MI Power Grid New Technologies and Business Models Workgroup: Microgrids

	Identified Barriers	Possible Solutions	
1.	There are varying definitions of microgrid.	Adopt a consistent definition of microgrid.	
2.	No rate design or planning from the MPSC to move microgrids forward (time of use and demand charges).	 Pilots to allow utilities and customers to experiment and learn about microgrids.ⁱⁱ Support digitization to allow utilities to be more situationally aware.ⁱⁱⁱ Incentivize early adopters.^{iv} Develop regulations 	
3.	Lack of interconnection rule coverage.	 Examine where currently practice of treating microgrid interconnection as a DER interconnection request^v is sufficient. Develop interconnection rules and standards for connecting microgrids. 	
4.	Microgrid project can be viewed negatively by utility due to reduction in demand from the site.	 Find ways to build partnerships with utilities, vendors, engineers, and contractors to avoid adversarial relationship.^{vi} 	
5.	Self Service language in Act 3 presents geographical constraints that can prevent a microgrid from being realized. VII	 Modify language in Act 3. viii Have utilities allow a certain amount of work arounds. ix Don't call it a microgrid. Call it storage and onsite generation x 	
6.	Financial challenges (high cost) due to need for tailored analysis, engineering, and equipment. $^{\rm xi}$	 Grid services help make projects economically feasible.xii Provide market access provided by FERC.xiii Incentivize flexibility through time-based tariffs, other regulatory incentives and rebates.xiv 	
7.	Locational challenges (e.g., limitations from infrastructure and grid conditions).	 Planning practices, islanding protection Hosting capacity analysis/maps to assist with locational challenges. 	
8.	Gap between the utility and customers.	 Collaboration between utilities and developers Ensure customer benefits of resiliency and sustainability are equitably distributed through regulatory rate designs that allow the stability and resiliency of microgrids to be realized.xv Figure out how to best partner to provide customers solutions, meet demand, and educate regarding safety, control, communication, and cybersecurity standards.xvi 	
9.	Resiliency currently not clearly valued. It also lacks standards, unlike reliability.* ^{vvii}	 Legislation clarifying the value of resiliency and vision for Michigan. Develop microgrid projects to support critical infrastructure like hospitals, communications, water systems, sewage systems. Analysis of critical infrastructure needs and how microgrids might support them. Define what resilient outcomes planning should pursue.xviii 	

Identified Barriers	Possible Solutions
	 Different aspects of resiliency can be explored and clarified. Resiliency can be for assets/equipment or for the grid. Resiliency practices can be established for operations as well as standards for development of new systems.xix
10. Resilience is a locational value that varies significantly depending on the site and its risks. ** However, during times of severe outages, microgrids can export power to support demand and grid stability. **i	 Conduct locational studies that examine local grid conditions and specific project needs when designing microgrid projects.
11. Technology is rapidly evolving (faster than utility can keep up with)	 Utility must keep up with changes through pilots and engage with stakeholders to identify needs and wants. Pilots to understand new, rapidly evolving technologies. xxiii Explore planning processes and necessary studies, like fault studies, to evolve current practices. xxiv
12. Developing microgrids for affordable housing is complicated by the difficulties in adding solar to affordable housing due to low-income housing tax credits. xxv	•
13. There is community interest in developing microgrids, but there is a lack of knowledge of the necessary processes. Those that do try to develop such projects can find it overwhelming. xxvi	 Develop/use virtual modeling as a way to "de-risk" microgrid projects to support customer implementation.xxvii
14. Most commercial and industrial customers want to focus on their core business, no operate microgrids, even if they are interested and willing to pay for full backup. xxviii	Look to developers to operate.xxix

Applicable and Emerging Business and Ownership Models

- Veridian Living Community Microgrid (Matt Grocoff)
 - o Net zero energy neighborhood
 - o All electric, no gas
 - o Solar panels, EV chargers, batteries, etc.
- Parker Village "Smart Neighborhood Microgrid" (Juan Shannon)
 - o Proposed neighborhood with rooftop solar, EV chargers
 - Leasing options for housing
- Everything as a Grid (Eaton Corp.)
- Non-utility ownership of microgrid or microgrid components.

¹ Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.

ⁱⁱ Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.

^{III} Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.

- ^{iv} Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.
- ^v Panel: Utility Microgrid Perspectives. 04/21/2021 panel discussion.
- vi Ontiveros. 04/21/2021 workgroup PPT. Slide 10.
- vii Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.
- viii Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.
- $^{\mathrm{ix}}$ Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.
- ^x Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.
- xi Gagne. 04/21/2021 workgroup PPT. Slide 10.
- xii Twitchell. 04/21/2021 workgroup PPT. Slide 20.
- Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.
- xiv Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.
- ^{xv} Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.
- xvi Panel: Utility Microgrid Perspectives. 04/21/2021 panel discussion.
- xvii Twitchell. 04/21/2021 workgroup PPT. Slide 21.
- xviii Twitchell. 04/2/2021 workgroup PPT. Slide 12.
- xix Panel: Utility Microgrid Perspectives. 04/21/2021 panel discussion.
- xx Twitchell. 04/21/2021 workgroup PPT. Slide 10-11.
- xxi Swinson. 04/21/2021 workgroup PPT. Slide 15.
- xxii Twitchell. 04/21/2021 workgroup PPT. Slide 13.
- xxiii Panel: Utility Microgrid Perspectives. 04/21/2021 panel discussion.
- xxiv Panel: Utility Microgrid Perspectives. 04/21/2021 panel discussion.
- xxv Grocoff. 04/21/2021. Workgroup PPT.
- xxvi Shannon. 04/21/2021. Workgroup PPT.
- xxvii Eaton Corp. 04/21/2021. Workgroup PPT & Q&A.
- xxviii Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.
- xxix Panel: Business Perspectives on Microgrid Development. 04/21/2021 panel discussion.