

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

The Widdicomb Building 601 Fifth Street NW Suite 102 Grand Rapids, MI 49504 T: 616.956.6123 F: 616.288.3327 www.rosewestra.com

MEMORANDUM

To: Abby Hendershott, EGLE

From: Leslie Nelson, Rose & Westra, a Division of GZA GeoEnvironmental, Inc.

Date: September 30, 2019

File No.: 16.0062335.02 Task 002

Re: Wolverine World Wide, Inc. (Wolverine) – Former Tannery

Monthly Progress Report

This Monthly Progress Report (MPR) is being provided at the request of EGLE to support the June 18, 2018 Source Investigation Task Summary (SITS) in response EGLE's request for regular progress updates.

This MPR summarizes the progress for the period August 24, 2019 through September 23, 2019. This includes actions performed, problems encountered, analytical data received during the reporting period, and anticipated developments during the next reporting period.

ACTIONS PERFORMED

During this period, August 24, 2019 through September 23, 2019, GZA has done the following:

- 1) Conducted surveying activities of new monitoring wells.
- 2) Continued work on the pump and treat system design.
- 3) Completed boring logs for TA-MW-317 (attached).
- 4) Conducted activities in response to EPA's April 29, 2019 letter.

ANALYTICAL DATA RECIEVED

The data for the 3rd quarter groundwater sampling was received and is included in Table 1, attached.

ANTICIPATED ACTIONS AND SCHEDULE FOR NEXT REPORTING PERIOD

During the next reporting period September 24, 2019 through October 23, 2019, R&W/GZA anticipates completing and/or continuing to conduct the following tasks.

1) Conduct drilling activities at TA-PMW-314 pending drill rig availability.

2) Continue to respond to the EPA's April 29, 2019, correspondence regarding CERCLA TCRA actions at and adjacent to the former Wolverine Tannery site.

J\62000\623xx\62335.02 - WWW Tannery 2017_2018 Work\002 - Implementation of 2018 Work Plan\MDEQ Monthly Progress Reports\September 30, 2019 Report\Tannery-EGLE-MonthlyUpdate-093019.docx

	/		GZ	<u>'A</u> .				Wolverine \	Norld Wide,	lnc.		Boring No	D.:TA-MV	V-317A
		3 2\		xoEnviron r gineers and				Forme	er Tannery			Page:	1 of _	1
				_				Rockfo	rd, Michigan				16.00623	
				Stearns Dri		oany	_	Auger/	Sampler			Check: _		nald
	Fore	man: _		Jen	γ H.		_	Casing	•			DWATER R		
				John M	lorehouse			Direct Push	GeoProbe	Date	Time	Depth	Casing	Stab
			inish: _		-19 / 8-14		O.D. / I.D.: _		NA	NM	NM	NM	NM	NM
		_					Hammer Wt.: _		NA					
ı	GS I	Elev.: _		Datu	umMl State Pla	ane S Zone N	<u>№</u> 83Hammer Fall: _		NA			110		
t			San	nple Inforn	nation		TOC Elev.:	NA	NA	Surveyed	Ву:	NA Sui	vey Date:	
ı	£										S	Equip	ment Insta	llod
ı	Depth	No.	Pen./ Rec.	Depth	Blows	Test Data		Sample		Stratum	Remarks	Equip		
ı	٦	110.	(in.)	(Ft.)	(/6")	Data	Descript	ion & Classific	cation	Desc.	le l		— PROT CASIN	ECTIVE
H							See TA-MW-317	'D boring log fo	or detailed		- 12	_	0, 1011	-
ı	1-						soil descriptions.							
ı	2-											\bowtie	D 1	
ı													Bento	nite Seal
ı	3-													
ı	4-										-		Silica	
ı	5-												Filter I	
1	6-												Scree	
1	7-												2-Inch	
1	8-												5-Foot Scree	t PVC n (0.010"
ı	9-												Slot)	,
ı	10-													n of Well
ı							Bottom of Boreho	ole at 10.4 Fee	et		1	<u> </u>	Scree	n
1	11-													
ı	12-													
ı	13-													
ı	14 –													
ı	15-													
1	16-													
1														
ORP.GD1 9/21/19	17-													
8/8	18-													
5	19-													
Ę,	20-													
3														
3	21-													
5	22 –													
o l	23 –													
2	24 –													
2	25 –													
5														
5	26 –													
ř -	27 –													
Z L	28 –													
Ž	29 –													
Ę_														
62335UZ WWW	R E M A R K	1. Monit	oring we	ll was instal	led in bore	hole upor	completion. Well so	creen set from a	pproximately 4.8 f	to 9.6 feet be	low groui	nd surface.		
SCRIN SCRIN							oil types, transitions may occur due to other fact					Boring No.:	 FA-MW-317A	

-		GZ	Ά <u>.</u>				Wolverine V	Vorld Wide,	Inc.				.: <u>TA-MV</u>	
	3 Z\)		oEnviro nr gineers an				Forme	r Tannery						
			_				Rockfor	d, Michigan				File No.:		
	tractor:		tearns Dri		pany	_	Auger/	Sampler				Check: _	K. McDo	
				ry H.			Casing	-					EADINGS	
				orehouse		Type: _		<u>GeoProbe</u>	Date	Tin		Depth	Casing	Stab
		inish: _		7-19 / 8-7-		O.D. / I.D.: _		NA NA	NM	NI	И	NM	NM	NM
	-					Hammer Wt.: _		NA NA						
LGS	Elev.: _		Dati	umivii <u>State Pi</u>	ane 5 Zone iv	AD 83Hammer Fall: _ TOC Elev.: _		NA NA	Survoyad	l Dva	N	Α ς	vey Date:	
		San	ple Inforr	nation		TOC Elev	TUT		Surveyeu	ι Бу		<u>//</u> Sui	vey Date.	
Depth		Pen./									Š	Equip	ment Insta	alled
	No.	Rec.	Depth	Blows (/6")	Test Data	Decement	Sample	ation	Stratum	1	Remarks			ECTIVE
		(in.)	(Ft.)	(.5)		Descripti	ion & Classific	ation	Desc.	١,	ģ		CASI	
						See TA-MW-317	D boring log fo	r detailed			_	, _		
1 -						soil descriptions.	0 0				::			
2-														
3-														
4-														
5-														
6-														
7-														
8-											:-			
9-														
10-													1	
11-														
12-														
13-														
14-											· .			
15-													Silica	Sand
16-											::		Filter	
17-														
18-												계 남자		
19-														
20-														
21-											: :			
22-														
23-														
21— 22— 23— 24— 25—														
25-														
26-														
27 –														
28-														
29-													Top o	
30 —													Scree	711
31-													2-Inch	n Dia
32-													5-Foo	
33-													Scree	n (0.010"
34-													Slot)	n of Well
35-						Bottom of Boreho	ole at 35 0 Fee	t			1 <u> -</u>	<u>. 14 (14 (14 (14 14 14 14 14 14 14 14 14 14 14 14 14 1</u>	Scree	
36 –						Jenes of Boron		-						
Н				<u> </u>	1									
R	1. Monit	toring wel	l was instal	lled in bore	hole upor	n completion. Well so	reen set from ap	oproximately 29.1	to 33.9 feet	below	grou	ınd surface		
È														
М														
26 — 27 — 28 — 29 — 30 — 31 — 32 — 34 — 35 — 36 — REMARKS Stratificand ur														
K														
s														
Stratifi						soil types, transitions ma						Boring No.: T		
and ur						y occur due to other fact						Dornig NO	, / D	

Γ	/		∣ GZ	:A				Wolverine \	World Wide, I	nc.		Вс	oring No	o.: _ TA-MV	V-317C
1		5 Z\)		oEnvironn				Forme	er Tannery			Pa	ige:	of _	2
			En	gineers and	a Scientists	S .			rd, Michigan					16.00623	
-1	Con	tractor:	S	tearns Dri	lling Comp	oany	_	Auger/				Cł	neck: _	K. McDo	nald
	Fore	man: _			γ H.			Casing	Sampler		GROL	INDW	ATER R	EADINGS	
	Log	ged by:		John M	lorehouse		Type: _	_	GeoProbe	Date	Tim		Depth	Casing	Stab
-1	Date	Start/F	inish: _	8-14	-19 / 8-14	-19	O.D. / I.D.: _		NA	NM	NM		NM	NM	NM
-1	Bori	ng Loc	ation: _	W of Comm	nunity Cente	r Building	Hammer Wt.: _	NA	NA						
-1	GS I	Elev.: _		Datu	umMI State Pla	ane S Zone N	AD 83Hammer Fall: _	NA	NA						
╌			0		4!		TOC Elev.: _	NA	NA	Surveyed	By: _	NA	Sur	rvey Date:	
-1	ے		San	nple Inforn	nation	1					u	.			
-1	Depth		Pen./	Depth	Blows	Toot		Sample		Stratum	r K	<u> </u>	Equip	ment Insta	illed
-1	۵	No.	Rec. (in.)	(Ft.)	(/6")	Test Data	Descripti	ion & Classific	cation	Desc.	Remarks		\neg \vdash		ECTIVE
╌			()				O TA 1004 047	<u> </u>	1.4.71.1			<u>:</u>		CASI	NG
-1	1-						See TA-MW-317 soil descriptions.	D boring log to	or detailed				2.5.		
-1	2-						con accompliance.								
-1	3-														
-1	4 - 5 -														_
-1	6-													:	
	7-													-	
	8]	
	9-													1	
	10]	-
	12													:	
-1	13														
-1	14														
-1	15														-
-1	16 – 17 –													1	
-1	18														
-1	19-														
- 1	20														-
-1	21													-	
- 1	22 – 23 –													1	
- 1	24														
۵	25														-
RP.GDT 9/27/19	26														
76 7	27													-	
GD	28 – 29 –													1	
A P	30														_
ŏ	31-														
GZ/	32-														
곮	33-														
9.0	34 – 35 –													1	_
16	36														_
19	37													-	
ORE	38-]	
Ŕ	39												-	Silica	
8	40 - 41 -													Filter	Pack
ER	42														
ANN	43													1	
뮤	44														
RME	丁					1							· · · ·		
ΥFC	R														
≨	E														
502 \	M A														
2335	R														
T 6	K														
WEL	S														
BORING_WELL 6233502 WWW FORMER TANNERY ROCKFORD 10_16_18.GPJ GZA_CO	04				A. b	h . k .			-411		-4"				
30RII							soil types, transitions ma y occur due to other fact						oring No.: 1	ΓA-MW-317C	

Engineers and Scientist	GZN	GZA GeoEnvironmental, Ind Engineers and Scientists
-------------------------	-----	--

Wolverine World Wide, Inc. Former Tannery Rockford, Michigan

Boring No.: TA-MW-317C Page: ____2 of ___2 File No.: 16.0062335.02 K. McDonald

_		Sam	ple Inforn	nation					Check: K. McDonald
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
_		()					1	<u> ~</u>	
46									
17									환화 환화
18									
49 - 50 -									1일의 1일의
51									
52									
53-									
54 –									DA DA
55 –									[자음] - [자음]
56-									
57 —									변화 변화
58 –									[단점 - [단점]
59 –									
50									MATERIAL MAT
61 — 62 —									
53									
64									
35									
66-									
37 -									
88									
69 —									변화 변화
70 —									
71									
72									接針 接納
73-									
74 — 75 —									
76 –									
77									
78									Top of Well
79 –									Screen
30 —									2-Inch Dia.
31 —									5-Foot PVC
82									Screen (0.0
83 - 84 -									Slot) Bottom of W
35—									Screen
36						Bottom of Borehole at 85.4 Feet	7	1	<u> </u>
37 –									
38-									
39-									
90 –									
91 — 92 —									
93									
94									
5-									
96-									
97_									
/	1. Monit	oring well	was instal	led in borel	nole upor	n completion. Well screen set from approximately 77	7.8 to 82.6 feet bel	ow g	ound surface.
₹		-			•			J	
1									
₹									
(
•									
ratifi	cation line	s represer	nt approxima	te boundary	between s	soil types, transitions may be gradual. Water level readings , occur due to other factors than those present at the time r	s have been made at	times	Boring No.: TA-MW-317C

		GZ	A oEnvironn	nental Ind	r.		Wolverine V					o.: <u>TA-MV</u>	
C	72\)		gineers and					er Tannery				1 of _ 16.00623	
	/	_						d, Michigan			Check: _		
	actor:		tearns Dril		oany		Auger/	Sampler		000			. raiu
			Jerr				Casing	•			DWATER R		
ogge	ed by:		John M 8-5-	orehouse		Type: _		GeoProbe	Date NM	Time NM	Depth	Casing S	
						O.D. / I.D.: _		NA NA	- NIVI	NM	NM	NM	-
	-		W of Comm			Hammer Wt.: _ AD_83Hammer Fall: _		NA NA	-				
JJ EI			Dall	ATTIVA <u>Otale Pla</u>	J ZUIE IV	ल्ला विश्वास च्याः _ TOC Elev.: _		NA NA	Survoyed	Rv:	NA Su	rvov Dato:	1
		Sam	ple Inforn	nation		100 Elev.:		101	. Jui veyeu	ی	Jul	vey Date:	
nden		Pen./	Depth	Blows	Tost		Sample		Stratum	arks	Equip	ment Insta	
	No.	Rec. (in.)	(Ft.)	(/6")	Test Data		ion & Classific		Desc.	Remarks		PROT	
	1	24/16	0-2	2-4 3-3		Very dark brown,			0.4' SILT				
+						moderately cohe moist. Changing			SAND				
1-						gravish-brown, fir	ne to coarse Sa	ANĎ, little					
						Gravel, trace Silt	, moist. Chang	ing at 1.3	1.3' NO	-			
7						feet to: NO REC	OVERY.		RECOVERY	'			
2-	2	24/5	2-4	2-2		Very dark, grayis	h-brown fine to	o coarse	2' SAND	\dashv			
4	-	, 0		2-1		SAND, little Grav	el, trace Silt, n	noist.	2.4' NO	-			
						Changing at 2.4	feet to: NO RE	COVERY.	RECOVERY	'			
3													
+													
4-									4'				
7	3	24/2	4-6	2-3 1-1		Very dark grayish	n-brown gradin	g to dark	4.2' SAND RECOVERY				
+						yellowish-brown, Gravel, trace Silt	noist Chang	SAND, little ing at 4.2	RECOVERY				
5						feet to: NO REC		y at 4.2					
7													
6-	4	24/4	6-8	4-8		Dark yellowish-bi	rown fine to co	arse SAND	6' 6.3' SAND	-			
1	*			17-26		little Gravel, trace	e Silt, moist. Cl		NO				
						6.3 feet to: NO R	RECOVERY.	- -	RECOVERY	´			
7													
+													
8-									8'				
٦	5	24/1	8-10	8-22 15-7		Dark yellowish-bi			8 ₁ ' SAND NO	_/			
+				- '		little Gravel, trace 8.1 feet to: NO R		nanging at	RECOVERY	'			
9-						0.1.1500.150.140.14	v						
									10'				
0	6	24/18	10-12	2-5 7-9		Very dark grayish	n-brown, Silty (CLAY,	10' Silty CLAY	\dashv			
4				7-9		plastic, cohesive	, moist. Chang	ing at 11.5					
						feet to: NO REC	OVERY.						
1-									44.51				
+									11.5' NO	\dashv			
2	7	04/0	40.44	4.0		NO DECOVERY			RECOVERY	′			
	7	24/0	12-14	4-6 8-15		NO RECOVERY	-						
1													
3-													
1													
									14'				
T													
ratifica						soil types, transitions ma y occur due to other fact					Boring No.:	TA-MW-317D	
					water ma						1 5		

Wolverine World Wide, Inc.
Former Tannery
Rockford, Michigan

 Boring No.:
 TA-MW-317D

 Page:
 2
 of
 7

 File No.:
 16.0062335.02

 Check:
 K. McDonald

		San	ple Inforr	mation					Check:	K. McDonald
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equip	ment Installed
15-	8	24/16	14-16	3-7 11-18		Dark and light gray grading to dark yellowish-brown with grayish-brown, Silty CLAY, plastic, cohesive, moist. Changing at 15.3 feet to: NO RECOVERY.	Silty CLAY	-		
16- - 17-	9	24/24	16-18	5-13 19-29		Mottled dark yellowish-brown to grayish-brown, Silty CLAY, plastic, cohesive, moist.	RECOVERY 16' Silty CLAY			
18 -	10	24/17	18-20	1-10 21-21		Mottled dark yellowish-brown to dark grayish-brown, Silty CLAY, plastic, cohesive, moist. Changing at 19.4 feet to: NO RECOVERY.	19.4'			
20	11	24/24	20-22	8-16 26-36		Mottled dark yellowish-brown to dark grayish-brown, Silty CLAY, plastic, cohesive, moist.	NO RECOVERY 20' Silty CLAY			
22 - - 23 -	12	24/24	22-24	5-12 22-29		Mottled dark yellowish-brown to dark grayish-brown, Silty CLAY, plastic, cohesive, moist.				
- 24 — - 25 —	13	24/24	24-26	7-19 26-38		Dark yellowish-brown, Silty CLAY, plastic, cohesive, moist.				
26 — -										
27 — 28 — - 29 —	14	24/13	28-30	5-21-50/4"		Dark yellowish-brown, Silty CLAY, plastic, cohesive, moist. Changing at 28.6 feet to: Brown, fine to medium SAND, trace Silt, moist to wet. Changing at 29.1 feet to: NO RECOVERY.		1		
30-	15	24/13	30-32	2-2		Brown, fine to medium SAND, trace Silt,	30' SAND			

1. Groundwater was encountered at approximately 28.6 feet below ground surface.

BORING_WELL 6233502 WWW FORME

REMARKS

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Boring No.: TA-MW-317D

Wolverine World Wide, Inc.

Former Tannery Rockford, Michigan Boring No.: TA-MW-317D Page: ___3__ of ___7 File No.: 16.0062335.02

		Sam	ple Inforr	mation		Rockford, Michigar		- Check:	K. McDonald
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks inba	pment Installed
31 —				2-2		wet. Changing at 31.1 feet to: NO RECOVERY.	SAND 31.1' NO RECOVERY		
32-	16	24/18	32-34	3-13 34-50/5"		Brown, fine to medium SAND, trace Silt, wet. Changing at 33.5 feet to: NO RECOVERY.	32' SAND		
34 —	17	24/24	34-36	11-18 39-50/4"		Brown, fine to medium SAND, trace Silt, wet. Changing at 34.6 feet to: Brown, fine to coarse SAND, trace Silt, wet. Changing at	33.5' NO 34' RECOVERY SAND	П	
35 — - 36 — - 37 —	18	24/12	36-38	13-29 27-26		35.2 feet to: Brown, fine to coarse SAND, trace Silt, wet. Changing at 35.5 feet to: Dark grayish-brown, SILT, some fine Sand, slightly cohesive, moist to wet. Brown, fine to coarse SAND, little Gravel, trace Silt, wet. Changing at 36.8 feet to: Brown, Silty CLAY, trace Gravel, trace fine Sand, plastic, cohesive, moist. Changing at 37.0 feet to: NO RECOVERY.	35.5' SILT 36' SAND 36.8' 37' Sitty CLAY NO RECOVERY		
38 — - 39 —	19	24/24	38-40	6-15 29-34		Dark grayish-brown, Silty CLAY, trace Gravel, plastic, cohesive, moist.	38' Silty CLAY	П	
40 — - 41 —	20	24/24	40-42	11-20 24-33		Dark grayish-brown, Silty CLAY, trace Gravel, trace fine Sand, plastic, cohesive, moist.			
12-	21	24/22	42-44	15-26 23-50/5.5"		Dark grayish-brown, Silty CLAY, trace Gravel, trace fine Sand, plastic, cohesive, moist; at 42.3 feet, very thin lense of fine to medium SAND, moist to wet. Changing at	43.1'	П	——Bentonite Slurry Grou
- 4 5	22	24/20	44-46	7-22 32-16		43.1 feet to: Brown, fine to medium SAND, trace Silt, moist to wet. Changing at 43.2 feet to: Dark grayish-brown, Sandy CLAY, little Silt, trace Gravel, slightly plastic, cohesive, moist. Changing at 43.6 feet to: Brown, fine to medium SAND, trace Silt, moist to wet. Changing at 43.8 feet to: NO	43.2' SAND 43.6Sandy CLAY 43.8' SAND 44' NO RECOVERY 44.7Sandy CLAY		
46 -	23	24/24	46-48	10-19 29-31		RECOVERY. Dark grayish-brown, Sandy CLAY, little Silt, trace Gravel, slightly plastic, cohesive, moist. Changing at 44.7 feet to: Dark grayish-brown, Silty CLAY, trace Gravel,	45.7' 46' NO RECOVERY Silty CLAY		

Wolverine World Wide, Inc. **Former Tannery**

Rockford, Michigan

Boring No.: TA-MW-317D Page: ___4__ of ___7 File No.: <u>16.0062335.02</u> Check: K. McDonald

Sample Information Depth Remarks **Equipment Installed** Pen./ Depth Sample Stratum Test Data No. Rec. (Ft.) Description & Classification Desc. (in.) trace fine Sand, plastic, cohesive, moist. Changing at 45.4 feet to: Dark Silty CLAY 47 grayish-brown, Silty CLAY, plastic, cohesive, moist. Changing at 45.7 feet to: NO RECOVERY. 48 24/0 23-44-50/5.5' 24 48-50 NO Dark grayish-brown, Silty CLAY, plastic, RECOVERY cohesive, moist. NO RECOVERY. 49 50 25 24/14 50-52 9-47-50/5" Dark grayish-brown, Silty CLAY, plastic, Silty CLAY cohesive, moist. Changing at 51.2 feet to: NO RECOVERY. 51 NO RECOVERY 24/24 1-12 17-27 Dark grayish-brown, Silty CLAY, plastic, Silty CLAY 26 52-54 cohesive, moist. 53 54 27 12-19 18-34 24/24 54-56 Dark grayish-brown, Silty CLAY, plastic, cohesive, moist. 55 56' 56 5-22 37-50 28 24/20 Grayish-brown, SILT, little Clay, slightly SILT 56-58 plastic, cohesive, moist. Changing at 57.7 feet to: NO RECOVERY. 57 CORP.GDT 9/27/1 57.7' NO 58 RECOVERY 24/24 11-20 29-26 29 58-60 Yellowish-brown to dark yellowish-brown, SILT, little fine Sand, trace Clay, non-plastic, moderately cohesive, moist to GZA wet. 59 6233502 WWW FORMER TANNERY ROCKFORD 10 16 18.GPJ 60 30 24/16 60-62 3-8 18-27 Yellowish-brown to dark yellowish-brown, SILT, little fine Sand, trace Clay, non-plastic, moderately cohesive, moist to 61 wet. Changing at 61.0 feet to: SAND Yellowish-brown, fine to medium SAND, NO RECOVERY little Silt, trace Gravel, trace Clay, non-plastic, slightly cohesive, moist to wet. 62 Yellowish-brown to dark yellowish-brown, 7-10 23-30 SILT 31 24/18 62-64 SILT, little fine Sand, trace Clay, non-plastic, moderately cohesive, moist to

Wolverine World Wide, Inc. Former Tannery

Rockford, Michigan

Boring No.: TA-MW-317D Page: ____5 of ____7

File No.: 16.0062335.02 Check: K. McDonald

_ [Sam	ple Infor	mation		_		Check: K. McDonald
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Equipment Installed
64	32	24/18	64-66	19-23 32-38		wet. Changing at 63.7 feet to: NO RECOVERY. Yellowish-brown to dark yellowish-brown, SILT, little fine Sand, trace Clay, non-plastic, moderately cohesive, moist to wet; occasional very thin lenses of Silty Clay.	SILT 63.7' 64' NO RECOVERY SILT	
66 — - 67 —	33	24/20	66-68	18-34 34-50		Grayish-brown to brown, SILT, non-plastic, cohesive, wet. Changing at 67.7 feet to: NO RECOVERY.		
68 — - 69 —	34	24/19	68-70	20-47-50/5"		Dark grayish-brown, SILT & CLAY, trace Gravel, moderately plastic, cohesive, moist. Changing at 70.0 feet to: NO RECOVERY.	67.7' 68' NO SILT & CLAY	
70 - 71 -	35	24/22	70-72	11-21 21-28		Grayish-brown, SILT, some fine Sand, wet. Changing at 70.9 feet to: Grayish-brown, SILT, non-plastic, cohesive, wet. Changing at 71.2 feet to: Grayish-brown, SILT, some fine Sand, wet. Changing at 71.5 feet to:	69.7' 70' NO RECOVERY SILT	
72— 73—	36	24/13	72-74	4-8 11-13		Grayish-brown to dark grayish-brown, fine SAND, some Silt, little Gravel, moist to wet. Changing at 71.7 feet to: Grayish-brown, SILT, trace fine Sand, moderately cohesive, non-plastic, wet. Changing at 71.8 feet to: NO RECOVERY. Dark grayish-brown to very dark	71.5' 71.7' SAND 71.8' SILT 72' NO RECOVERY 72.8Sandy CLAY 73.1' SAND	
74 - 75 -	37	24/19	74-76	6-20 22-27		grayish-brown, Sandy CLAY, little Gravel, slightly plastic, cohesive, moist. Changing at 72.8 feet to: Dark grayish-brown, fine to medium SAND, trace Silt, wet, with occasional very thin lenses of Silty Clay. Changing at 73.1 feet to: NO RECOVERY. Dark grayish-brown to grayish-brown,	RECOVERY 74' SAND 75.2' 75.3' Sitty CLAY	
76 - 77 -	38	24/22	76-78	13-21 26-31		SAND, little Clay, little Silt, trace Gravel, non-slightly plastic, slightly cohesive, moist. Changing at 75.2 feet to: Dark grayish-brown, Silty CLAY, trace Gravel, plastic, cohesive, moist. Changing at 75.3 feet to: Dark grayish-brown to grayish-brown, SAND, little Clay, little Silt,	75.6° SAND 76° NO RECOVERY 76.6° SILT 76.6° Silty CLAY	
78 - 78 - 79 -	39	24/10	78-80	28-50/5"		trace Gravel, non-slightly plastic, slightly cohesive, moist. Changing at 75.6 feet to: NO RECOVERY. Dark grayish-brown to very dark grayish-brown, SILT, some Clay plastic, cohesive, moist. Changing at 76.6 feet to: Dark grayish-brown to very dark	77.8' NO RECOVERY	

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Boring No.: TA-MW-317D

GZA GeoEnvir onmental, Inc. Engineers and Scientists Sample Information No. Pen./ Depth Blows (fe') (fe'')					Former Tannery		_		of7 6.0062335.02
					Rockford, Michigan	1		Check:	K. McDonald
Pe lo. Re	n./ De	epth		Test Data	Sample Description & Classification	Stratum Desc.	Remarks		ent Installed
						NO SAMPLES COLLECTED			- 2-Inch Dia. 5-Foot PVC Screen (0.0 Slot) - Bottom of W Screen
12 24	17 102	2-104	1-41-50/5"		Dark grayish-brown, SILT & CLAY, some fine to medium Sand, trace Gravel,	102' SILT & CLAY			
					Changing at 103.4 feet to: NO RECOVERY.	103.4' NO RECOVERY			
					Bottom of Borehole at 104.0 Feet		2		
	o. Re (ir	o. Pen./Rec. (in.)	o. Rec. (in.) Depth (Ft.)	O. Pen./ Rec. (in.) Depth (Ft.) Blows (/6")	O. Pen./ Rec. (in.) Depth (Ft.) Blows (/6") Test Data	Sample Information o. Pen./ Rec. (in.) Depth (Ft.) Blows (/6") Test Data Description & Classification Description & Classification Dark grayish-brown, SILT & CLAY, some fine to medium Sand, trace Gravel, moderately plastic, cohesive, moist. Changing at 103.4 feet to: NO RECOVERY.	Sample Information o. Pen./ Rec. (in.) Depth (Ft.) Blows (6°) Test Data Description & Classification Stratum Desc. NO SAMPLES COLLECTED Dark grayish-brown, SILT & CLAY, some fine to medium Sand, trace Gravel, moderately plastic, cohesive, moist. Changing at 103.4 feet to: NO RECOVERY.	2 24/17 102-104 1-41-50/5' Dark grayish-brown, SILT & CLAY, some fine to medium Sand, trace Gravel, moderately plastic, cohesive, moist. Changing at 103.4 feet to: NO RECOVERY.	2 24/17 102-104 1-41-50/5" Dark grayish-brown, SILT & CLAY, some fine to medium Sand, trace Gravel, moderately plastic, cohesive, moist. Changing at 103.4 feet to: NO RECOVERY.

TABLE 1 SUMMARY OF GROUNDWATER SAMPLE ANALYSIS - PFAS Former Tannery Rockford, Kent County, MI

Sample Location	Part 201 Generic	Part 201 Generic	U.S. EPA Residential	TA-GW-01	TA-GW-02	TA-GW-03	TA-GW-04	TA-GW-05	TA-GW-06	TA-GW-07	TA-GW-08	TA-GW-09	TA-MW-1	TA-MW-2	TA-MW-3	TA-MW-4
Sample Name	Residential Groundwater Cleanup	Groundwater Cleanup Criteria –	Tap Water Regional Removal Management	TA-GW-GW01	TA-GW-GW02	TA-GW-GW03	TA-GW-GW04	TA-GW-GW5	TA-GW-GW06	TA-GW-GW7	TA-GW-GW08	TA-GW-GW09	TA-GW-MW1	TA-GW-MW2	TA-GW-MW3	TA-GW-MW4
Laboratory Sample ID(s)	Criteria – Drinking	Groundwater Surface	Levels ³	UH17008-015	UH10014-022	UH17008-006	UH21044-016	UH10014-020	UH21044-002	UH10014-021	UH15001-019	UH15001-009	UH10014-019	UH21044-009	UH10014-007	UH21044-011
Sample Date	Water ²	Water Interface ²	LCVCIS	08/16/2019	08/09/2019	08/15/2019	08/21/2019	08/09/2019	08/19/2019	08/09/2019	08/12/2019	08/14/2019	08/09/2019	08/20/2019	08/08/2019	08/20/2019
Parameter (µg/L)	-															
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<0.71	<0.0037	<0.036	<0.074	<0.0037	<0.036	<0.0039	<0.0036	<0.0037	<0.0037	<0.072	<0.0037	<0.073
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	<0.71	< 0.0037	<0.036	0.5	<0.0037	<0.036	<0.0039	<0.0036	<0.0037	< 0.0037	<0.072	<0.0037	0.33
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<0.71	<0.0037	<0.036	<0.074	<0.0037	<0.036	<0.0039	<0.0036	<0.0037	0.007	<0.072	<0.0037	0.23
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<1.4	<0.0074	<0.072	<0.15	<0.0075	<0.072	<0.0078	<0.0072	<0.0073	<0.0074	<0.14	<0.0074	<0.15
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	1,200	14	0.73	2.1	8.3	0.28	2.6	0.51	0.16	3.8	1.9	0.47	0.44	14
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	<0.71	<0.0037	<0.036	<0.074	<0.0037	<0.036	<0.0039	<0.0036	<0.0037	<0.0037	<0.072	0.004	<0.073
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	6.2	0.029	0.35	1.2	0.12	0.6	0.15	0.11	0.35	0.082	0.25	0.12	0.86
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	<1.4	<0.0074	<0.072	<0.15	<0.0075	<0.072	<0.0078	<0.0072	<0.0073	<0.0074	<0.14	<0.0074	<0.15
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	1	<0.0037	0.24	<0.074	0.0083	0.35	<0.0039	0.024	<0.0037	0.22	1	0.31	1.1
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	1.7	0.33	0.36	3.1	0.074	0.65	0.093	0.056	0.48	0.066	0.093	0.086	1.5
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	9.2	0.75	1.4	10	0.38	4.1	0.34	0.26	1.4	0.33	0.52	0.42	4.2
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	1.5	0.15	0.4	2.6	0.031	0.58	0.13	0.038	0.23	0.1	0.091	0.1	6.7
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	<0.71	<0.0037	0.47	<0.074	0.016	0.18	<0.0039	<0.0036	<0.0037	0.037	0.17	0.0084	<0.073
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	<0.71	<0.0037	<0.036	<0.074	<0.0037	<0.036	<0.0039	<0.0036	<0.0037	<0.0037	<0.072	<0.0037	<0.073
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	2.8	0.66	1	8.2	0.087	1.6	0.23	0.092	0.73	0.093	0.19	0.25	7.3
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	2.5	0.7	1.1	9.3	0.057	1.6	0.25	0.082	0.6	0.083	0.19	0.29	13
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	<0.71	<0.0037	0.17	0.27	0.029	0.34	0.033	0.034	0.043	0.036	0.098	0.031	0.41
Perfluorooctanoic acid (PFOA)	0.07 (JJ)	0.42 (X)	NCL	28	3.6	8.1	67 [B]	0.95	9.9	1.7	1.3	6.1	0.75	1.5 [B]	3.2	40 [B]
Perfluorooctane sulfonic acid (PFOS)	0.07 (JJ)	0.011 (X)	NCL	550	0.43	23	78 [B]	3.9	29	7.5	10	3.3 [E]	2.3	53 [B]	3.5	52 [B]
PFOA + PFOS (Calculated)	0.07	NCL	NCL	580	4	31	150	4.9	39	9.2	11	9.4	3.1	55	6.7	92
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	1.2	0.19	0.44	3.3	0.026	0.7	0.1	0.051	0.31	0.091	0.087	0.11	4.4
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<0.71	<0.0037	<0.036	<0.074	<0.0037	<0.036	<0.0039	<0.0036	<0.0037	<0.0037	<0.072	<0.0037	<0.073
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<0.71	<0.0037	<0.036	<0.074	<0.0037	<0.036	<0.0039	<0.0036	<0.0037	<0.0037	<0.072	<0.0037	<0.073
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<0.71	<0.0037	<0.036	<0.074	<0.0037	<0.036	<0.0039	<0.0036	<0.0037	<0.0037	<0.072	<0.0037	<0.073
Total PFAS (Calculated)	NCL	NCL	NCL	620	7.6	39	190	6	52	11	12	17	6.1	58	8.9	150

TABLE 1 SUMMARY OF GROUNDWATER SAMPLE ANALYSIS - PFAS Former Tannery

		JUIVIIVIAN	I OI GROONDWA	VILIV SAIVII LE AINA	AL 1 313 -
			Forme	r Tannery	
			Rockford, K	ent County, MI	
				1	

Sample Location	Part 201 Generic	Part 201 Generic		TA-MW-5	TA-P-1	TA-P-2	TA-P-3	TA-P-4	TA-P-5	TA-MW-301B	TA-MW-301C	TA-MW-301D	TA-MW-302A	TA-MW-302B	TA-MW-303A	TA-MW-303A
Sample Name	Residential Groundwater Cleanup	Groundwater Cleanup Criteria –	U.S. EPA Residential Tap Water Regional Removal Management	TA-GW-MW5	TA-GW-P1	TA-GW-P2	TA-GW-P3	TA-GW-P4	TA-GW-P5	TA-GW-MW301B	TA-GW-MW301C	TA-GW-MW301D	TA-GW-MW302A	TA-GW-MW302B	TA-GW-MW303A	TA-GW-MW303A DUP
Laboratory Sample ID(s)	Criteria – Drinking	Groundwater Surface	Levels ³	UH15001-010	UH17008-002	UH17008-001	UH17008-011	UH17008-014	UH21044-015	UH21044-001	UH21044-018	UH10014-018	UH17008-003	UH17008-004	UH21044-006	UH21044-007
Sample Date	Water ²	Water Interface ²	LCVCIS	08/14/2019	08/15/2019	08/15/2019	08/16/2019	08/16/2019	08/21/2019	08/19/2019	08/21/2019	08/07/2019	08/15/2019	08/15/2019	08/19/2019	08/19/2019
Parameter (µg/L)																
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<0.0037	<0.0037	<0.019	<0.019	<0.074	<0.072	<0.018	<0.36	<0.0036	<0.0037	<0.018	<0.039	<0.037
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	0.0044	0.02	0.028	0.071	0.098	<0.072	<0.018	<0.36	<0.0036	0.0064	<0.018	<0.039	<0.037
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.019	<0.019	<0.074	<0.072	<0.018	<0.36	<0.0036	<0.0037	<0.018	<0.039	<0.037
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<0.0074	<0.0074	<0.037	<0.037	<0.15	<0.14	<0.037	<0.71	<0.0072	<0.0074	<0.036	<0.079	<0.075
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	1,200	0.11	2.6	3.6	7.6	2.8	2.4	0.75	1.1	<0.0036	2.9	1.8	11	12
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	0.011	0.0076	<0.019	<0.019	<0.074	<0.072	<0.018	<0.36	<0.0036	0.0053	<0.018	<0.039	<0.037
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	0.14	0.4	1.3	0.46	0.76	1.4	0.26	2.4	<0.0036	0.14	0.2	0.48	0.48
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	0.022	<0.0074	<0.037	<0.037	<0.15	<0.14	<0.037	0.79	<0.0072	<0.0074	<0.036	<0.079	<0.075
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	1.5	0.18	0.039	0.055	0.96	1.1	0.11	<0.36	<0.0036	0.2	1.1	0.34	0.37
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	0.043	0.8	0.63	0.7	0.37	0.31	0.2	0.99	<0.0036	0.23	0.33	0.82	0.85
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	0.54	1.7	4.1	3.3	1.9	1.9	0.91	10	<0.0036	0.58	1.1	2.7	2.5
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	0.033	0.72	0.63	1.4	0.76	0.5	0.21	0.92	<0.0036	0.34	0.37	0.76	0.77
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	0.037	0.0065	<0.019	0.021	0.15	0.16	0.06	<0.36	<0.0036	0.033	<0.018	<0.039	0.04
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	< 0.0037	<0.0037	<0.019	<0.019	<0.074	<0.072	<0.018	<0.36	<0.0036	<0.0037	<0.018	<0.039	<0.037
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	0.16	1.4	1.1	2	1.3	0.73	0.77	16	<0.0036	0.31	0.66	1.1	1.2
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	0.16	1.6	1.4	2.9	2	1.2	0.79	17	<0.0036	0.34	0.73	1.2	1.4
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	0.032	0.064	0.12	0.14	0.28	0.13	0.055	<0.36	<0.0036	0.036	0.048	0.071	0.073
Perfluorooctanoic acid (PFOA)	0.07 (JJ)	0.42 (X)	NCL	1.7	11	13	12	8.3	7.3 [B]	10	210 [B]	<0.0018	2.4	6.4	5.9	5.9
Perfluorooctane sulfonic acid (PFOS)	0.07 (JJ)	0.011 (X)	NCL	13	11	25	26	78	76 [B]	33	490 [B]	0.011	5.6	15	32	32
PFOA + PFOS (Calculated)	0.07	NCL	NCL	15	22	38	38	86	83	43	700	0.011	8	21	38	38
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	0.041	0.7	0.39	1.2	0.69	0.64	0.29	2.4	<0.0036	0.18	0.3	0.53	0.53
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.019	<0.019	<0.074	<0.072	<0.018	<0.36	<0.0036	<0.0037	<0.018	<0.039	<0.037
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.019	<0.019	<0.074	<0.072	<0.018	<0.36	<0.0036	<0.0037	<0.018	<0.039	<0.037
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.019	<0.019	<0.074	<0.072	<0.018	<0.36	<0.0036	<0.0037	0.41	<0.039	<0.037
Total PFAS (Calculated)	NCL	NCL	NCL	18	32	51	58	98	94	47	750	0.011	13	28	57	58

TABLE 1 SUMMARY OF GROUNDWATER SAMPLE ANALYSIS - PFAS

OF GROUNDWATER SAMPLE ANALYSIS -
Former Tannery
Rockford, Kent County, MI

Sample Location	Part 201 Generic	Part 201 Generic		TA-MW-303B	TA-MW-303C	TA-MW-303D	TA-MW-303E	TA-MW-304A	TA-MW-304B	TA-MW-305B	TA-MW-305C	TA-MW-306A	TA-MW-306B	TA-MW-307A	TA-MW-307B	TA-MW-308A
Sample Name	Residential Groundwater Cleanup	Groundwater Cleanup	U.S. EPA Residential Tap Water Regional	TA-GW-MW303B	TA-GW-MW303C	TA-GW-MW303D	TA-GW-MW303E	TA-GW-MW304A	TA-GW-MW304B	TA-GW-MW305B	TA-GW-MW305C	TA-GW-MW306A	TA-GW-MW306B	TA-GW-MW307A	TA-GW-MW307B	TA-GW-MW308A
Laboratory Sample ID(s)	Criteria – Drinking	Groundwater Surface	Removal Management Levels ³	UH21044-004	UH21044-003	UH10014-017	UH07038-001	UH21044-008	UH10014-011	UH21044-012	UH21044-013	UH15001-005	UH15001-013	UH15001-002	UH10014-006	UH17008-005
Sample Date	Water ²	Water Interface ²	Levels	08/19/2019	08/19/2019	08/07/2019	08/06/2019	08/19/2019	08/08/2019	08/20/2019	08/20/2019	08/13/2019	08/14/2019	08/13/2019	08/08/2019	08/15/2019
Parameter (µg/L)																
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<0.022	<0.018	<0.0036	<0.0035	<0.072	<0.0037	<0.035	<0.036	<0.0035	<0.0037	<0.0036	<0.0036	<0.018
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	<0.022	0.069	<0.0036	<0.0035	<0.072	0.0065	0.21	0.29	0.012	0.041	<0.0036	<0.0036	<0.018
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<0.022	<0.018	<0.0036	<0.0035	<0.072	<0.0037	<0.035	<0.036	<0.0035	<0.0037	<0.0036	<0.0036	<0.018
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<0.044	<0.036	<0.0072	<0.007	<0.14	<0.0074	<0.07	<0.072	<0.007	< 0.0074	<0.0073	<0.0073	<0.036
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	1,200	8	9.3	0.085	<0.0035	2.1	0.46	15	15	0.69	1.9	0.62	0.22	0.99
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	<0.022	<0.018	<0.0036	<0.0035	<0.072	< 0.0037	<0.035	<0.036	<0.0035	<0.0037	<0.0036	<0.0036	<0.018
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	0.37	0.29	<0.0036	<0.0035	0.54	0.029	0.65	0.9	0.13	0.18	0.25	<0.0036	0.33
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	<0.044	<0.036	<0.0072	<0.007	<0.14	<0.0074	<0.07	<0.072	<0.007	0.0081	<0.0073	<0.0073	<0.036
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	0.16	0.19	<0.0036	<0.0035	0.29	0.013	<0.035	<0.036	0.15	0.091	<0.0036	<0.0036	0.037
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	0.68	0.51	<0.0036	<0.0035	0.3	0.094	2.1	2.6	0.11	0.3	0.26	0.021	0.2
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	2.8	1.8	0.0057	<0.0035	1.3	0.34	4.6	6.1	0.52	1.2	0.92	0.038	1.1
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	0.92	1.6	0.0081	<0.0035	0.41	0.28	4.5	5.6	0.18	0.59	0.11	0.083	0.37
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	<0.022	<0.018	<0.0036	<0.0035	<0.072	0.0053	<0.035	0.088	0.093	0.03	<0.0036	<0.0036	<0.018
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	<0.022	<0.018	<0.0036	<0.0035	<0.072	<0.0037	<0.035	<0.036	<0.0035	<0.0037	<0.0036	<0.0036	<0.018
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	1.2	1.5	0.0048	<0.0035	0.68	0.2	8.2	10	0.25	0.8	0.46	0.083	1.2
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	1.5	2.8	0.0084	<0.0035	0.93	0.52	22	22	0.33	0.94	0.36	0.16	1.3
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	0.082	0.12	<0.0036	<0.0035	0.13	0.015	0.11	0.23	0.091	0.068	0.04	<0.0036	0.11
Perfluorooctanoic acid (PFOA)	0.07 (JJ)	0.42 (X)	NCL	7.6	9.1	0.024	<0.0018	4.7	0.92	29 [B]	44 [B]	2.2	6.4	4	0.3	12
Perfluorooctane sulfonic acid (PFOS)	0.07 (JJ)	0.011 (X)	NCL	27	23	0.021	<0.0035	61	1	25 [B]	39 [B]	8.9	6.9	4.1	0.014	16
PFOA + PFOS (Calculated)	0.07	NCL	NCL	35	32	0.045	ND	66	1.9	54	83	11	13	8.1	0.31	28
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	0.58	0.96	0.0053	<0.0035	0.34	0.12	4.5	5.3	0.17	0.45	0.14	0.068	0.98
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<0.022	<0.018	<0.0036	<0.0035	<0.072	<0.0037	<0.035	<0.036	<0.0035	<0.0037	<0.0036	<0.0036	<0.018
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<0.022	<0.018	<0.0036	<0.0035	<0.072	<0.0037	<0.035	<0.036	<0.0035	<0.0037	<0.0036	<0.0036	<0.018
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<0.022	<0.018	<0.0036	<0.0035	<0.072	<0.0037	<0.035	<0.036	<0.0035	<0.0037	<0.0036	<0.0036	<0.018
Total PFAS (Calculated)	NCL	NCL	NCL	51	51	0.16	ND	73	4	120	150	14	20	11	0.99	35

TABLE 1 SU AS

UMMARY OF GROUNDWATER SAMPLE ANALYSIS - PFA
Former Tannery
Rockford, Kent County, MI

Sample Location		2 . 224 2		TA-MW-308B	TA-MW-308C	TA-MW-309A	TA-MW-309B	TA-MW-309C	TA-MW-309D	TA-MW-310B	TA-MW-310C	TA-MW-311A	TA-MW-311B	TA-MW-311C	TA-MW-312	TA-MW-313A
Sample Name	Part 201 Generic Residential Groundwater Cleanup	Part 201 Generic Groundwater Cleanup Criteria –	U.S. EPA Residential Tap Water Regional	TA-GW-MW308B							TA-GW-MW310C				TA-GW-MW312	TA-GW-MW313A
Laboratory Sample ID(s)	Criteria – Drinking	Groundwater Surface	Removal Management Levels ³	UH07038-002	UH10014-016	UH15001-001	UH15001-004	UH17008-012	UH21044-005	UH10014-005	UH10014-002	UH07038-006	UH10014-015	UH07038-007	UH15001-003	UH10014-014
Sample Date	Water ²	Water Interface ²	Levels	08/06/2019	08/07/2019	08/13/2019	08/13/2019	08/16/2019	08/19/2019	08/08/2019	08/08/2019	08/06/2019	08/07/2019	08/06/2019	08/13/2019	08/07/2019
Parameter (μg/L)	-															
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<0.0038	<0.0038	<0.0036	<0.0035	<0.018	<0.037	<0.0036	<0.0037	<0.0036	<0.0037	<0.0036	<0.0036	<0.0036
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	<0.0038	<0.0038	<0.0036	<0.0035	<0.018	<0.037	<0.0036	<0.0037	<0.0036	<0.0037	<0.0036	<0.0036	<0.0036
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<0.0038	<0.0038	<0.0036	<0.0035	<0.018	<0.037	<0.0036	<0.0037	<0.0036	<0.0037	<0.0036	<0.0036	<0.0036
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<0.0076	<0.0075	<0.0073	<0.007	<0.037	<0.075	<0.0073	<0.0073	<0.0072	<0.0074	<0.0072	<0.0072	<0.0072
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	1,200	<0.0038	<0.0038	0.3	0.27	0.42	0.56	0.12	0.19	0.027	<0.0037	<0.0036	0.0075	0.17
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	<0.0038	<0.0038	0.0043	<0.0035	<0.018	<0.037	<0.0036	<0.0037	<0.0036	<0.0037	<0.0036	<0.0036	<0.0036
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	<0.0038	<0.0038	0.21	0.2	0.29	0.35	0.032	<0.0037	0.019	<0.0037	<0.0036	0.0052	0.061
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	<0.0076	<0.0075	0.0097	<0.007	<0.037	<0.075	<0.0073	<0.0073	<0.0072	<0.0074	<0.0072	<0.0072	<0.0072
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	<0.0038	<0.0038	0.27	0.033	<0.018	<0.037	0.85	<0.0037	<0.0036	< 0.0037	<0.0036	<0.0036	<0.0036
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	<0.0038	<0.0038	0.083	0.092	0.16	0.21	0.041	0.075	0.0053	<0.0037	<0.0036	<0.0036	0.12
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	<0.0038	<0.0038	0.4	0.37	0.69	0.98	0.14	0.034	0.032	<0.0037	<0.0036	0.0096	0.41
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	<0.0038	0.0057	0.052	0.071	0.11	0.15	0.029	0.15	0.0097	<0.0037	<0.0036	<0.0036	0.057
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	<0.0038	<0.0038	<0.0036	0.0053	<0.018	0.056	0.052	<0.0037	<0.0036	<0.0037	<0.0036	<0.0036	<0.0036
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	<0.0038	<0.0038	<0.0036	<0.0035	<0.018	<0.037	<0.0036	<0.0037	<0.0036	<0.0037	<0.0036	<0.0036	<0.0036
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	<0.0038	<0.0038	0.15	0.16	0.3	0.78	0.064	0.14	0.013	<0.0037	<0.0036	0.0048	0.18
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	<0.0038	0.0039	0.13	0.18	0.33	0.92	0.061	0.3	0.018	<0.0037	<0.0036	0.0042	0.16
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	<0.0038	<0.0038	0.05	0.065	0.072	0.091	0.012	<0.0037	<0.0036	<0.0037	<0.0036	<0.0036	<0.0036
Perfluorooctanoic acid (PFOA)	0.07 (JJ)	0.42 (X)	NCL	<0.0019	0.0034	2.1	2.4	3.9	9.5	0.61	0.24	0.14	<0.0018	<0.0018	0.043	1.2
Perfluorooctane sulfonic acid (PFOS)	0.07 (JJ)	0.011 (X)	NCL	<0.0038	0.0075	8.7	8.6	19	43	2	0.0037	0.69	< 0.0037	<0.0036	0.079	0.37
PFOA + PFOS (Calculated)	0.07	NCL	NCL	ND	0.011	11	11	23	53	2.6	0.24	0.83	ND	ND	0.12	1.6
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	<0.0038	<0.0038	0.076	0.097	0.15	0.25	0.047	0.18	0.0091	<0.0037	<0.0036	<0.0036	0.093
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<0.0038	<0.0038	<0.0036	<0.0035	<0.018	<0.037	<0.0036	<0.0037	<0.0036	<0.0037	<0.0036	<0.0036	<0.0036
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<0.0038	<0.0038	0.0063	<0.0035	<0.018	<0.037	<0.0036	<0.0037	<0.0036	<0.0037	<0.0036	<0.0036	<0.0036
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<0.0038	<0.0038	<0.0036	<0.0035	<0.018	<0.037	<0.0036	<0.0037	<0.0036	<0.0037	<0.0036	<0.0036	<0.0036
Total PFAS (Calculated)	NCL	NCL	NCL	ND	0.021	13	13	25	57	4.1	1.3	0.96	ND	ND	0.15	2.8

TABLE 1 SUMMARY OF GROUNDWATER SAMPLE ANALYSIS - PFAS Former Tannery

Former Tannery
Rockford, Kent County, MI

Sample Location	Part 201 Generic	Part 201 Generic		TA-MW-313B	TA-MW-313C	TA-MW-315D	TA-MW-315S	TA-MW-315S	TA-MW-316D	TA-MW-316M	TA-MW-316S	TA-TMW-101	TA-TMW-102	TA-TMW-103	TA-TMW-104	TA-TMW-104
Sample Name	Residential Groundwater Cleanup	Groundwater Cleanup	U.S. EPA Residential Tap Water Regional Removal Management	TA-GW-MW313B	TA-GW-MW313C	TA-GW-MW315D	TA-GW-MW315S	TA-GW-MW315S DUP	TA-GW-MW316D	TA-GW-MW316M	TA-GW-MW316S	TA-GW-TMW101	TA-GW-TMW102	TA-GW-TMW103	TA-GW-TMW104	TA-GW-TMW104 DUP
Laboratory Sample ID(s)	Criteria – Drinking	Groundwater Surface	Levels ³	UH10014-012	UH10014-013	UH10014-001	UH10014-003	UH10014-004	UH07038-004	UH07038-003	UH07038-005	UH21044-017	UH15001-007	UH15001-018	UH15001-011	UH15001-012
Sample Date	Water ²	Water Interface ²	Levels	08/07/2019	08/07/2019	08/08/2019	08/08/2019	08/08/2019	08/06/2019	08/06/2019	08/06/2019	08/21/2019	08/13/2019	08/12/2019	08/14/2019	08/14/2019
Parameter (µg/L)																
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	<0.0036	<0.0036	<0.0037	<0.0035	<0.0037	<0.075	<0.0037	<0.0038	<0.019	<0.018
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	<0.0036	<0.0036	<0.0037	<0.0035	<0.0037	<0.075	<0.0037	0.0052	<0.019	<0.018
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	<0.0036	<0.0036	<0.0037	<0.0035	<0.0037	<0.075	<0.0037	<0.0038	<0.019	<0.018
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<0.0073	<0.0074	<0.0073	<0.0071	<0.0072	<0.0074	<0.007	<0.0074	<0.15	<0.0074	<0.0077	<0.037	<0.036
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	1,200	0.077	0.027	<0.0036	0.08	0.079	<0.0037	0.054	<0.0037	0.68	0.56	0.44	0.71	0.71
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	<0.0036	<0.0036	<0.0037	<0.0035	<0.0037	<0.075	<0.0037	<0.0038	<0.019	<0.018
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	0.0088	<0.0037	<0.0036	0.091	0.085	<0.0037	0.013	<0.0037	0.63	0.3	0.12	0.25	0.27
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	<0.0073	<0.0074	<0.0073	<0.0071	<0.0072	<0.0074	<0.007	<0.0074	0.23	<0.0074	<0.0077	<0.037	<0.036
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	<0.0036	<0.0036	<0.0037	<0.0035	<0.0037	0.089	<0.0037	0.19	<0.019	<0.018
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	0.025	0.012	<0.0036	0.013	0.013	<0.0037	0.0087	<0.0037	0.31	0.29	0.14	0.26	0.28
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	0.1	0.025	<0.0036	0.087	0.077	<0.0037	0.042	<0.0037	1.7	1.1	0.5	0.78	0.87
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	0.023	0.012	<0.0036	0.018	0.019	<0.0037	0.014	<0.0037	0.25	0.1	0.063	0.081	0.085
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	<0.0036	<0.0036	<0.0037	<0.0035	<0.0037	<0.075	0.0087	0.011	0.019	0.022
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	<0.0036	<0.0036	<0.0037	<0.0035	<0.0037	<0.075	<0.0037	<0.0038	<0.019	<0.018
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	0.033	0.022	<0.0036	0.034	0.031	<0.0037	0.023	<0.0037	2.1	0.46	0.23	0.32	0.31
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	0.041	0.032	<0.0036	0.037	0.035	<0.0037	0.038	0.0038	1.7	0.36	0.22	0.23	0.26
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	0.0093	0.011	<0.0037	<0.0035	<0.0037	0.096	0.042	0.029	0.056	0.062
Perfluorooctanoic acid (PFOA)	0.07 (JJ)	0.42 (X)	NCL	0.31	0.097	0.002	0.39	0.4	<0.0018	0.16	0.013	42 [B]	4	2.2	3.6	3.7
Perfluorooctane sulfonic acid (PFOS)	0.07 (JJ)	0.011 (X)	NCL	0.048	0.023	<0.0036	2.5	2.4	<0.0037	0.067	0.39	140 [B]	5.7	4.2	17	19
PFOA + PFOS (Calculated)	0.07	NCL	NCL	0.36	0.12	0.002	2.9	2.8	ND	0.23	0.4	180	9.7	6.4	21	23
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	0.031	0.022	<0.0036	0.023	0.024	<0.0037	0.032	0.0039	0.46	0.12	0.1	0.089	0.097
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	<0.0036	<0.0036	<0.0037	<0.0035	<0.0037	<0.075	<0.0037	<0.0038	<0.019	<0.018
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	<0.0036	<0.0036	<0.0037	<0.0035	<0.0037	<0.075	<0.0037	<0.0038	<0.019	<0.018
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<0.0037	<0.0037	<0.0036	<0.0036	<0.0036	<0.0037	<0.0035	<0.0037	<0.075	<0.0037	<0.0038	<0.019	<0.018
Total PFAS (Calculated)	NCL	NCL	NCL	0.7	0.27	0.002	3.3	3.2	ND	0.45	0.41	190	13	8.4	23	26

TABLE 1 SUMMARY OF GROUNDWATER SAMPLE ANALYSIS - PFAS Former Tannery Rockford, Kent County, MI

Sample Location	Part 201 Generic	Part 201 Generic		TA-TMW-105	TA-TMW-108	TA-TMW-109	TA-TMW-110	TA-TMW-111
Sample Name	Residential Groundwater Cleanup	Groundwater Cleanup Criteria –	U.S. EPA Residential Tap Water Regional Removal Management	TA-GW-TMW105	TA-GW-TMW108	TA-GW-TMW109	TA-GW-TMW110	TA-GW-TMW111
Laboratory Sample ID(s)	Criteria – Drinking	Groundwater Surface	Levels ³	UH17008-013	UH15001-006	UH15001-017	UH21044-010	UH15001-020
Sample Date	Water ²	Water Interface ²	Levels	08/16/2019	08/13/2019	08/12/2019	08/20/2019	08/12/2019
Parameter (μg/L)								
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<0.035	<0.0037	<0.0037	<0.073	<0.0037
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	<0.035	<0.0037	<0.0037	<0.073	<0.0037
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<0.035	<0.0037	<0.0037	<0.073	<0.0037
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<0.071	<0.0074	<0.0075	<0.15	<0.0074
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	1,200	2	0.61	0.37	0.29	0.61
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	<0.035	<0.0037	<0.0037	<0.073	<0.0037
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	0.34	0.25	0.066	0.71	0.22
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	<0.071	<0.0074	<0.0075	<0.15	<0.0074
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	0.86	< 0.0037	0.07	<0.073	< 0.0037
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	0.35	0.25	0.055	0.33	0.3
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	1.3	0.93	0.22	2.1	1
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	0.4	0.13	0.075	<0.073	0.11
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	0.34	0.0095	<0.0037	<0.073	<0.0037
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	<0.035	< 0.0037	<0.0037	<0.073	<0.0037
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	0.87	0.5	0.17	0.7	0.5
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	1	0.4	0.19	0.47	0.3
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	0.14	0.037	0.019	<0.073	0.031
Perfluorooctanoic acid (PFOA)	0.07 (JJ)	0.42 (X)	NCL	6.2	3.6	1	7.1 [B]	4.5
Perfluorooctane sulfonic acid (PFOS)	0.07 (JJ)	0.011 (X)	NCL	27	3.9	2.9	55 [B]	3.5
PFOA + PFOS (Calculated)	0.07	NCL	NCL	33	7.5	3.9	62	8
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	0.41	0.16	0.12	0.096	0.13
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<0.035	<0.0037	<0.0037	<0.073	<0.0037
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<0.035	<0.0037	<0.0037	<0.073	<0.0037
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<0.035	<0.0037	<0.0037	<0.073	<0.0037
Total PFAS (Calculated)	NCL	NCL	NCL	41	11	5.3	67	11

SUMMARY OF GROUNDWATER SAMPLE ANALYSIS

Former Tannery Rockford, Kent County, MI

NOTES:

- 1. Concentration and criteria units are micrograms per Liter (µg/L) or parts per billion (ppb). Calculated criteria and concentrations are rounded to two significant digits.
- 2. Michigan Part 201 Groundwater Cleanup Criteria are based on "Table 1, Groundwater: Residential and Nonresidential Part 201 Generic Cleanup Criteria and Screening Levels/Part 213 Tier I Risk Based Screening Levels," Michigan Administrative Code, Cleanup Criteria Requirements for Response Activity, Rules 299.44 and 299.49, effective December 30, 2013; updated June 25, 2018. Abbreviations Include:
 - "NCL" indicates no criterion listed in Michigan Department of Environment, Great Lakes, and Energy (EGLE) Table 1.

Footnotes Include:

- (X) For groundwater discharge to the Great Lakes and their connecting waters or discharge in close proximity to a water supply intake in inland surface waters, the generic GSI criterion shall be the surface water human drinking water value (HDV) listed in the table of this footnote except for those HDV indicated with an asterisk. For HDV with an asterisk, the generic GSI criterion shall be the lowest of the HDV, the wildlife value (WV), and the calculated final chronic value (FCV). Criterion listed have been updated to the HDV, WV, or FCV.
- (JJ) Compliance with the drinking water criteria shall require comparing the sum of the PFOA and PFOS groundwater concentrations to the drinking water criterion of 0.07 µg/L.
- 3. U.S. EPA Residential Tap Water Regional Removal Management Levels (RMLs) were based on "Generic RML Tables," updated November 2018.
- 4. Bold, italic number with thick line border or italic parameter name indicates that parameter was detected above the Michigan Part 201 Groundwater Cleanup Criteria or Media-Specific Interim Action Screening Levels. U.S. EPA RMLs are provided for reference only and results detected above the EPA RMLs are not bolded or italicized.
- 5. Abbreviation includes:
 - "< RL" indicates the parameter was analyzed for but not detected above the method detection limit; RL = Reporting Limit.
 - "B" indicates the parameter was also detected in the method blank.
 - "E" indicates the quantitation of the compound exceeded the calibration range.

Page 7 of 7