Baseline Housing Study – Results Discussion

Shannon Donohue, Cadmus

February 16, 2021

TRC

CADMUS

MORGAN MARKETING PARTNERS

DTE

Agenda

Background & Overview

2018

Identified Need for the Study

 Review of program implementer data and other TRMs

Identified Key Characteristics

- Envelope
- Heating and cooling
- Water heating

Sample Stratification

- By climate zone
- By home type
- By income

2019

Completed Pilot Phase

- Collected data on 20 homes
- Analyzed results
- Presented results in July

Began Main Phase

 Collected data on 90 homes

2020

Continued Main Phase

- Added furnace metering
- Completed 50 visits in spring

Lockdown halted study for six months

- Updated plan in July
- Completed 55 additional visits in August and September
- Data cleaning and prep
- Began thermostat logger
 retrieval

Source: www.energycodes.gov

Study Objectives

- Characterize envelope and equipment efficiency in Michigan homes based on the age of the dwelling.
- Stratify the study sample across key parameters of interest including:
 - Climate zone (CZ-5, CZ-6) of the lower peninsula (Note: The MPSC commissioned a separate study of the upper peninsula)
 - Home type (single family and multifamily)
 - Household income (<\$40,000 and >\$40,000/year)
 - Home ownership (own and rent)
- Propose an update or alternative to the vintage schema in the MEMD (via a whitepaper).
- Recommend EWR program implementer data collection protocols to ensure all critical data points are captured.

Field Visit Results

DRAFT RESULTS ARE UNWEIGHTED AND INTENDED FOR INFORMATIONAL DICUSSION

93

Single family detached homes (101% of target)

102

Multifamily attached homes (91% of target)

180

Thermostat loggers deployed (98% of target)

54

Furnace monitors deployed (87% of target)

Inspected

324 heating systems198 cooling systems238 thermostats188 water heaters45 dehumidifiers

Measured

176,000 sq. ft. of attics and ceilings
244,000 sq. ft. of above grade walls
96,000 sq. ft. of foundation walls
2,116 windows and doors

Multifamily homes have a lower rate of high-efficiency heating. Nearly half of single family homes in Climate Zone 6 have high-efficiency heating.

Climate Zone 5 (n=36)

Single Family Fuel Fired Efficiencies by Climate Zone

Central Cooling Efficiency by Percentage of Sampled Systems

The majority of central cooling systems in Climate Zone 5 are 11 SEER or lower. High-efficiency cooling is uncommon across all strata.

11

Thermostat Types by Percentage of Sampled Thermostats

Manual thermostat are by far the most common type installed. Single family homes have a higher rate of advanced thermostats.

Heating Trends from Thermostat Logger Data

- Indoor temperature will lag setpoint.
- 43% of thermostats monitored indicate a greater than 2°F differential, indicating a setback.

Thermostat Type	Average Temperature Difference
Smart Thermostats	2.0°F (n=4)
Web-Enabled	2.0°F (n=3)
Programmable	3.2°F (n=24)
Manual	1.6°F (n=25)

Cooling Trends from Thermostat Logger Data

- Indoor temperature will lag setpoint.
- Homes with programmable and manual thermostats show similar cooling patterns.

Thermostat Type	Average Temperature Difference
Smart Thermostats	3.0°F (n=4)
Web-Enabled	2.9°F (n=3)
Programmable	2.5°F (n=14)
Manual	2.4°F (n=15)

Older homes have more effective insulation than the MEMD assumes. Newer homes have less effective insulation than the MEMD assumes.

40 Old Existing New 35 Effective Insulation (R-Value) 30 25 20 15 10 5 0 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 Year Built (n=172 households) Field Data Effective R MEMD Effective R

Effective Insulation Level Compared to MEMD

*Note: Effective insulation values include known, rim and band joists, walls, floors, foundations, and ceilings and construction characteristics. MEMD insulation levels are estimated from 2021 weather sensitive documentation.

Effective Insulation of Sampled Homes by Household Income

Moderate correlation between homes' effective insulation levels and age. No significant correlations found between insulation levels and household income.

*Note Effective insulation values of known, rim & band joints, walls, floors, foundations, and ceilings with construction characteristics.

Effective Insulation of Sampled Homes by Home Ownership

Renters are more common in multifamily homes, which limits comparisons. No significant correlations found between insulation levels and home ownership.

Single Family Effective Insulation Amounts by Owners and Renters

Effective Insulation of Sampled Homes by Climate Zone

Newer multifamily homes in Climate Zone 6 indicate increasing insulation levels. Single family homes in Climate Zones 5 and 6 show similar trends.

Multifamily Heating Efficiency by

Income does not clearly correlate to heating efficiency. Higher income single family homes have more high-efficiency heating systems.

Single Family Heating Efficiency by Household Income

Multifamily homeowners have a higher rate of high efficiency heating. Single family homeowners and renters have similar heating efficiency.

Multifamily Heating Efficiency by Home Ownership

Owner (n=26)
 Renter (n=43)

Single Family Heating Efficiency by Home Ownership

Owner (n=76)
 Renter (n=11)

Conclusions, Recommendations & Next Steps

Conclusions

- The year of construction is one of the stronger drivers for energy efficiency
- Homes are exceptionally variable; there is no "typical" home
- Opportunity for electric savings in homes with room air conditioners
- The MEMD overestimates thermostat setbacks, which
 may underestimate savings
- The MEMD overestimates cooling efficiency, which may underestimate electric savings
- The MEMD underestimates heating efficiency, which may overestimate gas savings
- The MEMD overestimates older home insulation and underestimates newer home insulation

Recommendations

Update parameter values in the MMED home vintages

- Home envelope characteristics including insulation levels
- HVAC types to incorporate room cooling
- HVAC efficiencies, especially among existing homes
- Thermostat setpoints using thermostat logger data

Modify baseline characteristics for envelope upgrades

- Update measure baseline characteristics to align with study findings
- Consider additional tiers of baseline conditions for home insulation upgrades
 - Could require additional QC from evaluators and implementers
- Consider including measures that target newer homes Adjust data collection procedures for program implementers
- Align with updated MEMD

Next Steps

Thank you, questions?

Shannon.Donohue@cadmusgroup.com

ATTIC

KNEEWALL

Kneewall missing insulation Stacked insulation batt Multiple insulation types

RIM JOIST

Conditioned basement (unfinished) Uninsulated rim joist Plumbing penetrations unsealed

CRAWLSPACE

Unconditioned crawlspace Zero insulation Floor not insulated Crawlspace walls not insulated

BASEMENT WALL

Conditioned basement (unfinished) Uninsulated rim joist Missing wall insulation Unsecured wall insulation

