Long-Duration | Р |
|                              | A |
| Power Interruptions          | K |

Peter H. Larsen Alan H. Sanstad Kristina H. LaCommare Joseph H. Eto

Proceedings from an Expert Workshop





### Some themes to keep in mind

"What's measured improves"

— <u>Peter F. Drucker</u>

"Delegating your accountabilities is abdication"

— <u>Michael E. Gerber</u>

"Not everything that can be counted counts, and not everything that counts can be counted"

- Albert Einstein

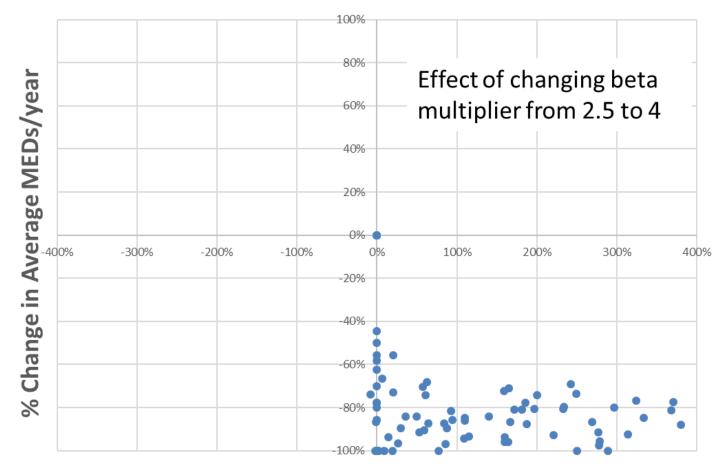


## Bibliography

- Eto, Joseph H., Kristina Hamachi LaCommare, Michael D. Sohn, and Heidemarie C. Caswell. "Evaluating the Performance of the IEEE Standard 1366 Method for Identifying Major Event Days View Document." IEEE Transactions on Power Systems 32, no. 2 (2016).
- LaCommare, Kristina Hamachi, Peter H. Larsen, and Joseph H. Eto. <u>Evaluating Proposed Investments in Power System Reliability and</u> <u>Resilience: Preliminary Results from Interviews with Public Utility Commission Staff</u>., 2017.<u>https://emp.lbl.gov/sites/default/files/lbnl-</u> <u>1006971.pdf</u>
- Larsen, Peter H.. "<u>A Method to Estimate the Costs and Benefits of Undergrounding Electricity Transmission and Distribution lines</u>." *Energy Economics* 60, no. November 2016 (2016): 47-61. <u>https://emp.lbl.gov/sites/default/files/lbnl-1006394\_pre-publication.pdf</u>
- Sullivan, Michael J., Josh A. Schellenberg, and Marshall Blundell. <u>Updated Value of Service Reliability Estimates for Electric Utility</u> <u>Customers in the United States</u>., 2015. <u>https://emp.lbl.gov/sites/default/files/lbnl-6941e.pdf</u>
- Sullivan, Michael J., Myles T. Collins, Josh A. Schellenberg, and Peter H. Larsen. <u>Estimating Power System Interruption Costs, A Guidebook</u> <u>for Electric Utilities</u>., 2019. <u>https://emp.lbl.gov/publications/estimating-power-system-interruption</u>
- Larsen, Peter H, Alan H Sanstad, Kristina Hamachi LaCommare, and Joseph H Eto. <u>"Frontiers in the Economics of Widespread, Long-Duration Power Interruptions: Proceedings from an Expert Workshop.</u>" Frontiers in the Economics of Widespread, Long-Duration Power Interruptions 2019. <u>https://emp.lbl.gov/publications/frontiers-economics-widespread-long</u>
- <u>https://emp.lbl.gov/research/electricity-reliability</u>



### **Contact Information**


Joe Eto jheto@lbl.gov (510) 486-7284

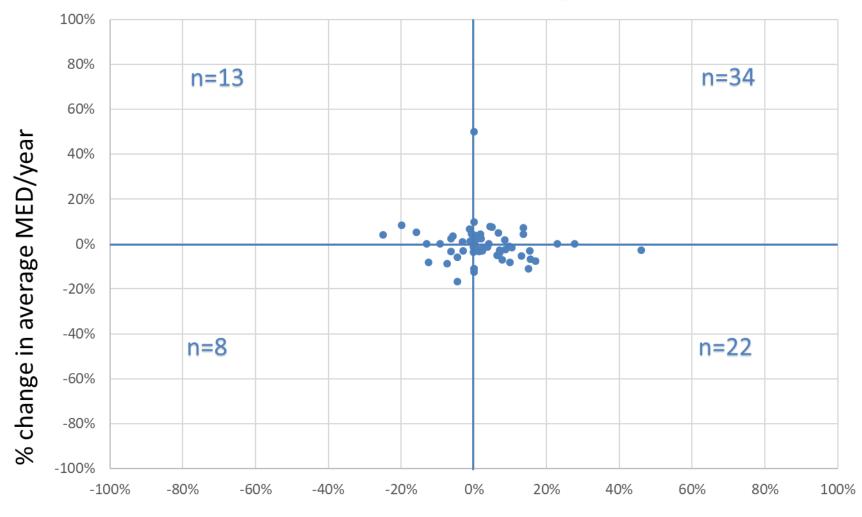
https://emp.lbl.gov/



ENERGY TECHNOLOGIES AREA

### Evaluating the performance of alternatives to the Standard 1366 method




% Change in Standard Deviation of SAIDI w/o Major Events

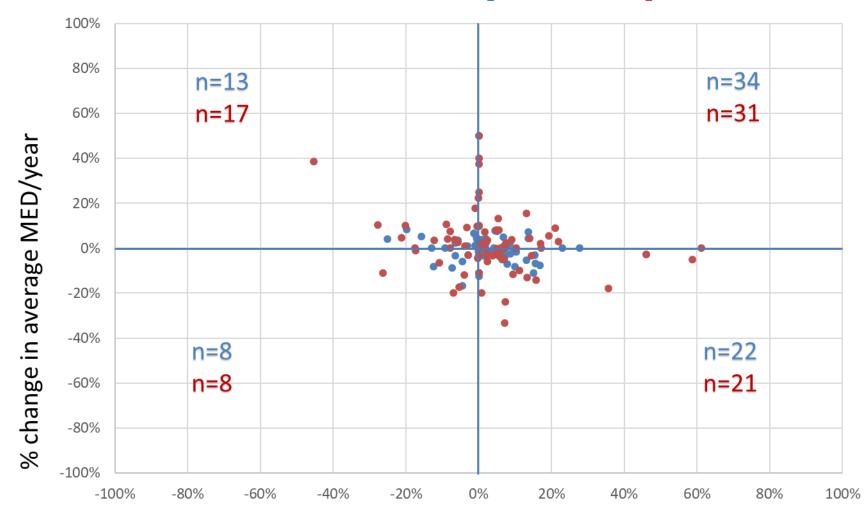


ENERGY TECHNOLOGIES AREA

Source: Eto, J., K. LaCommare, M. Sohn, and H. Caswell. "Evaluating the Performance of the IEEE Standard 1366 Method for Identifying Major Event Days View Document." *IEEE Transactions on Power Systems* 32, no. 2 (2016).

# The effect of using fewer historical years to calculate Tmed: 4 years




#### % change in standard deviation of SAIDI without major events

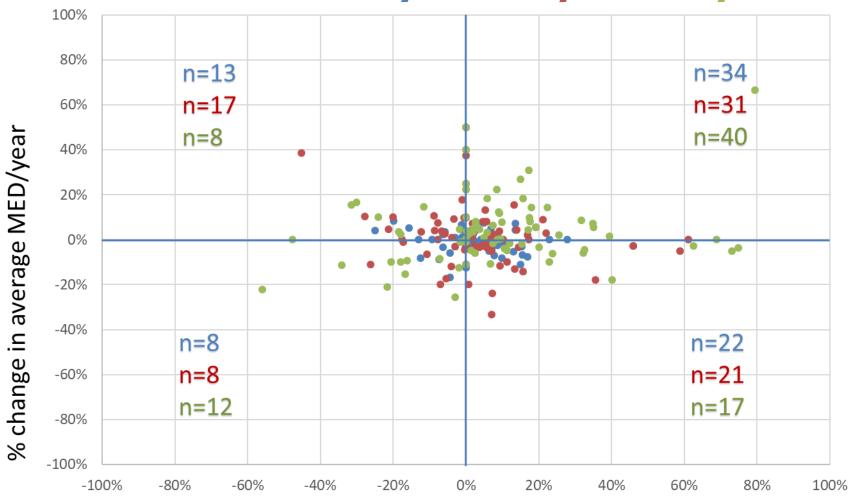


ENERGY TECHNOLOGIES AREA

Source: Eto, J., K. LaCommare, M. Sohn, and H. Caswell. "Evaluating the Performance of the IEEE Standard 1366 Method for Identifying Major Event Days View Document." *IEEE Transactions on Power Systems* 32, no. 2 (2016).

# The effect of using fewer historical years to calculate Tmed: 4 years; 3 years




#### % change in standard deviation of SAIDI without major events



ENERGY TECHNOLOGIES AREA

Source: Eto, J., K. LaCommare, M. Sohn, and H. Caswell. "Evaluating the Performance of the IEEE Standard 1366 Method for Identifying Major Event Days View Document." *IEEE Transactions on Power Systems* 32, no. 2 (2016).

# The effect of using fewer historical years to calculate Tmed : 4 years; 3 years; 2 years



% change in standard deviation of SAIDI without major events



ENERGY TECHNOLOGIES AREA

Source: Eto, J., K. LaCommare, M. Sohn, and H. Caswell. "Evaluating the Performance of the IEEE Standard 1366 Method for Identifying Major Event Days View Document." *IEEE Transactions on Power Systems* 32, no. 2 (2016).

## LUNCH BREAK: 12:00 PM – 1:15 PM



- Some food/restaurant suggestions
  - American
    - Buffalo Wild Wings
    - Chick-fil-A
    - Culver's
    - Jersey Mike's Subs
  - Asian
    - Panda Express
    - Ukai Hibatchi Grill & Sushi

- Italian
  - Cottage Inn Pizza
- Mexican
  - Chipotle
- Mediterranean
  - ChouPli Wood-Fired Kabob
- Other
  - Horrocks (soup, salad, & pizza bar)

## Meeting Agenda



| 9:00 a.m.  | Welcome & Introduction                                                                        | Patrick Hudson, Manager, Smart Grid Section               |
|------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 9:10 a.m.  | Hosting Capacity Analyses                                                                     | Yochi Zakai, IREC                                         |
| 9:40 a.m.  | Break                                                                                         |                                                           |
| 9:50 a.m.  | Tying it All Together - A Vision for Integrated Distribution Planning                         | Curt Volkmann, GridLab                                    |
| 10:20 a.m. | Break                                                                                         |                                                           |
| 10:30 p.m. | Reliability and Resilience Metrics, and Reliability Value-Based Planning                      | Joseph Eto, Lawrence Berkeley National Lab                |
| 12:00 p.m. | Lunch (local restaurants available)                                                           |                                                           |
| 1:15 p.m.  | Consumers Energy: Response to Pilot Proposal Comments                                         | Consumers Energy                                          |
| 1:30 p.m.  | DTE: Response to Pilot Proposal Comments                                                      | DTE                                                       |
| 1:45 p.m.  | I&M: Response to Pilot Proposal Comments                                                      | Indiana Michigan Power                                    |
| 2:00 p.m.  | Michigan Utility Reliability Reports                                                          | Joseph Eto, Lawrence Berkeley National Lab                |
| 2:45 p.m.  | Break                                                                                         |                                                           |
| 3:00 p.m.  | Stakeholder Discussion: Resiliency in Michigan –<br>What Matters and How Should it be Valued? | Facilitator: Joseph Eto<br>Lawrence Berkeley National Lab |
| 3:50 p.m.  | Closing Statements & Docket Responses                                                         | MPSC Staff                                                |
| 4:00 p.m.  | Adjourn                                                                                       |                                                           |

## Consumers Energy Response to Pilot Proposal Comments

Don Lynd September 18, 2019



## Hosting Capacity Analysis/Solar Zone comments

- Comments called for full HCAs in next filed plan with maps, robust public data, etc.
  - Full HCAs require significant human and computing resources
  - DER penetration is at an early stage, and resources are better prioritized on core reliability issues
  - Interconnection study process is already facilitating integration of proposed solar DERs, which give developers good information
  - If DER penetration increases in future years, the Solar Zone pilot will help put necessary tools and capabilities in place

## Hosting Capacity Analysis/Solar Zone comments

- Suggested CBA to help illustrate expected value of Solar Zone
  - Open to further discussion of details of this; CBAs will be discussed October  $16^{th}$
- Clarifying questions
  - Purpose of mini interconnection study
  - Areas appropriate for solar generation
  - Purpose of collector network
  - Use of utility-owned resources in testing
  - Purpose of socializing interconnection costs

### Non-Wires Alternative Comments

- Recommendation for "targeted solicitations"
  - Existing (DR/EE) and new (i.e. behind-the-meter batteries) programs used in a targeted manner on specific customers similar to targeted procurement
  - Value exists in leveraging existing programs and gaining experience with them
  - Use of utility programs broadly in line with industry
- Recommendation for more discussion of metrics and suitability criteria
  - NWA pilot suitability criteria get refined through lessons learned
  - Metrics such as targeted load reduction are refined through pilot lessons learned as well
- Utilities remain in the best position to interface directly with customers

### General Pilot Comments

- Proposed MPSC cost limits on pilots
  - Pilots are very diverse, no one-size-fits-all limit is needed; rate cases and other proceedings must approve pilot costs
- Avoiding "perpetual pilots"
  - Correctly designed pilots can be scaled up if successful; if not successful, further testing may be required
  - Past pilots in EE and DR have been scaled up into full programs
- Role of NWA and HCA in planning process
  - Planning explained in 2018 EDIIP; NWA pilots test if solutions can be considered by planners
  - Role of HCA in planning to be determined as capabilities develop



#### **Five-Year Distribution Plan**

Perspective on Select Stakeholder Comments on Non-Wire Alternative and Hosting Capacity Pilots

September 18, 2019

#### Perspective on select stakeholder comments

| <b>Hosting Capacity</b> |
|-------------------------|
| Analysis                |

- DTE is continuing its work on a Hosting Capacity Analysis pilot and is investigating the cost and potential timing
- The value of full Hosting Capacity Analysis for Michigan has not been proven in light of its likely high cost and complexity

Non-Wire Alternatives

- The ongoing NWA pilots are necessary to determine the cost effectiveness and feasibility of NWAs to address specific situations
- In the long run, DTE envisions that NWAs may become one of the tools available to distribution planning engineers to address system issues should they prove effective from a timing and cost perspective

#### Perspective on select stakeholder comments (cont.)

Service Procurement

- DTE supports partnering with third-party providers when it is in the best interest of its customers, with due consideration given to the complexity that such partnerships can introduce into planning processes
- Opportunities to develop such partnerships will continue to be evaluated on a case by case basis

Benefit Cost Analysis

- DTE utilizes its Global Prioritization Model, which is similar in nature to the riskinformed decision support system, to prioritize investments in a way that best supports customer and system needs
- DTE is prepared to work with potential BCA frameworks that emerge from the ongoing stakeholder collaborative



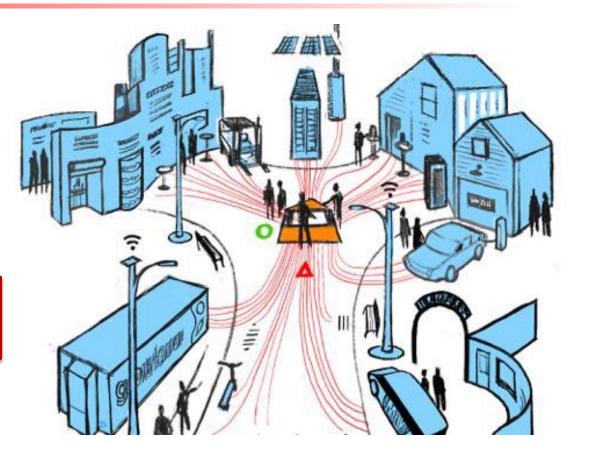
An AEP Company

BOUNDLESS ENERGY

## **I&M Distribution Pilot Non-Wires Alternative**

Michigan Public Service Commission Five-Year Distribution Planning September 18, 2019




## Planning for the grid of the future

An AEP Company

**BOUNDLESS ENERGY**<sup>\*\*\*</sup>

- Hosting Capacity
- Load and Distributed Energy Resources (DER) Forecasting
- Non-Wires Alternatives (NWA)
- Cost Benefit Analysis



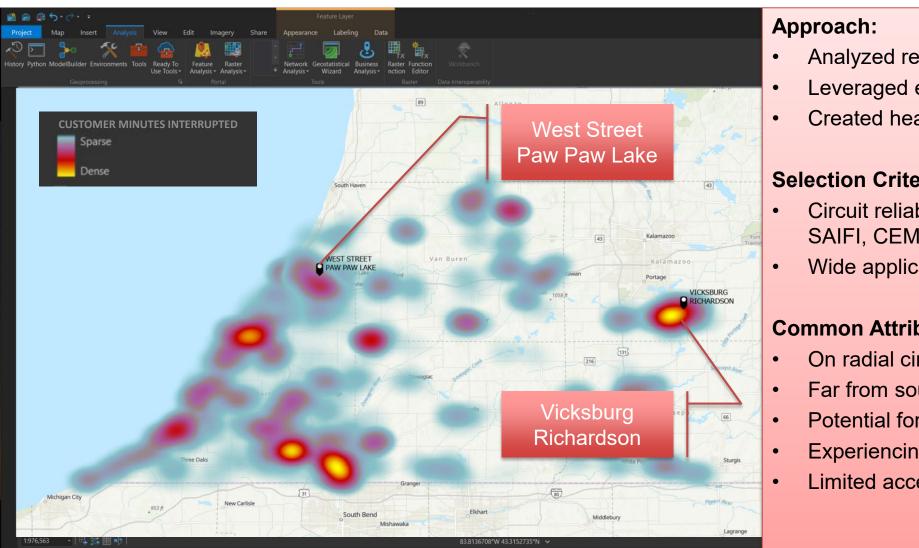




# Objectives of NWA pilots

BOUNDLESS ENERGY"

- Solve real world problems: improve reliability (& potentially enhance resiliency)
- Test new approaches
  - Use newer technologies (DER/Microgrid)
  - Include DSM / EE in optimizing NWA component sizing
  - Influence customer behavior
- Leverage learnings and insights to assess costs and benefits of NWA opportunities






## **Data analytics identified** candidate locations

An AEP Company

#### BOUNDLESS ENERGY<sup>™</sup>



- Analyzed recent years of historical outage data
- Leveraged experience of local personnel
- Created heat maps defining outlier outage areas

#### **Selection Criteria:**

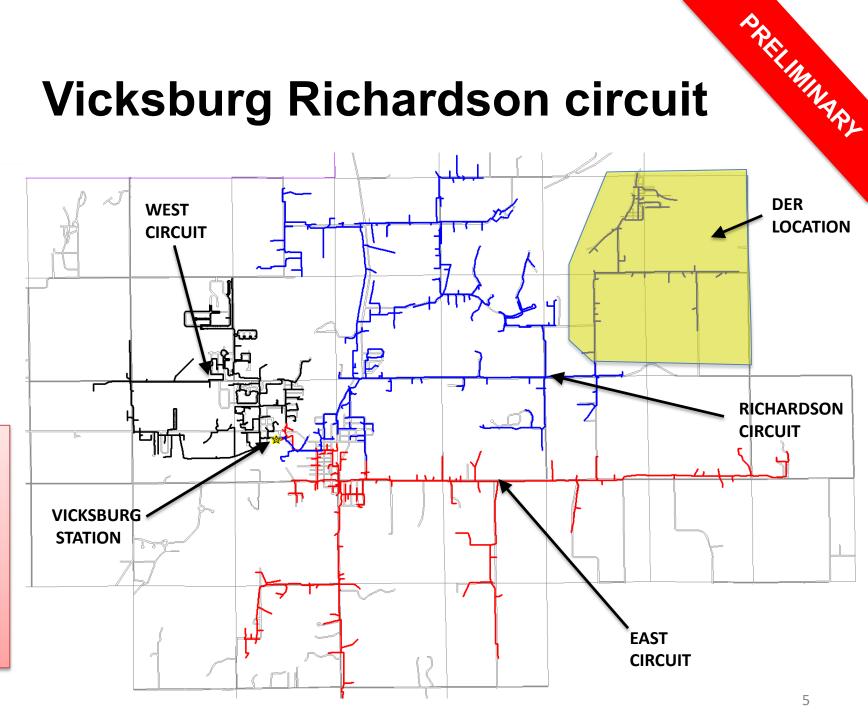
- Circuit reliability performance (SAIDI, CAIDI, SAIFI, CEMI, CMI, etc.)
- Wide applicability of learnings

#### **Common Attributes of Candidate Locations:**

- On radial circuits with high customer density
- Far from source/ substation at fringe of territory
- Potential for controllable loads
- Experiencing reliability issues
- Limited access to alternate source



#### **BOUNDLESS ENERGY**<sup>\*\*</sup>


### Vicksburg Station

- **Richardson Circuit**
- Serves 383 Premises **Downstream of Recloser** KA0571000016 (Mostly Residential, 1 Elementary School, 1 Church)

### **Customer perspective:**

This solution would have eliminated 4 outages in the last 3 years, representing a total of 20.5 hours

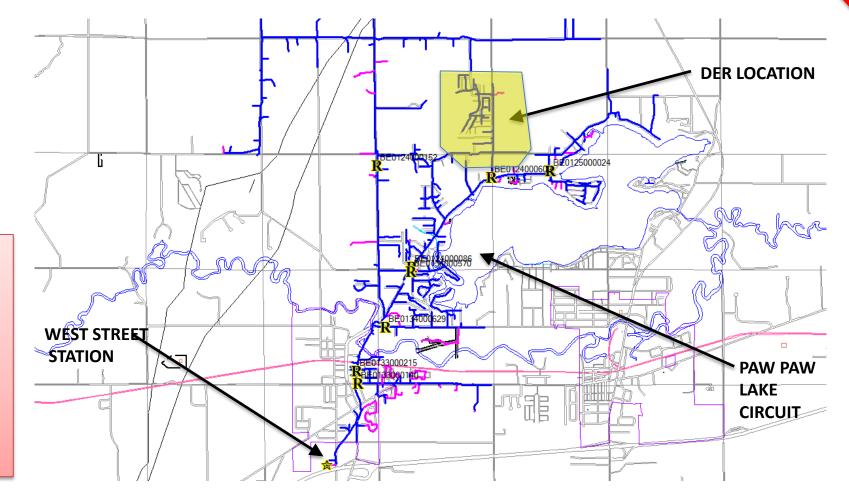
# Vicksburg Richardson circuit





# West Street Paw Paw Lake circuit

An **AEP** Company


#### BOUNDLESS ENERGY"

West Street Station

- Paw Paw Lake Circuit
- Serves 64 Premises
   Downstream of Fuse
   BE0114000016 (Mostly
   Residential)

### **Customer perspective:**

This solution would have eliminated 12 outages in the last 3 years, representing a total of 50 hours





Summary of proposed pilot(s)

- Pilot will serve an islanded segment of the grid during outage conditions
- Pilot will consist of a distributed generation source and battery energy storage
- The load served by the DERs will be islanded from the grid by means of Automated Circuit Reconfiguration utilizing smart reclosers
- Demand Side Management (DSM) and Energy Efficiency (EE) will be employed to optimize component sizing
- Implementation of AMI will enable greater
   operational benefits and customer engagement





An AEP Company

BOUNDLESS ENERGY"

# **Learning objectives**

Test effectiveness of microgrid / DER technologies in improving reliability and other grid functions (I.E. resiliency, peak shaving, power quality, etc.)

Validate assessments of data analytics & technical knowledge in optimizing NWA deployment.

Measure short term and long term performance of the various components of the microgrid. Leverage learning to optimize system performance

Assess ability to engage customers and improve customer experience with DSM solutions

Provide information / lessons to the MPSC on impact of pilot(s)

## BOUNDLESS ENERGY<sup>™</sup>



# Understanding costs and benefits of new solutions

BOUNDLESS ENERGY"

An AEP Company

- The data and experience needed to quantify grid and customer benefits (and costs) are limited
- The proposed pilot(s) will provide baseline data to inform future opportunity assessment

## **Potential KPIs**

- Improved reliability: SAIDI, etc.
- Customer outage reduction %
- DSM customer participation %
- Capital and operating expenses: actual/estimated
- System performance: actual/estimated

# BOUNDLESS ENERGY



An AEP Company

BOUNDLESS ENERGY"

## **Next steps**

• Solicit and incorporate feedback on pilots

• Submit fully developed proposal

## BOUNDLESS ENERGY



BOUNDLESS ENERGY"

An AEP Company

**Questions?** 

### BOUNDLESS ENERGY"

# **Michigan Utility Reliability Reports**

### Joseph H. Eto

Lawrence Berkeley National Laboratory

**Five-Year Distribution Planning Stakeholder Meeting** 

Lansing, MI, September 18, 2019



ENERGY TECHNOLOGIES AREA

## **Overview of this talk**

Michigan utilities use reliability metrics to support a variety of reliability-related activities, including:

Establishing and assessing utility performance relative to targets

Establishing a basis for customer payments when utility performance is below a threshold

Understanding reliability delivered to specific groups of customers

Benchmarking utility performance

Providing a basis for identifying, prioritizing, and directing utility actions to improve reliability

Measuring utility performance resulting from smart grid investments

This talk illustrates how Michigan utilities have supported these activities through the use of reliability metrics by presenting examples drawn from various reports they file with the Michigan PSC

### This talk is not an assessment of the reliability performance of Michigan utilities

Review of these current practice establishes a basis for discussing of how they might or could evolve to support focus on utility efforts to address the resilience of the electric distribution system



# Chronology of reporting on reliability metrics by Michigan electric utilities

- **2002** Regulated utilities and cooperatives begin filing annual service quality and reliability reports
- 2004 MPSC "Service Quality and Reliability Standards for Electric Distribution Systems" prescribes reliability metrics, performance targets, and customer payments based on performance
- 2009 Annual reporting expanded for Consumers and DTE: IEEE Standard 1366 adopted, power quality (PQ) events affecting primary service customers
- **2013** Governor Snyder articulated reliability goals: SAIFI (1.0) and SAIDI (150 min), both excluding major events
- **2014** Following a major storm in Dec 2013, annual reporting expanded for all utilities; Consumers and DTE directed to report additional reliability information
- 2018 Consumers, DTE, and I&M began filing 5-year distribution investment and maintenance plans and annual reports on smart grid metrics



### Michigan utility reporting following U-12770

|                                |                              | New Service                                                                  | Completet                                                                              | Augura Call                              |                             |                                                              | Outage Restoration                                            | n                                                             | Same Circuit                                                                    |                                                                                  |
|--------------------------------|------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|--------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Type of Measurement            | Meter Reading                | Installation                                                                 | Complaint<br>Response                                                                  | Average Call<br>Answer Time              | Call Blockage               | Normal<br>Conditions                                         | Catastrophic<br>Conditions                                    | All Conditions                                                | Repetitive<br>Interruption                                                      | Wire-Down Reli                                                                   |
| Performance<br>Measurement     | Percentage of<br>meters read | Percentage of<br>new services<br>installed in 15<br>business days or<br>less | Percentage of<br>formal<br>complaints<br>responded to in 3<br>business days or<br>less | Average call<br>answer time<br>(Seconds) | Percentage of calls blocked | Percentage of<br>customers<br>restored in 8<br>hours or less | Percentage of<br>customers<br>restored in 60<br>hours or less | Percentage of<br>customers<br>restored in 36<br>hours or less | Percentage of<br>circuits<br>experiencing 5 or<br>more outages per<br>12 months | Percentage of<br>response to wire<br>down relief<br>requests in 6 hou<br>or less |
| January                        | 96.1%                        |                                                                              | 100%                                                                                   | 40                                       | 3.35%                       | 100%                                                         | 100%                                                          | 100%                                                          |                                                                                 | 100%                                                                             |
| February                       | 96.0%                        | ]                                                                            | 100%                                                                                   | 39                                       | 3.52%                       | 100%                                                         | 100%                                                          | 100%                                                          | 0.3%                                                                            | 100%                                                                             |
| March                          | 95.3%                        | ]                                                                            | 100%                                                                                   | 35                                       | 3.20%                       | 100%                                                         | 100%                                                          | 100%                                                          |                                                                                 | 100%                                                                             |
| April                          | 95.4%                        | ]                                                                            | 100%                                                                                   | 34                                       | 3.01%                       | 100%                                                         | 100%                                                          | 100%                                                          |                                                                                 | 100%                                                                             |
| May                            | 98.0%                        | 1                                                                            | 100%                                                                                   | 39                                       | 3.86%                       | 95.9%                                                        | 100%                                                          | 100%                                                          |                                                                                 | 100%                                                                             |
| June                           | 98.2%                        | 00.00                                                                        | 100%                                                                                   | 38                                       | 3.87%                       | 99.2%                                                        | 100%                                                          | 100%                                                          |                                                                                 | 100%                                                                             |
| July                           | 98.2%                        | 99.6%                                                                        | 100%                                                                                   | 36                                       | 3.71%                       | 99.4%                                                        | 100%                                                          | 100%                                                          |                                                                                 | 100%                                                                             |
| August                         | 98.6%                        | 1                                                                            | 100%                                                                                   | 35                                       | 3.55%                       | 96.3%                                                        | 100%                                                          | - 100%                                                        |                                                                                 | 100%                                                                             |
| September                      | 98.5%                        | 1                                                                            | 100%                                                                                   | 35                                       | 3.62%                       | 92.9%                                                        | 100%                                                          | 100%                                                          |                                                                                 | 100%                                                                             |
| October                        | 98.4%                        | 1                                                                            | 100%                                                                                   | 34                                       | 3.59%                       | 100%                                                         | 100%                                                          | 100%                                                          |                                                                                 | 100%                                                                             |
| November                       | 97.5%                        | 1                                                                            | 100%                                                                                   | 34                                       | 3.55%                       | 94.8%                                                        | 100%                                                          | 100%                                                          |                                                                                 | 100%                                                                             |
| December                       | 97.5%                        | 1                                                                            | 100%                                                                                   | 34                                       | 3.53%                       | 100%                                                         | 100%                                                          | 100%                                                          |                                                                                 | 100%                                                                             |
| YTD Average                    | 97.3%                        | 99.6%                                                                        | 100%                                                                                   | 34                                       | 3.53%                       | 97.7%                                                        | 100%                                                          | 100%                                                          | 0.3%                                                                            | 100%                                                                             |
| MPSC Proposed<br>Annual Target | 85% or more                  | 90% or more                                                                  | 90% or more                                                                            | 90 seconds or<br>less                    | 5% or less                  | 90% or more                                                  | 90% or more                                                   | 90% or more                                                   | 5% or less                                                                      | 90% or more                                                                      |
| Annual Target Met              | Yes                          | Yes                                                                          | Yes                                                                                    | Yes                                      | Yes                         | Yes                                                          | Yes                                                           | Yes                                                           | Yeş                                                                             | Yes                                                                              |
| Comments (see below)           | 1                            | 2                                                                            |                                                                                        | 3                                        | 4                           |                                                              |                                                               |                                                               | 5                                                                               | 6                                                                                |
| stomer Credits                 |                              |                                                                              |                                                                                        |                                          |                             |                                                              |                                                               |                                                               | Number                                                                          | Total Dollars                                                                    |
| petitive Outages - more t      | han 7 outages in th          | ne last year                                                                 |                                                                                        |                                          |                             |                                                              |                                                               |                                                               | 8                                                                               | \$200.00                                                                         |
| utage Restoration - greate     |                              |                                                                              | ons                                                                                    |                                          |                             |                                                              |                                                               |                                                               | 0                                                                               | \$0.00                                                                           |
| tastrophic Conditions          |                              |                                                                              |                                                                                        |                                          |                             |                                                              |                                                               |                                                               | Date                                                                            | % Cust. Outage                                                                   |
| ood - State of Emergency I     | Declared                     |                                                                              |                                                                                        |                                          |                             |                                                              |                                                               |                                                               | 6/17/2018                                                                       | 2%                                                                               |



Source: Electric Performance Measurements Report of Upper Peninsula Power Co., March 29, 2019

### Catastrophic storms are generally captured as major event days, but not all major event days involve catastrophic storms

| Year | # MEDs During<br>DTE<br>Catastrophic<br>Storms | # MEDs During DTE<br>Non-Catastrophic<br>Storms And<br>Normal Conditions |  |  |  |  |  |
|------|------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|
| 2009 | 3                                              | 3                                                                        |  |  |  |  |  |
| 2010 | 3                                              | 9                                                                        |  |  |  |  |  |
| 2011 | 7                                              | 10                                                                       |  |  |  |  |  |
| 2012 | 8                                              | 2                                                                        |  |  |  |  |  |
| 2013 | 9                                              | 1                                                                        |  |  |  |  |  |
| 2014 | 9                                              | 0                                                                        |  |  |  |  |  |
| 2015 | 1                                              | 2                                                                        |  |  |  |  |  |
| 2016 | 2                                              | 0                                                                        |  |  |  |  |  |
| 2017 | 6                                              | 3                                                                        |  |  |  |  |  |
| 2018 | 4                                              | 5                                                                        |  |  |  |  |  |



Source: DTE Electric Co. 2018 Report to MPSC Regarding Electric Distribution System Power Quality, May 6, 2019

## Causes of interruption must sometime be interpreted w/r/t an initiating cause (e.g., weather)

|                     | Percent of Customers Interrupted |           |        |        |           |  |  |  |  |  |  |  |  |
|---------------------|----------------------------------|-----------|--------|--------|-----------|--|--|--|--|--|--|--|--|
| Conditions          | Trees                            | Equipment | lce    | Wind   | All Other |  |  |  |  |  |  |  |  |
| Catastrophic Storms | 54.1 %                           | 5.5 %     | 16.7 % | 10.4 % | 13.3 %    |  |  |  |  |  |  |  |  |
| Small Storms        | 61.1 %                           | 18.9 %    | 1.3 %  | 8.3 %  | 10.3 %    |  |  |  |  |  |  |  |  |
| Non-Storm           | 47.0 %                           | 35.5 %    | 0.3 %  | 0.6 %  | 16.6 %    |  |  |  |  |  |  |  |  |
| All Conditions      | 51.1 %                           | 26.3 %    | 3.8 %  | 4.1 %  | 14.7 %    |  |  |  |  |  |  |  |  |



## **CEMIn and CELIDt measure impacts of power** interruptions on individual customers

| Index  | Full Name                                                                                              | Calculation                                                                 |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| CEMIn  | <b>C</b> ustomers <b>E</b> xperiencing <b>M</b> ultiple<br>Interruptions of <b>n</b> or More           | Count of the number of Customers with n or more interruptions               |  |  |  |  |  |
| CELIDt | <b>C</b> ustomers <b>E</b> xperiencing Long<br>Interruption <b>D</b> uration of <b>t</b> or More Hours | Count of the number of Customers with interruptions lasting t or more hours |  |  |  |  |  |



Source: DTE Electric Company's Distribution Operations Five-Year (2018-2022) Investment and Maintenance Plan Final Report, January 31, 2018

## **CEMIn** measures the number of repeated interruptions experienced by individual customers

CEMI by Year % of Customers experiencing X interruptions Year 0 2 3 5 8 9 10 +4 6 2013 30% 30% 19% 11% 6% 2% 1% 1% 0% 0% 0% 2014 38% 32% 18% 7% 1% 0% 0% 0% 0% 3% 0% 2015 40% 30% 15% 8% 4% 2% 1% 0% 0% 0% 0% 2016 40% 30% 15% 2% 1% 0% 7% 4% 0% 0% 0% 2017 37% 29% 17% 8% 4% 2% 1% 1% 0% 0% 0%

### **TABLE 6 – CUSTOMERS EXPERIENCING MULTIPLE INTERRUPTIONS BY YEAR**



# **CELIDt** measures the amount of time customers are without power during an interruption

### TABLE 7 – CUSTOMERS EXPERIENCING LONG INTERRUPTION DURATION

|      | CELID by Year                                                   |        |        |        |        |        |        |         |  |  |  |  |  |
|------|-----------------------------------------------------------------|--------|--------|--------|--------|--------|--------|---------|--|--|--|--|--|
|      | % of Customers experiencing interruptions less than or equal to |        |        |        |        |        |        |         |  |  |  |  |  |
| Year | 8 Hrs                                                           | 24 Hrs | 36 Hrs | 48 Hrs | 60 Hrs | 72 Hrs | 96 Hrs | 120 Hrs |  |  |  |  |  |
| 2013 | 71%                                                             | 86%    | 90%    | 93%    | 95%    | 96%    | 98%    | 99%     |  |  |  |  |  |
| 2014 | 84%                                                             | 95%    | 97%    | 99%    | 100%   | 100%   | 100%   | 100%    |  |  |  |  |  |
| 2015 | 85%                                                             | 94%    | 96%    | 98%    | 99%    | 99%    | 100%   | 100%    |  |  |  |  |  |
| 2016 | 88%                                                             | 99%    | 100%   | 100%   | 100%   | 100%   | 100%   | 100%    |  |  |  |  |  |
| 2017 | 79%                                                             | 90%    | 96%    | 97%    | 99%    | 99%    | 100%   | 100%    |  |  |  |  |  |



Source: Consumers Energy Company's Electric Distribution Infrastructure Investment Plan, April 13, 2018

# **CELIDt** measures the amount of time customers are without power during an interruption

| <b>CELID - Single Interruption Duration</b>    | # Customers |
|------------------------------------------------|-------------|
| CELID 8 hours - MPSC Normal Conditions         | 220,502     |
| CELID 16 hours - MPSC Normal Conditions        | 85,329      |
| CELID 60 hours - MPSC Catastrophic Conditions  | 10,060      |
| CELID 120 hours - MPSC Catastrophic Conditions | 98          |



# Identification of worst performing circuits provides a more granular view of the reliability experienced by customers

|   | Circuit Name<br>and Number | Substation | Location       | Circuit<br>Miles | Customers<br>Served | SAIDI<br>All Wthr<br>Sys Basis | SAIDI<br>ex MEDs<br>Sys Basis | SAIDI<br>All Wthr<br>Cct Basis | SAIDI<br>ex MEDs<br>Cct Basis | Last Tree<br>Trimming |
|---|----------------------------|------------|----------------|------------------|---------------------|--------------------------------|-------------------------------|--------------------------------|-------------------------------|-----------------------|
| 1 | WEBST1948                  | Webster    | Royal Oak      | 10.4             | 1,586               | 2.88                           | 0.0115                        | 3,977                          | 16                            | 2013                  |
| 2 | WAYNE9421                  | Wayne      | Canton Twp     | 32.8             | 2,475               | 2.27                           | 0.0263                        | 2,011                          | 23                            | 2015                  |
| 3 | APPOL1270                  | Appoline   | Detroit        | 8.3              | 1,491               | 2.25                           | 0.0361                        | 3,306                          | 53                            | 2018                  |
| 4 | CASVL8805                  | Caseville  | Caseville Twp  | 53.2             | 1,986               | 2.06                           | 0.2150                        | 2,276                          | 237                           | 2014                  |
| 5 | NEFF 0314                  | Neff       | Sand Beach Twp | 62.7             | 1,075               | 2.03                           | 1.0761                        | 4,137                          | 2,194                         | 2016                  |

#### 2B. Reliability Performance - 5 Worst Performing SAIDI Circuits - Circuit Basis

|   | Circuit Name<br>and Number | Substation | Location | Circuit<br>Miles | Customers<br>Served | SAIDI<br>All Wthr<br>Sys Basis | SAIDI<br>ex MEDs<br>Sys Basis | SAIDI<br>All Wthr<br>Cct Basis | SAIDI<br>ex MEDs<br>Cct Basis | Last Tree<br>Trimming |
|---|----------------------------|------------|----------|------------------|---------------------|--------------------------------|-------------------------------|--------------------------------|-------------------------------|-----------------------|
| 1 | TAYLR9483                  | Taylor     | Taylor   | 15.1             | 613                 | 1.62                           | 0.0626                        | 5,775                          | 224                           | 2012                  |
| 2 | TIRMN1368                  | Tireman    | Detroit  | 6.5              | 946                 | 2.00                           | 0.4621                        | 4,637                          | 1,070                         | 2012                  |
| 3 | CRTIS1330                  | Curtis     | Detroit  | 3.4              | 510                 | 1.04                           | 0.0684                        | 4,453                          | 294                           | 2011                  |
| 4 | BERKY2681                  | Berkley    | Berkley  | 5.4              | 833                 | 1.65                           | 0.0229                        | 4,332                          | 60                            | 2009                  |
| 5 | APPOL1383                  | Appoline   | Detroit  | 6.3              | 936                 | 1.82                           | 0.0105                        | 4,268                          | 24                            | 2018                  |

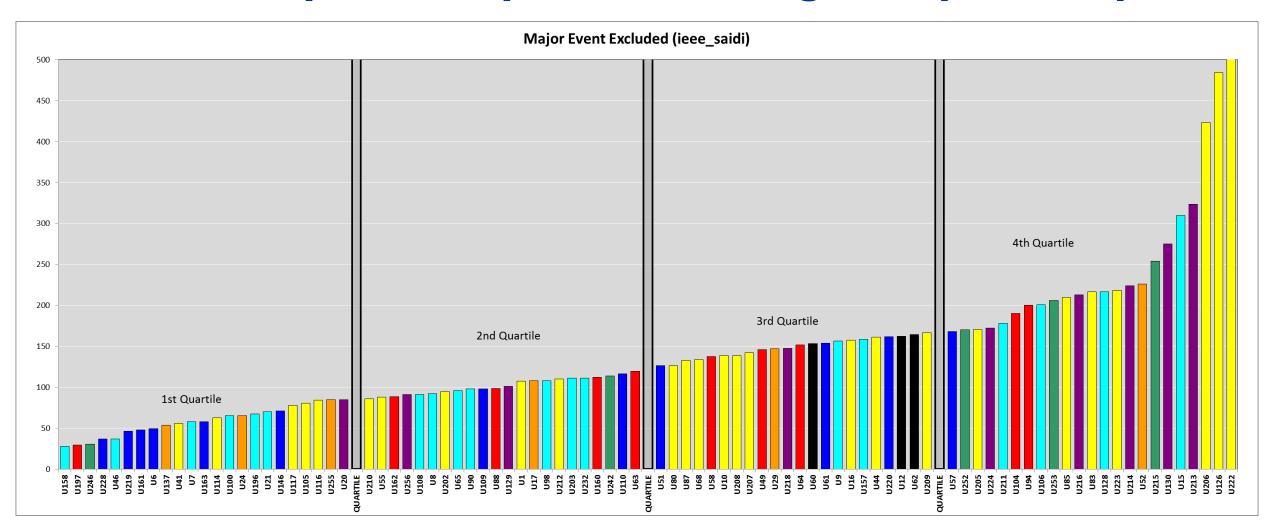


Source: DTE Electric Co. 2018 Report to MPSC Regarding Electric Distribution System Power Quality, May 6, 2019

# Outage management systems (OMS) are designed to record information on every power interruption

|       |        |      |              |     |              |                |             | Customer    |           |
|-------|--------|------|--------------|-----|--------------|----------------|-------------|-------------|-----------|
|       |        |      | Circuit Name |     |              | Interruption   | Customers   | Minutes     |           |
| Ref # | Metric | Rank | and Number   | MED | Storm        | Date/Time      | Interrupted | Interrupted | Cause     |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 01/08/18 19:03 | 1           | 18          | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   | Small        | 01/12/18 16:00 | 1           | 1,145       | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 01/27/18 10:56 | 1           | 8           | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 02/16/18 09:21 | 1           | 87          | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 02/24/18 08:44 | 1           | 392         | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | MED | Large        | 03/01/18 21:19 | 1           | 2,493       | Other     |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 03/29/18 21:02 | 1           | 39          | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | MED | Catastrophic | 04/15/18 09:55 | 1,555       | 4,733,483   | lce       |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 04/30/18 14:21 | 1           | 57          | Other     |
| 2A-1  | SAIDI  | 1    | WEBST1948    | MED | Catastrophic | 05/04/18 13:47 | 1,570       | 1,546,994   | Other     |
| 2A-1  | SAIDI  | 1    | WEBST1948    | MED | Catastrophic | 05/04/18 15:29 | 1           | 16          | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   | Small        | 05/10/18 07:40 | 18          | 4,807       | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 05/16/18 17:40 | 1           | 131         | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   | Large        | 05/29/18 15:17 | 63          | 10,821      | Loading   |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   | Large        | 05/29/18 16:21 | 1           | 33          | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 06/02/18 10:29 | 1           | 160         | Other     |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 06/16/18 11:18 | 13          | 1,990       | Unknown   |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   | Large        | 06/26/18 22:33 | 3           | 1,306       | Tree      |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 07/14/18 11:10 | 1           | 57          | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   | Small        | 07/16/18 03:11 | 1           | 555         | Equipment |
| 2A-1  | SAIDI  | 1    | WEBST1948    | -   |              | 07/31/18 18:04 | 1           | 8           | Equipment |




Source: DTE Electric Co. 2018 Report to MPSC Regarding Electric Distribution System Power Quality, May 6, 2019

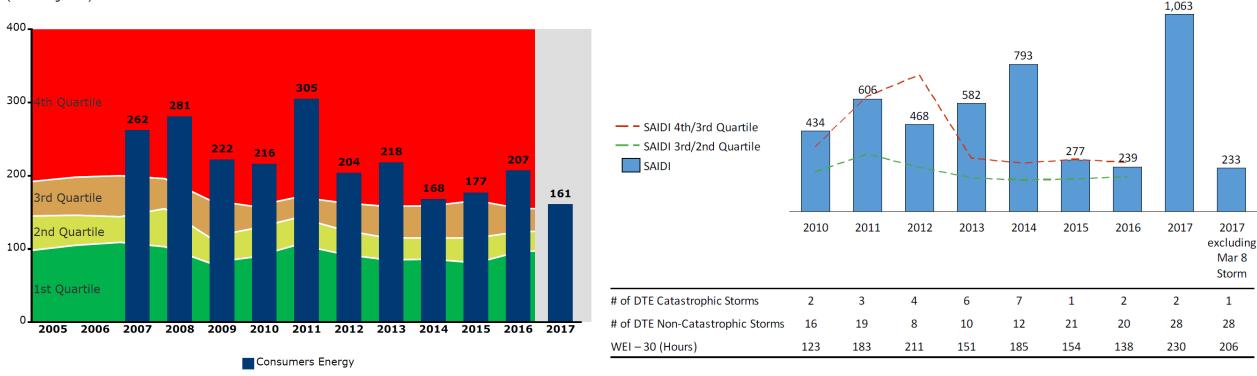
## Power quality events and primary service customers

|       | Inquiries |                                 |           | Power Quality Event <sup>4</sup> Source of PQ Event |               |              |             |               |                        | Outcomes                      |                                    |                       |                               |                             |                                                                                           |
|-------|-----------|---------------------------------|-----------|-----------------------------------------------------|---------------|--------------|-------------|---------------|------------------------|-------------------------------|------------------------------------|-----------------------|-------------------------------|-----------------------------|-------------------------------------------------------------------------------------------|
| Event | Date      | Locations Impacted <sup>5</sup> | Transient | Voltage Sag                                         | Voltage Swell | Interruption | Overvoltage | Under voltage | Other (inc. Harmonics) | Consumers Energy <sup>6</sup> | Transmission Provider <sup>7</sup> | Customer <sup>8</sup> | Customer Contact <sup>9</sup> | Modifications <sup>10</sup> | Description                                                                               |
| 03    | 05/04     | 1                               |           | X                                                   |               |              |             |               |                        | X                             |                                    |                       | X                             | X                           | 46 kV line fault due to<br>failed insulator;<br>replaced failed<br>equipment.             |
| 04    | 05/12     | 1                               |           | x                                                   |               |              |             |               |                        |                               | x                                  |                       | X                             |                             | 138 kV line fault due to<br>a lightning strike;<br>cleared fault and<br>restored system.  |
| 05    | 06/17     | 1                               |           | x                                                   |               |              |             |               |                        | х                             |                                    |                       | х                             | х                           | 46kV line fault due to<br>failed lightning<br>arrestors; replaced<br>failed equipment.    |
| 06    | 07/03     | 1                               |           |                                                     |               |              |             |               | X                      |                               |                                    | X                     | х                             |                             | Customer reported<br>voltage imbalance, but<br>PQM showed voltage<br>to be within limits. |



# IEEE Distribution Reliability Working Group conducts a voluntary reliability benchmarking survey annually



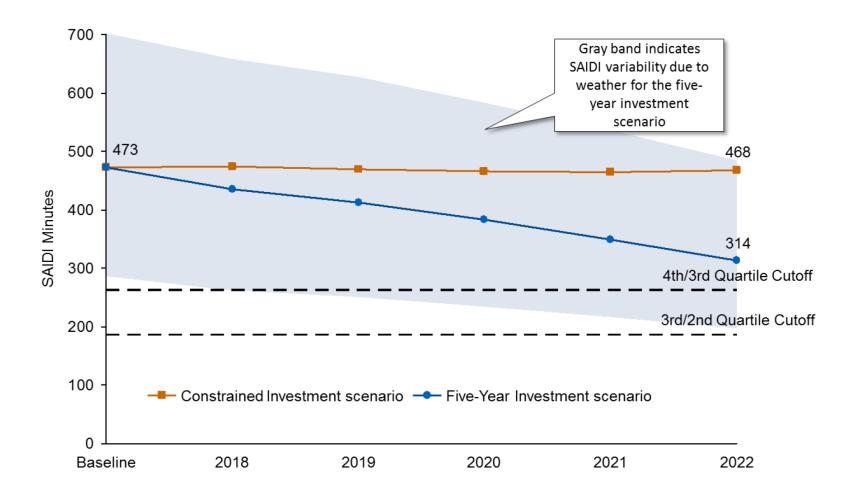



ENERGY TECHNOLOGIES AREA

Source: IEEE Distribution Reliability Working Group "IEEE Benchmark Year 2019, Results for 2018 Data" 2019 IEEE PES General Meeting, Atlanta, GA

### Michigan utilities are using the IEEE DRWG benchmark survey to assess their reliability performance

SAIDI - Minutes per Customer (Excluding MED)






ENERGY TECHNOLOGIES AREA

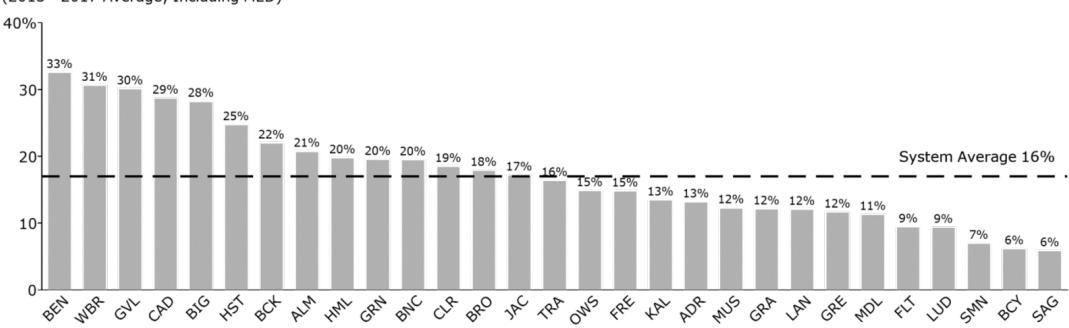
Sources: Consumers Energy Company's Electric Distribution Infrastructure Investment Plan, April 13, 2018, and DTE Electric Company's Distribution Operations Five-Year (2018-2022) Investment and Maintenance Plan Final Report, January 31, 2018

# Michigan utilities are developing performance targets based on reliability metrics





Source: DTE Electric Company's Distribution Operations Five-Year (2018-2022) Investment and Maintenance Plan Final Report, January 31, 2018

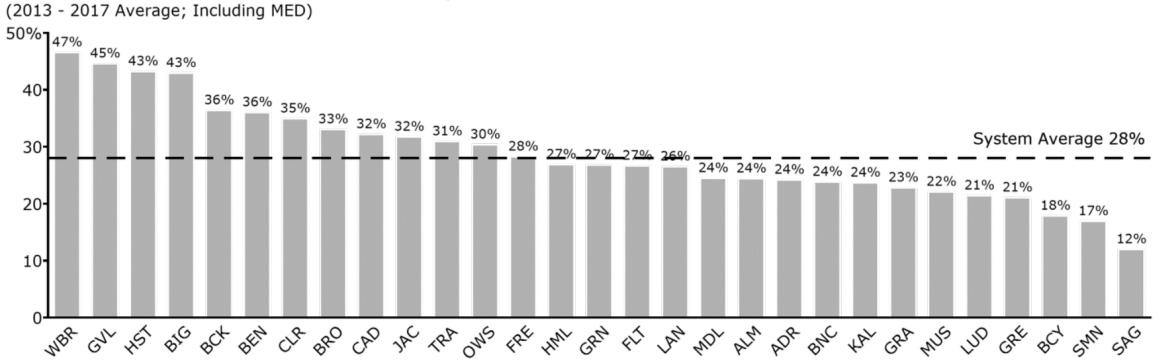

## Michigan utilities are developing performance targets based on reliability metrics

|                      | Metric                                                                                 | 2013-<br>2017            | 2017                     | 2022 Target | Rationale for Target                                                      |
|----------------------|----------------------------------------------------------------------------------------|--------------------------|--------------------------|-------------|---------------------------------------------------------------------------|
|                      | Recordable incident rate<br>(for work in electric<br>operations)                       | <b>2.47</b><br>(2014-17) | 1.02                     | 0.58        | Electric operations<br>portion of defined<br>corporate targets            |
| Safety &<br>Security | Wire down relief factor (%<br>of police/fire-guarded wire<br>downs relieved in 4 hours | 93%<br>(inside<br>MMSA)  | 87%<br>(inside<br>MMSA)  | >90%        | Compliance level set in<br>MPSC Electric<br>Distribution                  |
|                      | inside MMSAs, 6 hours<br>outside MMSAs)                                                | 94%<br>(outside<br>MMSA) | 93%<br>(outside<br>MMSA) | /50/0       | Performance Standards<br>MPSC Case No. U-12270                            |
|                      | SAIDI (excluding MED)                                                                  | 186                      | 161                      | 120         | Per Section VII                                                           |
|                      | SAIFI (excluding MED)                                                                  | 0.96                     | 0.89                     | 0.8         |                                                                           |
|                      | % of customers with ≥3<br>interruptions                                                | 16%                      | 16%                      | 14%         |                                                                           |
| Reliability          | % of customers with one or<br>more interruption of ≥5<br>hours                         | 28%                      | 31%                      | 20%         | Improvements in line<br>with SAIDI and SAIFI                              |
|                      | % of customers restored<br>within 24 hours of a MED<br>interruption                    | 72%                      | 71%                      | 80%         | reliability targets                                                       |
|                      | Service restoration O&M                                                                |                          |                          |             | Improvements in line<br>with cost and incident<br>reduction targets. Work |



Source: Consumers Energy Company's Electric Distribution Infrastructure Investment Plan, April 13, 2018

### Analysis of reliability by service region identifies where reliability is lower/higher within a service territory

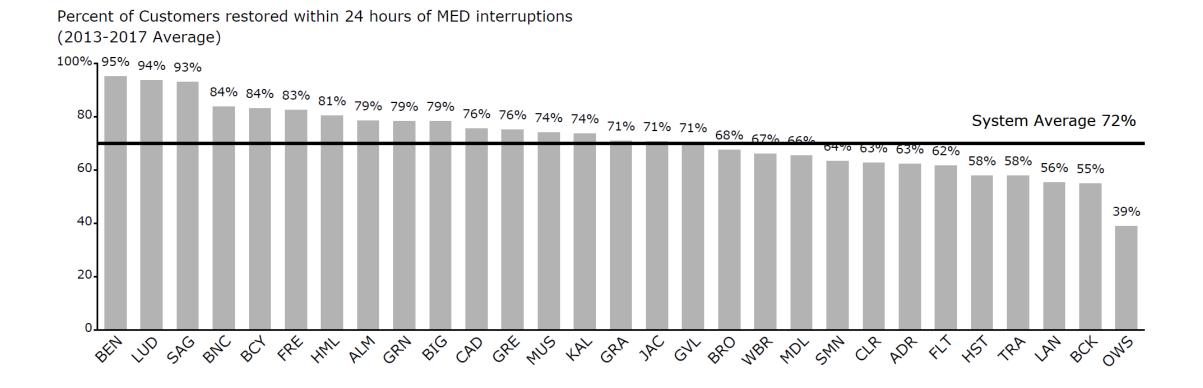



Percent of Customers with  $\geq$ 3 interruptions per year (2013 - 2017 Average; Including MED)

Source: OMS Database



### Analysis of reliability by service region identifies where reliability is lower/higher within a service territory




Percent of Customers with one or more  $\geq 5$  hour interruption



Source: Consumers Energy Company's Electric Distribution Infrastructure Investment Plan, April 13, 2018

### Analysis of reliability by service region identifies where reliability is lower/higher within a service territory



**ENERGY TECHNOLOGIES AREA** 

BERKELEY LAB

Source: Consumers Energy Company's Electric Distribution Infrastructure Investment Plan, April 13, 2018

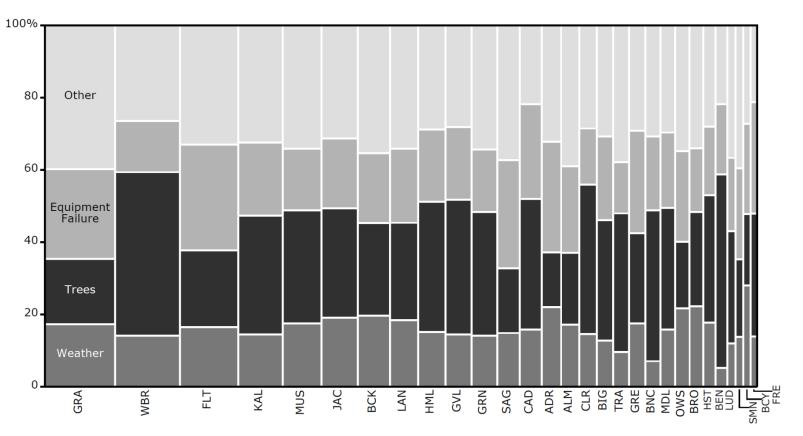
# Analysis of interruption causes identifies opportunities to improve reliability

| Interruption Cause | 2014   | 2015   | 2016   | 2017   | 2018  | 5-Year<br>Average |
|--------------------|--------|--------|--------|--------|-------|-------------------|
| Vegetation         | 45.21% | 37.44% | 48.80% | 37.55% | 49.5% | 43.9%             |
| Equipment Failure  | 17.5%  | 19.6%  | 12.8%  | 16.3%  | 15.5% | 16.2%             |
| Transmission Line  | 6.3%   | 13.7%  | 7.2%   | 13.6%  | 6.0%  | 9.3%              |
| Station            | 9.8%   | 13.3%  | 5.5%   | 10.9%  | 7.2%  | 9.2%              |
| Vehicle Accident   | 4.9%   | 4.5%   | 9.7%   | 5.8%   | 5.0%  | 6.1%              |
| Unknown            | 4.1%   | 3.8%   | 7.4%   | 4.3%   | 4.6%  | 4.9%              |
| Lightning          | 4.8%   | 3.7%   | 3.7%   | 2.8%   | 2.1%  | 3.4%              |
| Scheduled          | 1.2%   | 1.7%   | 2.9%   | 3.6%   | 5.3%  | 3.0%              |
| Remaining          | 4.2%   | 1.1%   | 1.0%   | 3.8%   | 3.8%  | 2.7%              |
| Animal             | 2.1%   | 1.2%   | 1.0%   | 1.4%   | 1.0%  | 1.3%              |



Source: Indiana Michigan Power Company's Fiver Year Distribution Plan (2019-2023), April 3, 2019

# Analysis of interruption causes identifies opportunities to improve reliability


| Distribution Line<br>Equipment Failure Cause | 2014  | 2015  | 2016  | 2017  | 2018  |
|----------------------------------------------|-------|-------|-------|-------|-------|
| Arrester                                     | 0.7%  | 2.4%  | 3.1%  | 1.9%  | 1.5%  |
| Capacitor                                    | 0.0%  | 5.7%  | 0.0%  | 0.0%  | 0.0%  |
| Conn/Clamp                                   | 5.5%  | 8.4%  | 10.3% | 3.2%  | 8.0%  |
| Crossarm                                     | 14.2% | 10.1% | 23.3% | 18.7% | 9.9%  |
| Cutout                                       | 24.1% | 27.0% | 24.6% | 30.8% | 38.8% |
| Insulator                                    | 8.4%  | 9.6%  | 4.0%  | 16.7% | 19.4% |
| Jumper/Riser                                 | 4.4%  | 7.7%  | 6.0%  | 3.1%  | 0.7%  |
| Overhead Conductor                           | 9.1%  | 2.6%  | 7.8%  | 6.7%  | 6.7%  |
| Overhead Transformer                         | 4.3%  | 2.6%  | 6.6%  | 2.2%  | 4.0%  |
| Pole                                         | 1.4%  | 1.5%  | 1.7%  | 0.5%  | 3.6%  |
| Recloser                                     | 0.2%  | 1.5%  | 3.1%  | 3.0%  | 1.5%  |
| Remaining Equipment                          | 5.9%  | 1.2%  | 6.4%  | 8.0%  | 2.7%  |
| Underground Cable                            | 21.7% | 19.6% | 3.3%  | 5.2%  | 3.2%  |



Source: Indiana Michigan Power Company's Fiver Year Distribution Plan (2019-2023), April 3, 2019

# Analysis of interruption causes by region identifies opportunities to improve reliability

SAIFI Contribution by Incident Cause (2013-2017 Avg; MED Excluded)



Source: OMS Database Note: Other includes: Wildlife, Trans. & Gen., Planned, Lightning, Car pole, Public damage, Trees from outside right of way, other unique incidents and when no specific cause was found



Source: Consumers Energy Company's Electric Distribution Infrastructure Investment Plan, April 13, 2018

ENERGY TECHNOLOGIES AREA

## Annual reporting on smart grid metrics, includes existing reliability metrics

#### Q33 (A/B) Customers experiencing long interruption duration (CELIDx)

| Customers I<br>Interruption Dura | Experiencing Long<br>tion (CELIDx) |
|----------------------------------|------------------------------------|
| 8 hour                           | 225,770                            |
| 60 hr duration                   | 6,430                              |

#### Q34 (A-K) Customers experiencing multiple interruptions (CEMIx)

| Customers Experiencing Multiple<br>Interruptions X (CEMIx) |         |  |
|------------------------------------------------------------|---------|--|
| 0                                                          | 671,706 |  |
| 1                                                          | 530,302 |  |
| 2                                                          | 315,976 |  |
| 3                                                          | 151,503 |  |
| 4                                                          | 70,106  |  |
| 5                                                          | 34,644  |  |
| б                                                          | 19,750  |  |
| 7                                                          | 8,845   |  |
| 8                                                          | 4,746   |  |
| 9                                                          | 3,170   |  |
| 10+                                                        | 2,613   |  |

#### Q35 (A/B) System average interruption duration index (SAIDI)

| System Average Interruption Duration Index (SAIDI) |        |  |
|----------------------------------------------------|--------|--|
| Excluding major event days                         | 200.85 |  |
| Including major event days                         | 406.82 |  |

#### Q36 (A/B) System average interruption frequency index (SAIFI)

| System Average Interruption Duration Index (SAIDI) |       |
|----------------------------------------------------|-------|
| Excluding major event days 1.017                   |       |
| Including major event days                         | 1.295 |



## Annual reporting on smart grid metrics also includes additional reliability-related metrics

#### Q37 (A-F) Outage minutes avoided due to AMI meters

The Company measures outage minutes avoided due to AMI meters by evaluating the CAIDI minutes associated with three separate notification conditions - (1) AMI notification only, (2) customer notification only, and (3) both AMI and customer notification.

| Outage minutes avoided due to AMI meters                           |     |  |
|--------------------------------------------------------------------|-----|--|
| CAIDI excluding major event days for AMI notification only         | 116 |  |
| CAIDI excluding major event days for customer notification only    | 242 |  |
| CAIDI excluding major event days for AMI and customer notification | 189 |  |
| CAIDI including major event days for AMI notification only         | 124 |  |
| CAIDI including major event days for customer notification only    | 541 |  |
| CAIDI including major event days for AMI and customer notification | 237 |  |

#### Q38 Number of outage minutes avoided due to automated switches

6,090,723 customer outage minutes avoided due to automated switches

#### Q39 Number of customer outages avoided due to automated switches

15,829 customer outages avoided due to automated switches





## Summary and next steps

Michigan utilities use reliability metrics to support a variety of reliability-related activities, including:

Establishing and assessing utility performance relative to targets

Establishing a basis for customer payments when utility performance is below a threshold

Understanding reliability delivered to specific groups of customers

Benchmarking utility performance

Providing a basis for identifying, prioritizing, and directing utility actions to improve reliability

Measuring utility performance resulting from smart grid investments

This talk has illustrated how Michigan utilities have supported these activities through the use of reliability metrics by presenting examples drawn from various reports they file with the Michigan PSC

Going forward, Michigan utilities, PSC, and stakeholders should assess whether the current suite of metrics is meeting their reliability (and evolving resilience-related) information needs adequately or whether the metrics should be modified to better serve these purposes



## **Contact Information**

Joe Eto jheto@lbl.gov (510) 486-7284

https://emp.lbl.gov/



# **AFTERNOON BREAK** 2:45 – 3:00 PM

Distribution Planning Stakeholder Meeting Michigan Public Service Commission Lake Michigan Hearing Room September 18, 2019



# Meeting Agenda



| 9:00 a.m.  | Welcome & Introduction                                                                        | Patrick Hudson, Manager, Smart Grid Section               |
|------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 9:10 a.m.  | Hosting Capacity Analyses                                                                     | Yochi Zakai, IREC                                         |
| 9:40 a.m.  | Break                                                                                         |                                                           |
| 9:50 a.m.  | Tying it All Together - A Vision for Integrated Distribution Planning                         | Curt Volkmann, GridLab                                    |
| 10:20 a.m. | Break                                                                                         |                                                           |
| 10:30 p.m. | Reliability and Resilience Metrics, and Reliability Value-Based Planning                      | Joseph Eto, Lawrence Berkeley National Lab                |
| 12:00 p.m. | Lunch (local restaurants available)                                                           |                                                           |
| 1:15 p.m.  | Consumers Energy: Response to Pilot Proposal Comments                                         | Consumers Energy                                          |
| 1:30 p.m.  | DTE: Response to Pilot Proposal Comments                                                      | DTE                                                       |
| 1:45 p.m.  | I&M: Response to Pilot Proposal Comments                                                      | Indiana Michigan Power                                    |
| 2:00 p.m.  | Michigan Utility Reliability Reports                                                          | Joseph Eto, Lawrence Berkeley National Lab                |
| 2:45 p.m.  | Break                                                                                         |                                                           |
| 3:00 p.m.  | Stakeholder Discussion: Resiliency in Michigan –<br>What Matters and How Should it be Valued? | Facilitator: Joseph Eto<br>Lawrence Berkeley National Lab |
| 3:50 p.m.  | Closing Statements & Docket Responses                                                         | MPSC Staff                                                |
| 4:00 p.m.  | Adjourn                                                                                       |                                                           |

# Stakeholder Discussion Resilience in Michigan: What Matters and How Should it be Valued?

### Joseph H. Eto (facilitator)

Lawrence Berkeley National Laboratory

**Five-Year Distribution Planning Stakeholder Meeting** 

Lansing, MI, September 18, 2019



1. What types of resilience "events" are of concern to Michigan stakeholders?

Ice storms?

High wind/lightning events? Extreme cold/coupled with a gas supply disruption event Others?

2. To what extent are utility-led actions to address these events – at least to some degree - already considered in reliability planning by Michigan's utilities? For those that are not, why not?



3. For those actions that are already considered in reliability planning (again, at least to some degree), what, if anything, more or different should be done as part of current development and review processes for utility reliability plans?

Different spending levels?

Different spending targets/objectives?

Different performance metrics?

4. What should be the basis for these suggested changes? What objectives should they serve?



5. What information or perspectives are currently missing from today's discussions that would be helpful in informing future decisions on these suggested changes?

Specifically, does or should information on the value of activities to improve reliability/resilience be incorporated in these discussions?

What values? To whom? How should they be estimated? How should they be incorporated?



5. Following on Q2—for warranted actions that are not currently considered in reliability planning—what (if any) additional factors should be taken into account in order to plan for them?

How should they be incorporated into or considered in relation to current utility reliability planning activities?



# **Closing Comments**

Michigan Public Service Commission Lake Michigan Hearing Room September 18, 2019 9 AM – 4 PM



# October 16, 2019 Stakeholder Session



- Topics include:
  - Consistent data/formatting across the utilities for future distribution plans
  - Additional discussion on utility pilot programs resulting from docket filed comments
  - Additional discussion on utility cost-benefit analysis framework
  - Paul De Martini DSPx presentation: NWA analysis, sourcing options & relative risks
- Oct. 16 agenda will be forthcoming and announced through the listserv
- Additional stakeholder responses addressing proposed utility NWA and hosting capacity: submitted to the docket by Oct. 7 for utility responses at the next stakeholder session on Oct. 16
- Nov. 19 session staff is working on the details