

Impact Evaluation of Electric and Natural Gas Energy Optimization

Programs

Impact Evaluation Results for Efficiency United

Michigan Community Action Agency Association (MCAAA)

Prepared by KEMA, Inc. Clark Lake, MI April 9, 2012

Copyright © 2012, KEMA, Inc.

This document, and the information contained herein, is the exclusive, confidential and proprietary property of KEMA, Inc. and is protected under the trade secret and copyright laws of the U.S. and other international laws, treaties and conventions. No part of this work may be disclosed to any third party or used, reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without first receiving the express written permission of KEMA, Inc. Except as otherwise noted, all trademarks appearing herein are proprietary to KEMA, Inc.

1.	Intro	duction		1-1
2.	Verif	ed Gros	ss Energy Savings, MCAAA	2-1
3.	Cond	lusions	and Recommendations	3-1
	3.1	Conclu	usions	3-1
		3.1.1	Documentation Verification	3-1
		3.1.2	Tracking Verification	3-2
		3.1.3	Installation Rates	3-2
		3.1.4	Verified Gross Savings	3-3
		3.1.5	Attribution Adjustment Factor	3-4
	3.2	Recon	nmendations	3-5
Α.	Over	view of	Evaluation	A-1
	A.1	Introdu	uction	A-1
	A.2	Overvi	ew of Participating Utilities and Cooperatives	A-1
	A.3	Overvi	ew of Implemented Programs	A-3
	A.4	Evalua	ation Objectives	A-4
	A.5	Descri	ption of Common Evaluation Tasks	A-5
		A.5.1	Tracking Review	A-6
		A.5.2	Paper Documentation Review	A-6
		A.5.3	Sample Design and Data Collection Process	A-6
		A.5.4	Participant Survey	A-8
		A.5.5	Gross Savings Analysis	A-8
		A.5.6	Net Savings Analysis	A-9
		A.5.7	Reporting Results	A-10
		A.5.8	In-Depth Attribution Analysis	A-10
	A.6	Overvi	ew of Report	A-11
В.	Resid	dential a	and Small Business ENERGY STAR Products Program	B-1
	B.1	Progra	am Description	B-1
	B.2	Gener	al Approach	B-3
	B.3	Verifie	d Gross Savings Results	B-3
		B.3.1	Installation Rate	B-3
		B.3.2	Verified Gross Savings	B-4
	B.4	Attribu	tion Results	B-7
		B.4.1	Attribution Adjustment Factors	B-7

i

 B.4.2 Analysis of Survey Responses B.4.2.1 Timing B.4.2.2 Efficiency B.4.2.3 Quantity B.4.2.4 Overall Attribution B.5 Comparison of 2009-10 and 2011 Program Results B.5.1 Overall Comparison 	B-9 B-10 B-13 B-13 B-13 B-13 B-14 C-1 C-1 C-3 C-3
 B.4.2.2 Efficiency. B.4.2.3 Quantity. B.4.2.4 Overall Attribution. B.5 Comparison of 2009-10 and 2011 Program Results. B.5.1 Overall Comparison. 	B-10 B-11 B-13 B-13 B-13 B-14 C-1 C-1 C-3 C-3
B.4.2.3QuantityB.4.2.4Overall AttributionB.5 Comparison of 2009-10 and 2011 Program ResultsB.5.1 Overall Comparison	B-11 B-13 B-13 B-13 B-14 C-1 C-1 C-3 C-3
B.4.2.4Overall Attribution B.5 Comparison of 2009-10 and 2011 Program Results B.5.1 Overall Comparison	B-13 B-13 B-13 B-14 C-1 C-1 C-3 C-3
B.5 Comparison of 2009-10 and 2011 Program Results B.5.1 Overall Comparison	B-13 B-13 B-14 C-1 C-1 C-3 C-3
B.5.1 Overall Comparison	B-13 B-14 C-1 C-1 C-3 C-3
·	B-14 C-1 C-1 C-3 C-3
B.5.2 Adjustment Factors	C-1 C-1 C-3 C-3
C. Residential Appliance Recycling Program	C-1 C-3 C-3
C.1 Program Description	C-3 C-3
C.2 General Approach	C-3
C.2.1.1Net and Gross Savings in an Appliance Recycling Framework	
C.2.1.2Gross Savings	C-4
C.2.1.3Non-participant Survey	
C.3 Verified Gross Savings Results	
C.3.1 Removal Rate	
C.3.2 Engineering Adjustment Factor	
C.3.3 Verified Gross Savings	
C.4 Attribution Results	
C.4.1 Appliance Recycling Net Savings Methodology	
C.4.2 Attribution Adjustment Factors	
C.5 Comparison of 2009-10 and 2011 Program Results	
C.5.1 Overall Comparison	
C.5.2 Equipment Usage and Gross Savings Adjustment	
C.5.3 Program Attribution	
D. Residential HVAC Program	D-1
D.1 Program Description	D-1
D.2 General Approach	
D.3 Verified Gross Savings Results	
D.3.1 Installation Rate	
D.3.2 Verified Gross Savings	D-4
D.4 Attribution Results	
D.4.1 Attribution Adjustment Factors	D-6

		D.4.2	Analysis of Survey Responses	D-7
		D.4.2.	1 Timing	D-7
		D.4.2.	2Efficiency	D-9
		D.4.2.	3Quantity	D-11
		D.4.2.4	4Overall Attribution	D-12
	D.5	Comp	arison of 2009-10 and 2011 Program Results	D-13
		D.5.1	Overall Comparison	D-13
		D.5.2	Adjustment Factors	D-14
Ε.	Resid	dential I	Low Income Program	E-1
	E.1	Progra	am Description	E-1
	E.2	Gener	al Approach	E-2
	E.3	Verifie	ed Gross Savings Results	E-2
		E.3.1	Installation Rate	E-2
		E.3.2	Verified Gross Savings	E-3
	E.4	Compa	arison of 2009-10 and 2011 Program Results	E-5
		E.4.1	Overall Comparison	E-5
		E.4.2	Adjustment Factors	E-6
F.	Resid	dential (Online Audit Program	F-1
	F.1	Progra	am Description	F-1
	F.2	Gener	al Approach	F-1
	F.3	Verifie	ed Gross Savings Results	F-2
		F.3.1	Installation Rate	F-2
		F.3.2	Verified Gross Savings	F-3
	F.4	Attribu	ution Results	F-4
		F.4.1	Attribution Adjustment Factors	F-5
		F.4.2	Analysis of Survey Responses	F-5
		F.4.2.′	1 Overall Likelihood	F-6
		F.4.2.2	2 Timing	F-6
		F.4.2.3	3 Efficiency	F-8
		F.4.2.4	4 Quantity	F-9
		F.4.2.8	5 Overall Attribution	F-10
	F.5	Comp	arison of 2009-10 and 2011 Program Results	
		F.5.1	Overall Comparison	F-11

			· · · · · · - ·		
			•		
G.					
	G.1	•	•		
	G.2		• •		
	G.3	Verifie	d Gross Savings Re	sults	G-3
		G.3.1	Installation Rate		G-3
		G.3.2	Verified Gross Savi	ngs	G-4
	G.4				
		G.4.1	Attribution Adjustme	ent Factors	G-6
		G.4.2	Analysis of Survey	Responses	G-7
		G.4.2.	1	Overall Likelihood	G-8
		G.4.2.2	2	Timing	G-9
		G.4.2.3	3	Efficiency	G-10
		G.4.2.4	4	Quantity	G-11
		G.4.2.	5	Overall Attribution	G-12
	G.5	Compa	arison of 2009-10 an	d 2011 Program Results	G-13
Η.	Resid	dential N	New Construction Pr	ogram	H-1
	H.1	Progra	m Description		H-1
	H.2	Genera	al Approach		H-2
	H.3	Survey	Results and Verifie	d Gross Savings	H-2
١.	Com	mercial	and Industrial Progra	am	I-1
	I.1	Genera	al Approach		I-2
		I.1.1	Evaluation Objectiv	es	I-2
		I.1.2	Overview of Approa	ach	I-3
		I.1.2.1	On-site Verification		I-3
		I.1.2.2	Survey Data Collec	tion	I-4
		CATI s	survey data collection	۱	I-4
		Expert	interview data colle	ction	I-5
		I.1.2.3	Engineering Review	/	I-5
				ngs Analysis	
				is	
	I.2	Verifie	d Gross Savings Re	sults	I-6
		I.2.1		Review	

		1.2.2	Custom Project Review	I-8
		I.2.3	Installation Rate	I-9
		1.2.4	Engineering Adjustment Factor	I-10
		1.2.5	Verified Gross Savings	I-11
	I.3	Attribut	tion Results	I-12
		I.3.1	Attribution Adjustment Factors	I-13
		1.3.2	Analysis of Survey Responses	I-13
		I.3.2.1	Timing	I-14
		1.3.2.2	Efficiency	l-17
		1.3.2.3	Quantity	I-20
		1.3.2.4	Overall Attribution	I-25
	I.4	Compa	arison of 2009-2010 and 2011 Program Results	I-26
	l.5	Overal	I Comparison	I-26
	I.6	Adjustr	ment Factors	l-27
J.	Multi	family P	Program	J-1
	J.1	Progra	m Description	J-1
	J.2	Genera	al Approach	J-2
	J.3	Survey	/ Results and Verified Gross Savings	J-2
K.	Cond	lusions	and Recommendations	K-1
	K.1	Conclu	usions	K-1
		K.1.1	Documentation Verification	K-1
		K.1.2	Tracking Verification	K-2
		K.1.3	Installation Rates	K-2
		K.1.4	Verified Gross Savings	K-3
		K.1.5	Attribution Adjustment Factor	K-4
	K.2	Recom	nmendations	K-5
L.	Pilot	Program	ns	L-1
M.	Educ	ation Pr	rograms	M-1
N.	Evide	ence of	Spillover – Audit Programs	N-1
		N.1.1	Findings	N-1
		N.1.2	Summary and Conclusions	N-5
О.	Geo	graphica	al Comparison – UP / LP	0-1
Ρ.	Meas	sure Life	9	P-1

		P.1.1	ResidentialP-	·1
		P.1.2	Commercial and IndustrialP-	·2
Q.	Track	king Rev	<i>v</i> iewQ-	-1
R.	Docu	mentati	on VerificationR-	·1
		R.1.1	ENERGY STARR-	·1
		R.1.2	HVACR-	.3
		R.1.3	Onsite AuditR-	-5
		R.1.4	New ConstructionR-	-6
		R.1.5	C&IR-	-6
		R.1.6	MultifamilyR-	.8
S.	MEM	D Savir	ngs InformationS-	·1
	S.1	ENER	GY STARS-	·1
		S.1.1	CFLs	·1
		S.1.2	Clothes Dryers	·1
	S.2	HVAC	S-	·2
		S.2.1	Thermostats	·2
		S.2.2	Furnace Fans	·2
		S.2.3	Heating systemsS-	.3
	S.3	Onsite	Audit	.3
		S.3.1	CFLs	-4
		S.3.2	Faucet AeratorsS-	-4
		S.3.3	Showerheads	-5
Т.	Sam	ole Desi	gn and Disposition	-1
	T.1		e Design	
			Sample Design Strategy	
			Sampling Methodology	
	T.2		e Disposition	
		T.2.1	Participant Surveys	
		T.2.2	General Population Survey	
U.	Attrib	ution A	nalysis Methodology	
	U.1		tion Analysis Methodology	
		U.1.1	Defining Attribution Analysis ParametersU-	
	U.2	-	tion Analysis	
			,	

	U.2.1 Simple Program Attribution (SPA) Calculation	U-3
U.3	Timing Effects	U-4
U.4	Determining Attribution Parameters	U-8
	U.4.1 General Procedure	U-8
	U.4.2 Detailed Assignments	U-9
	U.4.2.1 Acceleration Period	U-9
	U.4.2.1.1 Determination of the Acceleration Period	dU-10
	U.4.2.2Efficiency	U-10
	U.4.2.3Quantity	U-12
	U.4.2.4What if they Don't Know or Refuse?	U-14
U.5	Attribution Calculations for CFLs and Kits	U-14
	U.5.1 CFLs	U-14
	U.5.1.1Timing Attribution	U-14
	U.5.1.2Efficiency Attribution	U-15
	U.5.1.3Quantity Attribution	U-15
	U.5.1.4Acceleration Period Savings	U-15
	U.5.2 Kits	
	U.5.2.1 Acceleration Period Savings	U-16

1. Introduction

This report presents the verified gross energy savings achieved by Efficiency United (EU) from the Energy Optimization programs implemented during 2011. The savings were determined based on the impact evaluation results of the Energy Optimization (EO) programs administered by the Michigan Community Action Agency Association (MCAAA), the Michigan Electric Cooperative Association (MECA) Collaborative, and the MECA Upper Peninsula (MECA UP) Collaborative. The impact evaluation was conducted by KEMA, Inc. from August 2011 to March 2012.

The body of this report contains verified gross savings results specific to EU that were derived based on KEMA's impact evaluation of the EO/EU programs. We have also listed the conclusions and recommendations from our analysis. Appendices A through U provide background on the impact evaluation, including an overview of the programs, the methodology used in the evaluation, and overall program-specific impact evaluation results.

2. Verified Gross Energy Savings, MCAAA

Efficiency United participated in 17 energy optimization programs implemented by CLEAResult Consulting, Inc. in 2011. Table 1 shows the annual and lifetime verified gross savings achieved for the programs that were certified as part of this evaluation. The table shows the kWh and ccf savings achieved annually for each program and the lifetime savings that will be achieved over the measure lives of the equipment installed.

	Verified C	Gross kWh	Verified (Gross ccf
Program	Annual	Lifetime	Annual	Lifetime
ENERGY STAR	2,652,942	23,160,885	61,197	629,074
Appliance Recycling	1,092,472	5,224,515		
Residential HVAC	259,548	3,892,592	651,478	9,290,244
Low Income	1,520,960	17,254,142	152,555	1,911,382
Online Audit	588,113	5,793,327	36,615	374,308
Onsite Audit	1,772,090	17,466,740	225,336	2,490,245
Residential New Construction	3,300	59,402	7,831	140,967
Commercial and Industrial	22,862,137	261,147,664	1,255,123	13,561,859
Market Rate Multi Family	558,131	5,378,527	78,070	819,634
Plug Load Residential Pilot	1,832,656	1,832,656		
Residential Education	477,743	477,743	60,850	60,850
CSA Pilot			16,761	16,761
Home Performance - Residential Pilot			231,487	231,487
Behavioral Study	243,587	243,587	9,642	9,642
C&I Best Energy Pilot	496,053	496,053	39,658	39,658
C&I Education	755,451	755,451	71,894	71,894
C&I Retrocommissioning	3,183,429	3,183,429	259,959	259,959
EU Overall	38,298,613	346,366,715	3,158,456	29,907,964

Table 1. Efficiency United Verified Gross Savings by Program¹

Table 2 shows the verified gross savings for Residential programs for each utility participating in the Efficiency United programs. Table 3 shows the verified gross savings for Commercial and Industrial (C&I) programs by utility.

	Verified G	iross kWh	Verified (Gross ccf
Utility	Annual	Lifetime	Annual	Lifetime
Alpena Power Company	517,833	1,728,727		
Bayfield Electric Cooperative	1,101	5,504		
Daggett Electric Company	5,821	44,829		
Edison Sault Electric Company	1,573,449	6,553,564		
Indiana Michigan Power Company	8,738,127	49,569,490		
Michigan Gas Utilities Corporation			661,253	6,520,777
SEMCO Energy Gas Company			1,183,542	9,306,736
Upper Peninsula Power Company	2,760,297	16,617,883		
We Energies	740,144	4,420,379		
Wisconsin Public Service Corporation	586,229	2,818,809	29,277	249,419
XCEL Energy	513,474	3,459,864	29,262	269,172
EU Residential Overall	15,436,476	85,219,050	1,903,333	16,346,105

Table 2. Efficiency United Verified Gross Savings, Residential

¹ The measure life used for the Pilot and Residential Programs is one year. The measure life is necessary to determine lifetime program savings.

	Verified G	iross kWh	Verified Gross ccf		
Utility	Annual	Lifetime	Annual	Lifetime	
Alpena Power Company	1,136,074	12,989,185			
Bayfield Electric Cooperative					
Daggett Electric Company	9,463	114,010			
Edison Sault Electric Company	3,023,163	25,901,109			
Indiana Michigan Power Company	11,295,206	132,031,277			
Michigan Gas Utilities Corporation			176,203	2,269,416	
SEMCO Energy Gas Company			1,047,320	10,850,852	
Upper Peninsula Power Company	4,144,521	51,783,023			
We Energies	1,136,225	15,228,024			
Wisconsin Public Service Corporation	1,587,883	18,338,121	24,442	355,708	
XCEL Energy	529,601	4,762,915	7,158	85,883	
EU C&I Overall	22,862,137	261,147,664	1,255,123	13,561,859	

Table 3. Efficiency United Verified Gross Savings, C&I

Table 4 shows the overall verified gross savings by utility for the 2011 Efficiency United programs studied in this evaluation.

	Verified G	ross kWh	Verified Gross ccf					
Utility	Annual	Lifetime	Annual	Lifetime				
Alpena Power Company	1,653,907	14,717,913						
Bayfield Electric Cooperative	1,101	5,504						
Daggett Electric Company	15,284	158,839						
Edison Sault Electric Company	4,596,613	32,454,673						
Indiana Michigan Power Company	20,033,333	181,600,767						
Michigan Gas Utilities Corporation			837,456	8,790,193				
SEMCO Energy Gas Company			2,230,862	20,157,588				
Upper Peninsula Power Company	6,904,819	68,400,906						
We Energies	1,876,369	19,648,403						
Wisconsin Public Service Corporation	2,174,113	21,156,930	53,719	605,127				
XCEL Energy	1,043,076	8,222,779	36,420	355,055				
EU Overall	38,298,613	346,366,715	3,158,456	29,907,964				

Table 4. Efficiency United Verified Gross Savings by Utility

Overall, Efficiency United realized 346,366,715 lifetime kWh savings and 29,907,964 lifetime ccf savings resulting from programs implemented in 2011. In terms of annual savings, the program realized 38,298,613 kWh/yr and 3,158,456 ccf/yr savings from programs implemented in 2011.

3. Conclusions and Recommendations

3.1 Conclusions

This section summarizes KEMA's findings across the programs that made up this evaluation.

3.1.1 Documentation Verification

KEMA verified the accuracy and consistency of the program records by checking a sample of completed program application forms for the ENERGY STAR, HVAC, Onsite Audit, New Construction, C&I, and Multifamily programs. We did not review applications for the Appliance Recycling or Online Audit program because they do not use paper applications, and we did not repeat our 2010 review of the Low Income documentation. KEMA was able to download the sample of application forms directly from the program's document repository on December 2, 2011.

KEMA struggled to complete the documentation review effectively, as many of the measures represented by the downloaded documentation were entered in the 2010 data instead of the 2011 data, even when it appeared on the same application form as a 2011 measure. It is unclear why this is the case.

KEMA's review resulted in the following adjustments, which were included in the gross savings adjustment factors:

- ENERGY STAR: KEMA found one CFL, one smart strip, and one dishwasher that were not entered into the database.
- HVAC: KEMA found one application with a furnace and programmable thermostat on it; the thermostat was not entered in the database.
- Onsite Audit: KEMA found a number of differences between the quantities installed according to the Onsite Audit documentation and the quantities listed in the database for CFL, thermostat, pipe wrap, showerhead, and faucet aerator measures. We also found one wall insulation measure that had the wrong square footage multiplier entered in the database.
- New Construction: KEMA did not find any errors.
- C&I: KEMA found differences between the quantity listed on the application and the one in the database for five applications.
- Multifamily: KEMA did not find any errors.

3.1.2 Tracking Verification

KEMA reviewed the CLEAResult tracking database to verify that the deemed savings values from the MEMD were being applied correctly. We conducted our review for all of the programs in this round of evaluation.

The tracking database improved immensely in 2011. The current database has a sound structure and tracks all of the data required for impact evaluations in an effective manner. We made the following adjustments where necessary as a result of our review:

- Corrected the per-unit savings assignments
- Corrected the multiplier entries (such as square footage of insulation installed, or kBtu of furnace capacity)
- Adjusted calculations to include only one multiplier, rather than two
- Assigned the correct water heater fuel
- Corrected the multiplier units (such as square footage of conditioned space instead of linear feet of rim joist insulation installed)
- Made per-unit savings consistent across programs
- Reviewed the magnitude of C&I savings estimates used that were not in the MEMD to confirm that they were reasonable.

3.1.3 Installation Rates

Installation rates for the across the HVAC, C&I and Low Income, Onsite Audit, New Construction and Multifamily programs ranged from 89 percent to 100 percent. Together these six programs represent 75 percent of the portfolio savings KEMA evaluated.

The only statistically significant program level changes in installation rate from the 2009-2010 program year to the 2011 program year were declines for the ENERGY STAR program in both kWh and ccf and a decline in Low Income program kWh. In the case of ENERGY STAR, the introduction of energy kits, which customers often purchase with one or two of the technologies in mind, is the likely driver of the decline. For the Low Income program, the decline from 99 percent to 97 percent is related to a less than 100 percent installation rate for refrigerators in addition to an increase in CFL removals.

Across programs, the installation rate for less expensive kit measures (faucet aerators, pipe wrap, and showerheads) was low, while attribution for these same measures was generally higher than when the technology was purchased outside of a kit. The higher attribution indicates

that kits are an effective way of getting people to try these technologies when they otherwise would not, but only when the technologies are actually installed. Many participants simply never install these technologies, while a portion of participants install and then remove them due to a lack of satisfaction with their performance.

3.1.4 Verified Gross Savings

Table 5 shows the verified gross energy savings for every evaluated program in the Efficiency United and Energy Optimization portfolio. Table 5 and Table 6 show the verified gross energy savings for the EU portfolio and EO portfolio respectively.

For programs other than C&I, the gross savings adjustment accounts for the installation rate and the documentation review, the latter of which had little effect on the adjustment factors. The gross savings adjustments for C&I include the installation rate, documentation review and in depth engineering reviews KEMA conducted using project documentation and on site verification surveys.

Overall KEMA verified 94 percent of the kWh and 84 percent of the ccf claimed by the program. The C&I program drove these rates: 63 percent of tracked kWh savings and 56 percent of tracked ccf savings came from the C&I program in 2011.

		kWh ccf						
		Gross	Verified	Verified		Gross	Verified	Verified
	Tracking	Savings	Gross	Gross	Tracking	Savings	Gross	Gross
	Gross	Adjustment	Annual	Lifetime	Gross	Adjustment	Annual	Lifetime
Program	Savings	Factor	Savings	Savings	Savings	Factor	Savings	Savings
ENERGY STAR	6,572,899	75%	4,526,895	38,987,772	98,516	67%	61,197	629,074
Appliance Recycling	3,635,698	77%	2,818,906	13,468,272				
HVAC	582,480	95%	560,788	7,996,955	648,661	100%	651,478	9,290,244
Low Income	2,094,648	97%	1,977,369	22,748,158	156,519	99%	152,555	1,911,382
Online Audit	1,588,234	50%	827,513	8,091,126	59,721	60%	36,615	374,308
Onsite Audit	2,074,578	87%	1,794,811	17,675,184	250,468	90%	225,336	2,490,245
New Construction	3,300	100%	3,300	59,402	7,831	100%	7,831	140,967
C&I	29,372,976	123%	30,745,800	351,132,516	1,651,308	87%	1,255,123	13,561,859
Multifamily	558,424	100%	558,131	5,378,527	78,443	99%	78,070	819,634
Overall	46,483,237		43,813,513	465,537,912	2,951,467		2,468,205	29,217,713

Table 5. Verified Gross Energy Savings, Portfolio

		ccf							
Program	Tracking Gross Savings	Gross Savings Adjustment Factor	Savings Gross Adjustment Annual		Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	
ENERGY STAR	3,956,593	75%	2,652,942	23,160,885	98,516	67%	61,197	629,074	
Appliance Recycling	1,408,198	77%	1,092,472	5,224,515					
HVAC	259,548	95%	259,548	3,892,592	648,661	100%	651,478	9,290,244	
Low Income	1,617,652	97%	1,520,960	17,254,142	156,519	99%	152,555	1,911,382	
Online Audit	1,116,661	50%	588,113	5,793,327	59,721	60%	36,615	374,308	
Onsite Audit	2,047,900	87%	1,772,090	17,466,740	250,468	90%	225,336	2,490,245	
New Construction	3,300	100%	3,300	59,402	7,831	100%	7,831	140,967	
C&I	22,029,835	123%	22,862,137	261,147,664	1,651,308	87%	1,255,123	13,561,859	
Multifamily	558,424	100%	558,131	5,378,527	78,443	100%	78,070	819,634	
EU Overall	32,998,111		31,309,693	339,377,794	2,951,467		2,468,205	29,217,713	

Table 6. Verified Gross Energy Savings, EU Portfolio

Table 7. Verified Gross Energy Savings, EO Portfolio

	k٧	kWh					
		Gross	Verified	Verified			
	Tracking	Savings	Gross	Gross			
	Gross	Adjustment	Annual	Lifetime			
Program	Savings	Factor	Savings	Savings			
ENERGY STAR	2,616,306	75%	1,873,953	15,826,886			
Appliance Recycling	2,227,500	77%	1,726,434	8,243,757			
HVAC	322,932	95%	301,240	4,104,364			
Low Income	476,996	97%	456,410	5,494,017			
Online Audit	471,573	50%	239,400	2,297,799			
Onsite Audit	26,678	87%	22,720	208,444			
C&I	7,343,141	123%	7,883,663	89,984,851			
Overall	13,485,126		12,503,820	126,160,118			

3.1.5 Attribution Adjustment Factor

Table 8 shows the attribution adjustment factor calculated in this round of evaluation for every evaluated program in the Efficiency United and Energy Optimization portfolio.

The attribution adjustment factors are relatively low based on KEMA's experience with other programs of this type. We have a few theories that possibly explain the low values:

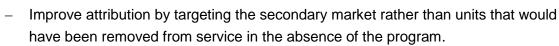
• Energy efficiency programs often have lower attribution in early program years. This may be because people who are already interested in implementing energy efficiency measures are more motivated to research and seek out rebates for the measures they install. As the program matures, these early adopters may no longer be as much of a factor and marketing and education efforts will make greater inroads in the general public.

- The program incentives may be too low to influence customers who are undecided about energy efficiency measures and influence them to install. If this is the case, the program would only be reaching customers that were already committed to energy efficiency.
- The evaluation data may not be representative of the entire program period. To meet the
 utility filing deadlines, KEMA evaluated projects installed through August of 2011. New
 program initiatives such as a large increase in Onsite Audit participation were
 implemented after the evaluation period. These changes may have had a different free
 ridership rate than previous months.

The only statistically significant program level changes in attribution from the 2009-2010 program year to the 2011 program year were improvements for the ENERGY STAR program in both kWh and ccf and a large jump in C&I program kWh. C&I programs often see large swings in adjustment factors from year-to-year because one large project or customer can influence the results for the entire program. In the case of ENERGY STAR, the introduction of energy kits, which customers often purchase with one or two of the technologies in mind (making the other technologies attributable to the program), is the likely driver of the increase.

		kWh			ccf						
	Attribution	90% Co	nfidence	Interval	Attribution	90% Co	Interval				
	Adjustment		Lower	Upper	Adjustment		Lower	Upper			
Program	Factor	+/-	Bound	Bound	Factor	+/-	Bound	Bound			
ENERGY STAR	32%	3%	29%	35%	25%	12%	13%	37%			
Appliance Recycling	58%	4%	54%	61%	-	-	-	-			
HVAC	18%	5%	12%	23%	16%	3%	13%	18%			
Low Income				N	/A						
Online Audit	53%	7%	46%	60%	43%	<0.1%	43%	43%			
Onsite Audit	78%	5%	72%	83%	63%	7%	55%	70%			
New Construction				N	/A						
C&I	40%	3%	37%	43%	33%	18%	16%	51%			
Multifamily				N	/A						

Table 8. Attribution Adjustment Factors, Portfolio


3.2 Recommendations

This section summarizes KEMA's recommendations across the programs that made up this evaluation.

• **Documentation:** Consider designing and implementing a quality control program to ensure that the information entered in the tracking data is correct.

- Installation Rate: Consider the following changes to increase installation rate:
 - Limit the maximum number of qualifying CFLs to increase the likelihood that they will be installed instead of placed into storage.
 - Implement changes to increase the installation rate of faucet aerators and low flow showerheads distributed in energy kits, such as installation instructions within the kit or follow-up mailings.
- Attribution: Consider the following changes that may increase attribution:
 - Increase marketing to reach customers that are not already interested in installing energy efficiency equipment.
 - Increase trade ally involvement to help sell energy efficient equipment to potential participants.
 - Consider increasing incentives for some measures that show poor attribution.
- Database:
 - Improve nonresidential tracking: The current database does not track needed information for nonresidential participants. Contact names for someone at the business should be recorded, in a dedicated field. A field should also be used to identify a customer as either residential or nonresidential (for programs that serve both). The database should also include unique Company IDs that can be used to identify a single company with multiple locations.
 - Track trade ally activity: Trade allies are important players in the implementation of energy efficiency programs and should be tracked not only to facilitate program outreach efforts but also to track program activity and measure contractor diversity. The business name, address, phone number and project contact name should be tracked along with a trade ally ID number. Trade ally IDs should be linked to projects so the program can measure trade ally activity and so evaluators know which trade allies to contact for additional information about a given project.
 - Consider adjusting the Quantity definition: For some measures, it may make more sense to track feet (pipe wrap) rather than units or bulbs rather than packs (CFL multi-packs).
- ENERGY STAR Program:
 - Work with trade allies to improve market penetration of the appliance portion of the program, which should improve participation and attribution.
 - Take steps to increase the installation of low flow showerheads and faucet aerators.
- Appliance Recycling:
 - Change the equipment operating assumption from 24 hours per day, 365 days per year to a value that more accurately reflects secondary unit operation.

• Low Income:

KEMA

- Improve communication with field staff. Two refrigerators were not installed. One was
 removed by the program and the other was refused. In both cases it is likely that
 program staff were aware of the issues, but the information did not make it into the
 database.
- Online Audit:
 - Take steps to increase the installation of low flow showerheads and faucet aerators.
- Onsite Audit:
 - Improve quality control on entering data from forms into the database.
 - Provide increased education to recipients of programmable thermostats. Several thermostats were removed due to issues learning how to operate it.
- Commercial and Industrial:
 - Change savings calculation assumptions to allow for a range of equipment operating schedules, not a single schedule that applies to all C&I facilities.
 - Set qualification rules to maximize verified savings. For example, when rebating pool covers, set qualification rules that require the end-use system affected (i.e. the pool heater) to use electricity or natural gas in order to qualify for a rebate.
 - Establish a deemed calculation for variable frequency drives instead of a single deemed savings value.
 - Provide live unlocked spreadsheets for custom projects to evaluators. Without these files it is difficult to understand how calculations were done and identify sources of errors.
 - Require staff to upload clear scans of program documentation. For many 2011 projects, the program documentation was difficult to read due to the scan quality.
 - Do not use a coincident factor (CF) when calculating tracking kWh savings. CF is used to estimate peak period savings and is not appropriate for determining annual kWh savings.

A. Overview of Evaluation

A.1 Introduction

This report presents the results of KEMA's evaluation of the Efficiency United (EU) programs administered by the Michigan Community Action Agency Association (MCAAA) and the Energy Optimization (EO) programs administered by the Michigan Electric Cooperative Association (MECA) Collaborative and the MECA Upper Peninsula (MECA UP) Collaborative.

A.2 Overview of Participating Utilities and Cooperatives

On October 6, 2008, Governor Jennifer Granholm signed into law the "Clean, Renewable, and Efficient Energy Act". On December 4, 2008, the Michigan Public Service Commission (MPSC) issued an order to begin implementation of the Act, requiring electric and natural gas utilities in the state to offer Energy Optimization plans to their customers after approval by the Commission. Energy optimization plans must be filed by retail rate-regulated electric utilities, retail rate-regulated rural electric cooperatives, member-regulated rural electric cooperatives, municipally-owned electric utilities, and retail rate-regulated gas utilities.

Section 91 of the Act creates an option for utilities to offer energy optimization services under the auspices of a state Energy Optimization Plan Administrator selected by the Commission. The MPSC chose the Michigan Community Action Agency Association (MCAAA) to administer the Energy Optimization Program for those utilities that have chosen not to self administer their Energy Optimization programs. MCAAA's program is called Efficiency United (EU). Eleven utilities chose to contract with the state plan administrator; of these, seven offer electric service only, two offer natural gas service only, and two offer both electric and gas service. Table 9 lists the participating utilities and their service options.

Participating Utility or Cooperative	Electric Service	Gas Service
Alpena Power Company	Х	
Bayfield Electric Cooperative	Х	
Daggett Electric Department	Х	
Edison Sault Electric Company	Х	
Indiana Michigan Power Company	Х	
Michigan Gas Utilities Corporation		Х
SEMCO Energy Gas Company and		
SEMCO Energy Gas Company - Battle		Х
Creek Division		
Upper Peninsula Power Company	Х	
We Energies	Х	
Wisconsin Public Service Corporation	Х	Х
Xcel Energy	Х	Х

Table 9. Utilities Participating in Efficiency United (MCAAA)²

Some members of MECA joined with the UP Municipal Collaborative in the hopes of significantly reducing the cost to implement and evaluate the EO programs. The programs that were designed and implemented are very similar (if not identical) to those of the state administered programs. There are eight participating cooperatives from MECA and all implement electric EO programs only.³ Table 10 shows the participating MECA cooperatives.

 Table 10. MECA Participating Cooperatives

Participating Utility or Cooperative	Electric Service
Alger Delta Cooperative Electric Association	Х
Cloverland Electric Cooperative	Х
Great Lakes Energy Cooperative	Х
HomeWorks Tri-County Electric Cooperative	Х
Midwest Energy Cooperative	Х
Ontonagon County Rural Electrification Association	Х
Presque Isle Electric and Gas Co-op	Х
Thumb Electric Cooperative	Х

The four participating municipal utilities from the UP Municipal Collaborative also implement electric EO programs only. Table 11 shows the participating UP municipal utilities.

² Edison Sault Electric Company was purchased by Cloverland Electric Cooperative, which is one of the MECA cooperatives.

³ Presque Isle Electric and Gas Co-op also provides gas service but does not implement natural gas EO programs per the EO legislation.

Participating Utility or Cooperative	Electric Service
Marquette Board of Light and Power	Х
Escanaba Electric Department	Х
Newberry Water and Light Board	Х
City of Stephenson	Х

Table 11. UP Municipal Collaborative Utilities

A.3 Overview of Implemented Programs

The MCAAA, MECA, and UP Municipal Collaborative have contracted with CLEAResult Consulting to implement the energy optimization programs. The programs implemented by the three groups are essentially identical with minor variations in some areas. CLEAResult, in turn, has contracted with Franklin Energy Services to implement the commercial and industrial programs and with JACO to implement the appliance recycling program. Not all programs are offered in all utility service territories. Table 12 shows the programs currently being implemented.

Program Name	Notes
ENERGY STAR Products Program	Some utilities limit the measures offered through the program.
Residential Appliance Recycling Program	Not offered in Bayfield or Daggett; for electric customers only.
Residential HVAC Program	Not offered in Bayfield or Daggett.
Residential Low Income Program	Implemented through previously existing assistance program.
Residential Online Audit Program	Not offered in Bayfield or Daggett.
Residential Onsite Audit Program	Customers must receive gas service from participating utility
Commercial and Industrial Programs	Implemented by Franklin Energy Services.
Residential New Construction Program	Very limited marketing in 2011.
Multifamily Program	Implemented in MCAAA.
Pilot Programs	MCAAA offered 3 pilot programs in 2011.
Education Programs	One of first programs to be implemented.

Table 12. Overview of Implemented Programs

Three of the programs (Residential Appliance Recycling Program, Residential HVAC Program, Residential Online Audit Program) are not being implemented in the Bayfield Electric Cooperative or Dagget Electric Department service territories.

Eight pilot programs were implemented in MCAAA territories in 2011.

- A Residential Plug Load Analysis (RPLA) program was implemented in EU electric utility territories for residential and small business customers.
- A Comfort System Analysis Program began implementation in December 2010. The program offers efficiency training for HVAC contractors and their employees.

кема弌

- A Home Performance (HP) program was implemented in SEMCO and Michigan Gas Utility territories beginning the last quarter of 2010. The program provides home audit services and incentives toward installing recommended measures.
- A Home Energy Makeover program was implemented in Midwest Energy's territory.
- A Behavioral Study was implemented in EU utility territories for residential and customers who participate in the Online Audit program.
- An LED Lighting program was implemented in EU utility territories for residential customers.
- An agriculture program was implemented in the Thumb Electric utility territory.
- A Best Energy Pilot was implemented in EU utility territories for commercial and industrial customers.
- A Retro-commissioning pilot was implemented in EU utility territories for commercial and industrial customers.

Further detail on the programs being implemented, including the savings by utility, can be found in Appendix L.

A.4 Evaluation Objectives

The individual program evaluations were designed to maximize the available funding while providing a detailed study tailored to each program in the MECA/MCAAA portfolio. An impact evaluation and process evaluation were performed for each program.⁴ Based on the RFP, the goals of the impact evaluation were:

- Provide independent expert evaluation of the programs to verify the incremental gross energy savings from each program as mandated by Public Act 295
- Document the effective useful life energy savings achieved and report those findings so that they can be reported to the Michigan Public Service Commission within the timeline required by the Michigan legislature
- Validate deemed savings and average measure life values for eligible energy efficiency measures in the Michigan Statewide Energy Measures Library/Database (MEMD).

As part of the impact evaluation, the RFP requests that the evaluation team verify a representative sample of program installations and verify the accuracy and consistency of

⁴ The results of the process evaluation were presented in a separate report.

program records by checking a representative sample of completed program application forms and projects.

The evaluation verified the incremental gross energy savings from each program as mandated by Public Act 295. The administrative rules for performing these evaluations are still evolving, and the current draft rules would require that net energy savings be determined in addition to the verified gross savings for future evaluations. Therefore, the evaluation was conducted in the spirit of the proposed rules, including net evaluation methods as well as gross verification for most programs in 2011. Including net effects in the study allows the evaluation team to gather the research necessary to determine the historic evolution of attributable savings for each program as it develops. This data will assist program implementers in modifying and improving the program plans going forward.

A.5 Description of Common Evaluation Tasks

KEMA's impact evaluation of most of the programs in the MECA/MCAAA portfolio followed a relatively standard path. Each program received a tracking system review. Most programs also received a documentation review. Each evaluation used a participant survey for data collection, which was used in the gross savings analysis, and most of the programs received a net savings analysis, which may have included an in-depth attribution analysis. Table 13 summarizes the general impact evaluation activities for each program.

		vity				
Program Name	Tracking Review	Paper Documentation Review	Participant Survey	Gross Savings Analysis	Net Savings Analysis	In-Depth Attribution Analysis
ENERGY STAR Products	Х	Х	Х	Х	Х	Х
Appliance Recycling	Х		Х	Х	Х	
HVAC	Х	Х	Х	Х	Х	Х
Low Income	Х		Х	Х		
Online Audit	Х		Х	Х	Х	Х
Onsite Audit	Х	Х	Х	Х	Х	Х
New Construction	Х	Х	Х	Х		
Multifamily	Х	Х	Х	Х		
Commercial and Industrial	Х	Х	Х	Х	Х	

Table 13. Summary of General Impact Activities

The following sections describe the general activities in more detail.

A.5.1 Tracking Review

KEMA reviewed the CLEAResult tracking database to verify that the deemed savings values from the MEMD were applied correctly. We conducted our verification on multiple versions of the database received prior to CLEAResult's final year-end reporting. As a result, the errors found in the tracking review were corrected before the year-end savings were produced and were not included in the adjustment factors in this report. The results of our review are found in Appendix Q.

A.5.2 Paper Documentation Review

KEMA verified the accuracy and consistency of program records by checking a sample of completed program application forms and projects. The information entered into the tracking database was verified through a comparison with the paper documentation from most programs. The results of our review are found in Appendix R.

A.5.3 Sample Design and Data Collection Process

The primary objective of the KEMA sample design for all programs was to target a relative precision of \pm 10 percent at the 90 percent confidence level for the program overall, sometimes

referred to as 90/10 precision. The secondary objective was to produce technology-level results at a precision high enough to allow for reliable interpretation, though not necessarily as precise as 90/10 precision.

KEMA targeted customers who made a larger contribution to the total program savings, though the sample was designed to ensure that we would complete surveys with customers with smaller contributions as well. Targeting customers with greater savings allowed us to achieve a more precise savings estimate while limiting evaluation data collection costs by limiting the number of surveys. KEMA used a model based sampling approach for some designs and simple random sampling for others.

KEMA collected data from customers based on a randomized order within the stratum. When a given measure was up for completion, KEMA called that customer until either the survey was completed, or the customer was "killed." A customer is "killed" when they refuse to participate in the survey or terminate the survey before the responses are completed, or when the survey house fails to make contact within six attempts on different days at different times of the day.

Many customers received rebates for multiple measures, such as a CFL and a washing machine for example. Since measures are randomized within a stratum, a customer could be eligible for a survey regarding their CFL but not yet eligible for a survey regarding their washing machine. However, KEMA could complete the survey regarding the CFL, and the customer could then later become eligible for a survey regarding their clothes washer. To avoid customer burden and repeated attempts at reaching the same person, KEMA asked customers about all of the measures they installed regardless of where each fell within the call order. When KEMA completed a survey with a customer, we asked about all measures that were installed whether or not those measures fell into the sample, to prevent the annoyance for the customer of multiple calls. For surveys conducted on measures that were not included in the sample or would not have come up in the normal call order, the results were included in the analysis but given a weight of one, meaning they represented only themselves and no other measures in the population.

KEMA was unable to recruit all of the desired sample targets by strata, especially for those strata where we conducted a census. For that situation, KEMA created a backup strategy that transferred a sample point from the stratum that we were unable to complete to the stratum with the largest contribution to total savings that still had sites available in the population to sample. For example, if the sample design for water heaters targeted a census, and KEMA was unable to recruit one of those sites, that sample point would then be allocated to the furnace sample. In

that way KEMA was still able utilize the entire sample and target the optimal precision for the sample design.

A.5.4 Participant Survey

KEMA collected data through participant surveys for each of the program evaluations outlined in this report. Most of the participant surveys were conducted using a computer aided telephone interview (CATI) through an outside survey house. Expert interviews were also conducted by KEMA staff for the Commercial and Industrial, New Construction, and Multifamily programs.

The participant surveys were designed to verify equipment installation and collect equipment operating characteristics (where possible) to help verify program savings and inform MEMD savings estimates. For evaluations that included a net savings analysis, the participant survey was also used to identify what the participant would have done in the absence of the program.


Most participant surveys also addressed program satisfaction and demographic questions. Those questions were primarily used for the process evaluation, and the results are presented in a separate report.

A.5.5 Gross Savings Analysis

The installation information gathered from the participant surveys was used to determine the installed savings for the program. For most programs, the installation rate was determined by dividing the number of units installed by the number of units reported in the tracking database. For some projects (such as C&I projects), the installation rate was used as a binary variable indicating whether or not the project or something like it was installed at the customer location. If the customer said yes, the program received 100 percent installation savings for that measure, regardless of whether the number of units was consistent with the program tracking data. The program-specific methodologies outlined in the following appendices identify which analysis was used for each program.

The installation rate was calculated for the each measure in the sample, and ratio estimation was used to determine the installation rate for the overall program. The overall installation rate was applied to the tracking savings to produce installed savings, as shown in Figure 1. Installed Savings Determination

KEMA used the results of the documentation review and data from the participant surveys to determine the engineering adjustment factor. The documentation review identified inconsistencies in the transfer of data from the application to the tracking database. The participant survey data was used for C&I measures to adjust the gross savings estimates using site-specific data reported by the site contact. Once again, ratio estimation was used to determine the overall engineering adjustment factor for the entire program. The overall engineering adjustment factor was applied to the installed savings to produce verified gross savings, as shown in Figure 2

The engineering adjustment factor and the installation rate were multiplied to produce the gross savings adjustment factor. The gross savings adjustment factor is a single factor that is applied to the tracking data to produce verified gross savings, as shown in Figure 3

A.5.6 Net Savings Analysis

For projects with a net savings analysis, the data from the participant surveys was analyzed to judge the impact of the program on the participant's decision to install the energy efficiency measures. KEMA analyzed the program's effect on the timing of the installation and the efficiency and quantity of the equipment installed. The program's influence on these three

factors was combined to form the attribution rate for each measure. Again, the evaluation team used ratio estimation to determine the overall attribution rate and apply it to the verified gross savings for the program to calculate the program's net savings, as shown in Figure 4. Further detail on the methodology used to determine the attribution rate can be found in Appendix U.

Figure 4. Net Savings Determination

A.5.7 Reporting Results

The adjustment factors are provided later in the report with indicators of statistical precision at the 90 percent confidence interval, sample sizes, and the percentage of program tracking savings represented by each measure group. The plus/minus (\pm) error (%) indicated at the 90 percent confidence interval is the absolute difference between the estimated percentage and the upper or lower confidence bound. For example, the ENERGY STAR LED Night Light kWh installation rate estimate in Table 16 is 93 percent and the 90 percent confidence interval is \pm 6 percentage points (i.e., 93 percent \pm 6 percent).⁵ The Holiday Lights measure group accounted for 1 percent of the overall program tracking savings. The adjustment factors are calculated using a SAS[®] macro provided by SAS for ratio estimation by domains.

A.5.8 In-Depth Attribution Analysis

For some programs, an in-depth attribution analysis was performed to identify where the program is having the greatest influence. The analysis reviewed the customer responses regarding the program's influence on the timing of the equipment installation and the efficiency and quantity of the equipment installed.

⁵ The critical value for calculating the confidence interval \pm for each adjustment factor is determined using Student's t-distribution and n-1 for the degrees of freedom, where n is the sample size. The critical value for the gross savings adjustment factor is determined using the degrees of freedom based on the minimum sample size for the components of the adjustment factor. The gross savings adjustment factor is a product of the installation rate and the engineering verification factor.

The purpose of in-depth attribution analysis was to indicate where the program is having a strong effect and where improvements can be made. While the net savings analysis produces overall adjustment ratios, the in-depth analysis identifies where the program is influencing the decision to install measures (i.e. timing, quantity, or efficiency) and where adjustments need to be made.

A.6 Overview of Report

The following appendices have program-specific evaluation results and methodology. Appendices B through J present program-level results for the following programs:

- Residential and Small Business ENERGY STAR Products
- Residential Appliance Recycling
- Residential HVAC
- Residential Low Income
- Residential Online Audits
- Residential Onsite Audits
- Residential New Construction
- Commercial and Industrial
- Multifamily

Appendix K reports the conclusions and recommendations for each program and the portfolio overall. Appendices L through S report on savings for the following program components:

- Pilot Programs
- Education Programs
- Evidence of Spillover Audit Programs
- Geographical Comparison UP / LP
- Measure Life
- Tracking Review
- Documentation Review
- MEMD Savings Evidence
- Sample Design and Disposition

Appendix U presents the attribution analysis methodology used for many of the programs.

B. Residential and Small Business ENERGY STAR Products Program

This section reports on the methodology and overall results of KEMA's evaluation of the Residential ENERGY STAR Program.

- Section B.1 provides a description of the program.
- Section B.2 gives an overview of the evaluation approach.
- Section B.3 presents the verified gross savings results and the overall adjustment factors.
- Section B.4 shows the overall attribution analysis results, including an analysis of the survey responses to the attribution questions.

B.1 Program Description

The Residential and Small Business ENERGY STAR Products (ESP) Program was launched in November 2009 in all utility service territories. Incentives are provided to customers through mail-in rebates for ENERGY STAR products such as CFLs, clothes washers, smart strips, faucet aerators, low-flow showerheads, and hot water pipe insulation. At this time, the ESP Program does not include point-of-sale rebates or upstream rebates to suppliers or manufacturers. The ESP Program is the second largest electric program in the MECA/MCAAA portfolio. Not all measures are offered in all utility service territories as shown in Table 14.

B-1

	Measure											
						IV	casu	e				
Consortium	Utility	CFL	Ceiling Fan	Smart Strip	Clothes Washer	Clothes Dryer	Faucet Aerator	Low Flow Showerhead	Pipe Insulation	Dishwasher	LED Night Light	Energy Kits
SS	Alger Delta Cooperative Electric Association	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
tive	Cloverland Electric Cooperative	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Cooperatives	Great Lakes Energy Cooperative	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
do	HomeWorks Tri-County Electric Cooperative	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ö	Midwest Energy Cooperative	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MECA	Ontonagon County Rural Electrification Association	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Ψ	Presque Isle Electric and Gas Co-op	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Thumb Electric Cooperative	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MECA UP	Marquette Board of Light and Power	Х		Х			Х	Х	Х		Х	Х
A L	Escanaba Electric Department	Х		Х			Х	Х	Х		Х	Х
СU	Newberry Water and Light Board	Х		Х			Х	Х	Х		Х	Х
Σ	City of Stephenson	Х		Х			Х	Х	Х		Х	Х
	Alpena Power Company	Х		Х	Х		Х	Х	Х		Х	Х
	Bayfield Electric Cooperative			Х	Х		Х	Х	Х		Х	Х
	Daggett Electric Department			Х	Х		Х	Х	Х		Х	Х
	Edison Sault Electric Company	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
٩A	Indiana Michigan Power Company	Х		Х	Х		Х	Х	Х		Х	Х
MCAAA	Michigan Gas Utilities Corporation				Х		Х	Х	Х			Х
Ĕ	SEMCO Energy Gas Company				Х		Х	Х	Х			Х
	Upper Peninsula Power Company	Х		Х	Х		Х	Х	Х		Х	Х
	We Energies	Х		Х	Х		Х	Х	Х		Х	Х
	Wisconsin Public Service Corporation	Х		Х	Х		Х	Х	Х		Х	Х
	Xcel Energy	Х		Х	Х		Х	Х	Х		Х	Х

Table 14. Measures Offered by Utility through ESP Program

Table 15 shows the accomplishments for the ENERGY STAR Products Program based on the program implementer tracking data. The table shows the tracking savings, number of measures rebated, and incentives paid for the evaluation period and the entire 2011 program period.

Metric	Evaluation Period Jan to Aug 2011	Program Period Jan to Dec 2011
Tracking kWh Savings	1,164,584	6,572,899
Tracking ccf Savings	9,721	98,516
# Measures	5,068	23,126
Incentives	\$114,495.00	\$362,574.00

B.2 General Approach

The impact evaluation of the ESP Program had the following objectives for the 2011 program:

- Reliably estimate the program's gross annual kWh and gas savings (ccf) over the effective useful life of the installations
- Provide an estimate of program attribution.

To meet these objectives, the impact evaluation included the following tasks:

- Verify proper tracking assignments (Appendix Q)
- Verify proper documentation with a sample of participating applications (Appendix R)
- Conduct CATI surveys with a sample of participants
- Conduct verified gross savings analysis
- Conduct net savings analysis
- Complete in-depth attribution analysis to assist with program planning.

Section A.5 describes the steps used to complete these tasks in greater detail.

B.3 Verified Gross Savings Results

B.3.1 Installation Rate

KEMA calculated the installation rate for the ENERGY STAR Program. For non-kit measures, we defined the installation rate as the number of units installed divided by the number of units in the tracking database. For kit measures, we gathered installation rate information at the technology level. As with the non-kit measures, we defined it as the number of units installed divided by the number of units in the tracking database description of the kit. Table 16 shows the results. In the table, the technologies that were sold in kits are distinguished from the same technologies purchased outside of kits.

The table shows a marked difference in the installation rate between kit and non-kit measures. For non-kit measures, the installation rates are greater than 80 percent for all technologies except smart strips. For kit measures, the installation rates are much lower, in the 45 to 75 percent range. On the electric side, non-kit CFLs have an installation rate of 83 percent compared to 68 percent for kits. For faucet aerators, 100 percent of non-kit measures were installed compared to 48 percent of kit technologies. For LED night lights, 93 percent of non-kit measures were installed compared to 55 percent of kit technologies. For pipe wrap, 100 percent

of non-kit measures were installed compared to 58 percent of kit measures. All of these differences are statistically significant at the 90 percent confidence level. The only technology that has a comparable installation rate is smart strips, with 74 percent for non-kits and 73 percent for kits. The small difference in installation of smart strips is due in part to the fact that 72 percent of participants who got a smart strip in a kit said they likely would have bought one if it had not been part of the kit; in other words, the smart strip was a primary reason for purchasing the kit. There are similar differences on the natural gas side, though the non-kit sample sizes are so small as to prevent comparison.

For measures that are exclusively non-kit, only ceiling fans have an installation rate lower than 100 percent. However, ceiling fans are a very small percentage of the program savings and have very little effect on the overall results.

	kWh						ccf							
			90% Cor	nfidence	e Interval %				90% Confidenc		Interval	%		
		Installation		Lower	Upper	Program		Installation		Lower	Upper	Program		
Measure Group	n	Rate	+/-	Bound	Bound	Savings	n	Rate	+/-	Bound	Bound	Savings		
CFL	146	83%	4%	79%	87%	19%	0	-	-	-	-	0%		
Ceiling Fan	4	86%	30%	55%	100%	0%	0	-	-	-	-	0%		
Clothes Dryer	30	100%	<0.1%	100%	100%	2%	0	-	-	-	-	0%		
LED Night Light	48	93%	6%	87%	99%	1%	0	-	-	-	-	0%		
Smart Strip	285	74%	3%	71%	78%	18%	0	-	-	-	-	0%		
Washing Machine	47	100%	<0.1%	100%	100%	5%	24	100%	<0.1%	100%	100%	16%		
Faucet Aerator	146	100%	<0.1%	100%	100%	4%	1	100%	<0.1%	100%	100%	1%		
Showerhead	0	-	-	-	-	0%	2	100%	<0.1%	100%	100%	2%		
Pipe Wrap	150	100%	<0.1%	100%	100%	6%	2	100%	<0.1%	100%	100%	1%		
Dishwasher	9	100%	<0.1%	100%	100%	0%	0	-	-	-	-	0%		
Kit - CFL	76	68%	7%	61%	75%	6%	0	-	-	-	-	0%		
Kit - Faucet Aerator	68	48%	10%	38%	58%	9%	36	56%	10%	46%	67%	22%		
Kit - LED Night Light	52	55%	9%	46%	63%	1%	0	-	-	-	-	0%		
Kit - Pipe Wrap	69	58%	10%	48%	68%	11%	35	73%	14%	59%	86%	23%		
Kit - Showerhead	69	59%	10%	50%	69%	14%	37	51%	14%	37%	66%	36%		
Kit - Smart Strip	81	73%	7%	66%	79%	3%	0	-	-	-	-	0%		
ENERGY STAR Overall	1,280	75%	2%	72%	77%	100%	137	67%	8%	59%	75%	100%		

B.3.2 Verified Gross Savings

The installation rate was combined with the results of the documentation review to produce the gross savings adjustment factor, which is a single adjustment that can be applied to the tracking savings to determine verified gross savings. Table 17 shows the gross savings adjustment factors for ENERGY STAR Products.

The documentation review produced three adjustments to the gross savings. KEMA found one CFL, one smart strip, and one dishwasher that were not included in the tracking database. The adjustments for CFLs and smart strips were small enough that there was no noticeable change

between the installation rate and gross savings adjustment factor. For dishwashers, however, the gross savings adjustment factor is 120 percent compared to the 100 percent installation rate. Given the small portion of savings represented by dishwasher measures, however, the effect on the overall adjustment is less than a 1 percent increase.

	kWh						ccf						
		Gross Savings	90% Confidence Interval			%		Gross Savings	90% Confidence		Interval	%	
	min	Adjustment		Lower	Upper	Program	min	Adjustment		Lower	Upper	Program	
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings	
CFL	144	83%	4%	79%	87%	19%	0	-	-	-	•	0%	
Ceiling Fan	4	86%	30%	55%	116%	0%	0	-	-	-	•	0%	
Clothes Dryer	30	100%	<0.1%	100%	100%	2%	0	-	-	-	•	0%	
LED Night Light	44	93%	6%	87%	99%	1%	0	-	-	-	-	0%	
Smart Strip	239	75%	3%	71%	78%	18%	0	-	-	-	-	0%	
Washing Machine	47	100%	<0.1%	100%	100%	5%	24	100%	<0.1%	100%	100%	16%	
Faucet Aerator	146	100%	<0.1%	100%	100%	4%	1	100%	<0.1%	100%	100%	1%	
Showerhead	0	-	-	-	-	0%	2	100%	<0.1%	100%	100%	2%	
Pipe Wrap	150	100%	<0.1%	100%	100%	6%	2	100%	<0.1%	100%	100%	1%	
Dishwasher	9	120%	<0.1%	120%	120%	0%	0	-	-	-	•	0%	
Kit - CFL	70	68%	7%	62%	75%	6%	0	-	-	-	-	0%	
Kit - Faucet Aerator	36	48%	10%	38%	58%	9%	26	56%	11%	45%	67%	22%	
Kit - LED Night Light	29	55%	9%	46%	64%	1%	0	-	-	-	-	0%	
Kit - Pipe Wrap	41	58%	10%	48%	69%	11%	26	73%	14%	59%	87%	23%	
Kit - Showerhead	38	59%	10%	50%	69%	14%	21	51%	15%	37%	66%	36%	
Kit - Smart Strip	64	73%	7%	66%	80%	3%	0	-	-	-	-	0%	
ENERGY STAR Overall	1,091	75%	2%	73%	77%	100%	102	67%	8%	59%	75%	100%	

Table 17. Gross Savings Adjustment Factor, ENERGY STAR

The gross savings adjustment factor was applied to the total savings reported for the ENERGY STAR Products Program in 2011 to produce the verified gross savings for the program. Table 18 shows the tracking gross savings (an annual number), the gross savings adjustment factor determined from the evaluation, the verified gross annual savings, and the verified gross lifetime savings. The verified gross annual savings is the tracking gross savings multiplied by the gross savings adjustment factor. The verified gross lifetime savings is the verified gross annual savings with the measure life applied.⁶

⁶ KEMA's study did not complete any surveys addressing electric savings for showerhead measures. To estimate verified gross savings, KEMA applied the gross savings adjustment factor found for showerhead therm savings.

		k۷	/h		ccf						
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings			
CFL	813,252	83%	674,283	6,068,546							
Clothes Dryer	22,032	100%	22,032	308,448							
Dishwasher	7,695	120%	9,234	101,574							
LED Night Light	59,378	93%	55,287	884,598							
Showerhead	81,844	100%	81,844	818,440	8,019	100%	8,019	80,190			
Smart Strip	1,046,592	75%	782,683	3,913,415							
Washing Machine	90,740	100%	90,740	998,140	3,247	100%	3,247	35,721			
Ceiling Fan	4,836	86%	4,145	62,177							
Pipe Wrap	45,900	100%	45,900	596,700	146	100%	146	1,602			
Faucet Aerator	42,662	100%	42,662	426,620	187	100%	187	1,870			
Kit - CFL	1,089,528	68%	744,094	6,696,850							
Kit - Faucet Aerator	592,952	48%	285,435	2,854,354	20,502	56%	11,495	114,951			
Kit - LED Night Light	129,228	55%	70,866	1,133,850							
Kit - Pipe Wrap	546,516	58%	317,986	4,133,818	18,814	73%	13,711	150,821			
Kit - Showerhead	1,176,896	59%	698,345	6,983,451	47,601	51%	24,392	243,919			
Kit - Smart Strip	822,848	73%	601,358	3,006,791							
ENERGY STAR Overall	6,572,899	75%	4,526,895	38,987,772	98,516	67%	61,197	629,074			

Table 18. Verified Gross Savings, ENERGY STAR, Overall

Table 19 and Table 20 show the verified gross lifetime savings for the Efficiency United and Energy Optimization programs, respectively.

		k٧	/h		ccf					
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings		
CFL	351,648	83%	291,558	2,624,023						
Clothes Dryer	2,448	100%	2,448	34,272						
Dishwasher	810	120%	972	10,692						
LED Night Light	32,318	93%	30,092	481,465						
Showerhead	66,822	100%	66,822	668,220	8,019	100%	8,019	80,190		
Smart Strip	367,448	75%	274,792	1,373,961						
Washing Machine	30,023	100%	30,023	330,253	3,247	100%	3,247	35,721		
Ceiling Fan	156	86%	134	2,006						
Pipe Wrap					146	100%	146	1,602		
Faucet Aerator	830	100%	830	8,300	187	100%	187	1,870		
Kit - CFL	851,136	68%	581,284	5,231,559						
Kit - Faucet Aerator	362,544	48%	174,522	1,745,215	20,502	56%	11,495	114,951		
Kit - LED Night Light	115,654	55%	63,422	1,014,751						
Kit - Pipe Wrap	334,152	58%	194,424	2,527,508	18,814	73%	13,711	150,821		
Kit - Showerhead	809,116	59%	480,112	4,801,122	47,601	51%	24,392	243,919		
Kit - Smart Strip	631,488	73%	461,507	2,307,537						
ENERGY STAR EU Overall	3,956,593	75%	2,652,942	23,160,885	98,516	67%	61,197	629,074		

Table 19. Verified Gross Savings, ENERGY STAR, EU

	kWh					
	Tracking	Gross Savings	Verified Gross	Verified Gross		
	Gross	Adjustment	Annual	Lifetime		
Measure Group	Savings	Factor	Savings	Savings		
CFL	461,604	83%	382,725	3,444,523		
Clothes Dryer	19,584	100%	19,584	274,176		
Dishwasher	6,885	120%	8,262	90,882		
LED Night Light	27,060	93%	25,196	403,133		
Showerhead	15,022	100%	15,022	150,220		
Smart Strip	679,144	75%	507,891	2,539,454		
Washing Machine	60,717	100%	60,717	667,887		
Ceiling Fan	4,680	86%	4,011	60,171		
Pipe Wrap	45,900	100%	45,900	596,700		
Faucet Aerator	41,832	100%	41,832	418,320		
Kit - CFL	238,392	68%	162,810	1,465,291		
Kit - Faucet Aerator	230,408	48%	110,914	1,109,139		
Kit - LED Night Light	13,574	55%	7,444	119,099		
Kit - Pipe Wrap	212,364	58%	123,562	1,606,310		
Kit - Showerhead	367,780	59%	218,233	2,182,328		
Kit - Smart Strip	191,360	73%	139,851	699,254		
ENERGY STAR EO Overall	2,616,306	75%	1,873,953	15,826,886		

Table 20.	Verified	Gross	Savings.	ENERGY	STAR.	EO
		0.000	••••••••••••••••••••••••••••••••••••••		•••••	

B.4 Attribution Results

The EO/EU programs were not required to report net or attributable savings for the 2011 program year. However, discussions within the State of Michigan suggest that net savings will be required in future program years. KEMA conducted a net savings analysis to provide the program with the information they will need for planning and implementation when moving toward net savings reporting.

B.4.1 Attribution Adjustment Factors

KEMA calculated the attribution adjustment factor for each measure group in the ENERGY STAR Program. The attribution adjustment factor is applied to the verified gross savings to produce net savings. It reflects the influence the program had on the timing, efficiency level, and scope of the energy efficiency measure installed.⁷ Table 21 shows the results.

⁷ Appendix U discusses the methodology used in the attribution analysis.

As with the installation rate, this table highlights the differences between kit and non-kit technologies. For the most part, kit measures have a higher attribution than non-kit measures; however, none of the differences are statistically significant. The two measures where non-kit measures have a higher attribution than kit measures are CFLs and smart strips. Non-kit CFLs have an attribution rate of 41 percent compared to 24 percent for kits. Non-kit smart strips have an attribution rate of 70 percent compared to 56 percent for kits. Both differences are statistically significant at the 90 percent confidence level. Measures that are not offered in kits show a very low attribution. Ceiling fans are the highest with an attribution of 19 percent. The other measures (clothes dryers, washing machines, dishwashers) all show attributions less than 10 percent.

There is more discussion about attribution results in Appendix U and the following section.

	kWh			ccf								
		Attribution	90% Cor	nfidence	Interval	%		Attribution	90% Cor	nfidence	Interval	%
		Adjustment		Lower	Upper	Program		Adjustment		Lower	Upper	Program
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings
CFL	144	41%	6%	35%	48%	19%	0	-	-	-	-	0%
Ceiling Fan	4	19%	29%	0%	48%	0%	0	-	-	-	-	0%
Clothes Dryer	30	5%	3%	2%	7%	2%	0	-	-	-	-	0%
LED Night Light	44	63%	15%	48%	78%	1%	0	-	-	-	•	0%
Smart Strip	232	70%	4%	66%	74%	18%	0	-	-	-	-	0%
Washing Machine	47	5%	3%	2%	8%	5%	24	6%	4%	1%	10%	16%
Faucet Aerator	0	-	-	-	-	4%	1	16%	<0.1%	16%	16%	1%
Showerhead	0	-	-	-	-	0%	2	36%	3%	34%	39%	2%
Pipe Wrap	0	-	-	-	-	6%	2	7%	27%	0%	35%	1%
Dishwasher	9	1%	2%	0%	3%	0%	0	-	-	-	•	0%
Kit - CFL	70	24%	7%	18%	31%	6%	0	-	-	-	•	0%
Kit - Faucet Aerator	30	60%	13%	47%	74%	9%	20	62%	14%	48%	75%	22%
Kit - LED Night Light	22	75%	13%	62%	88%	1%	0	-	-	-	-	0%
Kit - Pipe Wrap	29	38%	11%	27%	50%	11%	24	55%	19%	36%	74%	23%
Kit - Showerhead	29	53%	13%	40%	66%	14%	14	37%	13%	23%	50%	36%
Kit - Smart Strip	56	56%	9%	47%	65%	3%	0	-	-	-	-	0%
ENERGY STAR Overall	746	46%	3%	43%	49%	100%	87	38%	7%	30%	45%	100%

Table 21. Attribution	Adjustment Factor,	ENERGY STAR
-----------------------	--------------------	--------------------

B.4.2 Analysis of Survey Responses

KEMA reviewed the responses to the attribution question sequence used in the ENERGY STAR survey to identify where the program was having an effect and where improvements could be made. We investigated the program's effect on timing, efficiency, and quantity, the three components of attribution. Appendix U has greater detail on the attribution analysis methodology and the methods used to combine the three components into a single attribution value.(Table 22)

Number	Question
Timing	
DAT1	Without EO/EU, how likely is it that you would have installed the same type of equipment at this time?
DAT1a	Without EO/EU, how different would the timing have been?
DAT1b	Approximately how many months later?
Efficiency	
DAT2	Without EO/EU, how likely is it that you would have installed the same level of efficiency?
DAT2a	Without EO/EU, how likely is it that you would have installed the same, greater, or lesser efficiency?
DAT2b	Without EO/EU, what efficiency would you have installed?
Quantity	
DAT3	Without EO/EU, how different would the quantity/size have been?
DAT3a	By what percentage did you change the quantity/size because of EO/EU?

B.4.2.1 Timing

Respondents are asked a sequence of questions that address the timing of the equipment installation. First, respondents are asked how likely it is that they would have installed the same type of equipment at the same time without the program (DAT1). Then respondents are asked how different the timing would have been (DAT1a).

- A response of "Same Time" means that the customer would have installed the measure(s) at the same time regardless of program involvement.
- A response of "Later" indicates that they would have waited to install the measure(s) if the program had not been present. This measure is called "accelerated". Respondents who answered "Later" are asked a follow-up question (DAT1b) about how much later they would have installed the equipment without the program.

Table 23 shows the responses to the DAT1a and DAT1b questions for ENERGY STAR. The table shows the unweighted number of responses in each category and the associated percentage of overall program energy savings represented by those responses. The number of responses does not reflect any survey weight or relative savings but the percentage of energy savings does.

The table outlines the skip pattern and attribution assignment for DAT1a and DAT1b. If a respondent indicates that they would have installed the equipment at the same time or earlier, the acceleration period is zero months and there is no timing effect. If the respondent indicates that they never would have installed the equipment without the program, then the program is credited with influencing the entire project and receives 100 percent attribution. The same effect is applied if the respondent indicates it would have been greater than four years before they would have installed the equipment without the program. If the response to DAT1a is Later and

the response to DAT1b is a number less than 48, then the acceleration period is equal to that number of months.

DAT1a. Without EO/EU, how different would the timing have been?								
DAT1b. Approximately how many months later? Percent Percent								
DAT1a Response	DAT1b Response	Responses	kWh	ccf	Timing Attribution			
Same Time	N/A	201	19%	55%	0			
Earlier	N/A	27	3%	5%	0			
	Months < 48	104	12%	10%	Months / 48			
Later	Months >= 48	0	0%	0%	100%			
	Don't Know/Refused	65	9%	5%	Average of DAT1b			
Never	N/A	187	23%	20%	100%			
Not Applicable	N/A	215	31%	0%	Not Asked			
Don't Know/Refused	N/A	34	4%	5%	Average of DAT1a			

 Table 23. Determining Acceleration Period, ENERGY STAR Overall

The table shows that the many of the respondents would have installed the equipment at the same time regardless of program involvement, representing 19 percent of kWh and 55 percent of gas savings (ccf). One hundred eighty-seven respondents give the program full attribution credit, representing 23 percent of kWh savings and 20 percent of gas savings (ccf). One hundred and four respondents representing 12 percent of kWh savings and 10 percent of gas savings (ccf) said they would have installed the equipment within the next four years, which results in an accelerated measure. Two hundred fifteen measures were not asked the timing questions, either because they received 100 percent attribution based on their response to DAT0 (1 response), or they were went through the CFL attribution sequence (214 responses).

B.4.2.2 Efficiency

Respondents are asked a sequence of questions that address the efficiency of the equipment installation. First, respondents are asked how likely it is that they would have installed the same, lesser, or greater efficiency without the program (DAT2a). Then respondents are asked how different the efficiency would have been (DAT2b).

- A response of "Same" means that the customer would have installed the same level of efficiency regardless of program involvement.
- A response of "Lower" indicates that they would have installed a less efficient piece of equipment if the program had not been there. Respondents who answered "Lower" are asked a follow-up question (DAT2b) about what equipment efficiency they would have installed without the program.

кема⋞

Table 24 shows the responses to the DAT2a question for each measure category. The table includes a response of Not Applicable, which represents measures that do not have variable efficiency themselves, but are added to the existing equipment or systems to make the overall operation more efficient. Programmable thermostats fall into the Not Applicable category.

The table outlines the skip pattern and attribution assignment for DAT2a and DAT2b. If a respondent indicates that they would have installed the equipment of the same or higher efficiency, the efficiency attribution is zero. If the respondent indicates that they would have installed a lower efficiency then the efficiency attribution is some number between 30 and 100 percent, depending on the answer to DAT2b.

DAT2a. Without EO/EU, would you have installed the same, higher, or lower efficiency?							
DAT2b. Without EO/EU, what efficiency would you have installed?							
DAT2a Response	DAT2b Response	Responses	Percent kWh	Percent ccf	Efficiency Attribution		
Same	N/A	274	29%	42%	0%		
	Standard Efficiency	0	0%	0%	100%		
	Slightly > Standard	1	0%	1%	70%		
Lower	Between Standard and High	0	0%	0%	50%		
Lowei	Slightly < High	4	0%	1%	30%		
	Don't Know/Refused	1	0%	0%	Average of DAT2b		
	N/A	137	18%	9%	100%		
Higher	N/A	7	1%	0%	0%		
Not Applicable	N/A	270	35%	27%	Not Asked		
Don't Know/Refused	N/A	139	18%	19%	Average of DAT2a		

Table 24. Determining Efficiency Attribution, ENERGY STAR Overall

The table shows that the majority of respondents would have installed the same efficiency level without the program, with 274 respondents representing 29 percent of program kWh savings and 42 percent of program gas savings (ccf). One hundred thirty-seven measures received 100 percent attribution because they answered lower to DAT2a and the only alternative efficiency level is standard. Four hundred forty measures were not asked either efficiency question, either because they received 100 percent attribution based on their response to DAT0, they were went through the CFL attribution sequence, or because the measure they installed did not have a less efficient alternative, such as pipe wrap.

B.4.2.3 Quantity

Respondents are asked a sequence of questions that address the quantity of equipment installed. First, respondents are asked how likely it is that they would have installed the same

quantity of equipment without the program (DAT3). Then respondents are asked how much they changed the quantity (DAT3a).

- A response of "Same amount" or "More" means that the customer would have installed the same or greater size or quantity regardless of program involvement.
- A response of "Less" indicates that the customer would have installed fewer units if the program had not been there. Respondents who answered "Less" are asked a follow-up question (DAT3a) about the quantity of equipment they would have installed without the program.

Table 25 shows the responses to the DAT3 question for each measure group. The table includes a response of Not Applicable, which represents measures where varying quantity or size does not make sense in the context of the measure.

The table outlines the skip pattern and attribution assignment for DAT3 and DAT3a. If a respondent indicates that they would have installed the same or greater quantity or size, the quantity attribution is zero. If the respondent indicates that they would have installed less quantity/size, then the quantity attribution is some value between 0 and 100 percent. If the respondent indicates that they would not have installed any equipment without the program then the quantity attribution is 100 percent.

DAT3. Without EO/EU, how different would the quantity/size have been?							
DAT3a. By what percentage did you change the amount installed because of EO/EU?							
		Percent Percent Quantity					
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Attribution		
Same Amount	N/A	115	16%	15%	0%		
	Value < 100%	49	7%	6%	Value < 50%		
Less	Value >= 100%	2	0%	3%	Value > 50%		
	Don't Know/Refused	0	0%	0%	Average of DAT3a		
More	N/A	26	3%	9%	0%		
None	N/A	132	18%	19%	100%		
Not Applicable	N/A	501	54%	49%	Not Asked		
Don't Know/Refused	N/A	8	1%	0%	Average of DAT3		

Table 25. Determining Quantity Attribution, Over	all
--	-----

The table shows that 115 respondents representing 16 percent of kWh savings and 15 percent of gas savings (ccf) would have installed equipment of the same size or quantity without the program. One hundred thirty-two respondents representing 18 percent of kWh savings and 19 percent of gas savings (ccf) would not have installed any equipment, resulting in 100 percent quantity attribution. Five hundred and one measures were not asked either quantity question,

either because they received 100 percent attribution based on their response to DAT0, they went through the CFL attribution sequence, or because they only installed one of a measure where the question asks about quantity rather than size.

B.4.2.4 Overall Attribution

KEMA put all three attribution components together in one table to show where overlap between quantity, efficiency, and timing attribution occurred. Table 26 shows the three effects together, with Yes indicating some (not necessarily full) attribution while No indicates responses that did not receive any attribution.

The table shows that 116 responses representing 15 percent of kWh savings and three percent of gas savings (ccf) received all three types of attribution (or full attribution based on the overall likelihood question). 230 responses representing 25 percent of kWh savings and 28 percent of gas savings (ccf) did not receive any timing, efficiency, or quantity attribution.

Attribution					
Timing	Efficiency	Quantity	Responses	Percent kWh	Percent ccf
Yes	Yes	Yes	116	15%	3%
Yes	No	Yes	16	2%	0%
Yes	No	No	125	15%	15%
Yes	Yes	No	18	3%	2%
No	Yes	Yes	148	20%	8%
No	Yes	No	111	14%	18%
No	No	Yes	69	6%	25%
No	No	No	230	25%	28%

Table 26. Simplistic Representation of Overall Attribution, ENERGY STAR

B.5 Comparison of 2009-10 and 2011 Program Results

KEMA compared the results of the 2009-2010 program evaluation to the results of the 2011 program evaluation.

B.5.1 Overall Comparison

Table 27 shows the tracking savings, number of measures, and total incentives paid for the 2009-2010 and 2011 program periods. The final column shows the difference between the two, with a negative value representing a decrease from 2010 and a positive value representing an increase.

The table shows a significant reduction in savings for the ENERGY STAR Program from 2010 to 2011. Tracking kWh savings decreased by 80 percent, while natural gas savings, number of measures, and incentives all decreased by 71 percent.

One obvious reason for the difference is that the 2009-2010 program period covered a longer time period than the 2011 program year. Another possible reason is the elimination from the 2011 program of the CFL giveaways, which were a substantial part of the 2009-2010 program period kWh savings.

Metric	Program Period Program Start to Dec 2010	Program Period Jan to Dec 2011	2010 to 2011 Change
Tracking kWh Savings	32,629,213	6,572,899	-80%
Tracking ccf Savings	338,521	98,516	-71%
Total # Measures	80,293	23,126	-71%
Total Incentive	\$1,233,272	\$362,574	-71%

Table 27. Comparison of 2010 and 2011 ENERGY STAR Program Results

B.5.2 Adjustment Factors

Table 28 shows the 2009-2010 and 2011 installation rate, gross savings adjustment factor, and attribution adjustment factor for kWh and ccf. Highlighted cells show a statistically significant difference from the 2010 to 2011 program periods at the 90 percent confidence interval.

The table shows that all 6 comparisons were statistically significant. From 2010 to 2011, the program saw a decrease in installation rate and gross savings adjustment factor and an increase in the attribution adjustment factor for both electricity and natural gas. Since the installation rate is a factor of the gross savings adjustment factor, the real cause of the decrease in gross savings adjustment between the two years is in the installation rate.

	kWh		ccf		
Adjustment Factor	2010	2011	2010	2011	
Installation Rate	83%	75%	92%	67%	
Gross Savings Adjustment Factor	82%	75%	95%	67%	
Attribution Adjustment Factor	32%	46%	25%	38%	

There appear to be two reasons for the installation rate decrease from 2010 to 2011.

• Smart Strips: The installation rate for smart strips went from 80 percent in 2010 to 74 percent in 2011. More importantly, smart strips went from 1 percent of program savings

in 2010 to 18 percent in the 2011 sample frame, which increased their effect on the overall program ratio.

• Energy Kits: Energy kits were not a part of the 2010 program. The kits made up 42 percent of 2011 program kWh savings and 81 percent of 2011 program ccf savings, with installation rates of 57 percent, 76 percent, and 59 percent for electric savings for kits with CFLs, electric savings for kits without CFLs, and ccf kit savings, respectively.

The same reasons appear to apply to the attribution rate, as well. Smart strips purchased outside of kits increased in attribution from 42 percent in 2010 to 70 percent in 2011 while also contributing more to program savings. Energy kits show 2011 attribution rates of 70 and 54 percent for kWh and 69 percent for ccf.

C. Residential Appliance Recycling Program

This section reports on the methodology and overall results of KEMA's evaluation of the Residential Appliance Recycling Program.

- Section C.1 provides a description of the program.
- Section C.2 gives an overview of the evaluation approach.
- Section C.3 presents the verified gross savings results and the overall adjustment factors.
- Section C.4 shows the attribution analysis results.

C.1 **Program Description**

The Residential Appliance Recycling (AR) Program was launched in March 2010. Incentives are provided to the customer for removing and recycling refrigerators or freezers in working condition and within a given size range. The goal is to produce cost-effective long-term annual energy savings by removing operable, inefficient appliances from the utility grid in an environmentally safe manner. Participation is limited to all electric utilities except Bayfield Electric Cooperative and Daggett Electric Department. The AR program is the second largest residential program in the MECA/MCAAA portfolio (considering electric savings only) and the third largest overall. Not all measures are offered in all utility service territories as shown in Table 29.

		Mea	sure
Consortium	Utility	Refrigerator	Freezer
s	Alger Delta Cooperative Electric Association	Х	Х
tive	Cloverland Electric Cooperative	Х	Х
era	Great Lakes Energy Cooperative	Х	Х
MECA Cooperatives	HomeWorks Tri-County Electric Cooperative	Х	Х
ပိ	Midwest Energy Cooperative	Х	Х
S	Ontonagon County Rural Electrification Association	Х	Х
JE(Presque Isle Electric and Gas Co-op	Х	Х
	Thumb Electric Cooperative	Х	Х
MECA UP	Marquette Board of Light and Power	Х	Х
Ā	Escanaba Electric Department	Х	Х
ы	Newberry Water and Light Board	Х	Х
Σ	City of Stephenson	Х	Х
	Alpena Power Company	Х	Х
	Bayfield Electric Cooperative		
	Daggett Electric Department		
	Edison Sault Electric Company	X	Х
AA	Indiana Michigan Power Company	X	Х
MCAAA	Michigan Gas Utilities Corporation		
Σ	SEMCO Energy Gas Company		
	Upper Peninsula Power Company	Х	Х
	We Energies	Х	Х
	Wisconsin Public Service Corporation	Х	
	Xcel Energy	Х	

Table 29. Measures Offered by Utility through Appliance Recycling Program

The Appliance Recycling Program has contracted with JACO, Inc. to provide turnkey refrigerator recycling services. JACO is responsible for marketing the program, qualifying product eligibility over the phone and through their website, arranging appointments for refrigerator and freezer pick-up, transporting units to a recycling facility, and arranging for the de-manufacture and recycling of units. JACO is responsible for keeping records of all refrigerators collected and recycled as part of this program and provides this data to the program in electronic form, which will allow tracking of energy savings. JACO is also responsible for processing rebate forms and issuing incentives to program participants.

Table 30 shows the accomplishments for the AR program based on the program implementer tracking data. The table shows the tracking savings, number of measures rebated, number of

participants, and incentives paid for the evaluation period and the final 2011 program period. The table shows data for the program as a whole and by equipment type.

Metric	Evaluation Period Jan to Aug 2011	2011 Program Period Jan to Dec 2011
Tracking kWh Savings	2,110,405	3,635,698
Refrigerator kWh	1,621,840	2,745,424
Freezer kWh	488,565	890,274
Total # Measures	1,285	2,216
# Refrigerators Recycled	970	1,642
# Freezers Recycled	315	574
# Participants	1,211	2,100
Total Incentive paid to Implementer	\$192,750.00	\$332,400.00
Refrigerator	\$145,500.00	\$246,300.00
Freezer	\$47,250.00	\$86,100.00

C.2 General Approach

The impact evaluation of the AR program had the following objectives for the 2011 program:

- Reliably estimate the program's gross annual kWh and gas savings (ccf) over the effective useful life of the installations
- Provide an estimate of program attribution.

To meet these objectives, the impact evaluation included the following tasks:

- Verify proper tracking assignments (Appendix Q)
- Verify proper documentation with a sample of participating applications (Appendix R)
- Conduct CATI surveys with a sample of participants
- Conduct verified gross savings analysis
- Implement participant action-based approach to evaluate energy impacts of the program.

Section A.5 describes the steps used to complete these tasks in greater detail.

C.2.1.1 Net and Gross Savings in an Appliance Recycling Framework

Appliance recycling programs are different from most other programs in that the measure is the removal of a working unit rather than the installation of an efficient unit in place of an inefficient unit. Moreover, the program goal is defined as removal of units not just from participating homes

but from the grid. Free-riders in an AR framework are participants whose units would not have provided a load on the electrical grid in the absence of the program. This occurs when the participant's actions would have resulted in the destruction of the unit or if they would have stored the unit unplugged from the grid. All other participants, including those who transfer units to the second hand market, are not considered free-riders.

C.2.1.2 Gross Savings

Gross savings from an appliance recycling program include all net savings and all savings associated with free-riders. As a result, gross savings represents the total potential savings, while net savings is the savings from only those participants whose units would have contributed to ongoing load on the electrical grid in the absence of the program.

Michigan utilizes a deemed energy savings process, where the baseline energy consumption for energy efficient equipment has been agreed upon in advance of the program. However, there exists the possibility that assumptions underlying the deemed energy consumption might not hold true for the current program, in which case an adjustment to gross savings might be recommended.

C.2.1.3 Non-participant Survey

In addition to the participant survey, 1,444 non-participants were surveyed about actions they had taken in the past three years with respect to acquiring and discarding refrigerators and freezers. These non-participants were recruited from two groups. The first group was taken from the other residential participant surveys fielded as part of this evaluation, such as the ENERGY STAR Products survey and the HVAC survey. This group provided 694 respondents. The second group was from a general population survey of Michigan residential customers. There were 750 respondents from the general population survey who reported acquiring/discarding a refrigerator or freezer in the past three years. Responses from this population were used to help characterize the used refrigerator market and determine typical disposal patterns in the absence of the recycling program.

C.3 Verified Gross Savings Results

C.3.1 Removal Rate

When a unit is removed, the program confirms that it was installed and operational in accordance with program assumptions. KEMA found that 100 percent of the participants

reported having units removed by the program. This resulted in a removal rate of 100 percent. Table 31 shows the results of the survey data analysis.

	kWh					
			90% Confidence Interval			%
		Removal	Lower Upper		Program	
Measure Group	n	Rate	+/-	Bound	Bound	Savings
Refrigerators	316	100%	<0.1%	100%	100%	76%
Freezers	118	100%	<0.1%	100%	100%	24%
Overall Appliance Recycling	434	100%	<0.1%	100%	100%	100%

Table 31. Removal Rate	Appliance Recycling
------------------------	---------------------

C.3.2 Engineering Adjustment Factor

The engineering adjustment factor incorporates the changes to the per-unit energy savings made by the evaluation team. For the Appliance Recycling Program, the evaluation team adjusted the equipment operation assumption to account for partial usage as reported by the participant responses.

The MEMD annual energy consumption (Unit Energy Consumption – UEC) for refrigerator recycling is 1,672 kWh/yr and for freezer recycling is 1,551 kWh/yr. These numbers were determined by taking the average of five recent appliance recycling program evaluations.

The baseline assumption for equipment usage is that the recycled equipment is in operation 24 hours per day, 365 days per year (24/365). KEMA surveyed program participants about the typical usage patterns of their units and believe that an assumption of 24/365 operation is overstating the savings from appliance recycling. Based on survey data, we found that, although all main units reported a 24/365 usage profile, the larger percentage of secondary units recycled had reduced operating hours, resulting in a mean operational rate of 80 percent for refrigerators and 70 percent for freezers. In other words, on average, the refrigerators recycled by the program operated for 80 percent of the year rather than 24/365 operation.

Main refrigerators typically have 24/365 operation, but with secondary refrigerators and freezers an assumption of 24/365 operation is not realistic as shown in the data above. While main refrigerators are used on a 24/365 schedule, appliance recycling evaluations typically find that some percentage of secondary refrigerators and freezers are only used sporadically, either on a seasonal basis, or as overflow refrigerated storage for special events like parties. This part use factor can vary by region and program. For this evaluation, the survey responses indicate that the usage was significantly below 24/365 operation for secondary and freezer units. KEMA used

an adjusted equipment usage that reflects the more limited usage of secondary units when determining the engineering adjustment factor. On average, the refrigerators and freezers recycled by the program operated for approximately 77 percent of the year, which is reflected in Table 32.

	kWh					
		Engineering	90% Confidence Interval		%	
		Adjustment Lower Upper		Program		
Measure Group	n	Factor	tor +/- Bound Bound		Savings	
Refrigerators	316	80%	3%	77%	83%	76%
Freezers	118	70%	6%	65%	76%	24%
Overall Appliance Recycling	434	77%	3%	75%	80%	100%

Table 32. Engineering Adjustment Factor, Appliance Recycling

C.3.3 Verified Gross Savings

The engineering adjustment factor and removal rate were combined into the gross savings adjustment factor, which is a single adjustment that can be applied to the tracking savings to determine verified gross savings. Table 33 shows the gross savings adjustment factor for Appliance Recycling. As the removal rate was 100 percent, the gross savings adjustment reflects the engineering adjustment.

 Table 33. Gross Savings Adjustment Factor, Appliance Recycling

	kWh							
		Gross Savings	90% Confidence Interval		%			
	min	Adjustment	Lower Upper		Program			
Measure Group	n	Factor	+/- Bound Bound		Savings			
Refrigerators	316	80%	3%	77%	83%	76%		
Freezers	118	70%	5%	66%	76%	24%		
Overall Appliance Recycling	434	77%	3%	75%	80%	100%		

The gross savings adjustment factor was applied to the total savings reported for the Appliance Recycling Program in 2011 to produce the verified gross savings for the program. Table 34 shows the tracking gross savings (an annual number), the gross saving adjustment factor determined from the evaluation, the verified gross annual savings, and the verified gross lifetime savings. The verified gross annual savings is the tracking gross savings multiplied by the gross savings adjustment factor. The verified gross lifetime savings is the verified gross annual savings with the measure life applied.

	kWh						
Measure Group	Tracking Gross Savings			Verified Gross Lifetime Savings			
Refrigerators	2,745,424	80%	2,192,647	10,963,233			
Freezers	890,274	70%	626,260	2,505,039			
Appliance Recycling Overall	3,635,698	77%	2,818,906	13,468,272			

Table 34. Verified Gross Savings, Appliance Recycling, Overall

Table 35 and Table 36 show the verified gross lifetime savings for the Efficiency United and Energy Optimization programs, respectively.

Table 35. Verified Gross Savings, Appliance Recycling, EU

	kWh						
	Tre ekine	Gross	Verified	Verified			
	Tracking Gross	Savings Adjustment	Gross Annual	Gross Lifetime			
Measure Group	Savings	Factor	Savings	Savings			
Refrigerators	1,070,080	80%	854,625	4,273,124			
Freezers	338,118	70%	237,848	951,391			
Appliance Recycling EU Overall	1,408,198	77%	1,092,472	5,224,515			

Table 36. Verified Gross Savings, Appliance Recycling, EO

	kWh						
Measure Group	Tracking Gross Savings	Verified Gross Lifetime Savings					
•		Factor	Savings				
Refrigerators	1,675,344	80%	1,338,022	6,690,109			
Freezers	552,156	70%	388,412	1,553,648			
Appliance Recycling EO Overall	2,227,500	77%	1,726,434	8,243,757			

C.4 Attribution Results

The MPSC does not require the EO/EU programs to determine and report net savings for the 2011 program year. However, recent discussions indicate that such reporting may be required in the future. KEMA collected data to allow for attribution (net-to-gross) analysis to give the program managers an idea of the kind of attribution they could expect in future program years. The following sections outline the attribution methodology for the Appliance Recycling Program and the attribution results for the 2011 program year.

C.4.1 Appliance Recycling Net Savings Methodology

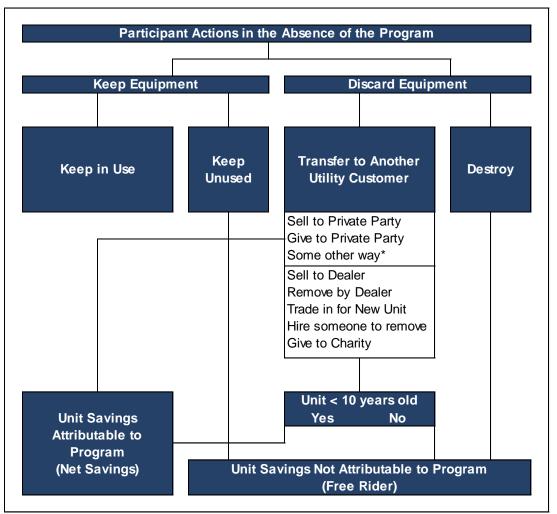
For an appliance recycling program, the baseline is the energy that would have been pulled from the grid if the unit had not been destroyed or stored unused. The program-attributable energy savings, or the reduction in energy use resulting from program intervention, depends on the probable load on the grid had the destroyed unit not been removed by the program.

Net savings are generated under two scenarios: if the unit would have remained in use, or if the unit would have been transferred to the second-hand market and remained on the grid. In both of these cases, the program gets full attribution credit for the unit to the extent that it was plugged in and operational.

The disposition of the unit, what would have happened to the recycled unit in the absence of the program, is essential to the determination of net vs. gross savings. To determine this, our sample of program participants were asked a series of questions about what they would have done with their refrigerator or freezer in the absence of the program.

The first stage question determines whether the unit would have been disposed of or not without the program. Units that would have been kept generate both gross and net savings to the extent that they were in use. This is the direct path by which units can generate gross and net savings.

Units that would have been disposed may or may not generate gross and/or net savings. A second stage question determines how the disposer would have disposed of the unit. At this stage units are either destroyed or transferred to the second hand market.


Units that would have been hauled to a dump or recycling center were considered to be units that would have been destroyed. Units that would have been given or sold to private parties were considered to be units that would have been transferred to the secondary market.

The final group of units consists of units that, through one method or another, would have ended up in the hands of a used appliance dealer. Previous disposal studies of the used refrigerator market in California⁸ have shown that units less than 10 years old were typically resold on the secondary market, while units older than 10 years of age were generally deemed to be not

⁸ ADM Associates, 2008. "Evaluation Study of the 2004-05 Statewide Residential Appliance Recycling Program: 2004-2005 Programs #1114, #1157, #1232 and #1348" April, 2008

saleable and recycled by the dealers. The figure below shows the logical process through which determination of unit disposition was deemed appropriate for each unit recycled.

Figure 5. Model for Determining Unit Disposition

* All verbal responses to "Some Other Way" would result in the transfer of the unit.

Unfortunately, this participant disposition is necessarily hypothetical, since all participant units were recycled by the program. While participants may reasonably expect to take one course of action, when faced with the reality of moving a heavy and cumbersome piece of equipment, there exists the possibility that they might ultimately choose another route for disposal. Historically, Appliance Recycling Program evaluations have dealt with this issue by combining the participant response with the responses from a survey of non-participants. To accomplish this, KEMA surveyed a group of non-participants who had disposed of a refrigerator or freezer in

the past five years and asked them how they disposed of their unit. Figure 6 and Figure 7 show the differences in disposal methods for the two groups for refrigerators and freezers.

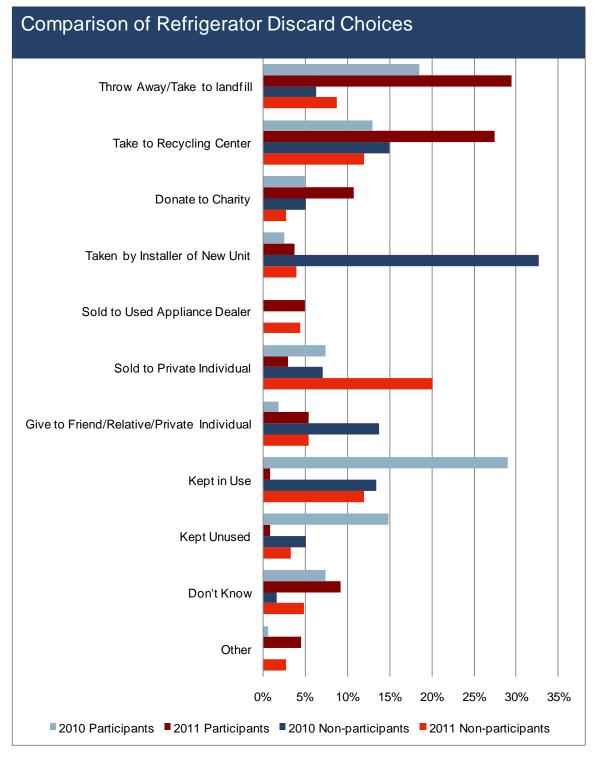
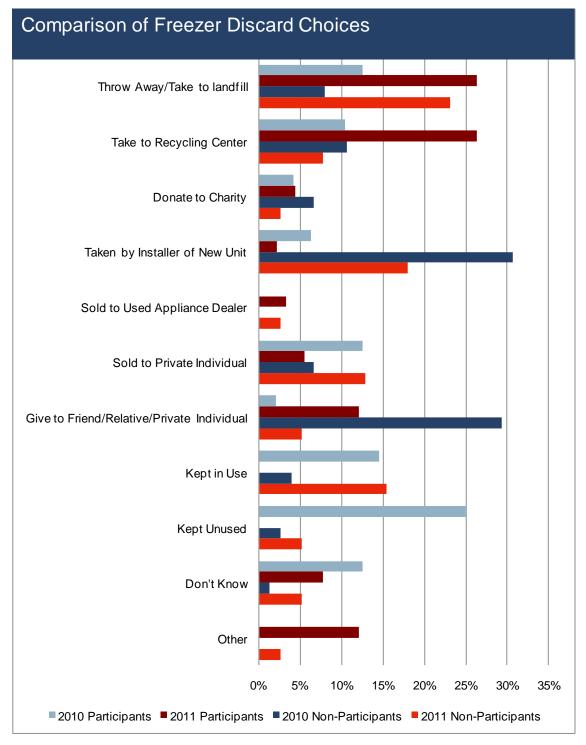



Figure 7. Comparison of Freezer Discard Choices

KEMA found fairly noticeable differences in the disposal patterns between participants and nonparticipants, with non-participants more likely to give the unit away in some fashion, either to an individual party or to have it removed by the installer of their equipment when purchasing a new unit, while participants were more likely to expect to keep the equipment. We also found that disposal patterns changed by the equipment type, with refrigerators more likely to be transferred while freezers are more likely to be destroyed. Each respondent in both participant and nonparticipant groups were given an attribution score according to our disposition logic.

Net savings are calculated as a function of the equipment energy consumption; the gross savings adjustment factor discussed in Section C.3.2 above; the attribution rate, which incorporates free ridership; and acceleration, the savings credited to the program for early removal of units. Table 37 shows these various factors based on participant responses.

Equipment Refrigerators	Mean Attribution	Aggregate Mean Attribution	Acceleration Rate (Annual %)	Energy from Acceleration Period (kWh)	
Particpants	35%	050/	440/	400	
Non-Participants	35%	35%	11%	133	
Freezers					
Particpants	40%	37%	9%	86	
Non-Participants	28%	51 %	970		

Table 37. Attribution Parameters

C.4.2 Attribution Adjustment Factors

KEMA calculated the attribution adjustment factor for each measure group in the Appliance Recycling Program. The attribution adjustment factor is applied to the verified gross savings to produce net savings. Table 38 shows the results.

Program attribution was statistically consistent across refrigerators and freezers, with freezers showing a slightly lower result. Refrigerators made up a larger portion of program delivery at more than 75 percent and therefore dominated the overall attribution result, which was 42 percent.

		kWh							
		Attribution	90% Co	90% Confidence Interval					
		Adjustment		Lower	Upper	Program			
Measure Group	n	Factor	+/-	Bound	Bound	Savings			
Refrigerators	316	43%	3%	40%	45%	76%			
Freezers	118	40%	3%	37%	42%	24%			
Overall Appliance Recycling	434	42%	2%	40%	44%	100%			

Table 38. Attribution Adjustment Factor, Appliance Recycling

C.5 Comparison of 2009-10 and 2011 Program Results

C.5.1 Overall Comparison

Comparing results from last program cycle to this cycle provides some insight into program trends. As shown in Table 39, in general the program contracted during the 2011 program cycle, although the number of freezers recycled did increase. It is possible that this is in some part due to the fact that the 2010 "program cycle" included portions of 2009 as the programs first were implemented. Other potential causes of the changes found could be the general state of the economy (purchases of new equipment drop in favor of continued used of older equipment) and the fact that, as the programs get established, the pent up demand for program services is lowered.

	Program Period	Program Period	2010-2011
Metric	Program Start to Dec 2010	January to December 2011	Change
Tracking kWh Savings	4,399,373	3,635,698	-17%
Refrigerator kWh	3,675,056	2,745,424	-25%
Freezer kWh	724,317	890,274	23%
Total # Measures	2,665	2,216	-17%
# Refrigerators Recycled	2,198	1,642	-25%
# Freezers Recycled	467	574	23%
# Participants	2,495	2,100	-16%
Total Incentive paid to Implementer	\$399,750.00	\$332,400.00	-17%
Refrigerator	\$329,700.00	\$246,300.00	-25%
Freezer	\$70,050.00	\$86,100.00	23%

Table 39. Comparison of 2010 and 2011 Appliance Recycling Program Results

C.5.2 Equipment Usage and Gross Savings Adjustment

The evaluation found that there was a change in the usage reported for refrigerators and freezers between 2010 and 2011. In the last program cycle, both refrigerators and freezers reported being plugged in and operational approximately 75 percent of the time. In this program

cycle, refrigerators were operational 80 percent of the time compared to 70 percent for freezers. This change is due to a program shift towards more primary refrigerators being recycled. In 2010, 31 percent of recycled refrigerators were primary refrigerators, while in 2011 49 percent were primary refrigerators. As primary refrigerators have a higher usage (secondary refrigerators are not necessarily plugged in and running full time), even though the reported usage of secondary units in 2011 decreased, this shift towards primary refrigerators increased the average usage for the refrigerator category as a whole. Usage of freezers declined by approximately 5 percent, consistent with the decline in usage of secondary refrigerators, possibly due to pressure from the difficult economy encouraging people to reduce optional use of these extra units. As discussed in Section C.3.2, the adjustment for usage was the only modification included in the gross savings adjustment. Highlighted cells show a statistically significant difference from the 2010 to 2011 program periods at the 90 percent confidence interval. Refrigerators, freezers and the program overall all showed a statistically significant increase in gross savings adjustment. (Table 40)

	Gross Savings Adj.			
Measure Group	2010	2011		
Refrigerators	75%	80%		
Freezers	75%	70%		
Overall Appliance Recycling	75%	77%		

Table 40. Gross Savings Adjustment by Equipment Type

C.5.3 Program Attribution

The evaluation team found that program attribution declined between the 2010 and 2011 program years by approximately 25 percent. The largest factor driving the reduction in attribution was the number of participants who responded that they would have kept and used the equipment in the absence of the program. In the 2010 program year, almost 30 percent of participants reported that they would have kept and used their refrigerator or freezer if it had not been removed by the program, while in 2011 that percentage dropped to approximately 1 percent. A unit that would have stayed in use in the participant's home in the absence of the program receives 100 percent attribution, while a transferred unit has a greater chance of being destroyed, lowering the average attribution for units leaving the home. (Table 41) Highlighted cells show a statistically significant difference from the 2010 to 2011 program periods at the 90 percent confidence interval. Refrigerators, freezers and the program overall all showed a statistically significant decline in attribution.

Table 41. Change in Attribution from 2010 to 2011

	Attribution			
Measure Group	2010	2011		
Refrigerators	60%	43%		
Freezers	51%	40%		
Overall Appliance Recycling	58%	42%		

D. Residential HVAC Program

This section reports on the methodology and overall results of KEMA's evaluation of the 2011 Residential HVAC Program.

- Section D.1 provides a description of the program.
- Section D.2 gives an overview of the evaluation approach.
- Section D.3 presents the verified gross savings results and the overall adjustment factors.
- Section D.4 shows the overall attribution analysis results, including an analysis of the survey responses to the attribution questions.

D.1 Program Description

The Residential HVAC Program was launched in November 2009. Incentives are provided to customers through mail-in rebates for installing high efficiency heating, cooling, and water heating equipment in residential buildings. The program applies to existing homes installing new equipment and new homes only when they do not qualify for the Residential New Construction Program incentives. The HVAC Program is the largest residential natural gas program in the MECA/MCAAA portfolio and is offered in all utility service territories except Bayfield Electric Cooperative and Daggett Electric Department. Not all measures are offered in all utility service territories as shown in Table 42.

						Меа	sure				
Consortium	Utility	ECM Drive	Pipe Insulation	Electric Water Heater	Gas Water Heater	Programmable Thermostat	Water Heater kit	Furnace; Furnace Tune-Up	Central Air Conditioner	Boiler	Heat Pump
s	Alger Delta Cooperative Electric Association	Х	Х	Х		Х	Х		Х		Х
MECA Cooperatives	Cloverland Electric Cooperative	Х	Х	Х		Х	Х		Х		Х
erat	Great Lakes Energy Cooperative	Х	Х	Х		Х	Х		Х		Х
ope	HomeWorks Tri-County Electric Cooperative	Х	Х	Х		Х	Х		Х		Х
ပိ	Midwest Energy Cooperative	Х	Х	Х		Х	Х		Х		Х
A D	Ontonagon County Rural Electrification Association	X X	Х	Х		Х	Х		Х		Х
JE(Presque Isle Electric and Gas Co-op		Х	Х		Х	Х		Х		Х
2	Thumb Electric Cooperative	Х	Х	Х		Х	Х		Х		Х
Ч	Marquette Board of Light and Power	Х									
AL	Escanaba Electric Department	Х									
MECA	Newberry Water and Light Board	Х									
Σ	City of Stephenson	Х									
	Alpena Power Company	Х							Х		Х
	Bayfield Electric Cooperative										
	Daggett Electric Department										
	Edison Sault Electric Company	X X	Х	Х			Х		Х		Х
AA	Indiana Michigan Power Company Michigan Gas Utilities Corporation SEMCO Energy Gas Company								Х		Х
MCAAA					Х	Х		Х		Х	
ž					Х	Х		Х		Х	
	Upper Peninsula Power Company	Х							Х		Х
	We Energies	Х							Х		Х
	Wisconsin Public Service Corporation	Х			Х	Х		Х	Х	Х	Х
	Xcel Energy	Х			Х	Х		Х	Х	Х	Х

Table 42. Measures Offered by Utility through HVAC Program

Table 43 shows the accomplishments for the HVAC Program based on the program implementer tracking data. The table shows the tracking savings, number of measures rebated, and incentives paid for the evaluation period and the entire 2011 program period.

Table 43. Overview of HVAC Program Accomplishments per Program Tracking

Metric	Evaluation Period Jan to Aug 2011	Program Period Jan to Dec 2011		
Tracking kWh Savings	209,196	582,480		
Tracking ccf Savings	283,781	648,661		
# Measures	1,653	4,560		
Incentives	\$217,890.00	\$630,426.00		

D.2 General Approach

The impact evaluation of the HVAC Program had the following objectives for the 2011 program:

- Reliably estimate the program's gross annual kWh and gas savings (ccf) over the effective useful life of the installations
- Provide an estimate of program attribution.

To meet these objectives, the impact evaluation included the following tasks:

- Verify proper tracking assignments (Appendix Q)
- Verify proper documentation with a sample of participating applications (Appendix R)
- Conduct CATI surveys with a sample of participants
- Conduct verified gross savings analysis
- Conduct net savings analysis
- Complete in-depth attribution analysis to assist with program planning.

Section A.5 describes the steps used to complete these tasks in greater detail.

D.3 Verified Gross Savings Results

D.3.1 Installation Rate

KEMA calculated the installation rate for each measure group in the HVAC Program. We defined the installation rate as the number of units installed divided by the number of units in the tracking database for each measure. Table 44 shows the results.

The table shows that the majority of measure groups had 100 percent installation rate for both electric and gas, with the exception of water heater kits, which had an installation rate of 68 percent. Since water heater kits make up only 16 percent of program kWh savings, the overall installation rate for electric measures is still high at 95 percent.

	kWh								ccf					
			90% Cor	nfidence	Interval	%		90% Confidence			Interval %			
		Installation		Lower	Upper	Program		Installation		Lower	Upper	Program		
Measure Group	n	Rate	+/-	Bound	Bound	Savings	n	Rate	+/-	Bound	Bound	Savings		
Boiler	0	-	-	-	-	0%	9	100%	<0.1%	100%	100%	14%		
CAC	11	100%	<0.1%	100%	100%	9%	0	-	-	-	-	0%		
ECM	33	100%	<0.1%	100%	100%	54%	0	-	-	-	-	0%		
Furnace	0	-	-	-	-	0%	253	100%	<0.1%	100%	100%	79%		
Heat Pump	2	100%	<0.1%	100%	100%	12%	0	-	-	-	-	0%		
Water Heater Kit	2	68%	164%	0%	100%	16%	0	-	-	-	-	0%		
Pipe Wrap	8	100%	<0.1%	100%	100%	6%	0	-	-	-	-	0%		
Thermostat	3	100%	<0.1%	100%	100%	1%	107	100%	<0.1%	100%	100%	8%		
Water Heaters	9	100%	<0.1%	100%	100%	3%	7	100%	<0.1%	100%	100%	0%		
HVAC Overall	68	95%	7%	88%	100%	100%	376	100%	<0.1%	100%	100%	100%		

 Table 44. Installation Rate, HVAC

D.3.2 Verified Gross Savings

KEMA combined the installation rate and the effects of the documentation review (Appendix R) to produce the gross savings adjustment factor, which is a single adjustment factor that can be applied to the tracking savings to produce verified gross savings. Table 45 shows the gross savings adjustment factor for HVAC.

The only change between the installation rate and gross savings adjustment factor was in the furnace measure group. In the documentation review, KEMA found one furnace measure that also had a programmable thermostat installed but was not entered in the database. We applied an adjustment factor to furnaces (because the two measures were linked) to account for the oversight.

			kW	า					ccf	:		
		Gross Savings 90% Confidence Interval %		%		Gross Savings	90% Confidence Interval			%		
	min	Adjustment		Lower	Upper	Program	min	Adjustment		Lower	Upper	Program
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings
Boiler	0	-	-	-	•	0%	9	100%	<0.1%	100%	100%	14%
CAC	11	100%	<0.1%	100%	100%	9%	0	-	-	-	-	0%
ECM	33	100%	<0.1%	100%	100%	54%	0	-	-	-	-	0%
Furnace	0	-	-	-	-	0%	253	101%	<0.1%	101%	101%	79%
Heat Pump	2	100%	<0.1%	100%	100%	12%	0	-	-	-	-	0%
Water Heater Kit	2	68%	164%	-96%	233%	16%	0	-	-	-	-	0%
Pipe Wrap	8	100%	<0.1%	100%	100%	6%	0	-	-	-	-	0%
Thermostat	3	100%	<0.1%	100%	100%	1%	107	100%	<0.1%	100%	100%	8%
Water Heaters	9	100%	<0.1%	100%	100%	3%	7	100%	<0.1%	100%	100%	0%
HVAC Overall	68	95%	7%	88%	103%	100%	376	100%	<0.1%	100%	100%	100%

Table 45. Gross Savings Adjustment Factor, HVAC

The gross savings adjustment factor was applied to the total savings reported for the HVAC Program in 2011 to produce the verified gross savings for the program. Table 46 shows the tracking gross savings (an annual number), the gross saving adjustment factor determined from

the evaluation, the verified gross annual savings, and the verified gross lifetime savings. The verified gross annual savings is the tracking gross savings multiplied by the gross savings adjustment factor. The verified gross lifetime savings is the verified gross annual savings with the measure life applied.⁹

		k٧	/h			c	f	
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings
ECM	264,260	100%	264,260	3,963,900				
CAC	39,234	100%	39,234	588,505				
Heat Pump	95,237	100%	95,237	1,428,555				
Pipe Wrap	67,320	100%	67,320	875,160				
Thermostat	12,834	100%	12,834	141,174	69,662	100%	69,662	766,285
Water Heaters	44,588	100%	44,588	579,644	1,280	100%	1,280	14,080
Kit - Faucet Aerator	16,949	50%	8,474	84,744				
Kit - Pipe Wrap	15,623	100%	15,623	203,097				
Kit - Showerhead	26,435	50%	13,218	132,177				
Boiler					48,219	100%	48,219	964,374
Furnace					485,576	101%	488,392	7,325,882
Furnace Tune-up					43,925	100%	43,925	219,623
HVAC Overall	582,480	95%	560,788	7,996,955	648,661	100%	651,478	9,290,244

Table 46. Verified Gross Savings, HVAC, Overall

Table 47 and Table 48 show the verified gross lifetime savings for the Efficiency United and Energy Optimization programs, respectively.

				C	cf			
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings
Water Heaters	314	100%	314	4,082	1,280	100%	1,280	14,080
CAC	33,727	100%	33,727	505,912				
ECM	174,470	100%	174,470	2,617,050				
Heat Pump	51,037	100%	51,036	765,547				
Boiler					48,219	100%	48,219	964,374
Thermostat					69,662	100%	69,662	766,285
Furnace					485,576	101%	488,392	7,325,882
Furnace Tune-up					43,925	100%	43,925	219,623
HVAC EU Overall	259,548	95%	259,548	3,892,592	648,661	100%	651,478	9,290,244

Table 47. Verified Gross Savings, HVAC, EU

⁹ KEMA's study did not complete any surveys addressing HVAC program furnace tune-ups. To estimate verified gross savings, KEMA applied the gross savings adjustment factor found for Low Income program furnace tune-ups.

		k٧	/h	
	Tracking	Gross Savings	Verified Gross	Verified Gross
Measure Group	Gross Savings	Adjustment Factor	Annual Savings	Lifetime Savings
ECM	89,790	100%	89,790	1,346,850
CAC	5,506	100%	5,506	82,593
Heat Pump	44,201	100%	44,200	663,007
Pipe Wrap	67,320	100%	67,320	875,160
Thermostat	12,834	100%	12,834	141,174
Water Heaters	44,274	100%	44,274	575,562
Kit - Faucet Aerator	16,949	50%	8,474	84,744
Kit - Pipe Wrap	15,623	100%	15,623	203,097
Kit - Showerhead	26,435	50%	13,218	132,177
HVAC EO Overall	322,932	95%	301,240	4,104,364

Table 48. Verified Gross Savings, HVAC, EO

D.4 Attribution Results

The EO/EU programs were not required to report net or attributable savings for the 2011 program year. However, discussions within the State of Michigan suggest that net savings will be required in future program years. KEMA conducted a net savings analysis to provide the program with the information they will need for planning and implementation when moving toward net savings reporting.

D.4.1 Attribution Adjustment Factors

KEMA calculated the attribution adjustment factor for each measure group in HVAC. The attribution adjustment factor is applied to the verified gross savings to produce net savings. It reflects the influence the program had on the timing, efficiency level, and scope of the energy efficiency measure installed.¹⁰ Table 49 shows the results.

Attribution results were below 20 percent for all measure groups except pipe wrap (65%) and electric water heaters (27%). Both measures are a small portion of overall program kWh savings. On the electric side, ECMs (10% attribution, 54% of program savings), heat pumps (0%, 12%), and water heater kits (1%, 16%) had the greatest effect on the overall result. For

¹⁰ Appendix U discusses the methodology used in the attribution analysis.

natural gas, furnaces and boilers account for 93 percent of program savings with attribution rates of 14 percent and 7 percent respectively.

	kWh				ccf							
	Attribution		90% Confidence Interval		%		Attribution 90% C		onfidence Interval		%	
		Adjustment		Lower	Upper	Program		Adjustment		Lower	Upper	Program
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings
Boiler	0	-	-	-	-	0%	9	7%	10%	0%	17%	14%
CAC	11	9%	11%	0%	20%	9%	0	-	-	-	-	0%
ECM	33	10%	8%	2%	18%	54%	0	-	-	-	-	0%
Furnace	0	-	-	-	-	0%	253	14%	3%	11%	16%	79%
Heat Pump	2	0%	<0.1%	0%	0%	12%	0	-	-	-	-	0%
Water Heater Kit	2	1%	0%	1%	2%	16%	0	-	-	-	-	0%
Pipe Wrap	8	65%	29%	36%	94%	6%	0	-	-	-	-	0%
Thermostat	2	0%	<0.1%	0%	0%	1%	107	15%	5%	10%	20%	8%
Water Heaters	8	27%	27%	0%	54%	3%	7	2%	3%	0%	5%	0%
HVAC Overall	66	13%	6%	8%	19%	100%	376	13%	2%	11%	15%	100%

Table 49. Attribution Adjustment Factor, HVAC

D.4.2 Analysis of Survey Responses

KEMA reviewed the responses to the attribution question sequence used in the HVAC survey to identify where the program was having an effect and where improvements could be made. We investigated the program's effect on timing, efficiency, and quantity, the three components of attribution. Appendix U has greater detail on the attribution analysis methodology and the methods used to combine the three components into a single attribution value.

Number	Question
Timing	
DAT1	Without EO/EU, how likely is it that you would have installed the same type of equipment at this time?
DAT1a	Without EO/EU, how different would the timing have been?
DAT1b	Approximately how many months later?
Efficiency	
DAT2	Without EO/EU, how likely is it that you would have installed the same level of efficiency?
DAT2a	Without EO/EU, how likely is it that you would have installed the same, greater, or lesser efficiency?
DAT2b	Without EO/EU, what efficiency would you have installed?
Quantity	
DAT3	Without EO/EU, how different would the quantity/size have been?
DAT3a	By what percentage did you change the quantity/size because of EO/EU?

D.4.2.1 Timing

Respondents are asked a sequence of questions that address the timing of the equipment installation. First, respondents are asked how likely it is that they would have installed the same type of equipment at the same time without the program (DAT1). Then respondents are asked how different the timing would have been (DAT1a).

- A response of "Same Time" means that the customer would have installed the measure(s) at the same time regardless of program involvement.
- A response of "Later" indicates that they would have waited to install the measure(s) if the program had not been present. This measure is called "accelerated". Respondents who answered "Later" are asked a follow-up question (DAT1b) about how much later they would have installed the equipment without the program.

Table 51 shows the responses to the DAT1a and DAT1b questions for HVAC. The table shows the unweighted number of responses in each category and the associated percentage of overall program energy savings represented by those responses. The number of responses does not reflect any survey weight or relative savings but the percentage of energy savings does.

The table outlines the skip pattern and attribution assignment for DAT1a and DAT1b. If a respondent indicates that they would have installed the equipment at the same time or earlier, the acceleration period is zero months and there is no timing effect. If the respondent indicates that they would never have installed the equipment without the program, then the program is credited with influencing the entire project and receives 100 percent attribution. The same effect is applied if the respondent indicates it would have been greater than four years before they would have installed the equipment without the program. If the response to DAT1a is Later and the response to DAT1b is a number less than 48, then the acceleration period is equal to that number of months.

DAT1a. Without EO/EU, how different would the timing have been?						
DAT1b. Approxima	tely how many mon	ths later?	Percent	Percent		
DAT1a Response	DAT1b Response	Responses	kWh	ccf	Timing Attribution	
Same Time	N/A	315	63%	71%	0	
Earlier	N/A	11	2%	2%	0	
	Months < 48	51	17%	12%	Months / 48	
Later	Months >= 48	2	1%	0%	100%	
	Don't Know/Refused	24	8%	5%	Average of DAT1b	
Never	N/A	27	3%	5%	100%	
Not Applicable	N/A	1	5%	0%	Not Asked	
Don't Know/Refused	N/A	13	1%	3%	Average of DAT1a	

Table 51. Determining Acceleration P	Period, HVAC Overall
--------------------------------------	----------------------

The table shows that the majority of the respondents would have installed the equipment at the same time regardless of program involvement, representing 63 percent of kWh and 71 percent of gas savings (ccf). Twenty-nine respondents give the program full attribution credit, representing 4 percent of kWh savings and 5 percent of gas savings (ccf). Eighty-eight

respondents representing 26 percent of kWh savings and 20 percent of gas savings (ccf) said they would have installed the equipment within the next four years, or answered one of the two questions "Don't Know," all of which result in an accelerated measure.

Table 52 shows the DAT1a and DAT1b responses for furnaces, which is by far the largest measure group in the HVAC Program. Sixty-nine percent of ccf savings were represented by Same Time responses, which do not receive attribution. Twelve respondents answered Never or More than 48 months, which receives full timing attribution.

DAT1a. Without EO/EU, how different would the timing have been? DAT1b. Approximately how many months later?							
DAT1a Response	DAT1b Response	Responses	Percent kWh	Percent ccf	Timing Attribution		
Same Time	N/A	173	0%	69%	0		
Earlier	N/A	7	0%	2%	0		
	Months < 48	35	0%	14%	Months / 48		
Later	Months >= 48	1	0%	0%	100%		
	Don't Know/Refused	18	0%	7%	Average of DAT1b		
Never	N/A	11	0%	5%	100%		
Not Applicable	N/A	0	0%	0%	Not Asked		
Don't Know/Refused	N/A	8	0%	3%	Average of DAT1a		

D.4.2.2 Efficiency

Respondents are asked a sequence of questions that address the efficiency of the equipment installation. First, respondents are asked how likely it is that they would have installed the same, lesser, or greater efficiency without the program (DAT2a). Then respondents are asked how different the efficiency would have been (DAT2b).

- A response of "Same" means that the customer would have installed the same level of efficiency regardless of program involvement.
- A response of "Lower" indicates that they would have installed a less efficient piece of equipment if the program had not been there. Respondents who answered "Lower" are asked a follow-up question (DAT2b) about what equipment efficiency they would have installed without the program.

Table 53 shows the responses to the DAT2a question for each measure category. The table includes a response of Not Applicable, which represents measures that do not have variable

КЕМА⋞

efficiency themselves, but are added to the existing equipment or systems to make the overall operation more efficient. Programmable thermostats fall into the Not Applicable category.

The table outlines the skip pattern and attribution assignment for DAT2a and DAT2b. If a respondent indicates that they would have installed the equipment of the same or higher efficiency, the efficiency attribution is zero. If the respondent indicates that they would have installed a lower efficiency then the efficiency attribution is some number between 30 and 100 percent, depending on the answer to DAT2b.

)/EU, would you have instal)/EU, what efficiency would			lower effici	ency?
DAT2a Response	DAT2b Response	Responses	Percent kWh	Percent ccf	Efficiency Attribution
Same	N/A	239	67%	65%	0%
Lower	Standard Efficiency	10	3%	3%	100%
	Slightly > Standard	7	0%	3%	70%
	Between Standard and High	4	0%	1%	50%
	Slightly < High	9	1%	2%	30%
	Don't Know/Refused	1	0%	0%	Average of DAT2b
Higher	N/A	27	6%	7%	0%
Not Applicable	N/A	120	20%	11%	Not Asked
Don't Know/Refused	N/A	27	3%	8%	Average of DAT2a

Table 53. Determining Efficiency Attribution, HVAC Overall

The table shows that the majority of respondents would have installed the same efficiency level without the program, with 239 respondents representing 67 percent of program kWh savings and 65 percent of program gas savings (ccf). Fifty-eight respondents representing 7 percent of program kWh savings and 17 percent of program gas savings (ccf) will receive some form of efficiency attribution by answering "Lower" or "Don't know/Refused" to DAT2a. Three percent of both kWh and gas savings (ccf) will receive 100 percent efficiency attribution. All of the programmable thermostat measures are "Not Applicable". Therefore, the efficiency attribution component does not contribute to the overall attribution for thermostats.

Table 54 shows the DAT2a and DAT2b responses for furnaces. Furnaces represent the majority of the responses in Table 53 that received attribution.

DAT2a. Without EO/EU, would you have installed the same, higher, or lower efficiency?							
DAT2b. Without EO/EU, what efficiency would you have installed?							
DAT2a Response	DAT2b Response	Responses	Percent kWh	Percent ccf	Efficiency Attribution		
Same	N/A	183	0%	71%	0%		
Lower	Standard Efficiency	8	0%	3%	100%		
	Slightly > Standard	6	0%	2%	70%		
	Between Standard and High	3	0%	1%	50%		
	Slightly < High	7	0%	3%	30%		
	Don't Know/Refused	1	0%	1%	Average of DAT2b		
Higher	N/A	21	0%	9%	0%		
Not Applicable	N/A	0	0%	0%	Not Asked		
Don't Know/Refused	N/A	24	0%	10%	Average of DAT2a		

Table 54. Determining Efficiency Attribution, Furnace

D.4.2.3 Quantity

Respondents are asked a sequence of questions that address the quantity of the equipment installed. First, respondents are asked how likely it is that they would have installed the same quantity or capacity of equipment without the program (DAT3). Then respondents are asked how much they changed the quantity or capacity (DAT3a).

- A response of "Same amount" means that the customer would have installed the same size or quantity regardless of program involvement.
- A response of "Less" indicates that the customer would have installed fewer units or a smaller capacity if the program had not been there. Respondents who answered "Less" are asked a follow-up question (DAT3a) about the quantity or capacity of equipment they would have installed without the program.
- A response of "More" indicates that the customer would have installed more units or capacity if the program had not been there. In these cases, the evaluation team assumes that the respondent would have installed a less efficient system without the EO/EU program assistance because it would have been oversized. Respondents who answered "More" are asked the same follow-up question (DAT3a) about the quantity or capacity of equipment they would have installed without the program.

Table 55 shows the responses to the DAT3 question for each measure group. The table includes a response of Not Applicable, which represents measures where varying quantity or size does not make sense in the context of the measure.

The table outlines the skip pattern and attribution assignment for DAT3 and DAT3a. If a respondent indicates that they would have installed the same quantity or size, the quantity attribution is zero. If the respondent indicates that they would have installed more or less quantity/size, then the quantity attribution is some value between 0 and 100 percent. If the respondent indicates that they would not have installed any equipment without the program then the quantity attribution is 100 percent.

DAT3. Without EO/	DAT3. Without EO/EU, how different would the quantity/size have been?												
DAT3a. By what percentage did you change the amount installed because of Focus?													
	Percent Percent												
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Quantity Attribution								
Same Amount	N/A	383	78%	90%	0%								
	Value < 100%	4	2%	1%	Value < 50%								
Less	Value >= 100%	2	0%	1%	Value > 50%								
	Don't Know/Refused	5	0%	1%	Average of DAT3a								
	Value < 100%	2	0%	1%	Value < 100%								
More	Value >= 100%	0	0%	0%	Value = 100%								
	Don't Know/Refused	0	0%	0%	Average of DAT3a								
None	N/A	20	8%	2%	100%								
Not Applicable	N/A	2	8%	0%	Not Asked								
Don't Know/Refused	N/A	26	4%	5%	Average of DAT3								

The table shows that 383 respondents representing 78 percent of kWh savings and 90 percent of gas savings (ccf) would have installed equipment of the same size or quantity without the program. Twenty respondents representing 8 percent of kWh savings and 2 percent of gas savings (ccf) would not have installed any equipment, resulting in 100 percent quantity attribution.

D.4.2.4 **Overall Attribution**

KEMA put all three attribution components together in one table to show where overlap between quantity, efficiency, and timing attribution occurred. Table 56 shows the three effects together, with Yes indicating some (not necessarily full) attribution while No indicates responses that did not receive any attribution.

The table shows that 11 responses representing 9 percent of kWh savings and 2 percent of gas savings (ccf) received all three types of attribution (or full attribution based on the overall likelihood question). In total, 194 responses representing 55 percent of kWh savings and 54

percent of gas savings (ccf) did not receive any timing, efficiency, or quantity attribution. In other words, the program had no influence over 50 percent of the savings reported by the program.

	Attribution				
Timing	Efficiency	Quantity	Responses	Percent kWh	Percent ccf
Yes	Yes	Yes	11	9%	2%
Yes	No	Yes	5	3%	1%
Yes	No	No	58	16%	14%
Yes	Yes	No	15	2%	5%
No	Yes	Yes	16	3%	4%
No	Yes	No	24	2%	7%
No	No	Yes	121	9%	13%
No	No	No	194	55%	54%

 Table 56. Simplistic Representation of Overall Attribution, HVAC

D.5 Comparison of 2009-10 and 2011 Program Results

KEMA compared the results of the 2009-2010 program evaluation to the results of the 2011 program evaluation.

D.5.1 Overall Comparison

Table 57 shows the tracking savings, number of measures, and total incentives paid for the 2009-2010 and 2011 program periods. The final column shows the difference between the two, with a negative value representing a decrease from 2010 and a positive value representing an increase.

The table shows a 50 percent increase in kWh savings from the 2009-2010 program period to the 2011 program period and a slight (7%) increase in incentives. The number of measures and tracked natural gas savings decreased slightly; approximately 5 percent. The increase in electric savings are likely due in part to the addition of water heater kits, offered by the MECA coops. Other than the kits, the distribution of savings across the different electric measure groups is relatively consistent from 2010 to 2011, suggesting that any other effects are simply a result of program expansion, likely by the self-implemented coops.

	Program Period	Program Period	2010 to 2011
Metric	Program Start to Dec 2010	Jan to Dec 2011	Change
Tracking kWh Savings	384,466	582,480	52%
Tracking ccf Savings	685,958	648,661	-5%
Total # Measures	4,761	4,560	-4%
Total Incentive	\$587,914	\$630,426	7%

 Table 57. Comparison of 2010 and 2011 HVAC Program Results

D.5.2 Adjustment Factors

Table 58 shows the 2009-2010 and 2011 installation rate, gross savings adjustment factor, and attribution adjustment factor for kWh and ccf. Highlighted cells show a statistically significant difference from the 2010 to 2011 program periods at the 90 percent confidence interval.

The table shows a statistically significant increase in gross savings adjustment factor for kWh from 2010 to 2011. Since the installation rate didn't change, this is an effect caused by differences in the documentation review or tracking adjustment factor from 2010 to 2011. A review of the 2010 report shows that the tracking review had a greater effect on the gross savings adjustment factor than the documentation review; therefore, the difference in gross savings adjustment factors from Table 58 are a result of the change in analysis method. This round, KEMA conducted our tracking review BEFORE the program savings were finalized which means that the effects of the tracking review are not included in the adjustment factors.

The table also shows relatively consistent attribution rates from 2010 to 2011, with no statistically significant differences.

	k۷	Vh	C	cf
Adjustment Factor	2010	2011	2010	2011
Installation Rate	94%	95%	100%	100%
Gross Savings Adjustment Factor	84%	95%	105%	105%
Attribution Adjustment Factor	18%	17%	16%	20%

Table 58. Comparison of 2010 and 2011 HVAC Adjustment Factors

E. Residential Low Income Program

This section reports on the methodology and overall results of KEMA's evaluation of the Residential Low Income Program.

- Section E.1 provides a description of the program.
- Section E.2 gives an overview of the evaluation approach.
- Section E.3 presents the verified gross savings results and the overall adjustment factors.

E.1 Program Description

The Residential Low Income (LI) Program is implemented through a pre-existing and ongoing assistance program that aids income-qualified customers in obtaining weatherization products and services and high efficiency appliances. The program provides funding to weatherization providers through non-profit Community Action Agencies (CAAs) to expand their low income services of installing energy efficient equipment and improving insulation levels. Electric measures include refrigerators, ECMs, and CFLs. Natural gas measures include air sealing, insulation, high efficiency water heaters, thermostats, boilers, furnaces, and tune-ups. Low flow showerheads, pipe wrap, and faucet aerators may also be installed. The MECA/MCAAA portion of the program began implementation in November 2009. The program is available in all utility service territories. The LI program is the third largest program in the MECA/MCAAA portfolio.

Table 59 shows the accomplishments for the LI program based on the program implementer tracking data. The table shows the tracking savings, number of measures rebated, and incentives paid for the evaluation period and the entire 2011 program period.

Metric	Evaluation Period Jan to Aug 2011	Program Period Jan to Dec 2011
Tracking kWh Savings	830,698	2,094,648
Tracking ccf Savings	44,992	156,519
# Measures	1,752	5,268
Incentives	\$547,779.00	\$832,195.00

Table 59. Overview of LI Program Accomplishments per Program Tracking

E.2 General Approach

The impact evaluation of the 2011 LI program had one objective: reliably estimate the program's gross annual kWh and gas savings (ccf) over the effective useful life of the installations.

To meet this objective, the impact evaluation included the following tasks:

- Verify proper tracking savings assignments (Appendix Q)
- Conduct CATI surveys with a sample of participants
- Complete verified gross savings analysis.

There was no net savings analysis for this program. Section A.5 describes the steps used to complete these tasks in greater detail.

E.3 Verified Gross Savings Results

E.3.1 Installation Rate

KEMA calculated the installation rate for each measure group in the Low Income Program. We defined the installation rate for CFLs and refrigerators as the number of units installed divided by the number of units in the tracking database. For all other measures, we verified the savings multiplier, which was included in the tracking database. For wall, ceiling, and floor insulation, the multiplier is the square footage of insulation installed. For rim joist insulation, air sealing, and programmable thermostats, it is the square feet of conditioned space. For furnaces and furnace tune-ups, it is the capacity of the furnace. Table 60 shows the results.

The installation rate for all measure groups is above 90 percent. CFLs had the lowest rate at 91 percent, which is a result of bulbs that were installed by the program representative but subsequently removed by the homeowner. The insulation and air-sealing measures have an installation rate of less than 100 percent because one respondent indicated that their gas service was provided by a non-participating utility. Finally, the refrigerator installation rate is less than 100 percent because one respondent reported that the program removed their newly installed refrigerator and another reported that they had refused the refrigerator.

	kWh							ccf					
			90% Cor	nfidence	Interval	%	%		90% Con	fidence	Interval	%	
		Installation		Lower	Upper	Program		Installation		Lower	Upper	Program	
Measure Group	n	Rate	+/-	Bound	Bound	Savings	n	Rate	+/-	Bound	Bound	Savings	
CFL	102	91%	4%	87%	95%	20%	0	-	-	-	-	0%	
Furnace	0	-	-	-	-	0%	33	100%	<0.1%	100%	100%	52%	
Furnace Tune-up	0	-	-	-	-	0%	26	100%	<0.1%	100%	100%	4%	
Insulation	0	-	-	-	-	0%	78	98%	3%	95%	100%	34%	
Thermostat	0	-	-	-	-	0%	13	100%	<0.1%	100%	100%	4%	
Refrigerator	142	99%	1%	97%	100%	80%	0	-	-	-	-	0%	
Air Sealing	0	-	-	-	-	0%	36	99%	2%	97%	100%	6%	
Low Income Overall	244	97%	1%	96%	98%	100%	186	99%	1%	98%	100%	100%	

Table 60. Installation Rate, Low Income

E.3.2 Verified Gross Savings

KEMA did not conduct a documentation review for the Low Income Program; therefore, the gross savings adjustment factor is equal to the installation rate. Table 61 shows the gross savings adjustment factor for Low Income.

			ccf									
		Gross Savings	90% Cor	nfidence	Interval	%		Gross Savings 90% Confidence Interval			Interval	%
	min	Adjustment		Lower	Upper	Program	min	Adjustment		Lower	Upper	Program
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings
CFL	102	91%	4%	87%	95%	20%	0	-	-	-	-	0%
Furnace	0	-	-	-	-	0%	33	100%	<0.1%	100%	100%	52%
Furnace Tune-up	0	-	-	-	-	0%	26	100%	<0.1%	100%	100%	4%
Insulation	0	-	-	-	-	0%	78	98%	3%	95%	101%	34%
Thermostat	0	-	-	-	-	0%	13	100%	<0.1%	100%	100%	4%
Refrigerator	142	99%	1%	97%	100%	80%	0	-	-	-	-	0%
Air Sealing	0	-	-	-	-	0%	36	99%	2%	97%	101%	6%
Low Income Overall	244	97%	1%	96%	98%	100%	186	99%	1%	98%	100%	100%

Table 61. Gross Savings Adjustment Factor, Low Income

The gross savings adjustment factor was applied to the total savings reported for the Low Income Program to produce the verified gross savings for the program. Table 62 shows the tracking gross savings (an annual number), the gross savings adjustment factor determined from the evaluation, the verified gross annual savings, and the verified gross lifetime savings. The verified gross annual savings is the tracking gross savings multiplied by the gross savings adjustment factor. The verified gross lifetime savings is the verified gross annual savings with the measure life applied.¹¹

¹¹ KEMA's study did not complete any surveys addressing thermostats that saved electricity, ECMs, faucet aerators, pipe wrap, showerheads, or boilers. To estimate verified gross savings, KEMA applied

	kWh					C	cf	
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings
CFL	973,984	91%	888,716	7,998,440				
Refrigerator	952,500	99%	939,010	13,146,141				
Thermostat	9,240	100%	9,240	101,640	21,085	100%	21,085	231,931
ECM	1,460	100%	1,460	21,900				
Faucet Aerator	46,480	84%	38,943	389,427	20,383	89%	18,174	181,744
Pipe Wrap	31,212	97%	30,200	392,606	1,388	95%	1,320	14,521
Showerhead	79,772	87%	69,800	698,005	33,399	96%	32,200	321,999
Air Sealing					5,851	99%	5,788	63,673
Furnace					36,869	100%	36,869	553,037
Furnace Tune-up					13,193	100%	13,193	65,964
Insulation					23,106	98%	22,680	453,608
Boiler					1,245	100%	1,245	24,906
Low Income Overall	2,094,648	97%	1,977,369	22,748,158	156,519	99%	152,555	1,911,382

Table 62. Verified Gross Savings, Low Income, Overall

Table 63 and Table 64 show the verified gross lifetime savings for the Efficiency United and Energy Optimization programs, respectively.

		k۷	/h			C	of	
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings
CFL	783,728	91%	715,116	6,436,041				
ECM	1,460	100%	1,460	21,900				
Faucet Aerator	46,480	84%	38,943	389,427	20,383	89%	18,174	181,744
Pipe Wrap	31,212	97%	30,200	392,606	1,388	95%	1,320	14,521
Refrigerator	675,000	99%	665,440	9,316,163				
Showerhead	79,772	87%	69,800	698,005	33,399	96%	32,200	321,999
Air Sealing					5,851	99%	5,788	63,673
Furnace					36,869	100%	36,869	553,037
Furnace Tune-up					13,193	100%	13,193	65,964
Insulation					23,106	98%	22,680	453,608
Thermostat					21,085	100%	21,085	231,931
Boiler					1,245	100%	1,245	24,906
Low Income EU Overall	1,617,652	97%	1,520,960	17,254,142	156,519	99%	152,555	1,911,382

Table 63. Verified Gross Savings, Low Income, EU

the gross savings adjustment factor found for the most similar program and measure group that was available. For thermostats, KEMA applied the ratio for therm savings to the electric savings. For faucet aerators, pipe wrap and showerheads, the corresponding ratios from the Onsite Audit program were applied. For boilers, we applied the boiler ratio from the HVAC program.

	kWh								
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings					
CFL	190,256	91%	173,600	1,562,399					
Refrigerator	277,500	99%	273,570	3,829,978					
Thermostat	9,240	100%	9,240	101,640					
Low Income EO Overall	476,996	97%	456,410	5,494,017					

E.4 Comparison of 2009-10 and 2011 Program Results

KEMA compared the results of the 2009-2010 program evaluation to the results of the 2011 program evaluation.

E.4.1 Overall Comparison

Table 65 shows the tracking savings, number of measures, and total incentives paid for the 2009-2010 and 2011 program periods. The final column shows the difference between the two, with a negative value representing a decrease from 2010 and a positive value representing an increase.

The Low Income Program shows a decrease in all four metrics: kWh savings, ccf savings, number of measures, and incentives. The number of measures shows the greatest decrease, with an 85 percent decrease from the 2009-2010 period to 2011. Natural gas savings decreased by 57 percent and electric savings decreased by 15 percent. Again, the most obvious reason for the difference is the longer program period in 2009-2010.

The program also shows a change in measure mix, with a lesser portion of ccf savings going to building shell measures in 2011 (40% of savings) than in 2010 (68%).

Metric	Program Period Program Start to Dec 2010	Program Period Jan to Dec 2011	2010 to 2011 Change
Tracking kWh Savings	2,478,352	2,094,648	-15%
Tracking ccf Savings	367,235	156,519	-57%
Total # Measures	34,954	5,268	-85%
Total Incentive	\$892,749	\$832,195	-7%

 Table 65. Comparison of 2010 and 2011 Low Income Program Results

E.4.2 Adjustment Factors

Table 66 shows the 2009-2010 and 2011 installation rate, gross savings adjustment factor, and attribution adjustment factor for kWh and ccf. Highlighted cells show a statistically significant difference from the 2010 to 2011 program periods at the 90 percent confidence interval.

The table shows a statistically significant increase in gross savings adjustment factor for natural gas from 2010 to 2011. Since the installation rate didn't change, this effect is caused by differences in the documentation review or tracking adjustment factor from 2010 to 2011. A review of the 2010 report shows that the tracking review had a greater effect on the gross savings adjustment factor than the documentation review; therefore, the difference in gross savings adjustment factors from Table 66 is a result in the change in analysis method. This round, KEMA conducted our tracking review BEFORE the program savings were finalized, which means that the effects of the tracking review are not included in the adjustment factors.

The table also shows a statistically significant (though small) decrease in the installation rate from 2010 to 2011. The only installation rate adjustment in 2010 was due to CFLs that were removed by the homeowners. The same phenomenon was observed in 2011; however, KEMA also found two instances where refrigerators were not currently installed.

	k۷	Vh	ccf		
Adjustment Factor	2010	2011	2010	2011	
Installation Rate	99%	97%	100%	99%	
Gross Savings Adjustment Factor	98%	97%	88%	99%	

Table 66. Comparison of 2010 and 2011 Low Income Adjustment Factors

F. Residential Online Audit Program

This section reports on the methodology and overall results of KEMA's evaluation of the Residential Online Audit Program.

- Section F.1 provides a description of the program.
- Section F.2 gives an overview of the evaluation approach.
- Section
 presents the verified gross savings results and the overall adjustment factors.
- Section F.4 shows the overall attribution analysis results, including an analysis of the survey responses to the attribution questions.

F.1 Program Description

The Residential Online Audit (OA) Program was launched in March 2010, at which time the program offered a free online self-auditing tool for residential buildings of four units or less. Participants who completed the full audit received an energy kit containing some combination of CFLs, low-flow showerheads, faucet aerators, LED night lights, pipe wrap, and door weatherization kits. The program is offered in all utility service territories except Bayfield Electric Cooperative and Daggett Electric Department. The OA program is a small part of the MECA/MCAAA portfolio.

Table 67 shows the accomplishments for the OA program based on the program implementer tracking data. The table shows the tracking savings, number of measures rebated, number of participants, and incentives paid for the evaluation period and the entire 2011 program period.

Metric	Program Period Program Start to Dec 2010	Program Period Jan to Dec 2011
Tracking kWh Savings	1,758,466	1,588,234
Tracking ccf Savings	5,496	59,721
Total # Measures	2,864	3,514
Total Incentive	\$55,643	\$114,306

Table 67. Overview of OA Program Accomplishments per Program Tracking

F.2 General Approach

The impact evaluation of the OA program had the following objectives for the 2011 program:

- Reliably estimate the program's gross annual kWh and gas savings (ccf) over the effective useful life of the installations
- Provide an estimate of program attribution.

To meet these objectives, the impact evaluation included the following tasks:

- Verify proper tracking assignments (Appendix Q)
- Verify proper documentation with a sample of participating applications (Appendix R)
- Conduct CATI surveys with a sample of participants
- Conduct verified gross savings analysis
- Conduct net savings analysis
- Complete in-depth attribution analysis to assist with program planning.

Section A.5 describes the steps used to complete these tasks in greater detail.

F.3 Verified Gross Savings Results

F.3.1 Installation Rate

KEMA calculated the installation rate for the Online Audit Program at the technology level. We defined the installation rate as the number of units installed divided by the number of units in the tracking database kit definition for each technology: CFLs, low flow showerheads, faucet aerators, LED night lights, pipe wrap, and door weather-stripping. Table 68 shows the results.

On the electric side, CFLs and LED night lights had the highest installation rates at approximately 65 percent but accounted for only 30 percent of the savings. The overall electric installation rate was 50 percent. On the natural gas side, showerheads also had a high installation rate at 78 percent, accounting for 42 percent of savings. The natural gas overall installation rate was 60 percent.

The installation rate for the Online Audit Program is low relative to other programs in the portfolio. In general, this type of program would be expected to have a lower installation rate, as many homeowners receive the kit and only install portions of it, or place the equipment in storage for when their current equipment fails. However, our participant survey also found a number of respondents (13%) who reported that they had not received their energy kit, causing a lower installation rate than was expected.

	kWh						ccf					
			90% Cor	nfidence	Interval	%			90% Cor	nfidence	Interval	%
		Installation		Lower	Upper	Program		Installation		Lower	Upper	Program
Measure Group	n	Rate	+/-	Bound	Bound	Savings	n	Rate	+/-	Bound	Bound	Savings
Kit - CFL	164	66%	4%	61%	70%	29%	0	-	-	-	-	0%
Kit - Door Strip	0	-	-	-	-	0%	13	38%	22%	16%	59%	5%
Kit - Faucet Aerator	114	43%	6%	37%	49%	28%	10	49%	24%	25%	72%	27%
Kit - LED Night Light	17	65%	14%	51%	79%	1%	0	-	-	-	-	0%
Kit - Pipe Wrap	0	-	-	-	-	0%	10	49%	26%	23%	75%	27%
Kit - Showerhead	114	45%	7%	38%	52%	43%	9	78%	23%	56%	100%	42%
Online Audit Overall	409	50%	5%	45%	54%	100%	42	60%	16%	44%	76%	100%

Table 68. Installation Rate, Online Audit

F.3.2 Verified Gross Savings

The Online Audit Program does not have a paper application; therefore, KEMA did not do a documentation review for this program. As a result, the gross savings adjustment factor is equal to the installation rate. Table 69 shows the gross savings adjustment factor for Online Audit.

		kWh						ccf					
		Gross Savings	90% Cor	nfidence	Interval	%		Gross Savings	90% Confidence Interval		Interval	%	
	min	Adjustment		Lower	Upper	Program	min	Adjustment		Lower	Upper	Program	
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings	
Kit - CFL	164	66%	5%	61%	70%	29%	0	-	-	-	•	0%	
Kit - Door Strip	0	-	-	-	•	0%	13	38%	26%	12%	64%	5%	
Kit - Faucet Aerator	114	43%	6%	36%	49%	28%	10	49%	26%	23%	75%	27%	
Kit - LED Night Light	17	65%	14%	51%	79%	1%	0	-	-	-	-	0%	
Kit - Pipe Wrap	0	-	-	-	•	0%	10	49%	31%	18%	79%	27%	
Kit - Showerhead	114	45%	7%	38%	52%	43%	9	78%	24%	54%	102%	42%	
Online Audit Overall	409	50%	5%	45%	54%	100%	42	60%	16%	44%	76%	100%	

Table 69. Gross Savings Adjustment Factor, Online Audit

The gross savings adjustment factor was applied to the total savings reported for the Online Audit Program in 2011 to produce the verified gross savings for the program. Table 70 shows the tracking gross savings (an annual number), the gross saving adjustment factor determined from the evaluation, the verified gross annual savings, and the verified gross lifetime savings. The verified gross annual savings is the tracking gross savings multiplied by the gross savings adjustment factor. The verified gross lifetime savings is the verified gross annual savings with the measure life applied.

Kit - Faucet Aerator

Kit - LED Night Light

Online Audit Overall

Kit - Showerhead

Kit - Door Strip

Kit - Pipe Wrap

389 768

608,132

44,880

1,588,234

43%

45%

65%

50%

Table 70. Vermed Gross Savings, Omme Addit, Overall										
		kWh				ccf				
		Gross	Verified	Verified		Gross	Verified	Verified		
	Tracking	Savings	Gross	Gross	Tracking	Savings	Gross	Gross		
	Gross	Adjustment	Annual	Lifetime	Gross	Adjustment	Annual	Lifetime		
Measure Group	Savings	Factor	Savings	Savings	Savings	Factor	Savings	Savings		
Kit - CFL	545,454	66%	359,337	3,234,029						

1,663,564

2,725,970

8,091,126

467,563

16,422

26,082

2,147

15,070

59,721

Table 70. Verified Gross Savings, Online Audit, Overall

Table 71 and Table 72 show the verified gross lifetime savings for the Efficiency United and Energy Optimization programs, respectively.

166,356

272,597

827,513

29,223

		kW	/h		ccf						
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings			
CFL	399,431	66%	263,139	2,368,250							
Faucet Aerator	262,612	43%	112,085	1,120,851	16,422	49%	8,011	80,107			
Showerhead	409,738	45%	183,666	1,836,663	26,082	78%	20,443	204,426			
LED Night Light	44,880	65%	29,223	467,563							
Pipe Wrap					15,070	49%	7,351	80,861			
Door Strip					2,147	38%	810	8,913			
Online Audit EU Overall	1,116,661	50%	588,113	5,793,327	59,721	60%	36,615	374,308			

Table 71. Verified Gross Savings, Online Audit, EU

Table 72. Verified Gross Savings, Online Audit, EO

		k٧	/h	
		Gross	Verified	Verified
	Tracking Gross	Savings Adjustment	Gross Annual	Gross Lifetime
Measure Group	Savings	Factor	Savings	Savings
CFL	146,023	66%	96,198	865,779
Faucet Aerator	127,156	43%	54,271	542,713
Showerhead	198,394	45%	88,931	889,307
Online Audit EO Overall	471,573	50%	239,400	2,297,799

F.4 Attribution Results

The EO/EU programs were not required to report net or attributable savings for the 2011 program year. However, discussions within the State of Michigan suggest that net savings will be required in future program years. KEMA conducted a net savings analysis to provide the program with the information they will need for planning and implementation when moving toward net savings reporting.

8,011

20,443

810

7,351

36,615

80 107

204,426

8,913

80,861

374,308

49%

78%

38%

49%

60%

F.4.1 Attribution Adjustment Factors

KEMA calculated the attribution adjustment factor for the Online Audit Program. The attribution adjustment factor is applied to the verified gross savings to produce net savings. It reflects the influence the program had on the timing, efficiency level, and scope of the energy efficiency measure installed.¹² Table 73 shows the results.

CFLs had the lowest electric attribution rate at 35 percent. On the gas side, door strips showed the lowest rate at 23 percent. Faucet aerators and showerheads showed relatively high attribution for both natural gas and electric, with installation rates near or above 50 percent. Overall, the electric attribution adjustment factor was 46 percent and gas was 49 percent.

There is more discussion about attribution results in Appendix U and the following section.

		kWh					ccf					
		Attribution	90% Cor	nfidence	Interval	%		Attribution	90% Cor	nfidence	Interval	%
		Adjustment		Lower	Upper	Program		Adjustment		Lower	Upper	Program
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings
Kit - CFL	136	35%	6%	29%	40%	29%	0	-	-	-	-	0%
Kit - Door Strip	0	-	-	-	-	0%	5	23%	33%	0%	56%	5%
Kit - Faucet Aerator	60	59%	9%	50%	69%	28%	6	53%	37%	16%	89%	27%
Kit - LED Night Light	14	53%	19%	34%	73%	1%	0	-	-	-	•	0%
Kit - Pipe Wrap	0	-	-	-	-	0%	5	27%	32%	0%	59%	27%
Kit - Showerhead	52	46%	10%	36%	56%	43%	7	59%	32%	27%	91%	42%
Online Audit Overall	262	46%	6%	40%	51%	100%	23	49%	19%	30%	68%	100%

Table 73. Attribution Adjustment Factor, Online Audit

F.4.2 Analysis of Survey Responses

KEMA reviewed the responses to the questions in the Online Audit survey that were used to determine program attribution. We reviewed the results to identify where the program was having an effect and where improvements could be made. We investigated the program's effect on timing, efficiency, and quantity, the three components of attribution. Appendix U has greater detail on the attribution analysis methodology.

For Online Audits, the respondents were asked questions at the technology level (CFLs, faucet aerators, showerheads), not the measure level like other programs. The measure level response for this program would be the entire energy kit. KEMA wanted to get information at a

¹² Appendix U discusses the methodology used in the attribution analysis.

disaggregated level to judge the relative attribution of each technology in the kit, not the kit overall.

F.4.2.1 Overall Likelihood

For the energy kits, KEMA added an introductory question that asked, for each technology in the kit, how likely the respondent was to purchase it on its own (DAT0). If respondents said No, they would not have purchased it, KEMA skipped them through the rest of the attribution sequence and assigned them an attribution rate of 100% for that technology.

Table 74 shows the results for the Online Audit Program. Forty-five of the respondents, representing 17 percent of kWh and 26 percent of ccf, said they would not have purchased the technology and received full attribution credit. Respondents representing 66 percent of kWh and 62 percent of ccf savings said they would or were likely to have purchased it, while those representing 15 percent of kWh and 12 percent of ccf savings said they were not likely.

DAT0. If they had not been part of the kit would you have bought <technology>?</technology>								
Response	Percent ccf							
Yes	142	47%	33%					
Probably yes	54	19%	29%					
Probably not	40	15%	12%					
No	45	17%	26%					
Not Applicable	0	0%	0%					
Don't Know/Refused	4	2%	0%					

Table 74. Likelihood of Purchase, Online Audit

F.4.2.2 Timing

Respondents are asked a sequence of questions that address the timing of the equipment installation. First, respondents are asked how likely it is that they would have installed the same type of equipment at the same time without the program (DAT1). Then respondents are asked how different the timing would have been (DAT1a).

- A response of "Same Time" means that the customer would have installed the measure(s) at the same time regardless of program involvement.
- A response of "Later" indicates that they would have waited to install the measure(s) if the program had not been present. This measure is called "accelerated". Respondents

who answered "Later" are asked a follow-up question (DAT1b) about how much later they would have installed the equipment without the program.

Table 75 shows the responses to the DAT1a and DAT1b questions for Online Audit. The table shows the unweighted number of responses in each category and the associated percentage of overall program energy savings represented by those responses. The number of responses does not reflect any survey weight or relative savings but the percentage of energy savings does. The table shows a response of "Not Applicable", which applies to any measure that did not have this question asked of it. This applies to measures that used an alternative attribution methodology (CFLs) and those who answered DAT0 as "would not have bought" the technology outside the kit.

The table outlines the skip pattern and attribution assignment for DAT1a and DAT1b. If a respondent indicates that they would have installed the equipment at the same time or earlier, the acceleration period is zero months and there is no timing effect. If the respondent indicates that they never would have installed the equipment without the program, then the program is credited with influencing the entire project and receives 100 percent attribution. The same effect is applied if the respondent indicates it would have been greater than four years before they would have installed the equipment without the program. If the response to DAT1a is Later and the response to DAT1b is a number less than 48, then the acceleration period is equal to that number of months.

DAT1a. Without EO/EU, how different would the timing have been? DAT1b. Approximately how many months later?									
DAT1a Response	DAT1b Response	Responses	Percent kWh	Percent ccf	Timing Attribution				
Same Time	N/A	17	7%	1%	0				
Earlier	N/A	15	6%	13%	0				
	Months < 48	45	17%	53%	Months / 48				
Later	Months >= 48	0	0%	0%	100%				
	Don't Know/Refused	18	9%	0%	Average of DAT1b				
Never	N/A	14	6%	7%	100%				
Not Applicable	N/A	172	53%	26%	Not Asked				
Don't Know/Refused	N/A	4	3%	0%	Average of DAT1a				

The table shows that the majority of the respondents who were asked the timing questions would have installed the equipment later without the program, representing 26 percent of total kWh and 53 percent of total gas savings (ccf). Only 32 responses representing 13 percent of kWh and 14 percent of ccf would have installed the equipment earlier or at the same time, which

received no timing attribution. Respondents representing 6 percent of kWh and 7 percent of ccf would never have purchased the equipment without the program.

F.4.2.3 Efficiency

Respondents are asked a sequence of questions that address the efficiency of the equipment installation. First, respondents are asked how likely it is that they would have installed the same, lesser, or greater efficiency without the program (DAT2a). Then respondents are asked how different the efficiency would have been (DAT2b).

- A response of "Same" means that the customer would have installed the same level of efficiency regardless of program involvement.
- A response of "Lower" indicates that they would have installed a less efficient piece of equipment if the program had not been there. Respondents who answered "Lower" are asked a follow-up question (DAT2b) about what equipment efficiency they would have installed without the program.

Table 76 shows the responses to the DAT2a question. The table includes a response of Not Applicable, which represents measures that do not have variable efficiency themselves, but are added to the existing equipment or systems to make the overall operation more efficient. Pipe wrap is an example of such a measure. Measures that used an alternative attribution methodology (CFLs) or answered "would not have installed" to DAT0 are also Not Applicable.

None of the Online Audit measures that were asked the attribution sequence has more than one less efficient alternative, so the efficiency attribution was based solely off of DAT2a, in a binary fashion: 100 percent efficiency attribution if the respondent indicates that they would have installed a lower efficiency, zero efficiency attribution if not.

The table shows that, for applicable measures, 25 respondents representing 10 percent of kWh and 14 percent of ccf would have installed equipment of a lower efficiency.

DAT2a. Without EO/EU, would you have installed the same, higher, or lower efficiency?												
Response Responses Percent kWh Percent ccf												
Same	69	31%	41%									
Lower	25	10%	14%									
Higher	0	0%	0%									
Not Applicable	180	53%	44%									
Don't Know/Refused	11	5%	0%									

Table 76. Determining Efficiency Attribution, Online Audit Overall

F.4.2.4 Quantity

Respondents are asked a sequence of questions that address the quantity of the equipment installed. First, respondents are asked how likely it is that they would have installed the same quantity of equipment without the program (DAT3). Then respondents are asked how much they changed the quantity (DAT3a).

- A response of "Same amount" or "more" means that the customer would have installed the same or greater size or quantity regardless of program involvement.
- A response of "Less" indicates that the customer would have installed fewer units if the program had not been there. Respondents who answered "Less" are asked a follow-up question (DAT3a) about the quantity of equipment they would have installed without the program.

Table 77 shows the responses to the DAT3 question for each measure group. The table includes a response of Not Applicable, which represents measures where varying quantity or size does not make sense in the context of the measure or where the customer only received a single unit. Measures that used an alternative attribution methodology (CFLs) or answered "would not have installed" to DAT0 are also Not Applicable.

The table outlines the skip pattern and attribution assignment for DAT3 and DAT3a. If a respondent indicates that they would have installed the same or greater quantity or size, the quantity attribution is zero. If the respondent indicates that they would have installed less quantity/size, then the quantity attribution is some value between 0 and 100 percent. If the respondent indicates that they would not have installed any equipment without the program, then the quantity attribution is 100 percent.

DAT3. Without EO/	DAT3. Without EO/EU, how different would the quantity/size have been?										
DAT3a. By what percentage did you change the amount installed because of EO/EU?											
Percent Percent Quantity											
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Attribution						
Same Amount	N/A	30	9%	14%	0%						
	Value < 100%	13	4%	5%	Value < 50%						
Less	Value >= 100%	0	0%	0%	Value > 50%						
	Don't Know/Refused	1	0%	0%	Average of DAT3a						
More	N/A	9	1%	14%	0%						
None	N/A	7	3%	0%	100%						
Not Applicable	N/A	222	82%	67%	Not Asked						
Don't Know/Refused	N/A	3	1%	0%	Average of DAT3						

The table shows that only 24 respondents representing 8 percent of kWh savings and 5 percent of ccf savings received quantity attribution: 14 respondents who would have installed less, 7 who would have installed none, and 3 who answered "don't know." KEMA reviewed the measure level data and found that 19 of those responses were for faucet aerators, and five were for LED night lights.

F.4.2.5 Overall Attribution

KEMA put all three attribution components together in one table to show where overlap between quantity, efficiency, and timing attribution occurred. Table 78 shows the three effects together, with Yes indicating some (not necessarily full) attribution while No indicates responses that did not receive any attribution.

The table shows that 84 respondents representing 29 percent of kWh and 42 percent of ccf received all three kinds of attribution (or full attribution based on the overall likelihood question). Seventy-six respondents representing 25 percent of kWh savings and 13 percent of natural gas savings did not receive any attribution. The Timing attribution was the most represented, with 153 respondents representing 57 percent of kWh savings and 78 percent of ccf savings.

	Attribution				
Timing	Efficiency	Quantity	Responses	Percent kWh	Percent ccf
Yes	Yes	Yes	84	29%	42%
Yes	No	Yes	11	4%	9%
Yes	No	No	54	23%	27%
Yes	Yes	No	4	1%	0%
No	Yes	Yes	6	2%	0%
No	Yes	No	43	14%	7%
No	No	Yes	7	2%	1%
No	No	No	76	25%	13%

Table 78. Simplistic Representation of Overall Attribution, Online Audit

F.5 Comparison of 2009-10 and 2011 Program Results

KEMA compared the results of the 2009-2010 program evaluation to the results of the 2011 program evaluation.

F.5.1 Overall Comparison

Table 79 shows the tracking savings, number of measures, and total incentives paid for the 2009-2010 and 2011 program periods. The final column shows the difference between the two, with a negative value representing a decrease from 2010 and a positive value representing an increase.

The dominant change from 2010 to 2011 is a large increase in natural gas savings, with 10 times more ccf in 2011 than in 2010. The program also experienced a relatively small decrease in kWh savings (11 percent) and a 23 percent increase in the number of measures. For the Online Audit Program, the 2011 program period was longer than the 2010 period because the program didn't officially launch until March 2010. The program tracking data only had four kits with gas savings from January to August 2010. The sharp increase in gas savings from 2010 to 2011 can be explained by the longer implementation period for gas kits.

Metric	Program Period Program Start to Dec 2010	Program Period Jan to Dec 2011	2010 to 2011 Change
Tracking kWh Savings	1,758,466	1,588,234	-10%
Tracking ccf Savings	5,496	59,721	987%
Total # Measures	2,864	3,514	23%
Total Incentive	\$55,643	\$114,306	105%

Table 79, Compari	ison of 2010 and	d 2011 Online	Audit Program Results
rable i J. Compan	3011 01 2010 and		Audit i rogram Nesuits

F.5.2 Adjustment Factors

Table 80 shows the 2009-2010 and 2011 installation rate, gross savings adjustment factor, and attribution adjustment factor for kWh and ccf. None of the differences between the two years were statistically significant at the 90 percent confidence interval. The natural gas differences look large, but the 2010 period only had one observation, limiting the possibility of statistically significant differences.

	k۷	Vh	C	cf
Adjustment Factor	2010	2011	2010	2011
Installation Rate	44%	50%	72%	60%
Gross Savings Adjustment Factor	47%	50%	73%	60%
Attribution Adjustment Factor	53%	46%	43%	49%

Table 80. Comparison of 2010 and 2011 Online Audit Adjustment Factors

G. Onsite Audit

This section reports on the methodology and overall results of KEMA's evaluation of the Residential Onsite Audit Program.

- Section G.1 provides a description of the program.
- Section G.2 gives an overview of the evaluation approach.
- Section
 presents the verified gross savings results and the overall adjustment factors.
- Section G.4 shows the overall attribution analysis results, including an analysis of the survey responses to the attribution questions.

G.1 **Program Description**

The Residential Onsite Audit (AW) Program, which is part of the Audit and Weatherization Programs, was launched in late 2010. The program offered a free in-person audit for residential natural gas customers with buildings of four units or less. The participants may also receive direct install measures, including CFLs, faucet aerators, low flow showerheads, pipe wrap, and programmable thermostats. Savings from weatherization measures that are installed as a result of the audit are also reported in this program. The AW Program is the third-largest residential natural gas program in the MECA/MCAAA portfolio. Not all measures are offered in all utility service territories as shown in Table 81.

					Mea	sure	9		
Consortium	Utility	CFL	Faucet Aerator	Low Flow Showerhead	Pipe Insulation	Programmable Thermostat	Insulation	Window Replacement	Air Sealing
	Alpena Power Company								
	Bayfield Electric Cooperative								
	Daggett Electric Department								
	Edison Sault Electric Company								
MCAAA	Indiana Michigan Power Company	Х	Х	Х	Х				
S	Michigan Gas Utilities Corporation		Х	Х	Х	Х	Х	Х	Х
Σ	SEMCO Energy Gas Company		Х	Х	Х	Х	Х	Х	Х
	Upper Peninsula Power Company	Х	Х	Х	Х				
	We Energies	Х	Х	Х	Х				
	Wisconsin Public Service Corporation		Х	X	Х				
	Xcel Energy	Х	Х	Х	Х	Х	Х	Х	Х

Table 81. Measures Offered by Utility through Onsite Audit Program

Table 82 shows the accomplishments for the AW program based on the program implementer tracking data. The table shows the tracking savings, number of measures rebated, number of participants, and incentives paid for the evaluation period and the entire 2011 program period.

 Table 82. Overview of AW Program Accomplishments per Program Tracking

Metric	Evaluation Period Jan to Aug 2011	Program Period Jan to Dec 2011
Tracking kWh Savings	105,402	2,074,578
Tracking ccf Savings	29,370	250,468
# Measures	1,680	17,422
Incentives	\$44,299.00	\$366,267.00

G.2 General Approach

The impact evaluation of the AW Program had the following objectives for the 2011 program:

• Reliably estimate the program's gross annual kWh and gas savings (ccf) over the effective useful life of the installations

• Provide an estimate of program attribution.

To meet these objectives, the impact evaluation included the following tasks:

- Verify proper tracking assignments (Appendix Q)
- Verify proper documentation with a sample of participating applications (Appendix R)
- Conduct CATI surveys with a sample of participants
- Conduct verified gross savings analysis
- Conduct net savings analysis
- Complete in-depth attribution analysis to assist with program planning.

Section A.5 describes the steps used to complete these tasks in greater detail.

G.3 Verified Gross Savings Results

G.3.1 Installation Rate

KEMA calculated the installation rate for each measure group in the Onsite Audit Program. For all measures except insulation, we defined the installation rate as the number of units installed divided by the number of units in the tracking database. For insulation measures, we asked respondents to verify the multiplier used to determine savings, which was either the square footage of insulation installed or the conditioned square footage of the house. Table 83 shows the results.

The table shows that the all measure groups had installation rates greater than 80 percent for both electric and gas. For ratios less than 100 percent, many of the respondents reported removing the equipment after it was installed. For faucet aerators and showerheads, the most common reason for removal was that the water pressure was too low. For thermostats, a few respondents reported a different square footage than that recorded in the database, while others indicated removing their thermostat after encountering difficulties using it.

			k\	Nh		ccf						
			90% Cor	nfidence	Interval	%			90% Confidence Interval			%
		Installation		Lower	Upper	Program		Installation		Lower	Upper	Program
Measure Group	n	Rate	+/-	Bound	Bound	Savings	n	Rate	+/-	Bound	Bound	Savings
CFL	40	88%	6%	82%	94%	49%	0	-	-	-	-	0%
Faucet Aerator	20	84%	10%	73%	94%	14%	49	89%	6%	84%	95%	10%
Insulation	0	-	-	-	-	0%	7	100%	<0.1%	100%	100%	16%
Pipe Wrap	18	100%	<0.1%	100%	100%	16%	46	97%	3%	95%	100%	11%
Thermostat	0	-	-	-	-	0%	48	87%	7%	80%	94%	46%
Showerhead	16	88%	12%	76%	99%	20%	40	97%	4%	93%	100%	14%
Onsite Audit Overall	94	89%	4%	85%	93%	100%	190	91%	4%	88%	95%	100%

Table 83. Installation Rate, Onsite Audit

G.3.2 Verified Gross Savings

KEMA combined the installation rate and the effects of the documentation review (Appendix R) to produce the gross savings adjustment factor, which is a single adjustment factor that can be applied to the tracking savings to produce verified gross savings. Table 84 shows the gross savings adjustment factor for Onsite Audit.

KEMA's documentation review found a number of errors for the Onsite Audit Program. Most were data entry errors, where the information on the application sheet did not match what was entered in the database.

- For CFLs, auditors would occasionally install a number of bulbs (nine, for example) and leave the remaining allowable bulbs (three; total allowable is 12) for the homeowner to put in storage. In some cases, the data was entered to reflect the number installed, which was correct, but in other cases the data reflected the total number of bulbs left at the house.
- For pipe wrap, the documentation indicated that a certain number of feet were installed (such as four) but the database showed one unit installed, with one unit equaling six feet of pipe wrap. KEMA adjusted savings to reflect the actual number of feet installed.
- For programmable thermostats, KEMA found some houses that refused new thermostats or already had them. The data for some of these homes indicated that thermostats had been installed.
- Finally, there was one wall insulation measure that had the square footage entered from the application incorrectly.

The overall effect of these adjustments reduced the kWh gross savings adjustment factor by 2 percent (from the installation rate) and the natural gas gross savings adjustment factor by 1 percent.

			kW	h			ccf					
		Gross Savings	90% Cor	nfidence	Interval	%		Gross Savings	90% Cor	nfidence	Interval	%
	min	Adjustment		Lower	Upper	Program	min	Adjustment		Lower	Upper	Program
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings
CFL	39	85%	6%	79%	91%	49%	0	-	-	-	-	0%
Faucet Aerator	18	84%	10%	73%	94%	14%	46	89%	6%	84%	95%	10%
Insulation	0	-	-	-	-	0%	7	100%	0%	99%	100%	16%
Pipe Wrap	18	97%	0%	96%	97%	16%	46	95%	3%	92%	98%	11%
Thermostat	0	-	-	-	-	0%	43	86%	7%	79%	93%	46%
Showerhead	14	88%	12%	76%	99%	20%	39	96%	4%	92%	101%	14%
Onsite Audit Overall	89	87%	4%	83%	91%	100%	181	90%	4%	87%	94%	100%

Table 84. Gross Savings Adjustment Factor, Onsite Audit

The gross savings adjustment factor was applied to the total savings reported for the Onsite Audit Program in 2011 to produce the verified gross savings for the program. Table 85 shows the tracking gross savings (an annual number), the gross savings adjustment factor determined from the evaluation, the verified gross annual savings, and the verified gross lifetime savings. The verified gross annual savings is the tracking gross savings multiplied by the gross savings adjustment factor. The verified gross lifetime savings is the verified gross annual savings with the measure life applied.¹³

Table 85. Verified Gross Savings, Onsite Audit, Overall

		kW	′h			C	of	
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings
CFL	1,064,140	85%	902,707	8,124,362				
Faucet Aerator	304,610	84%	255,214	2,552,138	32,232	89%	28,739	287,395
Pipe Wrap	217,872	97%	209,928	2,729,069	26,816	95%	25,496	280,461
Showerhead	487,956	88%	426,962	4,269,615	50,949	96%	49,109	491,089
Air Sealing					133	99%	131	2,623
Insulation					7,530	100%	7,510	150,208
Thermostat					130,509	86%	112,058	1,232,642
Window Replacement					2,300	100%	2,291	45,827
Onsite Audit Overall	2,074,578	87%	1,794,811	17,675,184	250,468	90%	225,336	2,490,245

Table 86 and Table 87 show the verified gross lifetime savings for the Efficiency United and Energy Optimization programs, respectively.

¹³ KEMA's study did not complete any surveys addressing air sealing or window replacement. To estimate verified gross savings, KEMA applied the gross savings adjustment factor found for the most similar program and measure group that was available. For air sealing, KEMA applied the corresponding ratio from the Low Income program. For window replacement, we applied the insulation ratio from the Onsite Audit program.

Table 86. Verified Gross Savings, Onsite Audit, EU

		kWh				ccf			
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	
CFL	1,039,940	85%	882,178	7,939,603					
Faucet Aerator	303,780	84%	254,518	2,545,184	32,232	89%	28,739	287,395	
Pipe Wrap	217,260	97%	209,339	2,721,403	26,816	95%	25,496	280,461	
Showerhead	486,920	88%	426,055	4,260,550	50,949	96%	49,109	491,089	
Air Sealing					133	99%	131	2,623	
Insulation					7,530	100%	7,510	150,208	
Thermostat					130,509	86%	112,058	1,232,642	
Window Replacement					2,300	100%	2,291	45,827	
Onsite Audit EU Overall	2,047,900	87%	1,772,090	17,466,740	250,468	90%	225,336	2,490,245	

Table 87. Verified Gross Savings, Onsite Audit, EO

	kWh				
	Tracking	Gross Savings	Verified Gross	Verified Gross	
	Gross	Adjustment	Annual	Lifetime	
Measure Group	Savings	Factor	Savings	Savings	
CFL	24,200	85%	20,529	184,759	
Faucet Aerator	830	84%	695	6,954	
Pipe Wrap	612	97%	590	7,666	
Showerhead	1,036	88%	907	9,065	
Onsite Audit EO Overall	26,678	87%	22,720	208,444	

G.4 Attribution Results

The EO/EU programs were not required to report net or attributable savings for the 2011 program year. However, discussions within the State of Michigan suggest that net savings will be required in future program years. KEMA conducted a net savings analysis to provide the program with the information they will need for planning and implementation when moving toward net savings reporting.

G.4.1 Attribution Adjustment Factors

KEMA calculated the attribution adjustment factor for each measure group in Onsite Audit. The attribution adjustment factor is applied to the verified gross savings to produce net savings. It

reflects the influence the program had on the timing, efficiency level, and scope of the energy efficiency measure installed.¹⁴ Table 88 shows the results.

The Onsite Audit Program had a relatively high attribution rate, which is expected for a program that is largely based on direct-install savings. The lowest attribution came from the thermostat measure group. Overall, the program showed a 78 percent attribution for electric measures and 63 percent for natural gas measures. The lower attribution for gas measures is driven primarily by the low attribution for thermostats.

	kWh				ccf							
		Attribution	90% Cor	nfidence	Interval	%		Attribution	90% Cor	nfidence	Interval	%
		Adjustment		Lower	Upper	Program		Adjustment		Lower	Upper	Program
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings
CFL	39	73%	8%	64%	81%	49%	0	-	-	-	-	0%
Faucet Aerator	16	87%	12%	75%	99%	14%	46	68%	11%	57%	79%	10%
Insulation	0	-	-	-	-	0%	7	60%	57%	3%	117%	16%
Pipe Wrap	16	78%	13%	65%	92%	16%	45	85%	7%	78%	93%	11%
Thermostat	0	-	-	-	-	0%	43	51%	10%	42%	61%	46%
Showerhead	14	84%	13%	71%	96%	20%	38	78%	10%	68%	88%	14%
Onsite Audit Overall	85	78%	5%	72%	83%	100%	179	63%	7%	55%	70%	100%

Table 88. Attribution Adjustment Factor, Onsite Audit

G.4.2 Analysis of Survey Responses

KEMA reviewed the responses to the attribution question sequence used in the Onsite Audit survey to identify where the program was having an effect and where improvements could be made. We investigated the program's effect on timing, efficiency, and quantity, the three components of attribution. Appendix U has greater detail on the attribution analysis methodology and the methods used to combine the three components into a single attribution value.

¹⁴ Appendix U discusses the methodology used in the attribution analysis.

Table 89. Attribution Question Sequence

Number	Question				
Timing					
DAT1	Without EO/EU, how likely is it that you would have installed the same type of equipment at this time?				
DAT1a	Without EO/EU, how different would the timing have been?				
DAT1b	Approximately how many months later?				
Efficiency					
DAT2	Without EO/EU, how likely is it that you would have installed the same level of efficiency?				
DAT2a	Without EO/EU, how likely is it that you would have installed the same, greater, or lesser efficiency?				
DAT2b	Without EO/EU, what efficiency would you have installed?				
Quantity					
DAT3	Without EO/EU, how different would the quantity/size have been?				
DAT3a	By what percentage did you change the quantity/size because of EO/EU?				

G.4.2.1 Overall Likelihood

For non-CFL measures directly installed as part of the Onsite Audit program, KEMA added an introductory question that asked, for the measures installed, how likely the respondent was to purchase it on their own (DAT0). If respondents said No, they would not have purchased it, KEMA skipped them through the rest of the attribution sequence and assigned them an attribution rate of 100 percent for that technology.

Table 90 shows the results for the Onsite Audit Program. One hundred twenty of the respondents, representing 24 percent of kWh and 46 percent of ccf, said they would not have purchased the technology and received full attribution credit. Respondents representing 12 percent of kWh and 40 percent of ccf savings said they would or were likely to have purchased it, while those representing 7 percent of kWh and 11 percent of ccf savings said they were not likely.

DAT0. If the <technology> had not been installed as part of the audit, what is the likelihood?</technology>					
Response	Responses	Percent kWh	Percent ccf		
Yes	29	3%	15%		
Probably yes	42	9%	25%		
Probably not	30	7%	11%		
No	120	24%	46%		
Not Applicable	40	58%	1%		
Don't Know/Refused	3	0%	2%		

Table 90. Likelihood of Purchase, Online Audit

G.4.2.2 Timing

Respondents are asked a sequence of questions that address the timing of the equipment installation. First, respondents are asked how likely it is that they would have installed the same type of equipment at the same time without the program (DAT1). Then respondents are asked how different the timing would have been (DAT1a).

- A response of "Same Time" means that the customer would have installed the measure(s) at the same time regardless of program involvement.
- A response of "Later" indicates that they would have waited to install the measure(s) if the program had not been present. This measure is called "accelerated". Respondents who answered "Later" are asked a follow-up question (DAT1b) about how much later they would have installed the equipment without the program.

Table 91 shows the responses to the DAT1a and DAT1b questions for Onsite Audit. The table shows the unweighted number of responses in each category and the associated percentage of overall program energy savings represented by those responses. The number of responses does not reflect any survey weight or relative savings but the percentage of energy savings does.

The table outlines the skip pattern and attribution assignment for DAT1a and DAT1b. If a respondent indicates that they would have installed the equipment at the same time or earlier, the acceleration period is zero months and there is no timing effect. If the respondent indicates that they would never have installed the equipment without the program, then the program is credited with influencing the entire project and receives 100 percent attribution. The same effect is applied if the respondent indicates that it would have been greater than four years before they would have installed the equipment without the program. If the response to DAT1a is Later and the response to DAT1b is a number less than 48, then the acceleration period is equal to that number of months.

DAT1a. Without EC	DAT1a. Without EO/EU, how different would the timing have been?					
DAT1b. Approximately how many months later?						
			Percent	Percent		
DAT1a Response	DAT1b Response	Responses	kWh	ccf	Timing Attribution	
Same Time	N/A	15	3%	8%	0	
Earlier	N/A	3	0%	1%	0	
	Months < 48	37	5%	26%	Months / 48	
Later	Months >= 48	0	0%	0%	100%	
	Don't Know/Refused	20	4%	9%	Average of DAT1b	
Never	N/A	17	5%	4%	100%	
Not Applicable	N/A	160	82%	48%	Not Asked	
Don't Know/Refused	N/A	12	1%	4%	Average of DAT1a	

Table 91. Determining Acc	eleration Period, Onsite Audit Overall
---------------------------	--

The table shows that the 15 of the respondents would have installed the equipment at the same time regardless of program involvement, representing 3 percent of kWh and 8 percent of gas savings (ccf). Seventeen respondents give the program full attribution credit, representing 5 percent of kWh savings and 4 percent of gas savings (ccf). Sixty-nine respondents representing 10 percent of kWh savings and 39 percent of gas savings (ccf) said they would have installed the equipment within the next four years, or answered one of the two questions "Don't Know" all of which result in an accelerated measure.

G.4.2.3 Efficiency

Respondents are asked a sequence of questions that address the efficiency of the equipment installation. First, respondents are asked how likely it is that they would have installed the same, lesser, or greater efficiency without the program (DAT2a). Then respondents are asked how different the efficiency would have been (DAT2b).

- A response of "Same" means that the customer would have installed the same level of efficiency regardless of program involvement.
- A response of "Lower" indicates that they would have installed a less efficient piece of equipment if the program had not been there. Respondents who answered "Lower" are asked a follow-up question (DAT2b) about what equipment efficiency they would have installed without the program.

Table 92 shows the responses to the DAT2a question for each measure category. The table includes a response of Not Applicable, which represents measures that do not have variable efficiency themselves, but are added to the existing equipment or systems to make the overall operation more efficient. Programmable thermostats fall into the Not Applicable category.

The table outlines the skip pattern and attribution assignment for DAT2a and DAT2b. If a respondent indicates that they would have installed the equipment of the same or higher efficiency, the efficiency attribution is zero. If the respondent indicates that they would have installed a lower efficiency then the efficiency attribution is some number between 30 and 100 percent, depending on the answer to DAT2b.

					•
DAT2a. Without EO/EU, would you have installed the same, higher, or lower efficiency?					
DAT2b. Without EC)/EU, what efficiency would	you have in	stalled?		
			Percent	Percent	Efficiency
DAT2a Response	DAT2b Response	Responses	kWh	ccf	Attribution
Same	N/A	29	5%	11%	0%
	Standard Efficiency	0	0%	0%	100%
	Slightly > Standard	0	0%	0%	70%
Lower	Between Standard and High	3	0%	3%	50%
Lower	Slightly < High	0	0%	0%	30%
	Don't Know/Refused	0	0%	0%	Average of DAT2b
	N/A	17	4%	5%	100%
Higher	N/A	0	0%	0%	0%
Not Applicable	N/A	204	86%	79%	Not Asked
Don't Know/Refused	N/A	11	5%	3%	Average of DAT2a

 Table 92. Determining Efficiency Attribution, Onsite Audit Overall

The table shows that the majority of respondents would have installed the same efficiency level without the program, with 29 respondents representing 5 percent of program kWh savings and 11 percent of program gas savings (ccf). Four percent of kWh savings and five percent of gas savings (ccf) will receive 100 percent efficiency attribution. All of the programmable thermostat measures are "Not Applicable". Therefore, the efficiency attribution component does not contribute to the overall attribution for thermostats.

G.4.2.4 Quantity

Respondents are asked a sequence of questions that address the quantity of the equipment installed. First, respondents are asked how likely it is that they would have installed the same quantity of equipment without the program (DAT3). Then respondents are asked how much they changed the quantity (DAT3a).

- A response of "Same amount" or "more" means that the customer would have installed the same or greater size or quantity regardless of program involvement.
- A response of "Less" indicates that the customer would have installed fewer units if the program had not been there. Respondents who answered "Less" are asked a follow-up

question (DAT3a) about the quantity of equipment they would have installed without the program.

Table 93 shows the responses to the DAT3 question for each measure group. The table includes a response of Not Applicable, which represents measures where varying quantity or size does not make sense in the context of the measure.

The table outlines the skip pattern and attribution assignment for DAT3 and DAT3a. If a respondent indicates that they would have installed the same or greater quantity or size, the quantity attribution is zero. If the respondent indicates that they would have installed less quantity/size, then the quantity attribution is some value between 0 and 100 percent. If the respondent indicates that they would not have installed any equipment without the program then the quantity attribution is 100 percent.

		-				
DAT3. Without EO/	DAT3. Without EO/EU, how different would the quantity/size have been?					
DAT3a. By what percentage did you change the amount installed because of EO/EU?						
			Percent	Percent		
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Quantity Attribution	
Same Amount	N/A	21	5%	6%	0%	
	Value < 100%	1	0%	0%	Value < 50%	
Less	Value >= 100%	3	0%	3%	Value > 50%	
	Don't Know/Refused	0	0%	0%	Average of DAT3a	
More	N/A	6	1%	1%	0%	
None	N/A	10	1%	3%	100%	
Not Applicable	N/A	218	92%	86%	Not Asked	
Don't Know/Refused	N/A	5	1%	1%	Average of DAT3	

Table 93. Determining Quantity Attribution, Onsite Audit Overall

The table shows that 27 respondents representing 6 percent of kWh savings and 7 percent of gas savings (ccf) would have installed equipment of the same or greater size or quantity without the program. Nineteen respondents representing 2 percent of kWh savings and 7 percent of gas savings (ccf) received some quantity attribution.

G.4.2.5 Overall Attribution

KEMA put all three attribution components together in one table to show where overlap between quantity, efficiency, and timing attribution occurred. Table 94 shows the three effects together, with Yes indicating some (not necessarily full) attribution while No indicates responses that did not receive any attribution.

The table shows that 170 responses representing 44 percent of kWh savings and 79 percent of gas savings (ccf) received all three types of attribution (or full attribution based on the overall likelihood question). In total, only 16 measures representing 6 percent of kWh savings and 8 percent of gas savings (ccf) did not receive any timing, efficiency, or quantity attribution. In other words, the program had at least some influence over more than 90 percent of the savings reported by the program.

	Attribution				
Timing	Efficiency	Quantity	Responses	Percent kWh	Percent ccf
Yes	Yes	Yes	170	44%	79%
Yes	No	Yes	3	0%	1%
Yes	No	No	24	6%	6%
Yes	Yes	No	5	2%	1%
No	Yes	Yes	7	3%	1%
No	Yes	No	26	35%	1%
No	No	Yes	13	3%	3%
No	No	No	16	6%	8%

Table 94. Simplistic Representation of Overall Attribution, Onsite Audit

G.5 Comparison of 2009-10 and 2011 Program Results

This is the first year of evaluation for the Onsite Audit Program.

H. Residential New Construction Program

This section reports on the methodology and overall results of KEMA's evaluation of the Residential New Construction (NC) Program.

- Section H.1 provides a description of the program.
- Section H.2 gives an overview of the evaluation approach.
- Section H.3 looks at survey results and determines verified gross savings.

H.1 Program Description

The Residential New Construction Program began implementation in late 2010. The program paid incentives to residential builders who constructed homes to ENERGY STAR standards. The NC program offered incentives for natural gas savings to customers with natural gas service from SEMCO or MGU. Of these customers, those with electric service from IMP received incentives for electric savings as well. CLEAResult did not market the NC program extensively and paid only 35 incentives during 2011.

Under the NC program, participants received rebates based on the aboveground conditioned square footage of the home. SEMCO and MGU natural gas customers received \$1 for every 10 square feet of conditioned aboveground building space. Those SEMCO or MGU customers with electric service from IMP received an additional \$1 per 10 square feet. For example, a 2,000 ft² home with both gas and electric service would receive (2,000 ft² / 10) x \$2 = \$400 rebate. The program capped rebates at \$350 for gas service and \$350 for electric service, for a maximum total rebate of \$700.

Table 95 shows the tracking savings, number of projects rebated, and incentives paid for the NC program based on the program tracking data. The New Construction Program is a very small portion of the Efficiency United portfolio.

Metric	Sample Frame	Program Year
Projects	33	35
kWh	2,579	3,300
ccf	6,998	7,831
Incentives	\$7,275	\$8,076

Table 95. Overview of NC Program Accomplishments per Program Tracking

H.2 General Approach

The evaluation work plan set one objective for the 2011 NC program impact evaluation: determine program lifetime verified gross savings. To meet this objective, KEMA completed the following tasks:

- Verify proper tracking assignments (Appendix Q)
- Verify proper documentation with a sample of participating applications (Appendix R)
- Conduct CATI surveys with a sample of participants
- Conduct verified gross savings analysis

Section A.5 describes the steps used to complete these tasks in greater detail.

KEMA did not attempt to determine attribution for this program. The sample design and disposition for this program are found in Appendix T. The results of the documentation and tracking reviews are found in Appendices Q and R.

H.3 Survey Results and Verified Gross Savings

KEMA verified the ENERGY STAR rating of homes rebated under the NC program in 2011 through a survey completed with 17 of the 33 homeowners in the sample frame. In addition to verifying the ENERGY STAR rating, KEMA asked the customers to verify the home's conditioned square footage, which is the metric used to determine energy savings.

All of the survey respondents verified the ENERGY STAR rating tracked by the program, resulting in an installation rate of 100 percent. The respondents also verified the conditioned square footage.

KEMA also conducted a documentation review of the 35 applications from the New Construction Program. We found that the program effectively and accurately entered the application into the tracking database, resulting in a documentation review adjustment factor of 100 percent. Coupled with the square footage adjustment and the installation rate, this resulted in a gross savings adjustment factor of 100 percent.

The gross savings adjustment factor was applied to the total savings reported for the New Construction Program in 2011 to produce the verified gross savings for the program. Table 96 shows the tracking gross savings (an annual number), the gross savings adjustment factor determined from the evaluation, the verified gross annual savings, and the verified gross lifetime

savings. The verified gross annual savings is the tracking gross savings multiplied by the gross savings adjustment factor. The verified gross lifetime savings is the verified gross annual savings with the measure life applied.

Result	kWh	ccf
Tracking Gross Savings	3,300	7,831
Gross Savings Adjustment Factor	100%	100%
Verified Gross Annual Savings	3,300	7,831
Verified Gross Lifetime Savings	59,402	140,967

Table 96. Verified Gross Savings, New Construction, EU

кема⋞

I. Commercial and Industrial Program

The Commercial and Industrial (C&I) Program encompasses many components under a single umbrella, including a prescriptive rebate program, a custom rebate program, an RFP (request for proposal) program, and a new construction program. The 2011 C&I program saw participation in the prescriptive and custom programs and no activity in the new construction or RFP programs.

The C&I prescriptive program provides prescriptive incentives to commercial and industrial customers for the installation of energy-efficiency equipment for numerous applications. Measures include but are not limited to lighting; motors and drives; controls; heating, ventilation, and air conditioning (HVAC); refrigeration; food service equipment; and boiler and steam systems. The prescriptive measures offered in the C&I program include:

- CFL bulbs
- T8 lamps and fixtures
- Motion sensors
- HVAC equipment
- Motors/fans/pumps/drives
- Water heaters
- Refrigeration
- Food service equipment
- Lighting controls
- Thermostat controls
- Boiler tune-ups
- LED exit signs.

The C&I custom program provides custom incentives to commercial and industrial customers for the installation of innovative and unique energy efficient equipment and controls. Having a custom program allows efficiency measures and systems to be installed for situations specific to that customer's application or process. Incentives are offered on a per kWh and/or ccf energy savings basis based on pre-approved engineering estimates. This program targets energy saving equipment or processes as well as applications with so much variability in operating characteristics that standardized savings cannot be assumed across the customer base. This program also includes those technologies that are new to the market and have not yet established baseline savings.

The program was implemented throughout 2011 for MCAAA and MECA cooperative utilities and for MECA UP municipals. The C&I programs are implemented by Franklin Energy (under contract to CLEAResult) in the MCAAA, MECA and MECA UP member utilities. The program is offered in all service territories except Bayfield Electric Cooperative. The C&I program is the largest program in the MECA/MCAAA portfolio.

Table 97 shows the accomplishments for the C&I program based on the program implementer tracking data. The table shows the tracking savings, number of measures rebated, and incentives paid for the evaluation period and the entire 2011 program period.

Metric	Evaluation Period Jan to Aug 2011	Program Period Jan to Dec 2011
Tracking kWh Savings	8,335,579	29,372,976
Tracking ccf Savings	181,245	1,651,308
# Measures	329	1,149
Incentives	\$543,803.00	\$1,695,556.00

Table 97. Overview of C&I Program Accomplishments per Program Tracking

I.1 General Approach

I.1.1 Evaluation Objectives

The impact evaluation of the C&I Program had the following objectives for the 2011 program:

- Reliably estimate the program's gross annual kWh and gas savings (ccf) over the effective useful life of the custom retrofits and installations
- Provide an estimate of program attribution.

The evaluation addressed both prescriptive and custom measures. For the evaluation, the prescriptive measures were divided into two categories based on information from the MEMD. Those measures with a defined savings per unit¹⁵ were considered the equivalent of deemed measures. Most lighting measures fall into this category, as well as electric motor replacements, controls for lights, vending machine controls, boiler tune-ups, and pool covers. The remaining prescriptive measures were considered non-deemed prescriptive measures for the purpose of this evaluation.

¹⁵ This refers to measures that were defined at the time of the data collection. All measures (except those in the Custom program) have since been defined with savings per unit.

The evaluation tasks were organized according to the type of incentive offered. The sample of program customers who implemented any custom or prescriptive non-deemed measures were grouped together, and the sample of the remaining customers who only implemented deemed measures were evaluated as a separate group. Some adjustments were made as to how deemed and non-deemed measures were defined to increase the likelihood of conducting the targeted number of on-site visits. The goal was to conduct approximately 80 on-site visits. KEMA attempted an on-site visit to all customers in the non-deemed group. To increase the sample size for site visits, several of the projects in the deemed group were moved to the non-deemed group. These projects were selected by project size, in kWh savings, where the largest projects in the deemed group were moved to the non-deemed group. If a customer had multiple projects, all projects were moved to the non-deemed group. All of the customers in the evaluation frame were included in the sample. The following tasks apply to these groups:

- Prescriptive, deemed measures:
 - On-site verification with a sub-sample of completed installations
 - CATI surveys with a sample of participants.
- Prescriptive, non-deemed measures and custom measures:
 - On-site verification with a sample of completed installations
 - Expert interviews with a sample of participants
 - Engineering reviews of a sample of completed measures.
- Combined:
 - Verify proper tracking assignments (Appendix Q)
 - Verify proper documentation with a sample of participating applications (Appendix R)
 - Conduct CATI surveys with a sample of participants
 - Conduct verified gross savings analysis
 - Conduct net savings analysis
 - Complete in-depth attribution analysis to assist with program planning.

I.1.2 Overview of Approach

Section A.5 describes the steps used to complete the tracking and documentation verification in greater detail. The following sections provide more detail on the rest of the evaluation tasks.

I.1.2.1 On-site Verification

KEMA performed on-site inspections of prescriptive and custom measures. All customers who implemented any prescriptive, non-deemed or custom measures were included in the sample.

Appendices

Additionally, four customers with deemed measures received site visits. A total of 231 projects at 79 customer sites received site visits.

Prior to arriving at the site, the tracking data, application file, and survey results were reviewed to provide the auditor with a background understanding of the project. A data collection strategy was identified prior to entering the field to maximize on-site efficiency and foster more directed questioning of the site contact. While at the site, the inspection and verification activities included the following components:

- Verification that the incented equipment was installed
- Collection of nameplate data when applicable
- Confirmation that the incented equipment operates as designed
- Discussion of operating schedules and control set points with the site contact
- Discussion of occupancy and load schedules that affect the incented equipment
- Discussion of any issues that may prevent the installed equipment from operating as designed
- Discussion of any discrepancies between program documentation and what was found on-site
- Collection of all available model data on the replaced equipment when possible.

The data collected during the on-site visits was used to determine the program installation rate and to verify the estimated savings tracked by the program.

I.1.2.2 Survey Data Collection

Two types of surveys were conducted to collect data to inform the impact evaluation. The customers who were in the prescriptive, deemed measures group received a CATI survey and those who were in the non-deemed and custom measures received an expert interview delivered by a KEMA engineer.

CATI survey data collection

A CATI survey was conducted for a sample of prescriptive program participants. All of the customers with only prescriptive, deemed measures were included in this sample. The survey verified equipment installation, requested information about equipment operation, and asked the participant to identify what actions they would have taken in the absence of the program.

Expert interview data collection

Expert interviews were conducted for the custom and prescriptive, non-deemed program participants. We attempted to complete a survey with all of the customers in this category; a total of 75 surveys were completed. Only three customers refused to participate, but we were not able to contact or arrange a survey for 12 participants, despite at least six attempts to contact the customer. The survey verified equipment installation, requested information about equipment operation, and asked the participant to identify what actions they would have taken in the absence of the program. The expert interviews allowed collection of nuanced decision-making information that is often a part of larger custom project installations. The expert interviews also formed the basis of the engineering review, discussed in the next section.

I.1.2.3 Engineering Review

All custom and prescriptive participants that completed an expert interview received an on-site visit and an engineering review analysis. During the engineering review, a KEMA engineer used information from the program documentation, site contact, and secondary sources to determine whether the tracking estimate of savings was reasonable. If the tracking estimate was not reasonable, the engineer determined the verified gross savings for that measure. Adjustments were made for a number of reasons, including changes to equipment operation, differences in measure installation, and changes in production or facility operating hours. In some instances tracking savings methodology, assumptions, and/or inputs were unclear, and therefore, the source of discrepancies between tracking and VGI savings could not be identified.

For non-deemed prescriptive participants, the engineering review determined whether the prescriptive savings were properly calculated according to the program. Savings estimates also included operating characteristics, particularly hours of operation. For example, one industrial facility operates their lights 24 hours a day, five days a week, resulting in more savings than estimated using the prescriptive approach.

I.1.2.4 Verified Gross Savings Analysis

The installation information gathered from the CATI survey and expert interviews was used to determine the installation rate for the program. Unlike the other programs, KEMA used a "binary" installation rate for the C&I program. This method asks customers whether the energy efficiency project or something like it was installed. Those that answer yes receive a 100 percent installation rate. Those that answer no receive a zero percent installation rate. If KEMA found that the quantity of equipment installed differed from the tracking information, then that

adjustment was handled as part of the engineering review, not as part of the installation rate. The "binary" method allows for a consistent installation rate method across two types of projects: those with easily determined quantities (i.e. lighting) and those with an indeterminate measure of size/quantity (variable frequency drives). Once the installation rate was determined for the sample, ratio estimation was applied to determine the installation rate for the overall program. That value was applied to the population to determine the installed savings for the entire program.

KEMA aggregated the verified savings (produced from the engineering review) for each customer and determined customer-level adjustment factors. Ratio estimation was again applied to determine the verified gross savings for the overall program (based on our sample) and that value was applied to the population to determine the verified gross savings for the entire program.

I.1.2.5 Net Savings Analysis

The data collected from the CATI survey and expert interviews was used to judge the impact of the program on the participant's decision to install high efficiency measures. KEMA combined the program's effect on the timing of the installation and the efficiency and quantity of the equipment installed to form the attribution rate for each customer.

I.2 Verified Gross Savings Results

I.2.1 Prescriptive Project Review

KEMA completed engineering evaluations for 53 customer projects in the prescriptive program. Eleven of these customers had both custom and prescriptive measures.

The application paperwork did not specify a calculation approach. For most measures, the MEMD database provided the calculation approach. Where the MEMD was unclear, such as for de-lamping measures, the calculation method was not available to the evaluation engineer. This was further complicated when measure savings were combined by project such that the savings value for a specific measure could not be determined. Further, a number of inconsistencies were found between the expected measure approach and the tracking savings.

KEMA contacted customers regarding the measures that were installed at the site. For each measure, the engineer verified that the measure was installed as described in Section \Box o. In

some cases it was not possible to observe all the components of the measures installed, rather a representative sample of installed equipment was verified.

Lighting measures were the most common measures observed, accounting for over 90 percent of the electrical savings. Operational data collected on site often differed from the standard assumptions for lighting operation assumed in the MEMD database. This was the major reason for differences in the verified gross savings compared to program savings. Lighting calculations followed the fixture wattages provided in the MEMD and the site specific operating hours, where available. In many cases, the tracking savings calculations included a coincidence factor, which was incorrectly applied. Coincidence factors apply to peak demand, and do not apply to the non-peak savings. This is a minor correction.

VFD installations were observed at four sites, including schools, reflecting a range of conditions. The program approach to VFDs was to assign standard values based only on whether the VFD was a fan or a pump. In many cases the process pump VFD value in the MEMD database was used. When data was sufficient to calculate a more accurate number, the verified numbers reflect these calculations. KEMA developed a calculator tool for VFDs for this project. The tool considered a number of factors in the calculation, including the equipment type (pump or fan) and the baseline control strategy (bypass, cycling, discharge dampers, etc), and it required the user to specify a flow profile based on measurement or discussions with the site contact. Where the flow profile could be estimated, this provided a reasonable estimate for the VFD installations. In one case, KEMA collected metered data and found that the VFD allowed the HVAC fan to run at a significantly lower speed for a large portion of the operating time. The savings were significantly higher than the deemed value. At two other sites, operating conditions reported during the site visit resulted in significantly lower savings than the deemed values.

Boiler tune-ups were the most significant gas measures. Given the small savings per measure, boiler tune-ups were included in the prescriptive, deemed portion of the sample, resulting in savings close to the tracking results. Two furnace replacements and two infrared heater measures were included in the sample. Furnace calculations used site-specific data and the calculation methodology developed for the Focus on Energy Deemed Savings Manual.¹⁶ Two programmable thermostat measures were included in the sample and evaluated based on the operating conditions at the site.

¹⁶ KEMA, Inc. Business Programs: Deemed Savings Manual V1.0. Prepared for Wisconsin Public Utility Commission. March, 2010.

Five refrigeration measures were included in the sample. One measure used the wrong deemed savings value, resulting in verified savings greater than the tracking savings. Anti-sweat heater control measures were adjusted for the actual heater wattage found onsite.

I.2.2 Custom Project Review

Thirty-six customers participated in the custom portion of the C&I program in the evaluation sample. Thirty-three of the 36 customers participated in the evaluation, some with more than one project. A little over half of the projects in the initial population and final sample were lighting and approximately one third were HVAC. Table 98 shows all of the custom projects as well as their distribution.

Measure Description	Evaluated Projects	Total Projects
Custom lighting	22	24
Install energy recovery wheel	1	1
Install variable frequency drive, VFD	3	4
Installed oxygen trim combustion controls on boiler	1	1
Recover waste heat from boiler for process heating	1	1
Refrigerator replacement	1	1
Replace injection molding machine	1	1
Irrigation pump system improvements	1	1
DHW, system replacement and improvements	1	1
Generation system improvements	1	1
Replace air compressor with VFD air compressor	1	1
Replace air compressor desiccant dryer with refrigeration dryer	1	1
Total	35	38

Table 98. Custom Project Distribution

In general, the paperwork for the custom projects was clear, and sufficient information was provided to interpret how the savings were calculated. However, there were a number of projects where the quality of the scanned documentation was poor and illegible. Also, for several projects, it was difficult to determine how the tracking savings were determined. None of the custom projects contained functioning calculation spreadsheets. For the majority of projects, KEMA used the same or similar savings calculation methodology as the tracking savings. The major difference between the tracked savings and the verified savings was that site-specific values were used instead of assumptions from secondary sources.

The lighting projects were similar to the prescribed lighting projects, and the same basic methodology was used to calculate the savings. The engineers collected the relevant data on

the number of fixtures, occupancy schedules, and wattages of the old and new equipment. There were adjustments for the following reasons:

- Operating schedules provided by site staff were used to determine annual operating hours
- Tracking savings calculations use a coincident factor, CF, when determining kWh savings; however, this is not appropriate as CF should be used for peak savings, not kWh savings
- KEMA used manufacturer specifications to determine fixture wattages
- A different number of fixtures was found to be installed or removed
- Unable to identify the source of tracking savings, assumed data entry error.

Tracked savings for the refrigerator replacement, generation system improvements, and irrigation system improvement projects were verified and reasonable. Therefore, no adjustments were made to these savings values.

The VFD projects have different verified gross savings than tracking savings due to different operating hours and load profiles. For many cases, the values assumed in tracking estimates differed considerably from what was found during the site visits. In several cases the equipment loading was unknown to facility staff; KEMA performed electrical spot metering to assess the load. Monitoring data revealed that the VFDs were operating at a higher frequency than assumed in tracking calculations. One project had two motors that cycled between each other. The overall operating hours were determined to be much lower than the tracking savings assumed, because only one motor operated at a time. These discrepancies in operating hours and load profiles result in a much lower savings.

I.2.3 Installation Rate

KEMA calculated the installation rate for each measure group in the C&I program. We defined the installation rate as a binary variable that was equal to 100 percent if the respondent indicated that any measure was installed and zero percent if nothing was installed. Adjustments to correct for errors in the tracking quantity or other changes were addressed in the engineering adjustment factor. Table 99 shows the results.

The table shows an overall installation rate of 100 percent for both natural gas and kWh measures.

	kWh									cf		
		90% Confidence Interval %			90% Cor	nfidence	Interval	%				
		Installation		Lower	Upper	Program		Installation		Lower	Upper	Program
Measure Group	n	Rate	+/-	Bound	Bound	Savings	n	Rate	+/-	Bound	Bound	Savings
CFL	13	100%	<0.1%	100%	100%	3%	0	-	-	-	-	0%
Lighting	139	100%	0%	99%	100%	57%	0	-	-	-	-	0%
Boiler Tune-Up	0	-	-	-	-	0%	16	100%	0%	100%	100%	11%
Custom	31	100%	<0.1%	100%	100%	21%	4	100%	<0.1%	100%	100%	67%
Heating	0	-	-	-	-	0%	3	100%	<0.1%	100%	100%	22%
Motors	11	100%	<0.1%	100%	100%	15%	0	-	-	-	-	0%
Other	3	100%	<0.1%	100%	100%	1%	2	100%	<0.1%	100%	100%	1%
Occupancy Sensors	17	96%	5%	91%	100%	3%	0	-	-	-	-	0%
C&I Overall	214	100%	0%	99%	100%	100%	25	100%	<0.1%	100%	100%	100%

Table 99. Installation Rate, C&I

I.2.4 Engineering Adjustment Factor

KEMA pooled the adjustments from the documentation verification and tracking verification into the engineering adjustment factor. The changes resulting from the tracking review are discussed in Appendix Q. From the documentation review, KEMA made adjustments to account for the following errors, discussed in Appendix R.

- One application had the incorrect company name entered into the database.
- There were two sets of paperwork for the same application.
- Quantities of installed equipment were incorrect in 5 instances.

Table 100 shows the engineering adjustment factors. These factors take into account differences between the observed quantities of equipment installed versus tracking quantities, as well as any adjustments KEMA made to the tracking value of savings based on operating characteristics observed on-site. The major adjustments were due to differences in operating schedule reported to the evaluator compared to the deemed savings. For example, many measures were adjusted because the operating hours at the facility were longer than those assumed in the calculation. As discussed in Section I.2.2, the custom VFD savings were adjusted down because of lower operating hours and higher frequency load profiles. Overall, the program achieved an engineering adjustment factor of 122 percent for electricity and 92 percent for natural gas.

				ccf								
		Engineering	90% Cor	nfidence	Interval	%		Engineering	90% Confidence Interval			%
		Adjustment		Lower	Upper	Program		Adjustment		Lower	Upper	Program
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings
CFL	13	89%	16%	72%	105%	3%	0	-	-	-	-	0%
Lighting	135	142%	28%	114%	169%	57%	0	-	-	-	-	0%
Boiler Tune-Up	0	-	-	-	-	0%	15	96%	2%	95%	98%	11%
Custom	31	95%	7%	88%	102%	21%	4	80%	<0.1%	80%	80%	67%
Heating	0	-	-	-	-	0%	3	103%	8%	95%	112%	22%
Motors	11	72%	74%	-2%	146%	15%	0	-	-	-	-	0%
Other	3	82%	4%	78%	85%	1%	2	23%	<0.1%	23%	23%	1%
Occupancy Sensors	16	80%	24%	57%	104%	3%	0	-	-	-	-	0%
C&I Overall	209	123%	23%	100%	147%	100%	24	88%	2%	85%	90%	100%

Table 100. Engineering Adjustment Factor by Measure Group, C&I

I.2.5 Verified Gross Savings

The engineering adjustment factor and installation rate were combined into the gross savings adjustment factor, which is a single adjustment that can be applied to the tracking savings to determine verified gross savings. Table 101 shows the gross savings adjustment factor for the C&I program.

			kW	h					ccf	:		
		Gross Savings	90% Cor	90% Confidence Interval %			Gross Savings	90% Confidence Inter		Interval	%	
	min	Adjustment		Lower	Upper	Program	min	Adjustment		Lower	Upper	Program
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings
CFL	13	89%	16%	72%	105%	3%	0	-	-	-	-	0%
Lighting	139	141%	28%	114%	169%	57%	0	-	-	-	-	0%
Boiler Tune-Up	0	-	-	-	-	0%	16	96%	2%	94%	98%	11%
Custom	31	95%	7%	88%	102%	21%	4	80%	<0.1%	80%	80%	67%
Heating	0	-	-	-	-	0%	3	103%	8%	95%	112%	22%
Motors	11	72%	74%	-2%	146%	15%	0	-	-	-	-	0%
Other	3	82%	4%	78%	85%	1%	2	23%	<0.1%	23%	23%	1%
Occupancy Sensors	17	77%	23%	54%	101%	3%	0	-	-	-	-	0%
C&I Overall	214	123%	23%	100%	146%	100%	25	87%	2%	85%	90%	100%

Table 101. Gross Savings Adjustment Factor by Measure Group, C&I

The gross savings adjustment factor was applied to the total savings reported for the Commercial and Industrial Program in 2011 to produce the verified gross savings for the program. Table 102 shows the tracking gross savings (an annual number), the gross saving adjustment factor determined from the evaluation, the verified gross annual savings, and the verified gross lifetime savings. The verified gross annual savings is the tracking gross savings multiplied by the gross savings adjustment factor. The verified gross lifetime savings is the verified gross annual savings with the measure life applied. Boilers were in the final program population, but were not present in the sample used for the evaluation. For boilers, the gross savings adjustment from the "heating" measure group (103%) was used to estimate verified gross savings.

Table 102. Verified Gross Savings, C&I, Overall

		kW	/h			co	f	
	Tracking	Gross Savings	Verified Gross	Verified Gross	Tracking	Gross Savings	Verified Gross	Verified Gross
Measure Group	Gross Savings	Adjustment Factor	Annual Savings	Lifetime Savings	Gross Savings	Adjustment Factor	Annual Savings	Lifetime Savings
Custom	12,860,753		12,239,133		1,043,058		832,765	9,993,180
CFL	3,231,411	89%	2,860,831	11,443,323				
Lighting	8,683,945	141%	12,215,924	145,426,411				
Occupancy Sensors	1,118,544	77%	866,114	8,661,140				
Motors	2,803,422	72%	2,007,657	32,122,508	872	72%	624	9,988
Other	674,901	82%	556,141	6,609,534	237,089	23%	53,616	563,954
Boiler					108,865	103%	112,646	2,027,691
Boiler Tune-Up					208,696	96%	200,913	200,913
Heating					52,727	103%	54,559	766,133
C&I Overall	29,372,976	123%	30,745,800	351,132,516	1,651,308	87%	1,255,123	13,561,859

Table 103. Verified Gross Savings, C&I, EU

		k۷	/h			C	of	
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings
CFL	2,291,838	89%	2,029,009	8,116,034				
Custom	10,290,676	95%	9,793,280	117,519,365	1,043,058	80%	832,765	9,993,180
Lighting	6,028,993	141%	8,481,137	100,321,580				
Occupancy Sensors	952,105	77%	737,236	7,372,365				
Other	512,585	82%	422,387	5,432,912	237,089	23%	53,616	563,954
Motors	1,953,638	72%	1,399,088	22,385,409	872	72%	624	9,988
Boiler					108,865	103%	112,646	2,027,691
Boiler Tune-Up					208,696	96%	200,913	200,913
Heating					52,727	103%	54,559	766,133
C&I EU Overall	22,029,835	123%	22,862,137	261,147,664	1,651,308	87%	1,255,123	13,561,859

Table 104. Verified Gross Savings, C&I, EO

		k٧	/h	
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings
CFL	939,573		831,822	3,327,289
Lighting	2,654,952	141%	3,734,788	45,104,831
Occupancy Sensors	166,439	77%	128,877	1,288,775
Motors	849,784	72%	608,569	9,737,099
Other	162,317	82%	133,754	1,176,622
Custom	2,570,077	95%	2,445,853	29,350,235
C&I EO Overall	7,343,141	123%	7,883,663	89,984,851

I.3 Attribution Results

The EO/EU programs were not required to report net or attributable savings for the 2011 program year. However, discussions within the State of Michigan suggest that net savings will

be required in future program years. KEMA conducted a net savings analysis to provide the program with the information they will need for planning and implementation when moving toward net savings reporting.

I.3.1 Attribution Adjustment Factors

KEMA calculated the attribution adjustment factor for each measure group in the C&I program. The attribution adjustment factor is applied to the verified gross savings to produce net savings. It reflects the influence the program had on the timing, efficiency level, and scope of the energy efficiency measure installed.¹⁷ Table 105 shows the results.

Many customers did not credit the program as the reason they implemented the energy saving measures, stating they would have done the same projects with or without the program. Overall, the attribution adjustment factor for electricity was 62 percent and for natural gas was 12 percent. There is more discussion about attribution results in Appendix U and the following section.

			kW	/h			ccf					
		Attribution	90% Cor	nfidence	Interval	%		Attribution	90% Confidence Interval			%
		Adjustment		Lower	Upper	Program		Adjustment		Lower	Upper	Program
Measure Group	n	Factor	+/-	Bound	Bound	Savings	n	Factor	+/-	Bound	Bound	Savings
CFL	11	74%	35%	39%	109%	3%	0	-	-	-	-	0%
Lighting	129	71%	18%	54%	89%	57%	0	-	-	-	-	0%
Boiler Tune-Up	0	-	-	-	-	0%	15	12%	19%	0%	31%	11%
Custom	30	30%	10%	20%	39%	21%	3	11%	<0.1%	11%	11%	67%
Heating	0	-	-	-	-	0%	2	44%	51%	0%	95%	22%
Motors	11	4%	6%	0%	10%	15%	0	-	-	-	-	0%
Other	3	43%	6%	37%	48%	1%	1	0%	<0.1%	0%	0%	1%
Occupancy Sensors	14	33%	13%	20%	45%	3%	0	-	-	-	-	0%
C&I Overall	198	62%	18%	44%	79%	100%	21	12%	3%	9%	16%	100%

Table 105. Attribution Adjustment Factor by Measure Group, C&I

I.3.2 Analysis of Survey Responses

KEMA reviewed the responses to the attribution question sequence used in the C&I survey to identify where the program was having an effect and where improvements could be made. We investigated the program's effect on timing, efficiency, and quantity, the three components of attribution. Appendix U has greater detail on the attribution analysis methodology and the methods used to combine the three components into a single attribution value.

¹⁷ Appendix U discusses the methodology used in the attribution analysis.

Table 106. Attribution Question Sequence

Number	Question
Timing	
DAT1	Without EO/EU, how likely is it that you would have installed the same type of equipment at this time?
DAT1a	Without EO/EU, how different would the timing have been?
DAT1b	Approximately how many months later?
Efficiency	
DAT2	Without EO/EU, how likely is it that you would have installed the same level of efficiency?
DAT2a	Without EO/EU, how likely is it that you would have installed the same, greater, or lesser efficiency?
DAT2b	Without EO/EU, what efficiency would you have installed?
Quantity	
DAT3	Without EO/EU, how different would the quantity/size have been?
DAT3a	By what percentage did you change the quantity/size because of EO/EU?

I.3.2.1 Timing

Respondents are asked a sequence of questions that address the timing of the equipment installation. First, respondents are asked how likely it is that they would have installed the same type of equipment at the same time without the program (DAT1). Then respondents are asked how different the timing would have been (DAT1a).

- A response of "Same Time" means that the customer would have installed the measure(s) at the same time regardless of program involvement.
- A response of "Later" indicates that they would have waited to install the measure(s) if the program had not been present. This measure is called "accelerated". Respondents who answered "Later" are asked a follow-up question (DAT1b) about how much later they would have installed the equipment without the program.

Table 107 shows the responses to the DAT1a and DAT1b questions for C&I. The table shows the unweighted number of responses in each category and the associated percentage of overall program energy savings represented by those responses. The number of responses does not reflect any survey weight or relative savings but the percentage of energy savings does.

The table outlines the skip pattern and attribution assignment for DAT1a and DAT1b. If a respondent indicates that they would have installed the equipment at the same time or earlier, the acceleration period is zero months and there is no timing effect. If the respondent indicates that they never would have installed the equipment without the program, then the program is credited with influencing the entire project and receives 100 percent attribution. The same effect is applied if the respondent indicates it would have been greater than four years before they would have installed the equipment without the program. If the response to DAT1a is Later and the response to DAT1b is a number less than 48, then the acceleration period is equal to that number of months.

DAT1a. Without EO/EU, how different would the timing have been? DAT1b. Approximately how many months later?												
DAT1a Response	DAT1b Response	Responses	Percent kWh	Percent ccf	Timing Attribution							
Same Time	N/A	100	38%	77%	0							
Earlier	N/A	3	1%	0%	0							
	Months < 48	69	32%	9%	Months / 48							
Later	Months >= 48	3	1%	0%	100%							
	Don't Know/Refused	14	5%	13%	Average of DAT1b							
Never	N/A	27	21%	0%	100%							
Not Applicable	N/A	0	0%	0%	Not Asked							
Don't Know/Refused	N/A	6	1%	0%	Average of DAT1a							

Table 107. Determining Acceleration Period,	C&I Overall
---	-------------

The table shows that the majority of the respondents would have installed the equipment at the same time, with 100 responses representing 38 percent of kWh and 77 percent of gas savings (ccf). Eighty-six respondents indicate that they would have installed the equipment later without the program, representing 38 percent of kWh savings and 22 percent of gas savings (ccf). Twenty-seven respondents representing 21 percent of kWh savings said they would never have installed the equipment without the program, which receives 100 percent attribution.

Table 108 through Table 113 show the DAT1a and DAT1b responses by measure category for measures with more than five responses. The boiler measure group appears to be the least likely to be accelerated, with 13 respondents representing 88 percent of the boiler group savings indicating that they would have installed the boiler measures at the same time. The lighting measure groups were the most likely to be accelerated. The custom measure group had 18 out of 33 projects that would have been installed later or never, representing 53 percent of the group kWh savings and 43 percent of the gas savings (ccf).

DAT1a. Without EO/EU, how different would the timing have been?								
DAT1b. Approximately how many months later? Percent Percent								
DAT1a Response	DAT1b Response	Responses	kWh	ccf	Timing Attribution			
Same Time	N/A	13	0%	88%	0			
Earlier	N/A	0	0%	0%	0			
	Months < 48	2	0%	12%	Months / 48			
Later	Months >= 48	0	0%	0%	100%			
	Don't Know/Refused	0	0%	0%	Average of DAT1b			
Never	N/A	0	0%	0%	100%			
Not Applicable	N/A	0	0%	0%	Not Asked			
Don't Know/Refused	N/A	0	0%	0%	Average of DAT1a			

Table 108. Determining Acceleration Period, Boiler Tune-Up

DAT1a. Without EO/EU, how different would the timing have been? DAT1b. Approximately how many months later?								
DAT1a Response	Percent Percent							
Same Time	N/A	6	71%	0%	0			
Earlier	N/A	0	0%	0%	0			
	Months < 48	4	29%	0%	Months / 48			
Later	Months >= 48	0	0%	0%	100%			
	Don't Know/Refused	1	0%	0%	Average of DAT1b			
Never	N/A	1	0%	0%	100%			
Not Applicable	N/A	0	0%	0%	Not Asked			
Don't Know/Refused	N/A	0	0%	0%	Average of DAT1a			

Table 109. Determining Acceleration Period, CFL

Table 110. Determining Acceleration Period, Custom

DAT1a. Without EO/EU, how different would the timing have been?									
DAT1b. Approximately how many months later?									
		Percent Percent							
DAT1a Response	DAT1b Response	Responses	kWh	ccf	Timing Attribution				
Same Time	N/A	13	46%	57%	0				
Earlier	N/A	1	0%	0%	0				
	Months < 48	13	43%	0%	Months / 48				
Later	Months >= 48	0	0%	0%	100%				
	Don't Know/Refused	4	9%	43%	Average of DAT1b				
Never	N/A	1	1%	0%	100%				
Not Applicable	N/A	0	0%	0%	Not Asked				
Don't Know/Refused	N/A	1	1%	0%	Average of DAT1a				

Table 111. Determining Acceleration Period, Lighting

DAT1a. Without EO/EU, how different would the timing have been?								
DAT1b. Approximately how many months later?								
			Percent	Percent				
DAT1a Response	DAT1b Response	Responses	kWh	ccf	Timing Attribution			
Same Time	N/A	55	30%	0%	0			
Earlier	N/A	1	0%	0%	0			
	Months < 48	36	29%	0%	Months / 48			
Later	Months >= 48	3	2%	0%	100%			
	Don't Know/Refused	7	5%	0%	Average of DAT1b			
Never	N/A	24	32%	0%	100%			
Not Applicable	N/A	0	0%	0%	Not Asked			
Don't Know/Refused	N/A	4	1%	0%	Average of DAT1a			

DAT1a. Without EO/EU, how different would the timing have been?									
DAT1b. Approximately how many months later?									
		Percent Percent							
DAT1a Response	DAT1b Response	Responses	kWh	ccf	Timing Attribution				
Same Time	N/A	8	77%	0%	0				
Earlier	N/A	1	21%	0%	0				
	Months < 48	2	2%	0%	Months / 48				
Later	Months >= 48	0	0%	0%	100%				
	Don't Know/Refused	0	0%	0%	Average of DAT1b				
Never	N/A	0	0%	0%	100%				
Not Applicable	N/A	0	0%	0%	Not Asked				
Don't Know/Refused	N/A	0	0%	0%	Average of DAT1a				

Table 112. Determining Acceleration Period, Motors

Table 113. Determining Acceleration Period, Occupancy Sensors

DAT1a. Without EO/EU, how different would the timing have been?								
DAT1b. Approximately how many months later?								
		Percent Percent						
DAT1a Response	DAT1b Response	Responses	kWh	ccf	Timing Attribution			
Same Time	N/A	3	27%	0%	0			
Earlier	N/A	0	0%	0%	0			
	Months < 48	7	56%	0%	Months / 48			
Later	Months >= 48	0	0%	0%	100%			
	Don't Know/Refused	2	11%	0%	Average of DAT1b			
Never	N/A	1	1%	0%	100%			
Not Applicable	N/A	0	0%	0%	Not Asked			
Don't Know/Refused	N/A	1	5%	0%	Average of DAT1a			

I.3.2.2 Efficiency

Respondents are asked a sequence of questions that address the efficiency of the equipment installation. First, respondents are asked how likely it is that they would have installed the same, lesser, or greater efficiency without the program (DAT2a). Then respondents are asked how different the efficiency would have been (DAT2b).

- A response of "Same" means that the customer would have installed the same level of efficiency regardless of program involvement.
- A response of "Lower" indicates that they would have installed a less efficient piece of equipment if the program had not been there. Respondents who answered "Lower" are asked a follow-up question (DAT2b) about what equipment efficiency they would have installed without the program.

Table 114 shows the responses to the DAT2a question for each measure category. The table includes a response of Not Applicable, which represents measures that do not have variable efficiency themselves, but are added to the existing equipment or systems to make the overall operation more efficient. Examples are variable frequency drives, lighting controls, and programmable thermostat controls. Boiler tune-ups went through a similar, but different attribution sequence and are also included in the Not Applicable category below.

The table outlines the skip pattern and attribution assignment for DAT2a and DAT2b. If a respondent indicates that they would have installed the equipment of the same or higher efficiency, the efficiency attribution is zero. If the respondent indicates that they would have installed a lower efficiency then the efficiency attribution is some number between 30 and 100 percent, depending on the answer to DAT2b.

DAT2a. Without EO/EU, would you have installed the same, higher, or lower efficiency? DAT2b. Without EO/EU, what efficiency would you have installed?						
DAT2a Response	DAT2b Response	Responses	Percent kWh	Percent ccf	Efficiency Attribution	
Same	N/A	134	46%	65%	0%	
	Standard Efficiency	12	17%	0%	100%	
	Slightly > Standard	0	0%	0%	70%	
Lower	Between Standard and High	2	0%	0%	50%	
	Slightly < High	4	3%	0%	30%	
	Don't Know/Refused	6	15%	4%	Average of DAT2b	
Higher	N/A	3	1%	0%	0%	
Not Applicable	N/A	14	0%	18%	Not Asked	
Don't Know/Refused	N/A	47	17%	13%	Average of DAT2a	

Table 114. Determining Efficiency A	Attribution, C&I Overall
-------------------------------------	--------------------------

The table shows that the majority of respondents stated they would have installed the same efficiency level without the program, with 134 respondents representing 46 percent of program kWh savings and 65 percent of program gas savings (ccf). Seventy-one respondents representing 52 percent of program kWh savings and 17 percent of program gas savings (ccf) will receive some form of efficiency attribution by answering "Lower" or "Don't know/Refused" to DAT2a. Seventeen percent of kWh savings will receive 100 percent efficiency attribution.

Table 115 through Table 118 show the DAT2a and DAT2b responses by measure category for measures with more than five responses. Heating, motors. and Other had too few respondents to be included. CFL lighting had the greatest portion of its group receiving 100 percent attribution at 68 percent of electricity savings. Custom measures receive at least some

attribution for 48 percent of the electricity and 54 percent of the gas savings. Similarly, 51 percent of lighting savings will receive some attribution.

DAT2a. Without EO/EU, would you have installed the same, higher, or lower efficiency?						
DAT2b. Without EO/EU, what efficiency would you have installed? Percent Percent Efficiency DAT2a Response DAT2b Response Responses kWh ccf Attribution						
Same	N/A	9	28%	0%	0%	
	Standard Efficiency	2	68%	0%	100%	
	Slightly > Standard	0	0%	0%	70%	
Lower	Between Standard and High	0	0%	0%	50%	
	Slightly < High	0	0%	0%	30%	
	Don't Know/Refused	0	0%	0%	Average of DAT2b	
Higher	N/A	0	0%	0%	0%	
Not Applicable	N/A	0	0%	0%	-	
Don't Know/Refused	N/A	1	5%	0%	Average of DAT2a	

Table 115. Determining Efficiency Attribution, CFL

Table 116.	Determining	Efficiency	Attribution.	Custom
	Determing	Lineichey	Attribution,	ouotoin

DAT2a. Without EO/EU, would you have installed the same, higher, or lower efficiency?							
DAT2b. Without EO/EU, what efficiency would you have installed?							
	Percent Percent Efficienc						
DAT2a Response	DAT2b Response	Responses	kWh	ccf	Attribution		
Same	N/A	23	61%	45%	0%		
	Standard Efficiency	1	8%	0%	100%		
	Slightly > Standard	0	0%	0%	70%		
Lower	Between Standard and High	0	0%	0%	50%		
	Slightly < High	2	16%	0%	30%		
	Don't Know/Refused	1	0%	11%	Average of DAT2b		
Higher	N/A	0	0%	0%	0%		
Not Applicable	N/A	0	0%	0%	-		
Don't Know/Refused	N/A	6	15%	20%	Average of DAT2a		

DAT2a. Without EO/EU, would you have installed the same, higher, or lower efficiency?								
DAT2b. Without EO/EU, what efficiency would you have installed?								
	Percent Percent Efficien							
DAT2a Response	DAT2b Response	Responses	kWh	ccf	Attribution			
Same	N/A	85	46%	0%	0%			
	Standard Efficiency	9	15%	0%	100%			
	Slightly > Standard	0	0%	0%	70%			
Lower	Between Standard and High	2	0%	0%	50%			
	Slightly < High	2	0%	0%	30%			
	Don't Know/Refused	3	24%	0%	Average of DAT2b			
Higher	N/A	3	2%	0%	0%			
Not Applicable	N/A	0	0%	0%	-			
Don't Know/Refused	N/A	26	13%	0%	Average of DAT2a			

Table 117. Determining Efficiency Attribution, Lighting

Table 118. Determining Efficiency Attribution, Occupancy Sensors

DAT2a. Without EO/EU, would you have installed the same, higher, or lower efficiency? DAT2b. Without EO/EU, what efficiency would you have installed?									
DAT2a Response	AT2b Response Responses kWh ccf Attribution								
Same	N/A	5	57%	0%	0%				
	Standard Efficiency	0	0%	0%	100%				
	Slightly > Standard	0	0%	0%	70%				
Lower	Between Standard and High	0	0%	0%	50%				
	Slightly < High	0	0%	0%	30%				
	Don't Know/Refused	1	4%	0%	Average of DAT2b				
Higher	N/A	0	0%	0%	0%				
Not Applicable	N/A	0	0%	0%	-				
Don't Know/Refused	N/A	8	39%	0%	Average of DAT2a				

I.3.2.3 Quantity

Respondents are asked a sequence of questions that address the quantity of the equipment installed. First, respondents are asked how likely it is that they would have installed the same quantity of equipment without the program (DAT3). Then respondents are asked how much they changed the quantity (DAT3a).

- A response of "Same amount" means that the customer would have installed the same size or quantity regardless of program involvement.
- A response of "Less" indicates that the customer would have installed fewer units if the program had not been there. Respondents who answered "Less" are asked a follow-up question (DAT3a) about the quantity of equipment they would have installed without the program.

Appendices

 A response of "More" indicates that the customer would have installed more units if the program had not been there. In these cases, the evaluation team assumes that the respondent would have installed a less efficient system without the EO/EU assistance because it would have been oversized. Respondents who answered "More" are asked the same follow-up question (DAT3a) about the quantity of equipment they would have installed without the program.

Table 119 shows the responses to the DAT3 question for each measure group. The table includes a response of Not Applicable, which represents measures where varying quantity or size does not make sense in the context of the measure.

The table outlines the skip pattern and attribution assignment for DAT3 and DAT3a. If a respondent indicates that they would have installed the same quantity or size, the quantity attribution is zero. If the respondent indicates that they would have installed more or less quantity/size, then the quantity attribution is some value between 0 and 100 percent. If the respondent indicates that they would not have installed any equipment without the program then the quantity attribution is 100 percent.

DAT3. Without EO/EU, how different would the quantity/size have been?								
DAT3a. By what percentage did you change the amount installed because of EO/EU?								
			Percent	Percent				
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Quantity Attribution			
Same Amount	N/A	125	54%	91%	0%			
	Value < 100%	28	5%	6%	Value < 50%			
Less	Value >= 100%	4	1%	0%	Value > 50%			
	Don't Know/Refused	19	6%	0%	Average of DAT3a			
	Value < 100%	0	0%	0%	Value < 100%			
More	Value >= 100%	0	0%	0%	Value = 100%			
	Don't Know/Refused	0	0%	0%	Average of DAT3a			
None	N/A	42	34%	0%	100%			
Not Applicable	N/A	0	0%	0%	Not Asked			
Don't Know/Refused	N/A	4	1%	4%	Average of DAT3			

Table 119. Determining Quantity Attribution, C&I Overall
--

The table shows that 125 respondents representing 54 percent of kWh savings and 91 percent of gas savings (ccf) would have installed equipment of the same size or quantity without the program. Forty-two respondents representing 34 percent of kWh savings and zero percent of gas savings (ccf) would not have installed any equipment, resulting in 100 percent quantity attribution.

Table 120 through Table 125 show the DAT3 and DAT3a responses by measure category for measures with more than five responses. Four of the seven measure groups had at least one respondent who said they would not have installed any project without the program. Lighting responses indicated the strongest program attribution, with 50 percent of the lighting savings with 100 percent quantity attribution, and 13 percent of the lighting savings with some attribution. Motors, boiler tune-ups, and CFLs had the lowest attribution. Custom projects were somewhat better, with 17 percent of electric savings and 11 percent of gas savings receiving at least some attribution. Occupancy sensors received some attribution for 40 percent of the savings. Some attribution in the "Other" category is reflected for 89 percent, but solely based on "Don't know/refused" responses.

DAT3. Without EO/EU, how different would the quantity/size have been?								
DAT3a. By what percentage did you change the amount installed because of EO/EU?								
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Quantity Attribution			
Same Amount	N/A	14	0%	92%	0%			
	Value < 100%	1	0%	8%	Value < 50%			
Less	Value >= 100%	0	0%	0%	Value > 50%			
	Don't Know/Refused	0	0%	0%	Average of DAT3a			
	Value < 100%	0	0%	0%	Value < 100%			
More	Value >= 100%	0	0%	0%	Value = 100%			
	Don't Know/Refused	0	0%	0%	Average of DAT3a			
None	N/A	0	0%	0%	100%			
Not Applicable	N/A	0	0%	0%	Not Asked			
Don't Know/Refused	N/A	0	0%	0%	Average of DAT3			

DAT3. Without EO/EU, how different would the quantity/size have been?								
DAT3a. By what percentage did you change the amount installed because of EO/EU?								
Percent Percent								
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Quantity Attribution			
Same Amount	N/A	7	93%	0%	0%			
	Value < 100%	3	2%	0%	Value < 50%			
Less	Value >= 100%	1	5%	0%	Value > 50%			
	Don't Know/Refused	0	0%	0%	Average of DAT3a			
	Value < 100%	0	0%	0%	Value < 100%			
More	Value >= 100%	0	0%	0%	Value = 100%			
	Don't Know/Refused	0	0%	0%	Average of DAT3a			
None	N/A	1	0%	0%	100%			
Not Applicable	N/A	0	0%	0%	Not Asked			
Don't Know/Refused	N/A	0	0%	0%	Average of DAT3			

Table 121. Determining Quantity Attribution, CFL

Table 122. Determining Quantity Attribution, Custom

DAT3. Without EO/EU, how different would the quantity/size have been?									
DAT3a. By what pe	DAT3a. By what percentage did you change the amount installed because of EO/EU?								
	Percent Percent								
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Quantity Attribution				
Same Amount	N/A	22	83%	89%	0%				
	Value < 100%	0	0%	0%	Value < 50%				
Less	Value >= 100%	0	0%	0%	Value > 50%				
	Don't Know/Refused	6	8%	0%	Average of DAT3a				
	Value < 100%	0	0%	0%	Value < 100%				
More	Value >= 100%	0	0%	0%	Value = 100%				
	Don't Know/Refused	0	0%	0%	Average of DAT3a				
None	N/A	4	9%	0%	100%				
Not Applicable	N/A	0	0%	0%	Not Asked				
Don't Know/Refused	N/A	1	0%	11%	Average of DAT3				

DAT3. Without EO/EU, how different would the quantity/size have been?								
DAT3a. By what percentage did you change the amount installed because of EO/EU?								
Percent Percent								
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Quantity Attribution			
Same Amount	N/A	62	37%	0%	0%			
	Value < 100%	20	6%	0%	Value < 50%			
Less	Value >= 100%	3	0%	0%	Value > 50%			
	Don't Know/Refused	7	5%	0%	Average of DAT3a			
	Value < 100%	0	0%	0%	Value < 100%			
More	Value >= 100%	0	0%	0%	Value = 100%			
	Don't Know/Refused	0	0%	0%	Average of DAT3a			
None	N/A	35	50%	0%	100%			
Not Applicable	N/A	0	0%	0%	Not Asked			
Don't Know/Refused	N/A	3	2%	0%	Average of DAT3			

Table 123. Determining Quantity Attribution, Lighting

Table 124. Determining Quantity Attribution, Motors

DAT3. Without EO/EU, how different would the quantity/size have been?								
DAT3a. By what percentage did you change the amount installed because of EO/EU?								
			Percent	Percent				
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Quantity Attribution			
Same Amount	N/A	9	98%	0%	0%			
	Value < 100%	0	0%	0%	Value < 50%			
Less	Value >= 100%	0	0%	0%	Value > 50%			
	Don't Know/Refused	2	2%	0%	Average of DAT3a			
	Value < 100%	0	0%	0%	Value < 100%			
More	Value >= 100%	0	0%	0%	Value = 100%			
	Don't Know/Refused	0	0%	0%	Average of DAT3a			
None	N/A	0	0%	0%	100%			
Not Applicable	N/A	0	0%	0%	Not Asked			
Don't Know/Refused	N/A	0	0%	0%	Average of DAT3			

DAT3. Without EO/EU, how different would the quantity/size have been?								
DAT3a. By what percentage did you change the amount installed because of EO/EU?								
	Percent Percent							
DAT3 Response	DAT3a Response	Responses	kWh	ccf	Quantity Attribution			
Same Amount	N/A	6	60%	0%	0%			
	Value < 100%	4	22%	0%	Value < 50%			
Less	Value >= 100%	0	0%	0%	Value > 50%			
	Don't Know/Refused	2	12%	0%	Average of DAT3a			
	Value < 100%	0	0%	0%	Value < 100%			
More	Value >= 100%	0	0%	0%	Value = 100%			
	Don't Know/Refused	0	0%	0%	Average of DAT3a			
None	N/A	2	6%	0%	100%			
Not Applicable	N/A	0	0%	0%	Not Asked			
Don't Know/Refused	N/A	0	0%	0%	Average of DAT3			

Table 125. Determining Quantity Attribution, Occupancy Sensors

I.3.2.4 Overall Attribution

KEMA put all three attribution components together in one table to show where overlap between quantity, efficiency, and timing attribution occurred. Table 126 shows the three effects together, with Yes indicating some (not necessarily full) attribution while No indicates responses that did not receive any attribution.

The table shows that only 19 responses representing 15 percent of kWh savings and zero percent of gas savings (ccf) received all three types of attribution. Seventy-seven responses representing 28 percent of kWh savings and 73 percent of gas savings (ccf) did not receive any timing, efficiency, or quantity attribution.

Table 126. Simplistic Representation of Overall Attribution, C&I

	Attribution				
Timing	Efficiency	Quantity	Responses	Percent kWh	Percent ccf
Yes	Yes	Yes	19	15%	0%
Yes	No	Yes	34	8%	6%
Yes	No	No	27	11%	0%
Yes	Yes	No	9	5%	17%
No	Yes	Yes	18	17%	4%
No	Yes	No	12	9%	1%
No	No	Yes	26	7%	0%
No	No	No	77	28%	73%

I.4 Comparison of 2009-2010 and 2011 Program Results

KEMA compared the results of the 2009-2010 program evaluation to the results of the 2011 program evaluation.

I.5 Overall Comparison

Table 127 shows the tracking savings, number of measures, and total incentives paid for each program period. The final column shows the difference between the two, with a negative value representing a decrease from 2010 and a positive value representing an increase.

Overall, the table shows a significant decrease in the incentives paid (20%) and the number of measures (23%). However, the decrease in energy savings was less than the decrease in incentives, reflecting an increase in the value of savings per incentive. Electric savings decreased by 9 percent, and gas savings decreased by 12 percent.

The decrease in the number of measures is related to two factors:

- Shorter program period (2009-2010 compared to 2011)
- Increase in custom measures, which are tracked as one measure regardless of the components of the custom project.

The increase in savings relative to the number of measures is likely similarly related to the increase in custom projects in 2011, where 36 projects were installed compared to 9 in 2009-2010. Custom projects typically have more savings per measure, because they may be a larger non-standard measure, and because of the artifact of tracking all components of a custom project as one measure.

Metric	Program Period Program Start to Dec 2010	Program Period Jan to Dec 2011	2010 to 2011 Change	
Tracking kWh Savings	32,300,685	29,372,976	-9%	
Tracking ccf Savings	1,875,385	1,651,308	-12%	
Total # Measures	1,490	1,149	-23%	
Total Incentive	\$2,126,181	\$1,695,556	-20%	

Table 127. Comparison of 2010 and 2011 C&I Program Results

I.6 Adjustment Factors

КЕМА

Table 128 shows the 2009-2010 and 2011 installation rate, gross savings adjustment factor, and attribution adjustment factor. Highlighted cells show a statistically significant difference from the 2010 to 2011 program periods at the 90 percent confidence interval.

The only statistically significant adjustment was for attribution for electricity savings, which reflects the stronger attribution for lighting in 2011 compared to 2010. Attribution for gas measures is based on a fairly small number of measures, and more likely to vary from year to year.

	kWh		ccf		
Adjustment Factor	2010	2011	2010	2011	
Installation Rate	98%	100%	100%	100%	
Gross Savings Adjustment Factor	95%	121%	90%	92%	
Attribution Adjustment Factor	40%	67%	33%	10%	

Table 128. Comparison of 2010 and 2011 C&I Adjustment Factors

J. Multifamily Program

This section reports on the methodology and overall results of KEMA's evaluation of the Market Rate Multifamily (MF) Program.

- Section J.1 provides a description of the program.
- Section J.2 gives an overview of the evaluation approach.
- Section J.3 looks at survey results and determines verified gross savings.

J.1 Program Description

The Multifamily Program began implementation in late 2010. The program provided energysaving products free of charge to multifamily building managers. In addition, the program provided incentives for installation paid either to contractors or directly to building maintenance staff. The MF program offered incentives for both gas and electric savings to customers in MCAAA utility service territories. The program based savings on the most recent MEMD database.

Under the MF program, participants received the following products:

- Compact Fluorescent Lights (CFLs)
- Bathroom Faucet Aerators
- Kitchen Faucet Aerators
- Low Flow Showerheads
- Pipe Wrap
- Programmable Thermostats

Table 129 shows the accomplishments for the MF program based on the program tracking data. The table shows the tracking savings, number of projects rebated, and incentives paid for the entire 2011 program year. The Multifamily Program is a small portion of the Efficiency United portfolio.

Metric	Full Year
Projects	23
Measures	87
kWh	558,424
ccf	78,443
Product Incentives	\$37,892
Installation Incentives	\$52,845

J.2 General Approach

The evaluation work plan set one objective for the 2011 MF program impact evaluation: determine program lifetime verified gross savings. To meet this objective, KEMA completed the following tasks:

- Verify proper tracking assignments (Appendix Q)
- Verify proper documentation with a sample of participating applications (Appendix R)
- Survey 10 participating property owners/managers to verify installation and collect equipment operating characteristics
- Conduct verified gross savings analysis

KEMA did not attempt to determine attribution for this program. Section A.5 describes the steps used to complete these tasks in greater detail.

J.3 Survey Results and Verified Gross Savings

KEMA verified the installation of measures tracked during the 2011 program year through a survey completed with 11 building owners and managers. KEMA asked the owners and managers to verify the quantity of measures installed, and confirm that they were still installed.

Survey respondents had difficulty recalling the exact quantities of equipment installed. Some respondents stated that they installed, for example, eight CFLs in each apartment, but did not recall that several of the apartments received only four. Though some respondents reported quantities that differed from the tracking data, the response was always within a reasonable range of the tracking value given the amount of time that had passed from when the project was installed. Where differing quantities were reported, respondents did not express great confidence in their estimates or have paperwork to back them up.

When asked whether the equipment was still installed, respondents almost universally stated something to the effect of, "as far as I know." Some respondents reported small numbers of equipment failures. Several respondents said that the contractors left behind a number of extra light bulbs or aerators, which maintenance staff used to replace failed or burned out equipment. One respondent still has 10 faucet aerators in storage. Some respondents said that tenants may have removed equipment when they vacated the apartment at the end of their lease.

Table 130 shows the program measures and quantity installed, removed, and put in storage per the survey responses. Units that were put in storage are listed for informational purposes only; the program did not pay rebates for these units and they were not included in the savings estimates, therefore they were not included in the installation rate. Units that failed and were replaced by energy efficient equipment from storage are listed in the Quantity Verified column, not the Quantity Failed column.

In developing the installation rate, KEMA gave the program the benefit of the doubt where possible. Measures were assumed to be verified unless the site contact definitively stated that they had failed or been removed. Therefore, these installation rate results likely overstate the persistence of measures such as CFLs, because it is possible that measures that are easy to remove are taken from the apartment when tenants change addresses. Other measures that are more permanently installed, like pipe wrap, are likely accurate.

Measure	Quantity Installed	Quantity Failed	Quantity Verified	In Storage	Installation Rate
CFLs	5,699	6	5,693	0	100%
Programmable Thermosats	331	1	330	0	100%
Regular Aerators	786	8	778	5	99%
Kitchen Aerators	582	8	574	5	99%
Showerheads	571	0	571	0	100%
Pipe Wrap	335	0	335	0	100%
Multifamily Overall	8,304	23	8,281	10	100%

Table 130	. Installation	Rate,	Multifamily
-----------	----------------	-------	-------------

KEMA also conducted a documentation review of 10 applications from the Multifamily Program. We found that the program effectively and accurately entered the application into the tracking database, resulting in a documentation review adjustment factor of 100 percent. Therefore, the gross savings adjustment factor is equal to the installation rate reported in Table 130.

The gross savings adjustment factor was applied to the total savings reported for the Multifamily Program in 2011 to produce the verified gross savings for the program. Table 131 shows the

tracking gross savings (an annual number), the gross savings adjustment factor determined from the evaluation, the verified gross annual savings, and the verified gross lifetime savings. The verified gross annual savings is the tracking gross savings multiplied by the gross savings adjustment factor. The verified gross lifetime savings is the verified gross annual savings with the measure life applied.

		kW	/h		ccf				
Measure Group	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	
CFL	293,040	100%	292,747	2,634,723		100%	0	0	
Faucet Aerator	97,608	99%	97,608	976,080	16,499	100%	16,218	162,180	
Pipe Wrap	29,988	100%	29,988	389,844	8,252	100%	8,252	90,776	
Showerhead	137,788	100%	137,788	1,377,880	22,923	100%	22,923	229,230	
Thermostat	0	100%	0	0	30,769	100%	30,677	337,448	
Multifamily Overall	558,424	100%	558,131	5,378,527	78,443	1 00 %	78,070	819,634	

Table 131. Verified Gross Savings, Multifamily, EU

K. Conclusions and Recommendations

This appendix addresses the portfolio and program-level conclusions and recommendations drawn from KEMA's evaluation of the Efficiency United and Energy Optimization programs.

K.1 Conclusions

This section summarizes KEMA's findings across the programs that made up this evaluation.

K.1.1 Documentation Verification

KEMA verified the accuracy and consistency of the program records by checking a sample of completed program application forms for the ENERGY STAR, HVAC, Onsite Audit, New Construction, C&I, and Multifamily programs. We did not review applications for the Appliance Recycling or Online Audit program because they do not use paper applications, and we did not repeat our 2010 review of the Low Income documentation. KEMA was able to download the sample of application forms directly from the program's document repository on December 2, 2011.

KEMA struggled to complete the documentation review effectively, as many of the measures represented by the downloaded documentation were entered in the 2010 data instead of the 2011 data, even when it appeared on the same application form as a 2011 measure. It is unclear why this is the case.

KEMA's review resulted in the following adjustments, which were included in the gross savings adjustment factors:

- ENERGY STAR: KEMA found one CFL, one smart strip, and one dishwasher that were not entered into the database.
- HVAC: KEMA found one application with a furnace and programmable thermostat on it; the thermostat was not entered in the database.
- Onsite Audit: KEMA found a number of differences between the quantities installed according to the Onsite Audit documentation and the quantities listed in the database for CFL, thermostat, pipe wrap, showerhead, and faucet aerator measures. We also found one wall insulation measure that had the wrong square footage multiplier entered in the database.
- New Construction: KEMA did not find any errors.

- C&I: KEMA found differences between the quantity listed on the application and the one in the database for five applications.
- Multifamily: KEMA did not find any errors.

K.1.2 Tracking Verification

KEMA reviewed the CLEAResult tracking database to verify that the deemed savings values from the MEMD were being applied correctly. We conducted our review for all of the programs in this round of evaluation.

The tracking database improved immensely in 2011. The current database has a sound structure and tracks all of the data required for impact evaluations in an effective manner. We made the following adjustments where necessary as a result of our review:

- Corrected the per-unit savings assignments
- Corrected the multiplier entries (such as square footage of insulation installed, or kBtu of furnace capacity)
- Adjusted calculations to include only one multiplier, rather than two
- Assigned the correct water heater fuel
- Corrected the multiplier units (such as square footage of conditioned space instead of linear feet of rim joist insulation installed)
- Made per-unit savings consistent across programs
- Reviewed the magnitude of C&I savings estimates used that were not in the MEMD to confirm that they were reasonable.

K.1.3 Installation Rates

Installation rates for the across the HVAC, C&I and Low Income, Onsite Audit, New Construction and Multifamily programs ranged from 89 percent to 100 percent. Together these six programs represent 75 percent of the portfolio savings KEMA evaluated.

The only statistically significant program level changes in installation rate from the 2009-2010 program year to the 2011 program year were declines for the ENERGY STAR program in both kWh and ccf and a decline in Low Income program kWh. In the case of ENERGY STAR, the introduction of energy kits, which customers often purchase with one or two of the technologies in mind, is the likely driver of the decline. For the Low Income program, the decline from 99 percent to 97 percent is related to a less than 100 percent installation rate for refrigerators in addition to an increase in CFL removals.

Across programs, the installation rate for less expensive kit measures (faucet aerators, pipe wrap, and showerheads) was low, while attribution for these same measures was generally higher than when the technology was purchased outside of a kit. The higher attribution indicates that kits are an effective way of getting people to try these technologies when they otherwise would not, but only when the technologies are actually installed. Many participants simply never install these technologies, while a portion of participants install and then remove them due to a lack of satisfaction with their performance.

K.1.4 Verified Gross Savings

Table 132 shows the verified gross energy savings for every evaluated program in the Efficiency United and Energy Optimization portfolio. Table 133 and Table 134 show the verified gross energy savings for the EU portfolio and EO portfolio respectively.

For programs other than C&I, the gross savings adjustment accounts for the installation rate and the documentation review, the latter of which had little effect on the adjustment factors. The gross savings adjustments for C&I include the installation rate, documentation review and in depth engineering reviews KEMA conducted using project documentation and on site verification surveys.

Overall KEMA verified 94 percent of the kWh and 84 percent of the ccf claimed by the program. The C&I program drove these rates: 63 percent of tracked kWh savings and 56 percent of tracked ccf savings came from the C&I program in 2011.

		k٧	/h		ccf				
Program	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	
ENERGY STAR	6,572,899	75%	4,526,895	38,987,772	98,516	67%	61,197	629,074	
Appliance Recycling	3,635,698	77%	2,818,906	13,468,272					
HVAC	582,480	95%	560,788	7,996,955	648,661	100%	651,478	9,290,244	
Low Income	2,094,648	97%	1,977,369	22,748,158	156,519	99%	152,555	1,911,382	
Online Audit	1,588,234	50%	827,513	8,091,126	59,721	60%	36,615	374,308	
Onsite Audit	2,074,578	87%	1,794,811	17,675,184	250,468	90%	225,336	2,490,245	
New Construction	3,300	100%	3,300	59,402	7,831	100%	7,831	140,967	
C&I	29,372,976	123%	30,745,800	351,132,516	1,651,308	87%	1,255,123	13,561,859	
Multifamily	558,424	100%	558,131	5,378,527	78,443	99%	78,070	819,634	
Overall	46,483,237		43,813,513	465,537,912	2,951,467		2,468,205	29,217,713	

Table 132. Verified Gross Energy Savings, Portfolio

		k۷	/h		ccf				
Program	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	Tracking Gross Savings	Gross Savings Adjustment Factor	Verified Gross Annual Savings	Verified Gross Lifetime Savings	
ENERGY STAR	3,956,593	75%	2,652,942	23,160,885	98,516	67%	61,197	629,074	
Appliance Recycling	1,408,198	77%	1,092,472	5,224,515					
HVAC	259,548	95%	259,548	3,892,592	648,661	100%	651,478	9,290,244	
Low Income	1,617,652	97%	1,520,960	17,254,142	156,519	99%	152,555	1,911,382	
Online Audit	1,116,661	50%	588,113	5,793,327	59,721	60%	36,615	374,308	
Onsite Audit	2,047,900	87%	1,772,090	17,466,740	250,468	90%	225,336	2,490,245	
New Construction	3,300	100%	3,300	59,402	7,831	100%	7,831	140,967	
C&I	22,029,835	123%	22,862,137	261,147,664	1,651,308	87%	1,255,123	13,561,859	
Multifamily	558,424	100%	558,131	5,378,527	78,443	100%	78,070	819,634	
EU Overall	32,998,111		31,309,693	339,377,794	2,951,467		2,468,205	29,217,713	

Table 133. Verified Gross Energy Savings, EU Portfolio

Table 134. Verified Gross Energy Savings, EO Portfolio

	kWh							
	Gross Tracking Savings Gross Adjustmen		Verified Gross Annual	Verified Gross Lifetime				
Program	Savings	Factor	Savings	Savings				
ENERGY STAR	2,616,306	75%	1,873,953	15,826,886				
Appliance Recycling	2,227,500	77%	1,726,434	8,243,757				
HVAC	322,932	95%	301,240	4,104,364				
Low Income	476,996	97%	456,410	5,494,017				
Online Audit	471,573	50%	239,400	2,297,799				
Onsite Audit	26,678	87%	22,720	208,444				
C&I	7,343,141	123%	7,883,663	89,984,851				
Overall	13,485,126		12,503,820	126,160,118				

K.1.5 Attribution Adjustment Factor

Table 135 shows the attribution adjustment factor calculated in this round of evaluation for every evaluated program in the Efficiency United and Energy Optimization portfolio.

The attribution adjustment factors are relatively low based on KEMA's experience with other programs of this type. We have a few theories that possibly explain the low values:

• Energy efficiency programs often have lower attribution in early program years. This may be because people who are already interested in implementing energy efficiency measures are more motivated to research and seek out rebates for the measures they install. As the program matures, these early adopters may no longer be as much of a factor and marketing and education efforts will make greater inroads in the general public.

- The program incentives may be too low to influence customers who are undecided about energy efficiency measures and influence them to install. If this is the case, the program would only be reaching customers that were already committed to energy efficiency.
- The evaluation data may not be representative of the entire program period. To meet the
 utility filing deadlines, KEMA evaluated projects installed through August of 2011. New
 program initiatives such as a large increase in Onsite Audit participation were
 implemented after the evaluation period. These changes may have had a different free
 ridership rate than previous months.

The only statistically significant program level changes in attribution from the 2009-2010 program year to the 2011 program year were improvements for the ENERGY STAR program in both kWh and ccf and a large jump in C&I program kWh. C&I programs often see large swings in adjustment factors from year-to-year because one large project or customer can influence the results for the entire program. In the case of ENERGY STAR, the introduction of energy kits, which customers often purchase with one or two of the technologies in mind (making the other technologies attributable to the program), is the likely driver of the increase.

	kWh				ccf				
	Attribution	90% Confidence Interval		Attribution	90% Co	0% Confidence Interval			
	Adjustment		Lower	Upper	Adjustment		Lower	Upper	
Program	Factor	+/-	Bound	Bound	Factor	+/-	Bound	Bound	
ENERGY STAR	32%	3%	29%	35%	25%	12%	13%	37%	
Appliance Recycling	58%	4%	54%	61%	-	-	-	-	
HVAC	18%	5%	12%	23%	16%	3%	13%	18%	
Low Income				N	/Α				
Online Audit	53%	7%	46%	60%	43%	<0.1%	43%	43%	
Onsite Audit	78%	5%	72%	83%	63%	7%	55%	70%	
New Construction	N/A								
C&I	40%	3%	37%	43%	33%	18%	16%	51%	
Multifamily	N/A								

Table 135. Attribution Adjustment Factors, Portfolio

K.2 Recommendations

This section summarizes KEMA's recommendations across the programs that made up this evaluation.

• **Documentation:** Consider designing and implementing a quality control program to ensure that the information entered in the tracking data is correct.

- Installation Rate: Consider the following changes to increase installation rate:
 - Limit the maximum number of qualifying CFLs to increase the likelihood that they will be installed instead of placed into storage.
 - Implement changes to increase the installation rate of faucet aerators and low flow showerheads distributed in energy kits, such as installation instructions within the kit or follow-up mailings.
- Attribution: Consider the following changes that may increase attribution:
 - Increase marketing to reach customers that are not already interested in installing energy efficiency equipment.
 - Increase trade ally involvement to help sell energy efficient equipment to potential participants.
 - Consider increasing incentives for some measures that show poor attribution.
- Database:
 - Improve nonresidential tracking: The current database does not track needed information for nonresidential participants. Contact names for someone at the business should be recorded, in a dedicated field. A field should also be used to identify a customer as either residential or nonresidential (for programs that serve both). The database should also include unique Company IDs that can be used to identify a single company with multiple locations.
 - Track trade ally activity: Trade allies are important players in the implementation of energy efficiency programs and should be tracked not only to facilitate program outreach efforts but also to track program activity and measure contractor diversity. The business name, address, phone number and project contact name should be tracked along with a trade ally ID number. Trade ally IDs should be linked to projects so the program can measure trade ally activity and so evaluators know which trade allies to contact for additional information about a given project.
 - Consider adjusting the Quantity definition: For some measures, it may make more sense to track feet (pipe wrap) rather than units or bulbs rather than packs (CFL multi-packs).
- ENERGY STAR Program:
 - Work with trade allies to improve market penetration of the appliance portion of the program, which should improve participation and attribution.
 - Take steps to increase the installation of low flow showerheads and faucet aerators.
- Appliance Recycling:
 - Change the equipment operating assumption from 24 hours per day, 365 days per year to a value that more accurately reflects secondary unit operation.

- Improve attribution by targeting the secondary market rather than units that would have been removed from service in the absence of the program.
- Low Income:
 - Improve communication with field staff. Two refrigerators were not installed. One was
 removed by the program and the other was refused. In both cases it is likely that
 program staff were aware of the issues, but the information did not make it into the
 database.
- Online Audit:
 - Take steps to increase the installation of low flow showerheads and faucet aerators.
- Onsite Audit:
 - Improve quality control on entering data from forms into the database.
 - Provide increased education to recipients of programmable thermostats. Several thermostats were removed due to issues learning how to operate it.
- Commercial and Industrial:
 - Change savings calculation assumptions to allow for a range of equipment operating schedules, not a single schedule that applies to all C&I facilities.
 - Set qualification rules to maximize verified savings. For example, when rebating pool covers, set qualification rules that require the end-use system affected (i.e. the pool heater) to use electricity or natural gas in order to qualify for a rebate.
 - Establish a deemed calculation for variable frequency drives instead of a single deemed savings value.
 - Provide live unlocked spreadsheets for custom projects to evaluators. Without these files it is difficult to understand how calculations were done and identify sources of errors.
 - Require staff to upload clear scans of program documentation. For many 2011 projects, the program documentation was difficult to read due to the scan quality.
 - Do not use a coincident factor (CF) when calculating tracking kWh savings. CF is used to estimate peak period savings and is not appropriate for determining annual kWh savings.

КЕМА⋞

The law creating the energy efficiency programs in Michigan allows them to claim a percentage of the overall savings goal equivalent to the amount of money spent on pilot programs, up to five percent. In other words, if the program spends 4.3 percent of the budget goal on pilot programs, they may claim 4.3 percent of the total savings goal as a result. Pilot savings must be split between the residential and commercial/industrial budgets.

Table 136 and Table 137 show the savings for the Efficiency United residential and commercial/industrial pilot programs respectively, by utility. These savings are based on the savings reported in the final database received by KEMA on February 27, 2012. Overall, the program was able to claim 5,755,726 kWh and 557,508 ccf through the pilot programs.

Utility	kWh	ccf
Alpena Power Company	40,972	
Bayfield Electric Cooperative		
Daggett Electric Company	735	
Edison Sault Electric Company	137,003	
Indiana Michigan Power Company	1,353,020	
Michigan Gas Utilities Corporation		17,209
SEMCO Energy Gas Company		236,093
Upper Peninsula Power Company	288,616	
We Energies	138,881	
Wisconsin Public Service Corporation	57,605	2,531
XCEL Energy	59,411	2,057
EU Residential Pilots Overall	2,076,244	257,890

Table 136. Efficiency United Residential Pilot Savings

Table 137. Efficiency United Commercial and Industrial Pilot Savings

Utility	kWh	ccf
Alpena Power Company	261,158	
Bayfield Electric Cooperative		
Daggett Electric Company	373	
Edison Sault Electric Company	578,572	
Indiana Michigan Power Company	1,740,699	
Michigan Gas Utilities Corporation		98,558
SEMCO Energy Gas Company		192,010
Upper Peninsula Power Company	658,832	
We Energies	143,245	
Wisconsin Public Service Corporation	213,562	6,307
XCEL Energy	83,041	2,743
EU C&I Pilots Overall	3,679,482	299,618

Table 138 and Table 139 show the savings for the Energy Optimization Coop residential and commercial/industrial pilot programs respectively, by utility. These savings are based on the savings reported in the final database received by KEMA on February 27, 2012 and email communications from MECA on March 19, 2012. Overall, the program was able to claim 45,396 kWh through the pilot programs.

Table 138. Energy Optimization Residential Pilot Savings, Coop

Table 139. Energy Optimization Commercial and Industrial Pilot Savings, Coop

Utility	kWh
Alger Delta Electric	
Cloverland Elective Cooperative	
Great Lakes Energy	
Homeworks Tri-county Cooperative	
Midwest Energy	3,358
Ontonagon County REA	
Presque Isle Electric & Gas Cooperative	1,317
Thumb Electric Cooperative	1,783
C&I Pilots EO Coops Overall	6,458

M. Education Programs

The law creating the energy efficiency programs in Michigan allows them to claim a percentage of the overall savings goal equivalent to the amount of money spent on education programs, up to three percent. In other words, if the program spends 2.3 percent of the budget goal on education programs, they may claim 2.3 percent of the total savings goal as a result. Pilot savings must be split between the residential and commercial/industrial budgets.

Table 140 and Table 141 show the savings for the Efficiency United residential and commercial/industrial pilot programs respectively, by utility. Overall, the program was able to claim 1,233,194 kWh and 132,744 ccf through the pilot programs.

Utility	kWh	ccf
Alpena Power Company	20,013	
Bayfield Electric Cooperative		
Daggett Electric Company		
Edison Sault Electric Company	39,592	
Indiana Michigan Power Company	291,544	
Michigan Gas Utilities Corporation		21,482
SEMCO Energy Gas Company		38,046
Upper Peninsula Power Company	62,146	
We Energies	35,747	
Wisconsin Public Service Corporation	15,963	687
XCEL Energy	12,738	636
EU Residential Education Overall	477,743	60,850

Table 140. Efficiency United Residential Education Savings

Table 141. Efficiency United Commercial and Industrial Education Savings

Utility	kWh	ccf
Alpena Power Company	52,595	
Bayfield Electric Cooperative		
Daggett Electric Company		
Edison Sault Electric Company	111,264	
Indiana Michigan Power Company	381,927	
Michigan Gas Utilities Corporation		23,949
SEMCO Energy Gas Company		45,773
Upper Peninsula Power Company	128,873	
We Energies	15,715	
Wisconsin Public Service Corporation	46,858	1,514
XCEL Energy	18,220	658
EU C&I Education Overall	755,451	71,894

Table 142 and Table 143 show the savings for the Energy Optimization Coop residential and commercial/industrial pilot programs respectively, by utility. Overall, the program was able to claim 251,952 kWh through the pilot programs.

Utility	kWh
Alger Delta Electric	
Cloverland Elective Cooperative	17,619
Great Lakes Energy	48,848
Homeworks Tri-county Cooperative	2,595
Midwest Energy	44,661
Ontonagon County REA	6,423
Presque Isle Electric & Gas Cooperative	3,179
Thumb Electric Cooperative	13,905
Residential Education EO Coops Overall	137,230

Table 142. Energy Optimization Residential Education Savings, Coop

Table 143. Energy Optimization Commercial and Industrial Education Savings, Coop

Utility	kWh
Alger Delta Electric	
Cloverland Elective Cooperative	7,124
Great Lakes Energy	103,943
Homeworks Tri-county Cooperative	
Midwest Energy	
Ontonagon County REA	
Presque Isle Electric & Gas Cooperative	2,885
Thumb Electric Cooperative	770
C&I Education EO Coops Overall	114,722

N. Evidence of Spillover – Audit Programs

KEMA investigated whether any spillover occurred as a result of the Online Audit (OA) or Onsite Audit (AW) programs. To address this issue, KEMA asked participants from the two audit programs and non-participant utility customers a number of questions about energy efficiency upgrades recently made to their homes. KEMA compared the responses given by the two groups (participants and non-participants) to determine whether participants installed more upgrades than non-participants. We chose to ask about energy saving actions that were recommended by the Online Audit program. Statistically significant increases in actions between the audit participants and the general population indicate evidence of spillover savings that may be attributable to the program.

N.1.1 Findings

Table 144 through Table 151 show the responses to survey questions from respondents who participated in the OA program, respondents who participated in the AW program, and respondents who did not participate in any program (Population). The columns labeled "n" refer to the number of respondents. Those labeled "Percent" refer to the percent of respondents who provided each response, weighted to represent their survey group.¹⁸ Highlighted cells indicate whether the difference between program participants and the population is statistically significant at the 90 percent confidence level.

The survey questions delivered to the OA and Population respondents were identical but different from the questions delivered to the AW respondents. The AW survey did not include the same number of questions and asked some questions differently than the surveys given to the other groups. Where the AW survey did not include a question, the AW columns are missing. Where the AW survey asked a question differently, this is indicated with an asterisk.

Table 144 shows the response to a general question about whether participants took actions to reduce infiltration in their building shell. The table shows that OA participants took steps to reduce shell infiltration at a higher rate than the general population, a difference that is statistically significant. The AW participants did not differ significantly from the general population in their responses.

¹⁸ The customer weighting methodology can be found in the process evaluation report.

EE1. In the past 12 months have you taken any actions to reduce drafts coming in through your home's door or windows?									
	Pop	Population Online Audit Onsite Aud							
Response	n	Percent	n	Percent	n	Percent			
Yes	433	46%	119	59%	47	50%			
No	363	53%	81	42%	47	48%			
Don't Know	4	0%	0	0%	2	3%			

Table 144. General Response, Building Shell

Table 145 shows the response to a more specific question about which actions participants took to reduce energy loss through their building shell. The table shows that, while participants generally reported taking more action, none of the differences between program participants and the general population were statistically significant.

EE2. Which of the following have you done?								
	Population		Online Audit		Onsite Audit			
Response	n	Percent	n	Percent	n	Percent		
None	5	2%	4	3%	1	2%		
Added window shades or curtains	125	26%	25	21%	0	0%		
Caulked windows or doors	168	37%	50	40%	11	24%		
Installed weather stripping on windows								
or doors	210	44%	54	44%	22	45%		
Installed sweeps under your door	79	17%	24	18%	13	33%		
Installed a new threshold	50	7%	15	12%	1	6%		
Added weather stripping to attic access	53	10%	18	16%	3	5%		
Installed a crawl space vapor shield	31	5%	5	5%	2	3%		
Other	145	34%	0	0%	20	48%		
Don't know	9	2%	0	0%	0	0%		
Refused	1	1%	0	0%	0	0%		

Table 145. Specific Actions, Building Shell

Table 146 shows the response to a general question about whether participants took actions to reduce heat loss in their ductwork, plumbing, or chimney. The table shows that OA participants took steps to reduce heat loss at a higher rate than the general population, but the difference is not statistically significant. The AW survey did not ask this question.

EE3. In the past 12 months, have you taken any actions to reduce heat loss in your air ducts, water pipes, or chimney?								
	Population Online Audit							
Response	n Percent n Percer							
Yes	128	14%	50	24%				
No	663	85%	148 76%					
Don't Know	9	1%	2	1%				

Table 146. General Response, Ducts, Pipes, and Chimney

Table 147 shows the response to a more specific question about which actions participants took to reduce energy loss in their ductwork, plumbing, and chimneys. The table shows that OA participants insulated their hot water pipes at a higher rate than the general population, a difference that is statistically significant. The AW survey did not have enough responses to determine statistical significance.

EE4. Which of the following have you done?								
	Pop	Population		Online Audit		te Audit*		
Response	n	Percent	n	Percent	n	Percent		
None	3	2%	2	6%				
Insulated hot water pipes	62	46%	33	63%				
Insulated air ducts	28	21%	8	16%				
Sealed air ducts	26	18%	8	14%				
Insulated attic access doors	26	14%	5	9%	2	3%		
Installed damper or internal seal on								
chimney	20	20%	8	15%	2	5%		
Something else	23	14%	8	18%				
Don't know	7	5%	0	0%				

Table 147. Specific Actions, Ducts, Pipes, and Chimney

Table 148 shows the response to a general question about whether participants performed maintenance on their heating equipment. The table shows that both OA and AW participants performed maintenance at a higher rate than the general population, a difference that is statistically significant for the OA responses.

EE5. In the past 12 months, have you done any maintenance on your furnace, boiler or heat pump?										
	Pop	Population Online Audit Onsite Audit								
Response	n	Percent	n	Percent	n	Percent				
Yes	246	28%	90	48%	32	39%				
No	545	70%	108	51%	62	59%				
Don't Know	9	2%	1	0%	2	2%				

Table 148. General Response, Heating Maintenance

Table 149 shows the response to a more specific question about which maintenance actions participants implemented on their heating equipment. The table shows that both OA and AW participants replaced furnace or heat pump filters at a higher rate than the general population, differences that are statistically significant for both groups.

EE6. Which of the following have you done?											
	Pop	oulation	Onli	ne Audit	Onsite Audit*						
Response	n	Percent	n	Percent	n	Percent					
None	1	0%	0	0%	0	0%					
Replaced furnace or heat pump filter	110	38%	53	61%	62	52%					
Had furnace or boiler tuned-up by a											
professional	119	50%	40	45%	60	51%					
Something else	48	23%	16	17%	0	0%					
Don't know	5	0%	0	0%	0	0%					

Table 149. Specific Actions, Heating Maintenance

Table 150 shows the response to a general question about whether participants reduced energy use in their major appliances. The table shows that OA participants took actions to reduce appliance energy use at a higher rate than the general population, a difference that is not statistically significant. The AW survey did not ask this question.

EE7. In the past 12 months, have you done anything to reduce how much energy your major home appliances use?											
	Population Online Audit										
Response	n	Percent	n	Percent							
Yes	185	20%	78	38%							
No	597	78%	122	62%							
Don't Know	16	2%	0	0%							
Refused	2										

Table 150. General Response, Appliance Use

Table 151 shows the response to a more specific question about which actions participants took to reduce energy use in their major appliances. The table shows that, while generally participants took more actions, none of the differences were statistically significant. The AW survey did not ask this question.

EE8. Which of the following have you done?									
	Ρομ	oulation	Online Audi						
Response	n	Percent	n	Percent					
Total	26	10%	10	12%					
None	47	29%	20	23%					
Lowered water heater temperature	74	45%	24	32%					
Set back thermostat temperature	17	14%	5	7%					
Increase refrigerator or freezer									
temperature	41	22%	17	21%					
Used clothesline to dry clothes	15	8%	9	10%					
Installed a water heater blanket	9	4%	5	6%					
Added occupancy or daylight sensors	57	36%	23	33%					
Replaced or cleaned dryer vent	30	15%	25	32%					
Don't know	4	4%	0	0%					
Refused	0	0%	0	0%					

 Table 151. Specific Action, Appliance Use

N.1.2 Summary and Conclusions

Overall, the spillover portion of the impact evaluation surveys found the following statistically significant differences between the general population and participants of the OA and AW programs.

- **Shell Infiltration:** OA participants took more actions to reduce building shell infiltration than the general population, though none of the specific action differences were statistically significant.
- **Ducts, Pipes, Chimneys:** OA participants insulated their hot water pipes at a higher rate than the general population.
- **Heating Maintenance:** OA participants performed more maintenance on their heating equipment than the general population. Both OA and AW participants replaced their furnace or heat pump filters at a higher rate than the general population.
- **Home Appliances:** OA participants took more actions to reduce appliance energy use than the general population, though none of the specific action differences were statistically significant.

O. Geographical Comparison – UP / LP

KEMA compared installation rates and attribution for the programs in Michigan's Upper Peninsula (UP) and Lower Peninsula (LP) to determine whether there was a difference in program participation based on the cultural differences between the two locations. In particular, program implementers were concerned that the conservative mindset and geographical separation of the UP would result in a lower installation rate than in the LP. Despite oversampling the UP to ensure enough completes to make this comparison, many programs had very few completed surveys from UP participants.

Table 152 and Table 153 show program installation rates by UP/LP for electricity and natural gas respectively. Highlighted cells show a statistically significant difference in the results from UP and LP participants.

Three programs had statistically significant differences in installation rate: Low Income for electricity and ENERGY STAR and Onsite Audit for natural gas. In two of those cases (Low Income electricity and Onsite Audit natural gas), the LP participants reported a lower installation rate than the UP participants. For ENERGY STAR, only five surveys were completed with UP natural gas participants, and four of those respondents purchased kits, which had lower installation rates than other technologies in the program. Therefore, KEMA found no evidence of a lower installation rate for UP program participants.

	U	Ρ	L	P
Program	n	Ratio	n	Ratio
ENERGY STAR	537	78%	417	73%
HVAC	8	100%	60	95%
C&I	72	100%	142	100%
Onsite Audit	3	93%	91	89%
Online Audit	32	62%	142	48%
Low Income	114	99%	130	95%

	U	Ρ	L	Ρ
Program	n	Ratio	n	Ratio
ENERGY STAR	5	44%	61	70%
HVAC	15	100%	361	100%
C&I	2	100%	23	100%
Onsite Audit	32	99%	158	91%
Online Audit	2	44%	11	62%
Low Income	35	100%	151	99%

Table 153. UP vs. LP Natural Gas Installation Rate, by Program

P. Measure Life

KEMA's analysis of the EO/EU programs produced verified lifetime energy savings. Since the program tracking database reports annual savings only, KEMA applied a measure life (effective useful life) to the annual savings to produce lifetime savings. KEMA reviewed the measure life estimates in the MEMD database (most without citation) and compared them to two other sources: a KEMA measure life study from 2009¹⁹ and the most recent California DEER database. Since the KEMA study was conducted for a commercial and industrial program, its applicability to residential measures is limited. The DEER database is based on an extensive review of secondary sources and provides a measure life for most residential measures included in the EO/EU programs.

P.1.1 Residential

Table 154 shows the measure, program estimate, KEMA study estimate, DEER estimate (and range, when applicable), and the value used in the evaluation for residential measures. We also include the 2010 evaluation estimate to show changes from round 1 to round 2 of the evaluation. In most cases, KEMA chose to use the DEER value in our evaluation. Most of the program estimates did not cite a source, making it difficult to judge the validity of the assumption. The DEER database is well supported by extensive research and secondary source review. Though it was developed to support programs in California, KEMA feels that the results are applicable to Michigan for most technologies.

There is one change in the evaluation measure life estimates that will have a large effect on the program savings, and that is the estimate for CFLs. In 2010, KEMA used six years for a residential CFL based on a calculated DEER range. In 2011, KEMA changed our approach and used the program estimate, based on the DEER maximum value of 15 years. Since DEER does not have an explicit value for residential CFLs, and the program estimate is less than the maximum DEER value, KEMA chose to use the program estimate. The only other change from 2010 to 2011 is the EUL for weather-stripping, which increased from five years to 11 years. Since weather-stripping is such a small measure in the portfolio, this change will have very little impact on the overall results.

¹⁹ Miriam Goldberg, J. Ryan Barry, Brian Dunn, Mary Ackley, Jeremiah Robinson, Darcy Deangelo-Woolsey. *Business Programs: Measure Life Study*. August 25, 2009.

For ENERGY STAR new homes, KEMA reviewed the measures that are addressed in the ENERGY STAR review. Savings for ENERGY STAR homes are dominated by insulation (20 years), furnace (15 years), and air sealing (11 years) components. Combining those, KEMA used a measure life estimate of 18 years for the house as a whole.

					Evaluati	on Value
Measure	Program	KEMA Study	DEER	DEER Range	2010	2011
Ceiling Fan*	10	N/A	N/A	10-20	N/A	15
Air Sealing	13	N/A	11	10 - 11	11	11
Boiler	20	18	20	N/A	20	20
Central Air Conditioner	15	15	15	11 - 20	15	15
CFL	9	N/A	15 (max)	15 (max)	6	9
Clothes Dryer	14	N/A	N/A	N/A	N/A	14
Clothes Washer	14	N/A	11	10 - 11	11	11
Dishwasher	11	10 - 12	11	11	N/A	11
ECM	15	15	N/A	N/A	15	15
Faucet Aerator	12	N/A	10	10	10	10
Furnace	15	15	20	15 - 25	15	15
Furnace Tune-up	5	5	N/A	N/A	5	5
Heat Pump	15	15	15	11 - 20	15	15
Insulation - Ceiling	20	20	20	20 - 25	20	20
Insulation - Floor	20	20	20	20 - 25	20	20
Insulation - General	20	20	20	20 - 25	20	20
Insulation - Rim Joist	20	20	20	20 - 25	20	20
Insulation - Wall	20	20	20	20 - 25	20	20
LED Night Light	12	N/A	16	16	16	16
Low Flow Showerhead	12	N/A	10	10	10	10
	6	N/A	13 (electric)	6-25 (electric)	13 (electric)	13 (electric)
Pipe Wrap	o	IN/A	11 (gas)	6-25 (gas)	11 (gas)	11 (gas)
Programmable Thermostat	9	N/A	11	10 - 11	11	11
Recycling - Freezer	8	N/A	5		5	5
Recycling - Refrigerator	8	N/A	4		4	4
Refrigerator	12	11	14	13 - 20	14	14
Smart Strip	5	N/A	N/A	N/A	5	5
			13 (electric)	13-15	13 (electric)	13 (electric)
Water Heater	er 15 15		11 (gas)	(electric)	11 (gas)	11 (gas)
			20 (tankless)	11-15 (gas)	20 (tankless)	20 (tankless)
Weather-stripping	5	N/A	11	11	5	11
Windows	20	N/A	20	20	N/A	20

Table 154. Measure Life Estimates for Residential Programs

P.1.2 Commercial and Industrial

Table 155 shows the shows the program estimate, the KEMA study estimate, and the DEER estimate for each measure with data available from that source. The last column in the table shows the measure life that was used in this evaluation. The evaluation team developed the

measure life used based on the best available references. Values in the MEMD study were not referenced, leading to a preference for the other sources.

KEMA relied primarily on the measure life study conducted for the Focus on Energy Business programs in Wisconsin in 2009 to determine the evaluation value. When a value was not available from the KEMA study, preference was given to the DEER data and, if necessary, to the program estimate. The exception is the evaluation value for LED lamps, which was determined from the Efficiency Vermont technical resource manual.

Measure	Program	KEMA Study	DEER	Evaluation Value
Anti-Sweat Controls	15	9	12	9
Boiler (Tune-ups)	2	1	N/A	1
Heating - Furnace	15	15	N/A	15
Heating - Infrared Heater	15	15	N/A	15
Lighting - CFL	2	4 - 7	2	4
Lighting - Controls	10	10	8	10
Lighting - De-Lamping	12	10	N/A	10
Lighting - Exit Sign LED	15	10	16	10
Lighting - High Bay	12	12	15	12
Lighting - HPT8	12	12	15	12
Lighting - LED Lamps	15	N/A	N/A	20
Lighting - LWT8	12	12	15	12
Lighting - Standard T8	12	12	15	12
Motor	15	16	15	16
Night Cover - Cooler	5	N/A	5	5
Other (Custom)	N/A	12	N/A	12
Thermostat Setback	9	N/A	11	11
VFD	15	16	15	16

Table 155. Measure Life Estimates for Commercial and Industrial Program

Q. Tracking Review

KEMA reviewed the CLEAResult tracking database to verify that the deemed savings values from the MEMD were applied correctly. We conducted our verification on multiple versions of the database received prior to CLEAResult's final year-end reporting. As a result, the errors found in the tracking review were corrected before the year-end savings were produced and were not included in the adjustment factors in this report. This section outlines the errors that were found as part of the review.

KEMA found a marked improvement in the savings assignments from the 2010 to 2011 databases.

- The per-unit savings were entered directly into the database, which made it easier to confirm that MEMD measure that was the source of the savings.
- The 2011 database clearly identified the "multipliers" used to determine the program savings for measures such as insulation, programmable thermostats, and air sealing, including their units.
- For most measures in most programs, the measure codes were consistent throughout the year. When measures were changed, new codes were assigned.

KEMA did find the following errors:

- ENERGY STAR:
 - The savings for ceiling fans were assigned incorrectly. The database used 181 kWh/unit; it was corrected to 156 kWh/unit.
 - The savings for one of the kits was assigned incorrectly. The kit includes 12 CFLs, two power strips, two faucet aerators, six feet of pipe wrap, two showerheads, and four LED night lights for a total savings of 2,658 kWh/kit. The database was using 2,636 kWh/kit. These were corrected.
- Appliance Recycling:
 - One record used per-unit savings that were twice as high as they should have been.
 This was corrected.
- HVAC:
 - Savings for self-implemented programmable thermostats were changed from 125 kWh/unit to 138 kWh/unit to make them consistent with the MEMD value.
 - Six measures (two furnace, one furnace tune-up, and three thermostats) used invalid multipliers to determine savings. These were corrected.

- The savings for ground source heat pumps did not match the values in the programspecific MEMD data. These were corrected.
- Low Income:
 - Some measures (such as rim joist insulation) use two different per-unit savings estimates. The values are close and the difference stems from a rounding error. These were not corrected. In the future, the program should use a single per-unit savings value for each measure in the database.
 - Two (substantially) different per-unit savings values were used for wall insulation measures. These were corrected.
 - Six furnace measures used invalid multiplier entries. These were corrected.
 - Thirteen air sealing measures used incorrect or invalid multipliers. These were corrected.
 - Ten rim joist insulation measures used multipliers in two different fields, which overestimated the savings impacts. These were corrected.
- Onsite Audit:
 - Seven thermostat measures used incorrect square footage multipliers. These were corrected.
 - Two faucet aerator measures used multipliers in two different fields, which overestimated the savings impacts. These were corrected.
 - The database used 0.053994 ccf/sq ft for window replacement measures. This was corrected to 0.53994 ccf/sq ft.
- New Construction:
 - The database used 0.1174 ccf/sq ft to calculate energy savings. This was corrected to 0.1231 ccf/sq ft.
- Commercial and Industrial:
 - There were a number of measures that did not have supporting savings information in the original program-specific MEMD that KEMA received. An additional file, Morgan's Modeling for 2011 with units.xls, was provided to document those measures.
 - A number of measures were used in the program that did not have corresponding MEMD savings, including pipe wrap, faucet aerators, showerheads, and bi-level lighting controls. KEMA reviewed the magnitudes of savings and compared them to the residential program to determine whether they were reasonable; however, we did not do an engineering review on those values.
 - Two savings estimates were used for measure code DL4T12HPT8. The savings were corrected to 165.4 kWh/unit.

- Two savings values were used for measure code DL8T12HPT8. The savings were corrected to 239.2 kWh/unit.
- Other:
 - Many showerhead, faucet aerator, and pipe wrap kits assigned savings to the wrong fuel according to the water heater fuel entered in the database. For example, the database would show kWh savings though the water heater used natural gas. These were corrected.
 - In the Low Income and Onsite Audit programs, the database used linear feet of insulation installed to determine energy savings for rim joist or band joist insulation when the multiplier should have been square feet of conditioned space. These were corrected.
 - Natural gas programmable thermostat savings were inconsistent within and across the programs. All savings were changed to 47.12 ccf/unit or 0.03624 ccf/conditioned square feet.
 - Six showerhead measures with electric water heaters in the Low Income and Multifamily programs had savings of 27 kWh/unit entered instead of 518 kWh/unit. These were corrected.

R. Documentation Verification

KEMA verified the accuracy and consistency of the program records by checking a sample of completed program application forms for the ENERGY STAR, HVAC, Onsite Audit, New Construction, C&I, and Multifamily programs. We did not review applications for the Appliance Recycling or Online Audit program because they do not use paper applications, and we did not repeat our 2010 review of the Low Income documentation. KEMA was able to download the sample of application forms directly from the program's document repository on December 2, 2011.

KEMA struggled to complete the documentation review effectively, as many of the measures represented by the downloaded documentation were entered in the 2010 data instead of the 2011 data, even when it appeared on the same application form as a 2011 measure. It is unclear why this is the case.

R.1.1 ENERGY STAR

Table 156 shows the measures and utilities represented by the documentation downloaded for the ENERGY STAR Program. KEMA downloaded documentation representing 18 of the 23 participating utilities, with Midwest Energy represented by the greatest number of units. The measure most represented was CFLs with 299 units, followed by Smart Strips and kits with CFLs.

						Ν	lumb	er of	Unit	S					
Consortium	Utility	Ceiling Fan	CFL	Clothes Dryer	Dishwasher	Faucet Aerator	Kit - CFL	Kit - NO CFL	LED Night Light	Pipe Wrap	Showerhead	Smart Strip	Washing Machine, elec WH	Washing Machine, gas WH	Total
	Alger Delta Electric		4		1		6					11	1		23
	Cloverland Elective Cooperative		11	2			6					17	2		38
	Homeworks Tri-county Cooperative		57	1								28	1		87
A C	Ontonagon County REA		11				1								12
MECA	Great Lakes Energy		34	4	2		1					16	9		66
2	Marquette Board of Light & Power		3			24	8		1	24		5			65
	Midwest Energy	4	39	1	1		20	3	2		1	34	2		107
	Thumb Electric Cooperative		17				12		21			11	1		62
	Presque Isle Electric & Gas Cooperative	1	63	1			2					9	1		77
Ъ	Marquette Board of Light & Power		17			44	8		1	24		6			100
MECALP	Escanaba Energy		4				1	1				1			7
ЧΠ	Newberry Water & Light Board														
	City of Stephenson		2									1			3
	Alpena Power Company														
	Indiana Michigan Power Company		2				8	1	3			15	1		30
	Michigan Gas Utilities Corporation							20			1			4	25
-	SEMCO Energy Gas Company					8		17		2	6			9	42
A	We Energies		7				4		3			6			20
MCAAA	Wisconsin Public Service Corporation														
Σ	Bayfield Electric Cooperative														
	Daggett Electric Company														
	Edison Sault Electric Company		15	1	2		6	2				14	2		42
	Upper Peninsula Power Company		13				4	2	9			30	1		59
	XCEL Energy														
Total	ENERGY STAR	5	299	10	6	76	87	46	40	50	8	204	21	13	865

Table 156. ESP Documentation Verification Measure and Utility Distribution

KEMA's review found one CFL, one smart strip, and one dishwasher that were not entered into the database. These findings resulted in an adjustment to the tracking savings which was included in the gross savings adjustment factor in the program-specific reporting sections. The adjustment factors for ENERGY STAR are found in Table 157.

	Documentation
Measure	Adjustment Factor
CFL	100%
Smart Strip	101%
Dishwasher	120%

Table 157. ENERGY STAR Documentation Adjustment Factors

R.1.2 HVAC

Table 158 shows the measures and utilities represented by the documentation downloaded for the HVAC Program. KEMA downloaded documentation representing 9 of the 23 participating utilities, with SEMCO represented by the greatest number of units. The measure most represented was furnaces with 221 units, followed by programmable thermostats.

				Nu	mber	of U	nits			
Consortium	Utility	Boiler	Central Air Conditioner	ECM	Furnace	Heat Pump	Pipe Wrap	Thermostat	Water Heater	Total
	Alger Delta Electric									
	Cloverland Elective Cooperative									
	Homeworks Tri-county Cooperative									
A	Ontonagon County REA									
MECA	Great Lakes Energy			2				2	1	5
2	Marquette Board of Light & Power			2						2
	Midwest Energy						1		1	2
	Thumb Electric Cooperative								1	1
	Presque Isle Electric & Gas Cooperative									
Ъ	Marquette Board of Light & Power									
MECALP	Escanaba Energy									
Ψ	Newberry Water & Light Board									
	City of Stephenson									
	Alpena Power Company									
	Indiana Michigan Power Company		7	20		3				30
	Michigan Gas Utilities Corporation	4			90			60	2	156
-	SEMCO Energy Gas Company	6			128			82	7	223
MCAAA	We Energies			5						5
UC	Wisconsin Public Service Corporation			2	3			1		6
Σ	Bayfield Electric Cooperative									
	Daggett Electric Company									
	Edison Sault Electric Company									
	Upper Peninsula Power Company									
	XCEL Energy									
Tota	I HVAC	10	7	31	221	3	1	145	12	430

Table 158. HVAC Documentation Verification Measure and Utility Distribution

KEMA's review found one application with a furnace and programmable thermostat measure on it. The programmable thermostat was not entered in the database. Since the measure was tied to a furnace, this finding resulted in an adjustment of 100.1 percent to the tracking savings for

furnaces, which was included in the gross savings adjustment factor in the program-specific reporting sections.

R.1.3 Onsite Audit

Table 159 shows the measures and utilities represented by the documentation downloaded for the Onsite Audit Program. KEMA downloaded documentation representing four MCAAA utilities, with Indiana Michigan Power represented by the greatest number of units. The measure most represented was CFLs with 793 units, followed by faucet aerators and pipe wrap.

		Number of Units												
Consortium	Utility	Band Joist Insulation	Basement Wall Insulation	Crawlspace Wall insulation	Wall Insulation	Ceiling Insulation	Floor Insulation	CFL	Faucet Aerator	Pipe Wrap	Showerhead	Thermostat	Window Replacement	Total
	Alpena Power Company													
	Indiana Michigan Power Company							766	65	32	30			893
	Michigan Gas Utilities Corporation				1	5	1		113	60	47	60	1	288
	SEMCO Energy Gas Company	2	1	2	3	8			190	101	87	95	2	491
₹.	We Energies													
MCAAA	Wisconsin Public Service Corporation													
Σ	Bayfield Electric Cooperative													
	Daggett Electric Company													
	Edison Sault Electric Company													
	Upper Peninsula Power Company							27						27
	XCEL Energy													
Tota	I AW	2	1	2	4	13	1	793	368	193	164	155	3	1699

Table 159. Onsite Audit Documentation Verification Measure and Utility Distribution

KEMA's review found a number of differences between the quantities installed according to the Onsite Audit documentation and the quantities listed in the database. We also found one wall insulation measure that had the wrong square footage multiplier entered in the database. These findings resulted in an adjustment to the tracking savings that was included in the gross savings adjustment factor in the program-specific reporting sections. The adjustment factors for Onsite Audit are found in Table 160.

	Documentation Adjustment Factor					
Measure	kWh	ccf				
CFL	97%	N/A				
Thermostat	N/A	99%				
Pipe Wrap	96%	98%				
Showerhead	N/A	99%				
Faucet Aerator	N/A	100%				
Wall Insulation	N/A	98%				

Table 160. Onsite Audit Documentation Adjustment Factors

R.1.4 New Construction

KEMA reviewed the documentation for all 33 New Construction participants in the sample frame. We found that the program accurately entered all of the information into the database, resulting in no documentation review adjustment.

R.1.5 C&I

Table 161 shows the measures and utilities represented by the documentation downloaded for the C&I program. KEMA downloaded documentation representing all of the participating utilities, with Indiana Michigan Power represented by the greatest number of units. The measure most represented was high performance T8s with 96 units, followed by high bay fluorescents.

		Measure													
				Ligh	ting										
Consortium	Utility	LED	CFL	De-lamping	High-Bay	High Performance T8	T8 retrofit/install	VFD	LED Exit Sign	Refrigeration	Controls	Motors	НИАС	Custom	Total
	Alpena Power Company		6	3	6	20	1		3	1	6			2	48
	Daggett Electric Company				1										1
	Edison Sault Electric Company		5	2	2	15	4		1		4			1	34
MCAAA	Indiana Michigan Power Company	1		5	28	18	1	1	2	4	4			12	76
lC⊿	Michigan Gas Utilities Corporation												8		8
≥	SEMCO Energy Gas Company										2		17	4	23
	Upper Peninsula Power Company				4	2		6			1			1	14
	We Energies			3	3	12	1	2	2		4	1		3	31
	Wisconsin Public Service Corporation		2		4	2					1		1	2	12
è	Cloverland Elective Cooperative		1			3					1			1	6
MECA Cooperative	Great Lakes Energy		1	1	7	5	1							4	19
per	Homeworks Tri-county Cooperative				2	2	1	2							7
00	Midwest Energy			1	3	2			1		1			2	10
A O	Ontonagon County REA				1						1				2
U U U	Presque Isle Electric & Gas Cooperative					3	1							3	7
	Thumb Electric Cooperative					2	1				1				4
MECAUP	City of Stephenson		1		2				2						5
C/	Escanaba Energy		3	1	8	10	4		1		4			1	32
Σ	Marquette Board of Light & Power													2	2
Tota	I C&I	1	19	16	71	96	15	11	12	5	30	1	26	38	341

Table 161. C&I Documentation Verification Measure and Utility Distribution

KEMA's review of the documentation found eight applications with errors:

- One application had the incorrect company name entered in the database.
- There were two sets of paperwork for the same application.
- The quantity of installed equipment was incorrect on five applications.

For the C&I program, the adjustments resulting from these findings were already included in the engineering review factor reported in Section I.2.4.

R.1.6 Multifamily

KEMA reviewed the documentation for 11 Multifamily participants. We found that the program accurately entered all of the information into the database, resulting in no documentation review adjustment.

S. MEMD Savings Information

KEMA did not do a full deemed savings review on the assumptions and calculations used by the program. Such a study was beyond the scope of this evaluation. However, we did survey participants regarding the equipment installed or replaced and how that equipment was used in their household. The data we collected is reported in the following sections and is presented to inform the MEMD savings estimates prepared by Morgan Marketing Partners (MMP). We are aware that self-reported data (especially in the residential sector) is not always a reliable indication of how equipment is actually being used. As a result, we are not recommending that MMP change the MEMD based solely on the data below. Rather, we are providing the data we have available in the interest of adding to a potential pool of information coming out of program evaluations across the state.

S.1 ENERGY STAR

For the ENERGY STAR Program, the measures addressed are CFLs and clothes dryers.

S.1.1 CFLs

Seventy-seven percent of bulbs purchased through the program in 2011 were installed rather than stored. Table 162 shows the type of bulb that was replaced by the installed CFLs. The table shows that 61 percent of participants who replaced an existing bulb replaced a CFL or an LED, which would not produce any energy savings. The program assumed that 100 percent of CFLs installed replaced incandescent bulbs.

Type of bulb Replaced	Participants n=1419
Incandescent	38%
CFL	58%
LED	3%
Other	1%

Table 162. Type	of Bulb	Replaced
-----------------	---------	----------

S.1.2 Clothes Dryers

KEMA collected valid survey data from 29 participants who purchased high efficiency clothes dryers, including the number of loads dried. Table 163 shows the number of loads of laundry washed per week. When combined, the average number of loads is 6.1 per week, or 320 loads per year.

Table 163. Number of Loads per Week

Number of Loads	Participants (n=29)
1	3%
2	10%
3	7%
4	32%
5	15%
6	2%
7	15%
8	7%
10 or more	10%

S.2 HVAC

For the HVAC Program, the measures addressed are programmable thermostats, furnace fans, and heating systems.

S.2.1 Thermostats

KEMA collected survey data from 110 HVAC Program participants regarding their installation of a programmable thermostat.

- All programmable thermostats replaced an existing thermostat.
- Fifty-two percent replaced an existing programmable thermostat.
- Seventy percent use a different temperature setting during the winter than they did prior to installation.
- Of those who use a different temperature setting (n=76), 72 percent set the temperature cooler at night, while 11 percent set the temperature higher at night.
- Of those who use a different temperature setting (n=76), 23 percent set the temperature cooler during the day when occupied, while 16 percent set the temperature higher during the day when occupied.
- Of those who use a different temperature setting (n=76), 58 percent set the temperature cooler during the day when unoccupied, while 3 percent set the temperature higher during the day when unoccupied.

S.2.2 Furnace Fans

KEMA collected survey data from 33 HVAC Program participants regarding their installation of an efficient furnace fan.

Table 164. Thermostat Setting	Before Getting New Furnace Fan
-------------------------------	--------------------------------

Thermostat Setting (before)	Percent
Thermostat does not have switch	8%
Auto	67%
On	18%
Both	7%

Table 165. Thermostat Setting After Getting New Furnace Fan

Thermostat Setting (after)	Percent
Auto	78%
On	17%

Eighty percent of those who purchased a furnace fan have a central air conditioner.

S.2.3 Heating systems

Participants (n=264) were asked the age of their previous heating system. Seventy-three percent were older than fifteen years old.

Table 166. Age of Previous Heating System

Years old	Percent
5 to 10	2%
10 to 15	14%
15 to 20	23%
20 to 25	29%
25 to 30	6%
30 to 35	7%
35 to 40	2%
Greater than 40	6%
Don't Know	12%

S.3 Onsite Audit

For the Onsite Audit Program, the measures addressed are CFLs, faucet aerators, and showerheads.

S.3.1 CFLs

KEMA collected survey data from 286 Onsite Audit Program participants regarding the location of CFL bulbs installed as part of the audit. Table 167 shows the locations in which the CFLs were installed. KEMA is aware of recent large-scale metering studies on residential lighting that report operating hours by room type. We used the results of a California study²⁰ conducted by KEMA to determine the average number of operating hours per bulb based on the location information found in Table 167. KEMA found that the average hours of use for a CFL in the EO/EU programs is 2.2 hours per day. This is slightly lower than the 2.3 hours per day assumed by the program.

Installation Location	Percent
Kitchen	15%
Dining Room	11%
Living Room	13%
Famliy Room	2%
Bedroom	19%
Bathroom	14%
Laundry/Utility Room	6%
Closet	1%
Garage	0%
Hallway	3%
Other Room	2%
Porch	11%
Entryway	3%
Other Outdoor Location	0%

Table 167. Location of Bulb Replaced

S.3.2 Faucet Aerators

KEMA collected survey data on the room within the home that faucet aerators were installed. Table 168 shows the percent of faucet aerators installed in each room.

²⁰ KEMA, Inc. Final Evaluation Report: Upstream Lighting Program. Prepared for California Public Utilities Commission, Energy Division. February, 2010.

Table 168. Location of Faucet

Installation Location	Percent
Kitchen	53%
Bathroom	46%
Laundry Room	1%
Total	100%

S.3.3 Showerheads

KEMA collected survey data on the number of showers per week from participants who purchased showerheads. On average, each participating household took 11 showers per week.

T. Sample Design and Disposition

T.1 Sample Design

KEMA drew our sample from frames developed from the program database through August 31, 2011. The data was provided in the form of nine Excel files sent on September 6, 2011.

The primary objective of KEMA's sample designs was to target a relative precision of \pm 10 percent at the 90 percent confidence level for each program overall, sometimes referred to as 90/10 precision. The secondary objective was to produce technology-level results at a precision high enough to allow for reliable interpretation, though not necessarily as precise as 90/10 precision. KEMA used a model-based sampling approach to develop efficient sample designs and to assess the likely statistical precision.

KEMA targeted customers who made a larger contribution to the total program savings, though the sample was designed to ensure that we would complete surveys with customers that had smaller contributions as well. Targeting customers with greater savings allowed us to achieve a more precise savings estimate while limiting evaluation data collection costs by limiting the number of surveys. KEMA used a model based sampling approach for some designs and simple random sampling for others.

KEMA collected data from customers based on a randomized order within the stratum. When a given measure was up for completion, KEMA called that customer until either the survey was completed, or the customer was "killed." A customer is "killed" when they refuse to participate in the survey, terminate the survey before the responses are completed, or when the survey house fails to make contact within six attempts on different days at different times of the day.

Many customers received rebates for multiple measures, such as a CFL and a washing machine for example. Since measures are randomized within a stratum, a customer could be eligible for a survey regarding their CFL but not yet eligible for a survey regarding their washing machine. However, KEMA could complete the survey regarding the CFL and the customer could then later become eligible for a survey regarding their clothes washer. To avoid customer burden and repeated attempts at reaching the same person, KEMA asked customers about all of the measures they installed regardless of where each fell within the call order. When KEMA completed a survey with a customer, we asked about all measures that were installed by that customer whether or not those measures fell into the sample. This prevented KEMA from having to make multiple calls to a single house that could annoy the customer. For surveys

conducted on measures that were not included in the sample or would not have come up in the normal call order, the results were included in the analysis but given a weight of one, meaning they represented only themselves and no other measures in the population.

KEMA was unable to recruit all of the desired sample targets by strata, especially for those strata where we conducted a census. For that situation, KEMA created a backup strategy that transferred a sample point from the stratum that we were unable to complete to the stratum with the largest contribution to total savings that had sites available in the population to sample. For example, if the sample design for water heaters targeted a census and KEMA was unable to recruit one of those sites, that sample point would then be allocated to the furnace sample. In that way KEMA was still able utilize the entire sample and target the optimal precision for the sample design.

T.1.1 Sample Design Strategy

KEMA used the same general sample design approach for the ENERGY STAR, HVAC, Appliance Recycling, Online Audit, Onsite Audit, and Low Income programs. For each program, KEMA mapped the individual measure codes into sampling groups that combined like items in an effort to increase the final precision for each group. We then assigned each record to strata defined by client, measure group, geography (upper or lower peninsula), and fuel (gas or electric savings). For Appliance Recycling, we also assigned strata for participants who recycled multiple appliances. For each program, KEMA targeted the number of completes shown in Table 169. Table 170 through Table 175 summarize the sample frame and measure group mapping for each of the programs.

KEMA did not complete a sample design for the Multifamily, New Construction, or Commercial and Industrial programs. For Commercial and Industrial and New Construction, KEMA attempted to complete surveys with a census of the sample frame. For Multifamily, we simply ordered a random sample of participants and called until we reached the target number of completes. Because of the small number of participants prior to August 31, KEMA used the program database provided on January 2, 2012, to develop the sample frame for the Multifamily Program.

Table 169	Completion	Targets	by Program
-----------	------------	---------	------------

Program	Completion Target	Unit of Completion
ENERGY STAR	600	Measure
Appliance Recycling	400	Measure
HVAC	300	Measure
Low Income	250	Measure
Online Audit	200	Measure
Onsite Audit	200	Measure
New Construction	Census	N/A
Commercial and Industrial	Census	N/A
Multifamily	10	Participant

Table 170. Sample Frame Summary, ENERGY STAR

Measure Code	Measure Description	Measure Category	# Measures	# Customers	kWh	ccf
ESCD	Clothes Dryer	Clothes Dryer	101	101	14,544	0
ESCF	Ceiling Fan w/ light kit	Ceiling Fan	10	8	3,077	0
ESCFL	Compact Fluorescent Bulbs	CFL	311	303	122,012	0
ESCFLR	EVENT CFL - 3 PACK	CFL	278	277	83,424	0
ESDW	Dishwasher	Dishwasher	28	28	3,780	0
ESLEDNLTH	LED Night Light - THUMB EVENT ONLY	LED Night Light	196	196	4,312	0
ESLEDR	LED NIGHTLIGHT EVENT	LED Night Light	120	119	4,114	0
ESLFA	Low Flow Faucet Aerator 1.5 gpm	Faucet Aerator	4	4	0	77
ESLFS	High Efficiency Showerhead Event Sales	Showerhead	1	1	518	0
ESLFS	Low Flow Shower Head, 1.75 gpm	Showerhead	4	4	0	189
ESMFFA	Low Flow Faucet Aerator	Faucet Aerator	146	146	41,832	0
ESMFPW	Pipe Wrap	Pipe Wrap	150	150	45,900	0
ESMPEER	EVENT MAX PACK GAS WH ELECTRIC SIDE 12 CFLS. 2 SPS	Kit - CFL	3	3	2,688	0
ESMPER	EVENT MAX PACK ELEC WH 12 CFLS, 2 SPS, WATER KIT	Kit - CFL	58	58	119,016	0
ESPW	Pipe Wrap - 5 ft	Pipe Wrap	3	3	0	65
ESSPS	Smart Power Strip	Smart Strip	80	80	20,608	0
ESSPSO	Smart Power Strip - Online Order	Smart Strip	213	213	76,544	0
ESSPSR	SMART POWER STRIP EVENT	Smart Strip	882	871	256,680	0
ESVPEER	VALUE PACK ELEC CUST GAS WH (CFL, LED NL, SPS)	Kit - CFL	39	39	13,182	0
ESVPER	VALUE PACK ELEC CUST ELEC WH (CFL, LED NL, SPS, KIT)	Kit - CFL	178	177	265,932	0
ESVPGR	VALUE PACK GAS CUST GAS WH (KIT)	Kit - NO CFL	41	41	0	2,444
ESWHKE	ES Water Kit (S, FA, KFA, PW)	Kit - NO CFL	5	5	5,780	0
ESWHKER	ELECTRIC WATER HEATER KIT EVENT (1 SH. 2 FA, 6FT PW)	Kit - NO CFL	27	27	31,212	0
ESWHKGR	GAS WATER HEATER KIT (SH, 2 FA, 6FT PW)	Kit - NO CFL	93	93	0	5,543
ESWMT2EE	Washing Machine T2 electric, electric dryer	Washing Machine, elec WH	25	25	8,050	0
ESWMT2EG	Washing Machine T2 electric, gas dryer	Washing Machine, elec WH	1	1	207	0
ESWMT2GG	Washing Machine T2 gas, gas dryer	Washing Machine, gas WH	14	14	0	192
ESWMT3EE	Washing Machine T3 electric, electric dryer	Washing Machine, elec WH	101	101	37,572	0
ESWMT3EG	Washing Machine T3 electric, gas dryer	Washing Machine, elec WH	16	16	3,600	0
ESWMT3GE	Washing Machine T3 gas, electric dryer	Washing Machine, gas WH	26	26	0	255
ESWMT3GG	Washing Machine T3 gas, gas dryer	Washing Machine, gas WH	61	61	0	958
Total ENERGY STA	Y STAR Frame 3,215 3,191 1,164,584				9,721	

Table 171. Sample Frame Summary, Appliance Recycling

Measure Code	Measure Description	Measure Category	# Measures	# Customers	kWh
ARFR	Freezer (Actual cost per unit - \$150)	Freezer	303	303	488,565
ARRF	Refrigerator (Actual cost per unit - \$150)	Refrigerator	908	902	1,621,840
Total Appliance Re	cycling Frame		1,211	1,205	2,110,405

Measure Code	Measure Description	Measure Category	# Measures	# Customers	kWh	ccf
	AIR SOURCE HEAT PUMP 15 SEER	Heat Pump	2	2	1592.5	0
HVACASHP16	AIR SOURCE HEAT PUMP 16 SEER	Heat Pump	2	2	2496	0
HVACASHP16SI	SELF IMPLEMETED AIR SOURCE HEAT PUMP 16 SEER	Heat Pump	1	1	1248	0
HVACASHP17	AIR SOURCE HEAT PUMP 17 SEER	Heat Pump	2	2	3072	0
HVACB87	Boiler AFUE 87% - 91%	Boiler	2	2	0	508
HVACB92	Boiler AFUE 92% - 94%	Boiler	2	2	0	3,432
HVACB95	Boiler AFUE 95% +	Boiler	18	18	0	25,234
HVACCAC14	CENTRAL AIR CONDITIONER SEER 14	Central Air Conditioner	4	4	2135.38	0
HVACCAC15	CENTRAL AIR CONDITIONER SEER 15	Central Air Conditioner	14	14	5893.32	0
HVACCAC15SI	SELF IMPLEMENTED CENTRAL AIR CONDITIONER SEER 15	Central Air Conditioner	1	1	703.68	0
HVACCAC16	CENTRAL AIR CONDITIONER SEER 16	Central Air Conditioner	13	13	3505.23	0
HVACCAC16SI	SELF IMPLEMENTED CENTRAL AIR CONDITIONER SEER 16	Central Air Conditioner	4	4	1208.7	0
HVACCAC17	CENTRAL AIR CONDITIONER SEER 17	Central Air Conditioner	5	5	1756.666	0
HVACECM	ECM blower- average	ECM	116	115	84680	0
HVACECMSI	ECM blower- SELF IMPLEMENTED	ECM	28	28	20440	0
HVACEWH	(ESE CLOVERLAND ONLY)Water Heater, Electric, 93%	Water Heater	1	1	157	0
HVACEWH	Water Heater, Electric, 93%	Water Heater	1	1	157	0
HVACF92	Furnace, High Efficiency, 92%	Furnace	9	9	0	1,867
HVACF94	High Eff 94 AFUE Furnace	Furnace	2	2	0	302
HVACF95	Furnace, High Efficiency, 95%	Furnace	789	786	0	222,244
HVACGSHP17ASI	SELF IMPLEMENTED GOUND SOURCE HEAT PUMP EER 17 ASHP BASE	Heat Pump	1	1	10752	0
HVACGSHP19	GROUND SOURCE HEAT PUMP EER 19, EER BASE	Heat Pump	2	2	4712	0
HVACPWSI	SELF IMPLEMENTED HVAC PIPEWRAP - 5 ft	Pipe Wrap	49	49	13005	0
HVACSTM	Thermostat, Moderate Setback	Thermostat	457	457	0	29,497
HVACTSTATSI	SELF IMPLEMENTED HVAC T-STAT MOD SETBACK	Thermostat	22	22	2750	0
HVACWH	Water Heater, High Efficiency, >62%	Water Heater	23	23	0	230
HVACWHKSI	Water Heater Kit Self Implemented	Water Heater	37	32	42809	0
HVACWHSI	SELF IMPLEMENTED WATER HEATER	Water Heater	39	39	6123	0
HVACWHT	Water Heater, Tankless	Water Heater	7	7	0	469
Total HVAC Frame			1,653	1,644	209,196	283,782

Table 172. Sample Frame Summary, HVAC

Table 173. Sample Frame Summary, Low Income

Measure Code	Measure Description	Measure Category	# Measures	# Customers	kWh	ccf
LIAS-SQ	Air Sealing, Gas Heat	Air Sealing	142	142	0	3429.352215
LIBJI	Rim Joist Insulation	Insulation	32	32	0	60.1342
LICFL	Compact Fluorescent Bulbs	CFL	648	648	235488	0
LICI-SQ	Ceiling Insulation	Insulation	148	148	0	6224.48787
LIECM	ECM Blower Upgrade	ECM	2	2	1460	0
LIF92	Furnace, High Efficiency, 92%	Furnace	86	86	0	21583.7785
LIF92MF	IWC Multi-Family Furnace, High Efficiency, 92%	Furnace	1	1	0	1508.326039
LIFTU	Furnace Tune-up, O&M	Furnace Tune-up	81	81	0	5536.447906
LIMHBI	Mobile Home Belly (Floor) Insulation	Insulation	15	15	0	482.8659
LIRF	Refrigerators	Refrigerator	475	475	593750	0
LISTM	Thermostat, Moderate Setback	Thermostat	42	42	0	2391.437736
LISTMMF	IWC Multi-Family Thermostat, Moderate Setback	Thermostat	1	1	0	304.380666
LIWI-SQ	Wall Insulation	Insulation	79	79	0	3470.889252
Total Low Incom	e Frame		1,752	1,752	830,698	44,992

Table 174. Sample Frame Summary, Online Audit

Measure Code	Measure Description	Measure Category	# Measures	# Customers	kWh	ccf
OAKEE200	Online Audit Kit # 200 Electric Water Heater	Kit 200	405	405	433755	0
OAKG203	Online Audit Kit # 203 Gas Water Heater	Kit 203	43	43	0	2657.4
OAKGNGWH	Gas Customer Online Audit Kit # 203 Electric Water Heater	Kit 203	10	10	0	22
OAKNE200	Online Audit Kit # 200 Electric Cust Gas Water Heater	Kit 200	236	236	51920	0
OAKNE201	Online Audit Kit # 201 Elec Cust Gas Water Heater	Kit 201	59	59	15576	0
Total Online Aud	it Frame		753	753	501,251	2,679

Measure Code	Measure Description	Measure Category	# Measures	# Customers	kWh	ccf
AWXBJI	BAND JOIST INSULATION	Insulation	4	4	0	22.41508
AWXBWI	BASEMENT WALL INSULATION	Insulation	1	1	0	105.568
AWXCI	CEILING INSULATION	Insulation	32	32	0	2134.1934
AWXCWI	CRAWLSPACE WALL INSULATION	Insulation	3	3	0	57.0856
AWXFI	FLOOR INSULATION	Insulation	1	1	0	22.54
AWXICCFL	DIRECT INSTALL CFL INDEPENDENT CONTRACTOR	CFL	4	4	1716	0
AWXICFA	DIRECT INSTALL FAUCET AREATOR INDEPENDENT CONTRACTOR	Faucet Aerator	13	13	0	195.5
AWXICPW	DIRECT INSTALL PIPE WRAP 6FT INDEPENDENT CONTRACTOR	Pipe Wrap	12	12	0	187.2
AWXICSH	DIRECT INSTALL SHOWER HEAD INDEPENDENT CONTRACTOR	Showerhead	9	9	0	243
AWXICTSTAT	DIRECT INSTALL T-STAT INDEPENDENT CONTRACTOR	Thermostat	14	14	0	1202.00832
AWXIGCFL	DIRECT INSTALL CFL INSPIRED GREEN	CFL	118	118	54516	0
AWXIGFA	DIRECT INSTALL FAUCET AREATOR INSPIRED GREEN	Faucet Aerator	262	262	14774	3340.5
AWXIGPW	DIRECT INSTALL PIPE WRAP 6FT INSPIRED GREEN	Pipe Wrap	258	258	13158	3354
AWXIGSH	DIRECT INSTALL SHOWER HEAD INSPIRED GREEN	Showerhead	216	216	21238	4725
AWXIGTSTAT	DIRECT INSTALL T-STAT INSPIRED GREEN	Thermostat	192	192	0	13077.67512
AWXWI	WALL INSULATION	Insulation	7	7	0	359.79
AWXWR	WINDOW REPLACEMENT	Window Replacement	5	5	0	343.1642664
Total Onsite Audit	Frame		1,151	1,151	105,402	29,370

Table 175. Sample Frame Summary, Onsite Audit

T.1.2 Sampling Methodology

KEMA used the MBSSTM methodology to develop efficient sample designs and to assess the likely statistical precision. The target variable of analysis, denoted *y*, is the energy savings of the project. The primary stratification variable, the estimated energy savings of the project, is denoted *x*. Because there were measures that saved both electricity and gas in the program, the total incentive amount was used as a proxy to represent the energy savings. A ratio model was formulated to describe the relationship between *y* and *x* for all units in the population, e.g., all program participants.

The MBSS[™] ratio model consists of two equations called the primary and secondary equations:

$$y_{k} = \beta x_{k} + \varepsilon_{k}$$

$$\sigma_{k} = sd \Psi_{k} = \sigma_{0} x_{k}^{\gamma}$$

where

- $x_k > 0$ is known throughout the population.
- *K* denotes the sampling unit, i.e., the project.
- $\varepsilon_{n}^{*},...,\varepsilon_{N}^{*}$ are independent random variables with *an* expected value of zero, and
- β , σ_0 , and γ (gamma) are parameters of the model.

The primary equation can also be written as

$$\mu_k = \beta x_k$$

Under the MBSS ratio model, it is assumed that the expected value of *y* is a simple ratio or multiple of *x*. Here, y_k is a random variable with expected value μ_k and standard deviation σ_k .

Both the expected value and standard deviation generally vary from one unit to another depending on x_k , following the primary and secondary equations of the model. In statistical jargon, the ratio model is (usually) a <u>heteroscedastic</u> regression model with zero intercept.

One of the key parameters of the ratio model is the <u>error ratio</u>, denoted *er*. The error ratio is a measure of the strength of the association between *y* and *x*. The error ratio is suitable for measuring the strength of a heteroscedastic relationship and for choosing sample sizes. It is *not* equal to the correlation coefficient. It *is* somewhat analogous to a coefficient of variation except that it describes the association between two or more variables rather than the variation in a single variable.

Using the model discussed above, the error ratio, *er*, is defined to be:

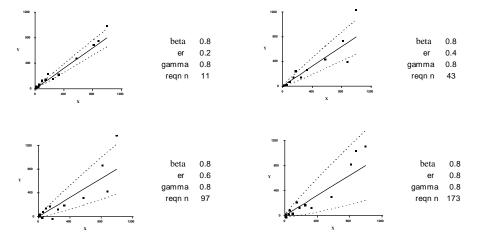

$$er = \frac{\sum_{k=1}^{N} \sigma_k}{\sum_{k=1}^{N} \mu_k} = \frac{\frac{1}{N} \sum_{k=1}^{N} \sigma_k}{\frac{1}{N} \sum_{k=1}^{N} \mu_k}$$

Figure 8 gives some typical examples of ratio models with different error ratios. An error ratio of 0.2 represents a very strong association between *y* and *x*, whereas an error ratio of 0.8 represents a weak association. Loosely speaking, an error ratio of 0.75 implies that the measured savings is typically within \pm 75 percent of the tracking estimate of savings adjusted for the realization rate. The smaller the error ratio, the stronger the association between tracking and measured savings, and the smaller the sample size needed to estimate the program realization rate with a fixed precision.

As Figure 8 indicates, the error ratio is the principal determinant of the sample size required to satisfy the 90/10 criteria for estimating *y*. If the error ratio is small, then the required sample is correspondingly small.

Figure 8. Examples of MBSS Ratio Models

T.2 Sample Disposition

The sample designs discussed in the previous section represent the optimal distribution of the data collection targets. However, the actual data collected is limited by the willingness of the respondents to complete the survey. Respondents may refuse to participate in the survey, which may result in strata that do not meet their completion targets. In those cases, KEMA often moved targets from one stratum to another to achieve the overall number of target completes.

T.2.1 Participant Surveys

Table 176 through Table 184 show the sample disposition for each survey delivered for the impact evaluation. The first column shows the strata number, the second column the measure description that corresponds to the sample design, and the third column the number of measures in the sample frame. The tables also show the target completes, sample completes, percentage of reported frame savings represented by each stratum, and the percentage of reported frame savings represented by the completed surveys. The final column, Status, indicates whether or not every customer was "killed" in each stratum. If the entry says, "Exhausted," then KEMA attempted to contact every customer in that stratum.

KEMA completed a census of program participants for the ENERGY STAR, HVAC, Onsite Audit, New Construction, C&I, and Multifamily samples. Only New Construction and C&I were designed to be census samples. The remaining programs became a census because we did not achieve our targeted customer completes despite calling everyone in the program. For ENERGY STAR, KEMA completed surveys representing 580 out of 600 targeted measures. For

HVAC, we completed 446 out of 300 targeted measures; for Onsite Audit, 300 out of 200, and for Multifamily, 11 out of 10. HVAC and Onsite Audit ended up completing more measures than targeted because our customer-level sample (used to track completes for the survey house) was designed to **guarantee** enough measure completes to meet our measure-level targets. Given the factor of safety included in the design, we were able to meet our measure-level targets targets despite missing our customer-level targets.

KEMA did not complete a census of the Appliance Recycling, Low Income, or Online Audit programs. Low Income exceeded its target by completing surveys representing 430 measures out of a targeted 250 measures, while Online Audit completed 200 out of 200. Online Audit had very few respondents with more than one measure, which made it easier to match the customer-level sample design to the measure-level sample design.

Multifamily, New Construction, and Appliance Recycling all worked off of a participant-level rather than measure-level sample design.

			_				tal Reported		
.		Measures	Target	Sample	Fra		Sam	· ·	
Stratum	Measure Code	in Frame	Completes	Completes	kWh	ccf	kWh	ccf	Status
4010101011	CFL	131	10	24	2%	0%	0%	0%	Exhausted
4010101012	CFL	70	10	10	2%	0%	0%	0%	Exhausted
4010101013	CFL	58	10	13	3%	0%	1%	0%	Exhausted
4010101014	CFL	58	10	10	3%	0%	0%	0%	Exhausted
4010101015	CFL	58	10	7	3%	0%	0%	0%	Exhausted
4010102011	CFL	71	8	17	1%	0%	0%	0%	Exhausted
4010102012	CFL	38	8	7	1%	0%	0%	0%	Exhausted
4010201011	Ceiling Fan	10	3	4	0%	0%	0%	0%	Exhausted
4010801011	Clothes Dryer	77	7	18	1%	0%	0%	0%	Exhausted
4010802011	Clothes Dryer	18	2	2	0%	0%	0%	0%	Exhausted
4011601011	Kit - CFL	32	12	4	4%	0%	0%	0%	Exhausted
				4					
4011601012	Kit - CFL	30	12	1	4%	0%	0%	0%	Exhausted
4011601013	Kit - CFL	30	12	4	4%	0%	1%	0%	Exhausted
4011601014	Kit - CFL	24	12	8	4%	0%	1%	0%	Exhausted
4011601015	Kit - CFL	24	12	7	4%	0%	1%	0%	Exhausted
4011602011	Kit - CFL	28	9	6	2%	0%	0%	0%	Exhausted
4011602012	Kit - CFL	18	8	6	2%	0%	1%	0%	Exhausted
4011602013	Kit - CFL	17	8	7	2%	0%	1%	0%	Exhausted
4011701011	Kit - NO CFL	10	7	1	1%	0%	0%	0%	Exhausted
4011702011	Kit - NO CFL	1	1	0	0%	0%	0%	0%	Exhausted
4012001011	LED Night Light	242	4	37	1%	0%	0%	0%	Exhausted
4012001011		242	4	5	0%	0%	0%	0%	Exhausted
	LED Night Light								
4012901011	Smart Strip	200	16	33	3%	0%	1%	0%	Exhausted
4012901012	Smart Strip	119	16	20	4%	0%	1%	0%	Exhausted
4012901013	Smart Strip	115	16	17	4%	0%	1%	0%	Exhausted
4012901014	Smart Strip	115	16	34	4%	0%	1%	0%	Exhausted
4012901015	Smart Strip	115	16	21	4%	0%	1%	0%	Exhausted
4012902011	Smart Strip	79	10	20	1%	0%	0%	0%	Exhausted
4012902011	Smart Strip	55	9	10	1%	0%	0%	0%	Exhausted
			-						
4012902013	Smart Strip	46	9	9	1%	0%	0%	0%	Exhausted
4012902014	Smart Strip	46	9	9	1%	0%	0%	0%	Exhausted
4013001011	Washing Machine	55	10	10	2%	0%	0%	0%	Exhausted
4013001012	Washing Machine	49	10	10	2%	0%	0%	0%	Exhausted
4013002011	Washing Machine	19	4	4	1%	0%	0%	0%	Exhausted
4013202011	Faucet Aerator	60	9	0	1%	0%	0%	0%	Exhausted
4013202012	Faucet Aerator	43	8	0	1%	0%	0%	0%	Exhausted
4013202013	Faucet Aerator	43	8	0	1%	0%	0%	0%	Exhausted
4013301011	Showerhead	1	1	0	0%	0%	0%	0%	Exhausted
4013402011	Pipe Wrap	50	9	0	1%	0%	0%	0%	Exhausted
4013402012	Pipe Wrap	50	9	0	1%	0%	0%	0%	Exhausted
4013402013	Pipe Wrap	50	9	0	1%	0%	0%	0%	Exhausted
4013601011	Dishwasher	24	3	8	0%	0%	0%	0%	Exhausted
4013602011	Dishwasher	1	1	0	0%	0%	0%	0%	Exhausted
4020101011	CFL	25	5	5	1%	0%	0%	0%	Exhausted
4020102011	CFL	53	8	10	1%	0%	0%	0%	
									Exhausted
4020102012	CFL	27	8	4	1%	0%	0%	0%	Exhausted
4020802011	Clothes Dryer	6	2	2	0%	0%	0%	0%	Exhausted
4021601011	Kit - CFL	22	7	5	1%	0%	0%	0%	Exhausted
4021601012	Kit - CFL	9	6	1	1%	0%	0%	0%	Exhausted
4021602011	Kit - CFL	16	8	3	2%	0%	0%	0%	Exhausted
4021602012	Kit - CFL	14	8	2	2%	0%	0%	0%	Exhausted
4021602013	Kit - CFL	14	8	5	2%	0%	1%	0%	Exhausted
4021002013	Kit - NO CFL	14	1	0	0%	0%	0%	0%	Exhausted
4021701021	Kit - NO CFL	22	9	5	0%	13%	0%	3%	Exhausted
4021701022	Kit - NO CFL	22	9	3	0%	13%	0%	2%	Exhausted
4021701023	Kit - NO CFL	23	8	8	0%	14%	0%	5%	Exhausted
4021701024	Kit - NO CFL	22	8	6	0%	13%	0%	4%	Exhausted
4021701025	Kit - NO CFL	23	8	6	0%	14%	0%	4%	Exhausted
4021702011	Kit - NO CFL	15	8	3	1%	0%	0%	0%	Exhausted
4021702021	Kit - NO CFL	11	10	1	0%	7%	0%	1%	Exhausted
4021702021	Kit - NO CFL	11	10	0	0%	7%	0%	0%	Exhausted
		21		2					
4022001011	LED Night Light		1		0%	0%	0%	0%	Exhausted
4022002011	LED Night Light	34	2	7	0%	0%	0%	0%	Exhausted
4022901011	Smart Strip	50	7	9	1%	0%	0%	0%	Exhausted
4022901012	Smart Strip	31	6	9	1%	0%	0%	0%	Exhausted
4022902011	Smart Strip	73	9	11	1%	0%	0%	0%	Exhausted
4022902012	Smart Strip	43	9	11	1%	0%	0%	0%	Exhausted
4022902013	Smart Strip	44	9	11	1%	0%	0%	0%	Exhausted
4022902013	Smart Strip	44	9	13	1%	0%	0%	0%	Exhausted
4022902014		9	3	4					Exhausted
	Washing Machine				0%	0%	0%	0%	
4023001021	Washing Machine	52	10	9	0%	7%	0%	1%	Exhausted
4023001022	Washing Machine	45	10	14	0%	7%	0%	2%	Exhausted
4023002011	Washing Machine	11	4	4	0%	0%	0%	0%	Exhausted
4023002021	Washing Machine	2	2	1	0%	0%	0%	0%	Exhausted
4023002022	Washing Machine	2	2	0	0%	0%	0%	0%	Exhausted
	Faucet Aerator	2	2	1	0%	0%	0%	0%	Exhausted
4023201021	Faucet Aerator	2	2	0	0%	1%	0%	0%	Exhausted
4023201022		1	1	1	0%	0%	0%	0%	Exhausted
4023201022 4023301021	Showerhead						00/	00/	
4023201022	Showerhead Showerhead	3	3	0	0%	2%	0%	0%	Exhausted
4023201022 4023301021			3	0	0%	2% 0%	0%	0%	
4023201022 4023301021 4023301022 4023401021	Showerhead Pipe Wrap	3	1		0%	0%	0%	0%	Exhausted
4023201022 4023301021 4023301022	Showerhead	3		0					

Table 176. ENERGY STAR Sample Disposition

Fraction of Frame Total Reported Savings

Table 177. Appliance Recycling Sample Disposition										
	Participants in	Target	Sample	Fraction of Reported						
Measure	Frame	Completes	Completes	Frame	Sample	Status				
Refrigerator Only	846	282	286	72%	23%	Available				
Freezer Only	248	96	90	19%	7%	Exhausted				
Refrigerator and Freezer	53	22	24	8%	4%	Exhausted				
Total Appliance Recycling	1,147	400	400	100%	33%					

... -- --

Table 178. HVAC Sample Disposition

					Fraction	of Frame To	tal Reported	Savings	
		Measures	Target	Sample	Fra	me	Sam	nple	
Stratum	Measure Code	in Frame	Completes	Completes	kWh	ccf	kWh	ccf	Status
5010601011	CAC	5	1	0	1%	0%	0%	0%	Exhausted
5010901011	ECM	28	2	6	10%	0%	2%	0%	Exhausted
5010902011	ECM	6	1	3	2%	0%	1%	0%	Exhausted
5011301011	Heat Pump	2	1	1	6%	0%	1%	0%	Exhausted
5011701011	Water Heater Kit	37	5	3	20%	0%	2%	0%	Exhausted
5012301011	Pipe Wrap	49	2	8	6%	0%	1%	0%	Exhausted
5012401011	Thermostat	22	1	4	1%	0%	0%	0%	Exhausted
5013101011	Water Heaters	39	1	9	3%	0%	1%	0%	Exhausted
5013102011	Water Heaters	1	1	0	0%	0%	0%	0%	Exhausted
5020401021	Boiler	20	10	8	0%	9%	0%	3%	Exhausted
5020402021	Boiler	2	1	1	0%	1%	0%	0%	Exhausted
5020601011	CAC	36	2	11	6%	0%	2%	0%	Exhausted
5020901011	ECM	84	7	19	29%	0%	7%	0%	Exhausted
5020902011	ECM	26	2	5	9%	0%	2%	0%	Exhausted
5021201021	Furnace	188	44	66	0%	14%	0%	5%	Exhausted
5021201022	Furnace	172	44	56	0%	15%	0%	5%	Exhausted
5021201023	Furnace	153	44	49	0%	15%	0%	5%	Exhausted
5021201024	Furnace	141	44	39	0%	16%	0%	4%	Exhausted
5021201025	Furnace	120	44	33	0%	16%	0%	4%	Exhausted
5021202021	Furnace	26	8	10	0%	3%	0%	1%	Exhausted
5021301011	Heat Pump	8	1	1	6%	0%	1%	0%	Exhausted
5022401021	Thermostat	198	10	53	0%	3%	0%	1%	Exhausted
5022401022	Thermostat	145	10	29	0%	3%	0%	1%	Exhausted
5022401023	Thermostat	104	10	23	0%	4%	0%	1%	Exhausted
5022402021	Thermostat	10	1	2	0%	0%	0%	0%	Exhausted
5023101021	Water Heaters	27	1	5	0%	0%	0%	0%	Exhausted
5023102011	Water Heaters	1	1	0	0%	0%	0%	0%	Exhausted
5023102021	Water Heaters	3	1	2	0%	0%	0%	0%	Exhausted
Total HVAC		1,653	300	446	100%	100%	19%	31%	

					Fraction	of Frame To	tal Reported	Savings	% Exhausted % Available %
		Measures	Target	Sample	Fra	me	San	nple	
Stratum	Measure Code	in Frame	Completes	Completes	kWh	ccf	kWh	ccf	Status
7010101011	CFL	103	7	13	3%	0%	1%	0%	Available
7010101012	CFL	72	6	15	4%	0%	1%	0%	Exhausted
7010102011	CFL	45	6	7	2%	0%	0%	0%	Available
7012501011	Refrigerator	39	9	11	6%	0%	2%	0%	Exhausted
7012501012	Refrigerator	39	9	11	6%	0%	2%	0%	Available
7012501013	Refrigerator	40	8	10	6%	0%	2%	0%	Available
7012502011	Refrigerator	25	7	10	4%	0%	2%	0%	Available
7012502012	Refrigerator	26	7	7	4%	0%	1%	0%	Available
7020101011	CFL	121	8	18	5%	0%	1%	0%	Available
7020101012	CFL	98	7	16	5%	0%	1%	0%	Available
7020102011	CFL	118	8	17	5%	0%	1%	0%	Available
7020102012	CFL	91	7	16	5%	0%	1%	0%	Available
7020901011	ECM	2	2	0	0%	0%	0%	0%	Available
7021201021	Furnace	25	9	7	0%	10%	0%	3%	Available
7021201022	Furnace	20	9	8	0%	11%	0%	4%	Available
7021201023	Furnace	16	8	10	0%	13%	0%	7%	Available
7021201024	Furnace	1	1	0	0%	3%	0%	0%	Exhausted
7021202021	Furnace	14	7	6	0%	7%	0%	3%	Available
7021202022	Furnace	11	6	2	0%	8%	0%	1%	Available
7021301021	Furnace Tune-up	45	6	14	0%	6%	0%	2%	Available
7021301022	Furnace Tune-up	33	6	11	0%	6%	0%	2%	Available
7021302021	Furnace Tune-up	3	2	1	0%	0%	0%	0%	Exhausted
7021501021	Insulation	143	8	36	0%	8%	0%	2%	Available
7021501022	Insulation	70	7		0%	9%	0%	3%	Available
7021502021	Insulation	61	8	22	0%	6%	0%	2%	Available
7022401021	Thermostat	40	8	12	0%	6%	0%	1%	Available
7022402021	Thermostat	2	1	0	0%	0%	0%	0%	Exhausted
7022402022	Thermostat	1	1	1	0%	0%	0%	0%	Exhausted
7022501011	Refrigerator	38	9	15	6%	0%	2%	0%	Available
7022501012	Refrigerator	39	9	8	6%	0%	1%	0%	Available
7022501013	Refrigerator	39	8	-	6%	0%	2%	0%	
7022502011	Refrigerator	47	9	13	7%	0%	2%	0%	Available
7022502012	Refrigerator	48	9	-	7%	0%	2%	0%	Available
7022502013	Refrigerator	47	9	20	7%	0%	3%	0%	Available
7022502014	Refrigerator	48	8		7%	0%	2%	0%	Available
7022701021	Air Sealing	133	9	33	0%	7%	0%	2%	Available
7022702021	Air Sealing	9	2	3	0%	0%	0%	0%	Available
Total Low Inco	ome	1,752	250	430	100%	100%	26%	32%	

Table 179. Low Income Sample Disposition

					Fractio	n of Frame To	tal Reported S	Savings	
		Measures	Target	Sample	Fra	me	Sam	ple	
Stratum	Measure Code	in Frame	Completes	-	kWh	ccf	kWh	ccf	Status
10011701011	Kit 200	197	17	31	10%	0%	2%	0%	Available
10011701012	Kit 200	62	17	17	13%	0%	4%	0%	Available
10011701013	Kit 200	61	17	16	13%	0%	3%	0%	Available
10011701014	Kit 200	62	17	21	13%	0%	4%	0%	Available
10011701015	Kit 200	62	16	22	13%	0%	5%	0%	Available
10011702011	Kit 200	54	8	16	4%	0%	1%	0%	Available
10011702012	Kit 200	20	8	5	4%	0%	1%	0%	Available
10011702013	Kit 200	21	8	8	4%	0%	2%	0%	Exhausted
10021701011	Kit 200	23	10	6	5%	0%	1%	0%	Available
10021701012	Kit 200	23	10	5	5%	0%	1%	0%	Available
10021701013	Kit 200	23	9	8	5%	0%	2%	0%	Exhausted
10021701014	Kit 200	23	9	9	5%	0%	2%	0%	Exhausted
10021702011	Kit 200	10	4	4	2%	0%	1%	0%	Available
10021801011	Kit 201	50	8	15	3%	0%	1%	0%	Available
10021802011	Kit 201	9	2	2	0%	0%	0%	0%	Available
10021901021	Kit 203	18	10	5	0%	21%	0%	5%	Available
10021901022	Kit 203	10	10	2	0%	23%	0%	5%	Available
10021901023	Kit 203	10	9	4	0%	23%	0%	9%	Exhausted
10021901024	Kit 203	10	9	3	0%	23%	0%	7%	Available
10021902021	Kit 203	5	2	1	0%	9%	0%	2%	Exhausted
Total Online Audit		753	200	200	100%	100%	29%	28%	

Table 180. Online Audit Sample Disposition

					Fraction of	of Frame To	tal Reported	d Savings	
		Measures in	Target	Sample	Fra	me	Sam	ple	
Stratum	Measure Code	Frame	Completes	Completes	kWh	ccf	kWh	ccf	Status
2020101011	CFL	39	8	15	12%	0%	6%	0%	Exhausted
2020101012	CFL	26	8	8	13%	0%	4%	0%	Exhausted
2020101013	CFL	27	8	10	14%	0%	5%	0%	Exhausted
2020101014	CFL	27	7	9	14%	0%	5%	0%	Exhausted
2020102011	CFL	3	1	3	1%	0%	1%	0%	Exhausted
2021001011	Faucet Aerator	48	9	20	14%	0%	6%	0%	Exhausted
2021001021	Faucet Aerator	112	9	20	0%	5%	0%	1%	Exhausted
2021001022	Faucet Aerator	98	9	22	0%	6%	0%	1%	Exhausted
2021002021	Faucet Aerator	17	2	10	0%	1%	0%	0%	Exhausted
2021501021	Insulation	24	6	7	0%	3%	0%	1%	Exhausted
2021501022	Insulation	14	6	0	0%	4%	0%	0%	Exhausted
2021502021	Insulation	10	3	0	0%	2%	0%	0%	Exhausted
2022301011	Pipe Wrap	43	8	19	12%	0%	6%	0%	Exhausted
2022301021	Pipe Wrap	210	18	42	0%	11%	0%	2%	Exhausted
2022302021	Pipe Wrap	17	2	10	0%	1%	0%	1%	Exhausted
2022401021	Thermostat	61	11	10	0%	8%	0%	1%	Exhausted
2022401022	Thermostat	43	11	7	0%	9%	0%	1%	Exhausted
2022401023	Thermostat	36	11	9	0%	9%	0%	2%	Exhausted
2022401024	Thermostat	32	10	12	0%	10%	0%	4%	Exhausted
2022401025	Thermostat	23	10	4	0%	10%	0%	2%	Exhausted
2022402021	Thermostat	11	4	6	0%	3%	0%	1%	Exhausted
2022801011	Showerhead	41	12	16	20%	0%	8%	0%	Exhausted
2022801021	Showerhead	170	21	33	0%	16%	0%	3%	Exhausted
2022802021	Showerhead	14	3	8	0%	1%	0%	1%	Exhausted
2023901021	Window Replacement	4	2	0	0%	1%	0%	0%	Exhausted
2023902021	Window Replacement	1	1	0	0%	0%	0%	0%	Exhausted
Total Onsite Au	dit	1,151	200	300	100%	100%	40%	22%	

Table 181. Onsite Audit Sample Disposition

Table 182. New Construction Sample Disposition

				Fraction	of Frame To	tal Reported	Savings	
	Measures in	Target	Sample	Fra	me	Sam	nple	
Measure	Frame	Completes	Completes	kWh	ccf	kWh	ccf	Status
ENERGY STAR								
New Home	33	Census	17	100%	100%	55%	54%	Exhausted

					Fraction o	f Frame To	tal Reporte	d Savings	
		Measures	Target	Sample	Fra	me	Sam	nple	
Stratum	Measure Code	in Frame	Completes		kWh	ccf	kWh	ccf	Status
302050102	Boiler Tune-Up	22	census	16	57%	10%	0%	55%	Exhausted
301010101	CFL	1	census	1	0%	0%	0%	0%	Exhausted
301010201	CFL	5	census	4	0%	0%	0%	0%	Exhausted
302010101	CFL	6	census	4	0%	0%	0%	0%	Exhausted
302010201	CFL	7	census	4	0%	7%	5%	0%	Exhausted
301070101	Custom	9	census	8	0%	3%	2%	0%	Exhausted
301070201	Custom	4	census	2	0%	3%	4%	0%	Exhausted
302070101	Custom	14	census	14	0%	9%	11%	0%	Exhausted
302070102	Custom	3	census	3	29%	5%	0%	29%	Exhausted
302070201	Custom	7	census	7	0%	2%	2%	0%	Exhausted
302070202	Custom	1	census	1	4%	1%	0%	4%	Exhausted
302140102	Heating	3	census	2	1%	0%	0%	1%	Exhausted
302140202	Heating	1	census	1	8%	1%	0%	8%	Exhausted
301020101	Lighting	33	census	32	0%	6%	7%	0%	Exhausted
301020201	Lighting	31	census	15	0%	6%	6%	0%	Exhausted
302020101	Lighting	81	census	66	0%	28%	32%	0%	Exhausted
302020201	Lighting	54	census	26	0%	6%	5%	0%	Exhausted
301210101	Motors	2	census	2	0%	1%	1%	0%	Exhausted
302210101	Motors	3	census	3	0%	1%	1%	0%	Exhausted
302210201	Motors	9	census	6	0%	7%	2%	0%	Exhausted
301410101	Occupancy Sensors	2	census	2	0%	0%	0%	0%	Exhausted
301410201	Occupancy Sensors	6	census	3	0%	1%	0%	0%	Exhausted
302410101	Occupancy Sensors	10	census	7	0%	1%	1%	0%	Exhausted
302410201	Occupancy Sensors	10	census	5	0%	1%	0%	0%	Exhausted
302400101	Other	3	census	3	0%	1%	1%	0%	Exhausted
302400102	Other	2	census	2	0%	0%	0%	0%	Exhausted
Total C&I		329	census	239	100%	100%	82%	97%	

Table 183. Commercial and Industrial Sample Disposition

Table 184. Multifamily Sample Disposition

		Target	Sample	Fraction of Frame Total Reported Savings				
	Measures in	Completes	Completes	Fra	me	San	nple	
Measure Code	Frame	(Customers)	(Measures)	kWh	ccf	kWh	ccf	Status
CFLs	26		11	57%	n/a	26%	n/a	
Programmable								
Thermostats	15		6	n/a	32%	n/a	11%	
Faucet Aerators	28	N/A	9	8%	14%	4%	3%	Exhausted
Kitchen Aerators	24		7	7%	11%	4%	2%	Exnausted
Showerheads	27		9	22%	37%	11%	7%	
Pipe Wrap	13		4	6%	6%	3%	3%	
Total Multifamily	133	10	46	100%	100%	48%	25%]

T.2.2 General Population Survey

KEMA also completed a Residential General Population survey, which was intended to gather information about households within the territories of participating MECA/MCAAA utilities that had not participated in any of the rebate programs. The utilities could provide contact

Appendices

information for customers who participated in the programs, but not for non-participants. To acquire a non-participating population base, KEMA contracted Relevate to provide all residential phone numbers for the zip codes within the territories of all MECA and MCAAA utilities. Relevate provided KEMA with over 670,000 phone numbers.

KEMA contracted Research America (RA) to conduct computer-aided telephone interviews (CATI) of program participants. KEMA released 30,895 phone numbers to RA. Of those numbers, about one-third (10,413) was deemed ineligible for the survey. Ineligibility resulted from several situations:

- *Disconnected phone numbers*: About 70 percent of the ineligible phone numbers were disconnected.
- Ineligible household: Respondents who did not purchase energy from a participating MECA or MCAAA utility and those who said they participated in an energy efficiency program were considered ineligible. This category accounted for about 15 percent of the ineligible numbers. Respondents in zip codes served by Great Lakes Energy were especially likely to fall into this category because many of these zip codes are also served by Consumer's Energy.
- *Fax/computer tones*: About eight percent of the ineligible numbers were due to fax machines or computers answering the call.
- *Non-residential:* The remaining ineligible numbers (about 6%) reported that the phone number was for a business rather than a residence.

Another 13,690 phone numbers were never answered. RA called these numbers at least eight times, across at least two weeks before considering them unreachable. Based on the ineligibility rate for the numbers for which RA did get an answer, KEMA estimates that most (8,286) of these unanswered phone numbers would have been ineligible.

The final estimated eligible sample was 12,196 phone numbers. RA completed interviews with 800 households in January and February, 2011. This was a final response rate of seven percent.

Sample Description	Number	Percent
Starting Sample	30,895	
Never Called	-	
Sample Used	30,895	
Known Not Eligible	10,413	
Estimated additional not eligible	8,286	
Sample-Valid	12,196	
Complete	800	7%
Refused	5,717	47%
Not Completed - Eligible	275	2%
Not Completed - Est. Eligible	5,404	44%

Table 185. General Population Sample Disposition

The CATI survey covered the following topics:

- Program awareness
- Sources of information about energy efficiency programs
- Recent purchases of energy using equipment
- Demographics.

Participants were stratified based on the program territory (EO, EU, or unknown) and peninsula (upper, lower) they were in based on zip code. Results are weighted based on the number of participants in the population strata divided by the number of completed surveys.

U. Attribution Analysis Methodology

U.1 Attribution Analysis Methodology

This appendix provides a detailed explanation of the program attribution methodology used in this impact evaluation. The appendix begins with an explanation of the methodology used for most of the measures in the Commercial & Industrial, ENERGY STAR, Onsite Audits, and HVAC programs. Later sections explain the methodology for CFLs and energy kits, used in ENERGY STAR, Online Audits, and HVAC. The analysis methodology for the Appliance Recycling Program is described in the Appliance Recycling section. There was no attribution analysis for the Low Income, Multifamily, or New Construction programs.

U.1.1 Defining Attribution Analysis Parameters

The attribution analysis is used to determine the ratio between verified gross savings and net (attributable) savings for the program. Under a lifecycle savings analysis such as the one used for these programs, the verified gross savings analysis is a parameter that feeds into the net savings analysis. Previous sections of this report have explained the verified gross savings analysis that KEMA conducted for each program to determine the gross savings adjustment. Any adjustments that occurred as a result of the verified gross savings analysis are also used to determine the net savings for a given measure. For the purposes of this discussion, the engineering verification factor is defined to refer to the portion of the gross savings adjustment that is not related to the installation rate. The engineering verification factor accounts for the adjustments from the documentation verification (correcting data entry errors and incorrect lookup savings) and the per-unit savings review (using lookup savings that are not the evaluation-approved per-unit savings).

The remainder of this section introduces the parameters used in the attribution analysis. The next section outlines the method used to combine those parameters into a single attribution value. The last sections describe, in detail, how the parameters are determined from the participant survey.

The attribution analysis is based on a number of parameters that are determined from the engineering verification review and participant survey.

• Acceleration Period, m_a: This reflects the effect the program had on *when* the equipment was installed. The acceleration period corresponds to the number of months

between when the equipment was actually installed and when it would have been installed in the absence of the program. For respondents who say they would have installed the measure at the same time or earlier without the program, $m_a = 0$. For those who say they would have installed later, m_a is the number of months later they say they would have installed, up to a maximum of 48. This factor is based on responses to attribution questions in the participant survey.

- Existing Equipment Efficiency: This is the efficiency of the equipment the respondent replaced. Where necessary, KEMA estimated this efficiency level based on the age of the replaced equipment, provided in responses to the participant survey. The Existing Equipment Efficiency is used as the baseline efficiency for gross savings calculations during the acceleration period; therefore, it is only used for accelerated measures or measures with m_a > 0.
- Standard Equipment Efficiency: This is the standard efficiency level for the type of measure installed at the time the respondent purchased the new equipment. The Standard Equipment Efficiency is used as the baseline efficiency level during the non-acceleration period and for measures with no acceleration effect. For some measures, such as lighting, the Standard Equipment Efficiency and the Existing Equipment Efficiency are the same. The Standard Equipment Efficiency is used for all measures, not just accelerated measures.
- Efficiency Attribution, A_E: This measures the effect the program had on the efficiency of the equipment installed. The efficiency attribution measures the proportion of savings attributable to the program for increasing the efficiency of the equipment above what would have been installed otherwise. This factor is based on responses to attribution questions in the participant survey.
- Quantity Attribution, A_Q: This measures the effect the program had on the quantity of the equipment installed. The quantity attribution measures the proportion of savings attributable to the program for increasing the quantity of equipment above what would have been installed otherwise. This factor is based on responses to attribution questions in the participant survey.
- Measure Life, m_L: This represents the average amount of time a piece of equipment will remain installed and operational before being replaced by a new piece of equipment. The measure life assignments for each measure are in the program-specific sections of this report.

The complement of attribution is free-ridership. Attribution measures the portion of the savings that result because of the actions of the program. Free-ridership measures the portion of the savings that would have happened in the absence of the program. The free-ridership

equivalents of the attribution factors are used along with other factors to determine the overall program net savings. They are:

- Efficiency Free-ridership, f_E: This is the fraction of verified gross savings per unit that would have occurred without the program.
- Quantity Free-ridership, f_Q: This is the fraction of installed units that would have been installed without the program.

The free ridership values are easily calculated from the attribution factors.

$$f_E = 1 - A_E$$

$$f_{\rm Q}=1-A_{\rm Q}$$

U.2 Attribution Analysis

This section outlines the methods necessary to determine net program savings using the attribution analysis parameters defined in the previous section.

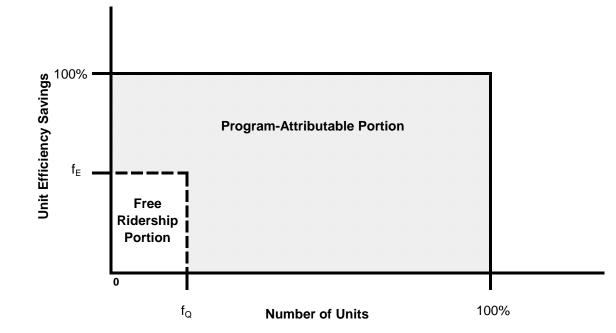
U.2.1 Simple Program Attribution (SPA) Calculation

The fraction of annual verified gross savings that would have occurred *without* the program is the product of the fraction of units that would have been installed without the program, f_Q , and the fractional unit savings that these units would have had without the program, f_E .

$$f_{QE} = f_Q f_E$$

For example, if two-thirds as many units would have been installed without the program ($f_Q = 2/3$), and the savings per unit would have been only half as much ($f_E = 1/2$), the portion of the savings that would have occurred without the program would be

 $f_{QE} = (2/3) \times (1/2) = 1/3.$

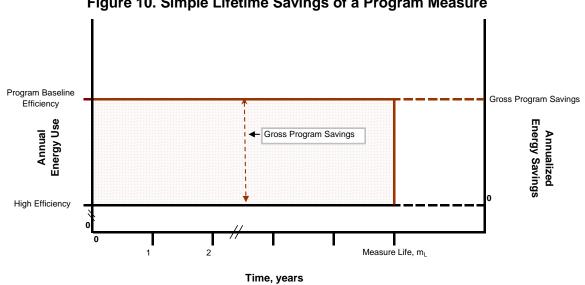

The Simple Program Attribution (SPA) is the complement of this free rider portion.

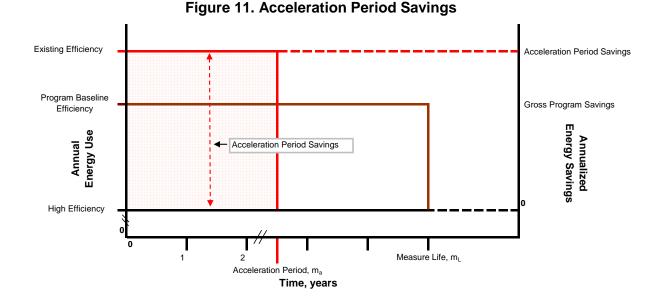
$$SPA = 1 - f_{QE} = 1 - f_Q f_E$$

The relationship is illustrated in Figure 9.

U.3 Timing Effects

The goal of the attribution analysis is to produce an estimate of lifetime net savings. For measures without acceleration, the program-reported annual gross savings can be combined with the measure life, m_L to produce the simple lifetime gross savings, plotted in Figure 10. The simple lifetime savings are simply the first year savings multiplied by the measure life. First year savings are determined by the difference between the high efficiency that was installed and the baseline efficiency.

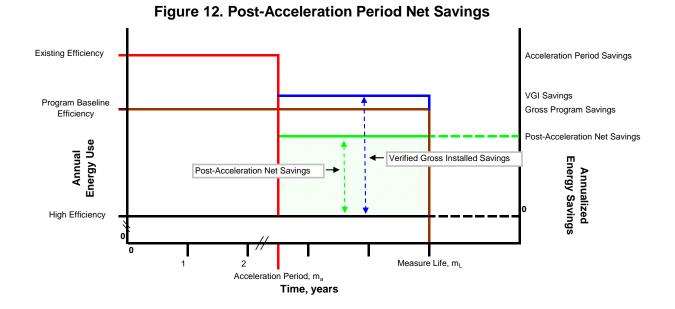



Figure 10. Simple Lifetime Savings of a Program Measure

For a replacement measure with acceleration, the program caused the participant to install an energy efficiency measure before they originally intended to do so. During the acceleration period, the energy savings caused by the program are the difference between the energy use of the high efficiency equipment that was installed and the energy use of the equipment that was replaced. This could also be termed as the difference between the high efficiency equipment efficiency and the existing equipment efficiency. We call this value the Acceleration Period Savings.

The evaluating engineer is able to determine the Existing Equipment Efficiency from the age of the replaced equipment provided in the participant surveys. The engineer then uses a number of sources including the documentation provided by the program and secondary sources to estimate the Acceleration Period Savings for a particular measure.

Figure 11 shows the Acceleration Period Savings superimposed over the gross program savings. The lifetime acceleration period savings are the acceleration period savings multiplied by the acceleration period, m_a.



There is no "net" or "gross" associated with the Acceleration Period Savings. The concept of acceleration already incorporates elements of net savings so no further adjustments to acceleration period savings are necessary.

The post-acceleration period savings are shown in Figure 12. The post-acceleration period verified gross savings (identified as verified gross installed (VGI) savings in the figure) are the evaluation-verified gross savings for the measure, which assume a Standard Equipment Efficiency to determine savings. They are also the product of the tracking savings, the installation rate, and the engineering verification factor. The post-acceleration period net savings are equal to the verified gross savings times the SPA calculated in Section U.2.1

The lifetime net savings for an accelerated measure are the sum of the acceleration period savings and the post-acceleration net savings. This can also be written as

Lifetime net savings_{accelerated} = Acceleration Period Savings + Verified Gross_{post-accel} * SPA

The lifetime net savings are shown graphically in Figure 13.

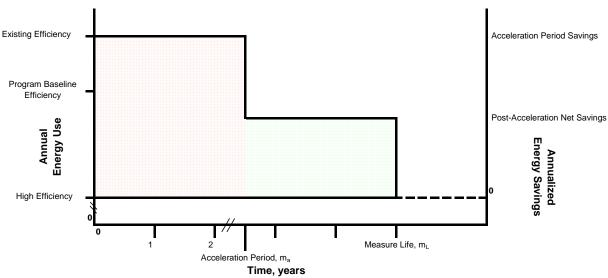


Figure 13. Simple Lifetime Net Savings

U.4 Determining Attribution Parameters

The attribution factors defined in Section 1 are determined from the participant responses gathered during the survey. This section provides an overview of the survey data and how it is used to determine each attribution factor. It also includes more detailed sections for each factor that show exactly how all of the survey responses are handled. The assignments outlined in this section refer to the methodology that applies to the C&I, HVAC, and ENERGY STAR appliance analyses. The adjustments made to this methodology for the Online Audit and ENERGY STAR CFL analysis are described in later sections.

U.4.1 General Procedure

This section provides an overview of the attribution factors and how they are determined

- Acceleration Period, m_a: The acceleration period, m_a, is measured in months and provided directly by the respondent. For values of m_a greater than 48 (four years); we assume that the measure would never have been installed without the influence of the program.
- Efficiency Attribution, A_E: The efficiency attribution is based on the answers to questions DAT2a and DAT2b as shown in Table 186. Respondents who indicate that they would have installed a lesser-efficient piece of equipment in the absence of the program are asked what efficiency they would have installed instead. An efficiency attribution value is assigned based on the response.

Efficiency That W	/ould Have Been Installed without EO/EU	
Coarse Cut	irse Cut Finer Cut	
(DAT2a)	(DAT2b)	Attribution, E
Lesser	Standard efficiency or according to code	100%
	Slightly higher than standard efficiency	70%
	Between standard efficiency and the efficiency that was installed	50%
	Slightly lower than the high efficiency that was installed	30%
	Don't Know / Refused	Avg of above cases
	Bont Know / Keldsed	for meas grp
Same	NA	0%
Greater	NA	0%
Don't Know/		Avg of all
Refused	NA	respondents for

Table 186. Efficiency Attribution Assignments

• Quantity Attribution, A_{Q} : The quantity attribution is based on the percent change in quantity or size caused by the program. The program could have caused the participant

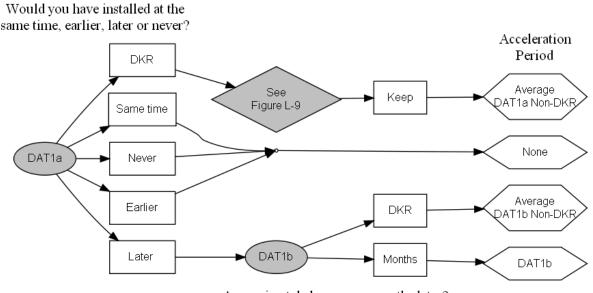
to install a lesser or greater capacity or number of units. If the participant installed more units because of the program, we assume that it was an increase in project scope that would not have happened otherwise. If the participant installed fewer units (or capacity) because of the program, we assume that the equipment was "right sized" for greater efficiency. The respondent provides quantity change information directly. The quantity attribution is equal to $A_Q = |(Amount installed / Amount would have installed without$ program) - 100%|.

The next few sections deal with determining the timing, efficiency, and quantity attributions on a more detailed level.

U.4.2 Detailed Assignments

This section gives a detailed accounting of how the attribution factors are determined from the survey responses.

U.4.2.1 Acceleration Period


The acceleration period, m_a , is determined from the first set of attribution survey questions. These questions are used to determine whether or not the program accelerated implementation of a measure or caused it to be implemented before it would have been without the program. The two relevant questions are DAT1a and DAT1b.

- DAT1a: "I'd like to know about the effect, if any that program incentives had on the timing of your decision to install the [equipment type]. I'm referring to your decision to install any [equipment type], not just a high efficiency one. Would have installed the [equipment type] at the same time, earlier, later, or never?"
- DAT1b: "Approximately how many months later?" (DAT1b is only asked if DAT1a is "Later".)

Note that these questions ask about the timing of installing equipment, not installation of efficient equipment in particular. For example, if the measure was replacement of a high-efficiency boiler, the question asks when the boiler would have been replaced without the program.

U.4.2.1.1 Determination of the Acceleration Period

Figure 14. Decision Tree for the Acceleration Period shows a decision tree for DAT1a and DAT1b. In the decision tree, "DKR" refers to "Don't Know" and "Refused".

Approximately how many months later?

The measure is considered accelerated if the respondent indicates that the measure would have been installed less than 48 months (four years) later without program influence. The acceleration period is determined based on the answer to DAT1b. If the respondent is unable to answer DAT1b, the measure is assigned the average acceleration period across all accelerated measures in the same measure group.

If the respondent answers DAT1a with Don't Know or Refused but does provide answers to inform the Quantity and Efficiency Attributions then the measure is assigned the average Acceleration Attribution for all measures in the same measure group.

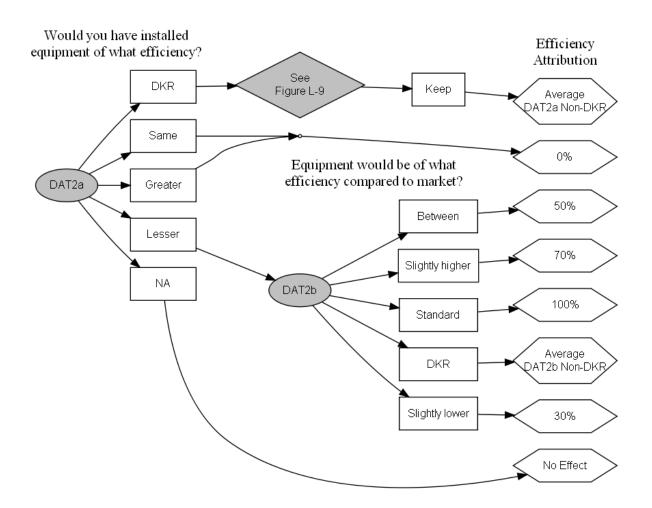
U.4.2.2 Efficiency

Efficiency Attribution, A_E , gives the program credit for increasing the efficiency of a measure above what would have been installed in the absence of the program. The two relevant questions are DAT2a and DAT2b.

- DAT2a: "Without the program, would you have installed [equipment type] of the same efficiency, lesser efficiency, or greater efficiency?"
- DAT2b: "Without the program, would you have installed a [equipment type] that was "standard efficiency on the market at that time," "slightly higher than standard efficiency," "between standard efficiency and the efficiency that you installed," or "slightly lower than the high efficiency that was installed?" (DAT2b is only asked if DAT2a is "Lesser".)

The program receives non-zero Efficiency Attribution if the respondent indicates that they would have installed a less efficient measure without the influence of the program. The magnitude of the Efficiency Attribution is determined based on the answer to DAT2b, as shown in Table 187. For measures with limited efficiency options, such as faucet aerators and showerheads, KEMA combined the DAT2a and DAT2b questions and asked if respondents would have installed the same efficiency or standard efficiency equipment. Figure 15 shows the corresponding decision tree for DAT2a and DAT2b.

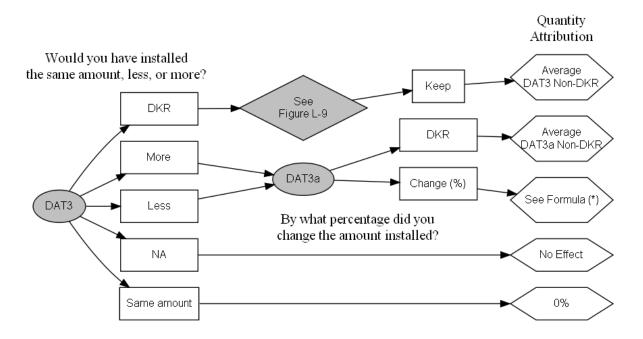
Efficiency That W	ould Have Been Installed without EO/EU	
Coarse Cut	rse Cut Finer Cut	
(DAT2a)	(DAT2b)	Attribution, E
Lesser	Standard efficiency or according to code	100%
	Slightly higher than standard efficiency	70%
	Between standard efficiency and the efficiency that was installed	50%
	Slightly lower than the high efficiency that was installed	30%
	Don't Know / Refused	Avg of above cases
	Don't Know / Keidsed	for meas grp
Same	NA	0%
Greater	NA	0%
Don't Know/		Avg of all
Refused	NA	respondents for


Table 187	. Efficiency	Attribution	Assignments
-----------	--------------	-------------	-------------


If the respondent answers DAT2a with Greater or Same then the survey skips to the next section and there is zero Efficiency Attribution. If the respondent answers DAT2a with Don't Know or Refused, but does provide answers to inform the Quantity Attribution and Acceleration Period, then the measure is assigned the average Efficiency Attribution for all measures in the same measure group.

For some measures, efficiency is not applicable. These are measures for which there are no variable efficiency levels associated with the equipment. Measures that fit into this category are ECM motors, programmable thermostats, lighting controls, and variable frequency drives. For such measures, DAT2a and DAT2b are not asked and the Efficiency Attribution will not affect

the Simple Program Attribution. Other measures, including showerheads and faucet aerators have only two possible efficiency levels: standard and efficient. For these measures efficiency attribution is depends only on the response to DAT2a and is ether 100 percent or zero percent. Figure 15 shows the standard decision tree for DAT2a and DAT2b.


U.4.2.3 Quantity

Quantity Attribution, A_{Q} , gives the program credit for increasing the quantity of a measure above what would have been installed in the absence of the program. The two relevant questions are DAT3 and DAT3a.

- DAT3: "I'd like to know about the effect, if any, that program incentives and services had on the quantity of [equipment] that you installed. Without the program would you have installed the same amount, less, more, or none at all?"
- DAT3a: "By what percentage did you change the quantity of [equipment type] installed because of the program?" (DAT3a is only asked if DAT3 is "Less".)

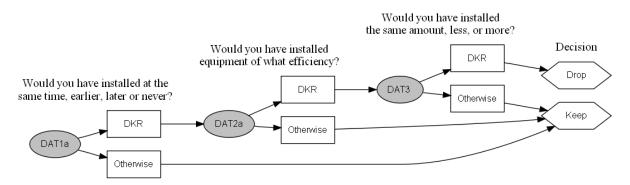
Figure 16 shows a decision tree for DAT3 and DAT3a.

Figure 16. Decision Tree for Quantity Attribution

The program could have caused the participant to install a lesser or greater number of units or equipment capacity. If the participant installed more units because of the program, we assume that it was an increase in project scope that would not have happened otherwise. If the participant installed fewer units (or capacity) because of the program, we assume that the equipment was "right sized" for greater efficiency. The respondent provides quantity change information directly. The quantity attribution is

$A_Q = |(Amount installed / Amount would have installed without program) - 100%|.$


If the respondent answers DAT3 with Same Amount then the survey skips to the next section and there is zero Quantity Attribution. If the respondent answers DAT3 or DAT3a with Don't



Know or Refused but does provide answers to inform the Efficiency Attribution and Acceleration Period then the measure is assigned the average Quantity Effect for all measures in the same sector.

U.4.2.4 What if they Don't Know or Refuse?

Some respondents are unable or unwilling to answer the relevant questions in the survey attribution sequence. If a participant is unable or unwilling to answer all of the attribution questions, then the participant is dropped from the attribution analysis. However, the respondent information will still be included as part of the installation rate and the engineering adjustment factor. Figure 17 shows a decision tree that indicates the relationship between the question responses and how they affect the attribution. If a measure goes to the "Keep" decision then the ultimate resolution of each effect is shown in Figure 14, Figure 15, and Figure 16.

U.5 Attribution Calculations for CFLs and Kits

The attribution analysis for the CFL and kit measures was born from the same principles but with slight changes.

U.5.1 CFLs

U.5.1.1 Timing Attribution

For CFLs, the survey included questions that asked when the respondent received the discounted CFLs, whether they replaced working bulbs and whether they would have replaced those bulbs in the absence of the program.

- CFLI2. "Of the <<number of installed bulbs>> bulbs you installed, how many replaced a bulb that was still working?"
- CFLI3. "Would you have replaced these working bulbs if the program had not discounted the CFLs you purchased?"

If the response to CFLI2 is "did not replace any working bulbs" or to CFLI3 is "Yes," then the acceleration period is zero. If the response to CFLI3 is "No," then the acceleration period is six months. If the response to CFLI3 is "don't know," then the acceleration period is the average acceleration period of all CFLs.

U.5.1.2 Efficiency Attribution

The survey included an additional question that asked about the type of bulb replaced.

- CFLI4. "You said earlier that you installed <<CFLI1>> CFLs. If the program had not discounted the CFLs, how many of each of the following types of bulbs would you have installed in the same fixtures?
 - a. Incandescent
 - b. CFLs
 - c. LEDs
 - d. Or Something else?"

The responses to CFLI4 resulted in numbers of bulb that would have been installed without the program. The number of non-CFLs and non-LEDs that would have been installed were considered attributable bulbs. Efficiency attribution was calculated as the number of attributable bulbs divided by the number of bulbs still installed.

U.5.1.3 Quantity Attribution

Quantity attribution was not a separate factor in the attribution sequence for CFLs because it was covered as part of the approach to efficiency attribution.

U.5.1.4 Acceleration Period Savings

The standard equipment efficiency for CFLs is assumed to be an incandescent lamp in the MEMD calculation. Incandescent lamps are often the equipment replaced when a CFL is installed. Therefore, KEMA assumed that the Standard Equipment Efficiency and Existing

Equipment Efficiency were the same. This means that for both purchased and giveaway CFLs, the acceleration period savings and post-acceleration period gross savings were the same.

U.5.2 Kits

The Online Audit, HVAC and ENERGY STAR program survey asked questions about several types of measures included as parts of kits either purchased or sent to participants: CFLs, faucet aerators, low flow showerheads, pipe wrap, LED night lights, door strips, and smart power strips.

For each of these measure types we asked whether the measure would have been purchased had it not come in the kit. For example. for Faucet Aerators we asked:

KIT2. "If they had not been part of kit, would you have bought the faucet aerators? Would you say...

- 1. Yes
- 2. Probably Yes
- 3. Probably Not
- 4. No

For measures where the respondent said that they definitely would not have bought the measure outside of the kit, the measure received full attribution and the respondent was not asked the rest of the attribution sequence in the interest of reducing customer burden. Measures where the response to their KIT question was something other than "No" went through the standard attribution sequence for their measure type.

U.5.2.1 Acceleration Period Savings

As with CFLs, the Standard Equipment Efficiency and Existing Equipment Efficiency are the same for faucet aerators and low flow showerheads. Therefore, the acceleration period savings were equal to verified gross savings for all three measures.