

Making the Most of Michigan's Energy Future

New Technologies and Business Models Stakeholder Meeting 1

The meeting will begin shortly at 1:01 pm to allow people to join.

January 27, 2021

1PM – 5 PM

MPSC Michigan Public Service Commission

Making the Most of Michigan's Energy Future

New Technologies and Business Models: Welcome and Overview

Joy Wang <u>WangJ3@Michigan.gov</u> Smart Grid Section Michigan Public Service Commission

Agenda

1:00 pm	Welcome	Joy Wang, MPSC Staff
1:05 pm	Opening Statements	Dan Scripps, Chair, MPSC
1:15 pm	MI Power Grid and Workgroup Introduction	Kayla Fox, MPSC Staff
$1{:}25~{ m pm}$	Emerging Practices for Integrating Distributed Energy Resources	Zachary Peterson, National Renewable Energy Laboratory
2:00 pm	Break	
2:10 pm	Solving for the Future State of the Grid: New Technologies and Business Models	Nick Tumilowicz, Electric Power Research Institute
2:45 pm	Utility Approach to New Technologies & Business Models	Brian Hartmann, Consumers Energy Joyce Leslie, DTE Energy Subin Mathew, Indiana Michigan Power
3:20 pm	Community Interest and Experience Panelists: Melissa Davis, New Power Tour, Inc. Mindy Miner, City of Rockford Sustainability Committee Missy Stults, City of Ann Arbor	Moderator: Dr. Sarah Mills, University of Michigan
4:15 pm	Break	
4:20 pm	Utility Business Model Reform: Incentive Alignment for Clean DER Expansion	Cory Felder, Rocky Mountain Institute
4:55 pm	Closing Statements	Joy Wang, MPSC Staff
5:00 pm	Adjourn	3

Housekeeping

- This meeting is being recorded
- Recording and slides posted on workgroup website in about a week
- All audience members will be muted
- Please type questions into the chat box

Meeting chat	×
Type a new message	
	\triangleright

Staff will ask chat box questions during Q&A

Housekeeping, cont.

- During the meeting, if clarification of your question is needed, we will ask you to unmute.
 - To unmute:
 - Phone: Press *6
 - Teams: Click mic button
 - Please mute yourself again after your clarification.
- Chat box may note when audience member enter/exit.
 - These notices are automatic:

Wang, Joy (LARA) added Guest to the meeting.

Wang, Joy (LARA) removed Guest from the meeting.

If Teams via web browser is not working, try a different web browser.
 All work except Safari

Making the Most of Michigan's Energy Future New Technologies and Business Models Opening Statements

Dan Scripps Chair, Michigan Public Service Commission

1:05 – 1:15 PM Stakeholder Meeting 1 January 27, 2021

Michigan Public Service Commission

Making the Most of Michigan's Energy Future

New Technologies and Business Models: Summary, Tasks, & Timeline

Kayla Gibbs

Compliance & Investigation Section Michigan Public Service Commission

January 27, 2021

Michigan Public Service Commission

- Focused, multi-year stakeholder initiative to maximize benefits of transition to clean, distributed energy resources for Michigan residents and businesses.
- Engages utility customers and other stakeholders to help integrate new clean energy technologies and optimize grid investments for reliable, affordable electricity service
- Includes outreach, education, and regulatory reforms

MPSC

Core Areas of Emphasis

- Customer Engagement
- Integrating Emerging Technologies
 - Interconnection Standards and Worker Safety
 - Data Access and Privacy
 - Competitive Procurement
 - New Technologies and Business Models

MPSC

Optimizing Grid Performance and Investments

U-20898: New Technologies & Business Models

- Launched New Technologies & Business Models workgroup
 - On October 29, 2020
 - Phase II of MI Power Grid
- Provides Commission's objectives and expectations

• Problem Statement

 There are regulatory and business model barriers to the deployment and full utilization of clean, distributed energy resources in Michigan. Stated differently, there is the need to adapt the regulatory framework to allow for different applications of DER and to define the appropriate roles of utilities and other entities in supporting a more decentralized energy system that is clean, affordable, reliable, and accessible.

Workgroup Objectives

- Prepare for opportunities and challenges associated with commercialization of new technologies and business models at customer and utility scale.
- Create shared understanding of different technologies and potential applications
- Identify barriers and potential solutions for Commission consideration
 - Barriers should focus on issues and solutions that the Commission can address

Workgroup Topics and Timeline

- Focus on clean distributed energy resources (customer and utility-scale), not emerging technologies.
- January 27, 2021 Meeting 1 Kickoff
- February 10, 2021 Meeting 2 Electric Vehicles
- February 24, 2021 Meeting 3 Space & Water Heating using Heat Pumps
- March 10, 2021 Meeting 4 Behind the Meter & Community Solar
- March 24, 2021 Meeting 5 Storage
- April 7, 2021 Meeting 6 Combined Heat and Power
- April 21, 2021 Meeting 7 Microgrids
- May 19, 2021 Meeting 8 Alternative Business and Ownership Models
- June 16, 2021 Meeting 9 Summary, Discussion, Closing
- September 1, 2021 Final report due

How to Get Involved

Go to: www.michigan.gov/MIPowerGrid

MPSC

Customer Engagement

Providing Michigan residents and businesses with the demand-side technologies, programs, and price signals that will allow these customers to be more active and effective participants in the state's transition to increased clean and distributed energy resources.

Integrating Emerging Technologies

Ensuring timely and fair grid access and appropriate information exchange to support customer-oriented solutions and reliable system operations.

Optimizing Grid Investments And Performance

Integration of transmission, distribution, and resource planning to increase transparency and optimize solutions; enhancement of tools, financial incentives, and regulatory approaches to adapt to technology change and customer preferences.

Interconnection Standards And Worker Safety

Interconnection standards are rules that spell out how projects owned by customers or developers connect to the utility system. These rules provide a standardized process and schedule so that interconnections can be accommodated in an orderly and timely manner. The rules also ensure that interconnections are done safely, in order to protect workers, utility and third-party owned equipment, and the public.

Learn More

Competitive Procurement

As older electric generation plants retire, new resources will need to be brought online to replace them. Competitively bidding new resources can help to show what options are available, ensure emerging technologies can be considered as part of utility planning and procurement, and result in lower costs for customers.

Learn More 💙

Learn More

New Technologies And Business Models

A number of new technologies and business models are quickly becoming commercialized, expanding options and providing new opportunities to control costs while also posing unique challenges. Fast-growing commercially available technologies include electric vehicles and battery (and other) storage at both distribution and utility scale, while other technologies are still in development but may soon be commercially viable at competitive prices.

New Technologies And Business Models

A number of new technologies and business models are quickly becoming commercialized, expanding options and providing new opportunities to control costs while also posing unique challenges. Fast-growing commercially available technologies include electric vehicles and battery (and other) storage at both distribution and utility scale, while other technologies are still in development but may soon be commercially viable at competitive prices.

SIGN UP FOR NEW TECHNOLOGIES AND BUSINESS MODELS UPDATES

To sign up for updates or to access your subscriber preferences, please enter your contact information below.

Many Complementary Efforts

- MI Power Grid
 - <u>Competitive Procurement</u>
 - Demand Response
 - Distributed Generation Pricing
 - Time-based Pricing
 - Voluntary Green Pricing Tariffs
 - Financial Incentives & Disincentives
 - Interconnection Standards & Worker Safety
- Michigan Public Service Commission
 - Energy Waste Reduction
- Michigan Department of Environment, Great Lakes, & Energy
 - Charge Up Michigan Program
 - Energy Storage Roadmap Project
 - Fuel Transformation Program

- Michigan Office of Mobility
- Michigan Energy Innovation Business Council
 - Electric Vehicle Convenings
 - Energy Storage Convenings
- Next Energy
- Local government efforts
- And many others in Michigan and nationally

MPSC

Questions?

Email:

Joy Wang (staff lead) at <u>WangJ3@Michigan.gov</u>

Emerging Practices for Integrating Distributed Energy Resources

Zachary PetersonProject ManagerStrategy, Policy & Implementation GroupIntegrated Application CenterNational Renewable Energy Laboratory

Emerging Practices for Integrating DERs

Zachary Peterson National Renewable Energy Laboratory

1 What's the Why

- **2** Integration Challenges
- **3** Current and Emerging Practices

What's the Why

Distributed Energy Resources (DER) are Rapidly Changing the Grid

DER Deployment Drivers

- Economics:
 - Technology cost and performance
 - Federal and state incentives
 - New business models (e.g., third party ownership)
 - Electricity prices
 - Rate design (e.g., availability of Net Energy Metering)
- Public policy:
 - Renewable Portfolio Standards and environmental requirements
- Customer preferences:
 - DER deployment may be shaped by interest in increased customer choice

Declining PV Prices

Rapid Growth in NEM Customers

Battery Storage Cost Projections

More than Solar and Storage

Michigan Climate Commitments

- Executive Directive 2020-10: established goal for economy-wide carbon neutrality no later than 2050 and 28% reduction below 2005 levels in greenhouse gas emissions by 2025.
- Consumers Energy: Net zero carbon emissions by 2040
- DTE Electric: Net zero carbon emissions by 2050
- DTE Gas: Net zero carbon emissions by 2050
- Community Action
 - 3 of 5 of Michigan's top 5 largest cities: Detroit, Grand Rapids, Ann Arbor
 - 8 Michigan Universities/Colleges and 1 military base

U.S. Power Sector Evolution

https://www.nrel.gov/docs/fy21osti/77442.pdf

DER Disruption leads to Challenges, but also Opportunities

- DERs are a key disruptive force shaping power system transformation worldwide
- Traditional approaches to how we plan, operate, regulate, and even conceptualize the power system are being challenged
- New technologies and business models can help us tap into opportunities and mitigate risks

Challenges

Distributed PV Integration

- Voltage regulation
- Reverse power flow
- Protection system coordination
- Unintentional islanding
- Increase in maintenance and decrease in equipment life due to increase switching
- Load masking

Data Transparency

- Poor data transparency increases difficulty in identifying optimal points of interconnection
- Hosting Capacity maps could help, but...
 - More guidance is needed on development pathways, financing mechanisms, stakeholder value, and key features/data that should be provided by tools
 - Methodologies for conducting hosting capacity analyses that reflect an evolving grid are still emerging

Storage Complexities

- Storage increases complexity of integration process potentially leading to increased costs and timelines for interconnecting S+S
- S+S increases complexity of managing system reliability and developing tariffs
- Lack of markets and other mechanisms to compensate DER for the provision of grid services

* Transformer rated metering is require for ratings > 400 amps

Utility Business Model Disruption

Current and Emerging Practices

Advanced Power Electronics

- Can address some of the challenges to the integration of high levels of distributed PV
- Potential grid services include voltage and frequency regulation, ride-through, and anti-islanding functionality

https://www.nrel.gov/docs/fy19osti/72298.pdf

Flexible Interconnection

- Controls used to dynamically curtail DER systems in response to grid needs with failsafe mechanisms to ensure reliability
- Applies dynamic hosting capacity concepts
- DER customers may have faster and cheaper interconnection in areas with limited hosting capacity

Business Models

- Customer or Third-Party Owned
 - Customer-owned model
 - Third-party leasing model
 - Community solar model

- Utility Owned
 - Utility Investments
 - Utility build-own-operate
 - Utility-led community solar projects
 - Utility partnership and investments in third-party leasing companies
 - Value-added consulting services
 - Virtual power plant operator
 - Energy services utility model

Third-party Ownership vs Customer Ownership

Customer Owned

 Building owner directly procuring, financing and owning the system

Third-Party Owned

- Procures, finances, and owns a PV system instead of building owner
- Can monetize tax credits and incentives

Customer-Owned-Group Purchase Programs

What?

 Homeowners and business owners select solar installer and negotiate bulk
 purchase discount for PV installations.

Why?

- Reduces complexities associated with installing solar
- Competitive price for consumer; economies of scale for installer
- Overcomes customer inertia

Power Purchase Agreements

Virtual Power Purchase Agreements

Community Solar

- Utility-led, developer-led, or non-profit business models
- Provides an alternative to rooftop PV systems; allow customers to enjoy advantages of solar energy without having to install their own system
- Potential grid benefits by siting projects in specific locations

Utility-led Community Solar

Direct Ownership

'Microgrids-as-a-service'

- 3rd party or utility invest in and own infrastructure
- End user gets secure energy, investor gets returns from tariff/fees
- Wide range of technologies available (CHP, fuel cells, distribution and behind-the-meter storage, etc.)
- Sells energy at set \$/kWh
 - Could be separate tariff rate
 - Could include additional \$/kW or \$/month for guaranteed energy during outage

28

Potential Opportunities for Utilities

Customer Acquisition	 Who reaches out to customer to garner interest?
Transaction Facilitation	 Who brings the project to financial close, including pricing the storage system for the customer?
Project Design / Construction (EPC)	Who installs the system?
Interconnection Certification and Registration	 Who is responsible for certifying the system and registering with the distribution?
Battery Supply Chain	 Who manufactures and/or procures the storage system components?
Project Financing	 Who invests the capital to build the system?
Facilitation of Financing	 Who ensures that financing payments are delivered?
Battery System Ownership	 Who is the legal owner of the storage system?
Battery Site Ownership	 Who owns the location where the storage is sited?
Distribution Grid Management	 Who is responsible for investing and operating the distribution grid under increased storage penetration?

Infamous Value Stack

https://sepapower.org/resource/utility-business-models-for-grid-connected-storage/

Green Mountain Power – Vermont

- Program deployed 13 MW of residential battery systems
- Batteries provide backup power and support grid during system peak
- Lease or "bring your own device" options
- Utility allowed to own and rate-base batteries

Value of Distributed Energy Resources – New York

A developer develops and interconnects a DER.

The utility allocates the monetary

Offtakers pay a subscription fee to the DER developer. Steps 2-5 repeat each month.*

The utility determines the value of the energy produced using the Value Stack methodology.

Thank you!

Contact me:

Zachary Peterson

Zachary.Peterson@NREL.gov

Making the Most of Michigan's Energy Future

New Technologies and Business Models Flex Time/Break: 1:55 – 2:05 PM

Stakeholder Meeting 1 January 27, 2021

Solving for the Future State of the Grid: New Technologies and Business Models

Nick Tumilowicz

Principal Manager Grid Integration of Distributed Energy Resources Electric Power Research Institute

Solving for the Future State of the Grid

New Technologies and Business Models

Electric Power Research Institute Nick Tumilowicz, Principal Manager

Presented to: Michigan Power Grid New Technologies and Business Models Workgroup

January 27, 2021 2:10pm ET

2

Agenda

- Future State of Grid Decarbonization
- Opportunities & Challenges
- Case Studies

www.epri.com

The Evolving Power System

Situational Awareness and Interconnection Standardization Required

Impact of Zero Net Energy Homes & Communities

Solar Electric (PV)

Air Heating/Cooling

Energy Storage

EV Fleets

Standardization & Harmonization Key to Holistic Integration

Adoption Drivers: Solar, Storage, EV

Territories With Two or More Drivers are More Likely to See Adoption

FERC Order 2222 Impact

Timeline:

- Order Published: Sept 2020
- Final Decision (including changes): Sept 2021
- Implementation: "Reasonable timeframe"

Regions:

- Where Impacted: All ISO/RTO
- Plus: opt-in for small utilities

Highlights:

- Allows DERs to "participate alongside traditional resources in the regional organized wholesale markets through aggregation."
- DER aggregators become single point of contact for RTOs/ISOs
- Allows dual participation in retail & wholesale markets. Market operator will be responsible for creation of rules to restrict double counting
- Small utilities (less than 4 million MWh in previous year) are exempt; allowed to opt-in.

DERs Allowed to Participate in Wholesale Market with FERC 2222

Confluence of Third-Party and Utility Deployments

Utility Customer-Sited **<u>Pilots & Programs</u>** by State New Hampshire:

Liberty Utilities Lease @

Three DERs Optimized for Three Primary Value Streams

Customer Resilience, Distribution Capacity, Market Participation

Gaps to Close

- **Configuration:** BTM for backup power; however, FTM more efficient path to market participation
- **Tariff:** Multiple rates required due to separate EV charging, PV, and storage. Primary service with multiple meters is required
- Cost: Interconnection process, islanding and protection equipment
- O&M Contract: Onsite improvements to be constructed, owned, and maintained by the customer

Pathways to Grid Decarbonization

Barriers:

- Market participation: customer, distribution, transmission
- Safety, permitting, interconnection and tariff compliance
- Grid integration and coordination (VPP/aggregation)

Opportunities:

- Customer Choice: Resilience, bill savings, selfconsumption
- Grid Services: Reliability, capacity, FR, decarbonization, DR, NWA
- Demand Response Event Coordination: Customers benefit from providing capacity services

Distributed Energy Resource Standardization and Coordination

Together...Shaping the Future of Electricity

Contact: Nicholas Tumilowicz <u>ntumilowicz@epri.com</u>

Valuation Tool: Free, Open. . . StorageVET®

StorageVET® is a free, open source energy storage project valuation tool informing decision-makers across the electric grid

www.epri.com

Get started at storagevet.com

Industry Collaboration: Standardized Guidelines and Tools

Connect to the Industry via: <u>esic@epri.com</u>

Utility Approach to New Technologies & Business Models

Brian Hartmann Executive Director Corporate Strategy Consumers Energy

Joyce Leslie Director Business Planning & Development DTE Energy

Subin Mathew Director Reliability & Grid Modernization Indiana Michigan Power

Consumers Energy MPSC New Technologies and Business Models Workgroup

Brian Hartmann

January 27, 2021

Through close collaboration with regulators and stakeholders, we have made great progress in creating innovative, win/win solutions for Michigan

People, Planet and Prosperity – Triple Bottom Line Solutions

Energy Efficiency

Demand Response

Electric Vehicles
Our strategy today is to build the best energy plan for Michigan given the evolving industry drivers

B

- Empowered customers
- Increasing demand for low carbon energy (electricity and gas)

Drivers of our strategy

Aging infrastructure

New digital technologies

How our strategy is realized for Michigan

Our belief is that the best plan for Michigan will optimize clean energy supply, both utility scale and distributed generation, with customer-side demand management over a modernized distribution network; we have started working towards this outcome

- Growing our demand side programs to 1,250MW of demand response and 1,130MW of energy efficiency by 2030 as part of our clean energy plan
- Investing to modernize the grid for more distributed energy resources and improved reliability

Optimal deployment of DERs requires an evolved approach to the traditional utility business model

From traditional thinking...

Focus on technology deployment

 Narrow focus on a few large scale, long lifetime infrastructure investments

- Simple business model built on rate base investments plus a return
- Relatively simple value creation from asset investment

...to new opportunities for optimization

- Focus on customers problems then ask what technologies can solve the problems and what business models create the right incentives
- Large infrastructure investments when needed combined with many smaller investments with shorter lifetimes (e.g., smart thermostats, EV chargers, etc.)
- Rate base business model when it makes sense, supplemented by new business models aligned with how customer value is created
- Added complexity of stacking value within individual technologies (e.g., storage) and across multiple technologies (e.g., DER aggregation)

Technology should solve customer problems in the most cost-effective way: business models should be aligned to this philosophy

Providing customers with affordable, reliable, clean energy in a safe way remains our objective

"While environmental and sustainability considerations are critical, equally critical are the savings associated with renewable energy" – Corporate Purchasers Roundtable

Industry

• What is changing are the ways we can provide clean, affordable, reliable energy

Demand

We believe the right business models will create wins for all parties involved and focus on solving problems

We want to avoid zero-sum arguments and focus on the best plan for Michigan

Removing regulatory barriers enables us to deliver on what customers truly value

A number of regulatory barriers exist that slow down deployment...

- We need to pilot and demonstrate ideas at the speed of new technologies and changing customer preferences so that we can bring the right products to market at scale
- We need to be more modular and agile with our pricing to support customers that want to pay for what they value
- We need to be able to shift our business models based on what customers truly value so that the value being captured is directly related to the value being created

We believe in the best energy plan for Michigan and need your support to bring it to our customers auickly

MPSC New Technologies and Business Models Collaborative

DTE Energy

January 27, 2021

Technology and demand trends are two key drivers for a cleaner, decarbonized energy future

Technology trends

Enablers:

- Established renewable technologies
- Emerging carbon-free technologies
- Declining technology costs
- Advancements in electrification
- An intelligent grid with advanced technology
- Advanced data analytics

Demand trends

Demands:

- Interest from homeowners to power their house with cleaner energy and manage their energy usage
- · Increased demand for electric vehicles
- Communities and Corporations supporting clean energy resources and clean energy goals
- States and utilities setting clean energy goals

DTE is committed to providing safe, reliable, clean and affordable power to Michigan customers

Assessments of a new or emerging technology or business model should start with three key considerations

The assessment could then include a pilot implementation to robustly determine the extent of the impacts to the customer, system, and affordability

Using this approach, DTE has been able to establish various programs and pilots to support the continued adoption of new and emerging technologies

Electric Vehicles (EV)	Storage	Other Pilots		
 Charging Forward Phase I Launched in 2019 with three primary components: Customer Education & Outreach Residential Smart Charger Support Charging Infrastructure Enablement Expanded to included additional components with stakeholder support: EV-Grid Impact Study Bring Your Own Charger Pilot EV-Ready Builder Rebate Pilot Other new technology EV Pilots including battery-powered DCFCs¹, extreme fast charging, etc. Charging Forward Phase II Filed ex parte December 2020 to expand on Phase I and focus on electric fleets: Customer Education & Outreach Fleet Advisory Services Charging Infrastructure Enablement 	 O' Shea Solar Energy Storage Expected construction completion in 2021 Understand power quality improvements and renewable integration Develop best practices for interconnection Develop standards and safety policies for future projects Mobile Battery Trailer Expected completion in 2021 Multiple use cases including emergency restoration, peak shaving, distribution loading relief 	 DTE Smart Charge Launched in 2019; expanding pilot February - December 2021 Collaboration with EPRI and auto companies Using Open Vehicle-Grid Integration Platform based concept to integrate EV charging with grid objectives through demand response Heat Pumps: Launched February 2020- November 2021 All Electric Home: Build new homes w/highly efficient building envelopes and cold climate air source heat pumps as primary heating/cooling source Install whole-home mini-split cold climate heat pumps as the primary heating source and the existing electric heating system will be an auxiliary heat source 		
DTE is looking forward to discussing potential new business models that may				

DTE is looking forward to discussing potential new business models that may better support the adoption of new and emerging technologies while supporting the overall goals of providing safe, reliable, clean and affordable energy

Questions

An AEP Company

BOUNDLESS ENERGY"

MPSC New Technology & Business Models Workshop Kick Off – 01.27.21

Presentation by I&M

BOUNDLESS ENERGY

An AEP Company

What could the future look like?

Decarbonization

Digitalization

Decentralization

BOUNDLESS ENERGY

What are the primary objectives for distribution?

- Maintain and improve safety
- Address reliability, resiliency, & aging infrastructure
- Create an enabling platform
- Maintain flexibility
- Improve data availability and use
- Enhance the customer experience

Our Service Territory

Southwest Michigan

An AEP Company

BOUNDLESS ENERGY

Grid Modernization Examples

- Advanced Metering
- Distribution Automation
- Data Analytics

We also support pilots such as:

• EV Charging Program

An AEP Company

BOUNDLESS ENERGY

Enabling the Grid of the Future

- Continue our focus on safety and reliability as we incorporate newer technologies to benefit our customers.
- Leverage technologies & concepts such as energy storage and microgrids as they become effective options.
- Make prudent investments to enable a data driven and customer engaged future focused specifically on the customers we serve.

 Leverage new business models & opportunities to benefit our customers

Community Experience & Interest Panel

Moderator

Dr. Sarah Mills

Senior Project Manager Graham Sustainability Institute University of Michigan

Melissa Davis Managing Director New Power Tour, Inc

Mindy Miner

Committee Member City of Rockford Sustainability Committee

Missy Stults Sustainability and Innovations Manager City of Ann Arbor

MPSC

Making the Most of Michigan's Energy Future

New Technologies and Business Models Break: 4:17 – 4:22 PM

Stakeholder Meeting 1 January 27, 2021

Utility Business Model Reform: Incentive Alignment for Clean DER Expansion

Cory Felder

Senior Associate Electricity Team Rocky Mountain Institute

JANUARY 27, 2021

Utility Business Model Reform: Incentive Alignment for Clean DER Expansion

Cory Felder, Senior Associate

Outline

- Context: Michigan policy goals and the clean energy transition
- Challenge: COS regulation in Michigan poses challenges to clean DER expansion
- Solution: PBR and modernization of utility service models can reduce barriers to DER expansion and emissions reductions

New Technologies and Business Models Working Group problem statement...

- "There are regulatory and business model barriers to the deployment and full utilization of clean, distributed energy resources in Michigan"
- "[T]here is the need to adapt the regulatory framework to allow for different applications of DER and to define the appropriate roles of utilities and other entities in supporting a more decentralized energy system that is clean, affordable, reliable, and accessible."

Utilities are core to the unfolding energy transition

Current Trends

- Falling clean-energy prices
- More renewables & DERs
- Smart metering & appliances
- New business models (e.g., 3rdparty demand aggregation)

Future Needs

- Energy system will be vastly different
 - Decarbonized, including across economic sectors
 - Increased electricity demand
 - Dynamic resource management and integration of renewables
- Attention to equitable outcomes
- Huge expenditures needed

Michigan Policy and Regulatory Context

Renewable Portfolio Standard

• 15% by 2021

EO 2020-10 and 2020-182

- Economy-wide carbon neutrality by 2050
- All existing state-owned/operated buildings and facilities reduce their energy use 40% by 2040.
- Council on Climate Solutions to advise on MI Healthy
 Climate Plan implementation

Federal Policy

• FERC Order 2222 implementation

Cost-of-Service Regulation poses barriers to clean DER expansion in Michigan

What is COSR?

- Traditional regulatory approach
- Earnings tied to investment
- More sales means more revenues
- Information asymmetry addressed through detailed regulatory oversight

Barriers

- Misalignment of utility incentives
 - Throughput incentive
 - Capital bias
 - Environmental externalities
- Backward looking
- Discourages innovation

Michigan's regulatory transition is already under way...

Existing Regulatory Mechanisms

- EWR Shared Savings
- Financial Compensation
 Mechanism
- Utility EV Rebate Pilots

Upcoming Touch Points

- Working Group Report
- Financial
 Incentives/Disincentives WG
- Utility rate cases
- PBR proposals in utility distribution system plan filings

...but clarity is still needed on key questions to reduce barriers to clean DER growth

Key Considerations

- Does the existing incentive structure encourage DER use and expansion?
- Under what conditions is it appropriate for the utility (vs. third parties) to own DERs?
- Should the utility be allowed to facilitate customers' application of BTM solar and own the equipment as a rate-based asset?

Performance-Based Regulation

What is PBR?

- Collection of newer approaches
- Earnings tied to performance
- Link between sales & revenues can be weakened or broken
- Information asymmetry addressed by realigning utility incentives
- Can be limited in scope or comprehensive

Common PBR Tools

- Multi-year rate plans (MRP)
 - Indexed revenue adjustments
 - Earnings sharing
- Revenue decoupling
- Performance incentive mechanisms (PIMs)
 - Shared savings mechanisms (SSMs)
 - Metrics & scorecards
- Capex-opex equalization mechanisms

PBR can shift utility revenues from expenditures to be more outcome based...

Regulatory Approach	Illustrative Revenue Formula	
Cost-of-Service Regulation	Allowed Revenues = Operating Expenses + (ROR * Rate Base)	
Incremental PBR	Allowed Revenues = Operating Expenses + (ROR * Rate Base) ± Performance Revenue	
Comprehensive PBR	Allowed Revenues = (Target Revenue ± Performance Revenue) ± Earnings Sharing	

...and earnings opportunity can likewise track to performance.

Hawaii Has Adopted a Comprehensive PBR Framework That Includes Several DER-focused Mechanisms

 A customer-centric approach, including immediate "day 1" savings when the new regulations takes effect;

Framework

- 2. Administrative efficiency to reduce regulatory burdens to the utility and stakeholders; and
- Utility financial integrity to maintain the utility's financial health, including access to low-cost capital.

This decision represents the culmination of over two and a half years of dedicated work by a broad spectrum of key stakeholders, including Hawaiian Electric, the State Consumer Advocate, local governments, clean energy companies, and environmental groups. The proceeding included a collaborative Working Group Process, during which stakeholders utilized working groups and specialized workshops to investigate, discuss, vet, and consider various PBR proposals. Following the Working Group Process, a more formal Briefing Process allowed stakeholders to present their vision of a comprehensive PBR Framework for Hawaiian Electric and advocate for their proposals before the Commission.

December 23, 2020

In December, the Hawaii PUC approved a comprehensive set of PBR mechanisms for Hawaii's IOU.

The order establishes:

- A 5-year multi-year rate plan, adjusted annually according to an externally indexed revenue adjustment mechanism
- Five new PIMs (focused on DER interconnection experience, customer engagement, DER asset effectiveness, and accelerated achievement of the state's RPS)
- Project or program-specific shared savings mechanisms, and
- A framework for conducting expedited review for pilot projects to encourage development of innovative programs and projects

Performance measurement and PIMs allow for clarity and alignment on priority outcomes

Minnesota Has Set the Stage for Broader Reform with Performance Metrics

BEFORE THE MINNESOTA PUBLIC UTILITIES COMMISSION

Katie J. Sieben	Chair		
Dan Lipschultz	Commissioner		
Valerie Means	Commissioner		
Matthew Schuerger	Commissioner		
John A. Tuma	Commissioner		
in the Matter of a Commission Investigation	ISSUE DATE: September 18, 2019		
o Identify Performance Metrics,	DOCKET NO. E-002/CI-17-401		
and Potentially, Incentives for Xcel Energy's	ORDER ESTABLISHING		
Electric Utility Operation	PERFORMANCE METRICS		
PROCEDURAL	HISTORY		
n June 12, 2017, the Commission issued an order i	in the general rate case approving a multi-		
ear rate plan for Northern States Power Company,	d/b/a Xcel Energy (Xcel; the Company), and		
being this docket to "identify and develop perforn	nance metrics and standards, and potentially		
centives, to be implemented during the multi-year	rate plan. ²¹		
n September 22, 2017, the Commission issued a N	Notice of Comment Period. Between		
ecember 2017 and October 2018, the Commission ptions from a number of stakeholders; the Commis e matter.	received comments and proposed decision sion met on November 1, 2018 to consider		
n January 8, 2019, the Commission issued an orde	er establishing a Performance Incentive		
techanism (PIM) Process. ² The PIM process inclu	des seven steps; the January 2019 order		
complished steps 1 ("articulate goals") and 2 ("ide	entify desired outcomes").		
he goals established in the January 2019 order wer	re "to promote the public interest by ensuring		
ivironmental protection; adequate, efficient, and re	easonable service; reasonable rates; and the		
oportunity for regulated entities to receive a fair an	id reasonable return on their investments." ³		
he outcomes identified in the order were "affordab	oility; reliability, including both customer and		
stem-wide perspectives; customer service quality,	including satisfaction, engagement and		
In the Matter of the Application of Northern States Power for Authority to Increase Rates for Electric rvice in the State of Minnesota, Docket No. E-002/GR-15-826, Finding of Fact, Conclusions, and Order une 12, 2017).			
La de Martin de Constante da de de la del	Dender Derfermen Matrice and		

² In the Matter of a Commission Investigation to Identify and Develop Performance Metrics, and Potentially, Incentives for Xcel Energy's Electric Utility Operations, Docket No. E-002/CI-17-401, Order Establishing Performance-Incentive Mechanism Process (January 8, 2019)(the January 2019 order).

3 Id., at 11-12.

The Minnesota PUC established performance metrics for Xcel Energy to be implemented in its multi-year rate plan

Demand response capacity available (MWh)
Demand response capacity called (MW / MWh per year)
Integration of customer loads with utility supply:

- Amount of DR that shapes customer load profiles (through price response, time-varying rates, behavior campaigns)
- Amount of DR that shifts energy consumption from times of high demand to times when there is a surplus of renewable generation.
- Amount of DR that sheds load that can be curtailed to provide peak capacity and supports the system in contingency events

O ye

Rhode Island has adopted incentives for System Efficiency and metrics for GHG emissions reduction from EVs

The Narragansett Electric Company d/b/a National Grid

Performance-Based Incentive Mechanism and Scorecard Metrics

2019 Annual Report January through December 2019

System Efficiency: Annual MW Capacity Savings Results (2019)

Resource Type	Capacity Curtailment (MW)	
Residential Thermostat Demand Response (DR)	1.80	
Residential Battery	0.08	
Commercial & Industrial DR	31.50	
Total	33.38	

System Efficiency: Annual MW Capacity Savings Targets and Maximum Earnings Opportunity

	2019	2020	2021
Minimum (MW)	14	17	21
Target (MW)	17	21	24
Maximum (MW)	20	25	29
Earnings at Maximum	\$362,085	\$622,370	\$944,141

System Efficiency PIM for National Grid

Annual Megawatt Capacity Savings

Scorecard Metrics

 \checkmark

- Carbon Dioxide: Consumer Electric Vehicles
- Light Duty Government and Commercial Fleet Electrification
- Activated Apartment Building and Disadvantaged Community Electric Vehicle Supply Equipment Sites
- Distributed Generation Interconnections
 - Installed Energy Storage Capacity
- Distributed Generation Interconnection Time to Interconnection Service Agreement

Colorado Considered Whether PBR is "Net Beneficial" for Policy Goals Including DER Expansion and Emissions Reduction

Sincerely,

Mohn C. Ham_

Jeffrey P. Ackermann Chair Megan M. Gilman Commissioner

cc: Colorado Senate Transportation & Energy Committee members Colorado House Energy & Environment Committee members

John C. Gavan

Commissioner

1560 Broadway, Suite 250, Denver, CO 80202 P 303.894.2000 F 303.894.2065 puc.colorado.gov

٢

Source: Colorado PUC Report to the Legislature, Docket No 19M-0661EG (November 11, 2020)

The Colorado PUC's 2020 PBR investigation recommended continued expansion of performance-based mechanisms in the state

The report recommended consideration of PIMs including for:

- GHG emissions, possibly exceeding reductions required by law
- Reducing/eliminating the impact of a decrease in kWh sales
- Encouraging exploration of less-capital intensive methods for addressing transmission constraints

Alternative Utility Service Models

Why Modernize Utility Services?

- Energy transition requires rethinking of utility functions and service models
- Utility relationship to DERs has many dimensions beyond just ownership
- There is no single recipe for program structure; experimentation may be needed

Green Mountain Power Bring-Your-Own-Device (BYOD) Program

Business Model Features

- GMP procures heat pumps, using local contractors for installation, and leases equipment to participants
- *Up-front cost* of heat pump captured in GMP rate base
- Financing payments: from participants return to customers by offsetting some of GMP's annual revenue requirement, and are structure to return a net benefit to all customers
- Electrification: Equipment replaces fossil fuel systems, generating new electricity sales, which spreads fixed costs of grid, improving bill affordability
- Load flexibility: devices managed to shift load to most beneficial times of day can help keep bills affordable

New Jersey "Shared Responsibility" Model for Public EV Charging

Utilities may apply to own and operate charging stations in "last resort" areas

BY THE BOARD:

infrastructure

This Order implements provisions of the Electric Vehicle Act of 2020 ("PIV Act"), P.L. 2019, c. 362; N.J.S.A. 48:25-1 <u>et seq.</u>, which directs the New Jersey Board of Public Utilities ("Board" or "BPU") to adopt policies and programs to advance the adoption of electric vehicles ("EVs") and the development of EV charging infrastructure. By this Order, the Board establishes the minimum filing requirements for utility filings regarding light-duty, publicly-accessible EV charging

19

Massachusetts "ConnectedSolutions" Program Encourages Residential Storage

		Bavings through energy efficiency
Demonstration Attributes		National Grid
Participants	Customer Segment	Residential
	Participating Customers, as of August 31	50 ⁴
	Battery Ownership	Participant owned (BYOB)
Incentives	Enrollment Incentive	No enrollment incentive
	Participation Incentive	\$225/kW in summer
Summer Event Criteria	Season	July 1 to September 30
	Event Days	Non-holidays
	Event Window	2 p.m. to 7 p.m.
	Event Dispatch Criteria	Mostdays
	Event Duration	Max of 3 hours
	Battery Control Logic	Battery discharges evenly throughout event duration
	Battery Reserve Requirement	None or 20% (differs by manufacturer ⁶)

Key Components

- Program initially allowed customers to enroll preapproved smart thermostats to provide demand response during summer peaks
- Program update rewards customers to pre-enroll batteries on a pay-for-performance basis for the average kW curtailed during summer (\$225/kW) and winter dispatch (\$50/kW) events.

National Grid aims to enroll 30,000 customers in this by 2021

The program saved 139 kW per event on average, including 126 kW during the 2019 ISO-NE

Conclusions

- PBR and modernized utility service models can help reduce regulatory disincentives to DER expansion and use
- Utility innovation is happening where regulators and utilities are willing to experiment
- Thinking holistically helps best balance benefits, cost, and risks
- Incremental ≠ Insubstantial
- What bold ideas will this group develop?

Questions?

Making the Most of Michigan's Energy Future

New Technologies and Business Models Closing Comments

Stakeholder Meeting 1 January 27, 2021

Thank You and Please Stay Engaged!

- Thank you for your participation.
- Please stay engaged.
 - Sign up for the listserv if you have not already
 - Go to MI Power Grid <u>New Technologies and Business Models workgroup</u> page
 - Scroll to bottom to add email
 - Attend future meetings
 - Next Meeting on February 10 from 1 5 PM
 - Topic: Electric Vehicles
 - Speak at a future meeting
 - Limited slots available for stakeholder input/experiences
 - If interested, email: Joy Wang at WangJ3@Michigan.gov.

Thank you!

