MEMD Calibration Research Update

Presentation to Energy Waste Reduction Collaborative April 18, 2017

Agenda

2

What is Calibration Research?

- The per-unit impacts of MEMD measures are deemed until there is consensus among the Collaborative that a revision to the MEMD is warranted due to:
 - 1. Code and/or standards changes revising baselines.
 - 2. A body of credible evidence that results in a different known value.
 - 3. A body of credible evidence that challenges the existing MEMD value but does not suggest a definitive new value applicable to Michigan.
- The first two situations are covered in the existing MEMD update process. The third situation triggers a review to determine the need for a more rigorous study (i.e., MEMD calibration research).

What is Calibration Research?

- Calibration Research Objective: Ensure the MEMD represents the actual energy savings being realized through measure installation in Michigan.
- Calibration Research is the process through which the independent evaluation teams analyze the per-unit impacts (including calculations and inputs) of select MEMD measures. This analysis relies on data collected throughout Michigan during annual program evaluations.
- As a result, MEMD savings values are "calibrated" with current data and relevant research on measures installed in service areas of Michigan EWR Program administrators.

Calibration Research Prioritization Process

Source: Process for Identifying MEMD Measures for Calibration Memo, November 2011

Calibration Research Prioritization Process

Source: Process for Identifying MEMD Measures for Calibration Memo, November 2011

6

Calibration Research Prioritization Process

Collaborative Decision Points

Source: Process for Identifying MEMD Measures for Calibration Memo, November 2011

Calibration Research History

Residential

- Lighting Hours-of-Use (2012)
- Appliance Recycling Metering (2012)
- Domestic Water Heating Metering (2012)
- Upstream Lighting Impact Attribution (2014)
- Behavior Modification Report Model Review (2015)
- Appliance Recycling Savings Update (2015)

C&I

- Lighting Hours-of-Use (2014)
- Lighting Controls Reduction Factor (2012)
- Programmable Thermostat Billing Analysis (2015)

The results of these studies have been incorporated into the MEMD.

Calibration Research History

- Calibration has occurred for 70-80% of historical portfolio savings and represents 10-15% of evaluation budgets
- Some of the calibration studies are considered industry benchmarks and are being used in other states (e.g., water metering study)
- Many of the large savings measures have been addressed and assumptions borrowed from other states have been replaced with Michigan specific characteristic data

Calibration Research History

- In 2015, a broader group of stakeholders was engaged to identify statewide studies of interest
- Three studies were selected through a prioritization process –
 - Two are calibration studies that are ongoing
 - The third was a market research study on Building Management Systems completed in 2016
- DTE Energy and Consumer's Energy recommend returning to the calibration research prioritization process and will update the Collaborative on potential measures at the June meeting

Current Calibration Research

- 1. Behavior Modification Report
- 2. Housing Vintage
- 3. Tier 3 Thermostat

Current Calibration Research

- 1. Behavior Modification Report
- 2. Housing Vintage
- 3. Tier 3 Thermostat

Background

- Electric energy savings for the Behavior Modification Report measure is determined by annual household usage bands ranging from 7-11 MWh.
- As baseline usage increases, deemed percent savings increase. This is consistent with the literature.¹
- A large portion of customers have baseline usage outside of these bands.
- The current construct does not provide an accurate representation of energy savings for many customers and may lead to over/under-claiming of savings.

Usage Band Fuel Type Year 1 Year 2 Year 5 Year 3 Year 4 Average 1.45% Electric 1.05% 1.34% 1.55% 1.66% (7 to 9 MWh) High Electric 1.20% 1.68% 1.82% 1.95% 2.06% (9 to 11 MWh) 0.64% 0.72% Gas n/a 0.71% 0.77% 0.69%

¹ Allcott, H. *Social norms and energy conservation*. Journal of Public Economics (2011), Volume 95, Issues 9-10: 1082-1095.

 Calibrate existing electric energy savings values and propose new values for additional usage bands (5-7 MWh and >11 MWh)

Number of DTE and CMS Waves per Usage Band by Program Year

Fuel	Usage Band	Y1	Y2	Y3	Y4	Y5
Electric	5 to 7 MWh	1	1	-	-	-
Electric	7 to 9 MWh	3	3	2	1	1
Electric	9 to 11 MWh	4	3	2	1	-
Electric	>11 MWh	4	3	-	-	-

 Calibrate and propose new values for gas savings usage bands (900-1200 therms, and >1200 therms)

Number of DTE and CMS Waves per Usage Band by Program Year

Fuel	Usage Band	Y1	Y2	Y3	Y4	Y5
Gas	900-1200 Therms	5	1	1	1	-
Gas	>1200 Therms	4	6	3	1	1

Study does not include calibration of:

- Coincident peak demand
- Overlapping savings

- Initially, the objective was to identify a linear relationship between energy usage and savings for each fuel and program year.
- The analysis was sensitive to arbitrary parameters, and as such, the results were not robust.

Data Sources and Methodology

- Electric energy and gas usage data provided by Oracle for all DTE and CMS waves
- Navigant determined usage bands for each wave/program year by calculating the average annual usage of controls during the program period

Fuel	Usage Band	Fuel	Usage Band
Electric	5 to 7 MWh	Gas	900 to 1200 Therm
Electric	7 to 9 MWh	Gas	>1200 Therms
Electric	9 to 11 MWh		
Electric	>11 MWh		

- Navigant determined program years for each wave based on the year and month the program started.
 - For example, a wave that started on May, 2011 would have a PY1 of 05-2011 through 04-2012 and a PY2 of 05-2012 through 04-2013.

Data Sources and Methodology

 Used a linear fixed effects regression model to estimate savings by usage band for each program year

 $\begin{aligned} ADU_{it} &= \alpha_i + \beta_1 (Post_{it} \cdot Wave_i) + \beta_{2b} (Post_{it} \cdot Treatment_i \cdot Wave_i) + \\ \beta_3 (CDD_{it} \cdot Wave_i) + \beta_4 (HDD_{it} \cdot Band_b) + \varepsilon_{it} \end{aligned}$

Where,

- ADU_{it} is the average daily usage for household *i* during month t
- α_i is a household-specific fixed effect that captures factors which do not change over time
- Post_t is a binary variable taking value of 0 if month t is in the pre-period, or 1 in the program period
- Wave_i is a factor variable identifying the wave of household i
- *Treatment*_i is a binary variable identifying if a household is in the treatment (1) or control (0) group
- CDD_{it} is the number of cooling degree days for household *i* during month t
- *HDD_{it}* is the number of heating degree days for household *i* during month *t*
- ε_{it} is the cluster-robust error term for household *i* in time *t*

Proposed Schedule

- Draft Report: April 19, 2017
- Presentation to EWR Collaborative with Updated MEMD Whitepaper: May 16, 2017

Ongoing Calibration Studies

- 1. Behavior Modification Report
- 2. Housing Vintage
- 3. Tier 3 Thermostat

Background

- Currently, the MEMD uses two housing types (single family and multi-family) and three vintages (old, average, and new) to assess energy savings
 - Old: Poorly insulated building constructed in the 1950s or earlier
 - Average: Building conforming to 1980s era building codes
 - New: Recent construction conforming to the Michigan State Energy Code
- Anecdotal evidence suggests that a significant portion of the building stock does not meet the "old" levels of efficiency, especially in hard to reach segments.

		Walls	Attic	Floor	Windows	Infiltration	
		R-Values			U-Values	lues ACH*	
Old		7	11	2	0.93	1.0	
Average		11	19	11	0.68	0.5	
New**	CZ 5&6	20	38	30	0.35	0.35	
	CZ 7	21	49	38	0.35	0.35	

Single Family Home Characteristics by Existing Vintages

* Air changes per hour.

** New vintage includes requirements based on vintage.

- Determine whether a significant portion of existing housing stock does not align with current MEMD classifications (old, average, new) and warrants realignment
 - Assess insulation levels of existing homes using available program data to determine potential variation against MEMD savings estimates for weather sensitive measures
- Assess next steps, including whether a more expansive field study is warranted

Data Sources and Methodology

- Phase I (complete):
 - Collect sample data from Consumers Energy Insulation and Windows program to determine alignment between MEMD and existing MI homes
 - Assess confidence interval of sample population R-values to determine if vintage characteristics are statistically similar or different from MEMD characteristics
 - Determine whether the sample data review results warrant a more substantial study
- Phase II (proposed for 2018):
 - Conduct field study to assess envelope and equipment efficiency levels from stratified sample across Michigan housing types (climate zone, vintage, income level)
 - Propose alternative vintage schema for MEMD adoption (develop white paper for modeling process)
 - Recommend implementer data collection protocols to ensure that all necessary fields are captured

Proposed Schedule

- Phase I
 - Presentation to EWR Collaborative: May 16, 2017
- Phase II
 - Field Work and Analysis: Proposed for 2018
 - Reporting: February 2019

Ongoing Calibration Studies

- 1. Behavior Modification Report
- 2. Housing Vintage
- 3. Tier 3 Thermostat

Background

• Tier 3 thermostats first appeared in the 2016 MEMD.

Measure Description: Tier 3 thermostats are enhanced by data gathering and analytics functionalities, which enables them to use a variety of methods to optimize HVAC settings for efficient and automated energy consumption. Specifically, a Tier 3 thermostat is defined as a thermostat that is compatible with the participant's HVAC system, and has:

- Two-way communication,
- Occupancy detection (through the use of occupancy sensors, geo-fencing, etc.), and
- At least two of the following features: scheduled learning, heat pump auxiliary heat optimization, upstaging/down-staging optimization, humidity control, weather-enabled optimization, and freecooling/economizer capability.
- The heating and cooling savings estimates were based on 12 thermostat studies from across the United States, rather than primary data from Michigan.
- The measure was included in the MEMD with the expectation it would be calibrated once sufficient Michigan-specific data were available.

Phase 1: Data Assessment

- 1. Determine when
 - 1. A sufficient number of thermostats have been installed to estimate savings with statistical precision, and
 - 2. At least one year of energy usage data are available postinstallation

Phase 2: Calibration

- 1. Calibrate electric energy savings factor for space cooling and heating, and gas energy savings factor for space heating.
- 2. Update, as needed, the efficiency level of baseline equipment in Michigan, incremental cost, and measure life.

Data Sources and Methodology

Phase 1: Data Assessment

- 1. Compile and review DTE and CMS program tracking data
- 2. Conduct a power analysis to determine the minimum sample size required to estimate savings with statistical precision
- 3. Identify appropriate timeline for analysis

Phase 2: Calibration

- 1. Use matching method with a linear fixed effects regression model to estimate savings.
- 2. Use DTE and CMS program tracking data to conduct a data-based channeling analysis, removing potential overlapping savings from the Tier 3 thermostat savings estimate
- 3. Leverage existing DTE and CMS studies to determine the efficiency level of baseline equipment in Michigan
- 4. Conduct secondary research to inform updates to incremental cost and measure life.

Proposed Schedule

Phase 1: Data Assessment

- In progress
 - At present, approximately 1,000 thermostats have 12 months of post-installation data. This is not a large enough sample size to estimate savings with statistical precision.
- Updates will be provided monthly to EWR Collaborative

Phase 2: Calibration

- TBD based on result of Phase 1
 - It is expected there will be a sufficient sample size with 12 months of post-installation data such that calibration of energy savings will be completed in Q2 2018, in time to update the 2019 MEMD

Questions/Comments?

30

Appendix - Process for Identifying MEMD Measures for Calibration Memo

