Michigan Public Service Commission

MPSC Staff PURPA Technical Advisory Committee

Staff Avoided Cost Methodology Strawman Proposal

February 10, 2016 PURPA TAC Meeting

Proposed Methodology Proxy Plant

- Methodology
 - Capacity Component
 - Energy Component
 - NGCC Energy Adjustment

Factor in Effective Load Carrying Capability (ELCC) for intermittent renewable generation like solar and wind, but not for hydro, biomass, landfill gas or CHP

Capacity Component

- The capacity component is determined using a proxy natural gas combustion turbine (CT) or simple cycle plant.
- Staff's proposal uses only the fixed cost component of the CT.
- Represents the most cost-effective new entry into the energy market.

Capacity Component

Combustion Tui	rbine Gas Plant w	/Variable C	osts Deducted
		•	

Combustion furbine das Plant w/ variable Costs Deducted							
	CT No Variable	notes					
Capacity MW	210	MW					
		The % of time the unit would be dispatched if					
Loading Factor	13.00%	available					
Equivalent Avail.	90.00%	the % of time the unit would be available for dispatch.					
Capacity Factor	11.70%	(Loading Factor)(Equivalent Availability)					
Heat Rate Btu/kWh	9750	BTU/kWh					
Fuel Cost \$/MMBtu	\$0.00	\$ per Million BTU					
Total Cost MM no AFUDC	\$160.049	MM					
AFUDC	\$20.34	MM					
Total Cost MM	\$180.388	MM					
Fixed Charge Rate	9.30%	% used to calculate fixed cost recovery component					
Fixed O&M \$/kW	\$14.62	\$/kW					
Annual Lev. Fixed Cost MM	\$16.78	MM					
Total Annual Lev. Fixed Cost MM	\$19.85	MM					
Fixed Cost \$/kWh	0.0922	\$/kWh					
Fuel Cost \$/kWh	0.0000	\$/kWh					
Var. O&M \$/kWh	0.0000	\$/kWh					
Total Var. Cost	0.0000	\$/kWh					
Total Cost \$/kWh	0.09221	\$/kWh					
Total Cost (MM)							
Overnight Cost (MM) Inflated							
Total Cost (\$/kW)	COA FOE /BANA/ NO /-						
\$/MW-year	\$94,5U5/IVIVV-YK (Cost	of CT Capacity w/o variable costs) ity					

Energy Component

- Energy Component Options:
 - MISO locational marginal price (LMP) at the appropriate node.
 - Levelization of projected LMP over the contract term.
 - Levelization of natural gas combined cycle (NGCC) plant variable costs over the contract term.
- An NGCC Energy Adjustment will be added to the Energy Component.

NGCC Energy Adjustment

- To obtain the cheaper energy from a NGCC (as opposed to a CT) that is currently reflected in the LMP market, the additional capacity costs to build a NGCC are incurred over and above the cost to build a CT. This shifted "capacity" cost should be added to the energy payment for our proxy plant.
 - NGCC has lower energy cost, but higher capacity cost
 - The NGCC Energy Adjustment is calculated using the fixed capacity cost difference between a NGCC and a CT.

NGCC Energy Adjustment

		NGCC
Capacity MW		400
Loading Factor		71.00%
Equivalent Avail.		87.00%
Capacity Factor		61.77%
Heat Rate Btu/kWh		6719
Fuel Cost \$/MMBtu		\$5.01
Total Cost MM no AFUDC		\$460.065
AFUDC		\$62.91
Total Cost MM		\$522.972
Fixed Charge Rate		9.30%
Fixed O&M \$/kW		\$14.62
Annual Lev. Fixed Cost MM		\$48.64
Total Annual Lev. Fixed Cost MM		\$54.48
Fixed Cost \$/kWh		0.0252
Fuel Cost \$/kWh		0.0337
Var. O&M \$/kWh		0.0031
Total Var. Cost		0.0368
Total Cost \$/kWh		0.06196
Overnight Cost (MM) Inflated		434.3215745
Total Cost (\$/kW)		\$1,085.80
\$/MW-year		\$335,259.05
\$/MW-year no variable		\$136,211.05
CC-CT \$/MW-year	(\$136,211 – \$94,505)	\$41,705.11
Total Annual Lev. Fixed Cost MM Difference		\$16.68
Capitol Difference MM		\$354.08
Fixed Cost \$/kWh		\$0.0077/KWh

Questions to consider

- 1. Should capacity be paid hourly, monthly, yearly and if the latter two, should there be a true up?
- 2. Should capacity be discounted by ELCC?
- 3. Should capacity be reduced to 75% of the full amount to account for "all or nothing" capacity need cycles?
- 4. Should LMPs be actual average hourly/monthly or should a projection be used and should there be a true up?
- 5. Who should own the RECs/CO2 attributes and if IPPs own RECs/CO2 attributes should there be a utility obligation to purchase?

Staff Strawman Proposal – Preliminary Avoided Cost Calculation Example - 20 MW Generator Projects 2016 Commercial Operation Date/Contract Renewals

	Capacity ELCC Factor % %	ELCC %	Capacity \$/MWh	Energy (Variable Cost Forecast of NGCC plant – Levelized through 2029) \$/MWh	NGCC Energy Adjustment	Total
			Annual \$		\$/MWh	\$/MWh
Hydro 60%	N/A	\$17.49	\$43.00 (estimate)	\$7.71	\$68.20	
	0070	00% N/A	\$1,838,560	\$45.00 (estimate)	۶/./۱	308.20
Biomass 80%	2 0%	N/A	\$13.12	\$43.00 (estimate)	\$7.71	\$63.83
	8070		\$1,838,560		γ7.7 1	703.83
Landfill Gas 85%	N/A	\$12.35	\$43.00 (estimate)	\$7.71	\$63.06	
	6370	IN/A	\$1,838,560	545.00 (estimate)	۶/./۱	703.00
Solar 20%	20%	43%	\$22.56	\$43.00 (estimate)	\$7.71	\$73.27
	2070		\$790,581			
Wind 3	250/	15%	\$4.50	\$43.00 (estimate)	¢7 71	ĆEE 21
	35%	13/0	\$275,784		\$7.71	\$55.21