

Making the Most of Michigan's Energy Future

New Technologies and Business Models Stakeholder Meeting 6: Combined Heat & Power *The meeting will begin promptly at 1:00 pm.* April 7, 2021 1PM – 5 PM

MPSC Michigan Public Service Commission

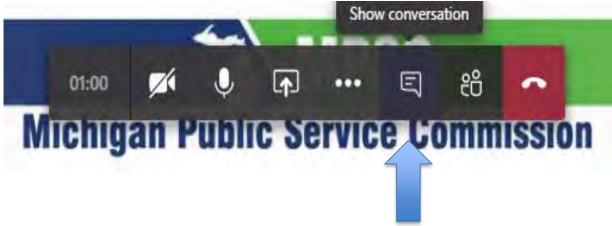
Making the Most of Michigan's Energy Future

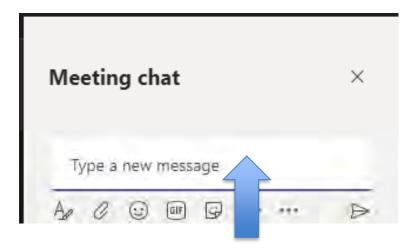
New Technologies and Business Models: Welcome and Overview

Joy Wang <u>WangJ3@Michigan.gov</u> Smart Grid Section

Michigan Public Service Commission

Agenda: Combined Heat and Power


1:00 pm	Welcome & Opening Statements	Joy Wang, MPSC Staff, and Dan Scripps, Chair, Michigan Public Service Commission		
1:05 pm	The Potential for Combined Heat and Power in Michigan	Graeme Miller, University of Illinois at Chicago		
1:40 pm	District Energy/CHP Systems for Resiliency & Sustainability	Rob Thornton, International District Energy Association		
2:05 pm	Break			
2:15 pm	Panel: The Power of CHP – Roadblocks to Harnessing Its Opportunity James Leidel, DTE Gas Kevin O'Connell, Michigan CAT Chris Bixby, Clarke Energy	Moderator: Lynn A. Kirshbaum, Combined Heat and Power Alliance		
3:00 pm	Panel: Speaking from Experience – CHP Motivations, Barriers, & Realities Timothy Lynch, Benton Harbor Saint Joseph WWTP Jeff Means, Department of Veteran Affairs Kathy Richards, Northern Michigan University	Moderator: Lynn A. Kirshbaum, Combined Heat and Power Alliance		
$3:45~{ m pm}$	Break			
3:50 pm	Waste Heat to Power: An Overlooked Zero Emission Energy Resource for Michigan's Industrial Sector	Patricia Sharkey, Heat is Power Association & Midwest Cogeneration Association		
4:15 pm	The Future of CHP: Reducing Emissions and Improving Resilience	Lynn A. Kirshbaum, Combined Heat and Power Alliance		
4:40 pm	Aisin mCHP Development	Tom Miller, Aisin Technical Center of America		
4:55 pm	Closing Statements	Joy Wang, MPSC Staff		



Housekeeping

- This meeting is being recorded
- Slides available and recording will be posted on workgroup website within a week
- All audience members will be muted
- Please type questions into the chat box
 - To access chat box:

Staff will ask chat box questions during Q&A

Housekeeping, cont.

- During the meeting, if clarification of your question is needed, we will ask you to unmute.
 - To unmute:
 - Phone: Press *6
 - Teams: Click mic button
 - Please mute yourself again after your clarification.
- Chat box may note when audience members enter/exit.
 - These notices are automatic:
 - Wang, Joy (LARA) added Guest to the meeting.
 - Wang, Joy (LARA) removed Guest from the meeting.
- If you are not a session speaker, please turn off your video.
- If Teams via web browser is not working, try a different web browser.
 - All work except Safari
- Please share your thoughts on the meeting with us by filling out the survey.

Making the Most of Michigan's Energy Future

Opening Remarks

Dan Scripps, Chair Michigan Public Service Commission

Stakeholder Meeting 6: Combined Heat and Power April 7, 2021

Michigan Public Service Commission

The Potential for Combined Heat and Power in Michigan

Graeme Miller

Senior Research Specialist Distributed Generation Energy Resources Center University of Illinois at Chicago

The Potential for Combined Heat and Power in Michigan

Presentation to the Michigan Public Service Commission

April 7, 2021 US DOE Midwest CHP Technical Assistance Partnership

1

Introduction

Graeme Miller

Senior Research Specialist Energy Resources Center University of Illinois at Chicago

Assistant Director, US DOE Midwest CHP TAP

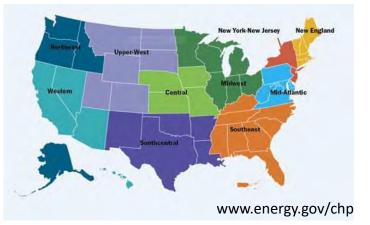
Agenda

- What is the USDOE CHP TAP Program?
- CHP Basics
- CHP Technical Potential in Michigan
- CHP Economic Benefit Potential
- CHP Potential in the Clean Energy Transition
- CHP Potential in Reduce Emissions

What is the US DOE CHP TAP Program?

U.S. DOE CHP Technical Assistance Partnerships (CHP TAPs)

End User Engagement

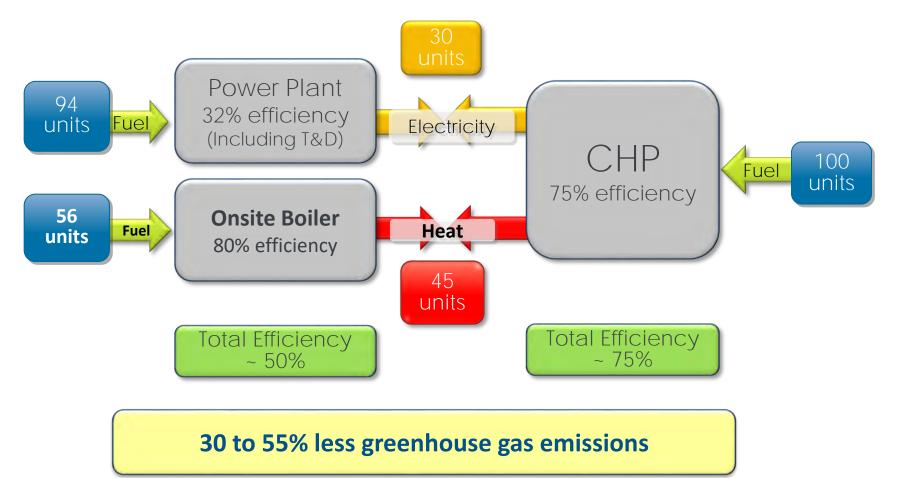

Partner with strategic End Users to advance technical solutions using CHP as a cost effective and resilient way to ensure American competitiveness, utilize local fuels and enhance energy security. CHP TAPs offer fact-based, non-biased engineering support to manufacturing, commercial, institutional and federal facilities and campuses.

Stakeholder Engagement

Engage with strategic Stakeholders, including regulators, utilities, and policy makers, to identify and reduce the barriers to using CHP to advance regional efficiency, promote energy independence and enhance the nation's resilient grid. CHP TAPs provide fact-based, non-biased education to advance sound CHP programs and policies.

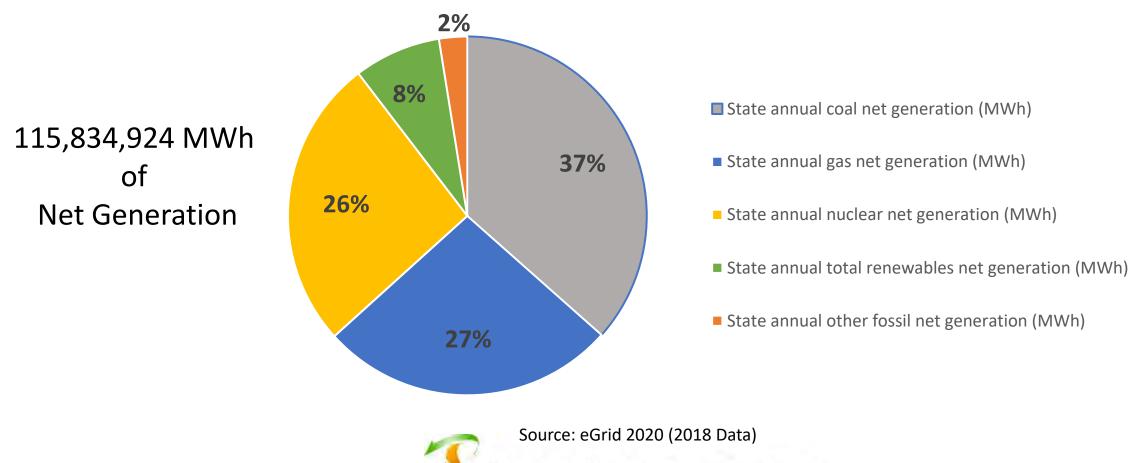
• Technical Services

As leading experts in CHP (as well as microgrids, heat to power, and district energy) the CHP TAPs work with sites to screen for CHP opportunities as well as provide advanced services to maximize the economic impact and reduce the risk of CHP from initial CHP screening to installation.

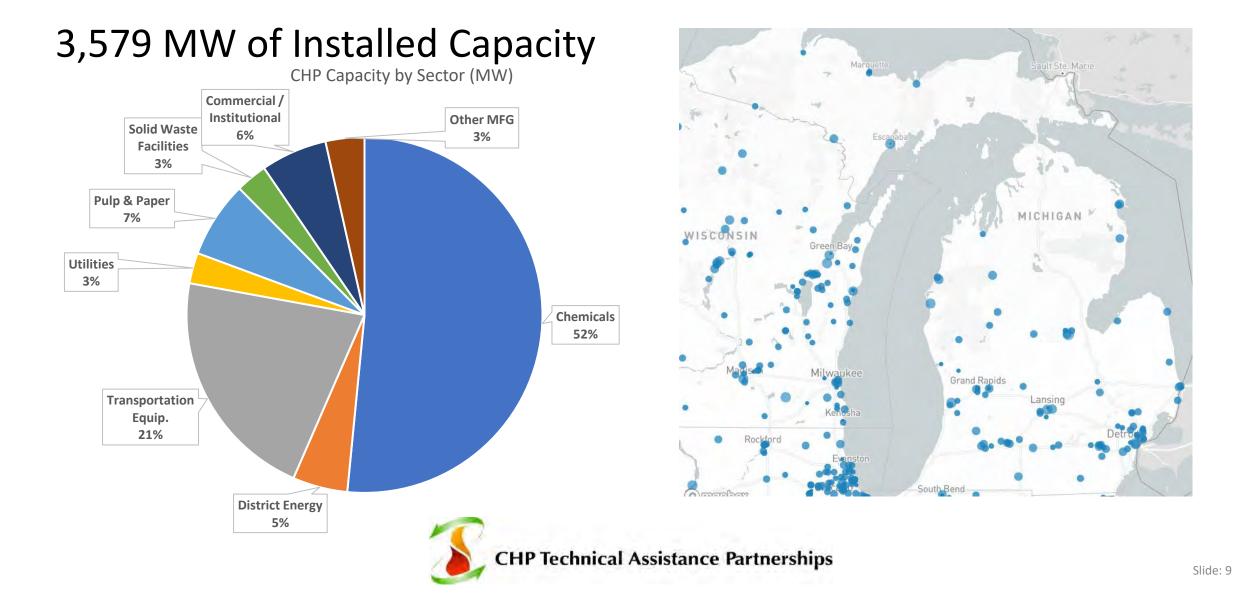


National Manufacturing Day 2019 at the University of Illinois at Chicago

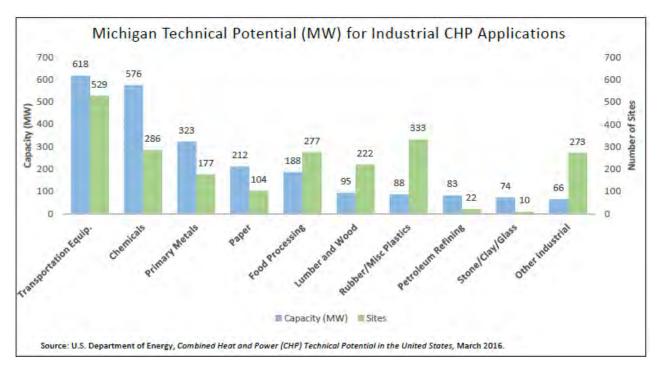
CHP Recaptures Heat of Generation, Increasing Energy Efficiency, and Reducing GHGs

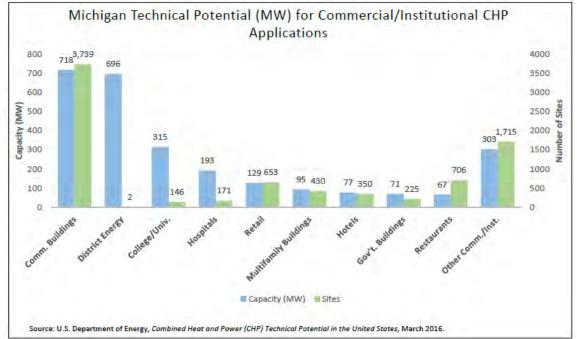


CHP Technical Potential in Michigan


Current Electricity Landscape Annual Net Generation by Source

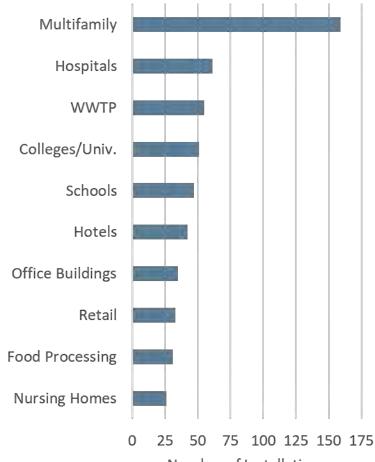
Michigan Annual Net Generation by Source


CHP Technical Assistance Partnerships


Current CHP Capacity in Michigan

CHP Technical Potential in Michigan

Sector	Potential Sites	Potential Capacity (MW)	
Industrial	2,233	2,324	
Commercial/Institutional	8,137	2,664	
Total	10,370	4,987	



CHP Market Trends – The Last Five Years

- Significant capacity continues to be installed in industrial applications – 61% of capacity
- Growing activity in non-traditional CHP markets (light industrial, commercial, institutional, multifamily) – 88% of installs
- Move toward smaller CHP installations recip engines and microturbines make up 77% of installs
- Increase in packaged CHP system offerings
- Natural gas continues to be the dominant fuel 77% of new capacity
- Increasing interest in hybrid systems that integrated CHP with renewables and energy storage
- Prioritizing CHP for resilience with focus on critical infrastructure applications and microgrids

Top CHP Applications 2015-2019

Number of Installations

CHP's Economic Benefit Potential in Michigan

CHP's Site Specific Economic Benefit

Comparative Economics between CHP and Boilers

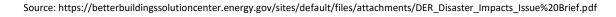
Based on 8,000 hours of operation, 7 cents per kWh electricity price, and \$6/MMBtu natural gas price. CHP system cost of \$1,500/kWh, O&M costs of \$0.009/kWh and 31 percent electrical efficiency. CHP availability of 95 percent and portion of electric price avoided by on-site generation of 90 percent are assumed values. Natural gas boiler estimated cost of \$3.50/MMBtu input was provided by Worley Parsons. Net cash

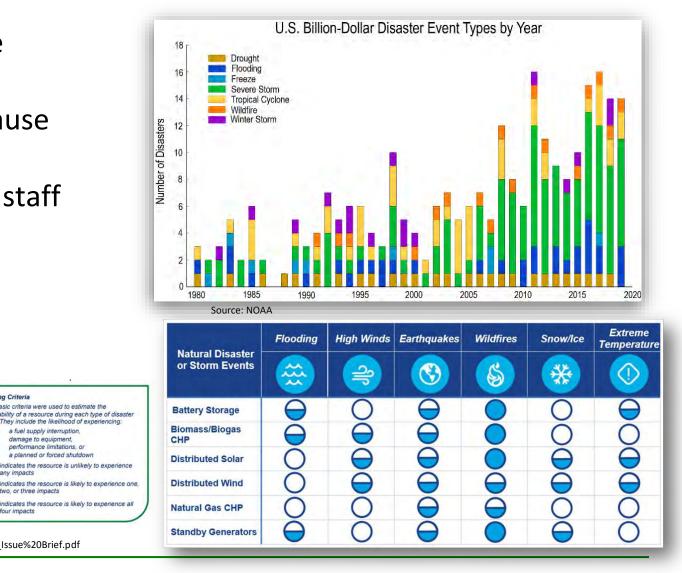
Source: ICF, "Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings," 2013 Available at:

https://www.epa.gov/sites/production/files/2015-

07/documents/guide_to_using_combined_heat_and_power_for_enhancing_relia

bility_and_resiliency_in_buildings.pdf


	New Natural Gas Boilers	New Natural Gas CHP	Comparison
Peak Boiler Capacity, MMBtu/hr input	120	120	
Peak Steam Capacity, MMBtu/hr	96	96	
Avg Steam Demand, MMBtu/hr	76.8	76.8	
Boiler Efficiency	80% NA		
CHP Capacity, MW	NA	14	
CHP Electric Efficiency	NA	31%	
CHP Total Efficiency	NA	74%	
Annual Steam Use, MMBtu	614,400	614,400	0
Annual Steam Use, MMlbs	558.6	558.6	0
Annual Power Generation, kWh	NA	106,400,000	106,400,000
Fuel Use, MMBtu/year	768,000	1,317,786	549,786
Annual Fuel Cost	\$4,608,000	\$7,906,719	\$3,298,719
Annual O&M Cost	\$729,600	\$1,687,200	\$957,600
Annual Electric Savings	0	(\$6,703,200)	(\$6,703,200)
Net Annual Operating Costs	\$5,337,600	\$2,890,269	(\$2,447,331)
Steam Costs, \$/MMBtu	\$9.56	\$5.18	(\$4.38)
Capital Costs	\$4,200,000	\$21,000,000	\$16,800,000
10 Year Net Cash Flow (output)	\$65,389,602	\$54,138,850	(\$11,250,752)
Incremental CHP Payback			6.9 years
10 Year IRR - CHP vs. Gas Boiler			10%
10 Year NPV – CHP vs. Gas Boiler			\$2,411,765
Source: ICE International			


Source: ICF International

CHP Technical Assistance Partnerships

CHP Enhances Energy Resilience

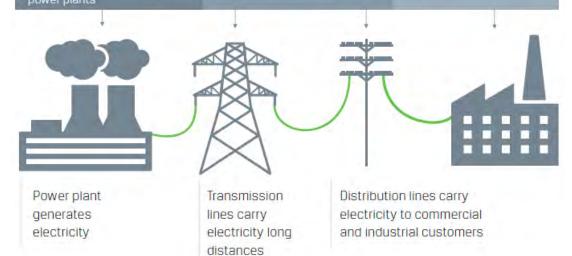
- Higher reliability and power quality are needed to meet critical requirements
- Increased incidences of grid outages cause supply and production disruptions
- Consequences for health and safety of staff and clients, continuity of services, community support
- CHP can maintain power and heating/cooling during outages while providing financial benefits through Four basic criteria were used to estimate the vulnerability of a resource during each type of disaster operating savings every day

hey include the likelihood of experiencing

ndicates the resource is unlikely to experience

damage to equipment performance limitations, or

wo, or three impacts

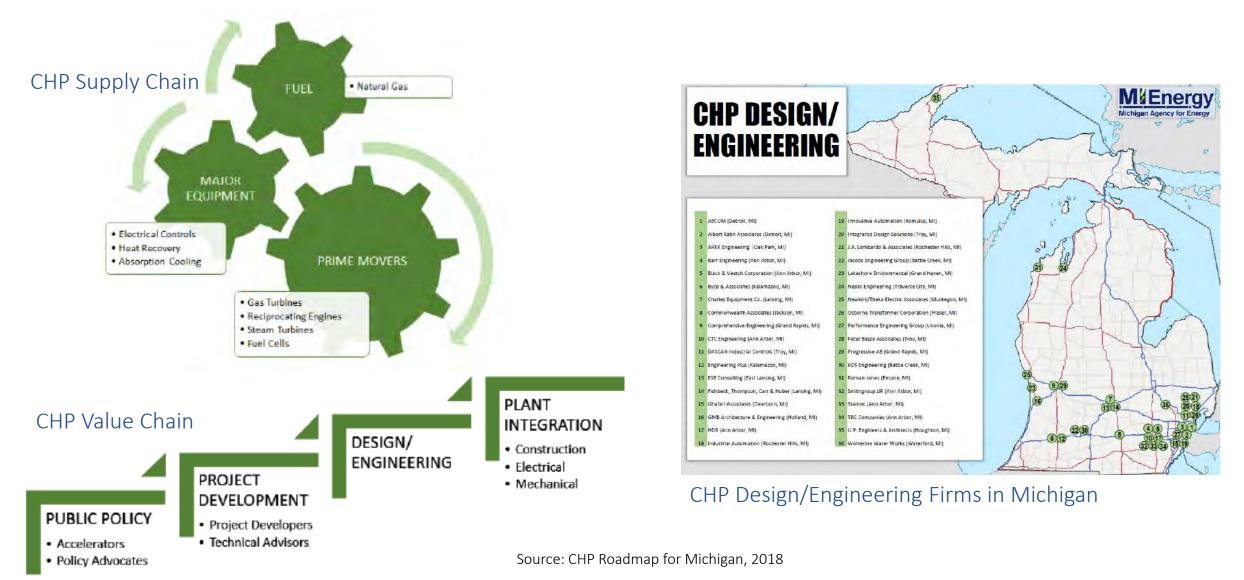

a planned or forced shutdown

CHP's Benefit to the Grid

Grid Modernization Goal	How CHP Supports Goal
Grid Reliability	CHP installations can improve power quality, provide ancillary services, and relieve grid constraints
Customer Resilience	CHP systems can provide baseload power for microgrids, allowing critical loads to continue operation during grid outages
Energy Efficiency	CHP uses less fuel and is more efficient, which saves energy compared to conventional generation and separate heat production
DER Integration	CHP can help utilities integrate new renewable DER deployments and balance variable loads
Locational Value	CHP can be deployed at strategic locations on the system where it is needed most
Affordability	CHP can often meet system needs more cost- effectively than investments in traditional assets, thus lowering costs for ratepayers across the utility system
Emissions Reductions	Efficient CHP systems have lower emissions than conventional grid resources, and can be used to meet emissions reduction targets (ex: states w/ GHG goals)

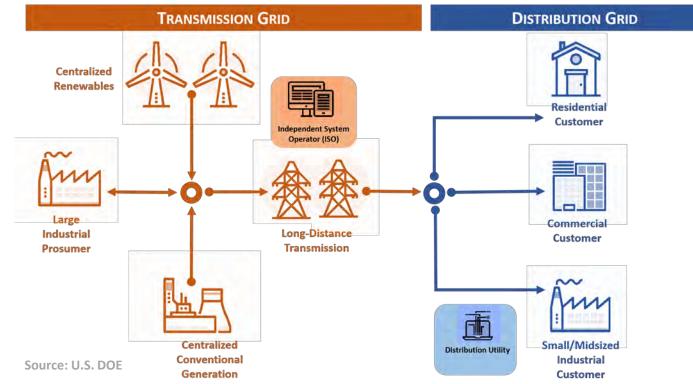
CHP can replace generation on the supply side, with lower emissions and more favorable economics than traditional power plants

CHP can provide reliability benefits, ancillary services, and locational value to transmission and distribution system CHP offers improved energy officiency, resilience, and oconomic benefits to and-users



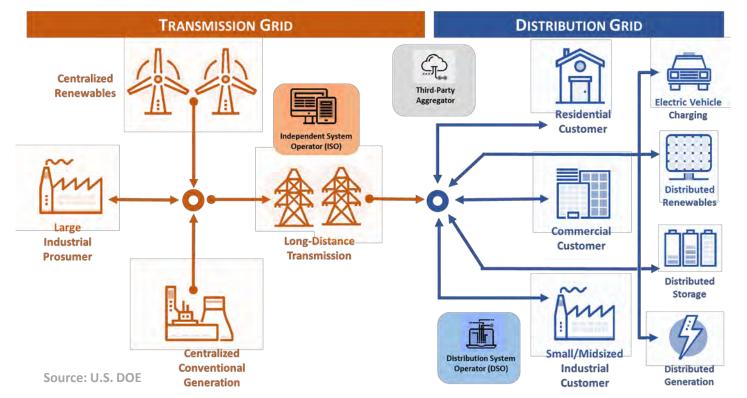
Source: Supporting Grid Modernization with Flexible CHP Systems, ICF, 2018 https://www.icf.com/-/media/files/icf/white-paper/2017/icf-supporting-grid-mod-with-flexible-chp-feb-2018.pdf

CHP Technical Assistance Partnerships


CHP and the Michigan Economy

CHP's Potential To Help Michigan Transition to Clean Energy

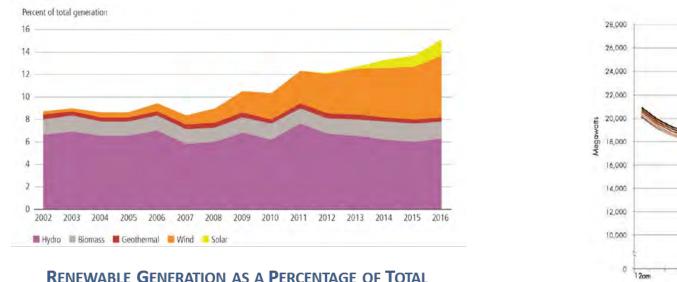
Traditional Electric Grid



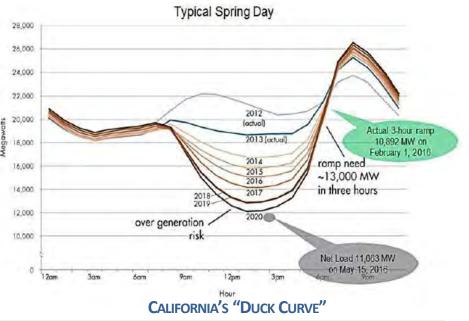
In the traditional power grid, electricity is produced by centralized power plants and moved to the customer over a long-distance transmission network

- Power flows are generally one-way (from generator to customer)
- Large industrial customers can export power, but small and midsized industrial customers do not provide services to the electric grid
- Generation and load are separated, and coordination between customers and load-serving entities is limited

Transitional Electric Grid


In the future, electricity will be produced by a variety of resources, including renewable distributed energy resources with variable production that can export power to the distribution system

- Power flows are bi-directional and managed by interconnected information and control systems
- Customers are "prosumers:" they consume electricity but also generate power to satisfy their own loads as well as to provide services to the grid (including energy to other customers)
- Generation and load are closely coordinated to optimize the performance of the system and reduce infrastructure costs


Two Key Issues and Challenges as Grid Resources Evolve

- Non-dispatchable renewables (particularly wind and solar) are increasing rapidly on the U.S. grid.
- The rapid increase of renewables exacerbates the load changes at peak demand periods requiring additional fast-reacting grid resources.
- CHP can be an important stabilizing factor in the transitional electric grid that supports intermittent renewable resources.

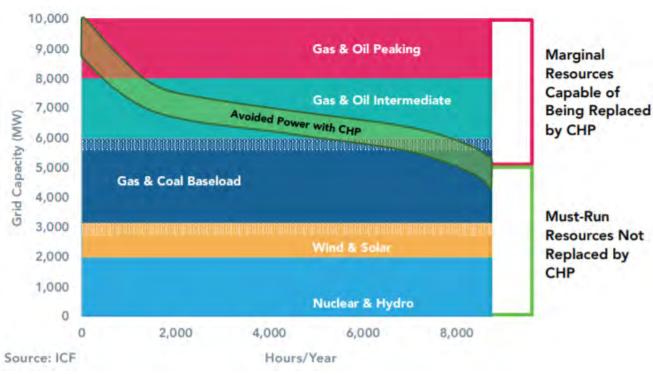
RENEWABLE GENERATION AS A PERCENTAGE OF TOTALEU.S. ELECTRICITY GENERATION

Source: U.S. DOE

CHP Can Enable Other Microgrid Technologies

cal Assistance Partnerships

- An optimized combination of solar, storage, and CHP can provide long-duration, on-site energy for sites with high resilience needs with the least possible carbon emissions
- CHP provides efficient, resilient, baseload power and thermal energy
- PV reduces grid demand and related emissions in peak hours
- Storage provides additional flexibility, helping to "firm" solar to meet peak loads
- Adding photovoltaic (PV) and storage lowers the required CHP size and further improves emissions compared to the grid
- Thermal Storage can increase CHP efficiency


Potential to participate in utility markets with PV and storage Potential for CHP/storage to provide grid services PV Demand (kW) CHP Hour 24 Charge Energy Storage Discharge Energy Storage - - - Maximum CHP Output ∼ Load Profile

CHP + PV + Storage Microgrid

CHP's Potential To Reduce Emissions

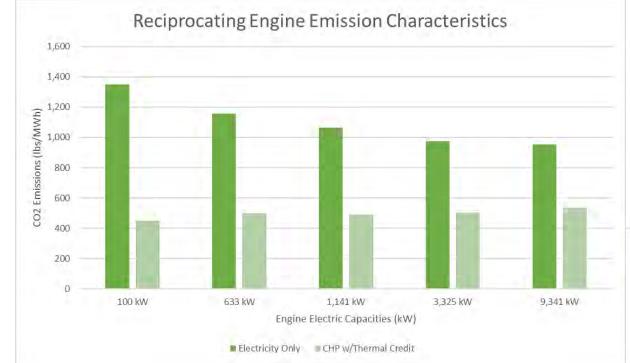
Evaluating CHP Emission Impacts

Source: ICF, "As the Grid Gets Greener, Combined Heat and Power Still Has a Role to Play," https://www.icf.com/-/media/files/icf/white-paper/2019/icf chp has a role to play august 2019 web wp.pdf

Displaced grid emissions for CHP are based on marginal utility generation

Marginal units are those at the "top of the stack" that set the electricity price in real-time or day-ahead pricing

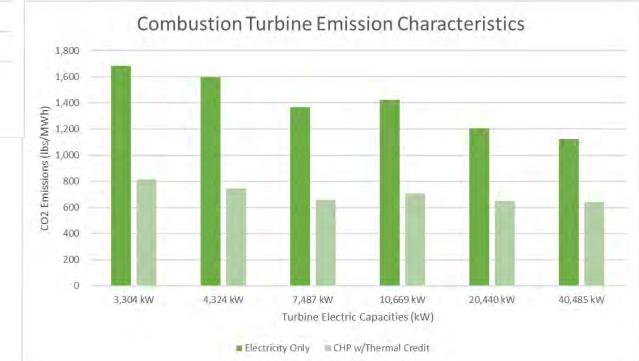
Currently, marginal generation tends to be provided by units fueled by gas, oil, and in some cases coal


For CHP systems that operate 24/7, average fossil fuel emission factors from eGRID can be used

For CHP systems that operate during day/evening hours, average non-baseload emission factors from eGRID provide a better estimate

Limitations in accurately estimating marginal emissions with eGRID

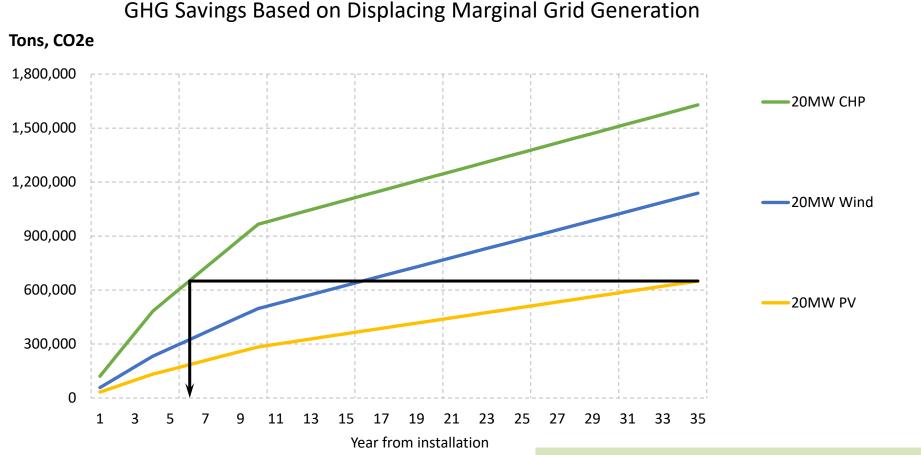
Carbon Emissions from CHP Systems



Source: eGrid 2020 (2018 data) DOE CHP Technology Fact Sheets

According to the EIA

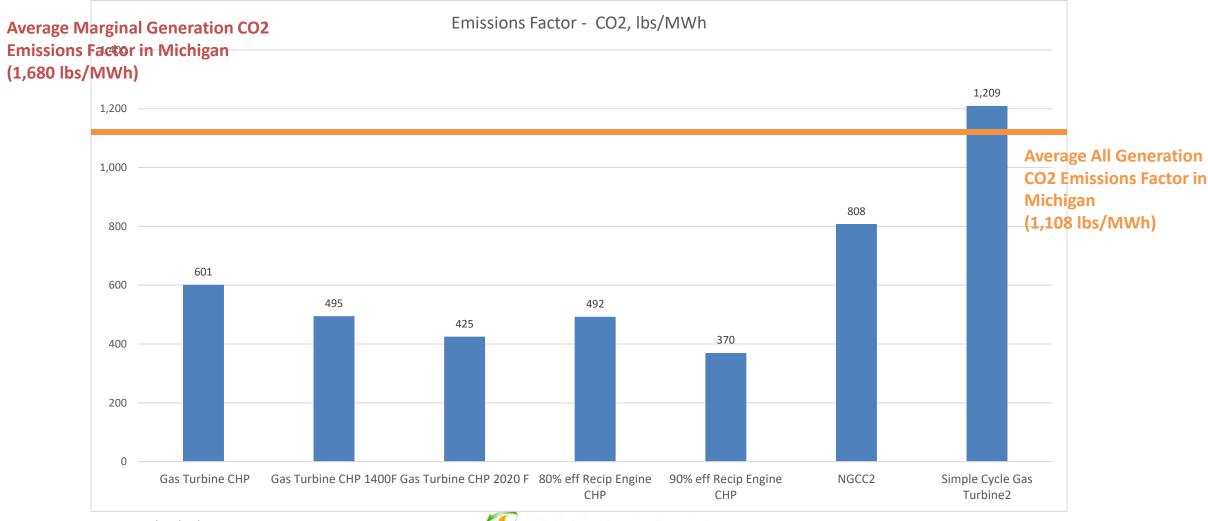
Michigan Electric Sector:


- Avg. Carbon Dioxide: **1,108 lbs/MWh**
- Fossil Fuel CO2: 1,680 lbs/MWh

CHP's Higher Efficiency Results in Energy and Emissions Savings Compared to Michigan's Grid (Average Fossil Generation)

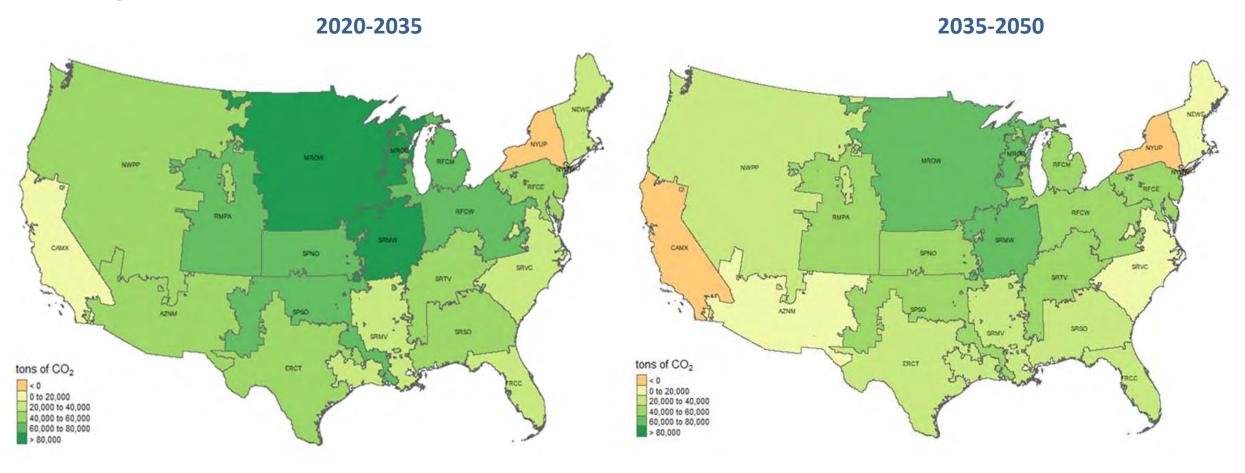
Category	10 MW CHP	10 MW WHP	10 MW PV	10 MW Wind	10 MW NGCC
Annual Capacity Factor	85%	85%	24.3%	34.3%	57.6%
Annual Electricity, MWh	74,460	74,460	21,287	32,762	50,458
Annual Useful Heat Provided, MWh _{th}	97,505	None	None	None	None
Capital Cost, \$ million	\$20.2 m	\$15.0 m	\$10.0 m	\$11.0 m	\$9.9 m
Annual Energy Savings, MMBtu	313,352	740,529	211,704	298,825	168,797
Annual CO ₂ Savings, Tons	40,787	65,755	18,798	26,534	25,094
Annual NOx Savings, Tons	37.2	39.5	11.8	16.7	26.4

CHP's Emissions Savings Are Significant


Base Case marginal grid offsets based on Long Term Dispatch Model of Regional Utility Generation Resources

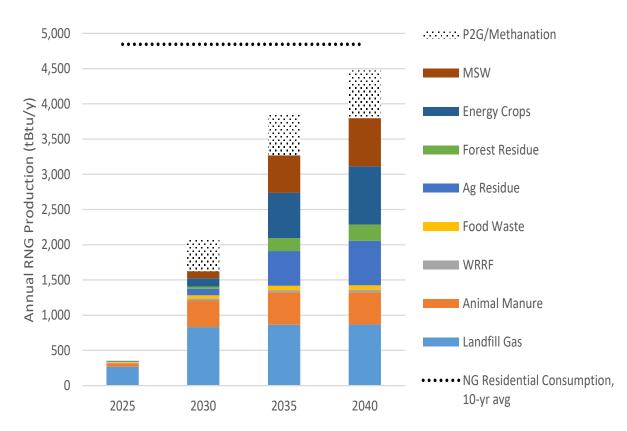
- Y1-4 average 95% coal, ~1,900 lb CO₂e/MWh
- \circ Y5-11 average ~55% coal, ~1,440 lb CO₂e /MWh
- $\circ~$ Y12 on, 100% NGCC, ~840 lb CO_2e /MWh
- $\circ~$ ~561 lb CO $_2e$ /MWh (net FCP heat rate of 4800, including 4.1% T&D loss reduction credit)
- $\circ~$ Capacity Factors: 95% for CHP, 20% for PV, and 35% for Wind

CHP saves more GHG emissions in 6 years as the same capacity of solar PV does in 35 years


Prepared by: Sterling Energy Group, LLC ©2020

CHP's Higher Efficiency Results in Energy and Emissions Savings Compared to Michigan's Grid

Estimating Future Emissions by eGRID Subregion Lifetime Carbon Emission Reductions for CHP Systems


AGA Key Findings

- RNG has the potential to offset natural gas demand equivalent to residential consumption
- Up to a **95% reduction** in residential GHG emissions from natural gas
- Cost competitive with other emission reduction strategies, \$55-300/ton of GHG emission reductions

18,000 16,000 14,000 7.652 12,000 High Resource Industrial Trillion BTU 13.963 Potential 10,000 **Technical Resource** Potential 8,000 3.318 Commercial 6.000 High Resource Potential 4.000 4.846 2.000 Residential Low Resource Potential 4.513 1.913 Natural Gas Demand by Sector **Renewable Natural** (2009-2018 Average) **Gas Potential**

Renewable Gas Potential

Estimated Annual Production

Technical Assistance Partnerships

Source: AGA Foundation, Renewable Sources of Natural Gas: Supply and Emissions Reduction Assessment, 2019

RNG Resource Potential

- CHP is a proven technology providing energy savings, grid benefits, reduced emissions, and opportunities for resiliency
- There is ~5 GW of CHP Technical Potential in Michigan
- CHP integration works well in microgrids and can complement solar and other clean energy sources.
- CHP systems provide a direct pathway to decreasing emissions today and through minimal modifications, can run on renewable fuels providing a viable pathway to a no-carbon energy supply.

Contact Information

Graeme Miller Senior Research Specialist Distributed Generation Energy Resources Center University of Illinois at Chicago

US DOE Midwest CHP TAP Assistant Director

> M: (773) 715-9850 gmille7@uic.edu

> www.energy.gov/chp

District Energy/CHP Systems for Resiliency & Sustainability

Rob Thornton

President & CEO

International District Energy Association

District Energy/CHP Systems for Resiliency & Sustainability MI Public Utilities Commission

MI Power Grid – New Technologies & Business Models

Robert P. Thornton President & CEO

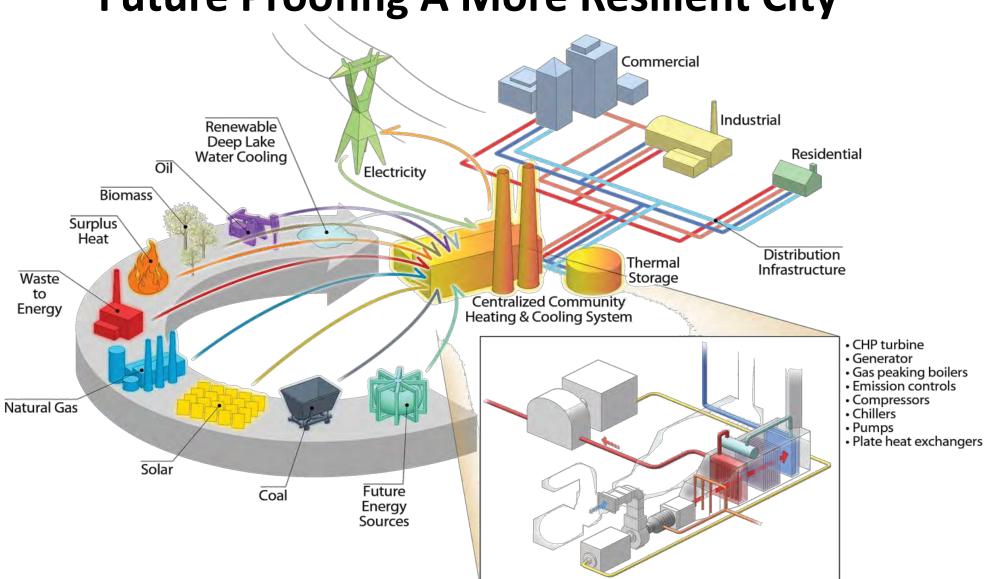
April 7, 2021

ABOUT IDEA

Formed in 1909: 112th year

501 (c) 6 industry association

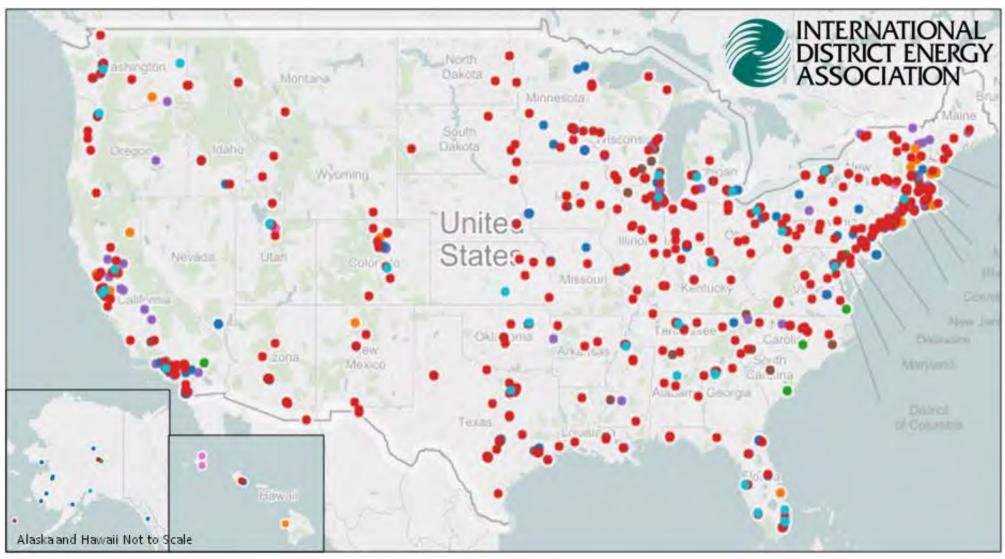
2500+ members - 26 nations


56% end-user systems, majority in North America: 48 states, 6 provinces

Major urban utilities, public and private universities & colleges, healthcare, pharma, airports, military bases, etc.

District Energy/CHP – Community Scale Energy Solution

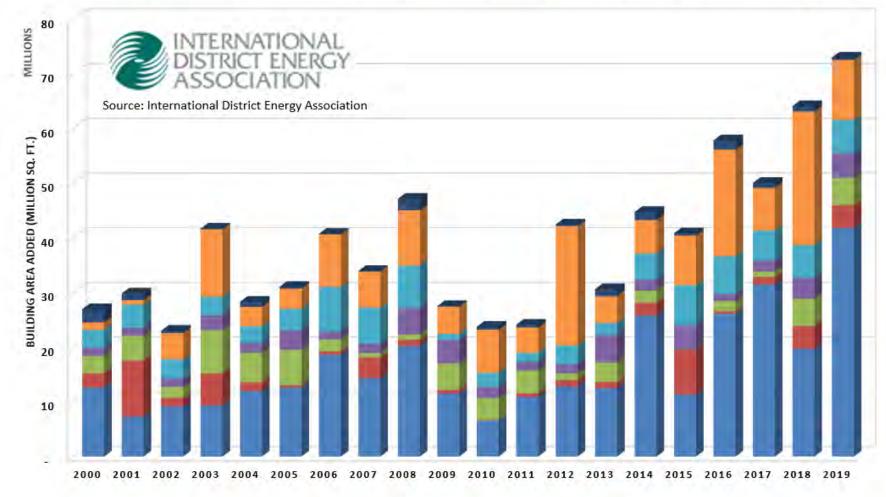
- Underground network of pipes "<u>combines</u>" heating and cooling loads of multiple buildings
- Aggregated thermal loads creates <u>scale</u> to apply technologies not feasible on single-building basis
- Creates a "<u>market</u>" for valuable thermal energy
- Fuel flexibility & distributed generation improves energy security, resiliency and strengthens local economy



Future Proofing A More Resilient City

Illustration, copyright AEI / Affiliated Engineers, Inc.

US District Energy Systems 2020



https://www.districtenergy.org/resources/resources/system-maps

District Energy Space Growth: North America

Annual Customer Space Committed by Building Type Building Area Added: 2000-2019 (million Sq. Ft.)

🔳 Commercial 🛢 Entertainment, Cultural or Sporting Center 📕 Government 🛢 Hotels 🛢 Residential 📕 School, Hospital or Institution 🔳 Other

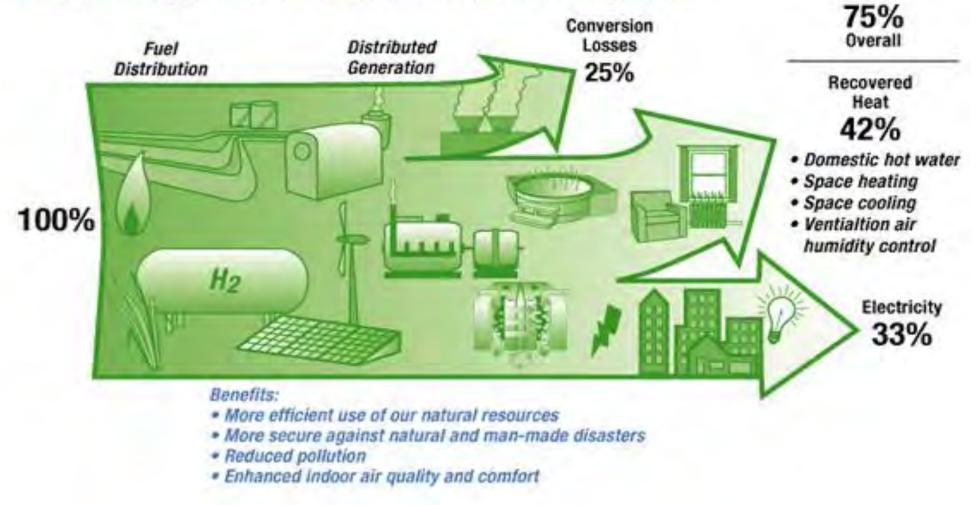
https://www.districtenergy.org/resources/publications/district-energy-space

IDEA District Energy Space - 2019

- Annual tracking new customers added to IDEA member systems
- In 2019:
 - Over 72 million SF North America
 - Over **108 million SF** Beyond North America (Middle East, Asia Pacific)
- Since 2000, over 2.5 billion SF reported!
- Report indicates building location; size; type (commercial, arena, hotel, etc); end use (heating, cooling, dhw, etc)

Why District Energy/CHP?

- CHP use of thermal improves energy efficiency, economics, environment
- Aggregated customer scale creates options for local resources; fuel flexibility
- Generate or buy power based on economics and/or carbon intensity
- Reduce both energy *use* and peak *demand;* avoid costly MW & fuel spikes

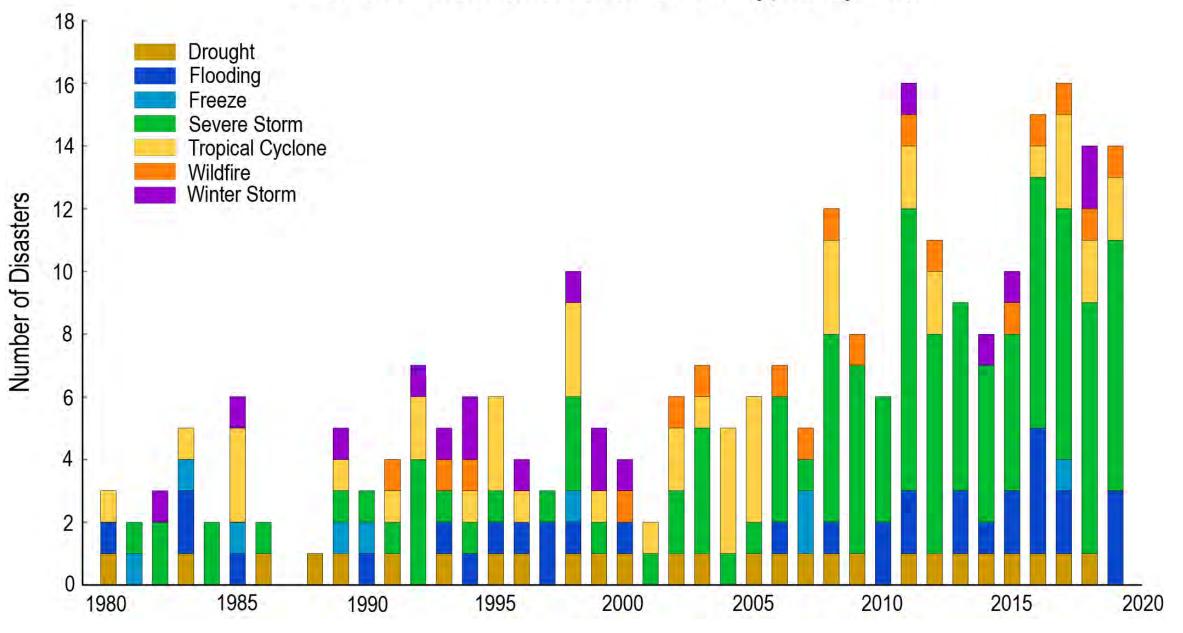

 Enables integration of thermal and power generation, thermal storage, renewables, balancing capacity to enhance grid & energy security

Provides self-sufficiency, resiliency and areas of refuge during extreme weather emergencies; support local grid and "mission-critical" customers by islanding

Opportunity: Generate Local Heat and Power

Combined heat and power solution to recycling waste heat: Distribute electricity generation to where waste heat can be recovered and put to use.

Source: NREL http://www.nrel.gov/dtet/about.html


U.S. 2020 Billion-Dollar Weather and Climate Disasters

This map denotes the approximate location for each of the 16 separate billion-dollar weather and climate disasters that impacted the United States from January-September 2020.

U.S. Billion-Dollar Disaster Event Types by Year

LATE-MONTH PATTERN

PACIFIC AIR CUT OFF POLAR

VORTEX

EXTREME

16:232 01/16/2014

PRINCETON UNIVERSITY 15 MWe District Energy/CHP

Stood up to Super Storm Sandy

Gas Turbine Generator

Solar PV Farm

Steam Generation (1) Heat Recovery Boiler (2) Auxiliary Boilers 15 MW

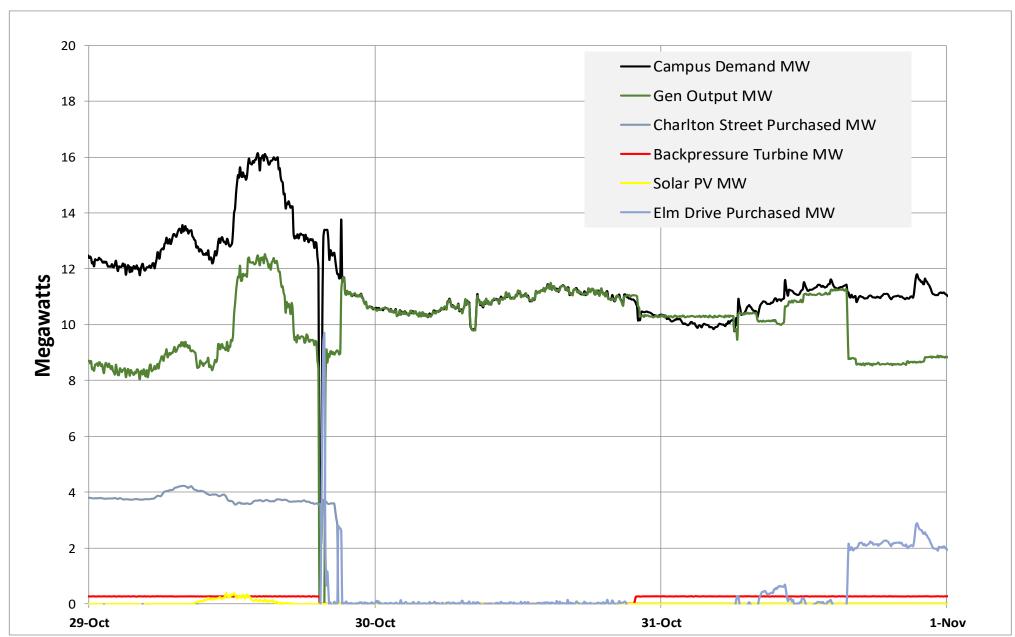
5.4 MW

180,000 #/hr 300,000#/hr

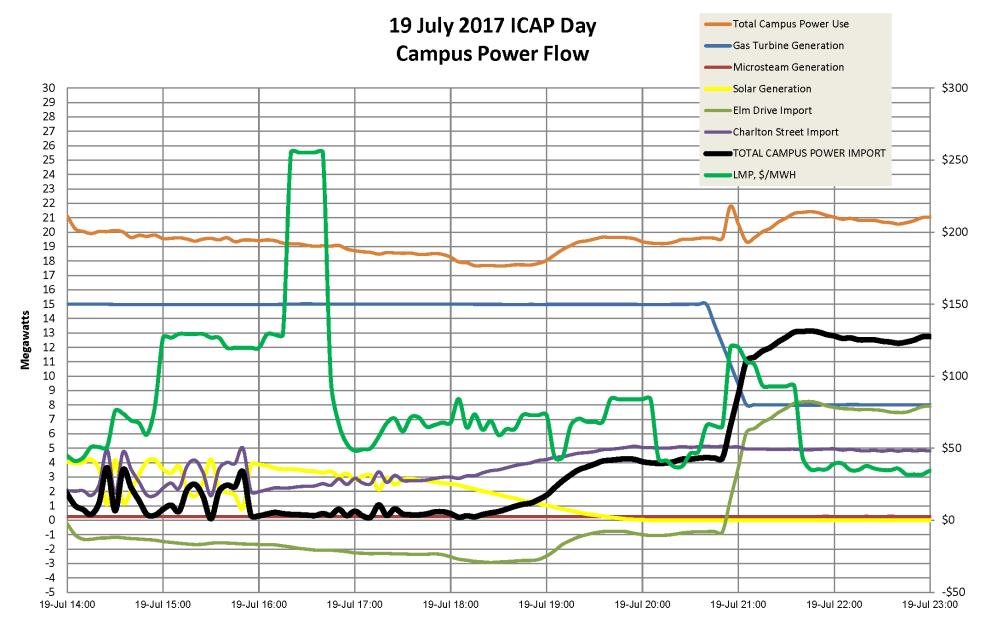
Chilled Water Plant (3) Steam-Driven Chillers (3) Electric Chillers

10,100 Tons 5,700 Tons

Thermal Storage5,000 Tons(2) Electric Chillers5,000 Tons(1) Thermal Storage Tank40,000 Ton-hours*peak discharge10,000 tons (peak)


11,800

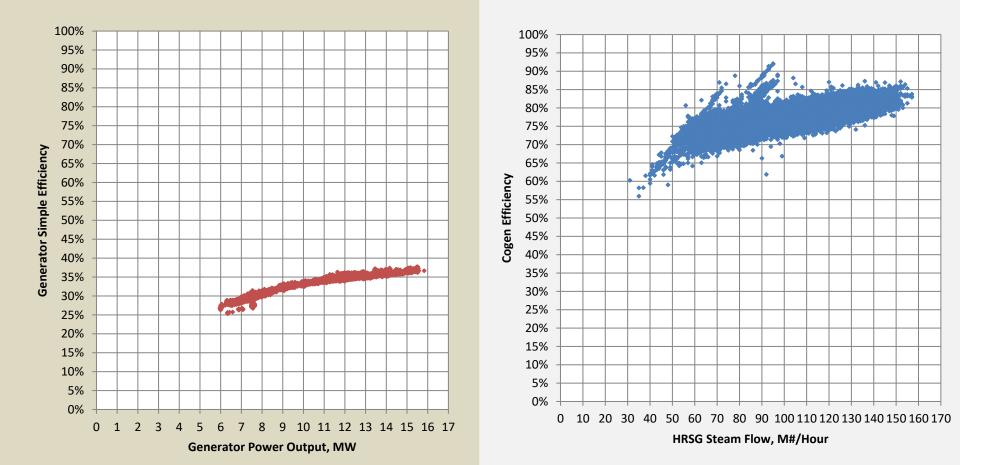
Campus Peak


240,00#/hr

27 MW

Campus Power During Super Storm Sandy

Princeton University – Blue Sky


How Much More Efficient is Combined Heat & Power?

Gas Turbine Simple-Cycle Efficiency

Oct 1, 2013 - Feb 14, 2014

Cogeneration System Total Efficiency

Oct 1, 2013 - Feb 14, 2014

Last month in Texas...

TECO currently serves 50 buildings 16 different institutions 22.7 million sq. ft of space

Texas Medical Center – Mission Critical

- TEXAS MEDICAL CENTER
- 10 million patients annually
- 110,000 employees
- 8th largest business district in U.S.
- 180,000+ surgeries annually
- 10,500 patient beds
- **\$2.5 billion** in annual life science research

tecothermalenergy.com

Thermal Energy Corp (TECO) – Houston, TX

48 MWe CHP provides efficiency to 80%+

- 16 MW of emergency power generation
- 980,000 Lbs per hour steam capacity
- 120,210 Tons chilled water capacity
- 8.8 million-gallons CHW TES tank
- Will save \$200 million over 15 years
- Reduced CO² by 302,000 tons per year
 - equivalent to displacing 52,000 cars
 - or planting 83,000 acres of new forest

- Began Microgrid operations in 1928 100% of power load
- 134 MW CHP, 1.2 MLbs steam capacity; 60,600 Tons CHW
- 18 Million SF; 150+ buildings; 71,000 daily population
- 99.9998% availability over 35+ years
- Water reclaim from AHU's yields over 66 M gal/yr
- Cut CO2 emissions by > 90,000 tons/year
- Now serve twice buildings SF (18M), with same volume fuel and carbon emissions as 1976 (9 M SF)

IL IL III O III II II O III

FIGURE 5.1

Effects of Utility Improvements

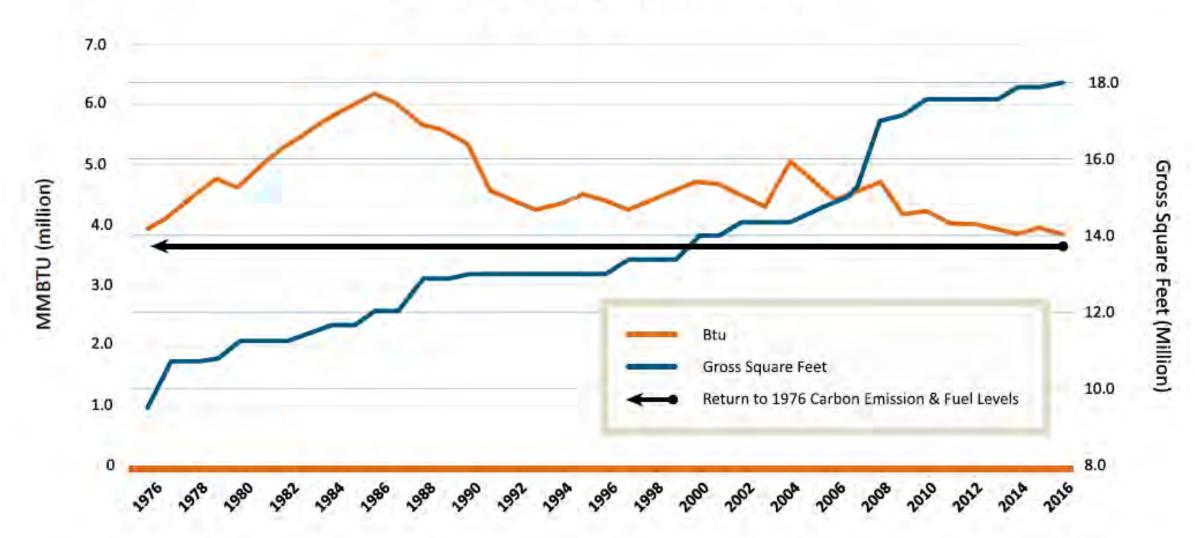
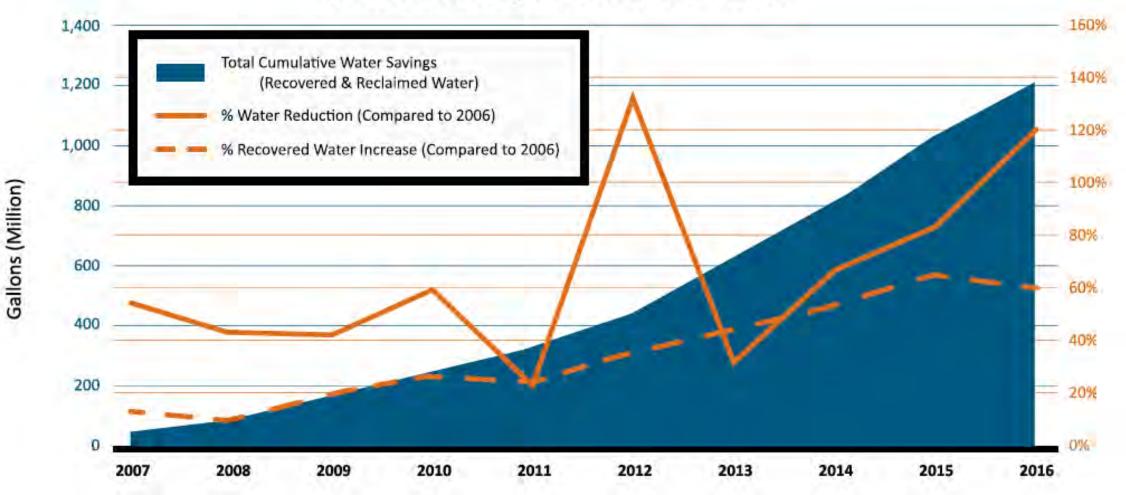



FIGURE 5.2

Water Saved (Energy Plants) Plant Efficiency & Recovered Water

Aging Infrastructure


The Washington Post

'No excuse': Atlanta airport power outage strands travelers in darkness for nearly 11 hours Dec 17, 2017

The New Hork Cimes

Power Failure at Airport Snarls Air Traffic Nationwide Dec 17, 2017

Capitol Hill District Energy – Washington, DC

Capitol Power Plant, Washington, DC - 7.5 MW CHP

HUDSON YARDS, NYC Related Companies

13 MW CHP Microgrid in two plants

Provides electricity, hot and chilled water to \$17B community

First-of-its-kind microgrid, with Con Edison allowing a commercial property to island from grid w/o manual intervention

image courtesy of related / oxford properties

MIT CHP - 2020

- Doubled CHP capacity from 22 to 44 MW; currently in commissioning
- Grid interruptions in 2012; concerns about resiliency
- Higher energy efficiency to offset 10% growth in energy demand from new buildings and research
- Critical to MIT's commitment to reducing campus GHG emissions at least 32% by 2030.

Harvard University District Energy CHP

Blackstone (orig 1902) – 5 MW backpressure turbine; 8 MW combustion turbine in 2015 New District Energy Facility 2019 – 5.2 MW Allston Campus Development

Kendall Station

Cambridge, MA

256 MWe plant reconfigured for CHP; 1.2 MLbs steam
Recovered heat previously "wasted" into Charles River
Infrastructure piping to interconnect Boston DH network
Mission-critical customers include health care; life sciences

Green Steam Reducing Boston's Carbon Footprint

Cuts carbon emissions by 475,000 tons/year, equivalent to:
Removing 80,000 cars from the streets annually
Installing 600 football fields of solar PV

Veolia Completes the Sale of Its District Energy Assets in the United States for USD 1.25 Billion to Antin Infrastructure

December 30, 2019

DISTRICT SYSTEMS •Atlanta, GA •Baltimore, MD Boston-Cambridge, MA •Grand Rapids, MI Kansas City, MO Morgantown, WV •Oklahoma City, OK •Philadelphia, PA •Tulsa, OK •Trenton, NJ •Watergate (Washington DC)

Brookfield Infrastructure agrees to sell Enwave for \$4.1bn 3 February 2021

Enwave Toronto

- Deep Lake Water Cooling commissioned in 2004
- 75,000 TR capacity and expanding w/ 2M gallon thermal storage
- Electricity use for cooling reduced by up to 90%
- 61MW demand & 85M kWh consumption reduced each year
- CO₂ emissions reduced by 79,000 Tonnes / Year
- Eliminates ozone depleting refrigerants, reduces harmful NO_x and So_x
- Environmental benefits equivalent to removing 15,800 cars from the road

- Chicago, IL
- Houston, TX
- Seattle, WA
- Los Angeles, CA
- New Orleans, LA
- Portland, OR
- Las Vegas, NV
- Toronto, ON
- London, ON
- Windsor, ON
- Charlottetown, PEI

Corporations deploying district energy

On the horizon...

- Headwinds for natural gas in some states
- Utility investment/P3 strategies infrastructure aggregation
- Enhanced value of resilience, business continuity

Energy can be local in a circular economy
Adapt central plant to future fuels (RNG; H2; SMR)
Scale matters. Carbon matters. Experience matters.

Emerging Trends in District Energy/CHP

- Institutions investing carbon neutral 2030; fossil free 2050 Campuses evaluate steam to HW, integrate geo-exchange
- Industry attracting \$ billions private capital
 - Acquisitions, concession agreements; corporate campuses
- IDEA 2021 District Energy project inventory aggregate Federal funding support (80+ projects; \$ 3+ Billion)
- Value of Resilience (VOR) gaining as metric; dispatchable
- Scale provides adaptive flexibility RNG; H2; CCS
- Carbon intensity market signal (by ISO's) (i.e. LMP 5 min interval price signal)

THANK YOU

Questions?

Rob Thornton rob.idea@districtenergy.org www.districtenergy.org + 1508 366 9339

Connect at www.districtenergy.org

Over 800 attendees; 100 speakers; 80+ technical sessions & panels recorded – still available to purchase access to content.

34th Annual IDEA Campus Energy Conference

Dates moved to September, planning for in-person event – TBD. Exhibits & Sponsors still available. Abstracts for program over-subscribed

Rob.idea@districtenergy.org

+1-508-366-9339

www.districtenergy.org

Making the Most of Michigan's Energy Future

New Technologies and Business Models Break: 2:05 – 2:15 PM

Stakeholder Meeting 6: Combined Heat & Power April 7, 2021

Panel: The Power of CHP – Roadblocks to Harnessing Its Opportunity

Moderator

Lynn A. Kirshbaum Deputy Director Combined Heat and Power Alliance

Chris Bixby Sales Engineer Clarke Energy USA

James Leidel Principal Markets Technical Consultant, DTE Gas

Kevin O'Connell Advanced Energy Systems Manager Michigan CAT & MacAllister Machinery

Panel: Speaking from Experience - CHP Motivations, Barriers, & Realities

Moderator

Lynn A. Kirshbaum Deputy Director Combined Heat and Power Alliance

Tim Lynch Plant Manager Benton Harbor-St. Joseph Joint Wastewater Treatment Plant

Jeff Means Energy Manager Veteran Affairs Medical Center Department of Veteran Affairs

Kathy Richards Associate Vice President Engineering & Planning/Facilities Northern Michigan University

BENTON HARBOR - ST JOSEPH WASTEWATER TREATMENT PLANT

producing clean water for the environment

COMBINED HEAT & POWER - 2021

Tim Lynch, Plant Manager April 7, 2021

BENTON HARBOR – ST. JOSEPH WWTP

FACILITY INFORMATION

> TREATMENT CAPACITY > AVERAGE DAILY FLOW > OPERATING BUDGET > CAPITAL BUDGET > INSURABLE VALUE > PERSONNEL > POPULATION SERVED

15.3 MGD 9.0 MGD \$3,057,240 \$4,440,000 \$61,631,000 **18 FULL TIME** 58,000

ANAEROBIC DIGESTION

Outside Resources / CHP Project

Currently in design phase of CHP Improvement Project to fulfill most if not all electrical and thermal needs of facility DOE Combined Heat and Power Technical Assistance Partnerships (CHP TAPs) Conducted a CHP Feasibility Analysis . Grant funds from Michigan Energy Office Construction costs of \$6 Million. CHP approximately \$4 Million

VA Ann Arbor

MI Power Grid New Technologies & Business Models Combined Heat and Power

Purpose

To comply with the Energy Independence and Security Act of 2007 and other relevant legislation and Executive Orders

- Reduce Energy Intensity
- Reduce Green House Gas Emissions
- To Save Energy and Operational Dollars
 - Every dollar saved on utilities (Electricity, Natural Gas and Water) is a dollar that can be spent of capital improvements, salaries, improvements in VA care for Veterans

Project

Located at VA Ann Arbor

- 1.2 Million gsf Tier 1A Medical Facility
- OR's, ICU's, MRI's, Linear Accelerators, Clinical Research
- 5 200 kW natural gas turbines in parallel with a waste heat recovery to generate steam

□ Installed in facility Energy Center utilizing a pad set aside for a future boiler.

Performance

Energy Production

- 8,400,840 kwh/yr
- 27,094,680 lbs steam/yr
- 64,757 MMbtu/yr Source generation credit (defined by the Department of Energy)

Fiscal

- \$373,315 savings per year
- Energy Goal
 - 25,469 MMbtu reduction/yr
 - ~ 2 avg month of natural gas consumption
 - ~ 45% of electric consumption
 - 2,628 MtCO2e reduction/yr

571 equivalent to vehicles off the road

Risk Management

- Utility cost fluctuations impact net savings \$\$\$
- Need a maintenance contract for the system to keep it operational
- Our installation was an early version and reliability is an issue.

Final analysis

■ Take aways

- PROJECT WAS SUCCESSFUL IN REDUCTION OF OUR ENERGY FOOTPRINT
- PROJECT WAS SUCCESSFUL IN REDUCTION OF GREENHOUSE GAS FOOTPRINT
- PROJECT HAS GENERATED A SIGNIFICANT NET ANNUAL COST SAVINGS.

JEFF MEANS ENERGY MANAGER VA ANN ARBOR, VA SAGINAW

NORTHERN MICHIGAN UNIVERSITY

Presentation-MI Power Grid Panel: Speaking from Experience – CHP Motivations, Barriers, & Realities April 7, 2021

CHP Presentation

Ms. Kathy Richards Associate Vice President Engineering and Planning/Facilities kathrich@nmu.edu, 227-1237

Objective: Share experience with existing CHP plant design, construction and operation along with considerations of potential future CHP project.

NORTHERN MICHIGAN UNIVERSITY

Ripley Energy Plant

CHP Plant Addition

Original Plant

NORTHERN MICHIGAN UNIVERSITY

Experience Highlights

CHP Plant Facts

- Completed July 2013
- \$17 Million project
- 42,000 lb/hr hybrid fire/water tube boiler
- 750 kW back pressure steam turbine/generator
- Capable of burning wood chips or natural gas
- Can meet 87% of campus thermal and 16% of electric needs
- 400 psig in and 85 psig out

Ripley Energy Plant

Boiler Water Tube Section & Economizer **Boiler Fire Tube Section**

Ripley Energy Plant

Backpressure Steam Turbine Generator

NORTHERN MICHIGAN UNIVERSITY

Making the Most of Michigan's Energy Future

New Technologies and Business Models Break: 3:45 – 3:50 PM

Stakeholder Meeting 6: Combined Heat & Power April 7, 2021

Waste Heat to Power: An Overlooked Zero Emission Energy Resource for Michigan's Industrial Sector

Patricia Sharkey

Executive Director, Heat is Power Association Policy Director, Midwest Cogeneration Association MPSC

Waste Heat to Power: An Overlooked Zero Emission Energy Resource for Michigan's Industrial Sector

Patricia F. Sharkey Executive Director Heat is Power Association

Policy Director, Midwest Cogeneration Association

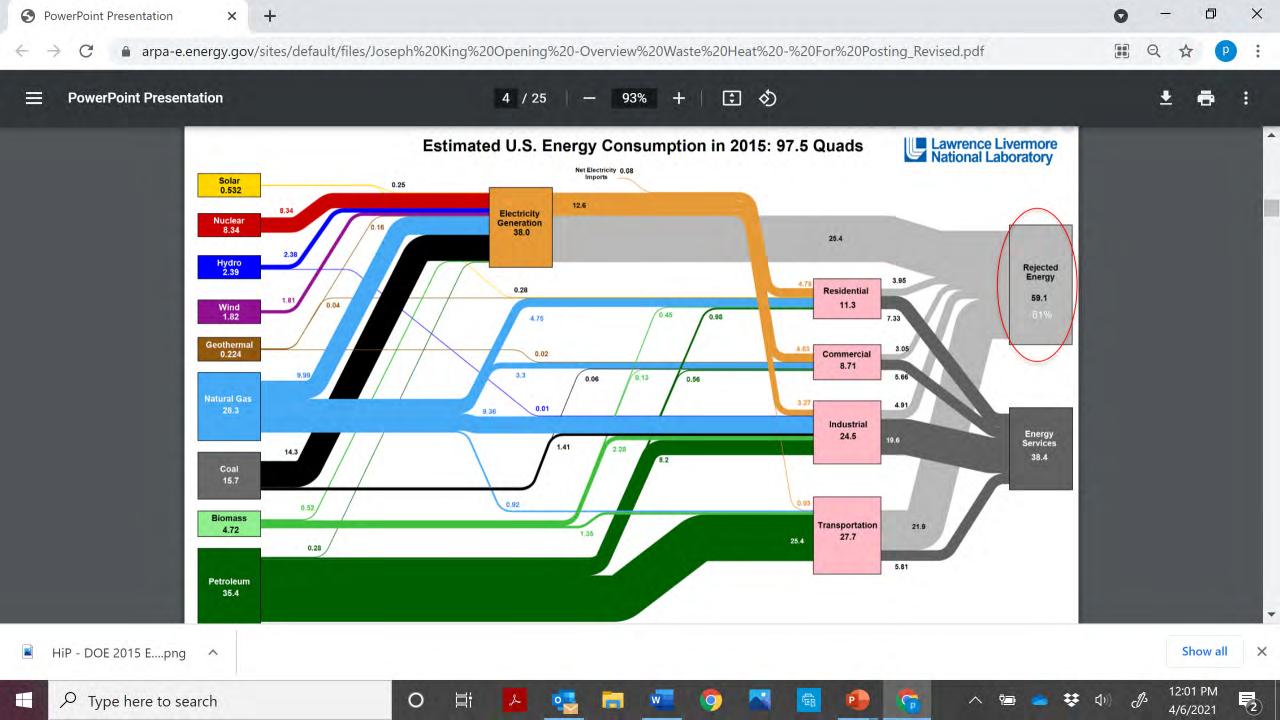
MI Power Grid New Technologies & Business Models Workgroup Workgroup Meeting #6 – April 7, 2021 Michigan Public Service Commission

The **Heat is Power Association** is the industry-led organization focused exclusively on advancing waste heat to power (WHP) through outreach, education and advocacy.

- Advocates in Congress for parity for WHP with other sources of clean energy
- Supports state efforts to incorporate WHP into their clean energy policies and programs
- Advocates for appropriate inclusion of WHP into DOE, EPA and other agencies' policies and programs
- Educates companies and industry groups about WHP opportunities
- Connects waste heat generators with solution providers
- Collaborates with clean energy organizations to

Waste Heat is an Energy Resource

- Solar and geothermal are "natural" heat energy resources that can be captured and converted to electric energy with appropriate technology
- "Waste heat" is the term used for heat energy that is generated as a <u>by-product of a man-made activity</u>, such as an industrial process, power generation, or a comfort heating system


How does WHP differ from CHP? Both Capture and Utilize a Waste Heat Resource

Combined Heat & Power

CHP systems generate electricity first and then capture the waste heat from the electric generation process for useful thermal purposes, e.g. as heat for industrial processes or building HVAC systems.

Waste Heat to Power

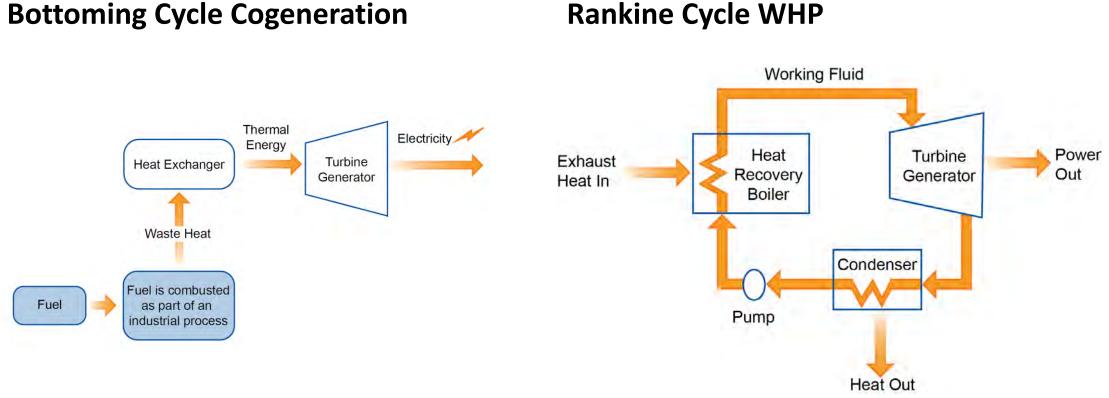
WHP systems capture waste heat first, e.g. from industrial processes or commercial building heating systems, and then convert it to electricity

WHP Opportunity: Decarbonizing the Industrial Sector

- 30% of all energy consumed in the US is consumed by industry
- 20% to 30% of this energy is lost as waste heat, ~ 5-13 quadrillion BTU/yr at a cost of \$20B-\$60B/year

Waste Heat Recovery: Technology and Opportunity in US Industry, Report for US DOE, BCS, 2008

Total WHP opportunity = 15 GW


ORNL Waste Heat to Power Market Assessment March 2015

WHP Is Emission Free

"Zero Emission" because "waste heat" is excess energy - the heat will be generated anyway regardless of whether the wasted portion is captured

- Every quantum of wasted heat recovered, increases the energy output of the fuel used and thus reduces its carbon intensity
- Another way of thinking about it: Less fuel is needed to produce the same quantum of product
- Thus, process or heating fuel costs are reduced and emissions (including conventional pollutants, not just CO2e) are reduced

WHP is a variety of technologies that capture waste heat and convert it to electricity.

Steam Turbine Technology

- <u>Primary Energy's North Lake</u> <u>Energy LLC</u> steam turbine WHP facility produces up to 90 MW of electricity, providing more than 20% of ArcelorMittal's electricity requirements.
- Increasing reliability of the plant electric supply, substantially reduces energy costs, and produces 215,000 fewer tons of carbon dioxide.
- 1500 °F exhaust heat from blast furnace gas recovery boilers

Organic Rankine Cycle (ORC)

- More than 90% of America's waste heat is generated at lower temperatures than steam turbines can economically capture.
- ORC technology captures heat from <u>lower temperature</u> heat sources.
- ORC is a heat exchanging process that utilizes a refrigerant for its working fluid rather than water, as used with steam turbines

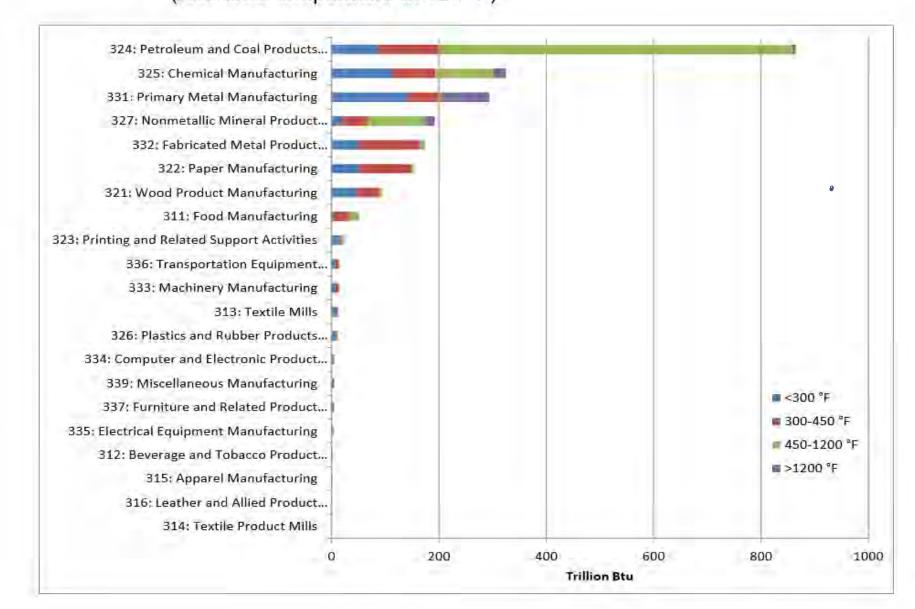
Low Temperature WHP

ARPA-e

Advanced Research Projects Agency – Energy

U.S. Department of Energy

1000 Independence Ave SW


Washington, DC 20585

"Around 60% of all energy in the U.S. is lost as waste heat; <u>90% of this waste heat is at</u> <u>temperatures less than 200°C</u> and termed low grade because of the inability of most heat-recovery technologies to operate effectively in this range."

"The capture of low-grade waste heat, which turns excess thermal energy into useable energy, has the potential to provide consumers with <u>billions of dollars in energy</u> <u>savings per year."</u>

Also see ARPA-e *Lower Grade Waste Heat Workshop* December 13 - 14, 2016 San Francisco, CA <u>https://arpa-e.energy.gov/sites/default/files/Joseph%20King%20Opening%20-Overview%20Waste%20Heat%20-%20For%20Posting_Revised.pdf</u>

Figure 10. Manufacturing Sector Waste Heat Inventory by Industry and Temperature Range (reference temperature at 120 °F)

Examples of Emerging Low Temp WHP Technologies

Thermoelectrics

Nanoantennas fabricated onto flexible material in tightly packed arrays and placed near heat sources, such as condensers or heat exchangers, harvest low grade radiant heat to produce DC power.

Thermoaccoustics

Uses low-grade waste heat from factory exhaust to generate acoustic waves that power a turbine providing a 20% thermal to electric conversion.

Shape Memory Alloys

Stretched wire made of shape memory alloy is heated and then shrinks back. Require as little as a 10°C temperature difference to convert low-grade waste heat to drive an electric generator.

Pressurized Hydrogen

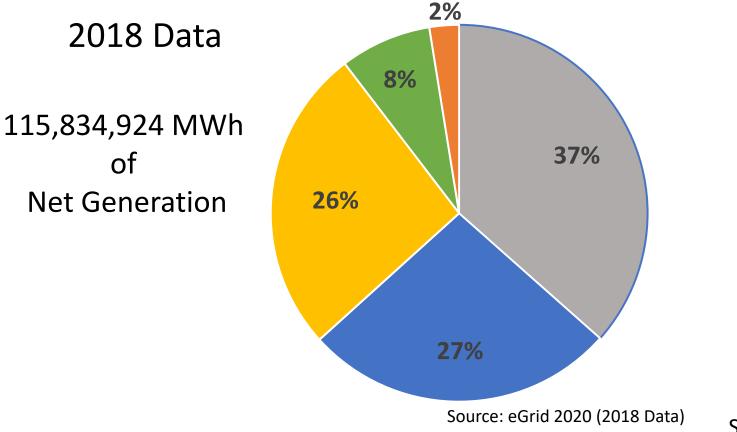
System cycles between heating and cooling a metal hydride at small temperature differences to produce a flow of pressurized hydrogen that is routed to a turbine.

Examples of New and Developing Waste Heat to Power Technologies and Applications

- Improving efficiency and reducing costs of ORC utilizing low temperature heat
 - <u>https://www.sciencedirect.com/science/article/pii/S136403211731198X</u>
- ORC applications at higher heat temperatures
 - <u>https://www.energy.gov/sites/prod/files/2019/06/f63/1912-</u> <u>ElectraTherm%20ORC-041019_compliant_0.pdf</u>
- ORC utilizing supercritical CO2 as working fluid
 - <u>https://www.siemens-energy.com/global/en/news/magazine/2020/waste-heat-to-power-with-sco2-turbines.html</u>
- Nanotechnologies and thermoelectric generation systems
 - <u>https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetai</u>
 <u>l/abstract/9006/report/F</u>
 - <u>https://www.futurity.org/carbon-nanotubes-waste-heat-recycling-solar-energy-2105802/</u>

Estimated Waste Heat to Power Capital and O&M Costs*							
Technology	Cost Type	Electric Capacity Cost for 2 Major WHP Technologies					
		50-500 kW	500-1,000 kW	1-5 MW	5-20 MW	>20 MW	
Steam Rankine Cycle	Installed Capital Cost, \$/kW	\$3,000	\$2,500	\$1,800	\$1,500	\$1,200	
	O&M Costs, \$/kW h	\$0.013	\$0.009	\$0.008	\$0.006	\$0.005	
Organic Rankine Cycle	Installed Capital Cost, \$/kW	\$4,500	\$4,000	\$3,000	\$2,500	\$1,900	
	O&M Costs, \$/kWh	\$0.018	\$0.014	\$0.012	\$0.011	\$0.009	

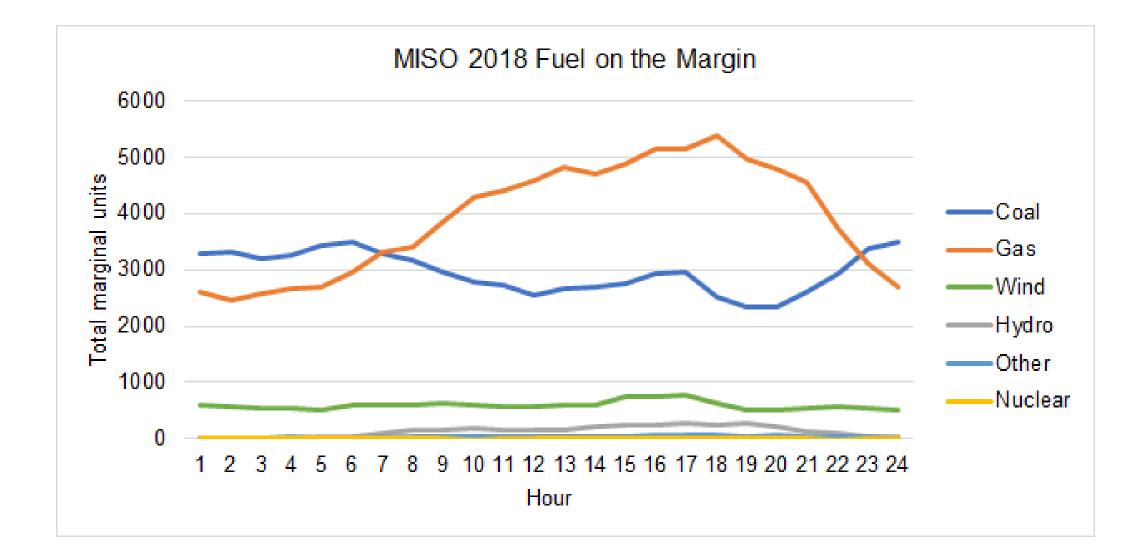
New Federal Investment Tax Credit for WHP Helps Reduce Cost

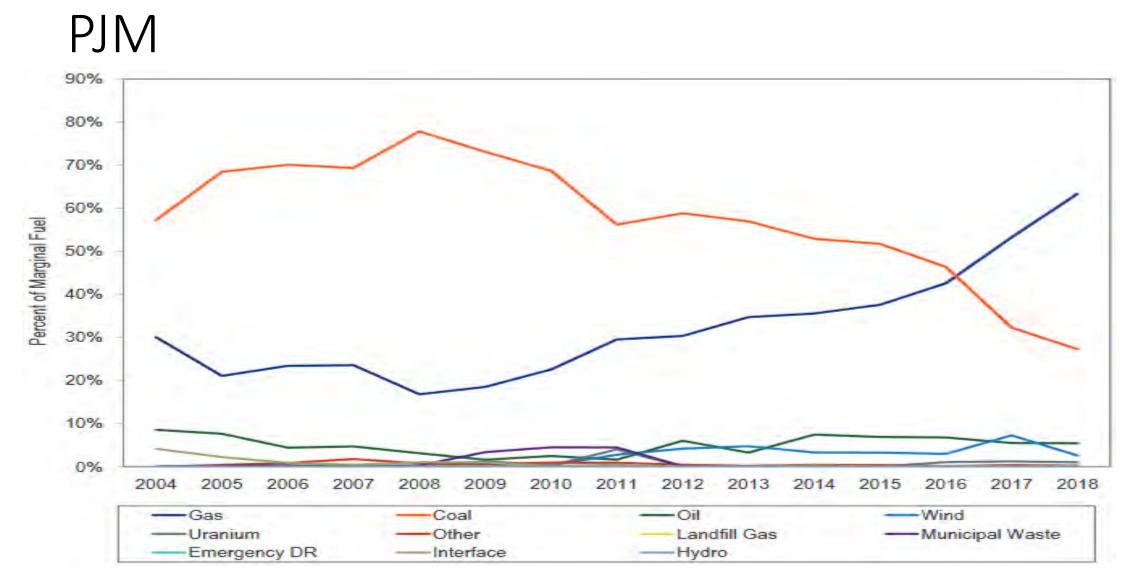

- Investment Tax Credit (ITC) 2021, Consolidated Appropriations Bill (Enacted Dec. 2020)
- U.S. Internal Revenue Code Section 48(a) and (c)(5)
 - "Waste Energy Recovery Property" eligible for:
 - "...generates electricity solely from heat from buildings or equipment..."
 - 26% tax credit Commence Construct Jan. 1, 2021 to Dec. 31, 2022
 - 22% tax credit Commence Construct Jan. 1, 20213 to Dec. 31, 2023*

This the same level of ITC that is available to wind and solar energy!

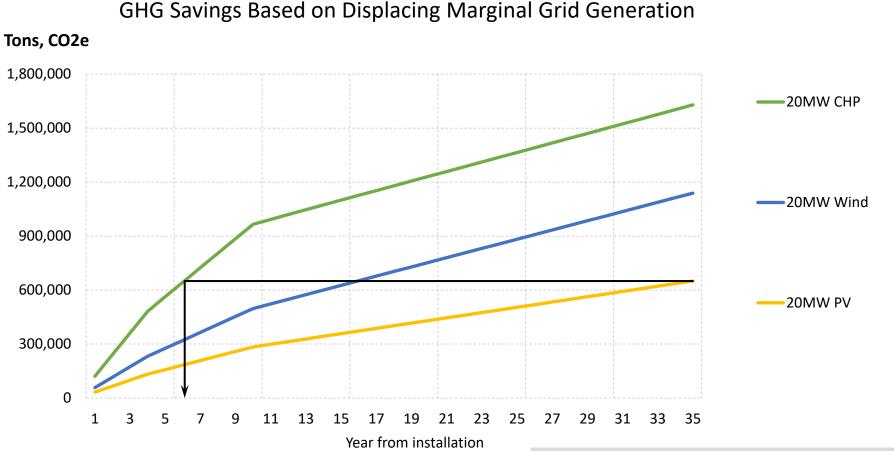
*Biden Infrastructure Bill expected to extend this credit

CHP and WHP in Michigan: Opportunity and Policy Barriers


Current Electricity Landscape in Michigan



- State annual gas net generation (MWh)
- State annual nuclear net generation (MWh)
- State annual total renewables net generation (MWh)
- State annual other fossil net generation (MWh)


Slide from Graeme Miller Presentation

PJM Historic Fuel on the Margin

CHP & WHP's Carbon Reductions Exceed Those of Renewables Based on Load Factor

Base Case marginal grid offsets based on Long Term Dispatch Model of Regional Utility Generation Resources

- \circ Y1-4 average 95% coal, ~1,900 lb CO₂e/MWh
- \circ Y5-11 average ~55% coal, ~1,440 lb CO₂e /MWh
- $\,\circ\,$ Y12 on, 100% NGCC, ~840 lb CO_2e /MWh
- $\circ~$ ~561 lb CO_2e /MWh (net FCP heat rate of 4800, including 4.1% T&D loss reduction credit)
- $\circ~$ Capacity Factors: 95% for CHP, 20% for PV, and 35% for Wind

CHP saves more GHG emissions in 6 years as the same capacity of solar PV does in 35 years

Graph and Analysis Prepared by: Sterling Energy Group, LLC $\,$ ©2020 $\,$

Slide from Graeme Miller's presentation

CHP's Higher Efficiency Results in Energy and Emissions Savings Compared to Michigan's Grid (Average Fossil Generation)

Category	10 MW CHP	<mark>10 MW</mark> WHP	10 MW PV	10 MW Wind	10 MW NGCC
Annual Capacity Factor	85%	<mark>85%</mark>	24.3%	34.3%	57.6%
Annual Electricity, MWh	74,460	<mark>74,460</mark>	21,287	32,762	50,458
Annual Useful Heat Provided, MWh _{th}	97,505	None	None	None	None
Capital Cost, \$ million	\$20.2 m	<mark>\$15.0 m</mark>	\$10.0 m	\$11.0 m	\$9.9 m
Annual Energy Savings, MMBtu	313,352	<mark>740,529</mark>	211,704	298,825	168,797
Annual CO ₂ Savings, Tons	40,787	<mark>65,755</mark>	18,798	26,534	25,094
Annual NOx Savings, Tons	37.2	<mark>39.5</mark>	11.8	16.7	26.4

Slide from Graeme Miller presentation

WHP is a Zero Emission, Fuel Neutral, Baseload Energy Resource Displacing Fuels on the Margin

- WHP is a <u>zero emission resource</u> reducing more CO2e than solar and wind
- Because WHP provides <u>baseload</u> power (24/7)
 - It displaces marginal fossil fuel resources that must be used when Michigan's intermittent solar and wind are not available.
- <u>Fuel Neutral.</u> Whenever baseload RNG, battery and/or CCS technologies become available, WHP technologies will still be making Michigan businesses more competitive by reducing fuel or stored energy consumption

Michigan Energy Policy Disincentivizes CHP and WHP

→Michigan provides Renewable Energy Credits (RECs) for renewable resources and energy waste reduction credits (EMRs) for energy conservation

→However, Michigan provides no incentives for CO2e reductions that can be achieved through distributed CHP and WHP generation

→This disincentivizes the development of clean distributed generation resources in Michigan's large C&I Sectors

Michigan energy policy is tilting the economics of clean energy in favor of "renewables", regardless of CO2e reductions.

Michigan's Renewables Only Policy:

- Discourages private investment in CHP and WHP – which can leverage public \$\$ spent on generation resources

- Ignores value of baseload resources that can supplement utility owned generation, stabilize grid resources and complement renewable energy resources

- Ignores large CO2e reductions that can be achieved today in the C&I Sectors with available CHP and WHP technologies and available fuels

- Misses an opportunity to make Michigan's industrial sector more competitive

HiP's Michigan Policy Prescription

Michigan should revise its energy policies to incentivize CHP and WHP along side Renewables.

Specific Proposals:

- →Create "tech neutral" incentives based on actual carbon reductions, rather than labels
- \rightarrow Alternative:

→Add WHP to Michigan RPS (as eligible technology for Michigan RECs)

- →Include CHP in an "Advanced Clean Energy" Portfolio Standard
- → Provide robust incentives for other Industrial Energy Efficiency Projects

Patricia F. Sharkey

Executive Director, Heat is Power Association

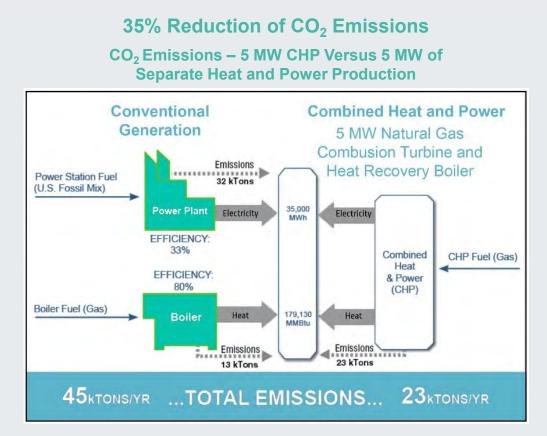
Pat@heatispower.org

Policy Director, Midwest Cogeneration Association

The Future of CHP: Reducing Emissions and Improving Resilience

Lynn A. Kirshbaum

Deputy Director Combined Heat and Power Alliance



The Future of CHP: Reducing Emissions and Improving Resilience

Lynn A. Kirshbaum Deputy Director, CHP Alliance April 7, 2021 MI Power Grid Workgroup Presentation

Overview of CHP: Emissions

- CHP uses a single fuel source to generate both heat and electricity. CHP's key advantage is efficiency – more than twice the energy efficiency of the average power plant.
- CHP uses less fuel to provide the same energy services, so it can reduce all emissions including criteria pollutants and GHG emissions.

Source: U.S. EPA, 2015, https://bit.ly/2E2IByK.

Overview of CHP: Emissions

CHP systems reduce emissions because they:

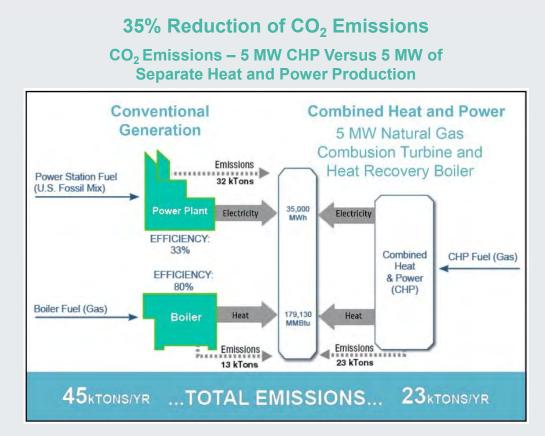
- Are highly efficient
- Displace higher-emitting marginal grid resources
- Have a high capacity factor
- Enable intermittent renewable resources
- Can use lower-carbon fuels
- Can be paired with carbon capture

chpalliance.org / @chpalliance / Combined Heat and Power Alliance

Case Study: Eastern Michigan University

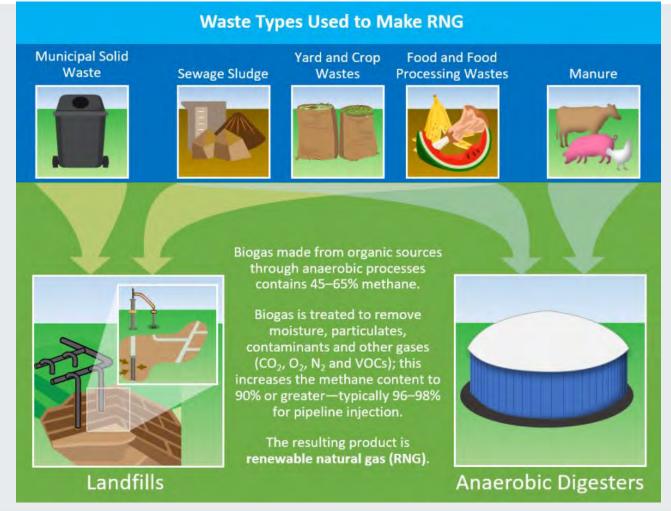
- Location: Ypsilanti, MI
- Size:
 - 7.8 MW
- Facility Type: University
- Facility Size: 800 acre campus
- Emissions Benefits: CO2 annual savings of approximately 48,800 metric tons, equivalent to removing more than 10,700 passenger vehicles from the road
- Estimated annual cost savings of \$2.8 million

For additional information, see: https://chptap.lbl.gov/profile/65/EasternMichiganUniversity-Project_Profile.pdf



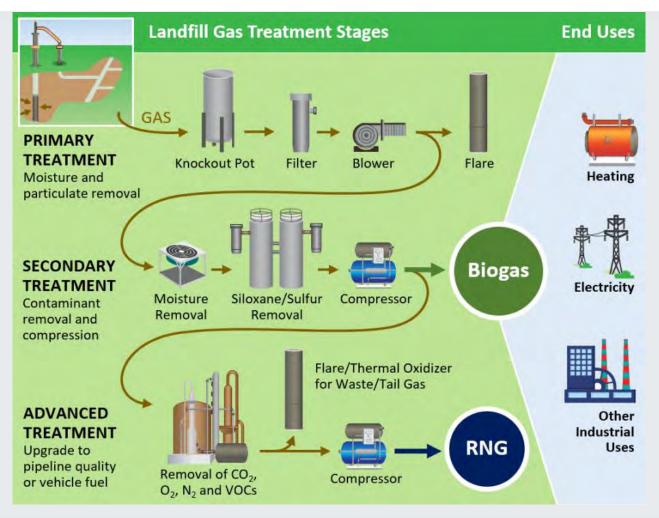
chpalliance.org / @chpalliance / Combined Heat and Power Alliance

CHP and Lower-Carbon Fuels


- CHP units can be fueled by renewable and lower-carbon fuels such as biogas, RNG or biomethane, and hydrogen, or "CHP 2.0."
- Use of these fuels can allow CHP systems to reduce emissions even further.
- Using existing gas pipeline infrastructure could be a low-cost option for delivering these fuels.

Source: U.S. EPA, 2015, https://bit.ly/2E2IByK.

Lower-Carbon Fuels: Biogas and RNG



Source: U.S. EPA, <u>https://www.epa.gov/lmop/renewable-natural-gas</u>.

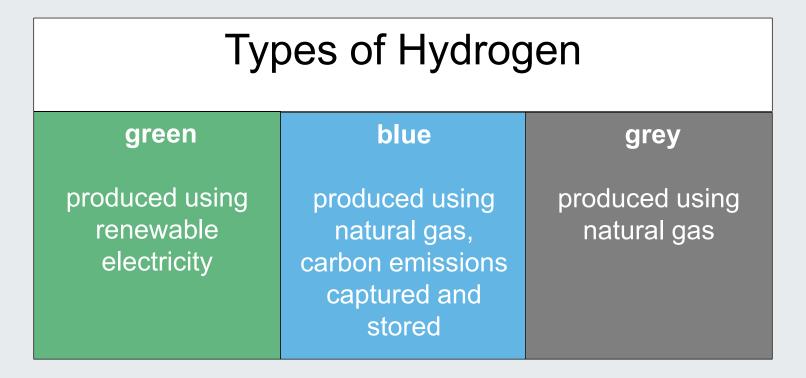
chpalliance.org / @chpalliance / Combined Heat and Power Alliance

Lower-Carbon Fuels: Biogas and RNG

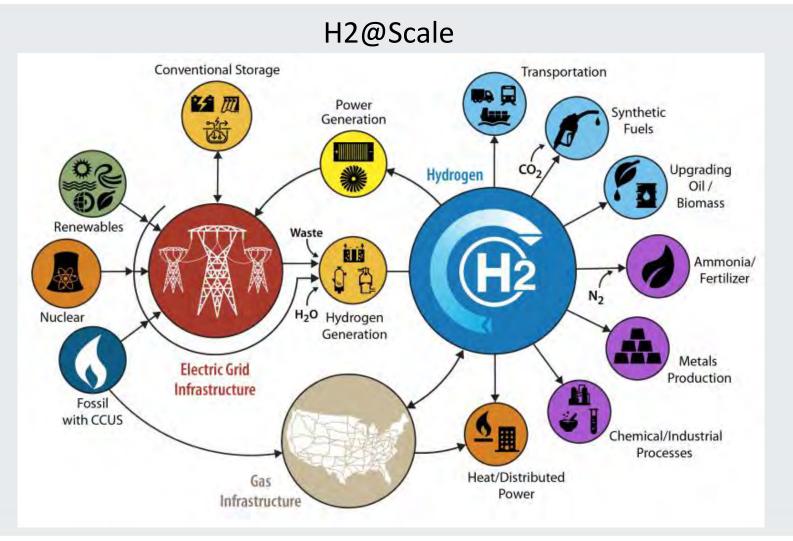
Source: U.S. EPA, <u>https://www.epa.gov/lmop/renewable-natural-gas</u>.

chpalliance.org / @chpalliance / Combined Heat and Power Alliance

Case Study: Bell's Brewery


- Location: Galesburg, MI
- Size:
 - 150 kW CHP
- Facility Type: Brewery
- Facility Size: 130,000 square feet
- Microbes in anaerobic digesters feed on sugar and malt leftover from the brewing process, converting these biological wastes into biogas, which is used in the CHP system.

For additional information, see: https://chptap.lbl.gov/profile/299/BellsBrewery-Project_Profile.pdf


Lower-Carbon Fuels: Hydrogen

chpalliance.org / @chpalliance / Combined Heat and Power Alliance

Lower-Carbon Fuels: Hydrogen

chpalliance.org / @chpalliance / Combined Heat and Power Alliance

Source: U.S. DOE Hydrogen and Fuel Cell Technologies Office, https://www.energy.gov/eere/fuel cells/h2scale.

Overview of CHP: Resilience

- Increased reliance on the electric grid increases the impact grid disruptions have on businesses, industry, and communities.
- CHP can reliably deliver power and thermal energy locally for critical infrastructure.
- CHP systems can support industrial and manufacturing facilities that are essential to the reliable supply of food and health and safety products.

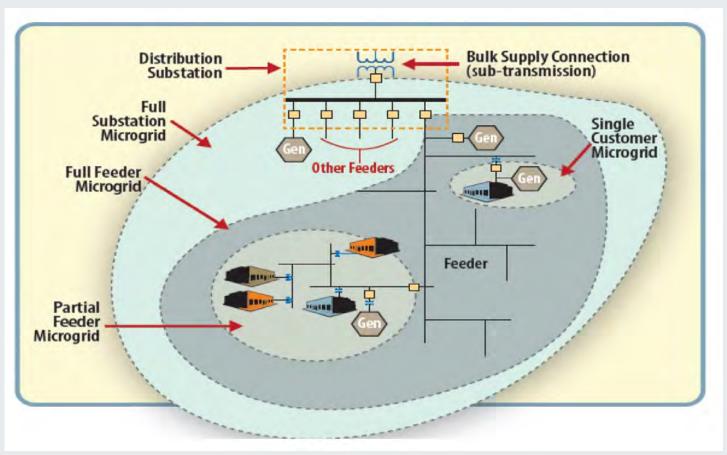
Matrix of DER Vulnerability to Weather Events

Natural Disaster	Flooding	High Winds	Earthquakes	Wildfires	Snow/Ice	Extreme Temperature
or Storm Events	**	3		\$	*	
Battery Storage	Θ	0	Θ	0	0	$\overline{\bigcirc}$
Biomass/Biogas CHP	$\overline{\bigcirc}$	Θ	Θ		Ō	0
Distributed Solar	0	Θ	Θ	\bigcirc	Θ	Θ
Distributed Wind	0	Θ	Θ	Θ	Θ	Θ
Natural Gas CHP	0	0	Θ	Θ	0	0
Standby Generators	Θ	0	Θ		Θ	0
 any impacts indicates the resourd two, or three impacts 	during each type of di llihood of experiencin rruption, ment, tations, or eed shutdown ce is unlikely to experier ce is likely to experier	^{g:} Bett Distr bice one, <u>http</u>	ributed Energy s://betterbuil	<pre>/ Resources l dingssolution</pre>	Disaster Mat	y. "Issue Brief: rix." gy.gov/sites/def ts Issue%20Brid

chpalliance.org / @chpalliance / Combined Heat and Power Alliance

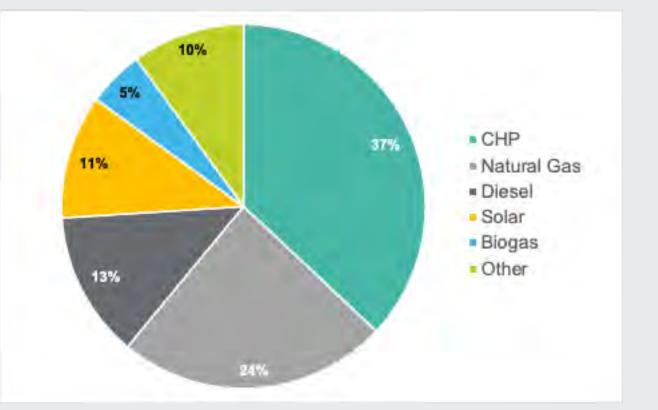
Case Study: Ann Arbor VA Healthcare System

- Location: Ann Arbor, MI
- Size:
 - 1,000 kW CHP
- Facility Type: Healthcare
- Facility Size: 1.1 million square feet
- Emissions Benefits: Reduces GHG emissions by more than 2,628 metric tons annually
- Yearly savings of more than \$373,000


For additional information, see: https://chptap.lbl.gov/profile/13/AnnArborVA-Project_Profile.pdf

CHP and Microgrids

The Role of Microgrids in Helping to Advance the Nation's Energy System



Source: U.S. Department of Energy Office of Electricity, https://www.energy.gov/oe/activities/technology-development/grid-modernization-and-smart-grid/role-microgrids-helping.

CHP and Microgrids

Microgrids in the U.S. by Technology Type (Percent of Total Generating Capacity)

Source: Consulted ICF Microgrid Database, determined CHP's capacity in operational microgrids.

- CHP is a key component for microgrids
 - Option to disconnect during disasters, outages
 - CHP provides 37% of power for existing microgrids
 - CHP, WHP are a less expensive backbone resource than storage
 - CHP and WHP in microgrids enables deployment of zero emission resources

Microgrid Case Study: Montgomery County (MD) Public Safety Headquarters

- Location: Gaithersburg, MD
- Size:
 - 865 kW CHP
 - 2 MW Solar
- Facility Type: Administrative facility for crucial public services
- Facility Size: 400,000 square feet
- Emissions Benefits: Reduces GHG emissions by 5,900 metric tons annually, equivalent of taking more than 1,200 cars off the road
- The project includes multiple clean energy technologies integrated seamlessly as part of a microgrid.

For additional information, see: https://chptap.lbl.gov/profile/135/MoCoPublicSafetyHQ-Project_Profile.pdf

chpalliance.org / @chpalliance / Combined Heat and Power Alliance

COMBINED HEAT AND POWER ALLIANCE

Questions?

COMBINED HEAT AND POWER ALLIANCE

Thank you.

Lynn A. Kirshbaum

Deputy Director

Aisin mCHP Development

Tom Miller

General Manager Emerging Regulations & New Technology Research Aisin Technical Center of America

FISHER For the Sector

Aisin mCHP Development Southeast Michigan Project

Tom Miller – General Manager, Regulations & Research Aisin Technical Center of America

AISIN Corporation

AISIN = "EYE+SHIN"

Aisin was formed through a merger in 1965 between auto parts manufacturers <u>Ai</u>chi Kogyo and <u>Shin</u>kawa Kogyo.

• 214 consolidated and affiliated group companies, operating over 20 countries

• 110,000 employees worldwide

AISIN Corporation

Parent Company: Based in: Established: Aisin Corporation Kariya City, Aichi, Japan August 31, 1965

	Global	North America
Net Sales	\$35 billion	\$5.2 billion
Employees	110,000	15,000
Subsidiaries	214 consolidated	39 domestic companies
Standing	6 th largest	13 th largest

2020 Coremo mCHP Installation

Location:

Oakland County, MI 48025 (Southeast, MI)

<u>Info:</u>

- Single Family Home 2 Adults, 2 Children (22), (17)
 - 2718 Square feet (252.5 Square Meters)
 - 4 Bedrooms
 - 2.5 bathrooms
- Forced air natural gas furnace
 - Furnace replaced by home owner March 2020

- Natural gas domestic hot water tank
- Electric central Air Conditioner
- Natural gas clothes dryer
- Natural gas cook stove
- Natural gas BBQ grille
- Electric double oven
- Electric heat hot tub (360 gallon)
- LED and CFL light bulbs throughout house

Purpose

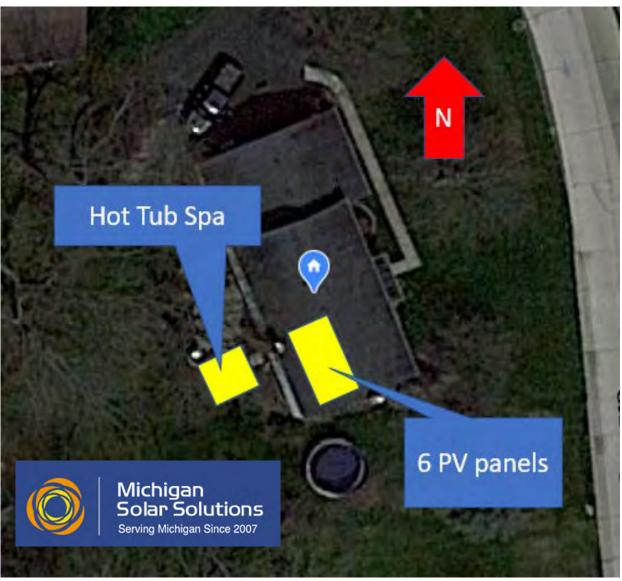
We Touch the Future

- To test the system which provides onsite power generation to cover electric base load
- To identify ideal energy storage for residential application, and blackout solution.
- To effective utilize the generated heat while reducing CO2 produced from typical fossil fueled power generation plants
- To identify the balance of system while reducing overall system cost and provide design flexibility for the home builders.

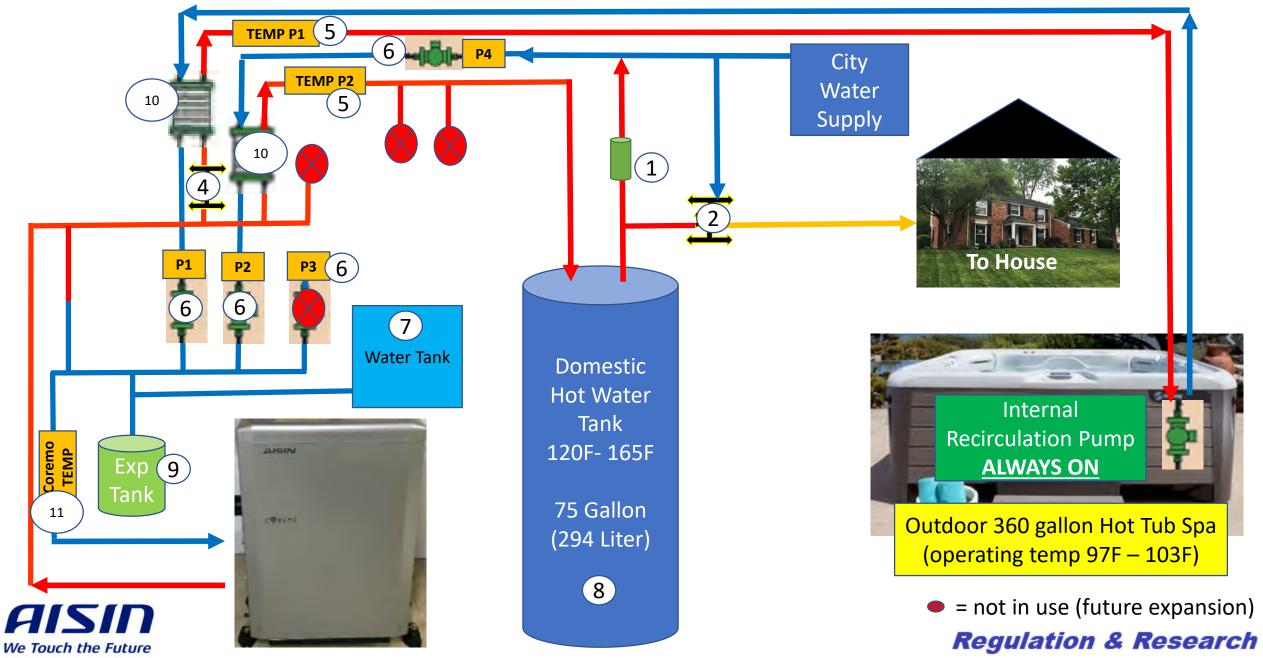
COREMO = "This or That"

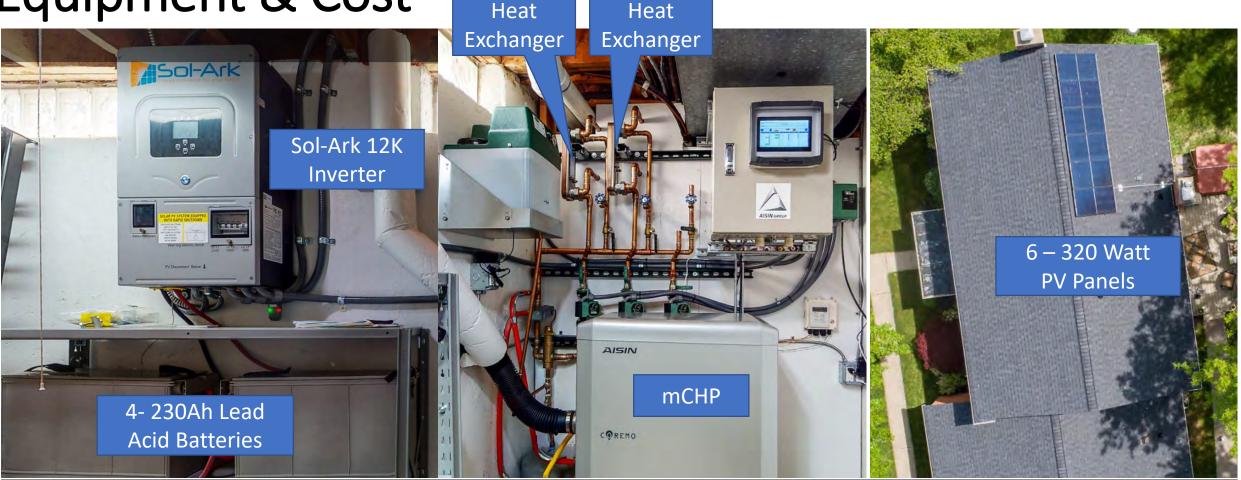
HI, I'm COREMO

Dimensions = 48"H x 28"L x 15"W


Benefits of Aisin mCHP

- Reduce the need and dependency on electricity from the grid
- Lower total energy costs
- Clean power generation (Low NOx and CO2)
- Black out power protection / generation
- Off grid applications
- Provide power to remote areas (LP)
- Support areas where grid is over stressed
 - Growth of electric vehicles power demand
 - Highly populated regions with old grid infrastructure (NY)
 - California (wildfires, grid concerns, lack of capacity)
- Potential use of recycled EV/hybrid batteries

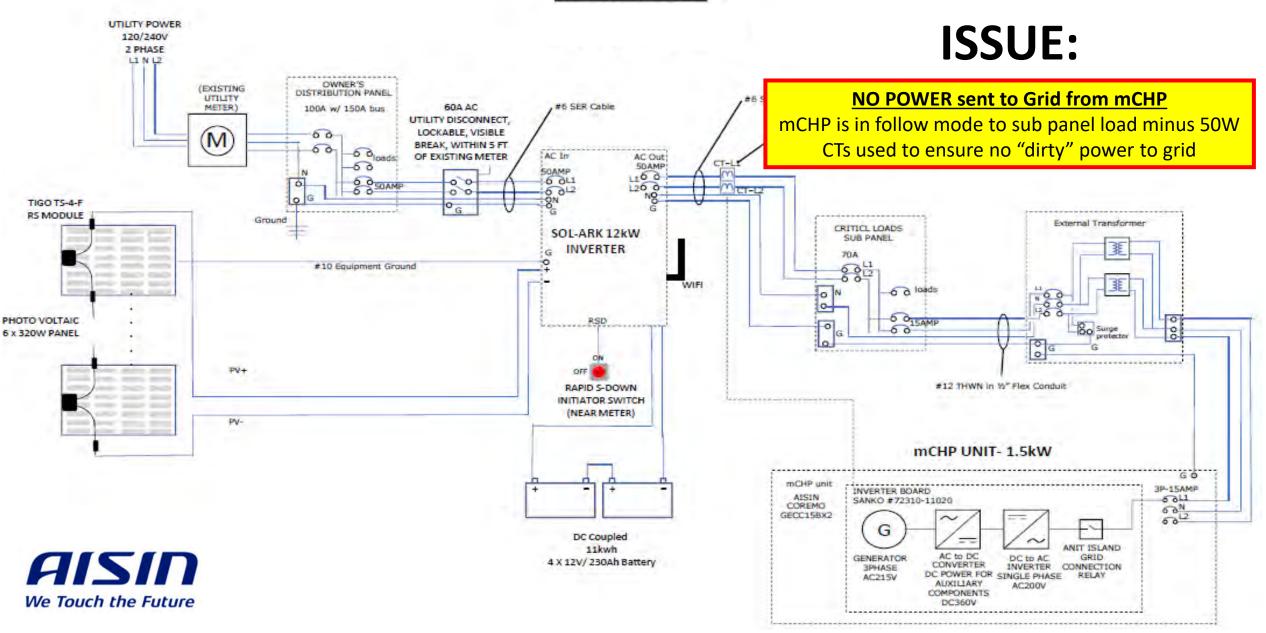

2020 Coremo Installation Plan


We Touch the Future

- Install Coremo mCHP unit (1.5 kW)
- Route the Coremo liquid heat (13,000 BTU) from engine through 2 heat exchangers
 - 1. Heat 360 gallon hot tub (spa) water to reduce the need for electric heat
 - 2. Heat 75 gallon domestic hot water tank
- Install 6 PV solar panels on the Southwest corner of the roof. (320 watts each)
- Add 4 230Ah lead acid deep cycle carbon batteries
 - Back up power
 - Blackout restart
- Request permission for interconnection to grid from DTE

Hydronics Diagram

Equipment & Cost



- Overall Approximately ~ \$40,000
 - Standard system CHP main unit and DHW storage with install (\$15,000)
 - PV, main inverter, battery with install (\$17,500)
 - Hydronic system with pumps and controls (\$7,500)

Wiring Line Diagram

3-LINE-MILLER

DTE Interconnection Application - Approval

Distributed Generation (DG) Tariff Approval and Interconnection

Hello Tom Miller,	
Project Number:	DE-05892
Applicant Name:	Tom Miller
Company:	Tom Miller
Site Address:	Oakland County, MI
Category:	Category 1 (< 20 kW)
System Rating:	12 kW AC
Generator Type:	Combination/Multiple Small Solar Array with PV Inverter and 1.5KW micro combined heat and power unit
System Type:	Inverter

This letter is to acknowledge that your 1.92 DC/12 AC kW Solar System Interconnection (# DE-05892 ::025 has been approved for DG Tariff. The Interconnection Application Review is complete.

- Project took over 9 months to get approval from DTE.
 - Originally submitted under Rider 18DG due to PV Installation but was changed to Rider 14DG
- Approved under Rider 14 Distributed Generation (DG)
 - Not limited to renewable energy projects but has a lower buy back rate.
 - Rider 18 = \$0.075
 - Rider 14 = \$0.023

We Touch the Future

• However, we are not pushing any mCHP power to batteries or grid so this rate still seems unfair

Detail of Current Charges

\$0.15609/KWh (delivered)	For Service at 31119 Old Stage DTE Electric Company Residential Current Charges Power Supply Charges Power Supply Capacity Charge Power Supply Non Capacity Charge Power Supply Cost Recovery Delivery Charges Service Charge Distribution LIEAF Factor Other Delivery Surcharges Residential Michigan Sales Tax Total DTE Electric Company Current	95 KWH @ 0.045000 95 KWH @ 0.045000 95 KWH @ 0.041760 95 KWH @ 0.003220 95 KWH @ 0.066110	4.28 3.97 0.31 7.50 6.28 0.91 0.56 0.92 24.73	Current Billing InformationService PeriodMar 2, 2021 - Mar 30, 2021Days Billed29Meter Number7851909 19Meter Reading751 Actual - 846 ActualKWH Used95Your next scheduled meter read date is on or around APR 29, 2021Usage History - Average per day CurrentCurrentLastYear MonthMonthMonthAgoKWH Usage3.37.10.0Change-54%
\$0.022608/KWh Rider 14 DG	DTE Electric Company Distributed Delivery Charges Generated KWH Commercial Michigan Sales Tax Total DTE Electric Company Current	53 KWH @ -0.022608	-1.20 -0.07 -1.27	Current Billing InformationService PeriodMar 2, 2021 - Mar 30, 2021Days Billed29Meter Number7851909 19Meter Reading10 Actual - 63 ActualKWH Used53Your next scheduled meter read date is on or
	t is the incentive for con bother selling back to th			Your next scheduled meter read date is on or around APR 29, 2021 Usage History - Average per day Current Last Year Month Month KWH Usage 1.8 0.3 0.0 Change 632%

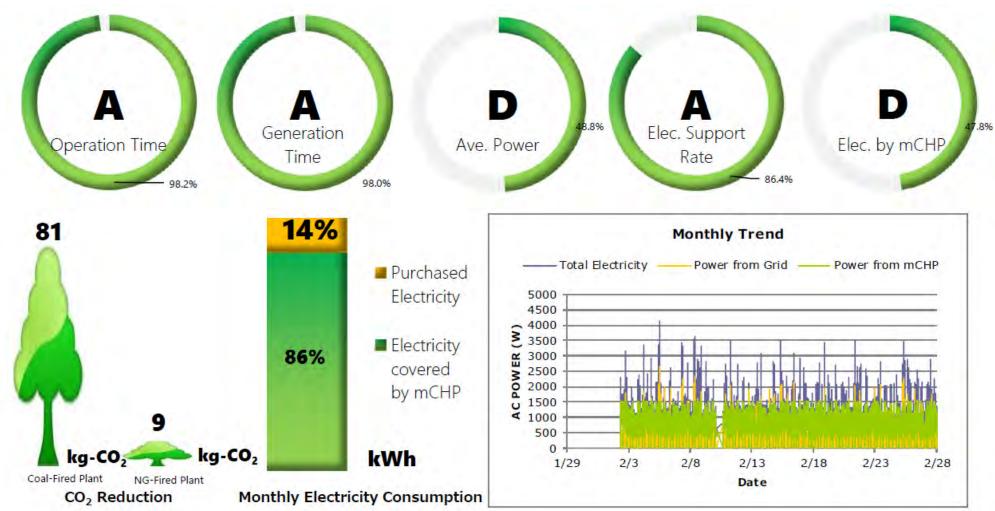
We Touch the Future

Oakland County, MI Site Utility Usage – Gas/Electric

		Before	Coremo		After Coremo					Totals		
	Ga	as	Elec	ctric	G	Bas	Electric					Coremo
	\$	Usage (Mcf)	\$	Usage (KWh)	\$	Usage (Mcf)	\$	Usage (KWh)	PV Sell (KWh)	2019	2020	Savings
November	\$118.54	15.4	\$171.86	962	98.65	12.1	142.23	768	NA	\$290.40	\$240.88	\$49.52
December	\$135.62	18.2	\$193.85	1101	188.94	25.5	85.54	460	0	\$329.47	\$274.48	\$54.99
January	\$116.12	15.7	\$202.19	1163	187.41	25.4	74.76	392	2	\$318.31	\$262.17	\$56.14
February	\$159.45	22.2	\$181.60	1015	201.43	27.9	46.6	227	8	\$341.05	\$248.03	\$93.02
March	\$94.55	12.9	\$173.32	985						\$267.87	\$0.00	\$267.87
April	\$78.54	10.3	\$231.35	1303						\$309.89	\$0.00	\$309.89
Мау	\$57.53	6.8	\$199.50	1077		2021 v	rs 2020	(4 mo)		\$257.03	\$0.00	\$257.03
June	\$53.49	6.4	\$193.03	1069			1770/	•		\$246.52	\$0.00	\$246.52
July	\$57.56	7.1	\$271.73	1500		G usage	+2/%			\$329.29	\$0.00	\$329.29
August	\$30.41	2.8	\$233.91	1289	• Fl	• Electricity purchased -44%					\$0.00	\$264.32
September	\$37.20	3.7	\$132.90	722					.,.	\$170.10	\$0.00	\$170.10
October	\$70.27	8.1	\$157.17	828						\$227.44	\$0.00	\$227.44

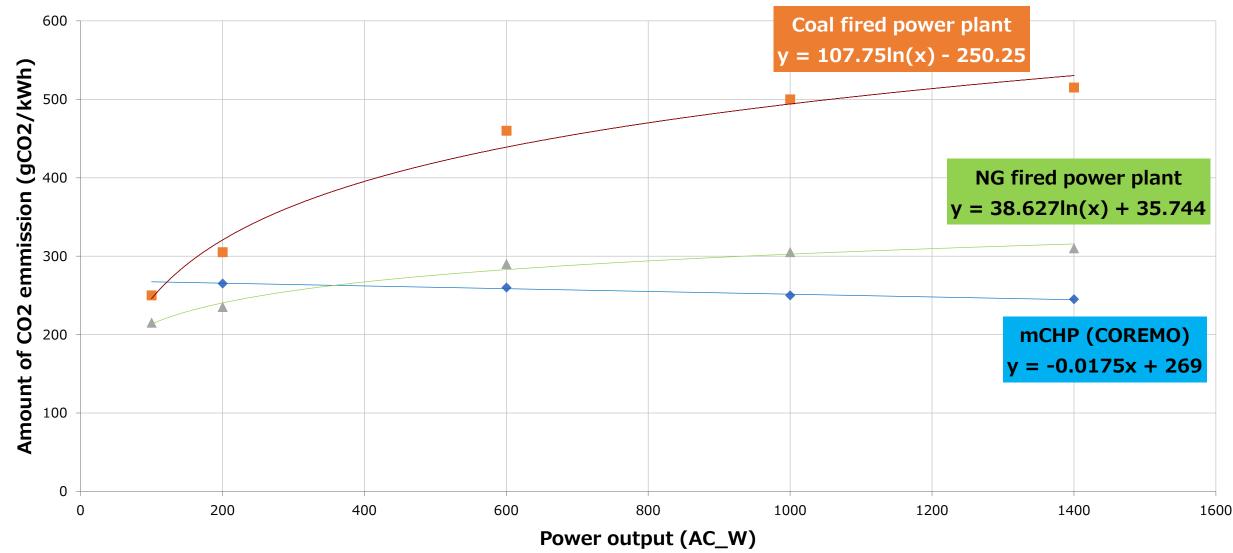
- PV generation = 67 kWh (Dec 2020 Feb 28, 2021)
- Beginning March 2021, began using stored battery power (25%) at night and PV to recharge batteries during day to reduce need from grid
- Goal = reduce grid dependency while still leaving enough battery power for backup and blackout restart

Results Operation Results in Feb/2021

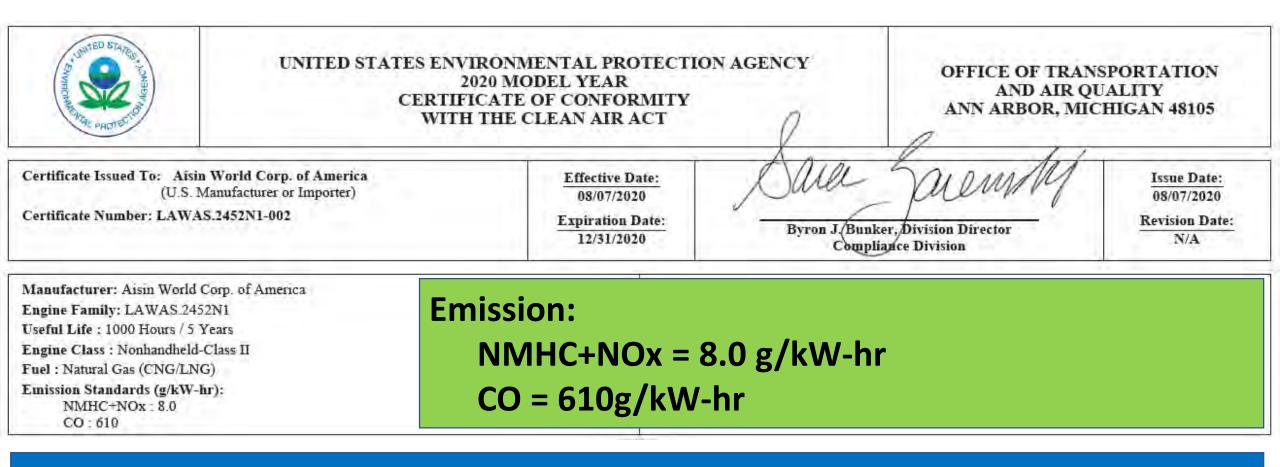

BH Location									
Data period (a)	2/2	~	2/28	26	days				
	Actual	Maximum	Rate	100-85%	84-70%	69-55%	54-40%	Below39%	
Operation Time (hr) Cumulative engine run time during the period (a)	579.8	590.5	98.2%	Х					
Generation Time (hr) Cumulative mCHP power generation time during the period (a)	578.6	590.5	98.0%	Х					
Avg. Power Output (kW)	0.73	1.5	48.8%				Х		
Electricity Support Rate (%) mCHP generated power over total power cunsumption			86.4%	Х					
Electricity Generated by mCHP (kWh) Cumulative mCHP power output during the period (a)	423.6	886	47.8%				Х		
Purchased Electricity (kWh) Cumulative grid power amount during the period (a)	66.5		444		ECO Point	5	1	3.8	
Total Electricity Cunsumption (kWh) Sum of "Electricity Genrated by mCHP" and "Purchased Electricity"	490.2								
CO ₂ Reduction (kg-CO ₂) Amount of reduction compared with Coal-fired power plant	81			E	CO Lev	/el		С	
CO ₂ Reduction (kg-CO ₂)	9								

• "C" grade is due to the mCHP only allowed to provide power to the subpanel (critical load) NOT the entire house

• This is due to concerns from DTE of sending "dirty" NG power bad to the grid


Feb 2021

81 kg-CO2 reduction compared to coal fired plant 9 kg-CO2 reduction compared to NG fired plant



Feb 2021

Regulation & Research

Clean Alternative Energy Source

Opportunities in Michigan

- Potential increase in EV demand
- Northern Michigan and Upper Peninsula of Michigan (LP propane)
 - Higher energy rates
 - Potential Enbridge line 5 shut down

Michigan Gov. Whitmer's declaration of energy emergency draws criticism over ongoing plans to shut down Line 5

By Scott McClallen | The Center Square Feb 22, 2021

Canadian pressure mounts on Michigan governor to back off Enbridge pipeline

Updated Jan 26, 2021; Posted Jan 26, 2021

POLITICS

What a Line 5 shutdown would mean for Michigan's energy

Beth LeBlanc The Detroit News

Aisin mCHP plans – Japan Sales

- mCHP in Northern Region (Better use of thermal heat)
- SOFC in Southern region

COREMO (Japan) (micro Combined Heat and Power)										
Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	
Total	85	143	408	447	587	705	929	1,157	1,323	

SOFC (Japan) (Solid Oxide Fuel Cell)

(unit)

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019
Aisin	0	697	1,353	2,823	3,106	16,940	21,582	23,228	18,626
Others	13,460	23,820	32,178	35,195	37,341	30,130	27,248	23,362	22,362
Total	13,460	24,517	33,531	38,018	40,447	47,070	48,830	46,590	40,988

Aisin mCHP plans – North America

- Goal is to rollout mCHP in 2022 but we must satisfy ROI of 7 years or less for Standard System.
- Targeted volume for the 1st year is 500.
- Targeted location is still pending review of business cases and support from States interested in this technology (CA? NY? Michigan? Canada?)
- Trying to work with State governments, ESOC as well as utilities to increase education and find suitable demonstration locations
 - Preferred location is Michigan due to Aisin Technical center located in Michigan
- Aisin mCHP usage in other countries
 - Japan, Korea, Europe, India

Barriers and Solutions to Entry

BARRIERS:

- Misconception of NG and LP as "DIRTY"
- Not all electric companies are willing to allow net metering of NG/LP
- Standardizing site vs. source concept for GHG calculation
- Electric utilities not wanting to allow for interconnection
 - Cap on solar generation
 - Difficult hurdles with interconnection
- No regulation support to allow growth of NG/LP technologies

Solutions:

- Technology awareness is the 1st barrier
- Incentive programs to reduce the initial cost and reduce ROI period
- Special gas rates
- Allow net metering even for fossil fuel generated electricity (need to gain public support for "site vs. source"
- Contractor trainings
- Technology education for public
- Regulations to allow easier installation of NG/LP technologies

Final Coremo Installation

Drone Video and 3D virtual photos

http://tour.milookingglass.com/tour/MLS/AisinCoremo_MI_628_130648.html

Thank you for your attention

Tom Miller

General Manager – Regulations & Research Aisin Technical Center of America 15300 Centennial Dr., Northville, MI 48168 tmiller@aisintca.com

Yoshi Sekihisa Senior Manager – Energy Solution Sales

Aisin World Corporation of America 15300 Centennial Dr., Northville, MI 48168 ysekihisa@aisinworld.com

Making the Most of Michigan's Energy Future

New Technologies and Business Models Closing Comments

Stakeholder Meeting 6: Combined Heat & Power April 7, 2021

Thank You and Please Stay Engaged!

- Thank you for your participation
 - Share your thoughts through:
 - Meeting survey
 - Meeting chat
 - Remains open for comments or discussions after meeting.
 - Easier to access with the Teams App
 - Stakeholder comment section of workgroup website
 - Send a document to be posted to the comment section via email to Joy Wang at WangJ3@Michigan.gov

Please stay engaged

- Sign up for the listserv if you have not already
 - Go to MI Power Grid <u>New Technologies and Business Models workgroup</u> page
 - Scroll to bottom to add email
- Attend future meetings
 - Next meeting on April 21 from 1 5 PM
 - Topic: Microgrids

Thank you!

