

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

The Widdicomb Building 601 Fifth Street NW Suite 102 Grand Rapids, MI 49504 T: 616.956.6123 F: 616.288.3327 www.rosewestra.com

MEMORANDUM

To: Abby Hendershott, EGLE

From: Lori Powers, Rose & Westra, a Division of GZA GeoEnvironmental, Inc.

Date: September 30, 2019

File No.: 16.0062335.52 / 16.0062335.53

Re: Wolverine World Wide, Inc. (Wolverine) – House Street Disposal Area

Monthly Progress Report

This EGLE Monthly Progress Report (MPR) is being submitted on behalf of Wolverine. This EGLE MPR is completed as agreed upon in Mr. John Byl's July 9, 2018 letter entitled Response to May 29 Correspondence regarding Tannery Meeting Summary and Action Items.

This progress report also includes information to supplement the September 11, 2019 U.S. EPA MPR (attached).

SITE INVESTIGATION ACTIONS

Continued effort for access to off-site drilling locations. Conducted drilling at location PMW-12 for installation of a total of three wells. Additional wells may be installed, pending the vertical aquifer profiling data.

Began drilling location PMW-24.

Clearing for fence installation continued, a permit was issued through Kent County Road Commission regarding fence installation in the House Street right-of-way, and fence installation began.

At the request of EGLE, five boring logs from drilled locations MW-27, MW-28, MW-30, MW-31, and MW-32 are included with this update.

R&W/GZA completed Quarter 3 sampling of the permanent groundwater monitoring wells both on and off-Site.

Three staff gauges were installed and surveyed along the Rogue River.

SITE ANALYTICAL DATA RECIEVED

PFAS soil data received since the last update from the on-Site investigation and westerly possible wetlands investigation is summarized in the attached table. The figures showing the boring and sample locations were submitted in the last monthly update.

SITE MAPPING

A revised map of the off-Site well locations will be provided once the evaluation and verification of the survey information is available.

SITE ANTICIPATED ACTIONS AND SCHEDULE FOR NEXT REPORTING PERIOD

Drilling will continue at PMW-24. R&W/GZA will continue to make efforts to gain access to drilling locations PMW-22, PMW-13, and PMW-16. Additional wells may be installed at the PMW-12 location.

Continue to respond to the EPA's April 29, 2019 correspondence regarding CERCLA actions at the Wolverine Tannery and House Street sites.

OFF-SITE SUMMARY

Draft scopes of work for parcels on the south side of House Street are being prepared for submittal to EGLE, EPA, MDOT, and the property owners and their counsel for review and approval prior to implementing any removal actions.

R&W/GZA is also working on approval for waste disposal. An additional composite sample was requested from the disposal facility, collected, and has been submitted for analysis. Revised waste profiles and approval are underway.

R&W/GZA and Wolverine are evaluating possible actions for additional investigation/remediation at the Imperial Pine Parcel (7900 Imperial Pine Drive NE).

 $\label{lem:lember2019} \label{lember2019} \label{$

Sample Location				HS-SB-4800	HS-SB-4800	HS-SB-4802	HS-SB-4802	HS-SB-4803	HS-SB-4803	HS-SB-4804	HS-SB-4804	HS-SB-4806
Sample Name	Part 201 Generic Residential Soil	Part 201 Generic Groundwater	U.S. EPA Residential Soil	HS-SB-4800 (0-2)	HS-SB-4800 (15- 17)	HS-SB-4802 (0-2)	HS-SB-4802 (15- 17)	HS-SB-4803 (0-2)	HS-SB-4803 (6-8)	HS-SB-4804 (0-2)	HS-SB-4804 (10- 12)	HS-SB-4806 (0-2
Depth Interval (Feet below ground surface)	Cleanup Criteria -	Cleanup Criteria – Groundwater	Regional Removal	0 - 2	15 - 17	0 - 2	15 - 17	0 - 2	6 - 8	0 - 2	10 - 12	0 - 2
Boring Location	Drinking Water	Surface Water	Management	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site
Laboratory Sample ID(s)	Protection ²	Interface ²	Levels ³	UH23024-002	UH23024-003	UH17001-020	UH17001-021	UH23024-010	UH23024-011	UH23024-012	UH23024-013	UH17001-026
Sample Date				8/19/2019	8/19/2019	8/16/2019	8/16/2019	8/20/2019	8/20/2019	8/20/2019	8/20/2019	8/16/2019
Parameter (μg/kg)												
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<12	<11	<9.6	<11	<9.4	<12	<10	<11	<11
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	<12	<11	<9.6	<11	<9.4	<12	<10	<11	<11
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<2.4	<2.2	<1.9	<2.2	<1.9	<2.5	<2.1	<2.1	<2.2
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<2.4	<2.2	<1.9	<2.2	<1.9	<2.5	<2.1	<2.1	<2.2
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	3,800,000	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorooctanoic acid (PFOA)	NCL	10,000	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorooctane sulfonic acid (PFOS)	NCL	0.24	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
PFOA + PFOS (Calculated)	NCL	NCL	NCL	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<5.9	<5.5	<4.8	<5.4	<4.7	<6.2	<5.2	<5.3	<5.4
Total PFAS (Calculated)	NCL	NCL	NCL	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample Location				HS-SB-4806	HS-SB-4807	HS-SB-4807	HS-SB-4809	HS-SB-4809	HS-SB-4810	HS-SB-4810	HS-SB-4811	HS-SB-4811
Sample Name	Part 201 Generic Residential Soil	Part 201 Generic Groundwater	U.S. EPA Residential Soil	HS-SB-4806 (7-9)	HS-SB-4807 (0-2)	HS-SB-4807 (10- 12)	HS-SB-4809 (0-2)	HS-SB-4809 (6-8)	HS-SB-4810 (0-2)	HS-SB-4810 (6-8)	HS-SB-4811 (0-2)	HS-SB-4811 (12- 14)
Depth Interval (Feet below ground surface)	Cleanup Criteria –	Cleanup Criteria – Groundwater	Regional Removal	7 - 9	0 - 2	10 - 12	0 - 2	6 - 8	0 - 2	6 - 8	0 - 2	12 - 14
Boring Location	Drinking Water	Surface Water	Management	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site	House St Site	House St Site
Laboratory Sample ID(s)	Protection ²	Interface ²	Levels ³	UH17001-027	UH23024-006	UH23024-007	UH17001-022	UH17001-023	UH17001-012	UH17001-013	UH23024-016	UH23024-017
Sample Date				8/16/2019	8/19/2019	8/19/2019	8/16/2019	8/16/2019	8/15/2019	8/15/2019	8/20/2019	8/20/2019
Parameter (μg/kg)												
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<10	<13	<11	<12	<11	<11	<11	<10	<11
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	<10	<13	<11	<12	<11	<11	<11	<10	<11
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<2	<2.5	<2.3	<2.4	<2.3	<2.2	<2.2	<2.1	<2.3
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<2	<2.5	<2.3	<2.4	<2.3	<2.2	<2.2	<2.1	<2.3
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	3,800,000	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorooctanoic acid (PFOA)	NCL	10,000	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorooctane sulfonic acid (PFOS)	NCL	0.24	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
PFOA + PFOS (Calculated)	NCL	NCL	NCL	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<5.1	<6.3	<5.7	<5.9	<5.7	<5.6	<5.4	<5.2	<5.6
Total PFAS (Calculated)	NCL	NCL	NCL	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample Location				HS-SB-4900	HS-SB-4900	HS-SB-4901	HS-SB-4901	HS-SB-4902	HS-SB-4902	HS-SB-4903	HS-SB-4903	HS-SB-4904
Sample Name	Part 201 Generic Residential Soil	Part 201 Generic Groundwater	U.S. EPA Residential Soil	HS-SB-4900 (0-2)	HS-SB-4900 (17- 19)	HS-SB-4901 (0-2)	HS-SB-4901 (18- 20)	HS-SB-4902 (0-2)	HS-SB-4902 (6-8)	HS-SB-4903 (0-2)	HS-SB-4903 (11- 13)	HS-SB-4904 (0-2
Depth Interval (Feet below ground surface)	Cleanup Criteria –	Cleanup Criteria – Groundwater	Regional Removal	0 - 2	17 - 19	0 - 2	18 - 20	0 - 2	6 - 8	0 - 2	11 - 13	0 - 2
Boring Location	Drinking Water	Surface Water	Management	Off-Site	Off-Site	House St Site	House St Site	Off-Site	Off-Site	Off-Site	Off-Site	Off-Site
Laboratory Sample ID(s)	Protection ²	Interface ²	Levels ³	UH17001-001	UH17001-002	UH17001-003	UH17001-004	UH23024-008	UH23024-009	UH23024-004	UH23024-005	UH23024-014
Sample Date				8/12/2019	8/12/2019	8/12/2019	8/12/2019	8/20/2019	8/19/2019	8/19/2019	8/19/2019	8/20/2019
Parameter (μg/kg)												
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<9.4	<10	<11	<11	<11	<11	<12	<13	<11
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	<9.4	<10	<11	<11	<11	<11	<12	<13	<11
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<1.9	<2.1	<2.2	<2.2	<2.3	<2.2	<2.4	<2.6	<2.3
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<1.9	<2.1	<2.2	<2.2	<2.3	<2.2	<2.4	<2.6	<2.3
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	3,800,000	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorooctanoic acid (PFOA)	NCL	10,000	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorooctane sulfonic acid (PFOS)	NCL	0.24	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
PFOA + PFOS (Calculated)	NCL	NCL	NCL	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<4.7	<5.2	<5.6	<5.6	<5.7	<5.5	<5.9	<6.4	<5.7
Total PFAS (Calculated)	NCL	NCL	NCL	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample Location				HS-SB-4904	HS-SB-4907	HS-SB-4907	HS-SB-4908	HS-SB-4908	HS-SB-4910	HS-SB-4910	HS-SB-4910	HS-SB-4911
Sample Name	Part 201 Generic Residential Soil	Part 201 Generic Groundwater	U.S. EPA Residential Soil	HS-SB-4904 (15- 17)	HS-SB-4907 (0-2)	HS-SB-4907 (12- 14)	HS-SB-4908 (0-2)	HS-SB-4908 (7-9)	HS-SB-4910 (0-2)	HS-SB-4910 (0-2) DUP	HS-SB-4910 (10- 12)	HS-SB-4911 (0-2
Depth Interval (Feet below ground surface)	Cleanup Criteria –	Cleanup Criteria – Groundwater	Regional Removal	15 - 17	0 - 2	12 - 14	0 - 2	7 - 9	0 - 2	0 - 2	10 - 12	0 - 2
Boring Location	Drinking Water	Surface Water	Management	Off-Site	House St Site	House St Site	Off-Site	Off-Site	House St Site	House St Site	House St Site	House St Site
Laboratory Sample ID(s)	Protection ²	Interface ²	Levels ³	UH23024-015	UH17001-015	UH17001-016	UH17001-024	UH17001-025	UH17001-010	UH17001-011	UH17001-014	UH17001-008
Sample Date				8/20/2019	8/15/2019	8/15/2019	8/16/2019	8/16/2019	8/15/2019	8/15/2019	8/15/2019	8/15/2019
Parameter (μg/kg)												
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<10	<11	<10	<11	<11	<11	<12	<10	<13
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	<10	<11	<10	<11	<11	<11	<12	<10	<13
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<2	<2.1	<2.1	<2.2	<2.2	<2.1	<2.4	<2.1	<2.6
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<2	<2.1	<2.1	<2.2	<2.2	<2.1	<2.4	<2.1	<2.6
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	3,800,000	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorooctanoic acid (PFOA)	NCL	10,000	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorooctane sulfonic acid (PFOS)	NCL	0.24	NCL	<5.1	8.6	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
PFOA + PFOS (Calculated)	NCL	NCL	NCL	ND	8.6	ND	ND	ND	ND	ND	ND	ND
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<5.1	<5.4	<5.1	<5.5	<5.4	<5.4	<6	<5.2	<6.4
Total PFAS (Calculated)	NCL	NCL	NCL	ND	8.6	ND	ND	ND	ND	ND	ND	ND

Sample Location				HS-SB-4911	HS-SB-4912	HS-SB-4912	HS-SB-4912	HS-SB-4914	HS-SB-4914	HS-SB-4914
Sample Name	Part 201 Generic Residential Soil	Part 201 Generic Groundwater	U.S. EPA Residential Soil	HS-SB-4911 (11- 13)	HS-SB-4912 (0-2)	HS-SB-4912 (0-2) DUP	HS-SB-4912 (5-7)	HS-SB-4914 (0-2)	HS-SB-4914 (0-2) DUP	HS-SB-4914 (8 10)
Depth Interval (Feet below ground surface)	Cleanup Criteria –	Cleanup Criteria – Groundwater	Regional Removal	11 - 13	0 - 2	0 - 2	5 - 7	0 - 2	0 - 2	8 - 10
Boring Location	Drinking Water	Surface Water	Management	House St Site	House St Site	House St Site	House St Site	House St Site	House St Site	House St Site
Laboratory Sample ID(s)	Protection ²	Interface ²	Levels ³	UH17001-009	UH17001-005	UH17001-006	UH17001-007	UH17001-017	UH17001-018	UH17001-019
Sample Date				8/15/2019	8/15/2019	8/15/2019	8/15/2019	8/16/2019	8/16/2019	8/16/2019
Parameter (μg/kg)										
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	<12	<11	<11	<11	<11	<9.5	<13
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	<12	<11	<11	<11	<11	<9.5	<13
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	<2.4	<2.2	<2.3	<2.3	<2.2	<1.9	<2.7
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	<2.4	<2.2	<2.3	<2.3	<2.2	<1.9	<2.7
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	3,800,000	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorooctanoic acid (PFOA)	NCL	10,000	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorooctane sulfonic acid (PFOS)	NCL	0.24	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
PFOA + PFOS (Calculated)	NCL	NCL	NCL	ND	ND	ND	ND	ND	ND	ND
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	<6.1	<5.4	<5.7	<5.7	<5.5	<4.8	<6.6
Total PFAS (Calculated)	NCL	NCL	NCL	ND	ND	ND	ND	ND	ND	ND

TABLE 1 NOTES 16.0062335.52 Page 1 of 1

1855 House Street NE

Plainfield Township, Kent County, MI

NOTES:

- 1. Concentration and criteria units are micrograms per kilogram (µg/kg) or parts per billion (ppb). Calculated criteria and concentrations are rounded to two significant digits. "ND" indicates the parameters used in the calculation were not detected. "NC" indicates not calculated.
- 2. Michigan Part 201 Soil Cleanup Criteria are based on "Table 2, Soil: Residential Part 201 Generic Cleanup Criteria and Screening Levels/Part 213 Tier I Risk Based Screening Levels," Michigan Administrative Code, Cleanup Criteria Requirements for Response Activity, Rules 299.46 and 299.49, effective December 30, 2013; updated June 25, 2018.

"NCL" indicates no criterion listed in EGLE Table 2.

- 3. U.S. EPA Residential Soil Regional Removal Management Levels (RMLs) were based on "Generic RML Tables," updated November 2018.
- 4. To the extent that samples listed in these tables contain or consist of waste material, in whole or in part, the comparison to the EGLE Part 201 generic cleanup criteria does not imply applicability of the criteria because the physical and chemical properties of the waste material are expected to be different from the default values or assumptions used to derive the Generic Soil Cleanup Criteria in the Cleanup Criteria Requirements for Response Activity Rules (R299.1-299.50).
- 5. Bold, italic number with thick line border or italic parameter name indicates that parameter was detected above the Michigan Part 201 Soil Cleanup Criteria. Per MCL 324.20101(e)(i), if state-wide default background levels are available and greater than a risk-based generic cleanup criterion, then the state-wide default background levels are used as a substitute for that generic cleanup criterion.
- 6. Abbreviations include:

Abbreviations Include:

"< RL" indicates the parameter was analyzed for but not detected above the method detection limit; RL = Reporting Limit. "DUP" indicates a duplicate sample.

		GZ/	<u>.</u>				vvoiverin	e World Wid	ie_			Boring r	No.:	/W27A
			Environr ineersand				MDE	Q Drilling					1 of	
	/	_			,		Rockfo	rd, Michigan					16.00623 Lori Pov	
Contracto			<u>S</u>	tock		-	Auger/	Sampler				Check:		
Foreman:			R)	yan ITM		- <u>-</u>	Casing	-		Date			READINGS	Stab
Logged b	y: •/Eini	nh:	6-20)-19 / 6-2	20-19	_ Type: _ _ O.D. / I.D.: _		NA NA		Date	Time	e Depth	Casing	Stab
						_			- -					
						_ Hammer Fall: _								
	1								S	Surveye	d By:	Sı	urvey Date:	
ᆫ		Sample	Informa	ition					10					
Depth Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	D	Sample escription & Class	sification	Stratum Desc.	Remarks	0 2	(<i>I</i>	Gamma API-G R)	——PRO₫ "CA\$II	Well Fagral NG
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 29 - 1. Mod	nitorir	ng well	was instal	lled in bor	Bottom of	TBorehole at 26.0	Feet	1.1 to 25.7 feet b	1 pelow	v ground	surface.			

		GZ/	<u>.</u>				vvoiverin	<u>e World Wid</u>	е				g No.:	
GZ \			Environr ineersand				MDE	Q Drilling					of	
		_					Rockfor	rd, Michigan					o.: <u>16.0062</u> c: Lori Po	
Contracto			<u>S</u>	tock		_	Auger/	Sampler				Check		
Foreman:			R	yan ıтм			Casing Sonic	NA		Date	GROU Time		R READINGS th Casing	
ogged b	y:	nh:	6-20)-19 / 6-2	20-19	_ Type: _ _ O.D. / I.D.: _		NA NA	· г	Date	TIME	э Бер	un Casing	Stan
						_			٠ +					+
						Hammer Fall: _								
	1 -								S	Surveye	d By: _		Survey Date	:
و او		Sample	Informa	ition				1	(0					
Depth Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	D	Sample escription & Class	sification	Stratum Desc.	Remarks	0 2	() ()	Gamma API-G R)	PRO " CA\$	Well Diagram ING
1-2-3-4-5-6-7-8-9-0-1-2-3-4-5-6-5-7-8-9-0-1-2-3-4-5-6-5-7-8-9-0-1-2-3-5-6-5-5-6-7-8-9-0-1-2-3-5-6-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	nitorir	ng well t	was instal	lled in bor	Bottom of	Borehole at 37.5	Feet	4.8 to 37.4 feet b	1		surface.			

		∣ GZ A	4				Wolverin	e World Wid	е			Borin	ng No.:	HS-M	W27C
			Environr ineers an				MDE	Q Drilling				Page	:1	of _	1
		Ling			313		Rockfor	rd, Michigan						16.00623	
Contracto				tock		_	Auger/	Sampler				Chec		Lori Pov	vers
Foreman:						_	Casing	-				NDWATI			.
Logged b	y:		0.00	JTM	20.40	_ Type: _	Sonic	NA	_	Date	Time	e De _l	oth (Casing	Stab
					20-19		NA NA		. -						
						_ Hammer Wt.: _			- -						
GS Elev.:			Date	um:		Hammer Fall:			. ∟		-I D		0	D-4	
		Sample	e Informa	ition		TOC Elev.:			. :	surveyed	а ву:		Surve	ey Date:	
텵글									S						
Depth Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	D	Sample escription & Clas	sification	Stratum Desc.	Remarks	0 20	() ()	Samma API-G R)] *	─PRO CASIN	Well Tagram IG
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 110 - 115 - 115 - 115 - 115 - 115 - 115 - 115 - 122 - 223 - 224 - 225 - 225 - 225 - 225 - 23 - 233 - 335 - 335 - 336 - 337 - 338 - 339 - 40 - 41 - 42 - 445	nitorir	ng well	was instal	lled in bo	Bottom of	MW27E boring log	Feet	0.8 to 45.4 feet b	1 elov	v ground	surface				

		1	GZA	<u>.</u>					Wolverin	e Wo	rld Wid	e					HS-N	
	7		Geol	Environr ineersand	nental, l d Scientis	nc. ete			MDE	Q Dri	lling				Page:	1	of	2
	,		_						Rockfo	rd, Mi	chigan				File N Checl		16.0062 Lori Po	
Fore	man:				/an		- -		Auger/ Casing		mpler		. .	GROUN	IDWATE	R RE	ADINGS	;
Logg	jed by	/: /Einid	nh:	6-19)	19-19		e:	Sonic NA		NA NA		Date	Time	Dep	oth	Casing	Sta
							Hammer W				NA							
							Hammer Fa				NA							
	_		Sample	Informa	tion		TOC Elev	v.:				S	urveye	d By:		Surve	ey Date:	
돛 :	tion			,								(S						
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	De	Sam escription & 0	ple Classi	fication		Stratum Desc.	Remarks	0 20	G; (Al ∵ ⁴º	amma PI-G R)	P	—PRΦ <mark>į</mark> CASI	Well Diagra NG
_						See HS-M	/IW27E boring n and classific	log f	or sample					:				
1-						descriptio	ii and dassiii	cation	•				!			į		
2														ļ	ļ	į		
3-													i	j	i	i		
4														i	:	:		
5														:	:	:		
6														:	:	- :		
7														:	:			
8														:	:	:		
9-														 	!			
0															:	:		
1-																		
2														ļ	ļ	į		
3-														į	į	į		
4														į	i	i		
5														:	i	i		
6-														:	:	:		
7-														:	:	:		
8-														:	:	:		
9-														:	:	- :		
20														:	:	:		
11															:	:		
														:	:	:		
22																		
3-														!	!	į		
4														į	į	į		
5													i	İ	Ì	i		
6-														:	:	:		
27-														:	:	:		
28														:	:	:		
29														i	:	i		

		1	GZ/ Geo	4 Environr	mental I	nc.			World Wid	le			Boring N	o.:	ns-mw27D
			Eng	ineers an	d Scientis	sts			Q Drilling				Page: File No.:		ot2 62335.
	_		Sample	e Informa	ation			Rocktord	d, Michigan				Check:		Powers
Deptn	Elevation (ft,)	No. Pen./ Rec. (/6") Test Data	Desc	Sample cription & Class	ification	Stratum Desc.	Remarks	0 20	Gam (API-	nma ·GR)	80 1	We Diagr			
1- 2-													:		
3-															
ı –											:		:	1	
5- 6-												į	į	İ	
7-														:	
3-											 	:	:		
) —												į		İ	
												İ	i	!	
2-														[:	
}- -											:		!		
5-												į		<u> </u>	
; -														-	
9-												į		İ	
											İ	į	İ	İ	
2															
3-															
- -															
5-															
7-											:			!	
3 - 9 -											:	:	:	į	(1 X)
) –															
1-											 	:	:		
2 — 3 —						Dettem of De	orehole at 63 Fe							<u>:</u> 	
1-						DOTTON OF BO	ภ ฮาเบเซ สเ ชิง F6	Gi		1					
	1. Moi	nitorir	ng well	was instal	lled in bo	rehole upon com	npletion. Well scr	een set from 59.	.0 to 63.0 feet b	elow	ground sur	face.			•

			GZ/					vvoiverine	vvoria vvia	e		Boring No		
	57 \		1	Environi ineers an				MDEQ	Drilling			Page:	1 of _ 16.00623	4
_			Ū						, Michigan			Check:		
					Stock yan		_	Auger/	Sampler		CDOUN	NDWATER R		
Lon	eman: aed b	v.		- 1			_ _ Type:	Casing Sonic	NA	Date			Casing	Stab
Date	e Start	/Fini	sh:	6-17	7-19 / 6-1	19-19	O.D. / I.D.: _		NA					
Bor	ing Lo	catio	n:	6390 Belmo	nt Ave. NE,	Belmont, MI	_ Hammer Wt.: _							
GS	Elev.:			Dat	um:		Hammer Fall: _							
	_		Sample	e Informa	ation		TOC Elev.: _			Survey	ea By:	Sur	vey Date:	
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	D	Sample escription & Class	sification	Stratum Desc.	Remarks	G (A	amma PI-G R)	PRO T	Well FagraME
1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16-		2	120/89			SILT, son Changing yellowish-fine Sand coheisve, Dark brow moderate little Silt, t 6.0 feet to moderate trace Silt, 7.0 feet to fine to me Changing Dark yellocoarse S/moist. Ch Yellowish fine to me Gravel (si	in, grayish-brown, pone fine Sand, trace at 1.0 feet to: Dari-brown, poorly sorte, trace Clay, slightly moist. Changing a rot to dark yellowish by sorted, fine to mitrace Gravel, moist in Dark yellowish-by sorted, fine to mitrace Gravel, moist in Changing at 7.4 feet to: NO powish-brown, poorly AND, some Gravel and and 15.0 feet-brown, moderately edium SAND, trace lity clay on large grant 15.8 feet to: NO changing at 1	e Gravel, moist. k ed, SILT, some ly plastic, slightlat 1.5 feet to: h-brown, ledium SAND, t. Changing at rown, ledium SAND, est. Changing at well sorted, e Silt, moist. RECOVERY. y sorted, fine to, trace Silt, to: y well sorted, e Silt, trace solt, e Silt, trace savel), moist.	7.4' NO RECOVERY		\$		## CANDING	
R E	1. Grc		120/115 vater sa		s collected	fine to me Gravel (si Changing poorly sor Gravel, tra to: Hard, dsorted, Si cohesive, Hard, dar Silty CLA' moist. Ch RECOVE	-brown, moderately edium SAND, trace lity clay on large gr at 25.4 feet to: Ye ted, fine to coarse ace Silt, wet. Chan dark yellowish-browlty CLAY, trace Gr moist. Changing a k grayish-brown, pr Y, trace Gravel, planging at 29.6 feet RY.	Silt, trace avel), moist. Illowish-brown, SAND, some iging at 27.1 fee wn, poorly avel, plastic, at 28.6 feet to: oorly sorted, astic, cohesive, t to: NO	20' SAND 27.1' Silty CLAY 29.6' 30'	1 submitted	for analytic	al laboratory	testing.	The Printings Diam's
							il types, transitions may						HS-MW27E	

GAMMA_LOG_62335.52 MDEQ WWW.GPJ_GZA_CORP.GDT_9/27/19

R Е

М A R K S ဗို

Wolverine World Wide MDEQ Drilling

Rockford, Michigan

HS-MW27E Boring No.: __ 2 Page: __ ___ of __ File No.: 16.0062335.52 Lori Powers Check:

Sample Information Elevation (ft,) Remarks Pen./ Blows Test Sample Stratum Well Gamma No. Rec. (/6") Data **Description & Classification** Desc. (API-GR) Diagram (in.) 120/120 Hard, dark grayish-brown, poorly sorted, NO RECOVER Silty CLAY, trace Gravel, plastic, cohesive, 31 Silty CLAY moist. Changing at 33.7 feet to: 32 Grayish-brown to brown, poorly sorted, fine to coarse SAND, little Silt, trace Gravel, 33 moist to wet. Changing at 36.4 feet to: Hard, 33.7 34 dark grayish-brown, poorly sorted, Silty SAND 2 CLAY, trace Gravel, plastic, cohesive, 35 moist. Changing at 36.9 feet to: Grayish-brown to brown, poorly sorted, fine 36 36.4' to medium SAND, little Silt, trace Gravel, 36.9Silty 3√7' CLAY moist to wet. Changing at 37.0 feet to: Dark 37 grayish-brown, poorly sorted, Silty CLAY, SAND 38 trace Gravel, plastic, cohesive, moist. Silty Changing at 39.8 feet to: NO RECOVERY. 39 39.8' 40' NO 40 120/120 Brown, well sorted, fine to medium SAND, RECOVER little Silt, lightly cohesive, wet. Changing at 41 SAND 3 45.6 feet to: Hard, dark grayish-brown, poorly sorted, Silty CLAY, trace Gravel, 42 plastic, coheisve, moist. Changing at 48.8 43 feet to: Dark grayish-brown, well sorted, Silty CLAY, plastic, cohesive, moist, 44 occasional very thin fine Sand, moist. 45 45.6 46 CLAY 47 48 49 50 120/120 SAND Brown, well sorted, fine to medium SAND, little Silt, lightly cohesive, wet. Changing at 51 51.5Silty 51.1 feet to: Dark grayish-brown, well CLAY 52 sorted, Silty CLAY, plastic, cohesive, moist. 52.9 SAND Changing at 51.5 feet to: Brown, well sorted, 53 53.5Silty CLAY fine to medium SAND, little Silt, lightly cohesive, wet. Changing at 52.9 feet to: 54 SAND Dark grayish-brown, well sorted, Silty CLAY, 55 plastic, cohesive, moist. Changing at 53.5 Silty feet to: Brown, well sorted, fine to medium 56-SAND, little Silt, lightly cohesive, wet. Changing at 54.8 feet to: Dark 57grayish-brown, well sorted, Silty CLAY, 58 plastic, cohesive, moist. 59 60 120/112 5 Dark grayish-brown, well sorted, Silty CLAY, SAND plastic, cohesive, moist. Changing at 60.6 CORP.GDT 61 feet to: Brown, well sorted, fine to medium 62 SAND, little Silt, lightly cohesive, wet. Changing at 63.8 feet to: Dark 63 GZA grayish-brown, well sorted, Silty CLAY, 63.8 plastic, cohesive, moist. Changing at 67.8 64 Silty 62335.52 MDEQ WWW.GPJ feet to: Alternating layers of dark

Groundwater sample was collected from approximately 34.0 to 38.0 feet below ground surface and submitted for analytical laboratory testing. Groundwater sample was collected from approximately 41.0 to 45.0 feet below ground surface and submitted for analytical laboratory testing. Groundwater sample was collected from approximately 52.0 to 56.0 feet below ground surface and submitted for analytical laboratory testing.

5. Groundwater sample was collected from approximately 60.0 to 64.0 feet below ground surface and submitted for analytical laboratory testing.

62335.52 MDEQ WWW.GPJ GZA CORP.GDT

FOG

Wolverine World Wide MDEQ Drilling

Rockford, Michigan

 Boring No.:
 HS-MW27E

 Page:
 3
 of
 4

 File No.:
 16.0062335.52

 Check:
 Lori Powers

Sample Information Elevation (ft,) Remarks Pen./ Blows Test Sample Stratum Gamma Well No. Rec. Diagram (/6") Data Description & Classification Desc. (API-GR) (in.) grayish-brown, well sorted, Silty CLAY, Silty CLAY plastic, cohesive, and brown moderate 66 sorted fine to medium SAND, little Silt, 67moist. Changing at 68.1 feet to: Dark grayish-brown, well sorted, Silty CLAY, well 68 sorted, Silty CLAY, plastic, cohesive moist. Changing at 69.3 feet to: NO RECOVERY. 69 70' NO RECOVERA 70 Dark grayish-brown, well sorted, Silty CLAY, plastic, cohesive, moist. Changing at 79.3 120/112 71 feet to: NO RECOVERY. 72-73 74 75 76 77 78-79 80' NO BEGOVERY SAND 80-120/120 Brown, well sorted, fine to medium SAND, little Silt, lightly cohesive, moist. Changing at 80.3 feet to: Dark brown to dark 81-Silty CLAY 82yellowish-brown, poorly sorted, Silty CLAY, plastic, cohesive, moist. 83-84 85 86 87 88 89 90-10 120/120 Reddish-brown, moderately sorted, Silty CLAY (possible Red Beds), plastic, 91cohesive, moist. 92-93 94 95 96 97 98 99 REMARKS

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

	5Z \			A Environr ineers and		ats WIDEQ	Drilling			Boring No Page: File No.: _	<u>HS-MW2</u> 4 of 16.0062333	4
	_			Informa		Rockford,	Michigan			Check:	Lori Powe	
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Ga (AP	mma I-GR)	Dia	Vell agrar
01 – 02 –		11	60/60			Reddish-brown, moderately sorted, Silty CLAY (possible Red Beds), plastic, cohesive, moist. Changing at 103.8 feet to: White GYPSUM, fractured.	Silty CLAY				80 100	
03 – 04 –							103.8' GYPSUM		MA	- : - -		
05 – 06 –						Bottom of Borehole at 105.0 Feet	105	6	My Alle	- -		
07 – 08 –								_	-999.25	_		
09 – 10 –												
11 – 12 – 13 –												
13 – 14 – 15 –												
16 – 16 – 17 –												
17 18 – 19 –												
20 – 21 –												
22 – 23 –												
24 – 25 –												
-6 26 – 27 –												
 28 – 29 –												
30 – 31 –												
32 – 33 –												
34 –												
2 E	6. Mo	nitorir	ng well '	was instal	led in bor	rehole upon completion. Well screen set from 59.0	to 63.0 feet b	elow s	surface.			

		GZ/	<u> </u>					Wolveri	ne Wo	rld Wid	le				No.:		
			Environr ineers and					MD	EQ Dr	illing				Page: _	1 of	1	
_		_							ord, M	ichigan				File No.: Check:	16.0062 Lori Po		<u>/_</u>
Contracto				van		_		Auger/ Casing	Sa	mpler			CPOLIN		READINGS		_
Logged b	·						Туре: _	_		NA		Date	Time	Depth			ta
Date Star	t/Fini	sh:	6-11	I-19 / 6-1		_ O.D.	/ I.D.: _	NA		NA							
					Belmont, MI					NA	- -						_
S Elev.:			Dati	um:						NA	∟ ـ		l D			_	_
	,	Sample	Informa	ition		100	Elev.: _				. 3	urveyed	і ву:	ა	urvey Date	:	_
Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	D	S escription	ample & Class	ification		Stratum Desc.	Remarks	0 20	Ga (Al	ımma PI-G R)	PRO " CAS	Well Dagra ING	I alì
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 7 - 8 - 9 - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 7 - 8 - 9 - 0 - 1 - 2 - 3 - 3 - 4 - 5 - 6 - 7 - 7 - 8 - 9 - 1 - 2 - 3 - 3 - 4 - 5 - 6 - 7 - 7 - 8 - 7 - 7 - 8 - 7 - 7 - 7 - 7	nitorir	ng well	was instal	lled in bor	descriptio	f Borehole	at 42.5 F	-eet	37.5 to 4	\$2.1 feet b	1	y ground	surface.				

			GZ/	<u>.</u>					World Wid	le			Boring N	No.:	/IW28B
	74		Geo Fna	Environr ineers an	nental, l d Scienti	nc. sts			Q Drilling				Page: _	1 of	1
			_					Rockford	d, Michigan					16.0062 Lori Po	
Cont	tracto	r:		S	tock			Auger/	Sampler						
Fore	man:	_		R	yan ı⊤м		- <u>-</u>	Casing	-					READINGS	
Logo	ged by	y:	ah:	6-25	5-10 / 6.1	25-19	_ Type:	Sonic NA	NA NA		Date	Time	Depth	Casing	Stab
							_ O.D. / I.D.: _ Hammer Wt.:			- -					
GS F	ilev .	caut		Dati	um:	Somont, IVII	_ Hammer Fall:	NA NA	NA NA	- -					
						1					Surveyed	By:	Sı	urvey Date:	
_	o O	•	Sample	Informa	ition						_				
Depth	Elevation (ft,)		Pen./	Blows	Test		Sample		Stratum	Remarks		G	ımma		Well
ă	Ę.,	No.	Rec. (in.)	(/6")	Data		escription & Cla	ssification	Desc.	E E		(AF	PI-G R)	——PR∳į	Well Dagram
			(111.)			Can LIC I	MM/205 h a mira at la			~	0 20	40	60	. CASĪ	NG
1-						description	MW28E boring log on and classificati	g for sample on			!	!	!	:	
2- 3-								•				ļ	ļ	ļ	
4											i	j	į	j	
5												:	i	i	
6-												!			
7- 8-												ļ	ļ	!	
9-											i	i	į	i	
10												:	:		
11												!	1	:	
12 - 13 -											!	ļ	į		
14-											i	j	į	i	
15												:	:	1	
16 17											!	!	:	:	
18											ļ	ļ	ļ	ļ	
19											l i	İ	İ	i	
20 - 21 -												:	:	1	
22											!	!	:	:	
23											!	!	ļ	1	
24											l i	i	i	i	
25 – 26 –											:	:	:	:	
27											!	:	:	:	
28											!	ļ	ļ		
29 – 30 –											i	İ	i	i	
31											1	: 1	: I	:	
32												!	:	:	
33											!	ļ			
34 – 35 –											i	Ì	i	i	
36											1	: 1	: I	:	
37												1	:		
38 39											!	ļ	ļ		Y PA
39 -											i	Ì	İ		
41											1	: 1	: I		
42												1	:		. :
43 44 											!	ļ	ļ		
45											i	İ	İ	i	
46											1	: 1	: I		
47 48						Bottom o	f Borehole at 47.0) Feet		1		1		'	········
-	1. Mo	nitorir	ng well	uwas instal	lled in bo	rehole upon	completion. Well s	creen set from 41.	l .9 to 46.5 feet b	elov	v ground	surface.			
Stratific	cation I der cor	ines re	epresent s stated	t approxima . Fluctuatio	ate bounda	ary between so undwater may	oil types, transitions m	ay be gradual. Wate stors than those pres	er level readings lent at the time me	have	been mad	e at times ere made.	Boring No.:	: HS-MW28B	

G7 \		GZ/	<u>.</u>					Wolver	ine W	orld Wid	le				No.:		
			Environr ineers and					ME	DEQ D	rilling				Page: _	1 c	of	1
		_						Rock	ford, N	<u> Michigan</u>				File No. Check:	:16.006 Lori F		
Contracto				tock van		_		Auger/		Sampler			CDOUN		READING		
Foreman: Logged b	v.					_	Type: _	Casing Sonic		NA		Date	Time	DWATER			Sta
Date Start	t/Finis	sh:	6-25	5-19 / 6-2	25-19	_ _ O.D		NA									
Boring Lo	catio	n:	6272 Belshir	re Ave. NE,	Belmont, MI	_ Hamme	er Wt.: _	NA		NA	- 🗀						
GS Elev.:			Date	um:							. L						
	5	Sample	Informa	ition		TOC	Elev.: _				_ S	Surveyed	By:	s	urvey Dat	e:	
뎙		Pen./									ķ						
Depth Elevation (ft,)	No.	Rec. (in.)	Blows (/6")	Test Data	D	escriptio	Sample n & Class	sification		Stratum Desc.	Remarks	0 20	Ga (Al ∜	amma PI-G R)	PR	W ODF SING	Vell grai
1 2 3 4 5 6 7 8 9 7 10 11 12 7 1 13 14 7 1 1 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					description of	on and cla	ssificatio				1						

		GZA	4				vvoiverine	e World Wide	<u>e </u>			Boring N	O.:HS-N	W28D
GZN			Environn ineersand				MDE	Q Drilling				Page:	of _	3
1		Ligi			ж		Rockfor	d, Michigan					16.00623 Lori Pov	
Contractor				tock		-	Auger/	Sampler				Check: _		VCIS
Foreman:						- -	Casing	-		Date	GROUN Time	DWATER F		Stab
Logged by	/: /Einic	.h.	<u>J</u> 6-11	-19 / 6-1	11-19	Type: _	Sonic NA	NA NA		Date	Time	Depth	Casing	Stab
						_ U.D. / I.D.: _ _ Hammer Wt.: _			-					
						Hammer Fall:								
									Sı	ırveyed	Ву:	Su	rvey Date:	
ᆸ	S	ample	Informa	tion					10					
Depth Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	De	Sample escription & Clas	sification	Stratum Desc.	Remarks	o 20	Ga (AF	mma PI-G R)	──PROT	Well Tagrahi NG
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 - 44 - 24 -					See HS-M descriptio	MV-28E boring log	g for sample							

GZN	GZA GeoEnvironmer Engineers and S	, Inc. MDE	Q Drilling	_	Boring No.: Page: 2	hs-mw28D of 3 16.0062335.52
	Sample Informatio	Rockfor	rd, Michigan		Check:	Lori Powers
Elevation (ft,)	No. Pen./ Rec. (/6") I D		Stratum Desc.	Ga (AP	mma II-GR)	Well Diagra

		GZA Geol	ı Environı	mental, In		e World Wid	le			Boring N Page:		of3
GZ				d Scientist	s WIDL	<u>:Q Drilling</u> rd, Michigan				File No.:	16.00	062335.52
٦	Sa	mple	Informa	ation	ROCKIO	ru, Michigan			_	Check:	Lori	Powers
Elevation (ff,)	No. F	Pen./ Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks		(Al	amma PI-GR)		Well
89				lled in bore	Bottom of Borehole at 110.0 Feet	0.6 to 85.2 feet b	1	ground sur	40	φ		

			GZ/					Wolverine	vvorid vvid	ie_			Boring No	O.:HS-N	/W28E
	3 Z\			Environi ineersan				MDEQ	Drilling				Page:	of .	
			•			33		Rockford	, Michigan					16.00623 Lori Pov	
				S	tock		_	Auger/	Sampler				Check: _		
For	eman:			R	yan ITM		_ _ Type: ₋	Casing Sonic	NA		Date	GROUN Time	DWATER F Depth		Stab
Date	geu bi	y. — /Fini:	sh:	6-5	-19 / 6-1	1-19	_ Type O.D./I.D.:	NA		Г	Dute		Dopui	Justing	Ottab
Bor	ing Lo	catio	n:	6272 Belshi	re Ave. NE,	Belmont, MI	_ Hammer Wt.: _	NA	NA						
GS	Elev.:			Dat	um:		_ Hammer Fall: _			. L					
	_	5	Sample	Informa	ition		TOC Elev.: _			S	urveye	d By:	Su	rvey Date:	
Depth	Elevation (ft,)	No.	Pen./ Rec.	Blows (/6")	Test Data	n	Sample escription & Clas	eification	Stratum Desc.	Remarks		Ga (Al	ımma PI-G R) ¬	— PRO	Well Fagram
	шь		(in.)		Data					æ	0 2	0 40	60 E	_∞ CASii	NG
1-		1	120/30			coarse Sa moist. Ch yellowish	owish-brown, poor AND, some Grave nanging at 1.2 feet -brown, well sorte ace Silt, moist. Ch	el, trace Silt, to: Dark d, fine to mediun					 		
2-						feet to: Ye	ellowish-brown, po SAND, some Gra	oorly sorted, fine						İ	
						moist. Ch	nanging at 2.5 feet		2.5' NO			l i	İ	į	
3-						RECOVE	ERY.		RECOVERY			i i	į	į	
												. : 	i	i	
4-														<u>:</u>	
5-											≥		İ		
6-											5			!	
7-											3			<u> </u>	
											\geq				
8-											3			:	
•												A		:	
9-											7			!	
10 —									10'		Z	-		!	
10		2	120/118			Yellowish yellowish	n-brown grading to -brown, moderate	dark ly sorted, fine to	SAND		[\le \			:	
11-						medium S	SAND, trace Grav coarser, moist. Ch	el, trace Silt,			>	<u> </u>		1	
						feet to: D	ark yellowish-brov	vn, poorly sorted			$ $ \leq		!	1	
12-							arse SAND, little (nanging at 14.6 fee		,		<u> </u>	ļ	į	Ţ	
40						grayish-b	rown, poorly sorte ce Clay, trace Gra	d, SILT, little			WWW NWW	_	į	į	
13-						slightly co	ohesive, moist arc	und cobble.				_	į	į	
14 –							g at 15.0 feet to: Y ed, brown, well sor				\leq		į	į	
1-7						medium S	SAND, trace Silt, reet to: NO RECOV	moist. Changing	14.6'		\leq	. : 	i	i	
15-						at 13.016	OLIO. NO NECOV	LIXI.	15' SILT SAND		\leq	: 	i	i	
									JAND			: 	i	i	
16 –											{	: : 	i	:	
													:		

Wolverine World Wide GZA GeoEnvironmental, Inc. Boring No.: ___ HS-MW28E Page: ___2 __ of ___6 MDEQ Drilling Engineers and Scientists File No.: <u>16.0062335.52</u> Rockford, Michigan Lori Powers Check: Sample Information Elevation (ft,) Remarks Pen./ **Blows** Test Sample Stratum Gamma Well No. Rec. Diagram (/6") Data Description & Classification Desc. (API-GR) (in.) SAND 18 19-19.8' 20' NO RECOVERY 20 120/10 Yellowish-brown, well sorted, fine to medium SAND, trace Silt, trace Gravel, SAND moist. Changing at 28.4 feet to: NO 21 RECOVERY. 22 23 24 -25 26 27-28 NO RECOVERY 29 30' 30 SAND 120/118 Pale brown to light yellowish-brown, well sorted, fine to medium SAND, trace Silt, moist. Changing at 39.8 feet to: NO 31-RECOVERY. 32-33-LOG 62335.52 MDEQ WWW.GPJ GZA_CORP.GDT 9/27/19 34 35 36 REMARKS

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

R

E M A R K S

FOG

Wolverine World Wide MDEQ Drilling

Rockford, Michigan

Boring No.: __ HS-MW28E 3 Page: __ __ of _ File No.: <u>16.0062335.52</u>

Lori Powers Check: Sample Information Elevation (ft,) Remarks Pen./ Blows Test Sample Stratum Gamma Well No. Rec. (/6") Data Description & Classification Desc. (API-GR) Diagram (in.) SAND 37 38 39 39.8' 40' NO 40 120/41 Pale brown to light yellowish-brown, well RECOVERY sorted, fine to medium SAND, trace Silt, SAND trace Gravel, moist. Changing at 40.5 feet 41 to: Yellowish-brown, poorly sorted, fine to coarse SAND, some Gravel, trace Silt, moist to wet. Changing at 41.5 feet to: 42' GRAVEL 42 Yellowish-brown, well sorted, fine to medium SAND, trace Silt, wet. Changing at 42.9 42.0 feet to: Dark yellowish-brown, poorly 43 SAND 43.4' sorted, GRAVEL, little coarse Sand, trace NO RECOVERY Silt, wet. Changing at 43.4 feet to: NO RECOVERY. 44 45 46 47 48 49 50 120/115 Yellowish-brown, well sorted, fine to SAND medium SAND, trace Silt, wet. Changing at 52.5 feet to: Grayish-brown, poorly sorted, 51-Sandy CLAY, little Silt, moderately plastic, cohesive, moist to wet. Changing at 59.6 feet to: NO RECOVERY. 52-CLAY & SILT 53 62335.52 MDEQ WWW.GPJ GZA CORP.GDT 9/27/19 54 55 56 56.4

1. Groundwater sample was collected from approximately 42.0 to 44.0 feet below ground surface and submitted for analytical laboratory testing. 2. Groundwater sample was collected from approximately 51.0 to 53.0 feet below ground surface and submitted for analytical laboratory testing.

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Wolverine World Wide **MDEQ Drilling** Rockford, Michigan

Boring No.: ____HS-MW28E Page: ___4 __ of ___6 File No.: 16.0062335.52 Lori Powers Check:

Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy COLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy CLAY Sandy Clay Clay Clay Clay Clay Clay Clay Cla	Depth Elevation		Dan						
57 58 59 59 59 50 50 50 50 50	" \	Ę N	o. Rec	. Blows			Remarks		Well Diagram
76-	58 — 59 — 60 — 61 — 62 — 63 — 64 — 65 — 66 — 67 — 68 — 69 — 70 — 71 — 72 — 73 — 74 — 75 —				trace Silt, wet. Changing at 60.7 feet to: Brown, moderately well sorted, SILT, some fine Sand, non-plastic, moderately cohesive, wet. Changing at 60.9 feet to: Brown, well sorted, fine to medium SAND, trace Silt, wet. Changing at 61.7 feet to: Brown, moderately well sorted, SILT, some fine Sand, non-plastic, moderately cohesive, wet. Changing at 62.0 feet to: Brown, well sorted, fine to medium SAND, trace Silt, wet. Changing at 62.5 feet to: Dark yellowish-brown, poorly sorted, fine to coarse SAND, little Gravel, trace Silt, wet. Changing at 63.3 feet to: Brown, well sorted, fine to medium SAND, trace Silt, wet. Changing at 63.8 feet to: Dark yellowish-brown, poorly sorted, GRAVEL, little fine to coarse Sand, trace Silt, wet. Changing at 63.9 feet to: Brown, well sorted, fine to medium SAND, trace Silt, wet. Changing at 64.6 feet to: Dark yellowish-brown, poorly sorted, GRAVEL, little fine to coarse Sand, trace Silt, wet. Changing at 65.1 feet to: Brown, well sorted, fine to medium SAND, trace Gravel, trace Silt, wet. Changing at 65.1 feet to: Brown, well sorted, fine to medium SAND, trace Gravel, trace Silt, wet. Changing at 66.2 feet to: NO RECOVERY. Brown, well sorted, fine to medium SAND, trace Gravel, trace Silt, wet. Changing at	59.6' SAND 60.7' 60.7' 60.9SILT SAND 61.7' 62 SILT SAND 64.6' GRAVEL 65.1' SAND 66.2' NO RECOVERY		WWW.Www.Www.Www.Www.Www.Www.Www.Www.Www	

Wolverine World Wide **MDEQ Drilling** Rockford, Michigan

Boring No.: ____HS-MW28E Page: ___5 of ___6 File No.: 16.0062335.52 Lori Powers

_	วท	0)	ample	Informa	tion	Rockford,	Wiloringari			Check:	Lori Powers
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Ga (Al	amma PI-GR)	Well Diagram
77 – 78 –							76.§AND NO RECOVERY		₩		
79 – 80 –							80'				
31 –		9	120/120			Brown, well sorted, fine to medium SAND, trace Gravel, trace Silt, wet. Changing at 85.0 feet to: Dark grayish-brown, poorly sorted, Silty CLAY, trace Sand, trace	SAND	4			
32-						Gravel, plastic, cohesive, moist.			WWW.		
33 — 34 —											
35-							85' Silty CLAY				
36 - 37 -									VVV		
38-											
89 — 80 —		10	120/120			Dark grayish-brown, poorly sorted, Silty					
91-						CLAY, trace Sand, trace Gravel, plastic, cohesive, moist.					
92 — 93 —										· : : 	
94 —									MMD/MM		
95 —									15M		
₹ 	4. Gro	oundw	ater sa	mple was	collected	I from approximately 81.0 to 85.0 feet below ground	surface and	l sub	mitted for analytica	al laboratory te	sting.
Stratifi and un	cation li	ines re	present s stated.	approxima Fluctuatio	te bounda	ry between soil types, transitions may be gradual. Water I	evel readings	have easur	been made at times ements were made.	Boring No.: HS-	MW28E

			GZ/	4		_	VVC	olverine W	ona vvia		-	Boring No		IS-MW28E
	3 Z\			Environr ineersand				MDEQ D	rilling			Page:	<u>6</u> o	of <u>6</u>
						ສວ –	R	Rockford, M	lichigan			File No.: _ Check:		32335.5 Powers
ح	e O	,	Sample	Informa	ition						_	Crieck:	LOIT	T
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	Descri	Sample iption & Classificati	ion	Stratum Desc.	Remarks		amma PI-GR) [™]	8p 100	Well Diagra
97 —									Silty CLAY			:	 	
8-												 		
9-													 	
0-		11	120/120			CLAY, trace S	prown, poorly sorted and, trace Gravel, p	olastic,				<u> </u> 		
1-						Brownish-red,	st. Changing at 102 poorly consolidated ALE, some gypsum	1,					:	
2- 3-						Gravei, moist.			102.7' SHALE					
3 — 4 —														
5 —												 		
3 —												 		
7-														
8-												 	:	
9-												; 		
0-						Bottom of Bore	ehole at 110.0 Feet		110'	5		:	:	
1 —											\leq			
2-											H			
3-										-	-999.25			
4-														
5-														
\top		., .	Щ.				1 C 1A/ II		05.05.44		•			
16— R E M A R K	5. Moi	nitorii	ng well	was instal	lled in bo	rehole upon comp	oletion. Well screen se	et from 80.6 to	85.2 feet b	elow	surface.			

		1	GZA	<u>\</u> .				Wolverir	ne World Wid	de				O.:HS-M	
	<i>7</i>			Environn ineersand				MDE	EQ Drilling				Page:	1 of _	2
			_						rd, Michigan				File No.: Check: _	16.00623 Lori Pov	
				S	tock /an		-	Auger/	Sampler			CDOUN			1010
Loca	eman: ged by	,		J			_ Type:	Casing Sonic	NA		Date	Time	DWATER F Depth		Stab
Date	Start	/Finis	sh:	5-22	2-19 / 5-2	22-19	O.D. / I.D.:	NA							
Bori	ng Lo	catio	n:	6205 Packer	Drive, NE,	Belmont, MI	Hammer Wt.:			- [
GS I	Elev.:			Datu	um:		Hammer Fall:			- ∟		. D	0		
	<u>_</u>	S	Sample	Informa	tion		TOC Elev.:			_ 8	urveyed	а ву:	Su	rvey Date:	
Depth	Elevation (ft,)	No.	Pen./ Rec.	Blows	Test		Sample		Stratum Desc.	Remarks		Ga	ımma PI-G (R)	— PROM	Well
	⊒Œ		(in.)	(/6")	Data		escription & Ċla		Desc.	Re	0 20	(Ar	71+GR)	⊕ CASII	NG
						See HS-M	//W-30E boring long and classificat	og for sample				:	:	:	
1-						descriptio	ir and oldoomod	1011.							
2-											!	ļ		! **	
3-											i	į	į		
4											i	j	į		
5-												:	i		
6-												i	:		
7-												:	: 		
8-													i		
9-												:	:		
-												:	:		d K
10-												!			
11-												!	:		
12-															
13-											!	ļ	ļ	!	
14-											į	į	į		
15-											į	į	į	j	
16-											j	i	i	i	
17-											İ	i	:		
18-												:	:		
											:	:	:		
19-												i	i		
20 –													:		
21-												:	:		
22-												:	!		
23-													!		
24-													1	!	知识
25												!		!	
26											!	!	1	!	Z K
27-											i	į	į		召怒
_										L			<u> </u>		A E

	3 2\			Environr	mental, l i d Scientis	nc. MDI	ne World Wid EQ Drilling ord Michigan					
Depth	Elevation (ft,)	5	Sample Pen./	Informa			Rockford, Michigan					
<u></u>	Eleva (ft,)	No.	Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Ga (Al	amma PI-GR)	Well Diagram	
29 –												
30 –									į į	į į		
31 – 32 –												
32 – 33 –												
34 –												
35 –												
36 –									i i			
37 –										į į		
38 –												
39 – 40 –												
41 —												
42 –												
43 –										į į		
44 –												
45 –												
46 – 47 –												
-, 48 —												
49 –												
50 –						Bottom of Borehole at 50.0 Feet						
51 –												
52 –												
53 –												
54 – 55 –												
56 –												
57 –												
58 –												
59 –												
60 –												
R E M A R K S	1. Mo	nitorir	ng well	was instal	lled in bor	ehole upon completion. Well screen set from	45.1 to 49.7 feet l	pelow g	round surface.			

		1	GZA	<u>.</u>				\	Nolverine	e World	d ANIG	<u>e</u>				No.:		
GeoEnvironmental, Inc. Engineers and Scientists						nc. ete	MDEQ Drilling							Page:1 of2 File No.:16.0062335.52				
	,		_						Rockfor	d, Mich	nigan				File No. Check:			
Forer	nan:				/an		-	(Auger/ Casing	Samı					DWATER	READING	GS	
Logg	ed by	/:		5-30	10 / 5 3	20.10	Type		Sonic NA	NA			Date	Time	Depth	Casin	g	Sta
							_ U.D. / I.D. _ Hammer Wt.					+						
							Hammer Fall											
				Informa								S	urveyed	l By:	s	urvey Da	te: _	
۽ ا	tion			inionna								(S					Т	
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	De	Samp escription & Cl	le lassifi	cation	Stratum Desc.		Remarks	() ()		Imma PI-G R)	PR	PRO ∏E ⊕ CASING	
						See HS-M	MW-30E boring n and classification	log fo	r sample									
1-						descriptio	II aliu ciassilica	alion.					ļ	ļ	į	į		
2													į	į	į	į		
3-													į	j	į	İ		
4													i	:	:	:		
5														i	i			
6-														:				
7-														:	:	:		
8-																		
9-														:	:	:		
0																:		
1													ļ	ļ	ļ	!		
2													į	į	į	į		
3													į	j	į	į		
4													i	i	į	į		
5													i	i	i	: 		
6-													:	:	i	i		
7-													i	:	i	i		
8														:				
9													:	:		:		
															!			
0															:	:		
1														:	:	:		
2													!	!				
3-													į	į	į			
4-													į	į	į	į		
5													i	j	j	į		
6													i	i	:	i		
7-													i	:	:	:		
8														: 	: 	:		
9														i	i	i		

	GZA GeoEnvironmental, Inc.				mental, I	nc.			Boring No.: HS-MW30B Page: 2 of 2					
				ineers an					Drilling , Michigan			_ Fage File No.:	:16.006	32335.52
	_	,	Sample	e Informa	ition			ROCKIOIO	, iviichigan			Check:	Lori F	Powers
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	Desc	Sample Description & Classification			Remarks	0 20	Gamma (API-GR)	8D 100	Well Diagrai
31 — 332 — 333 — 34 — 35 — 36 — 37 — 40 — 411 — 412 — 414 — 414 —														
146 — 147 — 148 — 149 — 151 — 152 — 154 —														
555— 57— 58— 59— 60— 51— 53— 64—						Bottom of Bo	orehole at 55.0	Feet		1		: !	:	19.40, 6.00
	1. Mo	nitorii	ng well	was instal	lled in bo	rehole upon con	npletion. Well sc	reen set from 49.	3 to 53.9 feet b	elow	<i>,</i> ground surfac	ce.		
tratifi	ication I	ines re	epresen	t approxima	ate bounda	ary between soil ty	pes, transitions ma	y be gradual. Wate	r level readings lent at the time me	have easur	been made at tir	mes Boring No.	: HS-MW30B	

			∣ GZ A	4				Wolverine	e World Wid	е			Boring N	lo.:HS-N	IW30C
	6 74		Geo	Environr	nental, I	nc.		MDE	Q Drilling				Page: _	of _	2
			Eng	ineers and	a Scienti:	StS			d, Michigan					16.00623	335.52
Cor	tracto	r:		S	tock			Auger/					Check:	Lori Pov	vers
For	eman:			Ry			_	Casing	Sampler			GROUN	DWATER	READINGS	
Loc	aed b	v:		J	ITM		Type: _	Sonic	NA	_	Date	Time	Depth	Casing	Stab
Dat	e Start	/Fini	sh:	5-29)-19 / 5-2	29-19	O.D. / I.D.: _	NA		. L					
							Hammer Wt.: _			. [
GS	Elev.:			Dati	um:		Hammer Fall: _			. L					
-			Sample	Informa	tion		TOC Elev.: _			. 8	Surveye	d By:	Sı	ırvey Date:	
ے ا	<u>io</u>		ample	ple Information						_O					
Depth	Elevation (ft,)	١	Pen./	Blows	Test		Sample		Stratum	Remarks		Ga	ımma		Well
^	ᄩ	No.	Rec. (in.)	(/6")	Data	De	escription & Clas	sification	Desc.	e		(Al	PI-G R) │	——PRΦ <u></u>	Well Fagrak NG
			(,			Coo HC M	NA 20E baring las	r for comple		ď	0 2	0 40	60	- CASII	NG
1-	-					description	1W-30E boring looุ n and classificatio	g for sample on					:	:	
2-	-					4000								ļ.	
3-	-											i i	j	i	
4-	1											: :	:	i	
5-	1												:		-
6-	1												ļ		
7-	1											i i	i	i	
8-]											: : 	: I		
9- 10-													:		
111-													ļ		
12-												i i	İ	j	
13-												: : 	:	i	
14-															
15-															-
16-	1											İ	į	İ	
17-	1											: : 	:	i	
18-	-												:		
19-	1													!	
20-	1											İ	j	İ	
21 – 22 –												: : 	:	i	
23-															
24-														!	
25-														Ţ	
26-													i	i	
27-															
28-	1												:	:	
29-	1											. !	ļ	!	
30-	1											i i	į	i	
31-	1											: :	:	:	
32-													!	:	
33-													ļ	į	
35-												i i	į	j	
36-													:		
37-													:		
38-	-														
39-	1											i i	į	i 📕	
40-	1											: : 	: I		.
	L	L									1		!	!	
33 - 34 - 35 - 35 - 36 - 37 - 37 - 37 - 37 - 37 - 37 - 37															
K S S	iootic - '	incs *	nprog = " f	t approving	sto house de	ny hoteroes = -	I typog tropoisi	w bo gradual 184-	tor lovel reading	201:	hoon	do at tire			
and u							I types, transitions ma occur due to other fact						Boring No.:	HS-MW30C	

GZA GeoEnvironmental, Inc. Engineers and Scientists							_ Boring N Page:						
/ Ligitied Salid Scientists					sts		File No.: 16.0062335 Check: Lori Power						
_	S	ample	Informa	tion				d, Michigan			Check:	Lori F	owers
Sample Information Sample Information Pen./ Rec. (/6") Data	Desc	Sample cription & Clas	sification	Stratum Desc.	Remarks	0 20	Gamma (API-GR)	80 100	Well Diagra				
1. Mor	lonitorin	g well	was instal	lled in bor		orehole at 80.0	Feet	.3 to 78.9 feet b	1 1 pelow	ground surface	ee.		

	1	GZ/	\				Wolverine	e World Wid	е			Boring N	O.:HS-N	MW30D
GZN			Environn ineersand				MDE	Q Drilling				Page:	of _	2
		_			313		Rockfor	d, Michigan						
Contracto				tock		-	Auger/	Sampler				Check: _		
Foreman:						- <u>-</u>	Casing	-		(Date	GROUNI Time		READINGS	Stab
ogged by	/:	nh:	5-3°	1-19 / 6-	3-19	_ Type: _	Sonic NA	NΑ		Jale	rime	Depth	Casing	Stab
						_			-					
						_ Hammer Fall: _								
									Su	rveyed l	Ву:	Su	rvey Date:	
u lo		Sample	Informa	tion					10					
Depth Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	D	Sample escription & Clas	sification	Stratum Desc.	Remarks	20	Ga (AF	imma PI-G R)	──PROF	Well Dagram NG
1234567890123456789012345678901234567890123456					See HS-M description	MW-30E boring log n and classification	g for sample n.							

GZ		Geo Engl	ineers an	mental, I r d Scientis	nc. ts MDE	e World Wic Q Drilling rd, Michigan			Boring No Page: File No.: _ _ Check:	2 o	s- _{MW30D} of 2 62335.52 Powers
Depth	Pen./	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	o 2p	Gamma (API-GR)	80 100	Well Diagra	
1234567890123456789012345678901234567890123456789012345678901234567890123	nitorir	ng well	was instal	lled in bor	Bottom of Borehole at 115.0 Feet ehole upon completion. Well screen set from 1	09.5 to 114.1 fee	1	ow ground sur	face.		

				Environi	mental, I d Scientis			MDEC	World Wid Drilling				Page:	of	
Fore	eman:			S R	stock yan			Rockford Auger/ Casing	I, Michigan Sampler				Check: _	Lori Po	wers
Log	ged by	/ :		F 40	<u>JTM</u>	0.40	Type:	Sonic	NA NA	Г	Date	Time	e Depth	Casing	Stab
						8-19 Belmont MI	O.D. / I.D.: _ Hammer Wt.: _			· -					
							Hammer Fall:		NA NA						
										S	urveye	By: _	Su	rvey Date:	
ŧ	tion			Informa	luon					S					
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	De	Sample escription & Clas	sification	Stratum Desc.	Remarks	0 20		Gamma API-G R)	——PRΦ <u>r</u> _∞ CASI	Well Tagram NG
1-		1	120/56		0.0 ppm	well sorted Silt, moist yellowish- medium S	brown to dark brown to medium to medium to Changing at 1.0 brown, moderate AND, little Silt, m to Yellowish-brown	SAND, some feet to: Dark ly sorted, fine to loist. Changing	at	1		 	:		
3- 4- 5-						fine to coa	erse SAND, trace . Changing at 4.7	Gravel, trace	4.7' NO			 			
									RECOVERY				:	:	
6-															
7-											3	- : :	:	:	
8-												 	:	:	
9-												- -			
10-		2	120/48		0.0 ppm	Brown to v	ellowish-brown,	noorly sorted	10' SAND		MW/MM MANNY		:	:	
11-			120/40		о.о рр	coarse to	medium SAND, s	some Gravel,	0, 11,15		TW A	_	:	:	
12-						Brown to y	moist. Changing /ellowish-brown,	poorly sorted,					:	1	
						some Silt,	medium SAND, s non-plastic, coh	esive, moist.				.		i	
13-							at 11.0 feet to: B brown, poorly sor		14'			_	:	:	
14 —							AND, some Gravanging at 11.4 fee		NO RECOVERY			- 	:	i	
15-						yellowish-	brown, moderate dium SAND, trac	ly well sorted,				>	:	i	
16-						Changing	at 12.4 feet to: Y	ellowish-brown,				- 	:	i	
17 —						Gravel, tra	ted, fine to coars ace Silt, moist. Cl					, : >	:	i	
18-						feet to: NO	RECOVERY.				1			į	
19-												_	į	į	
									20'		3	-	į	į	
20 –		3	120/65		0.0 ppm		brown to dark ye ted, fine to coars		SAND			ļ	į	į	
21-						Gravel, m	oist. Changing at brown to brown,	21.7 feet to:			3	>	į	į	
22 –						fine to me	dium SAND, trac	e Gravel, trace			My	- -		İ	
23-						yellowish-	. Changing at 22. brown to dark bro e to coarse SANI	wn, poorly			4		 	 	
R E M A R K S						sorted, fin		D, some gravel, a MiniRae 3000 p		dect	or equipp	ped with	a 10.6 eV lam	pp. Reading	s abov

Wolverine World Wide MDEQ Drilling Rockford, Michigan

Boring No.: ___ HS-MW30E __ of ___6 Page: __ File No.: 16.0062335.52 Lori Powers Check:

Sample Information Elevation (ft,) Remarks Pen./ Blows Test Sample Stratum Gamma Well No. Rec. Diagram (/6") Data Description & Classification Desc. (API-GR) (in.) trace Silt, moist. Changing at 25.4 feet to: SAND NO RECOVERY. 25 NO RECOVERY 26 27 28 29 30 SAND 120/58 0.0 ppm Yellowish-brown to dark yellowish-brown, poorly sorted, fine to coarse SAND, little 31-Gravel, trace Silt, moist. Changing at 31.3 feet to: Light yellowish-brown, moderately 32 well sorted, fine to medium SAND, trace Silt, moist. Changing at 34.8 feet to: NO 33 RECOVERY. 34 34.8' NO 35 RECOVERY 36-37 39 40 120/0 NO RECOVERY. 41 42 43 44-45 46 47 48 GZA CORP.GDT 49 50 SAND 120/19 0.0 ppm Yellowish-brown, poorly sorted, medium to coarse SAND, some Gravel, trace Silt, wet. 51-Changing at 50.9 feet to: Dark 62335.52 MDEQ WWW.GPJ yellowish-brown, poorly sorted, medium to

2. Groundwater sample collected from 52.0 to 54.0 feet and submitted for analytical laboratory testing.

REMARKS

FOG

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Wolverine World Wide **MDEQ Drilling** Rockford, Michigan

Boring No.: ___ HS-MW30E Page: ___3 __ of ___6 File No.: 16.0062335.52 Lori Powers

_	5	S	ample	Informa	tion	Rockford, N	viicingan		Check	: Lori P	owers
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Gamma (API-GR)	8p 100	Well Diagran
						coarse SAND, some Gravel, trace Silt, wet. Changing at 51.6 feet to: NO RECOVERY.	NO RECOVERY	2	5		
53-						0 0				:	
54-										:	
55-										i	
56-									*	į	
57 —										İ	
58-											
59 –										:	
80-		7	120/97		0.0 ppm	Yellowish-brown, poorly sorted, GRAVEL,	60' 669RAVEL SAND			:	
31-						some fine to coarse grained Sand, trace Silt, wet. Changing at 60.5 feet to: Yellowish-brown, moderately well sorted,	GAIND	3	MW/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/	i I	
32-						fine to medium SAND, trace Silt, wet. Changing at 62.5 feet to: Grayish-brown to	62.5'			:	
33-						dark brown, poorly sorted, Silty CLAY, little Sand, plastic, cohesive, moist. Changing at	CLAY			į	
64 –						63.5 feet to: Grayish-brown to dark grayish-brown, poorly sorted, Silty CLAY,				:	
65 -						trace Gravel, trace Sand, plastic, cohesive, moist. Changing at 68.1 feet to: NO			MAAM		
66-						RECOVERY.				:	
67-											
88							68.1' NO			i	
59 —							RECOVERY			į	
70-		8	120/119		0.0 ppm	Grayish-brown to dark grayish-brown, poorly	70' Silty			İ	
71-						sorted, Silty CLAY, trace Gravel, trace Sand, plastic, cohesive, moist. Changing at	CLÁY		W		
72-						72.6 feet to: Dark yellowish-brown to dark red, poorly sorted, coarse SAND, little	72.6'			:	
73-						Gravel, trace Silt, wet. Changing at 77.9 feet to: Brown to yellowish-brown, well sorted,	SAND				
74-						fine SAND, little Silt, wet. Changing at 79.9 feet to: NO RECOVERY.				i	
75-								4		İ	
76-										İ	
77-											
78-										 	
79-										:	
\dashv							79.9'		3	:	
R E M A R K S	3. Gro 4. Gro	undw undw	ater sa ater sa	mple colle mple colle	ected fror ected fror	n 61.0 to 63.0 feet and submitted for analytical labor n 75.0 to 77.0 feet and submitted for analytical labor	atory testing atory testing].].			
	cation li	nes re	present			ry between soil types, transitions may be gradual. Water le ndwater may occur due to other factors than those present				lo.: HS-MW30E	

Wolverine World Wide **MDEQ Drilling** Rockford, Michigan

Boring No.: ____HS-MW30E Page: ___4__ of ___6_ File No.: 16.0062335.52 Lori Powers

e o		Sample	Informa	tion		1			Lori Powers
Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Gamma (API-GR)	Wel Diagra
				0.0 ppm	Brown to yellowish-brown, well sorted, fine SAND, little Silt, wet. Changing at 83.7 feet to: Dark red, very well sorted, fine SAND, trace Silt, wet. Changing at 83.8 feet to: Dark grayish-brown to dark brown, poorly sorted, Silty CLAY, trace Gravel, trace Sand, plastic, cohesive, moist. Changing at 84.2 feet to: Dark grayish-brown to dark brown, very well sorted, SILT, wet. Changing at 85.2 feet to: Dark grayish-brown to dark brown, poorly sorted, Silty CLAY, trace Gravel, trace Sand, plastic, cohesive, moist. Changing at 86.9 feet to: Yellowish-brown, moderately sorted, SILT, wet, with thin dark brown, Silty Clay stringers, moist. Changing at 87.2 feet to: Brown, very well sorted, SILT, some fine grained Sand, wet. Changing at 89.5 feet to: NO RECOVERY. Yellowish-brown, very well sorted, fine SAND, little Silt, wet. Changing at 99.0 feet to: NO RECOVERY.	83.8' 84.2Silty CLAY 85.2SILT Silty CLAY 86.9' SILT		The many board board with the same of the	
	11	120/96		0.0 ppm	Yellowish-brown, very well sorted, fine SAND, little Silt, wet. Changing at 108.0 feet to: NO RECOVERY.	99' NO RECOVERY SAND	. 5	MANDAMANAMANAMANAMANAMANAMANAMANAMANAMAN	
5. Gro	oundw	ater sa	imple coll	ected from	n 100.0 to 102.0 feet and submitted for analytical lab	•	ing.	4.	
	Elevation (ft,)	No.	No. Pen./Rec. (in.) 9 120/108 11 120/96	No. Pen./ Rec. (/6")	9 120/114 0.0 ppm 10 120/108 0.0 ppm 11 120/96 0.0 ppm	Pen./ Rec. (in.) Pen./ Rec. (in.) Vellowish-brown, well sorted, fine SAND, little Silt, wet. Changing at 83.7 feet to: Dark grayish-brown to dark brown, poorly sorted, Silty CLAY, trace Gravel, trace Sand, plastic, cohesive, moist. Changing at 83.8 feet to: Dark grayish-brown to dark brown, poorly sorted, Silty CLAY, trace Gravel, trace Sand, plastic, cohesive, moist. Changing at 84.2 feet to: Dark grayish-brown to dark brown, poorly sorted, Silty CLAY, trace Gravel, trace Sand, plastic, cohesive, moist. Changing at 86.9 feet to: Yellowish-brown, moderately sorted, Silt.T. wet, with thin dark brown, Silty Clay stringers, moist. Changing at 87.2 feet to: Brown, very well sorted, Silt.T. some fine grained Sand, wet. Changing at 89.5 feet to: NO RECOVERY. 10 120/108 0.0 ppm Yellowish-brown, very well sorted, fine SAND, little Silt, wet. Changing at 99.0 feet to: NO RECOVERY.	Stratum Desc. No. Rec. (In.) (If.)	Pen. Rec. Rec. Blows (76") Data Description & Classification Pen. Rec. Pen. Pen. Pen. Pen. Rec. Pen. Pe	Second Penn Blows Test Description & Classification Desc. Penn

Wolverine World Wide MDEQ Drilling

Rockford, Michigan

Boring No.: ___ HS-MW30E Page: ____5 __ of ___ File No.: <u>16.0062335.52</u> Lori Powers Check:

Sample Information Elevation (ft,) Remarks Pen./ Blows Test Sample Stratum Gamma Well No. Rec. (/6") Data Description & Classification Desc. (API-GR) Diagram (in.) NO RECOVERY 109 110 12 120/95 0.0 ppm SAND Yellowish-brown, very well sorted, fine SAND, little Silt, wet. Changing at 111.3 feet 111 to: Yellowish-brown, very well sorted SILT, little fine grained Sand, slightly cohesive, 111.3 111.8ILT 112 SAND wet. Changing at 111.8 feet to: Yellowish-brown, very well sorted, fine SAND, little Silt, wet. Changing at 117.9 feet 113 to: NO RECOVERY. WOMING DIMONDY DAMPHOND TO COMPANY TO MAKE THE PROPERTY OF THE 114 115 116 117 118· 119 120 13 | 120/76 0.0 ppm Yellowish-brown, very well sorted, fine SAND, little Silt, grading slightly coarser 121 (fine to medium grained SAND, trace Gravel, little Silt), wet. Changing at 126.3 feet to: NO RECOVERY. 122 123 124 125 126 126.3' NO RECOVERY 127 128 129 130' 130 SAND 14 120/77 0.0 ppm Yellowish-brown, moderately sorted, fine to medium SAND, little Silt, trace Gravel, wet. 131 Changing at 131.0 feet to: Dark yellowish-brown, moderately sorted, fine to 132 medium SAND, little Silt, trace Gravel, wet. Changing at 131.6 feet to: Yellowish-brown, GDT 133 moderately sorted, fine to medium SAND, CORP little Silt, wet. Changing at 136.4 feet to: NO 134 RECOVERY. GZA 135 62335.52 MDEQ WWW.GPJ

R

E M A R K S

FOG

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Groundwater sample collected from 111.0 to 113.0 feet and submitted for analytical laboratory testing. Groundwater sample collected from 121.0 to 123.0 feet and submitted for analytical laboratory testing.

^{8.} Groundwater sample collected from 128.0 to 130.0 feet and submitted for analytical laboratory testing.

Wolverine World Wide GZA Boring No.: ___ HS-MW30E GeoEnvironmental, Inc. Page: ___6__ of ___6 MDEQ Drilling Engineers and Scientists File No.: 16.0062335.52 Rockford, Michigan Lori Powers Check: Sample Information Elevation (ft,) Remarks Pen./ **Blows** Test Sample Stratum Gamma Well No. Rec. Diagram (/6") Data Description & Classification Desc. (API-GR) (in.) 136.4' NO RECOVERY 137 138 139 140' SHALE 140 Dark gray, with some dark red iron staining, SHALE. Changing at 142.8 feet to: NO 60/34 0.0 ppm 141· **RECOVERY** 142 142.8' NO RECOVERY 143 144 145' 145 Bottom of Borehole at 145.0 Feet 10 146 147 148 -999.25 149 150 151· 152· 153 154 155 156 157 158· 159 160

CORP.GDT 161 162

GZA 163

LOG 62335.52 MDEQ WWW.GPJ

REMARKS

Groundwater sample collected from 138.0 to 140.0 feet and submitted for analytical laboratory testing.
 Monitoring well HS-MW30E was installed in borehole upon completion. Well screen set from 120.7 to 125.2 feet below ground surface.

GZ		GZ/		marta! !				e World Wid					0.:HS-M	
		Geo Enai	Environr ineersand	n enta i, i d Scientis	nc. sts			Q Drilling				Page:	1 of _ 16.00623	<u>1</u> 35 52
0-1:	/						Rockfo	<u>rd, Michigan</u>				File No.: Check: _		
Contract Foreman						_	Auger/ Casing	Sampler			CBOLINI		READINGS	
Logged k						_ _ Type	_	NA		Date	Time	Depth		Stab
Date Star	t/Fini	sh:	6-4	I-19 / 6-4	I- 19	O.D. / I.D.	:NA	NA	- [
							:NA		- -					
GS Elev.			Dati	um:	1		: <u>NA</u> :		_ ∟	Survovo	d By:	S.,	rvey Date:	
_		Sample	Informa	tion		TOC LIEV.	•				и Бу	Ju	ivey Date.	
Depth Elevation (ft.)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	D	Samplescription & Cl	e assification	Stratum Desc.	Remarks	0 2	Ga (AF	mma PI-G R)	——PRO∏ō " CA,SIN	Well Fagral IG
1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23-	pnitorir	ng well	was instal	led in bor	Bottom of	on and classificated and classificated and classificated at 21 completion. Well	ation.	6.1 to 20.6 feet b	1		surface.			

		GZ/	<u> </u>				vvoiverin	<u>e World Wid</u>	ie_			Boring	No.:	MW-31B
GZ\			Environr ineers and				MDE	Q Drilling				Page:	1 of	1
		_			A.O		Rockfo	rd, Michigan				File No Check:	.: <u>16.0062</u> Lori Po	
Contracto			<u>S</u>	tock		-	Auger/	Sampler						
Foreman	: —		Ry	yan ITM			Casing	-		Date			R READINGS	
Logged b)y:	ah.	5-20) 1 IVI)_10 / 5_2	20-19	_ Type: _ _ O.D. / I.D.: _		NA NA		Date	Time	e Dept	h Casing	Sia
						_			- -					
						_ Hammer Fall: _								
	1								S	urveye	d By: _		Survey Date:	:
ر او		Sample	Informa	tion										
Depth Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	D	Sample escription & Class	sification	Stratum Desc.	Remarks	0 20	(/	Gamma	PRO	Well Dlagrah ING
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 31 -	pnitorir	ng well	was instal	led in boi	Bottom of	MW31E boring log in and classification and classification and classification with the completion. Well sci	Feet	4.2 to 28.7 feet b	1 pelow	<i>y</i> ground	surface.			

			GZA	<u>.</u>					Wolverin	ie Wo	rld Wid	<u>e</u>				No.:		
G	Z\)	Geol	Environn neersand	nental, l d Scientis	nc. ets			MDE	Q Dri	lling				Page: _	1 o	f2	2
			_						Rockfo	rd, Mi	chigan				File No.: Check:	16.006 Lori P		
Forem	nan: .				/an		-		Auger/ Casing	Sa	mpler			GROUN		READING		
Logge	d by:	:		J	TM		_ T <u>y</u>	ype: _			NA	_	Date	Time	Depth	Casing) S	Sta
						I-19			NA NA		na Na	-					-	
									NA NA		NA NA							
												S	urveyed	d By:	s	urvey Date	e:	
<u>ن</u> ا	5	S	ample	Informa	tion							S						
Depth	(ft,)		Pen./ Rec. (in.)	Blows (/6")	Test Data	De	Sa escription 8	mple & Class	ification		Stratum Desc.	Remarks	0 20	Ga (Al	amma PI-G R)	PRO	We Diagi	ill Fal
1						See HS-M	//////////////////////////////////////	ng log f	or sample					:		:		T
1-						descriptio	ii and class	moatioi	1.						 	1		I
2													ļ	ļ	ļ	į.		
3-													į	İ	į	į		
4-													i	i	į	į		
5															i	:		
6														;	;	i		
7														:	: 	:		
8																i		
9																:		
0													:					
1-																:		
2															 	 		
3-															:	:		
14-																 		
5-															!	1		
16-													ļ	ļ	ļ	ļ		ı
17-													į	į	į	į		
8-													į	į	į	į		
9													i	į	i	į		
20															i	:		ı
1-															;	i		
22-															i	i I		
:3-																		J
4-																		
25																		
6-														:	:	1		
27																!		
28														:	:	l i		
29														:	 	:		
- 1														ļ.		ļ.		

	57 \	Sample Information Pen./ Rec. (in.) Pen./ Rec. (in.) Pen./ Rec. (in.) Rec. (in.) Pen./ Rec. (in.) Rec. (in.)					DEQ Dr				Pag		2 o 16.006			
Depth	Elevation (ft,)		Pen./ Rec.	Blows	Test	Des	Samp scription & Cl	le assification		Stratum Desc.	Remarks	о 2р	Gamma (API-GR		p 100	Well Diagram
31-												:				
32 – 33 –														İ		
34 —												:		:		
35 — 36 —												:		: !		
30 37 —												İ	į į	İ		
38 –																
39 — 40 —																
41 —														İ		
42 —														:		
43 — 44 —												:		:		
45 —						Bottom of E	Borehole at 45	5.0 Feet			1	: 				
46 —																
47 — 48 —																
49 —																
50 — 51 —																
51 52 –																
53 —																
54 — 55 —																
56 –																
57 —																
58 – 59 –																
60 –																
61 —																
62 – 63 –																
64 –																
R E M A R K S	1. Mo	nitorin	ng well	was instal	lled in bo	ı vrehole upon co	mpletion. Well	screen set fron	m 39.4 to	43.9 feet b	elow	ground surf	ace.			
Stratif	ication I	ines re	epresent	t approxima	ate bounda	ary between soil t	ypes, transitions	may be gradual.	Water leve	el readings	have l	peen made at	times Bori	ng No.: HS	6-MW-31C	

/			GZ	4				Wolverin	e World Wid	e			Boi	ring No).:HS-N	/W-31D
	5 /2\			Environr ineers and				MDE	Q Drilling				Paç	ge:	1 of	2
			Lingi			313		Rockfor	rd, Michigan						16.0062 Lori Po	
					tock		_	Auger/	Sampler					eck: _		
Fore	eman:						-	Casing	-		5 /				EADINGS	
Log	ged by	y:		J	11M	1.40	_ Type: _	Sonic	NA NA		Date	Time) 	epth	Casing	Stat
						1-19		NA NA		-						
							_ Hammer Wt.: _ _ Hammer Fall: _									
G5 I	=iev.:			Dati	um:	1					Survovo	l By:		S	vey Date:	
	_	5	Sample	Informa	tion		TOC Elev			3	our ve yet	а Бу		_ Jui	vey Date.	
Depth	Elevation (ft,)	No.	Pen./ Rec.	Blows	Test		Sample		Stratum	Remarks		C	Samma	a	220	Well
	ЩĘ	110.	(in.)	(/6")	Data		escription & Clas		Desc.	Ren	0 20	40	API-GR	*	⊸ CASI	Well Dagrah NG
1-						See HS-N descriptio	/IW31E boring log n and classification	for sample on.				!		!	:	
2-														!	:	
3-											j	ĺ		1	Ì	
4-												i		: 	i	
5												:		:		
6														I :	!	
7- 8-											!	ļ		!	!	
8 – 9 –											i	į		i	j	
9 0														: I	:	
1-																
2-														!	1	
3-												1			1	
4-											li	i		i I	i	
5-												i		i	i	
6-												:		:	:	
7-											!	ļ			!	
8- 9-											j	į		İ	İ	
0-												i		: 	i	
1-												:				
2-											!	:		:	:	
3-											!	ļ		!	ļ	
4-											j	į		İ	İ	
5-												:		: 	:	
6-																
7-											!	:		:	:	
8 – 9 –												ļ		!	!	
9 0											i	j		İ	Ì	
1-												: 1		: 		
2-												:		:		
3-														:	:	
4-												!		!	!	
5-											i	i		i	j	
6-												i		:	:	
7-												:		:	!	
8 9											!			1		
												į		ļ	ļ	

the sample information Sample Information Sample Stratum & Stratum & Gamma	GZ	Sample Information Pen./ Rec. (6") Pata			Volverine W MDEQ D Rockford, I	Drilling			Boring No Page: File No.: _ Check:	2 o	f2			
41 - 42 - 43 - 44 - 44 - 44 - 44 - 44 - 44	Depth Elevation (ft,)	No.	Pen./ Rec.	Blows	Test	Descrip	Sample otion & Classific	ation		Remarks	(<i>j</i>	Samma		Well Diagrar
Bottom of Borehole at 68.0 Feet Bottom of Borehole at 68.0 Feet Bottom of Borehole at 68.0 Feet Bottom of Borehole at 68.0 Feet Bottom of Borehole at 68.0 Feet In the state of the st	11 — 12 — 13 — 14 — 15 — 16 — 17 — 18 — 19 — 150 — 151 — 152 — 153 — 154 — 155 — 156 — 157 — 158 — 159 — 150 — 150 — 151 — 152 — 153 — 154 — 155 — 156 — 157 — 158 — 159 — 150												# 100	
	66 — 67 — 68 — 69 — 70 — 71 — 72 — 73 — 74 — 75 — 76 — 77 — 78 — 79 — 630 — 631 — 632 — 633 — 634 — 635 — 636 — 63													
K K S	1. Mo	nitorii	ng well	was instal	lled in bo	rehole upon comple	etion. Well screen	set from 61.8 to	o 66.4 feet b	pelow	v ground surface.			

,		1	GZ/					Wolverine	World Wid	е		Boring No).:HS-M	W-31E
	37 \			Environi				MDEQ	Drilling			-	of _	
	;		Eng	ineers an	a Scientis	SIS		Rockford	, Michigan			File No.:		
					Stock			Auger/	Sampler			Check: _	Lori Pov	vers
Fore	eman:							Casing	-			IDWATER R		
Log	ged by	y:		F 40	JTM 2.40 / 5.6	14.40	Type: _	Sonic	NA NA	Date	Time	Depth	Casing	Stab
				5-16			O.D. / I.D.: _ Hammer Wt.: _	NA NA		-				
							Hammer Fall: _							
										Surveye	ed By:	Sur	vey Date:	
_	on		Sample	e Informa	tion					_				
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	De	Sample escription & Class	sification	Stratum Desc.	Remarks		amma PI-G R)	PROM OASIN	Well Tagrame
_		1	120/71		0.0 ppm		brown, moderatel e fine grained Sar		SILT					
1—							at 2.5 feet to: Dar		1,		! !	ļ.	!	
2-							ted, fine to mediur		2.5' SAND		i i	į	i	
3-							. Changing at 3.2 brown, poorly sort		SAND			i		
4 —						coarse SA	ND, little Gravel, t	trace Silt, moist	.		i i	i		
5-						poorly sort	at 5.3 feet to: Yell ted, fine to coarse	SAND, trace		\ \	 	:		.
6-						Silt, moist.	. Changing at 5.9		5.9' NO	€	<u> </u>	 	:	
7—						RECOVER	KY.		RECOVERY	_		!	!	
,											\rightarrow	į	İ	
8-											≨	: 	i	
9-									40'		\geq			
10 —		2	120/78		0.0 pm	Yellowish-	brown, poorly sort	ed, fine to	10' SAND	-		:		-
11-						coarse SA	ND, trace Silt, mo	ist. Changing a	t	2	<u>*</u>	:	:	
12-							o: Dark yellowish- e to medium SAN			-3		<u> </u>	<u> </u>	
13-						moist to w	et. Changing at 16				1	į	İ	
14-						RECOVER	KY.			\ \left\(\frac{1}{2} \right\)	: +	i	:	
15-										8	:: : ≥ :	:	:	
										-	\$			
16-									16.5' NO		<u> </u>			
17 —									RECOVERY	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	<u> </u>	 	:	
18-											> !	į	<u>!</u>	
19-											j	į	i	
20 —		3	120/67		0.0 ppm	Yellowish-	brown, well sorted	l well sorted	20' SAND	\$	<u>}</u> : 	i	:	-
21-			-3,01			fine to med	dium SAND, trace	Silt, moist to			- :	i		
22-						wet. Chang RECOVER	ging at 25.6 feet to RY	o: NO		<u> </u>		:		
23-						LOOVEI	•••				-ı l >	!		
										\{\bar{2}}		:		
24 –											- !	į	!	
25 –	1								25.6'	🚖	į į	j		
26 –									NO RECOVERY		 : =	:		
27 —										3	-: :	i		
28 –										🗦	-			
29 –										N MANAMANAMANA	=	 		
									30'		4	ļ		
R E M A R K S	1. Gro	oundw	vater sa	ample coll	ected fror	n 21.0 to 22.5	5 feet and submitted	l for analytical lat	ooratory testing					
							types, transitions may					Boring No.: H	HS-MW-31E	

GAMMA_LOG_62335.52 MDEQ WWW.GPJ_GZA_CORP.GDT_9/27/19

Sample Information

Wolverine World Wide MDEQ Drilling

Rockford, Michigan

Boring No.: ___ HS-MW-31E 2 __ of ___3 Page: __ File No.: <u>16.0062335.52</u> Lori Powers Check:

Elevation (ft,) Remarks Pen./ Blows Test Sample Stratum Gamma Well No. Rec. (/6") Data **Description & Classification** Desc. (API-GR) Diagram (in.) SAND 120/76 0.0 ppm Dark yellowish-brown, well sorted, fine to 4 medium SAND, trace Silt, moist to wet. 31 Changing at 36.3 feet to: NO RECOVERY. 32 33 34 35 36 36.3 RECOVERY 37-38 39 40' 40 SAND 120/85 mag 0.0 Dark yellowish-brown, well sorted, fine to medium SAND, trace Silt, moist to wet. 41 Changing at 47.1 feet to: NO RECOVERY. 42 43 44 45 46 47 NO RECOVERY 48 49 50' 50 120/108 0.0 ppm SAND Dark yellowish-brown, well sorted, fine to medium SAND, trace Silt, moist to wet. 51 Changing at 53.3 feet to: Very dark 52 grayish-brown, poorly sorted, Silty CLAY, trace Gravel, trace Sand, plastic, cohesive, 53 53 moist. Changing at 57.4 feet to: Dark grayish-brown to dark brown, well sorted, 54 fine to medium SAND, trace Silt, wet. 55 Changing at 57.9 feet to: Very dark grayish-brown, poorly sorted, Silty CLAY, 56trace Gravel, trace Sand, plastic, cohesive, moist. Changing at 59.0 feet to: NO 57-57.4' 57.**9**'AND RECOVERY. 58-Silty 59' CLAY 59 NO RECOVERY 60 0.0 ppm 120/120 Silty CLAY Very dark, grayish brown to dark grayish-brown, poorly sorted, Silty CLAY, GZA CORP.GDT 61 trace Gravel, trace Sand, plastic, cohesive, 62 moist. Changing at 62.7 feet to: 62.7' SAND Grayish-brown to brown, moderately well 63 sorted, fine to medium SAND, trace Silt, moist to wet. Changing at 63.4 feet to: Dark 64 62335.52 MDEQ WWW.GPJ brown, poorly sorted, fine to coarse SAND,

R

E M

A R K S FOG

Groundwater sample collected from 31.0 to 32.5 feet and submitted for analytical laboratory testing. Groundwater sample collected from 41.0 to 42.5 feet and submitted for analytical laboratory testing.

^{4.} Groundwater sample collected from 51.0 to 52.5 feet and submitted for analytical laboratory testing.

Wolverine World Wide **MDEQ Drilling** Rockford, Michigan

Boring No.: ____HS-MW-31E Page: ___3 __ of ___3 File No.: 16.0062335.52 Lori Powers

Elevation (ft,)		Pen./					2			
Ęť,	No.	Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Gamr (API-0	na BR)	Well Diagran
E (t		(in.)		Data	some Gravel, little Silt, trace Clay, non-plastic, moderately cohesive, moist to wet. Changing at 66.5 feet to: Hard, dark brown, poorly sorted, Silty CLAY, trace Gravel, plastic, cohesive, moist. Changing at 68.3 feet to: Very hard, brown, poorly sorted, Silty CLAY, trace Gravel, possible red Bedrock, dry to moist. Bottom of Borehole at 70.0 Feet	SAND 66.5' Sitty CLAY 68.3'	5	-999.25	60 SD 16	10
5. Moi	nitorir	ng well	HS-MW3 ⁴	IB was in	stalled in borehole upon completion. Well screen so	et from 24.2	to 28	8.8 feet below ground s	surface.	
						some Gravel, little Silt, trace Clay, non-plastic, moderately cohesive, moist to wet. Changing at 66.5 feet to: Hard, dark brown, poorly sorted, Silty CLAY, trace Gravel, plastic, cohesive, moist. Changing at 68.3 feet to: Very hard, brown, poorly sorted, Silty CLAY, trace Gravel, possible red Bedrock, dry to moist. Bottom of Borehole at 70.0 Feet	some Gravel, little Silt, trace Clay, non-plastic, moderately cohesive, moist to wet. Changing at 66.5 feet to: Hard, dark brown, poorly sorted, Silty CLAY, trace Gravel, plastic, cohesive, moist. Changing at 68.3 feet to: Very hard, brown, poorly sorted, Silty CLAY, trace Gravel, possible red Bedrock, dry to moist. Bottom of Borehole at 70.0 Feet	some Gravel, little Silt, trace Clay, non-plastic, moderately cohesive, moist to wet. Changing at 66.5 feet to: Hard, dark brown, poorly sorted, Silty CLAY, trace Gravel, plastic, cohesive, moist. Changing at 68.3 feet to: Very hard, brown, poorly sorted, Silty CLAY, trace Gravel, Silty CLAY, trace Gravel, possible red Bedrock, dry to moist. Bottom of Borehole at 70.0 Feet	some Gravel, little Silt, trace Clay, non-plastic, moderately cohesive, moist to wet. Changing at 66.5 feet to: Hard, dark brown, poorly sorted, Silty CLAY, trace Gravel, plastic, cohesive, moist. Changing at 88.3 feet to: Very hard, brown, poorly sorted, Silly CLAY, trace Gravel, possible red Bedrock, dry to moist. Bottom of Borehole at 70.0 Feet	some Gravel, little Silt, trace Clay, non-plastic, moderately cohesive, moist to wet. Changing at 66.5 feet to: Hard, dark brown, poorly sorted, Silty CLAY, trace Gravel, plastic, cohesive, moist. Changing at 68.3 feet to: Very hard, brown, poorly sorted, Silty CLAY, trace Gravel, possible red Bedrock, dry to moist. Bottom of Borehole at 70.0 Feet

		GZA	١				AAOIACIIIIG	e World Wid	<u> </u>			Boring N	O.:HS-M	W-32A
GLI)		Environn neersand				MDE	Q Drilling				Page:	of _	2
1		_			ж		Rockfor	d, Michigan					16.00623 Lori Pov	
Contractor				tock		-	Auger/	Sampler			_	Check: _		
Foreman:						. <u>.</u>	Casing	-		Date	GROUN Time	DWATER F Depth	READINGS	Stab
Logged by	/:	h.	<u>J</u> 5 - 9	1 IVI 1-19 / 5-0	9-19	Type: _	Sonic NA	NA NA	Г	Date	Time	Depth	Casing	Stab
Boring I or	cation	n: 133	2 10 Mile Ro	ad NE. Co	mstock Park. MI	Hammer Wt.:			+					
						Hammer Fall:								
									Sı	urveyed	l By:	Su	rvey Date:	
ر او	S	ample	Informa	tion					' 0					
Depth Elevation (ft,)		Pen./ Rec. (in.)	Blows (/6")	Test Data	De	Sample escription & Clas	sification	Stratum Desc.	Remarks	0 20	G a (A l	amma PI-G R)	──PROMI	Well lagram IG
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 23 - 33 - 3					description	MV-32D boring long and classification	gioi sample on.							

G		G E	ZA eoEnviror ingineers a	nd Scienti		MDEQ Rockford,	Drilling			Boring No Page: File No.: _ Check:	2 o	s-MW-32A of 2 02335.52 Powers
Deptn Elevation	(#,)	Sam Per Io. Re (in	c. Diows		Sample Description & Class	sification	Stratum Desc.	Remarks	G (A ο φ φ	Gamma API-GR)	8p 100	Well Diagrar
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				alled in bo	Bottom of Borehole at 65.0		to 62.4 feet b	1	ground surface.	60 	89 100	

	1	GZ/	\				Wolverine	e World Wid	е			Boring No	O.:HS-M	W-32B
GZN			Environn ineersand				MDE	Q Drilling				Page:	of _	2
,		_			313		Rockfor	d, Michigan					16.00623 Lori Pov	
Contracto				tock		-	Auger/	Sampler				Check: _		
Foreman:						. _	Casing	-	D		ROUND Time	WATER F Depth	READINGS	Stab
Logged by	/:	nh:	<u>J</u> 5 - 8	11 IVI R-19 / 5-8	3-19	Type: _	Sonic NA	NΑ		ate i	ime	Depth	Casing	Stab
Boring I o	ratio	on: 133	2 10 Mile Ro	ad NE. Co	mstock Park. MI	Hammer Wt.:			-					
						Hammer Fall:								
									Sur	veyed By	r:	Su	rvey Date:	
ᆫ		Sample	Informa	tion					(0					
Depth Elevation (ff,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	De	Sample escription & Clas	sification	Stratum Desc.	Remarks	20	Gar (API	mma -G R)	──PROME	Well Tagrahi NG
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 11 - 11 - 11 - 11 - 11					See HS-M description	MV-32D boring lon and classification	g for sample							

Sample information No. Pen. Biows (in.) Test Description & Classification Stratum Desc. E Gamma (API-GR)	ori Powers		—— c:			<u>lichigan</u>	Rockford	sts -	d Scientis			<i>y</i>	7 2\	
51 - 52 - 53 - 54 - 55 - 56 - 56 - 57 - 58 - 59 - 60 - 61 - 62 - 63 - 64 - 65 - 66 - 67 - 68 - 69 - 70 - 71 - 72 - 73 - 73 - 74 - 75 - 76 - 77 - 778 - 79 - 80 - 81 - 82 - 83 - 84 - 85 - 85 - 85 - 85 - 85 - 85 - 85	Wel Diagra	nma -GR)	Gamr	0 2	Remarks		ample & Classification	Descr	Test	Blows	Pen./ Rec.		Elevation (ft,)	Depth
86 - 87 - 88 - 89 - 90 - 91 - 91 - 92 - 93 - 94 - 95 - 96 - 97 - 98 - 99 - 90 - 91 - 90 - 91 - 92 - 93 - 94 - 95 - 96 - 97 - 98 - 99 - 96 - 97 - 98 - 99 - 90 - 91 - 90 - 90			20	v ground	1		at 83.0 Feet	Bottom of Bot				nitorir		51 — 53 — 56 — 56 — 56 — 56 — 56 — 56 — 56

			∣ GZ A	4				Wolverin	e World Wide	9		_ Bor	ing No.:	HS-N	/W-32C
	57 \			Environ					Q Drilling			Pag	je:1	of	2
			Engi	ineers and					rd, Michigan			File	No.:		
								Auger/	Sampler			- Che	eck:	Lori Po	wers
For	eman:			Ry	/an			Casing	-	5 /		ONDWA			
Log	ged by	y:	-1	J	11M 210/59	2 10	Type: _	Sonic	NA NA	Date	Tir	me ບ	epth (Casing	Stab
Date	e Stari	/Finis	sn:	5-8	oad NE Co	metock Park MI	. O.D. / I.D.: _ Hammer Wt.: _	NA NA	NA NA						
GS	ilig Lo	Calio) . <u> 155</u>	Datı	ım:	ITISLOCK FAIR, IVII	Hammer Fall: _	NA NA	NA NA						
		i				1				Survey	ed By:		_ Surve	y Date:	
_	e o		Sample	Informa	tion									,	
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	De	Sample escription & Clas	sification	Stratum Desc.	Remarks	20	Gamma (API-GR) ₁	−PRO <mark>ī</mark> CASI	Well Dagrah NG
1-						See HS-M description	IW-32D boring loon and classification	g for sample n.			:				
3- 4- 5- 6-											:				
7- 8- 9-															
10 — 11 — 12 —											İ				
13 – 14 – 15 –															
16 – 17 – 18 –															
19 – 20 – 21 –											<u> </u>				
22 – 23 – 24 – 25 –															
26 – 27 – 28 –											:				
29 — 30 — 31 — 32 —															
33 – 34 – 35 –											<u> </u>				
36 – 37 – 38 –															
39 — 40 — 41 — 42 —															
43 – 44 – 45 –													 		
46 – 47 – 48 –															
19 — 50 — 51 —															
52 — 53 — 54 —											ļ				

	<i>5</i> 2\			a Environr ineers an		nc. MDE	e World Wid Q Drilling			Boring No	o	s-MW-32C f <u>2</u> 62335.52
	_			Informa		Rockfor	rd, Michigan			File No.: Check:		owers
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	0 20	Gamma (API-GR)	8p 100	Wel Diagra
		nitorir			lled in bo	Bottom of Borehole at 112.0 Feet	07.2 to 111.8 fee	1	ow ground surfa	## ## ## ## ## ## ## ## ## ## ## ## ##	## 100	

GZN	GZA GeoEnvironmental, Inc. Engineers and Scientists
	Ligitica salid scialidisis

GS Elev.: _____ Datum: ____

Wolverine World Wide MDEQ Drilling

Boring No.: ____HS-MW-32D Page: ___1__ of ___6

Contractor: _____ Ryan Foreman: _____

Rockford, Michigan Auger/ Sampler

File No.: 16.0062335.52 Check: Lori Powers

Logged by: _____ MJS/KWO **Date Start/Finish:** 5-6-19 / 5-6-19 Boring Location: 1332 10 Mile Road NE, Comstock Park, MI Hammer Wt.:

Casing Sonic NA Type: __ NA NA O.D. / I.D.: ___ NA NA __ Hammer Fall: ____NA NA

	GROUND	WATER R	EADINGS	
Date	Time	Depth	Casing	Stab
3-2-99	17:00	7.2	5	5 min.
3-3-99	08:00	6.5	5	15 hours
3-3-99	12:00	6.8		20 min.

Surveyed By: _____ Survey Date: TOC Elev.: _____

_	n n	3	Sample	Informa	ition	TOC Elev								
Depth	Elevation (ft,)	No.	Pen./ Rec.	Blows	Test	Sample	Stratum	Remarks		Gamı	na		_w	<u>ell</u>
_	Ele (ft,	NO.	(in.)	(/6")	Data	Description & Classification	Desc.	Rem	0 20	(API-C	SR)	——PR ೄ CA	W O DFa G SING	jrai
1-		1	24/24			Black, TOPSOIL with Roots and Grass. Changing at 0.5 feet to: Loose, brown, fine to medium SAND, trace fine Gravel, moist.	0.TOPSOIL SAND		:			:		
2- 3- 4-		2	96/48		0.0 ppm 0.0 ppm	Loose, brown, fine to medium SAND, trace Silt, moist. Changing at 3.5 feet to: Loose, brown, fine to medium SAND and GRAVEL, moist.	3.5' SAND and GRAVEL	1						
5— 6—									İ					
7- 8-											; 	: 		
9- 10-		3	120/72		1.0 ppm	Loose, brown, fine to coarse SAND, trace	10' SAND		4					I
11- 12-					1.3 ppm	Gravel, trace Silt, moist.			1 My		:	:		
13- 14-					рр					-				
15— 16—									Why who while my many many which					
17— 18—									M/M	:	 	 		I
19 <u> </u>		4	120/90		1.7 ppm	Loose, brown, fine to coarse SAND and	20' SAND and							
21 – 22 –						GRAVEL, trace Clay & Silt, moist.	GRAVEL		W N					
23 — 24 —					1.6 ppm				Montononimu		:	; ; [
25 — 26 —											:	:		I
27 — 28 —									MUT M			: 		
29 –										:		:		

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Wolverine World Wide

MDEQ Drilling

Rockford, Michigan

 Boring No.:
 HS-MW-32D

 Page:
 2
 of
 6

 File No.:
 16.0062335.52

 Check:
 Lori Powers

Sample Information Elevation (ft,) Remarks Pen./ Blows Test Sample Stratum Gamma Well No. Rec. Diagram (/6") Data Description & Classification Desc. (API-GR) (in.) Loose, gray, fine to coarse SAND and SAND 120/120 0.4 ppm and GRAVEL GRAVEL, moist. Changing at 38.0 feet to: 31 Soft, gray, Silty SAND, moist. Changing at 32-35.0 feet to: Loose, gray, fine to medium SAND, moist to wet. 33 34 35 0.5 ppm 36 37-38 SAND 39 40-120/120 1.5 ppm 1.8 ppm Loose, gray, Silty SAND, moist. 41 42 43-44 45-46 47 48-49 50 120/120 Loose, gray, Silty SAND, moist. 51 52 53 54 55-0.3 ppm 56-57-58-59 60 120/120 1.4 ppm Loose, brown, fine to coarse SAND and Gravel, wet. Changing at 65.0 feet to: 61 Loose, gray, fine to medium SAND, wet. 62 63 64

2. Temporary well pushed to 64.0 feet below ground surface. Groundwater collected for laboratory analytical testing.

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Boring No.: HS-MW-32D

AMMA LOG 62335.52 MDEQ WWW.GPJ GZA CORP.GDT

REMARKS

Wolverine World Wide **MDEQ Drilling** Rockford, Michigan

Boring No.: HS-MW-32D Page: ___3 __ of ___6 File No.: 16.0062335.52 Lori Powers

Test Data Sample Description & Classification 2.2 ppm Gray, medium stiff, SILT, trace Gravel, trace Sand, wet. Changing at 72.5 feet to: Stiff, gray, Silty SAND, moist.	Stratum Desc. SAND	Gamma (API-GR)	Well Diagran
Gray, medium stiff, SILT, trace Gravel, trace Sand, wet. Changing at 72.5 feet to: Stiff,	SAND	My July July July July July July July Jul	
Sand, wet. Changing at 72.5 feet to: Stiff,	70'	₩	
Sand, wet. Changing at 72.5 feet to: Stiff,	70'	M	
Sand, wet. Changing at 72.5 feet to: Stiff,	70'		
Sand, wet. Changing at 72.5 feet to: Stiff,	70'		
Sand, wet. Changing at 72.5 feet to: Stiff,			
gray Silty SAND moist	SILT		
gray, only of arts, molec.	72.5'		
	SAND		
	3		
2.0 ppm			
Loose, gray, fine to medium SAND, wet.			
Changing at 83.3 feet to: Stiff, gray, SILT, trace fine Sand, moist.			
	83.3' SILT	<u> </u>	
		X	
4.5 ppm			
2.5 ppm Stiff, gray, SILT, trace fine to coarse Sand, moist.			
3.0 ppm			
			of feet below ground surface. Groundwater collected for laboratory analytical testing.

Wolverine World Wide **MDEQ Drilling** Rockford, Michigan

Boring No.: HS-MW-32D Page: ___4 __ of ___6 File No.: __16.0062335.52 Lori Powers Check:

uc	•	Sample	Informa	tion				Check: Lo	ri Powers
Elevatic (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Gamma (API-GR)	Well Diagrar
	12	120/120)	0.6 ppm	Stiff, gray, SILT, trace fine Sand, moist. Changing at 107.0 feet to: Loose, fine to coarse SAND, trace Silt, moist.	SILT		Day V	
				1.2 ppm					
						107' SAND			
	13	60/60		5.1 ppm	Loose, gray, fine to coarse SAND, wet.				
							4		
							•	M/A	
	14	60/60		7.1 ppm	Loose, gray, fine to coarse SAND_trace Silt				
					moist.			W	
								MV	
	15	120/120)	0.5 ppm	Loose, gray, fine to coarse SAND, moist.				
							5		
								w	
				0.4 ppm				Wt Wa	
								Awar I	
								X	
	16	120/120)	1.0 ppm	Loose, gray, Silty SAND, some fine Gravel, moist.				
4. Ten	npora npora	ry well ry well	pushed to) 112.0 fe	net below ground surface. Groundwater collected for the tellow ground surface. Groundwater collected for	laboratory a laboratory a	l analyt analyt	tical testing.	
	4. Terr	No. 12 : 13 : 14 : 15 : 16 : 16 : 16 : 16 : 17 : 17 : 17 : 17	No. Pen./Rec. (in.)	No. Pen./ Rec. (/6") 12 120/120 13 60/60 14 60/60 15 120/120 16 120/120 16 120/120 16 120/120 17 16 120/120 17 17 17 17 17 17 17	12 120/120 0.6 ppm 13 60/60 5.1 ppm 14 60/60 7.1 ppm 15 120/120 0.5 ppm 16 120/120 1.0 ppm	No. Pen. Rec. (in.) (/6") Data Description & Classification	No. Pen. Rec. R	No. Pen. Rec. Rec. Weight Rec. Rec. Weight Rec. Rec. Weight Rec. Weight Rec. Rec. Rec. Rec. Weight Rec.	Sample Description & Classification Descripti

Temporary well pushed to 112.0 feet below ground surface. Groundwater collected for laboratory analytical testing.
 Temporary well pushed to 122.0 feet below ground surface. Groundwater collected for laboratory analytical testing.

Wolverine World Wide **MDEQ Drilling** Rockford, Michigan

Boring No.: ____HS-MW-32D Page: ___5 of ___6 File No.: 16.0062335.52 Lori Powers

	o l	8	ampie	Informa	tion			10		
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Gamma (API-GR) ○ ⊅ ∜ ∜ \$	Well Diagran
36-					0. ppm		SAND	_		
37										3500
38										
39										
40		47	100/100		0.0					
41		17	120/120	120 0.9	0.9 ppm	Loose, gray, fine to coarse SAND, black and gray, some Silt, moist. Changing at 145.0 feet to: Dense, gray and black, SAND and SILT, trace coarse Gravel, , moist.		6	——————————————————————————————————————	
42										
43-						,				
44									7	
45					0.5 ppm				WANTANHAMATAN ANA	
46										
47									<u>₩</u>	
48										
49							150'		JAMWAJAMJAMJAMJA	
50 —		18	120/120		1.7 ppm	Dense, gray, CLAY, some fine to coarse	CLAY	1		
51-						SAND, moist. Changing at 151.7 feet to: Loose, gray, fine to coarse SAND, some	151.7'			
52-						Silt, wet.	SAND		M	
53									Pr. 1	
54 - 55 -										
56					1.5 ppm				——————————————————————————————————————	
57										
58										
59									Th.	
60		10	120/120		1.4 ppm	Loose, gray, Silty SAND, moist. Changing at				
61		19	120/120		т.т ррш	165.0 feet to: Dense, gray, CLAY, some fine				
62						Sand, moist.				
63-										
64										
S5 —					3.9 ppm		165' CLAY	1	5	
66									 	
67										
68 — 69 —									MAN FWY WY WANTH	

Wolverine World Wide **MDEQ Drilling** Rockford, Michigan

Boring No.: ____HS-MW-32D Page: ___6 __ of ___6 File No.: 16.0062335.52 Lori Powers

=	ou		Sample	Informa	ition	Rockford,			Check: Lo	ori Powers
Depth	Elevation (ft,)	No.	Pen./ Rec. (in.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Gamma (API-GR)	Well Diagram
71-		20	120/120		2.9 ppm	Dense, gray, CLAY, trace fine Sand, moist.	CLAY			
72 – 73 –										
74 –										
75 –										
76					1.7 ppm					
77										
78-										
79-										
80-		21	120/120		1.9 ppm	Dense, gray CLAY, moist.				
81-		21	20,120			Bense, gray OLAT, moist.				
82-										
83-										
34 –										
35					2.3 ppm					
36 –										
37										
38 –										
39-										
90-		22	60/60		2.1 ppm	Dense, gray, CLAY, moist.		7		
91-										
92 — 93 —					2.8 ppm					
94 –										
95							195'			
96						Bottom of Borehole at 195.0 Feet				
97-										
98-										
99-										
00-										
01-										
01 — 02 —							1	1 1		

^{7.} Driller mentioned possible bedrock at 195.0 feet.

Monitoring well was installed in borehole upon completion. Well screen set from 137.6 to 142.2 feet below ground surface.

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

The Widdicomb Building 601 Fifth Street NW Suite 102 Grand Rapids, MI 49504 T: 616.956.6123 F: 616.288.3327 www.rosewestra.com

MEMORANDUM

To: Jeffrey Kimble, U.S. EPA, Region 5

From: Loretta Powers, Rose & Westra, a Division of GZA GeoEnvironmental, Inc.

Date: September 11, 2019

File No.: 16.0062335.52 Task 006

Re: Wolverine World Wide, Inc. (Wolverine) – House Street – Monthly Progress Report

This Monthly Progress Report (MPR) is being provided at the request of the U.S. EPA to support the July 12, 2019 *Work Plan, House Street Disposal Area, Plainfield Township, Kent County, Michigan* (2019 WP). The 2019 WP was prepared in response to the U.S. EPA Region 5 Unilateral Administrative Order for Removal Actions¹ (UAO) effective February 1, 2018, associated with the Former Wolverine Tannery and House Street Disposal Area. This MPR is submitted pursuant to Paragraph 25 of the UAO.

Per Paragraph 25 of the UAO, this MPR summarizes the following items for the period of August 3 to September 6, 2019: "... significant developments during the preceding period, including the actions performed and any problems encountered, analytical data received during the reporting period, and the developments anticipated during the next reporting period, including a schedule of actions to be performed, anticipated problems, and planned resolutions of past or anticipated problems." Subsequent to issuance of the UAO and completion of the 2019 WP, R&W/GZA and U.S. EPA agreed that approved modifications to the 2019 WP will also be summarized in the MPRs.

ACTIONS PERFORMED

- 1) Continued drilling efforts for delineation task around the five TCLP chromium exceedances at the Site (2019 WP, Section 3.6.1). This work was completed August 6, 2019.
- 2) August 7, 2019: Began drilling efforts in west-central and northwest off-site potential wetland areas. This work was completed August 19, 2019.
- 3) Temporary monitoring well points were sampled upon completion of the borings.
- 4) On-Site investigation activities were completed the week of August 19, 2019.
- 5) Clearing, permitting, and logistics associated with the fence installation are on-going.

Tables A and B summarize the borings completed and associated samples collected during this reporting period. The boring locations in the southwestern investigation area (completed previously) are shown on attached Figure 1. Borings completed in the five

 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Docket No. V-W-18-C-004.

TCLP delineation areas are shown on working drafts included as Figures 2A-2E. Lastly, the borings in the west-central and northwest low, possible wetland areas are shown on Figures 3A and 3B.

Boring logs for soil borings identified as HS-SB-4100 to HS-SB-4402 are attached.

ANALYTICAL DATA RECIEVED

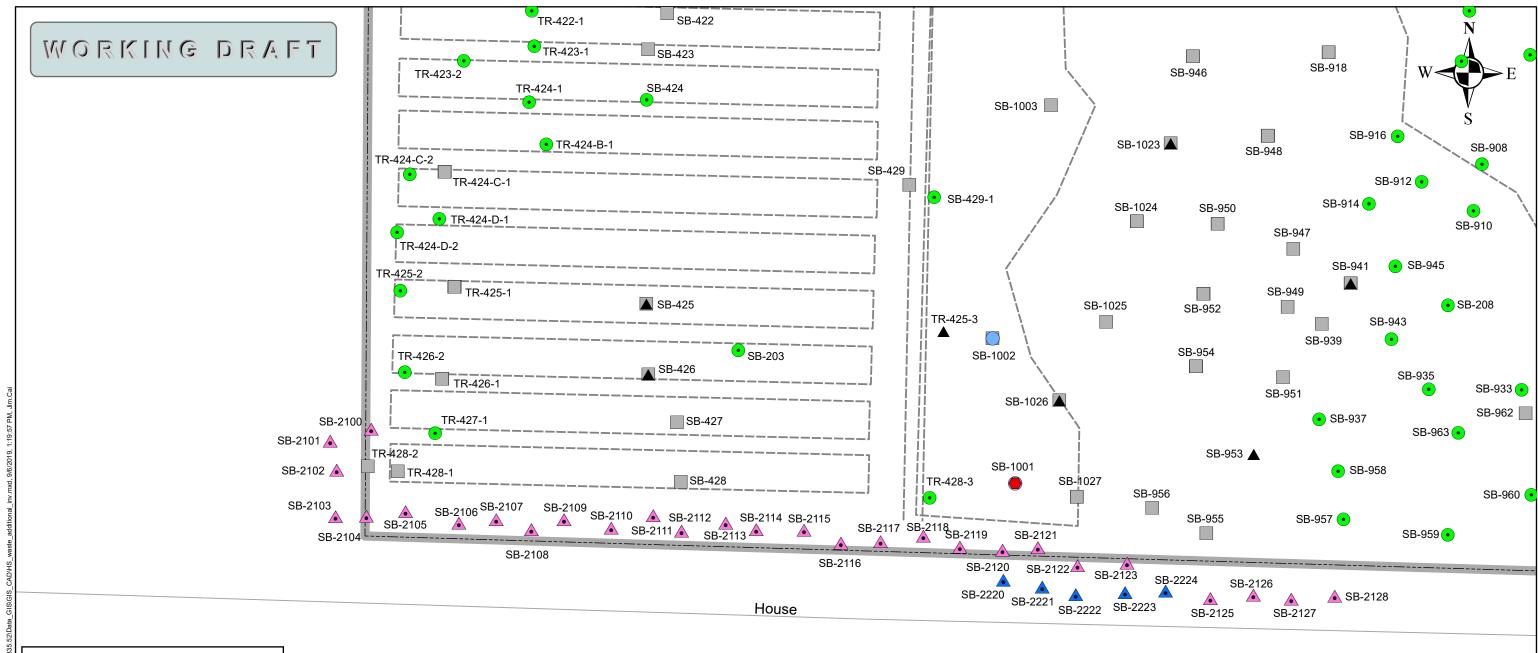
Soil analytical data received during this reporting period is summarized in Tables 1 and 2A through 2E (note this includes the data from the composite sample collected on the west adjoining property). No groundwater data was received during this period.

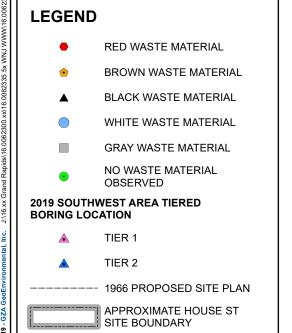
ANTICIPATED ACTIONS AND SCHEDULE FOR NEXT REPORTING PERIOD

During the next reporting period, September 7 to October 7, 2019, the following tasks are anticipated to begin or be completed:

- 1) Receive the remainder of the analytical data from the laboratory
- 2) Finish clearing and begin installation of fencing
- 3) Finish boring logs from the on-Site investigation

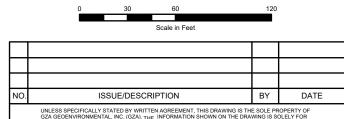
IDENTIFIED PROBLEMS AND RESOLUTIONS


No significant problems were identified during this reporting period. As the GPS accuracy can waiver significantly at the Site, R&W/GZA worked closely with START to locate the delineation borings around the five chromium TCLP exceedances. Similarly, the borings on the west-central and northwest areas were discussed and adjusted with agreement of START.


The original fencing plan may require some modifications to the placement. R&W/GZA is discussing this with both Kent County Road Commission and EPA.

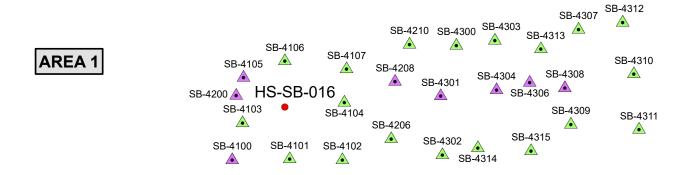
APPROVED 2019 WP MODIFICATIONS

No modifications were approved during this reporting period.

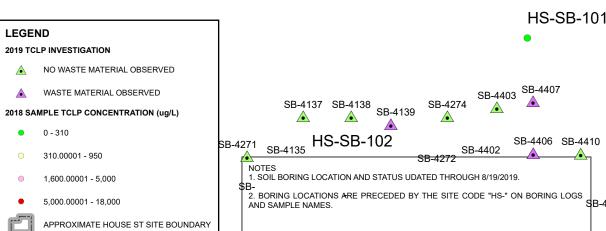

J:\62000\623xx\62335.52 - House St Pre-Inv\0 - Task 006 - 2019 WorkPlan\EPA MPRs\September 2019\House Street-EPA-MonthlyUpdate-09112019-F.docx

NOTES 1. SOIL BORING STATUS UDATED THROUGH 9/5/2019.

- 2. LOCATIONS OF BORINGS NOT COMPLETED ARE SUBJECT TO CHANGE.
- 3. LOCATIONS ARE PROCEEDED BY THE SITE CODE "HS-" ON BORING LOGS AND SAMPLE NAMES.
- 4. 2018 BORING LOCATIONS FOR TR-428-1 AND TR-428-2 WERE UPDATED BASED ON FIELD GPS MEASUREMENTS.


UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT. THIS DRAWING IS THE SOLE PROPERTY OF CZA GECENVIRONMENTAL, INC. (GZA), THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY CZAS CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR A LITERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA, ANY TRANSFER, REUSE. OR MODIFICATION TO THE DRAWING BY THE CLIENT OR TOTHER PROFILE WRITEN SCHOOLS CONSENT OF GZA, WILL BE AT THE USER'S CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT TANY RISK OR LIABILITY TO GZA.

Rose & Westra, a Division of GZA 601 Fifth Street NW, Suite 102 Grand Rapids, Michigan 49504

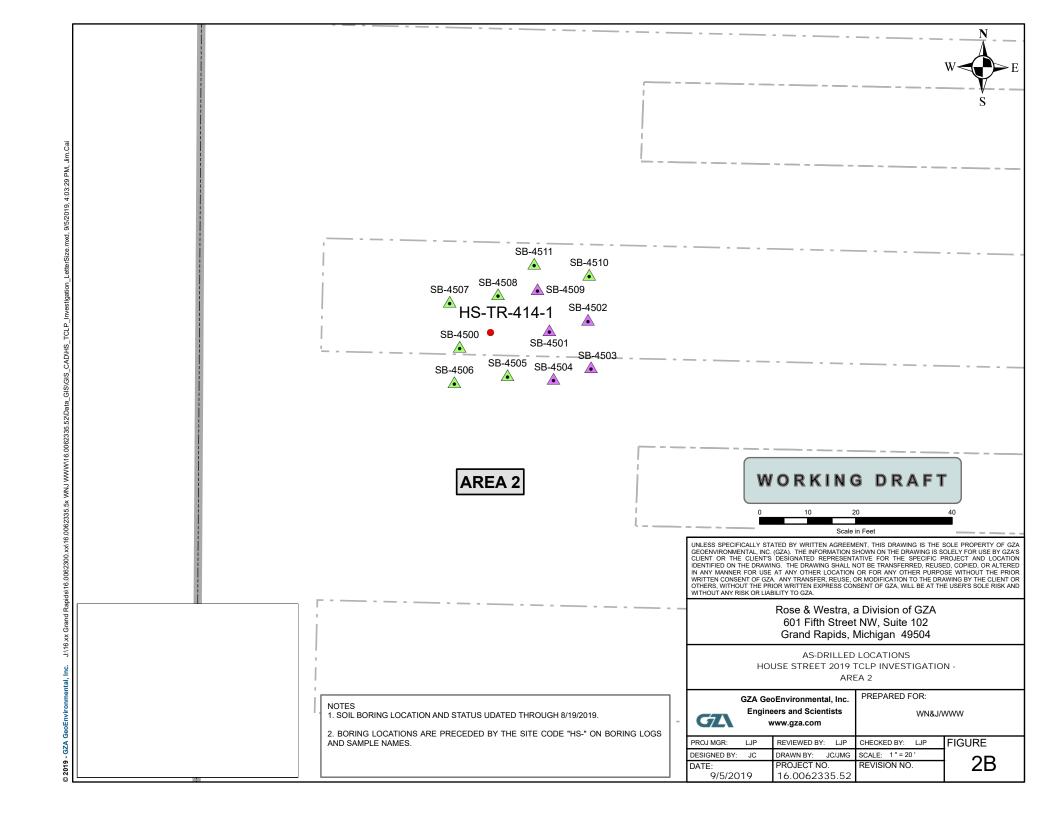

ADDITIONAL SOIL BORINGS SOUTHWEST AREA

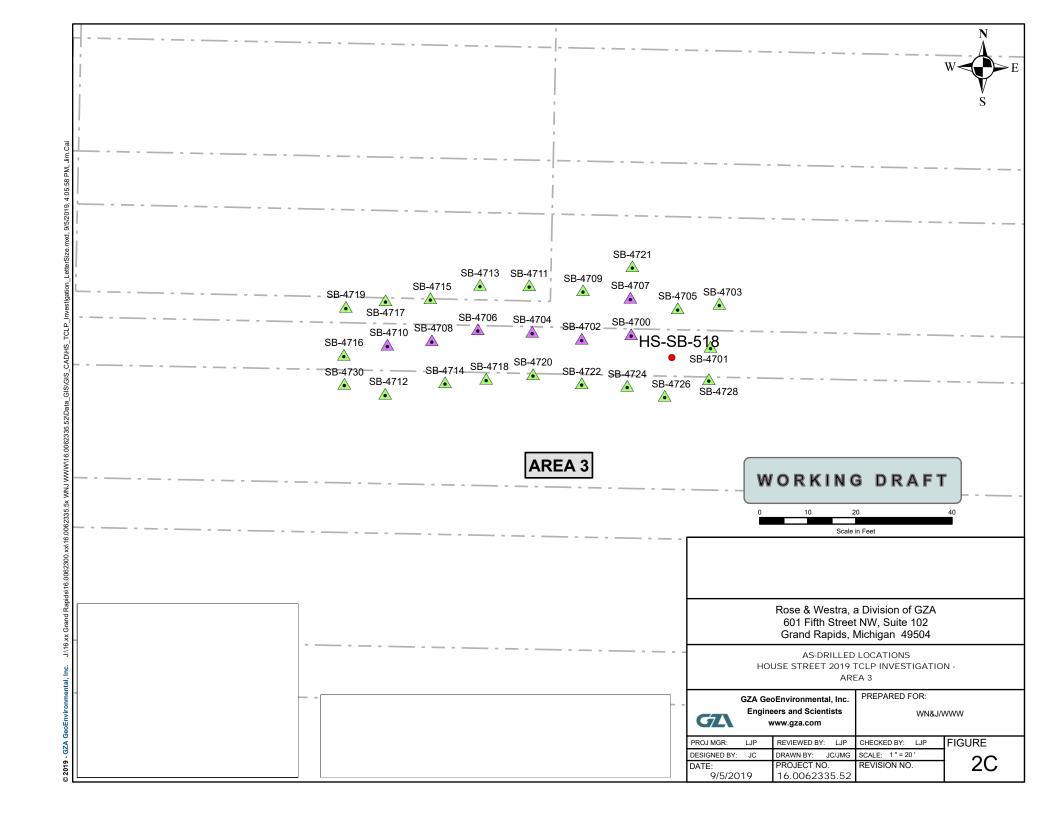
ronmental, Inc.	PREPARED F	OR:	
nd Scientists za.com		WN&J/V	vww
EWED BY: LIP	CHECKED BY:	LIP	FIGURE
VN BY: JC/JMG	SCALE:	1"=60'	4
JECT NO.	REVISION NO		1
	nd Scientists jza.com EWED BY: LIP VN BY: JC/JMG	rommentat, inc. Ind Scientists Iza.com EWED BY: LIP CHECKED BY: VN BY: JC/JMG SCALE: JECT NO. REVISION NO	rommentar, inc. Ind Scientists Iza.com EWED BY: LIP CHECKED BY: LIP VN BY: JC/JMG SCALE: 1"=60' JECT NO. REVISION NO.

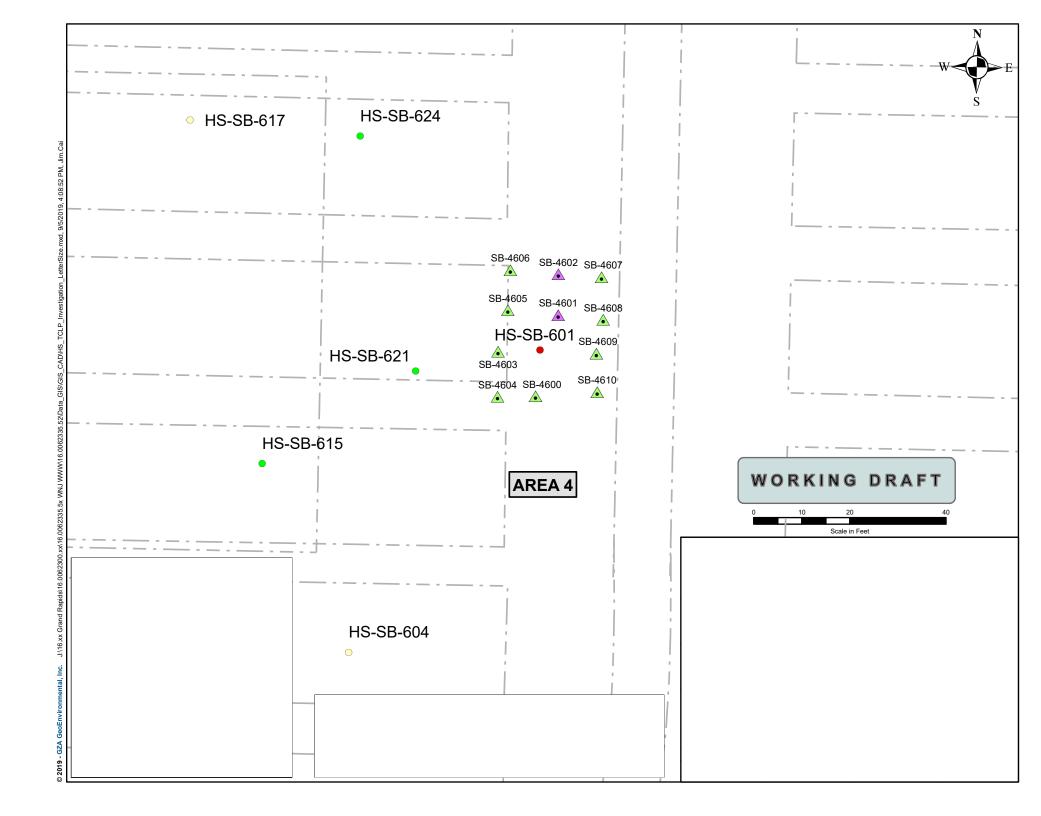
WORKING DRAFT 10 20 40 Scale in Feet

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA CLIENT OR THE CLIENTS DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING, THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LUBBILITY TO GZA.

Rose & Westra, a Division of GZA 601 Fifth Street NW, Suite 102 Grand Rapids, Michigan 49504


AS-DRILLED LOCATIONS
HOUSE STREET 2019 TCLP INVESTIGATION AREA 1


PREPARED FOR:


	GZ	•	eers and Scientists www.gza.com	WN&J/\	www
4	PROJ MGR:	LJP	REVIEWED BY: LJP	CHECKED BY: LJP	FIGURE
	DESIGNED BY:	JC	DRAWN BY: JC/JMG	SCALE: 1 " = 20 '	
	DATE:		PROJECT NO.	REVISION NO.	1 2A
	9/5/20	19	16.0062335.52		

GZA GeoEnvironmental, Inc.

9040 C7A Cool and International Live Control

SB-4407 SB-4403 SB-4137 SB-4138 SB-4274 SB-4139 SB-4135 HS-SB-102 SB-4406 SB-4410 SB-4413 SB-4414 SB-4402 SB-4272 SB-4409 SB-4136 SB-4412 ▲ SB-4420 SB-4269 SB-4132 SB-4133 SB-4401 SB-4405 SB-4134 SB-4270 SB-4411 SB-4419 SB-4408 SB-4416 SB-4265 SB-4266 SB-4267 SB-4417 SB-4268 SB-4400 SB-4264 SB-4418 SB-4404

HS-SB-T6-017

AREA 5

WORKING DRAFT

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZAS CLIENT OR THE CLIENTS DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LABILITY TO GZA.

Rose & Westra, a Division of GZA 601 Fifth Street NW, Suite 102 Grand Rapids, Michigan 49504

AS-DRILLED LOCATIONS
HOUSE STREET 2019 TCLP INVESTIGATION AREA 5

GZN	
GZ	

GZA GeoEnvironmental, Inc. Engineers and Scientists www.gza.com PREPARED FOR: WN&J/WWW

 PROJ MGR:
 LJP
 REVIEWED BY:
 LJP
 CHECKED BY:
 LJP
 FIGURE

 DESIGNED BY:
 JC
 DRAWN BY:
 JC/JMG
 SCALE:
 1 " = 20 "
 1 " = 20 "
 2 E

 DATE:
 PROJECT NO.
 REVISION NO.
 2 E

LEGEND

2019 TCLP INVESTIGATION

NO WASTE MATERIAL OBSERVED

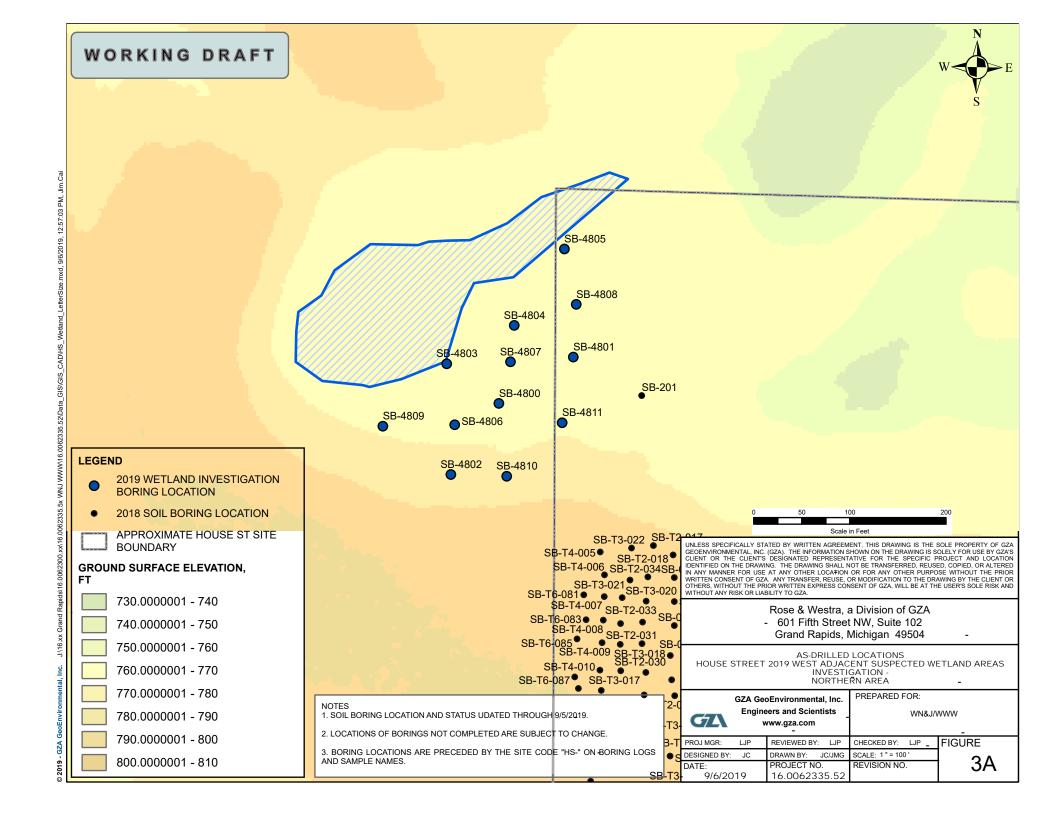
HS-SB-103

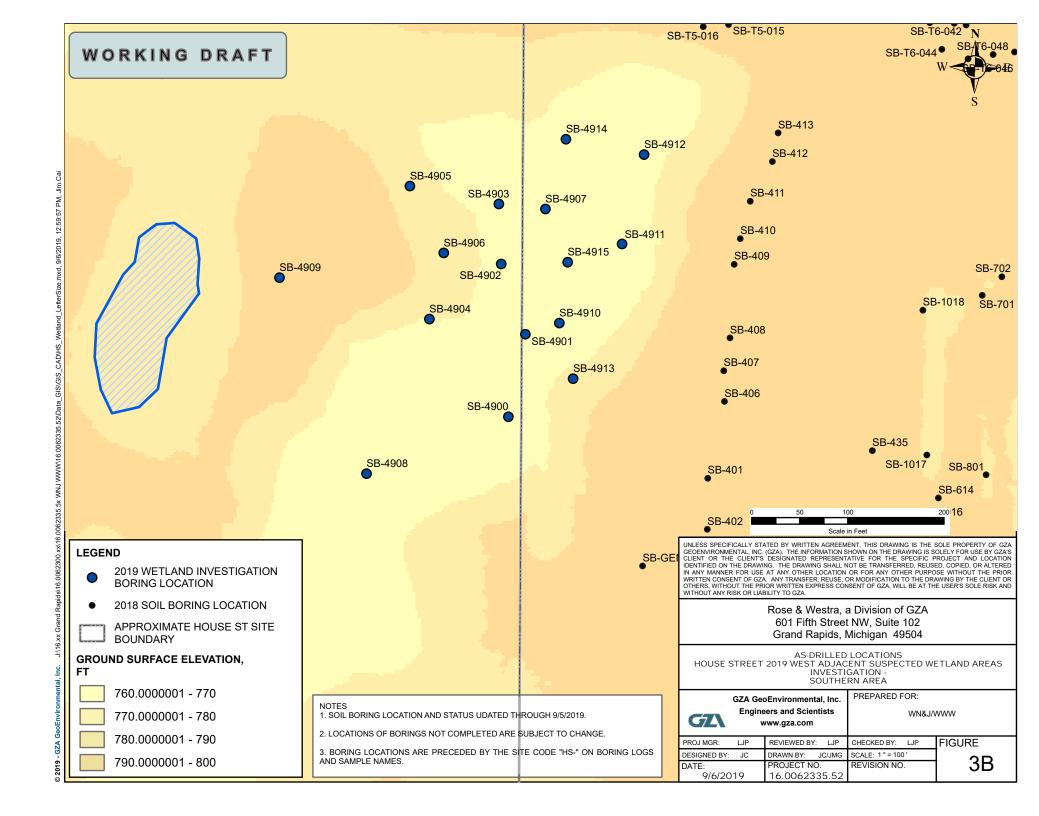
WASTE MATERIAL OBSERVED

2018 SAMPLE TCLP CONCENTRATION (ug/L)

0 - 310

0 310.00001 - 950


5,000.00001 - 18,000


APPROXIMATE HOUSE ST SITE BOUNDARY

OTEC

1. SOIL BORING LOCATION AND STATUS UDATED THROUGH 8/19/2019.

2. BORING LOCATIONS ARE PRECEDED BY THE SITE CODE "HS-" ON BORING LOGS AND SAMPLE NAMES.

House Street Soil Boring Locations 2019 Delineation

				Start Depth	End Depth				PID Re	adings for Sa	amples						esults for Sam	ples Analyze					
Sampling Program	Sample Location	Start Date	End Date	(ft)	(ft)	San S1	nples Analy: S2	zed S2	S1	Analyzed S2	S3	S1	As S2	S3	S1	Cr S2	S3	S1	Hg S2	53	S 1	Pb S2	S3
Southwest Investigatio	HS-SB-2100	17-Jun-19	18-Jun-19	0	20	1-2	3-4	NA	0.2	0.1	NA NA	7.4	<lod< td=""><td>NA NA</td><td>31</td><td>28</td><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>11.9</td><td>5.5</td><td>NA NA</td></lod<></td></lod<></td></lod<>	NA NA	31	28	NA NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td>11.9</td><td>5.5</td><td>NA NA</td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td>11.9</td><td>5.5</td><td>NA NA</td></lod<>	NA NA	11.9	5.5	NA NA
Southwest Investigatio	HS-SB-2101	18-Jun-19	18-Jun-19	0	20	1-2	3-4	NA	0.9	2.0	NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td>44</td><td>32</td><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>5.6</td><td>8</td><td>NA NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td>44</td><td>32</td><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>5.6</td><td>8</td><td>NA NA</td></lod<></td></lod<></td></lod<>	NA NA	44	32	NA NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td>5.6</td><td>8</td><td>NA NA</td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td>5.6</td><td>8</td><td>NA NA</td></lod<>	NA NA	5.6	8	NA NA
Southwest Investigatio	HS-SB-2102	18-Jun-19	20-Jun-19	0	20	1-2	3-4	NA	0.9	0.8	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>53</td><td>24</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11.4</td><td>5.3</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>53</td><td>24</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11.4</td><td>5.3</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	53	24	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>11.4</td><td>5.3</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>11.4</td><td>5.3</td><td>NA</td></lod<>	NA	11.4	5.3	NA
Southwest Investigatio	HS-SB-2103	19-Jun-19	20-Jun-19	0	20	1-2	3-4	NA	3.8	11.6	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>19</td><td>23</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>6.7</td><td>5.3</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>19</td><td>23</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>6.7</td><td>5.3</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	19	23	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>6.7</td><td>5.3</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>6.7</td><td>5.3</td><td>NA</td></lod<>	NA	6.7	5.3	NA
Southwest Investigatio Southwest Investigatio	HS-SB-2104 HS-SB-2105	19-Jun-19 19-Jun-19	28-Jun-19 28-Jun-19	0	20 20	1-2 2-3	3-4 3-4	NA NA	1.3 0.9	7.8 0.9	NA NA	<lod 3.2</lod 	3.1 <lod< td=""><td>NA NA</td><td>29 53</td><td>48 23</td><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>5.7 12.8</td><td>10.6 5.2</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<>	NA NA	29 53	48 23	NA NA	<lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>5.7 12.8</td><td>10.6 5.2</td><td>NA NA</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>NA NA</td><td>5.7 12.8</td><td>10.6 5.2</td><td>NA NA</td></lod<></lod 	NA NA	5.7 12.8	10.6 5.2	NA NA
Southwest Investigatio	HS-SB-2106	19-Jun-19	1-Jul-19	0	20	2-3	5-6	NA	0.1	1.0	NA	3.4	<lod< td=""><td>NA NA</td><td>56</td><td>27</td><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>15.1</td><td>6.2</td><td>NA NA</td></lod<></td></lod<></td></lod<>	NA NA	56	27	NA NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td>15.1</td><td>6.2</td><td>NA NA</td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td>15.1</td><td>6.2</td><td>NA NA</td></lod<>	NA NA	15.1	6.2	NA NA
Southwest Investigatio	HS-SB-2107	20-Jun-19	1-Jul-19	0	20	2-3	6-7	NA	1.1	0.8	NA	2.5	<lod< td=""><td>NA</td><td>46</td><td>28</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8.4</td><td>6.1</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	46	28	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>8.4</td><td>6.1</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>8.4</td><td>6.1</td><td>NA</td></lod<>	NA	8.4	6.1	NA
Southwest Investigatio	HS-SB-2108	20-Jun-19	1-Jul-19	0	20	1-2	3-4	NA	0.3	0.6	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>8</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>8</td><td>8</td><td>NA</td></lod<>	NA	8	8	NA
Southwest Investigatio	HS-SB-2109 HS-SB-2110	20-Jun-19 20-Jun-19	1-Jul-19 1-Jul-19	0	20 20	0-1 1-2	2-3 3-4	NA NA	0.8	0.6	NA NA	3 <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>35 142</td><td><lod <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>16 8</td><td>7</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td>NA NA</td><td>35 142</td><td><lod <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>16 8</td><td>7</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	NA NA	35 142	<lod <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>16 8</td><td>7</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></lod 	NA NA	<lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>16 8</td><td>7</td><td>NA NA</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>NA NA</td><td>16 8</td><td>7</td><td>NA NA</td></lod<></lod 	NA NA	16 8	7	NA NA
Southwest Investigatio	HS-SB-2111	21-Jun-19	1-Jul-19	0	20	0-1	2-3	NA	0.3	0.2	NA	<lod< td=""><td>2.0</td><td>NA</td><td>76</td><td>37</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>11</td><td>NA</td></lod<></td></lod<></td></lod<>	2.0	NA	76	37	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>11</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>11</td><td>11</td><td>NA</td></lod<>	NA	11	11	NA
Southwest Investigatio	HS-SB-2112	21-Jun-19	2-Jul-19	0	20	2-3	4-5	NA	0.3	0.4	NA	6	4.0	NA	42	27	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>7</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>9</td><td>7</td><td>NA</td></lod<>	NA	9	7	NA
Southwest Investigatio	HS-SB-2113	21-Jun-19	2-Jul-19	0	20	1-2	3-4	NA	0.1	0.4	NA	<lod< td=""><td>4.0</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>11</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>11</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>11</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>11</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>4</td><td>11</td><td>NA</td></lod<>	NA	4	11	NA
Southwest Investigatio Southwest Investigatio	HS-SB-2114 HS-SB-2115	21-Jun-19 21-Jun-19	2-Jul-19 2-Jul-19	0	20 20	0-1 0-1	3-4 3-4	NA NA	0.8	0.0 1.0	NA NA	<lod 2</lod 	4.0 5.0	NA NA	439 419	<lod <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>8</td><td>9</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></lod 	NA NA	<lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>8</td><td>9</td><td>NA NA</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>NA NA</td><td>8</td><td>9</td><td>NA NA</td></lod<></lod 	NA NA	8	9	NA NA
Southwest Investigatio	HS-SB-2116	24-Jun-19	2-Jul-19	0	20	0-1	3-4	NA	0.7	0.6	NA	<lod< td=""><td>4.0</td><td>NA NA</td><td>25</td><td><lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>5</td><td>8</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></td></lod<>	4.0	NA NA	25	<lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>5</td><td>8</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<>	NA NA	<lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>5</td><td>8</td><td>NA NA</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>NA NA</td><td>5</td><td>8</td><td>NA NA</td></lod<></lod 	NA NA	5	8	NA NA
Southwest Investigatio	HS-SB-2117	24-Jun-19	2-Jul-19	0	20	0-1	2-3	NA	0.5	0.0	NA	2	3.0	NA	196	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>11</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>11</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>11</td><td>NA</td></lod<>	NA	10	11	NA
Southwest Investigatio	HS-SB-2118	24-Jun-19	2-Jul-19	0	20	0-1	3-4	NA	0.0	0.1	NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td>285</td><td><lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>11</td><td>8</td><td>NA NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td>285</td><td><lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>11</td><td>8</td><td>NA NA</td></lod<></td></lod<></td></lod<></td></lod<>	NA NA	285	<lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>11</td><td>8</td><td>NA NA</td></lod<></td></lod<></td></lod<>	NA NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td>11</td><td>8</td><td>NA NA</td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td>11</td><td>8</td><td>NA NA</td></lod<>	NA NA	11	8	NA NA
Southwest Investigation	HS-SB-2119 HS-SB-2120	24-Jun-19 25-Jun-19	2-Jul-19 2-Jul-19	0	20 20	0-1 1-2	3-4 4-5	NA NA	0.1 1.8	0.0	NA NA	<lod <lod< td=""><td>6.0 <lod< td=""><td>NA NA</td><td>957 <lod< td=""><td>34 <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>11 10</td><td>13 7</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<></lod 	6.0 <lod< td=""><td>NA NA</td><td>957 <lod< td=""><td>34 <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>11 10</td><td>13 7</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<>	NA NA	957 <lod< td=""><td>34 <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>11 10</td><td>13 7</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></td></lod<>	34 <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>11 10</td><td>13 7</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<>	NA NA	<lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>11 10</td><td>13 7</td><td>NA NA</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>NA NA</td><td>11 10</td><td>13 7</td><td>NA NA</td></lod<></lod 	NA NA	11 10	13 7	NA NA
Southwest Investigatio	HS-SB-2121	25-Jun-19	25-Jun-19	0	20	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Southwest Investigatio	HS-SB-2122	25-Jun-19	25-Jun-19	0	20	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Southwest Investigatio	HS-SB-2123	25-Jun-19	25-Jun-19	0	7	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Southwest Investigatio	HS-SB-2125 HS-SB-2125	25-Jun-19 25-Jun-19	28-Jun-19 28-Jun-19	20	20 40	1-2 25-27	7-8 30-32	NA 35-37	0.6 1.8/1.5	0.7 2.7/1.6	NA 2.0/1.2	4 <lod <lod<="" td="" =""><td>2.0</td><td>NA <lod <lod<="" td="" =""><td>24 <lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA 58 <lod< td=""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>8 5/6</td><td>4 4 / 6</td><td>NA 6/6</td></lod></td></lod></td></lod></td></lod<></td></lod></td></lod></td></lod></td></lod>	2.0	NA <lod <lod<="" td="" =""><td>24 <lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA 58 <lod< td=""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>8 5/6</td><td>4 4 / 6</td><td>NA 6/6</td></lod></td></lod></td></lod></td></lod<></td></lod></td></lod></td></lod>	24 <lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA 58 <lod< td=""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>8 5/6</td><td>4 4 / 6</td><td>NA 6/6</td></lod></td></lod></td></lod></td></lod<></td></lod></td></lod>	<lod <lod<="" td="" =""><td>NA 58 <lod< td=""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>8 5/6</td><td>4 4 / 6</td><td>NA 6/6</td></lod></td></lod></td></lod></td></lod<></td></lod>	NA 58 <lod< td=""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>8 5/6</td><td>4 4 / 6</td><td>NA 6/6</td></lod></td></lod></td></lod></td></lod<>	<lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>8 5/6</td><td>4 4 / 6</td><td>NA 6/6</td></lod></td></lod></td></lod>	<lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>8 5/6</td><td>4 4 / 6</td><td>NA 6/6</td></lod></td></lod>	NA <lod <lod<="" td="" =""><td>8 5/6</td><td>4 4 / 6</td><td>NA 6/6</td></lod>	8 5/6	4 4 / 6	NA 6/6
Southwest Investigatio	HS-SB-2126	24-Jun-19	26-Jun-19	0	20	2-3	8-9	NA	0.7	0.6	NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>6</td><td>5</td><td>NA NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>6</td><td>5</td><td>NA NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>6</td><td>5</td><td>NA NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>6</td><td>5</td><td>NA NA</td></lod<></td></lod<></td></lod<>	NA NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td>6</td><td>5</td><td>NA NA</td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td>6</td><td>5</td><td>NA NA</td></lod<>	NA NA	6	5	NA NA
Southwest Investigatio	HS-SB-2126	24-Jun-19	26-Jun-19	20	40	25-27	31-33	37-39	0.8	0.5	0.2	NR	<lod <lod<="" td="" =""><td></td><td>NR</td><td><lod <lod<="" td="" =""><td></td><td>NR</td><td><lod <lod<="" td="" =""><td></td><td>NR</td><td>5/4</td><td>9/8</td></lod></td></lod></td></lod>		NR	<lod <lod<="" td="" =""><td></td><td>NR</td><td><lod <lod<="" td="" =""><td></td><td>NR</td><td>5/4</td><td>9/8</td></lod></td></lod>		NR	<lod <lod<="" td="" =""><td></td><td>NR</td><td>5/4</td><td>9/8</td></lod>		NR	5/4	9/8
Southwest Investigatio	HS-SB-2127	24-Jun-19	25-Jun-19	0	20	3-4	8-9	NA	0.1	0.6	NA	5	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>5</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>5</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>5</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>5</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>5</td><td>4</td><td>NA</td></lod<>	NA	5	4	NA
Southwest Investigatio	HS-SB-2128 HS-SB-2220	24-Jun-19 27-Jun-19	26-Jun-19 27-Jun-19	0	20 20	2-3 3-4	8-9 8-9	NA NA	0.3 4.4	0.8 1.4	NA NA	7	<lod <lod< td=""><td>NA NA</td><td>39 43</td><td><lod <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>13</td><td>- 5</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	NA NA	39 43	<lod <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>13</td><td>- 5</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></lod 	NA NA	<lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>13</td><td>- 5</td><td>NA NA</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>NA NA</td><td>13</td><td>- 5</td><td>NA NA</td></lod<></lod 	NA NA	13	- 5	NA NA
Southwest Investigatio	HS-SB-2221	26-Jun-19	27-Jun-19	0	20	0-1	8-9	NA	0.2	0.1	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>236</td><td>24</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>17</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>236</td><td>24</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>17</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	236	24	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>17</td><td>5</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>17</td><td>5</td><td>NA</td></lod<>	NA	17	5	NA
Southwest Investigatio	HS-SB-2222	26-Jun-19	26-Jun-19	0	20			-			-												
Southwest Investigatio	HS-SB-2223	26-Jun-19	26-Jun-19	0	20	1-2	8-9	NA	0.5	0.9	NA	2	4.0	NA	30	36	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>8</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>4</td><td>8</td><td>NA</td></lod<>	NA	4	8	NA
Southwest Investigatio	HS-SB-2224 HS-SB-2224	27-Jun-19 27-Jun-19	28-Jun-19 28-Jun-19	20	20 40	1-2 20-22	6-7 31-33	NA 37-39	0.8 1.1/0.6	0.9 1.8/1.8	NA 0.5/0.4	<lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <iod <iod<="" i="" td=""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>6 7 5</td><td>10 4 3</td><td>NA 4 2</td></lod></td></lod></td></lod></td></lod></td></lod></td></lod></td></iod></td></lod></td></lod>	<lod <lod<="" td="" =""><td>NA <iod <iod<="" i="" td=""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>6 7 5</td><td>10 4 3</td><td>NA 4 2</td></lod></td></lod></td></lod></td></lod></td></lod></td></lod></td></iod></td></lod>	NA <iod <iod<="" i="" td=""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>6 7 5</td><td>10 4 3</td><td>NA 4 2</td></lod></td></lod></td></lod></td></lod></td></lod></td></lod></td></iod>	<lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>6 7 5</td><td>10 4 3</td><td>NA 4 2</td></lod></td></lod></td></lod></td></lod></td></lod></td></lod>	<lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>6 7 5</td><td>10 4 3</td><td>NA 4 2</td></lod></td></lod></td></lod></td></lod></td></lod>	NA <lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>6 7 5</td><td>10 4 3</td><td>NA 4 2</td></lod></td></lod></td></lod></td></lod>	<lod <lod<="" td="" =""><td><lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>6 7 5</td><td>10 4 3</td><td>NA 4 2</td></lod></td></lod></td></lod>	<lod <lod<="" td="" =""><td>NA <lod <lod<="" td="" =""><td>6 7 5</td><td>10 4 3</td><td>NA 4 2</td></lod></td></lod>	NA <lod <lod<="" td="" =""><td>6 7 5</td><td>10 4 3</td><td>NA 4 2</td></lod>	6 7 5	10 4 3	NA 4 2
TCLP Investigation	HS-SB-4100	8-Jul-19	8-Jul-19	0	20	12-13	15-16	NA	0.6	1.8	NA	4	<lod 1200<="" td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>8</td><td>5</td><td>NA NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod>	NA NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>8</td><td>5</td><td>NA NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td><lod< td=""><td><lod< td=""><td>NA NA</td><td>8</td><td>5</td><td>NA NA</td></lod<></td></lod<></td></lod<>	NA NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td>8</td><td>5</td><td>NA NA</td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td>8</td><td>5</td><td>NA NA</td></lod<>	NA NA	8	5	NA NA
TCLP Investigation	HS-SB-4101	8-Jul-19	8-Jul-19	0	20	12-13	15-16	NA	1.4	1.7	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>23</td><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>3</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>23</td><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>3</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	NA	23	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>3</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>3</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>3</td><td>4</td><td>NA</td></lod<>	NA	3	4	NA
TCLP Investigation	HS-SB-4102	8-Jul-19	8-Jul-19	0	20	3-4	4-5	NA	0.0	0.0	NA	3	5.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>9</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>9</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>9</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>9</td><td>9</td><td>NA</td></lod<>	NA	9	9	NA
TCLP Investigation TCLP Investigation	HS-SB-4103 HS-SB-4104	9-Jul-19 9-Jul-19	9-Jul-19 9-Jul-19	0	20 20	12-13	15-16	NA 	1.0	0.8	NA 	<lod </lod 	<lod </lod 	NA 	<lod </lod 	<lod </lod 	NA 	<lod </lod 	<lod </lod 	NA 	4	5	NA
TCLP Investigation	HS-SB-4105	8-Jul-19	8-Jul-19	0	20	12-13	15-16	NA	6.5	6.1	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<>	NA	4	4	NA
TCLP Investigation	HS-SB-4106	9-Jul-19	9-Jul-19	0	20	12-13	15-16	NA	3.4	7.6	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>4</td><td>4</td><td>NA</td></lod<>	NA	4	4	NA
TCLP Investigation	HS-SB-4107	9-Jul-19	9-Jul-19	0	20	3-4	5-6	NA	0.8	1.3	NA	8	5.0	NA	43	40	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>9</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>11</td><td>9</td><td>NA</td></lod<>	NA	11	9	NA
TCLP Investigation TCLP Investigation	HS-SB-4132 HS-SB-4133	9-Jul-19 8-Jul-19	9-Jul-19 8-Jul-19	0	20 20																		
TCLP Investigation	HS-SB-4134	8-Jul-19	8-Jul-19	0	20																		
TCLP Investigation	HS-SB-4135	8-Jul-19	25-Jul-19	0	20	12-13	15-16	NA	0.3	0.0	NA	2	6.0	NA	<lod< td=""><td>61</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>12</td><td>NA</td></lod<></td></lod<></td></lod<>	61	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>12</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>8</td><td>12</td><td>NA</td></lod<>	NA	8	12	NA
TCLP Investigation	HS-SB-4136	8-Jul-19	8-Jul-19	0	20									 N:4						 N/A			
TCLP Investigation TCLP Investigation	HS-SB-4137 HS-SB-4138	9-Jul-19 9-Jul-19	25-Jul-19 25-Jul-19	0	20 20	12-13 11-12	15-16 13-14	NA NA	1.4	1.0 NA	NA NA	6 <lod< td=""><td>4.0 NA</td><td>NA NA</td><td>47 <lod< td=""><td>38 NA</td><td>NA NA</td><td><lod <lod< td=""><td><lod NA</lod </td><td>NA NA</td><td>10 10</td><td>11 NA</td><td>NA NA</td></lod<></lod </td></lod<></td></lod<>	4.0 NA	NA NA	47 <lod< td=""><td>38 NA</td><td>NA NA</td><td><lod <lod< td=""><td><lod NA</lod </td><td>NA NA</td><td>10 10</td><td>11 NA</td><td>NA NA</td></lod<></lod </td></lod<>	38 NA	NA NA	<lod <lod< td=""><td><lod NA</lod </td><td>NA NA</td><td>10 10</td><td>11 NA</td><td>NA NA</td></lod<></lod 	<lod NA</lod 	NA NA	10 10	11 NA	NA NA
TCLP Investigation	HS-SB-4139	9-Jul-19	25-Jul-19 25-Jul-19	0	20	7-8	10-11	NA	1.1	1.3	NA	7	5.0	NA NA	42	33	NA NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td>11</td><td>12</td><td>NA NA</td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td>11</td><td>12</td><td>NA NA</td></lod<>	NA NA	11	12	NA NA
TCLP Investigation	HS-SB-4200	11-Jul-19	11-Jul-19	0	20	12-13	15-16	NA	0.3	0.4	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>3</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>3</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>3</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>3</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>3</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>4</td><td>3</td><td>NA</td></lod<>	NA	4	3	NA
TCLP Investigation	HS-SB-4206	10-Jul-19	10-Jul-19	0	20	7-8	10-11	NA	1.1	1.1	NA	13	<lod< td=""><td>NA</td><td>28</td><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	NA	28	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>14</td><td>4</td><td>NA</td></lod<>	NA	14	4	NA
TCLP Investigation TCLP Investigation	HS-SB-4208 HS-SB-4210	10-Jul-19 10-Jul-19	10-Jul-19 10-Jul-19	0	20 20	7-8	10-11	NA	1.9	3.1	NA		<lod< td=""><td>NA</td><td>38</td><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td> Q</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	NA	38	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td> Q</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td> Q</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td> Q</td><td>4</td><td>NA</td></lod<>	NA	 Q	4	NA
TCLP Investigation	HS-SB-4264	11-Jul-19	11-Jul-19	0	20	12-13	15-16	NA NA	0.4	0.4	NA NA	6	6.0	NA NA	41	39	NA NA	<lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>10</td><td>10</td><td>NA NA</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>NA NA</td><td>10</td><td>10</td><td>NA NA</td></lod<></lod 	NA NA	10	10	NA NA
TCLP Investigation	HS-SB-4265	11-Jul-19	11-Jul-19	0	20	12-13	15-16	NA	0.9	0.7	NA	3	5.0	NA	46	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>8</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>8</td><td>NA</td></lod<>	NA	10	8	NA
TCLP Investigation	HS-SB-4266	10-Jul-19	10-Jul-19	0	20	11-12	14-15	NA	3.0	2.3	NA	3	3.0	NA	32	43	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>15</td><td>11</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>15</td><td>11</td><td>NA</td></lod<>	NA	15	11	NA
TCLP Investigation	HS-SB-4267	10-Jul-19	10-Jul-19	0	20	12-13	15-16	NA NA	3.3	3.6	NA NA	5 3	2.0	NA NA	63	25	NA NA	<lod< td=""><td><lod< td=""><td>NA NA</td><td>10</td><td>6</td><td>NA NA</td></lod<></td></lod<>	<lod< td=""><td>NA NA</td><td>10</td><td>6</td><td>NA NA</td></lod<>	NA NA	10	6	NA NA
TCLP Investigation TCLP Investigation	HS-SB-4268 HS-SB-4269	10-Jul-19 11-Jul-19	10-Jul-19 11-Jul-19	0	20 20	12-13 8-9	15-16 11-12	NA NA	1.2 4.8	1.1 0.4	NA NA	4	<lod 6.0</lod 	NA NA	<lod 1638</lod 	<lod 56</lod 	NA NA	<lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>11 13</td><td>12</td><td>NA NA</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>NA NA</td><td>11 13</td><td>12</td><td>NA NA</td></lod<></lod 	NA NA	11 13	12	NA NA
TCLP Investigation	HS-SB-4270	10-Jul-19	10-Jul-19	0	20																		
TCLP Investigation	HS-SB-4271	11-Jul-19	22-Jul-19	0	20	5-6	8-9	NA	0.6	0.8	NA	3	3.0	NA	2434	40	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>8</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>12</td><td>8</td><td>NA</td></lod<>	NA	12	8	NA
TCLP Investigation	HS-SB-4272	10-Jul-19	10-Jul-19	0	20		 8-9	 N/A			 N/A	5		 N/A			 N1A			 N/A		3	 N/A
TCLP Investigation TCLP Investigation	HS-SB-4274 HS-SB-4300	16-Jul-19 11-Jul-19	25-Jul-19 11-Jul-19	0	20 20	6-7 6-7	8-9 8-9	NA NA	0.2	0.7	NA NA	4	5	NA NA	<lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>11 8</td><td>7</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>NA NA</td><td><lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>11 8</td><td>7</td><td>NA NA</td></lod<></lod </td></lod<></lod </td></lod<></lod 	NA NA	<lod <lod< td=""><td><lod <lod< td=""><td>NA NA</td><td>11 8</td><td>7</td><td>NA NA</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>NA NA</td><td>11 8</td><td>7</td><td>NA NA</td></lod<></lod 	NA NA	11 8	7	NA NA
	HS-SB-4301	11-Jul-19	11-Jul-19	0	20								-										
				•									•	•	•	•							

House Street Soil Boring Locations 2019 Delineation

Temperature Company																								
Transpare Colore					Start Doubh	End Donth				DID Do	adings for C	amalas					VDF D	In factor						
Victor V	TCLP Investigation	HS-SR-4302	10-Jul-19	10-Jul-19			6-7	8-9	NΑ				4	7	NΑ	36					NΑ	7	10	NΔ
Section Control Cont													2	4								10	8	
Material Material									-	-		-												
State																								
Stronger Stronger					_			8-9	NA		2.5	NA			NA	40			3			10		NA
State Column Co								8-9	NA		3.3	NA			NA	40			<i.od< td=""><td></td><td></td><td>16</td><td></td><td>NA.</td></i.od<>			16		NA.
													5	12										
To Promoplement Section 1.75 The Promoplement Section 1.75			16-Jul-19	19-Jul-19	0		5-6		NA	0.0			5	5			46		<lod< td=""><td><lod< td=""><td></td><td>13</td><td>10</td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td>13</td><td>10</td><td></td></lod<>		13	10	
Tell Information Sign Alice					_																			
Telementary Control of the control o													-											
Communication Communicatio																								
Company Comp					_																			
Figure F																								
Till Processing Till Proce		HS-SB-4402	12-Jul-19	12-Jul-19	0	20							1	1										
Commonstration Control		110 00 1100											,											
TRY PROMERSION 05, 58, 4489 Fig. 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,									NA					2	NA	<lod< td=""><td></td><td>NA</td><td></td><td></td><td></td><td>11</td><td></td><td>NA</td></lod<>		NA				11		NA
Tell Processigned 1,500																								
Text Principation 1,58-4418		110 00 1100							NΔ						NΔ							12		NA
Top Intergration																								
TET Principagion 16:50:4410 16:hul 9 2-hul 9 0 20 1011 13-lul 9 1.0	TCLP Investigation																		1					
Text Principation 15/3-9413 17/3-958 20 20 20	TCLP Investigation			24-Jul-19			10-11	13-14	NA	0.0	0.0	NA	6	<lod< td=""><td>NA</td><td>35</td><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	NA	35	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<>	NA	12	4	NA
Text Prescription FS-94-413 Print Pr																								
Teach Property Teac					_																			
Text Text	TCLP Investigation													-										
TEXT Principagnes 15.58 4419				24-Jul-19					INA			IVA			INA	3447		INA						INA
TECP Technique Septend Technique Septend Technique T				24-Jul-19					NA			NA		NA	NA	5184		NA				14		NA
TCF Presentation 9-58-8449 18-bul-19 22-bul-19 0 20 4-5 6-7 NA 0.0 0.0 NA 7 7 NA 39 44 NA 400 400 400 MA 34 12 NA TCF Presentation 45-84-800 25-bul-19 22-bul-19 0 20 4-5 6-7 NA 1.9 14 NA 7 6 NA 7 7 NA 39 44 NA 400 400 400 400 MA 7 7 NA 400 400 400 MA 7 7 NA 400 400 400 MA 7 7 NA 400 400 400 MA 7 7 NA 400 400 400 MA 7 7 NA 400 400 400 MA 7 7 NA 400 400 400 MA 7 7 NA 400 400 400 MA 7 7 NA 400 400 MA 7 7 NA 400 400 MA 7 7 NA 400 400 MA 7 7 NA 400 400 400 MA 7 7 NA 400 400 MA 7 7 NA 400 400 400 MA 7 7 MA 400 400 MA 7 MA 400 400 400 MA		HS-SB-4417		24-Jul-19	0		4-5	6-7	NA	0.0	0.2	NA	5	5	NA	79	33	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>22</td><td>10</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>22</td><td>10</td><td>NA</td></lod<>	NA	22	10	NA
TCF Principation PSS-84402 38-bit 9								6-7					13	3			<lod< td=""><td>NA</td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	NA						
TICP Presengation 4559-4500 25-jul-19																								
TICE) Presentagation \$55-84-501 \$25-bit-19 75-bit-19 70 20 5 7.8 NA 7.7 0.8 NA 6.0 4.0 NA 4.0	TCLP Investigation																							
TCF) Precipitation 455-48-002 25-bit-19 25-bit-19 0 20 5-6 7-8 NA 0.7 0.7 NA 0.0 0.0 NA 0.0 0																								
TCP Investigation M598-9539 26-jul-39	TCLP Investigation						5-6	7-8	NA		0.8	NA		4	NA	23	<lod< td=""><td>NA</td><td></td><td></td><td></td><td>14</td><td>11</td><td>NA</td></lod<>	NA				14	11	NA
TCE) Princestgation 1558-84505 29-Jul-19 29-Jul-19 0 20 6-7 8-9 NA 0.0 0.0 NA 3 5 NA 4.00 25 NA 4.00 4.00 NA 7 11 NA 7 11 NA 7 12 NA 7 12 NA 7 12 NA 7 13 NA 7 14 NA 7 14 NA 7 14 NA 7 15 NA 7 15 NA 1	TCLP Investigation		26-Jul-19		0			7-8	NA	0.7	0.7	NA	<lod< td=""><td>2</td><td>NA</td><td></td><td></td><td>NA</td><td></td><td><lod< td=""><td>NA</td><td>6</td><td></td><td>NA</td></lod<></td></lod<>	2	NA			NA		<lod< td=""><td>NA</td><td>6</td><td></td><td>NA</td></lod<>	NA	6		NA
TCP Investigation 1558-4596 29-jul-19 29-jul-19 0 20 4-5 6-7 NA 0.0 0.0 NA 6 3 NA 4208 28 NA 4.00 4.00 NA 12 8 NA 7.00 NA 12 8 NA 7.00 NA 12 8 NA 7.00 NA 12 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 10 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 10 NA 4.00 NA 10 NA 4.00 NA 10 NA 4.00 NA 4.	TCLP Investigation												4	2			<lod< td=""><td></td><td></td><td></td><td></td><td>14</td><td></td><td></td></lod<>					14		
TCP Investigation H558-4507 29-Jul-19 29-Jul-19 0 20 6-7 8-9 NA 0.0 0.0 NA 5 5 NA < 0.00 < 0.0 NA 5 5 NA < 0.00 < 0.0 NA 1.0 1.0 NA NA NA NA NA NA NA N														_										
TCE) Prestigation #558-4508 29-Jul-19 29-Jul-19 0 20 6-7 8-9 NA 0.0 0.0 NA 7 3 NA <1.00 24 NA <1.00 <1.00 NA 7 11 NA TCE) Prestigation #558-4501 39-Jul-19 0 20 5-6 7-8 NA 0.1 0.0 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 1.00 NA <1.00 NA <1.00 1.00 NA <1.00 NA <1.00 1.00 NA <1.00 NA <1.00 1.00 NA <1.00 NA <1.00 1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 NA <1.00 <1.00 NA <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA								0,						,				1471					_	
TCP Investigation 155-94-509 30-Jul-19 0 20	TCLP Investigation													,										
TCP investigation H5-S8-4510 30-Jul-19 31-Jul-19 0 20 5-6 7-8 NA 0.1 0.0 NA 4.00 4.00 NA 4.00 4.00 NA 4.00 4.00 NA 11 9 NA 7.00 NA 4.00 NA	TCLP Investigation																							
TCIP investigation H5-S8-4600 29-Jul-19 31-Jul-19 0 20 5-6 7-8 NA 0.0 0.3 NA 7 6 NA 4.00 26 NA 4.00 4.00 NA 11 9 NA TCIP investigation H5-S8-4601 29-Jul-19 29-Jul-19 0 20 4-5 6-7 NA 0.0 0.0 NA 2.5 3 NA 2.00 4.00 NA 4.00 4.00 NA	TCLP Investigation	HS-SB-4510		31-Jul-19	0		5-6	7-8	NA	0.1	0.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>6</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>6</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>6</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>6</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>6</td><td>7</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>6</td><td>7</td><td>NA</td></lod<>	NA	6	7	NA
TCP investigation MS-S8-6602 29-Jul-19 29-Jul-19 0 20 4-5 6-7 NA 0.0 0.0 NA 25 3 NA 2021 51318 NA 4.00 4.00 NA 53 31 NA TCP investigation MS-S8-6602 29-Jul-19 31-Jul-19 0 20 2-3 12-13 NA 0.0 0.0 NA 4.00 4.00 NA 3056 4.00 NA 4.00 4.00 NA 105 5 NA 7.00 NA 7.00 NA 7.00 NA 7.00 NA 1.00 NA	TCLP Investigation				0						0.3							NA				11		
TCP Investigation 15-58-4602 29-Jul-19 31-Jul-19 0 20 4-5 6-7 NA 0.0 0.0 NA 25 3 NA 2021 5118 NA <10D <10D NA 53 13 NA TCP Investigation 15-58-4603 29-Jul-19 31-Jul-19 0 20 2-3 22-13 NA 0.0 0.0 NA <10D NA 4.00 <10D NA 4.00 <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA <10D <10D NA							5-6		NA		0.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>3350</td><td>1004</td><td>NA</td><td></td><td></td><td></td><td>8</td><td></td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>3350</td><td>1004</td><td>NA</td><td></td><td></td><td></td><td>8</td><td></td><td>NA</td></lod<>	NA	3350	1004	NA				8		NA
TCLP Investigation 15.58-4603 29-iul-19 31-jul-19 0 20 2-3 12-13 NA 0.0 0.0 NA 4.00 4.00 NA 3056 4.10 NA 4.00 4.00 4.00 NA 4.00 4.00 NA 4.00 4.00 NA 4.00 4.00 NA 4.00 4.00 NA 4.00 4.00 4.00 NA 4.00 4.00 4.00 4.00 NA 4.00 4.							4.5		 N/A			 NIA			 NA	2021		 N/A						
TCLP investigation HS-SB-4605 30-Jul-19 31-Jul-19 0 20 12-13 14-15 NA 1.0 1.9 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <1.00 NA <1.00 <																								
TCLP Investigation HS-SB-4606 30-Jul-19 31-Jul-19 0 20 5-6 7-8 NA 0.0 0.0 NA 5 CLOD NA CLOD NA CLOD NA CLOD NA CLOD NA LOD CLOD NA 11 5 NA TCLP Investigation HS-SB-4607 30-Jul-19 31-Jul-19 0 20 5-6 7-8 NA 0.0 0.0 NA 5 CLOD NA 669 CLOD NA CLOD NA CLOD NA 100 8 NA TCLP Investigation HS-SB-4607 30-Jul-19 31-Jul-19 0 20 7-8 10-11 NA 0.0 0.0 NA CLOD CLOD NA CLOD NA CLOD NA CLOD NA CLOD NA NA 10 8 NA TCLP Investigation HS-SB-4608 31-Jul-18 31-Jul-19 0 20 7-8 10-11 NA 0.0 0.0 NA CLOD CLOD NA CLOD NA CLOD NA CLOD NA CLOD NA PRINT NA MA MA CLOD CLOD NA NA CLOD NA NA CLOD NA NA CLOD NA CLOD NA NA CLOD NA NA CLOD NA NA CLOD NA NA CLOD NA NA CLOD NA NA CLOD NA NA CLOD NA NA CLOD NA NA CLOD NA NA CLOD NA NA CLOD NA NA NA NA NA NA NA NA NA NA NA NA NA	TCLP Investigation																							
TCLP Investigation HS-S8-4608 30-Jul-19 31-Jul-18 0 20 5-6 7-8 NA 0.0 0.0 NA 5 <0.00 NA 869 <0.00 NA <0.00 NA <0.00 NA 20 6 NA TCLP Investigation HS-S8-4608 31-Jul-18 31-Jul-19 0 20 7-8 10-11 NA 0.0 0.0 NA 2 4.00 <0.00 NA 2.00 NA	TCLP Investigation																							
TCLP Investigation HS-SB-4608 31-Jul-18 31-Jul-19 0 20 7-8 10-11 NA 0.0 0.0 NA <lod <lo<="" <lod="" na="" td="" =""><td>TCLP Investigation</td><td></td><td></td><td>0 - 10: -0</td><td></td><td>20</td><td>5-6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod>	TCLP Investigation			0 - 10: -0		20	5-6																	
TCLP Investigation HS-S8-4609 31-Jul-18 1-Aug-19 0 20 13-14 16-17 NA 0.6 0.0 NA <lod 6="" 7="" <="" <lod="" na="" td=""> 7 NA 6 7 NA 7 NA 7 NA 7 NA 1 NA 1</lod>																								
TCLP Investigation HS-S8-4610 31-Jul-18 1-Aug-19 0 20 13-14 16-17 NA 1.1 1.0 NA <lod 6="" <="" <lod="" na="" td=""> NA 6 6 6 NA TCLP Investigation HS-S8-4700 31-Jul-18 6-Aug-19 0 20</lod>																								
TCLP Investigation HS-S8-4700 31-Jul-18 0 20					_																			
TCLP Investigation HS-S8-4701 31-Jul-18 6-Aug-19 0 20 7-8 11-12 NA 4.2 0.9 NA <lod <lod="" na="" s.58-4702<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod>																								
TCLP Investigation HS-S8-4703	TCLP Investigation	HS-SB-4701		6-Aug-19	0_		7-8	11-12	NA	4.2	0.9	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>3</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>3</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>3</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>3</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>3</td><td>5</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>3</td><td>5</td><td>NA</td></lod<>	NA	3	5	NA
TCLP Investigation H5-S8-4704	TCLP Investigation		1-Aug-19																					
TCLP Investigation HS-S8-4709			1-Aug-19	7-Aug-19								NA				<lod< td=""><td><lod< td=""><td>NA</td><td></td><td></td><td></td><td>3</td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td></td><td></td><td></td><td>3</td><td></td><td></td></lod<>	NA				3		
TCLP Investigation HS-S8-4706	TCLP Investigation		1-Aug-19	7 4 10								 NIA												
TCLP Investigation HS-SB-4707									ΝA							1								
TCLP Investigation HS-SB-4708 1-Aug-19 0 20									-															
TCLP Investigation HS-S8-4709																								
TCLP Investigation HS-SB-4710 2-Aug-19 6-Aug-19 0 20 9-10 NA NA 1.8 NA NA 7 NA NA < LOD NA NA < LOD NA NA < LOD NA NA CLOD NA NA ONA ONA ONA ONA ONA ONA ONA ONA O		HS-SB-4709		7-Aug-19	0		7-8	13-14		2.3	1.3		5				<lod< td=""><td>NA</td><td><lod< td=""><td></td><td>NA</td><td>11</td><td>4</td><td></td></lod<></td></lod<>	NA	<lod< td=""><td></td><td>NA</td><td>11</td><td>4</td><td></td></lod<>		NA	11	4	
			2-Aug-19				3 10	1471		1.0	1471		,						1200				.,,,	
ICLY Investigation H5-58-4/12 5-Aug-19 0 20 6-7 9-10 NA 0.5 1.2 NA 4 5.0 NA 25 <lod 8="" 9="" <lod="" na="" td="" ="" <=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod>																								
	ICLP Investigation	H5-5B-4/12	5-Aug-19	6-Aug-19	0	20	6-7	9-10	NA	0.5	1.2	NA	4	5.0	NA	25	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>9</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>9</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>8</td><td>9</td><td>NA</td></lod<>	NA	8	9	NA

				Start Depth	End Depth				PID Re	adings for S	amples					XRF R	esults for San	nples Analyze	ı				
TCLP Investigation	HS-SB-4713	5-Aug-19	7-Aug-19	0	20	7-8	10-11	NA	1.3	1.0	NA	9	<lod< th=""><th>NA</th><th>24</th><th><lod< th=""><th>NA</th><th><lod< th=""><th><lod< th=""><th>NA</th><th>13</th><th>8</th><th>NA</th></lod<></th></lod<></th></lod<></th></lod<>	NA	24	<lod< th=""><th>NA</th><th><lod< th=""><th><lod< th=""><th>NA</th><th>13</th><th>8</th><th>NA</th></lod<></th></lod<></th></lod<>	NA	<lod< th=""><th><lod< th=""><th>NA</th><th>13</th><th>8</th><th>NA</th></lod<></th></lod<>	<lod< th=""><th>NA</th><th>13</th><th>8</th><th>NA</th></lod<>	NA	13	8	NA
TCLP Investigation	HS-SB-4714	5-Aug-19	7-Aug-19	0	20	6-7	9-10	NA	2.8	2.3	NA	5	5.0	NA	26	39	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>10</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>9</td><td>10</td><td>NA</td></lod<>	NA	9	10	NA
TCLP Investigation	HS-SB-4715	5-Aug-19	7-Aug-19	0	20	6-7	9-10	NA	0.7	0.5	NA	5	8.0	NA	68	28	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>10</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>9</td><td>10</td><td>NA</td></lod<>	NA	9	10	NA
TCLP Investigation	HS-SB-4716	5-Aug-19	6-Aug-19	0	20	6-7	9-10	NA	1.7	1.5	NA	4	4.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>5</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>8</td><td>5</td><td>NA</td></lod<>	NA	8	5	NA
TCLP Investigation	HS-SB-4717	5-Aug-19	7-Aug-19	0	20	6-7	9-10	NA	1.9	0.7	NA	5	3.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>6</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>6</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>6</td><td>5</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>6</td><td>5</td><td>NA</td></lod<>	NA	6	5	NA
TCLP Investigation	HS-SB-4718	5-Aug-19	7-Aug-19	0	20	7-8	10-11	NA	1.7	1.2	NA	7	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>6</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>11</td><td>6</td><td>NA</td></lod<>	NA	11	6	NA
TCLP Investigation	HS-SB-4719	5-Aug-19	9-Aug-19	0	20	6-7	9-10	NA	6.1	6.4	NA	5	4.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>8</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>9</td><td>8</td><td>NA</td></lod<>	NA	9	8	NA
TCLP Investigation	HS-SB-4720	5-Aug-19	7-Aug-19	0	20	7-8	13-14	NA	1.0	NA	NA	4	NA	NA	1626	NA	NA	<lod< td=""><td>NA</td><td>NA</td><td>12</td><td>NA</td><td>NA</td></lod<>	NA	NA	12	NA	NA
TCLP Investigation	HS-SB-4721	5-Aug-19	7-Aug-19	0	20	7-8	13-14	NA	6.0	4.2	NA	6	4.0	NA	<lod< td=""><td>23</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<>	23	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>9</td><td>7</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>9</td><td>7</td><td>NA</td></lod<>	NA	9	7	NA
TCLP Investigation	HS-SB-4722	5-Aug-19	7-Aug-19	0	20	6-7	10-11	NA	0.7	0.6	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>5</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>5</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>5</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>5</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>5</td><td>5</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>5</td><td>5</td><td>NA</td></lod<>	NA	5	5	NA
TCLP Investigation	HS-SB-4724	5-Aug-19	5-Aug-19	0	20	7-8	10-11	NA	3.1	2.7	NA	5	2.0	NA	26	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>3</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>3</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>11</td><td>3</td><td>NA</td></lod<>	NA	11	3	NA
TCLP Investigation	HS-SB-4726	6-Aug-19	6-Aug-19	0	20	7-8	11-12	NA	8.9	12.9	NA	4	3.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>4</td><td>6</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>4</td><td>6</td><td>NA</td></lod<>	NA	4	6	NA
TCLP Investigation	HS-SB-4728	6-Aug-19	6-Aug-19	0	20	7-8	11-12	NA	1.7	1.4	NA	<lod< td=""><td>2.0</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>2</td><td>2</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>2</td><td>2</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>2</td><td>2</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>2</td><td>2</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>2</td><td>2</td><td>NA</td></lod<>	NA	2	2	NA
TCLP Investigation	HS-SB-4730	6-Aug-19	6-Aug-19	0	20	6-7	9-10	NA	1.4	1.6	NA	6	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>8</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>8</td><td>NA</td></lod<>	NA	10	8	NA
TCLP Investigation	1781 House St Composite	2-Aug-19	2-Aug-19	0	25																	-	
2018 Investigation	HS-SB-518	6-Aug-19	6-Aug-19	0	15	11-12	NA	NA	NA	NA	NA	4	NA	NA	75	NA	NA	<lod< td=""><td>NA</td><td>NA</td><td>6</td><td>NA</td><td>NA</td></lod<>	NA	NA	6	NA	NA
NW Wetland	HS-SB-4800	8-Aug-19	8-Aug-19	0	20	0-2	15-17	NA	1.9	3.3	NA	6	2.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>3</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>3</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>3</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>3</td><td>NA</td></lod<>	NA	10	3	NA
NW Wetland	HS-SB-4801	9-Aug-19	9-Aug-19	0	20	0-2	15-17	NA	1.8	3.7	NA	4	<lod< td=""><td>NA</td><td>28</td><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	NA	28	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>7</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>12</td><td>7</td><td>NA</td></lod<>	NA	12	7	NA
NW Wetland	HS-SB-4802	9-Aug-19	9-Aug-19	0	20	0-2	15-17	NA	12.9	5.2	NA	2	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>5</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>11</td><td>5</td><td>NA</td></lod<>	NA	11	5	NA
NW Wetland	HS-SB-4803	8-Aug-19	8-Aug-19	0	20	0-2	6-8	NA	1.0	0.9	NA	7	6.0	NA	24	27	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>15</td><td>9</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>15</td><td>9</td><td>NA</td></lod<>	NA	15	9	NA
NW Wetland	HS-SB-4804	8-Aug-19	8-Aug-19	0	20	0-2	10-12	NA	1.6	1.5	NA	5	3.0	NA	25	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>6</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>12</td><td>6</td><td>NA</td></lod<>	NA	12	6	NA
NW Wetland	HS-SB-4805	8-Aug-19	8-Aug-19	0	20	0-2	7-9	NA	2.4	8.1	NA	<lod< td=""><td>5.0</td><td>NA</td><td>38</td><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>10</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	5.0	NA	38	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>10</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>10</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>10</td><td>NA</td></lod<>	NA	10	10	NA
NW Wetland	HS-SB-4806	13-Aug-19	13-Aug-19	0	20	0-2	7-9	NA	0.0	0.0	NA	4	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>6</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>14</td><td>6</td><td>NA</td></lod<>	NA	14	6	NA
NW Wetland	HS-SB-4807	14-Aug-19	14-Aug-19	0	20	0-2	10-12	NA	0.0	0.2	NA	5	5.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>16</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>16</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>16</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>16</td><td>NA</td></lod<>	NA	10	16	NA
NW Wetland	HS-SB-4808	14-Aug-19	14-Aug-19	0	20	0-2	6-8	NA	6.5	5.7	NA	3	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>6</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>14</td><td>6</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>14</td><td>6</td><td>NA</td></lod<>	NA	14	6	NA
NW Wetland	HS-SB-4809	14-Aug-19	14-Aug-19	0	20	0-2	6-8	NA	9.2	8.4	NA	6	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<>	NA	12	4	NA
NW Wetland	HS-SB-4810	15-Aug-19	15-Aug-19	0	20	0-2	6-8	NA	4.4	3.3	NA	3	<lod< td=""><td>NA</td><td>28</td><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	NA	28	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>8</td><td>4</td><td>NA</td></lod<>	NA	8	4	NA
NW Wetland	HS-SB-4811	15-Aug-19	15-Aug-19	0	20	0-2	12-14	NA	3.9	2.4	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>8</td><td>7</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>8</td><td>7</td><td>NA</td></lod<>	NA	8	7	NA
Western Wetland	HS-SB-4900	9-Aug-19	9-Aug-19	0	20	0-2	17-19	NA	0.9	1.3	NA	5	<lod< td=""><td>NA</td><td>27</td><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>2</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	NA	27	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>2</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>2</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>2</td><td>NA</td></lod<>	NA	10	2	NA
Western Wetland	HS-SB-4901	9-Aug-19	9-Aug-19	0	20	0-2	18-20	NA	0.7	NA	NA	5	NA	NA	<lod< td=""><td>NA</td><td>NA</td><td><lod< td=""><td>NA</td><td>NA</td><td>13</td><td>NA</td><td>NA</td></lod<></td></lod<>	NA	NA	<lod< td=""><td>NA</td><td>NA</td><td>13</td><td>NA</td><td>NA</td></lod<>	NA	NA	13	NA	NA
Western Wetland	HS-SB-4902	9-Aug-19	9-Aug-19	0	20	0-2	6-8	NA	3.9	8.4	NA	5	2.0	NA	36	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>11</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>11</td><td>4</td><td>NA</td></lod<>	NA	11	4	NA
Western Wetland	HS-SB-4903	9-Aug-19	9-Aug-19	0	20	0-2	11-13	NA	4.3	5.5	NA	4	3.0	NA	25	27	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>9</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>9</td><td>NA</td></lod<>	NA	10	9	NA
Western Wetland	HS-SB-4904	9-Aug-19	9-Aug-19	0	20	0-2	15-17	NA	6.5	5.2	NA	3	7.0	NA	49	38	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>8</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>8</td><td>NA</td></lod<>	NA	10	8	NA
Western Wetland	HS-SB-4905	12-Aug-19	12-Aug-19	0	20	0-2	15-17	NA	0.0	3.6	NA	6	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>13</td><td>4</td><td>NA</td></lod<>	NA	13	4	NA
Western Wetland	HS-SB-4906	12-Aug-19	12-Aug-19	0	20	0-2	16-18	NA	0.0	1.6	NA	3	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>5</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>12</td><td>5</td><td>NA</td></lod<>	NA	12	5	NA
Western Wetland	HS-SB-4907	12-Aug-19	12-Aug-19	0	20	0-2	12-14	NA	0.2	0.0	NA	3	2.0	NA	24	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>7</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>12</td><td>7</td><td>NA</td></lod<>	NA	12	7	NA
Western Wetland	HS-SB-4908	13-Aug-19	13-Aug-19	0	20	0-2	7-9	NA	0.4	0.7	NA	3	15.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>10</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>10</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>10</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>10</td><td>NA</td></lod<>	NA	10	10	NA
Western Wetland	HS-SB-4909	13-Aug-19	13-Aug-19	0	20	0-2	11-13	NA	0.1	0.3	NA	6	4.0	NA	27	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>5</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>10</td><td>5</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>10</td><td>5</td><td>NA</td></lod<>	NA	10	5	NA
Western Wetland	HS-SB-4910	13-Aug-19	13-Aug-19	0	20	0-2	10-12	NA	0.0	0.0	NA	4	2.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>7</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>13</td><td>7</td><td>NA</td></lod<>	NA	13	7	NA
Western Wetland	HS-SB-4911	13-Aug-19	13-Aug-19	0	20	0-2	11-13	NA	0.0	0.1	NA	5	9.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>7</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>7</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>13</td><td>7</td><td>NA</td></lod<>	NA	13	7	NA
Western Wetland	HS-SB-4912	14-Aug-19	14-Aug-19	0	20	0-2	5-7	NA	0.0	0.0	NA	6	5.0	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>8</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>8</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>13</td><td>8</td><td>NA</td></lod<>	NA	13	8	NA
Western Wetland	HS-SB-4913	14-Aug-19	14-Aug-19	0	20	0-2	6-8	NA	5.6	11.0	NA	6	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>12</td><td>4</td><td>NA</td></lod<>	NA	12	4	NA
Western Wetland	HS-SB-4914	14-Aug-19	14-Aug-19	0	20	0-2	8-10	NA	7.2	1.8	NA	3	5.0	NA	42	<lod< td=""><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>16</td><td>9</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>16</td><td>9</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>16</td><td>9</td><td>NA</td></lod<>	NA	16	9	NA
Western Wetland	HS-SB-4915	19-Aug-19	19-Aug-19	0	20	0-2	2-4	NA	0.3	1.1	NA	4	<lod< td=""><td>NA</td><td>23</td><td>42</td><td>NA</td><td><lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>10</td><td>NA</td></lod<></td></lod<></td></lod<>	NA	23	42	NA	<lod< td=""><td><lod< td=""><td>NA</td><td>13</td><td>10</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>NA</td><td>13</td><td>10</td><td>NA</td></lod<>	NA	13	10	NA

				Start	End Depth												Results for S	amples Ana	•				
Sampling Program	Sample Location	Start Date	End Date	Depth (ft)	(ft)		rvals Analyz						As			Cr			Hg			Pb	
						S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3	S1	S2	S3
TCLP Investigation	HS-SB-4104	9-Jul-19	9-Jul-19	0	20	3-4	5-6	7-8	1.8	3.1	3.0	<lod< td=""><td><lod< td=""><td>2.0</td><td>25576</td><td>209</td><td>80.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>39</td><td>6</td><td>7.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.0</td><td>25576</td><td>209</td><td>80.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>39</td><td>6</td><td>7.0</td></lod<></td></lod<></td></lod<></td></lod<>	2.0	25576	209	80.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>39</td><td>6</td><td>7.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>39</td><td>6</td><td>7.0</td></lod<></td></lod<>	<lod< td=""><td>39</td><td>6</td><td>7.0</td></lod<>	39	6	7.0
TCLP Investigation	HS-SB-4132	9-Jul-19	9-Jul-19	0	20	10-11	11-12	12-13	4.4	17.2	94.3	4	5.0	<lod< td=""><td>2116</td><td>2397</td><td>15403.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td>11</td><td>22.0</td></lod<></td></lod<></td></lod<></td></lod<>	2116	2397	15403.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td>11</td><td>22.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>12</td><td>11</td><td>22.0</td></lod<></td></lod<>	<lod< td=""><td>12</td><td>11</td><td>22.0</td></lod<>	12	11	22.0
TCLP Investigation	HS-SB-4133	8-Jul-19	8-Jul-19	0	20	5-6	8-9	11-12	0.9	17.9	24.3	2	<lod< td=""><td><lod< td=""><td>120</td><td>1548</td><td>26132.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6</td><td>13</td><td>46.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>120</td><td>1548</td><td>26132.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6</td><td>13</td><td>46.0</td></lod<></td></lod<></td></lod<></td></lod<>	120	1548	26132.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6</td><td>13</td><td>46.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6</td><td>13</td><td>46.0</td></lod<></td></lod<>	<lod< td=""><td>6</td><td>13</td><td>46.0</td></lod<>	6	13	46.0
TCLP Investigation	HS-SB-4134	8-Jul-19	8-Jul-19	0	20	8-9	12-13	15-16	122.0	270.0	19.2	2	<lod< td=""><td>2.0</td><td>13800</td><td>19397</td><td>8894.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>37</td><td>36</td><td>16.0</td></lod<></td></lod<></td></lod<></td></lod<>	2.0	13800	19397	8894.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>37</td><td>36</td><td>16.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>37</td><td>36</td><td>16.0</td></lod<></td></lod<>	<lod< td=""><td>37</td><td>36</td><td>16.0</td></lod<>	37	36	16.0
TCLP Investigation	HS-SB-4136	8-Jul-19	8-Jul-19	0	20	5-6	6-7	7-8	85.5	27.0	26.5	<lod< td=""><td>4.0</td><td><lod< td=""><td>24403</td><td>2968</td><td>16543.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>12</td><td>86.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4.0	<lod< td=""><td>24403</td><td>2968</td><td>16543.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>12</td><td>86.0</td></lod<></td></lod<></td></lod<></td></lod<>	24403	2968	16543.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>12</td><td>86.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td><td>12</td><td>86.0</td></lod<></td></lod<>	<lod< td=""><td>24</td><td>12</td><td>86.0</td></lod<>	24	12	86.0
TCLP Investigation	HS-SB-4208	10-Jul-19	10-Jul-19	0	20	4-5	6-7	7-8	2.9	13.2	81.7	4	<lod< td=""><td><lod< td=""><td>26228</td><td>21792</td><td>21224.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>36</td><td>28</td><td>23.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>26228</td><td>21792</td><td>21224.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>36</td><td>28</td><td>23.0</td></lod<></td></lod<></td></lod<></td></lod<>	26228	21792	21224.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>36</td><td>28</td><td>23.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>36</td><td>28</td><td>23.0</td></lod<></td></lod<>	<lod< td=""><td>36</td><td>28</td><td>23.0</td></lod<>	36	28	23.0
TCLP Investigation	HS-SB-4270	10-Jul-19	10-Jul-19	0	20	9-10	10-11	12-13	11.7	65.3	157.0	11	<lod< td=""><td><lod< td=""><td>10946</td><td>25723</td><td>10539.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td>26</td><td>23.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10946</td><td>25723</td><td>10539.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td>26</td><td>23.0</td></lod<></td></lod<></td></lod<></td></lod<>	10946	25723	10539.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td>26</td><td>23.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td><td>26</td><td>23.0</td></lod<></td></lod<>	<lod< td=""><td>17</td><td>26</td><td>23.0</td></lod<>	17	26	23.0
TCLP Investigation	HS-SB-4272	10-Jul-19	10-Jul-19	0	20	4-5	5-6	6-7	8.0	44.0	66.7	<lod< td=""><td>2.0</td><td>6.0</td><td>1551</td><td>308</td><td>18947.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td>8</td><td>20.0</td></lod<></td></lod<></td></lod<></td></lod<>	2.0	6.0	1551	308	18947.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td>8</td><td>20.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td><td>8</td><td>20.0</td></lod<></td></lod<>	<lod< td=""><td>10</td><td>8</td><td>20.0</td></lod<>	10	8	20.0
TCLP Investigation	HS-SB-4301	11-Jul-19	11-Jul-19	0	20	3-4	5-6	6-7	1.3	1.3	6.2	3.0	4.0	<lod< td=""><td>32</td><td>80</td><td>12244.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8</td><td>7</td><td>20.0</td></lod<></td></lod<></td></lod<></td></lod<>	32	80	12244.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>8</td><td>7</td><td>20.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>8</td><td>7</td><td>20.0</td></lod<></td></lod<>	<lod< td=""><td>8</td><td>7</td><td>20.0</td></lod<>	8	7	20.0
TCLP Investigation	HS-SB-4304	11-Jul-19	11-Jul-19	0	20	3-4	4-5	5-6	0.5	0.4	0.6	7	5	<lod< td=""><td>19542</td><td>914</td><td>22348.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>33</td><td>10</td><td>29.0</td></lod<></td></lod<></td></lod<></td></lod<>	19542	914	22348.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>33</td><td>10</td><td>29.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>33</td><td>10</td><td>29.0</td></lod<></td></lod<>	<lod< td=""><td>33</td><td>10</td><td>29.0</td></lod<>	33	10	29.0
TCLP Investigation	HS-SB-4306	12-Jul-19	12-Jul-19	0	20	5-6	6-7	7-8	2.7	20.2	6.2	3	<lod< td=""><td>2.0</td><td>20198</td><td>18280</td><td>11764.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>33</td><td>23</td><td>15.0</td></lod<></td></lod<></td></lod<></td></lod<>	2.0	20198	18280	11764.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>33</td><td>23</td><td>15.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>33</td><td>23</td><td>15.0</td></lod<></td></lod<>	<lod< td=""><td>33</td><td>23</td><td>15.0</td></lod<>	33	23	15.0
TCLP Investigation	HS-SB-4308	15-Jul-19	15-Jul-19	0	20	3-4	4-5	5-6	1.9	76.1	20.5	3	<lod< td=""><td><lod< td=""><td>1660</td><td>8727</td><td>16439.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td>21</td><td>21.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1660</td><td>8727</td><td>16439.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td>21</td><td>21.0</td></lod<></td></lod<></td></lod<></td></lod<>	1660	8727	16439.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td>21</td><td>21.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td><td>21</td><td>21.0</td></lod<></td></lod<>	<lod< td=""><td>10</td><td>21</td><td>21.0</td></lod<>	10	21	21.0
TCLP Investigation	HS-SB-4401	12-Jul-19	12-Jul-19	0	20	8-9	10-11	11-12	45.5	48.6	94.7	8	4	8.0	7711	7025	6868.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td>14</td><td>16.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>12</td><td>14</td><td>16.0</td></lod<></td></lod<>	<lod< td=""><td>12</td><td>14</td><td>16.0</td></lod<>	12	14	16.0
TCLP Investigation	HS-SB-4402	12-Jul-19	12-Jul-19	0	20	5-6	6-7	8-9	12.6	21.6	2.5	4.0	11.0	6.0	30707	3955	190.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>42</td><td>13</td><td>11.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>42</td><td>13</td><td>11.0</td></lod<></td></lod<>	<lod< td=""><td>42</td><td>13</td><td>11.0</td></lod<>	42	13	11.0
TCLP Investigation	HS-SB-4405	15-Jul-19	15-Jul-19	0	20	8-9	11-12	12-13	15.7	157.2	73.9	5	<lod< td=""><td>8.0</td><td>1904</td><td>21519</td><td>121.0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td>37</td><td>17.0</td></lod<></td></lod<></td></lod<></td></lod<>	8.0	1904	21519	121.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td>37</td><td>17.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td><td>37</td><td>17.0</td></lod<></td></lod<>	<lod< td=""><td>11</td><td>37</td><td>17.0</td></lod<>	11	37	17.0
TCLP Investigation	HS-SB-4406	15-Jul-19	15-Jul-19	0	20	2-3	3-4	5-6	1.7	1.7	22.0	4	8	6.0	28086	915	1261.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>34</td><td>11</td><td>NA</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>34</td><td>11</td><td>NA</td></lod<></td></lod<>	<lod< td=""><td>34</td><td>11</td><td>NA</td></lod<>	34	11	NA
TCLP Investigation	HS-SB-4409	16-Jul-19	16-Jul-19	0	20	5-6	6-7	7-8	13.9	50.0	32.5	2	<lod< td=""><td><lod< td=""><td>27389</td><td>23513</td><td>22273</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>30</td><td>31</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>27389</td><td>23513</td><td>22273</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>30</td><td>31</td></lod<></td></lod<></td></lod<></td></lod<>	27389	23513	22273	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>30</td><td>31</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td><td>30</td><td>31</td></lod<></td></lod<>	<lod< td=""><td>24</td><td>30</td><td>31</td></lod<>	24	30	31
TCLP Investigation	HS-SB-4411	17-Jul-19	17-Jul-19	0	20	1-2	7-8	8-9	1.3	28.4	2.6	10	<lod< td=""><td>4</td><td>77</td><td>16521</td><td>61</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td>21</td><td>11</td></lod<></td></lod<></td></lod<></td></lod<>	4	77	16521	61	<lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td>21</td><td>11</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>12</td><td>21</td><td>11</td></lod<></td></lod<>	<lod< td=""><td>12</td><td>21</td><td>11</td></lod<>	12	21	11
TCLP Investigation	HS-SB-4412	17-Jul-19	17-Jul-19	0	20	6-7	7-8	17-18	78.2	3.2	0.0	3	12	3	12043	855	83	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td>14</td><td>7</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td><td>14</td><td>7</td></lod<></td></lod<>	<lod< td=""><td>20</td><td>14</td><td>7</td></lod<>	20	14	7
TCLP Investigation	HS-SB-4415	18-Jul-19	18-Jul-19	0	20	4-5	5-6	6-7	3.3	2.8	2.4	<lod< td=""><td>8</td><td>4</td><td>37811</td><td>79</td><td>388</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>38</td><td>11</td><td>8</td></lod<></td></lod<></td></lod<></td></lod<>	8	4	37811	79	388	<lod< td=""><td><lod< td=""><td><lod< td=""><td>38</td><td>11</td><td>8</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>38</td><td>11</td><td>8</td></lod<></td></lod<>	<lod< td=""><td>38</td><td>11</td><td>8</td></lod<>	38	11	8
TCLP Investigation	HS-SB-4501	26-Jul-19	26-Jul-19	0	20	3-4	5-6	6-7	3.7	19.5	5.5	7	<lod< td=""><td>6</td><td>2025</td><td>16667</td><td>235</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td>16</td><td>9</td></lod<></td></lod<></td></lod<></td></lod<>	6	2025	16667	235	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td>16</td><td>9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td><td>16</td><td>9</td></lod<></td></lod<>	<lod< td=""><td>11</td><td>16</td><td>9</td></lod<>	11	16	9
TCLP Investigation	HS-SB-4509	30-Jul-19	30-Jul-19	0	20	2-3	3-3.95	3.95-4	0.0	3.6	3.6	<lod< td=""><td>5</td><td><lod< td=""><td>46</td><td>42</td><td>22193</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td>9</td><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	5	<lod< td=""><td>46</td><td>42</td><td>22193</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td>9</td><td>22</td></lod<></td></lod<></td></lod<></td></lod<>	46	42	22193	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td>9</td><td>22</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td><td>9</td><td>22</td></lod<></td></lod<>	<lod< td=""><td>11</td><td>9</td><td>22</td></lod<>	11	9	22
TCLP Investigation	HS-SB-4601	29-Jul-19	29-Jul-19	0	20	0-1	7-8	8-9	0.0	8.5	0.0	5	<lod< td=""><td><lod< td=""><td>386</td><td>19248</td><td>1128</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td>18</td><td>9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>386</td><td>19248</td><td>1128</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td>18</td><td>9</td></lod<></td></lod<></td></lod<></td></lod<>	386	19248	1128	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td>18</td><td>9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td><td>18</td><td>9</td></lod<></td></lod<>	<lod< td=""><td>22</td><td>18</td><td>9</td></lod<>	22	18	9
TCLP Investigation	HS-SB-4700	31-Jul-18	31-Jul-18	0	20	5-6	6-7	7-8	114.7	169.7	322.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16009</td><td>17882</td><td>20506</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td>29</td><td>28</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16009</td><td>17882</td><td>20506</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td>29</td><td>28</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>16009</td><td>17882</td><td>20506</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td>29</td><td>28</td></lod<></td></lod<></td></lod<></td></lod<>	16009	17882	20506	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td>29</td><td>28</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td><td>29</td><td>28</td></lod<></td></lod<>	<lod< td=""><td>22</td><td>29</td><td>28</td></lod<>	22	29	28
TCLP Investigation	HS-SB-4702	1-Aug-19	1-Aug-19	0	20	5-6	6-7	15-16	2.0	2.3	1.8	<lod< td=""><td><lod< td=""><td><lod< td=""><td>248</td><td>4669</td><td>39</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6</td><td>10</td><td>3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>248</td><td>4669</td><td>39</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6</td><td>10</td><td>3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>248</td><td>4669</td><td>39</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6</td><td>10</td><td>3</td></lod<></td></lod<></td></lod<></td></lod<>	248	4669	39	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6</td><td>10</td><td>3</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6</td><td>10</td><td>3</td></lod<></td></lod<>	<lod< td=""><td>6</td><td>10</td><td>3</td></lod<>	6	10	3
TCLP Investigation	HS-SB-4704	1-Aug-19	1-Aug-19	0	20	7-8	10-11	11-12	42.9	31.7	16.6	<lod< td=""><td><lod< td=""><td>7</td><td>20162</td><td>9606</td><td>6351</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td>11</td><td>9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td>20162</td><td>9606</td><td>6351</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td>11</td><td>9</td></lod<></td></lod<></td></lod<></td></lod<>	7	20162	9606	6351	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td>11</td><td>9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td><td>11</td><td>9</td></lod<></td></lod<>	<lod< td=""><td>20</td><td>11</td><td>9</td></lod<>	20	11	9
TCLP Investigation	HS-SB-4706	1-Aug-19	1-Aug-19	0	20	6-7	7-8	8-9	33.8	40.9	6.5	<lod< td=""><td>3</td><td>3</td><td>14017</td><td>14212</td><td>575</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td>14</td><td>8</td></lod<></td></lod<></td></lod<></td></lod<>	3	3	14017	14212	575	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td>14</td><td>8</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td><td>14</td><td>8</td></lod<></td></lod<>	<lod< td=""><td>20</td><td>14</td><td>8</td></lod<>	20	14	8
TCLP Investigation	HS-SB-4707	1-Aug-19	1-Aug-19	0	20	2-2.5	3-4	10-11	1.6	1.4	1.4	<lod< td=""><td>4.0</td><td>4.0</td><td>23762</td><td>855</td><td>21061</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>39</td><td>10</td><td>20</td></lod<></td></lod<></td></lod<></td></lod<>	4.0	4.0	23762	855	21061	<lod< td=""><td><lod< td=""><td><lod< td=""><td>39</td><td>10</td><td>20</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>39</td><td>10</td><td>20</td></lod<></td></lod<>	<lod< td=""><td>39</td><td>10</td><td>20</td></lod<>	39	10	20
TCLP Investigation	HS-SB-4708	1-Aug-19	1-Aug-19	0	20	6-7	7-8	8-9	52.6	16.7	2.6	4	2.0	4.0	9895	118	180	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td>9</td><td>9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td><td>9</td><td>9</td></lod<></td></lod<>	<lod< td=""><td>11</td><td>9</td><td>9</td></lod<>	11	9	9
TCLP Investigation	1781 House St Composite	2-Aug-19	2-Aug-19	0	25							-	-		-								- 1

TABLE 1 SUMMARY OF SOIL SAMPLE ANALYSIS - TCLP METALS 1855 House Street NE Plainfield Township, Kent County, MI

Sample Location		HS-SB-4135	HS-SB-4135	HS-SB-4137	HS-SB-4137	HS-SB-4138	HS-SB-4138	HS-SB-4139	HS-SB-4139	HS-SB-4264	HS-SB-4264	HS-SB-4264	HS-SB-4265	HS-SB-4265	HS-SB-4266	HS-SB-4266	HS-SB-4267	HS-SB-4267
Sample Name	RCRA Maximum	HS-SB-4135 (12- 13)	HS-SB-4135 (15- 16)	HS-SB-4137 (12- 13)	HS-SB-4137 (15- 16)	HS-SB-4138 (11- 12)	HS-SB-4138 (13- 14)	HS-SB-4139 (10- 11)	HS-SB-4139 (7-8)	HS-SB-4264 (12- 13)	HS-SB-4264 (12- 13) DUP	HS-SB-4264 (15- 16)	HS-SB-4265 (12- 13)	HS-SB-4265 (15- 16)	HS-SB-4266 (11- 12)	HS-SB-4266 (14- 15)	HS-SB-4267 (12- 13)	HS-SB-4267 (15- 16)
Depth Interval (Feet below ground surface)	Concentration	12 - 13	15 - 16	12 - 13	15 - 16	11 - 12	13 - 14	10 - 11	7 - 8	12 - 13	12 - 13	15 - 16	12 - 13	15 - 16	11 - 12	14 - 15	12 - 13	15 - 16
Laboratory Sample ID		UG27004-032	UG27004-033	UG27004-030	UG27004-031	UG27004-028	UG27004-029	UG27004-027	UG27004-026	UG24012-014	UG24012-015	UG24012-016	UG24012-017	UG24012-018	UG24012-019	UG24012-020	UG24012-021	UG24012-022
Sample Date		07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019
Parameter (μg/L)																		
Chromium	5,000.00	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

TABLE 1 TALS

SUMMARY OF SOIL SAMPLE ANALYSIS - TCLP META
1855 House Street NE
Plainfield Township, Kent County, MI

Sample Location		HS-SB-4268	HS-SB-4268	HS-SB-4269	HS-SB-4269	HS-SB-4271	HS-SB-4271	HS-SB-4274	HS-SB-4274	HS-SB-4302	HS-SB-4302	HS-SB-4309	HS-SB-4309	HS-SB-4314	HS-SB-4314	HS-SB-4315	HS-SB-4315	HS-SB-4400
Sample Name	RCRA Maximum	HS-SB-4268 (12- 13)	HS-SB-4268 (15- 16)	HS-SB-4269 (11- 12)	HS-SB-4269 (8-9)	HS-SB-4271 (5-6)	HS-SB-4271 (8-9)	HS-SB-4274 (6-7)	HS-SB-4274 (8-9)	HS-SB-4302 (6-7)	HS-SB-4302 (8-9)	HS-SB-4309 (5-6)	HS-SB-4309 (8-9)	HS-SB-4314 (5-6)	HS-SB-4314 (8-9)	HS-SB-4315 (10- 11)	HS-SB-4315 (7-8)	HS-SB-4400 (11- 12)
Depth Interval (Feet below ground surface)	Concentration	12 - 13	15 - 16	11 - 12	8 - 9	5 - 6	8 - 9	6 - 7	8 - 9	6 - 7	8 - 9	5 - 6	8 - 9	5 - 6	8 - 9	10 - 11	7 - 8	11 - 12
Laboratory Sample ID		UG24012-023	UG24012-024	UG24012-012	UG24012-011	UG24012-009	UG24012-010	UG27004-024	UG27004-025	UG24012-005	UG24012-006	UG24012-007	UG24012-008	UG24012-003	UG24012-004	UG24012-002	UG24012-001	UG24012-025
Sample Date		07/23/2019	07/23/2019	07/22/2019	07/22/2019	07/22/2019	07/22/2019	07/25/2019	07/25/2019	07/22/2019	07/22/2019	07/22/2019	07/22/2019	07/22/2019	07/22/2019	07/22/2019	07/22/2019	07/23/2019
Parameter (μg/L)																		
Chromium	5,000.00	<100	<100	<100	890	390	<100	<100	<100	<100	<100	<100	49 [J]	<100	<100	<100	<100	<100

TABLE 1 TALS

SUMMARY OF SOIL SAMPLE ANALYSIS - TCLP META
1855 House Street NE
Plainfield Township, Kent County, MI

Sample Location		HS-SB-4400	HS-SB-4403	HS-SB-4403	HS-SB-4404	HS-SB-4404	HS-SB-4407	HS-SB-4407	HS-SB-4408	HS-SB-4408	HS-SB-4410	HS-SB-4410	HS-SB-4413	HS-SB-4413	HS-SB-4414	HS-SB-4414	HS-SB-4416	HS-SB-4416
Sample Name	RCRA Maximum	HS-SB-4400 (13- 14)	HS-SB-4403 (5-6)	HS-SB-4403 (7-8)	HS-SB-4404 (11- 12)	HS-SB-4404 (13- 14)	HS-SB-4407 (6-7)	HS-SB-4407 (9-10)	HS-SB-4408 (11- 12)	HS-SB-4408 (8-9)	HS-SB-4410 (10- 11)	HS-SB-4410 (13- 14)	HS-SB-4413 (6-7)	HS-SB-4413 (8-9)	HS-SB-4414 (3-4)	HS-SB-4414 (5-6)	HS-SB-4416 (6-7)	HS-SB-4416 (9-10)
Depth Interval (Feet below ground surface)	Concentration	13 - 14	5 - 6	7 - 8	11 - 12	13 - 14	6 - 7	9 - 10	11 - 12	8 - 9	10 - 11	13 - 14	6 - 7	8 - 9	3 - 4	5 - 6	6 - 7	9 - 10
Laboratory Sample ID		UG24012-026	UG27004-022	UG27004-023	UG27004-001	UG27004-002	UG24104-001	UG24012-013	UH01064-001	UG27004-003	UG27004-020	UG27004-021	UG27004-018	UG27004-019	UG27004-016	UG27004-017	UG27004-005	UG27004-006
Sample Date		07/23/2019	07/24/2019	07/24/2019	07/24/2019	07/24/2019	07/23/2019	07/23/2019	07/29/2019	07/24/2019	07/24/2019	07/24/2019	07/24/2019	07/24/2019	07/24/2019	07/24/2019	07/24/2019	07/24/2019
Parameter (μg/L)																		
Chromium	5,000.00	<100	36 [J]	<100	<100	<100	1,600	<100	<100	<100	<100	<100	<100	<100	110	<100	84 [J]	<100

TABLE 1 TALS

SUMMARY OF SOIL SAMPLE ANALYSIS - TCLP META
1855 House Street NE
Plainfield Township, Kent County, MI

Sample Location		HS-SB-4417	HS-SB-4417	HS-SB-4418	HS-SB-4418	HS-SB-4419	HS-SB-4419	HS-SB-4420	HS-SB-4420	HS-SB-4420	HS-SB-4500	HS-SB-4500	HS-SB-4502	HS-SB-4502	HS-SB-4503	HS-SB-4503	HS-SB-4504	HS-SB-4504
Sample Name	RCRA Maximum	HS-SB-4417 (4-5)	HS-SB-4417 (6-7)	HS-SB-4418 (4-5)	HS-SB-4418 (6-7)	HS-SB-4419 (4-5)	HS-SB-4419 (6-7)	HS-SB-4420 (4-5)	HS-SB-4420 (4-5) DUP	HS-SB-4420 (6-7)	HS-SB-4500 (16- 17)	HS-SB-4500 (6-7)	HS-SB-4502 (5-6)	HS-SB-4502 (7-8)	HS-SB-4503 (5-6)	HS-SB-4503 (7-8)	HS-SB-4504 (5-6)	HS-SB-4504 (7-8)
Depth Interval (Feet below ground surface)	Concentration	4 - 5	6 - 7	4 - 5	6 - 7	4 - 5	6 - 7	4 - 5	4 - 5	6 - 7	16 - 17	6 - 7	5 - 6	7 - 8	5 - 6	7 - 8	5 - 6	7 - 8
Laboratory Sample ID		UG27004-007	UG27004-008	UG27004-009	UH01064-002	UG27004-011	UG27004-012	UG27004-013	UG27004-014	UG27004-015	UH01064-004	UH01064-003	UH01064-012	UH01064-013	UH01064-014	UH01064-015	UH01064-008	UH01064-009
Sample Date		07/24/2019	07/24/2019	07/24/2019	07/29/2019	07/24/2019	07/24/2019	07/24/2019	07/24/2019	07/24/2019	07/30/2019	07/30/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/30/2019	07/30/2019
Parameter (μg/L)																		
Chromium	5,000.00	20 [J]	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

TABLE 1 SUMMARY OF SOIL SAMPLE ANALYSIS - TCLP METALS 1855 House Street NE

Plainfield Township, Kent County, MI

Sample Location		HS-SB-4505	HS-SB-4505	HS-SB-4506	HS-SB-4506	HS-SB-4506	HS-SB-4507	HS-SB-4507	HS-SB-4508	HS-SB-4508	HS-SB-4510	HS-SB-4510	HS-SB-4511	HS-SB-4511	HS-SB-4600	HS-SB-4600	HS-SB-4602	HS-SB-4602
Sample Name	RCRA Maximum	HS-SB-4505 (6-7)	HS-SB-4505 (8-9)	HS-SB-4506 (4-5)	HS-SB-4506 (4-5) DUP	HS-SB-4506 (6-7)	HS-SB-4507 (6-7)	HS-SB-4507 (8-9)	HS-SB-4508 (6-7)	HS-SB-4508 (8-9)	HS-SB-4510 (5-6)	HS-SB-4510 (7-8)	HS-SB-4511 (5-6)	HS-SB-4511 (7-8)	HS-SB-4600 (10- 11)	HS-SB-4600 (5-6)	HS-SB-4602 (4-5)	HS-SB-4602 (6-7)
Depth Interval (Feet below ground surface)	Concentration	6 - 7	8 - 9	4 - 5	4 - 5	6 - 7	6 - 7	8 - 9	6 - 7	8 - 9	5 - 6	7 - 8	5 - 6	7 - 8	10 - 11	5 - 6	4 - 5	6 - 7
Laboratory Sample ID		UH01064-010	UH01064-011	UH01064-005	UH01064-006	UH01064-007	UH01064-020	UH01064-021	UH01064-022	UH01064-023	UH01064-016	UH01064-017	UH01064-018	UH01064-019	UH01064-036	UH01064-035	UH01064-024	UH01064-025
Sample Date		07/30/2019	07/30/2019	07/30/2019	07/30/2019	07/30/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019
Parameter (μg/L)																		
Chromium	5,000.00	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	30 [J]	490	13 [J]	390

TABLE 1 SUMMARY OF SOIL SAMPLE ANALYSIS - TCLP METALS 1855 House Street NE

Plainfield Township, Kent County, MI

Sample Location		HS-SB-4603	HS-SB-4603	HS-SB-4604	HS-SB-4604	HS-SB-4605	HS-SB-4605	HS-SB-4606	HS-SB-4606	HS-SB-4606	HS-SB-4607	HS-SB-4607	HS-SB-4608	HS-SB-4608	HS-SB-4609	HS-SB-4609	HS-SB-4610	HS-SB-4610
Sample Name	RCRA Maximum	HS-SB-4603 (12- 13)	HS-SB-4603 (2-3)	HS-SB-4604 (12- 13)	HS-SB-4604 (14- 15)	HS-SB-4605 (5-6)	HS-SB-4605 (7-8)	HS-SB-4606 (5-6)	HS-SB-4606 (5-6) DUP	HS-SB-4606 (7-8)	HS-SB-4607 (4-5)	HS-SB-4607 (6-7)	HS-SB-4608 (10- 11)	HS-SB-4608 (7-8)	HS-SB-4609 (13- 14)	HS-SB-4609 (16- 17)	HS-SB-46010 (13- 14)	HS-SB-46010 (16- 17)
Depth Interval (Feet below ground surface)	Concentration	12 - 13	2 - 3	12 - 13	14 - 15	5 - 6	7 - 8	5 - 6	5 - 6	7 - 8	4 - 5	6 - 7	10 - 11	7 - 8	13 - 14	16 - 17	13 - 14	16 - 17
Laboratory Sample ID	1	UH01064-034	UH01064-033	UH01064-031	UH01064-032	UH01064-029	UH01064-030	UH01064-026	UH01064-027	UH01064-028	UH01064-037	UH01064-038	UH01064-040	UH01064-039	UH06017-001	UH06017-002	UH06017-003	UH06017-004
Sample Date		07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	07/31/2019	08/01/2019	08/01/2019	08/01/2019	08/01/2019
Parameter (μg/L)																		
Chromium	5,000.00	<100	51 [J]	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

TABLE 1 SUMMARY OF SOIL SAMPLE ANALYSIS - TCLP METALS 1855 House Street NE Plainfield Township, Kent County, MI

1855 House Street NE
Plainfield Township, Kent County, MI

Sample Location		HS-SB-4701	HS-SB-4701	HS-SB-4703	HS-SB-4703	HS-SB-4705	HS-SB-4705	HS-SB-4709	HS-SB-4709	HS-SB-4710	HS-SB-4711	HS-SB-4711	HS-SB-4711	HS-SB-4712	HS-SB-4712	HS-SB-4713	HS-SB-4713	HS-SB-4714
Sample Name	RCRA Maximum	HS-SB-4701 (11- 12)	HS-SB-4701 (7-8)	HS-SB-4703 (11- 12)	HS-SB-4703 (7-8)	HS-SB-4705 (13- 14)	HS-SB-4705 (7-8)	HS-SB-4709 (13- 14)	HS-SB-4709 (7-8)	HS-SB-4710 (9-10)	HS-SB-4711 (13- 14)	HS-SB-4711 (7-8)	HS-SB-4711 (7-8) DUP	HS-SB-4712 (6-7)	HS-SB-4712 (9-10)	HS-SB-4713 (10- 11)	HS-SB-4713 (7-8)	HS-SB-4714 (6-7)
Depth Interval (Feet below ground surface)	Concentration	11 - 12	7 - 8	11 - 12	7 - 8	13 - 14	7 - 8	13 - 14	7 - 8	9 - 10	13 - 14	7 - 8	7 - 8	6 - 7	9 - 10	10 - 11	7 - 8	6 - 7
Laboratory Sample ID		UH09048-006	UH09048-005	UH09048-013	UH09048-012	UH09048-017	UH09048-016	UH09050-025	UH09050-005	UH09048-001	UH09050-008	UH09050-006	UH09050-007	UH09048-003	UH09048-004	UH09050-014	UH09050-013	UH09048-014
Sample Date		08/06/2019	08/06/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/06/2019	08/07/2019	08/07/2019	08/07/2019	08/06/2019	08/06/2019	08/07/2019	08/07/2019	08/07/2019
Parameter (μg/L)																		
Chromium	5,000.00	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

TABLE 1 SUMMARY OF SOIL SAMPLE ANALYSIS - TCLP METALS 1855 House Street NE

Plainfield Township, Kent County, MI

Sample Location		HS-SB-4714	HS-SB-4715	HS-SB-4715	HS-SB-4716	HS-SB-4716	HS-SB-4716	HS-SB-4717	HS-SB-4717	HS-SB-4718	HS-SB-4718	HS-SB-4719	HS-SB-4719	HS-SB-4720	HS-SB-4720	HS-SB-4721	HS-SB-4721	HS-SB-4722
Sample Name	RCRA Maximum	HS-SB-4714 (9-10)	HS-SB-4715 (6-7)	HS-SB-4715 (9-10)	HS-SB-4716 (6-7)	HS-SB-4716 (6-7) DUP	HS-SB-4716 (9-10)	HS-SB-4717 (6-7)	HS-SB-4717 (9-10)	HS-SB-4718 (10- 11)	HS-SB-4718 (7-8)	HS-SB-4719 (6-7)	HS-SB-4719 (9-10)	HS-SB-4720 (13- 14)	HS-SB-4720 (7-8)	HS-SB-4721 (13- 14)	HS-SB-4721 (7-8)	HS-SB-4722 (10- 11)
Depth Interval (Feet below ground surface)	Concentration	9 - 10	6 - 7	9 - 10	6 - 7	6 - 7	9 - 10	6 - 7	9 - 10	10 - 11	7 - 8	6 - 7	9 - 10	13 - 14	7 - 8	13 - 14	7 - 8	10 - 11
Laboratory Sample ID		UH09048-015	UH09050-017	UH09050-018	UH09048-007	UH09048-008	UH09048-009	UH09050-020	UH09050-021	UH09048-019	UH09048-018	UH09050-023	UH09050-024	UH09050-004	UH09050-003	UH09050-002	UH09050-001	UH09050-010
Sample Date		08/07/2019	08/07/2019	08/07/2019	08/06/2019	08/06/2019	08/06/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/08/2019	08/08/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019
Parameter (μg/L)																		
Chromium	5,000.00	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

TABLE 1 SUMMARY OF SOIL SAMPLE ANALYSIS - TCLP METALS 1855 House Street NE Plainfield Township, Kent County, MI

Sample Location		HS-SB-4722	HS-SB-4724	HS-SB-4724	HS-SB-4726	HS-SB-4726	HS-SB-4728	HS-SB-4728	HS-SB-4730	HS-SB-4730	HS-SB-518
Sample Name	RCRA Maximum Concentration	HS-SB-4722 (6-7)	HS-SB-4724 (10- 11)	HS-SB-4724 (7-8)	HS-SB-4726 (11- 12)	HS-SB-4726 (7-8)	HS-SB-4728 (11- 12)	HS-SB-4728 (7-8)	HS-SB-4730 (6-7)	HS-SB-4730 (9-10)	HS-SB-518 (11-12)
Depth Interval (Feet below ground surface)		6 - 7	10 - 11	7 - 8	11 - 12	7 - 8	11 - 12	7 - 8	6 - 7	9 - 10	11 - 12
Laboratory Sample ID		UH09050-009	UH09050-012	UH09050-011	UH09050-016	UH09050-015	UH09050-022	UH09050-019	UH09048-010	UH09048-011	UH09048-002
Sample Date		08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/07/2019	08/06/2019
Parameter (μg/L)											
Chromium	5,000.00	<100	13 [J]	<100	<100	<100	<100	<100	<100	13 [J]	<100

1855 House Street NE Plainfield Township, Kent County, MI

NOTES:

- 1. Concentration and criteria units are micrograms per Liter ($\mu g/L$) or parts per billion (ppb).
- 2. RCRA Maximum Concentration criteria are based on "Table 1, Maximum Concentration of Contaminants for the Toxicity Characteristic," 40 CFR 261.24, last amended March 13, 2002.
- 3. Bold, italic number with thick line border or italic parameter name indicates that parameter was detected above the RCRA Maximum Concentration.
- 4. Abbreviations include:
- "< RL" indicates the parameter was analyzed for but not detected above the method detection limit; RL = Reporting Limit.
- "DUP" indicates a duplicate sample.

TABLE 2A SUMMARY OF SOIL SAMPLE ANALYSIS - VOCS 1855 House Street NE Plainfield Township, Kent County, MI

Sample Location			Deat 204 Consula	Deat 204 Consula	Death 204 Committee			EGLE Residential		1781 House
Sample Name		Part 201 Generic	Part 201 Generic Groundwater	Part 201 Generic Residential Soil	Part 201 Generic Residential Soil	Part 201 Generic	Part 201 Generic	Soil	U.S. EPA	1781 House ST
Laboratory Sample ID(s)	Statewide Default Background ²	Residential Soil Cleanup Criteria – Drinking Water Protection ²	Cleanup Criteria – Groundwater Surface Water Interface ²	Cleanup Criteria – Soil Volatilization to Indoor Air Inhalation ²	Cleanup Criteria – Infinite Source Volatile Soil Inhalation ²	Residential Soil Cleanup Criteria – Particulate Soil Inhalation ²	Residential Soil Cleanup Criteria – Direct Contact ²	Recommended Volatilization to Indoor Air Interim Action Screening	Residential Soil Regional Removal Management Levels ⁴	Composite UH06020- 001/19080384- 01A
Sample Date								Level ³		08/02/2019
Parameter (µg/kg)										
Acetone	NA	15,000	34,000	290,000,000	130,000,000	390,000,000,000	23,000,000	260,000	180,000,000	<770
Benzene	NA	100	4,000	1,600	13,000	380,000,000	180,000	2	120,000	<77
Bromodichloromethane	NA	1,600	ID	1,200	9,100	84,000,000	110,000	NCL	29,000	<77
Bromoform	NA	1,600	ID	150,000	900,000	2,800,000,000	820,000	NCL	1,900,000	<77
2-Butanone (MEK)	NA	260,000	44,000	54,000,000	29,000,000	67,000,000,000	120,000,000	NCL	81,000,000	<770
Bromomethane (Methyl bromide)	NA	200	100	860	11,000	330,000,000	320,000	NCL	21,000	<150
Carbon disulfide	NA	16,000	ID	76,000	1,300,000	47,000,000,000	7,200,000	NCL	2,300,000	<77
Carbon tetrachloride	NA	100	760	190	3,500	130,000,000	96,000	NCL	65,000	<77
Chlorobenzene	NA	2,000	500	120,000	770,000	4,700,000,000	4,300,000	82	830,000	<77
Chloroethane	NA	8,600	22,000	2,900,000	30,000,000	670,000,000,000	2,600,000	330	41,000,000	<150
Chloroform	NA	1,600	7,000	7,200	45,000	1,300,000,000	1,200,000	0	32,000	<77
Chloromethane (Methyl chloride)	NA	5,200	ID	2,300	40,000	4,900,000,000	1,600,000	7	330,000	<77
Cyclohexane	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	20,000,000	<77
1,2-Dibromo-3-chloropropane (DBCP)	NA	10	ID	220	260	560,000	4,400	NCL	530	<77
Dibromochloromethane	NA	1,600	ID	3,900	24,000	130,000,000	110,000	NCL	830,000	<77
1,2-Dibromoethane (EDB)	NA	20	110	670	1,700	14,000,000	92	NCL	3,600	<77
1,2-Dichlorobenzene	NA	14,000	280	11,000,000	39,000,000	100,000,000,000	19,000,000	NCL	5,400,000	<77
1,3-Dichlorobenzene	NA	170	680	26,000	79,000	200,000,000	200,000	10	NCL	<77
1,4-Dichlorobenzene	NA	1,700	360	19,000	77,000	450,000,000	400,000	23	260,000	<77
Dichlorodifluoromethane	NA	95,000	ID	900,000	53,000,000	3,300,000,000,000	52,000,000	NCL	260,000	<150
1,1-Dichloroethane	NA	18,000	15,000	230,000	2,100,000	33,000,000,000	27,000,000	3	360,000	<77
1,2-Dichloroethane	NA	100	7,200	2,100	6,200	120,000,000	91,000	NCL	46,000	<77
1,1-Dichloroethene	NA	140	2,600	62	1,100	62,000,000	200,000	12	680,000	<77
cis-1,2-Dichloroethene	NA	1,400	12,000	22,000	180,000	2,300,000,000	2,500,000	2	470,000	<77
trans-1,2-Dichloroethene	NA	2,000	30,000	23,000	280,000	4,700,000,000	3,800,000	39	4,700,000	<77
1,2-Dichloropropane	NA	100	4,600	4,000	25,000	270,000,000	140,000	NCL	47,000	<77
cis-1,3-Dichloropropene	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<77
trans-1,3-Dichloropropene	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<77
Ethylbenzene	NA	1,500	360	87,000	720,000	10,000,000,000	22,000,000	12	580,000	<77
2-Hexanone	NA	20,000	ID	990,000	1,100,000	2,700,000,000	32,000,000	NCL	600,000	<770
Isopropylbenzene	NA	91,000	3,200	400,000	1,700,000	5,800,000,000	25,000,000	NCL	5,800,000	<77
Methyl acetate	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	230,000,000	71 [J]
Methyl tertiary butyl ether (MTBE)	NA	800	140,000	9,900,000	25,000,000	200,000,000,000	1,500,000	74	4,700,000	<77
4-Methyl-2-pentanone	NA	36,000	ID	37,000,000	45,000,000	140,000,000,000	56,000,000	NCL	99,000,000	<770
Methylcyclohexane	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<390
Methylene chloride	NA	100	30,000	45,000	210,000	6,600,000,000	1,300,000	130	1,000,000	<77
Styrene	NA	2,700	2,100	250,000	970,000	5,500,000,000	400,000	NCL	18,000,000	<77
1,1,2,2-Tetrachloroethane	NA NA	170	1.600	4.300	10.000	54.000.000	53.000	NCL	60.000	<77

TABLE 2A SUMMARY OF SOIL SAMPLE ANALYSIS - VOCS 1855 House Street NE Plainfield Township, Kent County, MI

Sample Location Sample Name Laboratory Sample ID(s) Sample Date	Statewide Default Background ²	Part 201 Generic Residential Soil Cleanup Criteria – Drinking Water Protection ²	Part 201 Generic Groundwater Cleanup Criteria – Groundwater Surface Water Interface ²	Part 201 Generic Residential Soil Cleanup Criteria – Soil Volatilization to Indoor Air Inhalation ²	Part 201 Generic Residential Soil Cleanup Criteria – Infinite Source Volatile Soil Inhalation ²	Part 201 Generic Residential Soil Cleanup Criteria – Particulate Soil Inhalation ²	Part 201 Generic Residential Soil Cleanup Criteria – Direct Contact ²	EGLE Residential Soil Recommended Volatilization to Indoor Air Interim Action Screening Level ³	U.S. EPA Residential Soil Regional Removal Management Levels ⁴	1781 House 1781 House ST Composite UH06020- 001/19080384- 01A 08/02/2019
Parameter (μg/kg)										
Tetrachloroethene	NA	100	1,200	11,000	170,000	2,700,000,000	200,000	6	240,000	<77
Toluene	NA	16,000	5,400	330,000	2,800,000	27,000,000,000	50,000,000	3,700	15,000,000	<77
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA	9,000,000	1,700	5,100,000	180,000,000	5,100,000,000,000	1,000,000,000	NCL	20,000,000	<77
1,2,4-Trichlorobenzene	NA	4,200	5,900	9,600,000	28,000,000	25,000,000,000	990,000	53	170,000	<77
1,1,1-Trichloroethane	NA	4,000	1,800	250,000	3,800,000	67,000,000,000	500,000,000	450	24,000,000	<77
1,1,2-Trichloroethane	NA	100	6,600	4,600	17,000	190,000,000	180,000	NCL	4,500	<77
Trichloroethene	NA	100	4,000	1,000	11,000	130,000,000	110,000	0	12,000	<77
Trichlorofluoromethane	NA	52,000	NA	2,800,000	92,000,000	3,800,000,000,000	79,000,000	NCL	70,000,000	<77
Vinyl chloride	NA	40	260	270	4,200	350,000,000	3,800	0	5,900	<77
m+p - Xylenes	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<77
o - Xylenes	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	1,900,000	<77
Xylenes (total)	NA	5,600	980	6,300,000	46,000,000	290,000,000,000	410,000,000	280	1,700,000	<150

TABLE 2B SUMMARY OF SOIL SAMPLE ANALYSIS - SVOCS 1855 House Street NE Plainfield Township, Kent County, MI

16.0062335.52 Page 1 of 2 See After Table 1E For Notes

Sample Location		Deat 201 Comercia	Part 201 Generic	Part 201 Generic	Part 201 Generic	Deat 201 Caracia		EGLE Residential	11.C EDA	1781 House
Sample Name	Statewide Default	Part 201 Generic Residential Soil Cleanup Criteria –	Groundwater Cleanup Criteria –	Residential Soil Cleanup Criteria –	Residential Soil Cleanup Criteria –	Part 201 Generic Residential Soil Cleanup Criteria –	Part 201 Generic Residential Soil	Soil Recommended Volatilization to	U.S. EPA Residential Soil Regional Removal	1781 House ST Composite
Laboratory Sample ID(s)	Background ²	Drinking Water Protection ²	Groundwater Surface Water	Soil Volatilization to Indoor Air	Infinite Source Volatile Soil	Particulate Soil Inhalation ²	Cleanup Criteria – Direct Contact ²	Indoor Air Interim Action Screening	Management Levels ⁴	UH06020- 001/19080384-01A
Sample Date		Trotection	Interface ²	Inhalation ²	Inhalation ²	midiación		Level ³	Levels	08/02/2019
Parameter (μg/kg)										
Acenaphthene	NA	300,000	8,700	190,000,000	81,000,000	14,000,000,000	41,000,000	NCL	11,000,000	<17
Acenaphthylene	NA	5,900	ID	1,600,000	2,200,000	2,300,000,000	1,600,000	NCL	NCL	<17
Acetophenone	NA	30,000	ID	120,000,000	44,000,000	33,000,000,000	47,000,000	NCL	23,000,000	<85
Anthracene	NA	41,000	ID	1,000,000,000	1,400,000,000	67,000,000,000	230,000,000	NCL	54,000,000	<17
Atrazine	NA	60	150	NLV	NLV	ID	71,000	NCL	240,000	<85
Benzidine	NA	1,000	1,000	NLV	NLV	46,000	1,000	NCL	53	<420
Benzo(a)anthracene	NA	NLL	NLL	NLV	NLV	ID	20,000	NCL	110,000	35
Benzo(a)pyrene	NA	NLL	NLL	NLV	NLV	1,500,000	2,000	NCL	11,000	42
Benzo(b)fluoranthene	NA	NLL	NLL	ID	ID	ID	20,000	NCL	110,000	58
Benzo(g,h,i)perylene	NA	NLL	NLL	NLV	NLV	800,000,000	2,500,000	NCL	NCL	27
Benzo(k)fluoranthene	NA	NLL	NLL	NLV	NLV	ID	200,000	NCL	1,100,000	23
Butyl benzyl phthalate	NA	2,200,000	120,000	NLV	NLV	47,000,000,000	36,000,000	NCL	29,000,000	<85
Caprolactam	NA	120,000	NA	NLV	NLV	670,000,000	53,000,000	NCL	94,000,000	<85
Carbazole	NA	9,400	1,100	NLV	NLV	62,000,000	530,000	NCL	NCL	<85
4-Chloro-3-methyl phenol	NA	5,800	280	NLV	NLV	ID	4,500,000	NCL	19,000,000	<85
bis (2-Chloroethyl) ether	NA	100	100	8,300	3,800	9,400,000	13,000	NCL	23,000	<85
2-Chloronaphthalene	NA	620,000	NA	ID	ID	ID	56,000,000	NCL	14,000,000	<85
2-Chlorophenol	NA	900	360	430,000	960,000	1,200,000,000	1,400,000	NCL	1,200,000	<85
Chrysene	NA	NLL	NLL	ID	ID	ID	2,000,000	NCL	11,000,000	42
Dibenzo(a,h)anthracene	NA	NLL	NLL	NLV	NLV	ID	2,000	NCL	11,000	<17
Dibenzofuran	NA	ID	1,700	2,000,000	130,000	6,700,000	ID	NCL	220,000	<85
3,3'-Dichlorobenzidine	NA	2,000	2,000	NLV	NLV	6,500,000	6,600	NCL	120,000	<85
2,4-Dichlorophenol	NA	1,500	330	NLV	NLV	5,100,000,000	660,000	NCL	570,000	<85
Diethylphthalate	NA	110,000	2,200	NLV	NLV	3,300,000,000	170,000,000	NCL	150,000,000	<85
Dimethyl phthalate	NA	1,500,000	NA	NLV	NLV	3,300,000,000	1,000,000,000	NCL	NCL	<85
2,4-Dimethylphenol	NA	7,400	7,600	NLV	NLV	4,700,000,000	11,000,000	NCL	3,800,000	<85
Di-n-butyl phthalate	NA	960,000	11,000	NLV	NLV	3,300,000,000	27,000,000	NCL	19,000,000	<85
4,6-Dinitro-2-methylphenol	NA	830	NA	NLV	NLV	130,000,000	79,000	NCL	15,000	<420
2,4-Dinitrotoluene	NA	430	NA	NLV	NLV	16,000,000	48,000	NCL	170,000	<160
Di-n-octylphthalate	NA	100,000,000	ID	NLV	NLV	31,000,000,000	6,900,000	NCL	1,900,000	<85
1,2-Diphenylhydrazine(as azobenzene)	NA	4,200	ID	6,100,000	630,000	100,000,000	140,000	NCL	560,000	<85

R&W/GZA

TABLE 2B

SUMMARY OF SOIL SAMPLE ANALYSIS - SVOCS 1855 House Street NE

Plainfield Township, Kent County, MI

16.0062335.52 Page 2 of 2 See After Table 1E For Notes

Sample Location		Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic		EGLE Residential	U.S. EPA	1781 House
Sample Name	Statewide Default	Residential Soil Cleanup Criteria –	Groundwater Cleanup Criteria –	Residential Soil Cleanup Criteria –	Residential Soil Cleanup Criteria –	Residential Soil Cleanup Criteria –	Part 201 Generic Residential Soil	Recommended Volatilization to	Residential Soil Regional Removal	1781 House ST Composite
Laboratory Sample ID(s)	Background ²	Drinking Water Protection ²	Groundwater Surface Water	Soil Volatilization to Indoor Air	Infinite Source Volatile Soil	Particulate Soil Inhalation ²	Cleanup Criteria – Direct Contact ²	Indoor Air Interim Action Screening	Management Levels ⁴	UH06020- 001/19080384-01A
Sample Date		Frotection	Interface ²	Inhalation ²	Inhalation ²	IIIIIaiatioii		Level ³	Leveis	08/02/2019
Parameter (µg/kg)										
bis(2-Ethylhexyl)phthalate	NA	NLL	NLL	NLV	NLV	700,000,000	2,800,000	NCL	3,800,000	<85
Fluoranthene	NA	730,000	5,500	1,000,000,000	740,000,000	9,300,000,000	46,000,000	NCL	7,200,000	70
Fluorene	NA	390,000	5,300	580,000,000	130,000,000	9,300,000,000	27,000,000	NCL	7,200,000	<17
Hexachlorobenzene	NA	1,800	350	41,000	17,000	6,800,000	8,900	NCL	21,000	<85
Hexachlorobutadiene	NA	26,000	91	130,000	130,000	140,000,000	100,000	NCL	120,000	<85
Hexachlorocyclopentadiene	NA	320,000	ID	30,000	50,000	13,000,000	2,300,000	NCL	5,300	<420
Hexachloroethane	NA	430	1,800	40,000	550,000	230,000,000	230,000	NCL	130,000	<85
Indeno(1,2,3-c,d)pyrene	NA	NLL	NLL	NLV	NLV	ID	20,000	NCL	110,000	23
Isophorone	NA	15,000	26,000	NLV	NLV	12,000,000,000	4,800,000	NCL	38,000,000	<85
2-Methylnaphthalene	NA	57,000	4,200	2,700,000	1,500,000	670,000,000	8,100,000	NCL	720,000	<17
2-Methylphenol	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	9,500,000	<85
3+4-Methylphenol	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	19,000,000	<160
Naphthalene	NA	35,000	730	250,000	300,000	200,000,000	16,000,000	NCL	380,000	<17
Nitrobenzene	NA	330	3,600	91,000	54,000	47,000,000	100,000	NCL	380,000	<85
2-Nitrophenol	NA	400	ID	NLV	NLV	ID	630,000	NCL	NCL	<160
N-Nitrosodi-n-propylamine	NA	330	NA	NLV	NLV	1,600,000	1,200	NCL	7,800	<85
N-Nitrosodiphenylamine (Diphenylamine)	NA	5,400	NA	NLV	NLV	2,200,000,000	1,700,000	NCL	11,000,000	<85
Pentachlorophenol	NA	22	17,000	NLV	NLV	100,000,000	90,000	NCL	100,000	<420
Phenanthrene	NA	56,000	2,100	2,800,000	160,000	6,700,000	1,600,000	NCL	NCL	27
Phenol	NA	88,000	9,000	NLV	NLV	40,000,000,000	40,000,000	NCL	57,000,000	<85
Pyrene	NA	480,000	ID	1,000,000,000	650,000,000	6,700,000,000	29,000,000	NCL	5,400,000	60
2,4,5-Trichlorophenol	NA	39,000	NA	NLV	NLV	23,000,000,000	23,000,000	NCL	19,000,000	<85
2,4,6-Trichlorophenol	NA	2,400	330	NLV	NLV	1,000,000,000	710,000	NCL	190,000	<85

TABLE 2C SUMMARY OF SOIL SAMPLE ANALYSIS - METALS 1855 House Street NE Plainfield Township, Kent County, MI

								EGLE Residential	1	
Sample Location		Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic	David 204 Carrania	Soil	U.S. EPA	1781 House
Sample Name	Statewide Default	Residential Soil	Groundwater Cleanup Criteria –	Residential Soil Cleanup Criteria –	Residential Soil Cleanup Criteria –	Residential Soil	Part 201 Generic Residential Soil	Recommended	Residential Soil	1781 House ST
	Background ²	Cleanup Criteria –	Groundwater	Soil Volatilization	Infinite Source	Cleanup Criteria –	Cleanup Criteria –	Volatilization to	Regional Removal	Composite
Laboratory Sample ID(s)		Drinking Water Protection ²	Surface Water	to Indoor Air	Volatile Soil	Particulate Soil Inhalation ²	Direct Contact ²	Indoor Air Interim Action Screening	Management Levels ⁴	UH06020- 001/19080384-01A
Sample Date		Trocection	Interface ²	Inhalation ²	Inhalation ²	imalacion		Level ³	ECVCIS	08/02/2019
Parameter (μg/kg)										
Aluminum	6,900,000	1,000	NA	NLV	NLV	ID	50,000,000	NCL	230,000,000	10,000,000
Antimony	NA	4,300	94,000	NLV	NLV	13,000,000	180,000	NCL	94,000	<580
Arsenic	5,800	4,600	4,600	NLV	NLV	720,000	7,600	NCL	68,000	2,900
Barium	75,000	1,300,000	660,000	NLV	NLV	330,000,000	37,000,000	NCL	46,000,000	90,000
Beryllium	NA	51,000	320,000	NLV	NLV	1,300,000	410,000	NCL	470,000	99 [J]
Boron	NA	10,000	140,000	NLV	NLV	ID	48,000,000	NCL	47,000,000	<15,000
Cadmium	1,200	6,000	3,000	NLV	NLV	1,700,000	550,000	NCL	NCL	120 [J]
Chromium (Total)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	15,000
Cobalt	6,800	800	2,000	NLV	NLV	13,000,000	2,600,000	NCL	70,000	4,000
Copper	32,000	5,800,000	100,000	NLV	NLV	130,000,000	20,000,000	NCL	9,400,000	8,000
Iron	12,000,000	6,000	NA	NLV	NLV	ID	160,000,000	NCL	160,000,000	9,800,000
Lead	21,000	700,000	2,500,000	NLV	NLV	100,000,000	400,000	NCL	400,000	18,000
Magnesium	NA	8,000,000	NA	NLV	NLV	6,700,000,000	1,000,000,000	NCL	NCL	6,600,000
Mercury	130	1,700	50	48,000	52,000	20,000,000	160,000	0	33,000	23 [J]
Molybdenum	NA	1,500	64,000	NLV	NLV	ID	2,600,000	NCL	1,200,000	<2,900
Nickel	20,000	100,000	100,000	NLV	NLV	13,000,000	40,000,000	NCL	4,600,000	9,600
Selenium	410	4,000	400	NLV	NLV	130,000,000	2,600,000	NCL	1,200,000	<1,500
Silver	1,000	4,500	100	NLV	NLV	6,700,000	2,500,000	NCL	1,200,000	<290
Sodium	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	120,000
Thallium	NA	2,300	4,200	NLV	NLV	13,000,000	35,000	NCL	2,300	100 [J]
Titanium	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	240,000
Vanadium	NA	72,000	430,000	NLV	NLV	ID	750,000	NCL	1,200,000	19,000
Zinc	47,000	2,400,000	230,000	NLV	NLV	ID	170,000,000	NCL	70,000,000	33,000

TABLE 2D

SUMMARY OF SOIL SAMPLE ANALYSIS - INORGANICS/GENERAL CHEMISTRY See After Table 1E For Notes

1855 House Street NE Plainfield Township, Kent County, MI

Sample Location		Part 201 Generic	Part 201 Generic	Part 201 Generic		Part 201 Generic	D. 1 204 C	EGLE Residential Soil	U.S. EPA	1781 House
Sample Name	Statewide Default	Residential Soil	Groundwater Cleanup Criteria –	Residential Soil Cleanup Criteria –	Residential Soil Cleanup Criteria –	Residential Soil	Part 201 Generic Residential Soil	Recommended	Residential Soil	1781 House ST Composite
Laboratory Sample ID(s)	Background ²	Cleanup Criteria – Drinking Water	Groundwater Surface Water	Soil Volatilization to Indoor Air	Infinite Source Volatile Soil	Cleanup Criteria – Particulate Soil	Cleanup Criteria – Direct Contact ²	Indoor Air Interim		UH06020-001/19080384-01A
Sample Date		Protection ²	Interface ²	Inhalation ²	Inhalation ²	Inhalation ²	Direct contact	Action Screening Level ³	Levels ⁴	08/02/2019
Parameter (μg/kg)										
Acetic Acid	NA	84,000	180,000	NLV	NLV	17,000,000,000	130,000,000	NCL	NCL	<20,000
Formic Acid	NA	200,000	ID	1,500,000	210,000	130,000,000	320,000,000	NCL	87,000	<20,000
Cyanide - Total	390	4,000	100	NLV	NLV	250,000	12,000	NCL	69,000	280 [J]
Cyanide, Available	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	72
Ammonia - N (gas diffusion)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<1,300
Nitrate-Nitrite - N (soluble)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	3,200
Chloride (soluble)	NA	5,000,000	NCL	NLV	NLV	ID	500,000	NCL	NCL	<13,000
Phosphorus	NA	1,300,000	20,000	NLV	NLV	67,000,000	1,000,000,000	NCL	NCL	290,000
Sulfate (soluble)	NA	5,000,000	NA	NLV	NLV	ID	ID	NCL	NCL	<13,000
Sulfide (Acid Soluble)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<100,000

16.0062335.52

Page 1 of 1

TABLE 2E SUMMARY OF SOIL SAMPLE ANALYSIS - PFAS 1855 House Street NE Plainfield Township, Kent County, MI

Sample Location	Statewide Default Background ²	Part 201 Generic Residential Soil Cleanup Criteria – Drinking Water Protection ²	Part 201 Generic Groundwater Cleanup Criteria – Groundwater Surface Water Interface ²	Residential Soil	Part 201 Generic Residential Soil Cleanup Criteria – Infinite Source Volatile Soil Inhalation ²	Part 201 Generic Residential Soil Cleanup Criteria – Particulate Soil Inhalation ²	Part 201 Generic Residential Soil Cleanup Criteria – Direct Contact ²	EGLE Residential Soil Recommended Volatilization to Indoor Air Interim Action Screening Level ³	U.S. EPA Residential Soil Regional Removal Management Levels ⁴	1781 House
Sample Name										1781 House ST Composite
Laboratory Sample ID(s)										UH06020- 001/19080384- 01A
Sample Date										08/02/2019
Parameter (μg/kg)										
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<13
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<13
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<2.5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<2.5
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	3,800,000	<6.3
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorooctanoic acid (PFOA)	NCL	NCL	10,000	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorooctane sulfonic acid (PFOS)	NCL	NCL	0.24	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<6.3

1855 House Street NE

Plainfield Township, Kent County, MI

NOTES:

- 1. Concentration and criteria units are micrograms per kilogram (µg/kg) or parts per billion (ppb). Calculated criteria and concentrations are rounded to two significant digits. "ND" indicates the parameters used in the calculation were not detected. "NC" indicates not calculated.
- 2. Michigan Part 201 Soil Cleanup Criteria are based on "Table 2, Soil: Residential Part 201 Generic Cleanup Criteria and Screening Levels/Part 213 Tier I Risk Based Screening Levels,"

Michigan Administrative Code, Cleanup Criteria Requirements for Response Activity, Rules 299.46 and 299.49, effective December 30, 2013; updated June 25, 2018.

Abbreviations Include:

"ID" indicates insufficient data to develop criterion

"NA" indicates a criterion or value is not available or, in the case of background, not applicable.

"NCL" indicates no criterion listed in EGLE Table 2.

"NLL" indicates the substance is not likely to leach under most soil conditions.

"NLV" indicates the substance is not likely to volatilize under most conditions.

- (B) Background, as defined in R 299.1(b), may be substituted if higher than the calculated cleanup criterion, Background levels may be less than criteria for some inorganic compounds.
- (C) The criterion developed under R 299.20 to R 299.26 exceeds the chemical-specific soil saturation screening level (C_{sat}).
- (D) The calculated criterion exceeds 100 percent, hence it is reduced to 100 percent or 1.0E+9 ppb.
- (E) Criterion is based on adverse impacts to plant life and phytotoxicity
- (G) Groundwater surface water interface protection (GSIP) criterion depends on the pH or water hardness, or both, of the receiving surface water.
 - EGLE's Footnote (G) GSI/GSIPC Calculation spreadsheet was utilized to calculate GSI criterion presented. The Rogue River is the receiving surface water for the Site. Hardness (220 mg CaCO₃/L) and pH (7.5 standard units) used in the calculations were the lowest (most-conservative) of the calculated mean and median of the Rogue River surface water samples collected in Rockford, MI at the former tannery (TA-SW-02, TA-SW-03, TA-SW-05, and TA-SW-07) rounded to two significant digits and water hardness or pH for the Rogue River near Rockford published in United States Geological Survey Circular 323, "Water Resources of the Grand Rapids Area, Michigan," Table 1, 1954.
- (M) Calculated criterion is below the analytical target detection limit, therefore, the criterion defaults to the target detection limit.
- (N) Where leaching to groundwater is a relevant pathway, soil concentrations of all potential sources of nitrate-nitrogen (e.g., ammonia-N, nitrite-N, nitrate-N) shall not, when added together, exceed the nitrate drinking water protection criterion of 2.0E+5 µg/kg.
- (P) Total cyanide methods or method OIA-1677 shall be used to quantify cyanide concentrations for compliance with soil criteria.
- (W) Concentrations of trihalomethanes in groundwater shall be added together to determine compliance with the drinking water protection criterion of 1,600 µg/kg.
- (CC) The generic soil GSI protection criteria for unionized ammonia are 580 µg/kg and 1,100 µg/kg for cold water and warm water surface water, respectively. The percent conversion factor in the table for cold water (20°C or 68°F) and pH (8.0 standard units) is 3.82%.
- (DD) Residential direct contact criteria are protective of both prenatal and postnatal exposure.
- (EE) The applicable GSI criteria for phosphorus is 1,000 µg/L. The footnote does not specify a GSIP criterion, however, the GSIP for phosphorus refers to Footnote EE. Conservatively, a value of 20 times the GSI criterion (20,000 µg/kg) was used.
- 3. EGLE Residential Soil Recommended Volatilization to Indoor Air Interim Action Screening Levels (RIASLs) for were based on EGLE's Toxics Steering Group's "Media-Specific Interim Action Screening Levels," published in August 2017. The EGLE published the RIASLs in August 2017, and recently removed the RIASLs from the EGLE website. The EGLE is reportedly evaluating the RIASLs for appropriate use and applicability. These are included for reference.
- "NCL" indicates no value listed in the Media-Specific Interim Action Screening Levels table.

- (M) Site-specific criterion may be below target detection limits (TDL)
- 4. U.S. EPA Residential Soil Regional Removal Management Levels (RMLs) were based on "Generic RML Tables," updated November 2018.
- 5. To the extent that samples listed in these tables contain or consist of waste material, in whole or in part, the comparison to the EGLE Part 201 generic cleanup criteria does not imply applicability of the criteria because the physical and chemical properties of the waste material are expected to be different from the default values or assumptions used to derive the Generic Soil Cleanup Criteria in the Cleanup Criteria Requirements for Response Activity Rules (R299.1-299.50).
- 6. Bold, italic number with thick line border or italic parameter name indicates that parameter was detected above the Michigan Part 201 Soil Cleanup Criteria. Per MCL 324.20101(e)(i), if state-wide default background levels are available and greater than a risk-based generic cleanup criterion, then the state-wide default background levels are used as a substitute for that generic cleanup criterion.
- 7. Abbreviations include:
 - "< RL" indicates the parameter was analyzed for but not detected above the method detection limit; RL = Reporting Limit.
 - "DUP" indicates a duplicate sample.
 - "B" indicates the parameter was also detected in the method blank.
 - "J" indicates the parameter was detected at a concentration greater than the limit of quantitation (LOQ) but less than the detection limit (DL) and the result is estimated.
 - "H" indicates the sample was analyzed out of holding time.
- 8. Sample names presented are from Shealy Environmental Services, Inc. laboratory reports. Sample names presented in ALS Environmental lab reports may have minor differences based on laboratory interpretation of the chains of custody.

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4100 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 **GZ**\ Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/8/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 H. Datum: MI State Plane S Zone NAD83 **Gary Geerligs** Final Depth (ft.): Foreman: 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description C-1 0-5 60 57 NR C-1: **TOPSOIL** 06 S-1 0-1 S-1: 0-0.6': Black, TOPSOIL, Silt, moist. 2.6 0.6-1': Brown, Clayey SILT, little fine Sand, Sand lens from **CLAYEY SILT** S-2 2 1-2 1.6 SAND No Equipment Installed S-2: 1-1.2': Brown, fine to medium SAND, little Silt, moist. 2 1.2'-2': Brown, Clayey SILT, little fine Sand, moist. S-3 2-3 1.2 3 S-3: Brown, Clayey SILT, little fine Sand, moist. 3 3-4 S-4: Brown, Clayey SILT, little fine Sand, moist. S-4 2.0 CLAYFY SILT S-5 4-5 3.5 S-5: No recovery. 5 51 C-2 5-10 60 NR C-2: S-6 5-6 2.4 S-6: 5-5.4': Brown, Clayey SILT, little fine Sand, moist. SILTY CLAY 5.8 6 5.4-6': Brown, fine to medium SAND, little Silt, moist, 6 1 SAND S-7 6-7 4 S-7: 6-6.1': Brown, fine to medium SAND, little Silt, moist. SILTY CLAY 6.1-6.2': Brown, Silty CLAY, little fine Sand, moist. 6.2-7': Light gray, fine to medium SAND, trace Silt, moist. WASTE S-8 7-8 2.6 S-8: 7-7.6': Light gray, fine to medium SAND, trace Silt, 7.6 8 7.6-8': Brown, Silty CLAY, little fine Sand, moist. S-9 8-9 4.6 S-9: Brown, Silty CLAY, little fine Sand, moist. SILTY CLAY 9 S-10: 9-9.1': Brown, fine to medium SAND, little Silt, moist. S-10 9-10 2.7 SAND 9.1-10': Brown, CLAY, little fine Sand, moist. 10 60 60 C-3 10-15 NR C-3: S-11 10-11 2.4 S-11: Light gray, fine to medium SAND, trace Silt, wet. SAND 11 S-12 11-12 2.3 S-12: 11-11.8': Light gray, fine to medium SAND, trace Silt, 11.8 11.8-12': Brown, CLAY, little fine Sand, moist, 12 12-13 S-13 12-13 0.6 S-13: 12-12.5': Brown, CLAY, little fine Sand, moist. CLAY 12.5 12.5-12.8': Brown, fine to coarse SAND, some Clayey Silt, 12.8 SAND 13 SAND S-14 13-14 0.7 12.8-13': White, coarse SAND, trace Silt. SILTY CLAY S-14: 13-13.1': Brown, Silty CLAY, little fine Sand, moist. SAND 14 <u>Cohesive Soils</u> <u>Blows/FT Consistency</u> <u>Granular Soils</u> **Plasticity** SM Thread Diameter Rolled **MISSDIG Ticket Number:** Blows/FT Density <2 -- Very Soft 0-4 -- Very Loose None SILT 4-10 -- Loose 1/4" Clayey SILT B91621870 2-4 -- Soft 10-30 -- Medium Dense 4-8 -- M. Stiff 1/8" SILT & CLAY 30-50 -- Dense 8-15 -- Stiff **CLAY & SILT** 1/16" 15-30 -- V. Stiff >50 -- Very Dense 1/32' Silty CLAY 1/64" >30 -- Hard 1. Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 Logger: eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.0 ppmv. REMARKS Groundwater was not encountered during drilling or upon completion. Sean Stevenson Borehole was backfilled with Bentonite upon completion. 4. Waste odor noted. **Boring No.:**

HS-SB-4100

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/20

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4100 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/8/2019 E TBD N TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) 13.1-14': Light brown, fine to medium SAND, little Silt, moist. S-15 14-15 S-15: Light brown, fine to medium SAND, little Silt, moist. 15 15-16 60 43 NR C-4 15-20 C-4: S-16 15-16 1.8 S-16: Light brown, fine to medium SAND, little Silt, moist. 16 SAND S-17 16-17 1.1 S-17: Light brown, fine to medium SAND, little Silt, moist. 17 S-18 17-18 1.6 S-18: 17-17.9': Light brown, fine to medium SAND, little Silt, 17.9 17.9-18': Brown, CLAY, little fine Sand, moist. 18 S-19 18-19 0.4 S-19: 18-18.4': Brown, CLAY, little fine Sand, moist. 18.4-19': No recovery. 19 CI AY S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson

Boring No.:

HS-SB-4100

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4101 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW** BORING COORDINATES (International Feet): Logged By: Sean Stevenson Start Date: 7/8/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Foreman: Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description 53 C-1 0-5 60 NR C-1: 0.3 TOPSOIL S-1 0-1 0.0 S-1: 0-0.4': Black, TOPSOIL, Silt, moist. **CLAYEY SILT** 0.4-1': Brown, Clayey SILT, little fine Sand, Sand lenses at S-2 2 1-2 1.2 No Equipment Installed S-2: Light brown, fine to medium SAND, little Silt, Clay SAND 2 lenses at 1.1'-1.2', moist. 3 S-3 2-3 0.4 S-3: Brown, Clayey SILT, little fine Sand, Sand lenses from 2 7'-2 8' 3 S-4 3-4 S-4: Brown, Clayey SILT, little fine Sand, moist. 1.2 S-5 4-5 0.2 S-5: Brown, Clayey SILT, little fine Sand, moist. 5 58 C-2 5-10 60 NR C-2: 2.0 S-6 5-6 S-6: Brown, Clayey SILT, little fine Sand, Rock fragments CLAYEY SILT 6 from 5.5'-5.6', moist, S-7 6-7 0.3 S-7: Brown, Clayey SILT, little fine Sand, moist. S-8 7-8 4.2 S-8: Brown, Clayey SILT, little fine Sand, moist. 8 S-9 8-9 0.3 S-9: Brown, Clayey SILT, little fine Sand, moist. 9 9-10 0.6 S-10: Brown, CLAY, little fine Sand, moist. S-10

14 _	moist.			
Granular Soils Blows/FT Density 0-4 Very Loose 4-10 Loose 10-30 Medium Dense 30-50 Dense >50 Very Dense	Cohesive Soils Blows/FT Consistency <2 Very Soft 2-4 Soft 4-8 M. Stiff 8-15 Stiff 15-30 V. Stiff >30 Hard	1/4" C 1/8" S 1/16" C 1/32" S		MISSDIG Ticket Number: B91621870

S-11: 10-10.7': Brown, CLAY, little fine Sand, moist.

black Clay 11.2'-11.3', moist.

10.7-11': Brown, fine to coarse SAND, some Silt, moist.

S-12: Brown, fine to coarse SAND, some Silt, white and

Clay lenses from 12.2'-12.3', lenses of brown Clay from

S-13: Light brown, fine to medium SAND, little Silt, dark gray

S-14: 13-13.8': Light brown, fine to medium SAND, little Silt,

 Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.0 ppmv.

Groundwater was not encountered during drilling or upon completion.

REMARKS 3. Borehole was backfilled with Bentonite upon completion.

48 60

C-3:

12.6'-12.7'.

NR

0.9

0.6

1.4

1.2

12-13

Sean Stevenson

Logger:

CLAY

SAND

10.7

Boring No.: HS-SB-4101

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/201

10

12

C-3

S-11

S-12

S-13

S-14

10-15

10-11

11-12

12-13

13-14

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4101 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/8/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A 13.8-14': No recovery. S-15: No recovery. 15 15-16 60 50 NR C-4 15-20 C-4: S-16: Light brown, fine to medium SAND, little Silt, moist. S-16 15-16 1.7 16 SAND S-17 16-17 0.3 S-17: Light brown, fine to medium SAND, little Silt, moist. 17 S-18 17-18 0.0 S-18: Light brown, fine to medium SAND, little Silt, moist. 18 S-19 18-19 0.2 S-19: 18-18.8': Light brown, fine to medium SAND, little Silt, moist. 19 18.8-19': Brown, CLAY, little fine Sand, Sand lense at 18.2', CLAY S-20 19-20 0.1 S-20: 19-19.2': Brown, CLAY, little fine Sand, moist. 20 20 19.2-20': No recovery. End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4101

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

GEOPROBE LOG

Wolverine World Wide House Street Rockford, Michigan

EXPLORATION NO.: HS-SB-4102

Logger:

Sean Stevenson **Boring No.:**

HS-SB-4102

SHEET: 1 of 2 PROJECT NO: 16.0062335.52

REVIEWED BY: BLW

BORING COORDINATES (International Feet): Logged By: Sean Stevenson Start Date: 7/8/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019

Foreman: Gary Geerligs H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location:

Rig Model: 6620 DT Sampler O.D. (in.): 2.25" NΑ

GZA

GeoEnvironmental, Inc.

Engineers and Scientists

Drilling Method: Direct Push					h		Sampler Length (in.):5.0' Ground Ele			evation: See Survey V. Datum: See Survey							
Sample				ple						·							
Depth (ft)	No. (ft.) Per (in)		Pen. (in)				(in)	(in)	Rec. (in)		Submitted To Lab	PID (ppm)	Sample Description & Configuration Modified Burmister	Remark	Ī	Stratum Description	Equipment Installed
-	C-1	0-5	60			NR	C-1:	1	\vdash	TOPSOIL 0,2							
-	S-1	0-1				0.0	S-1: 0-0.2': Black, TOPSOIL, Silt, moist.										
1_	S-2	1-2				0.0	0.2-1': Brown, Clayey SILT, little fine Sand, mo	١ ،	.								
-] -					0.0	S-2: Brown, Clayey Silt, little fine Sand, Sand le 1'-1.1', moist.	enses from =			No Equipment Installed						
2_	<u> </u>						1 III, mode.										
	S-3	2-3				0.0	S-3: Brown, Clayey SILT, little fine Sand, Rock	fragments 3	•								
2 -	-						from 2'-2.1', moist.										
3 _	S-4	3-4			3-4	0.0	S-4: Brown, Clayey SILT, little fine Sand, Rock	fragments									
-							from 3'-3.1', moist.										
4 _					4-5												
-	S-5	4-5				0.0	S-5: 4-4.7': Brown, Clayey SILT, little fine Sand 4.7-5': No recovery.	i, moist.									
5	1						4.7-3. No recovery.			CLAYEY SILT							
-	C-2	5-10	60	57		NR	C-2:										
-	S-6	5-6				0.0	S-6: Brown, Clayey SILT, little fine Sand, Sand	lenses from									
6 _	S-7	6-7				0.0	5.2'-5.4', moist.										
-	3-7	0-7				0.0	S-7: Brown, Clayey SILT, little fine Sand, moist	i.									
7_]																
-	S-8	7-8				0.0	S-8: Brown, Clayey SILT, little fine Sand, moist	i.									
-																	
8 _	S-9	8-9				0.0	S-9: 9-9.4': Brown, Clayey SILT, little fine Sand	I. moist.									
-							9.4-9.8': Brown, fine to medium SAND, some S	·									
9 _	1						9.8-10': No recovery.										
-	S-10	9-10				0.0	S-10: No recovery.			9.4							
10	-									SAND ₁₀							
-	C-3	10-15	60	60		NR	C-3:			' \							
-	S-11	10-11				0.0	S-11: Light brown, fine to medium SAND, little	Silt, moist.									
11 _	S-12	11-12				0.0	S-12: Light brown, fine to medium SAND, little	Silt moist									
-	0-12	11-12				0.0	3-12. Light brown, fine to mediam GAND, little	Oit, moist.									
12 _										04445							
-	S-13	12-13				0.0	S-13: Light brown, fine to medium SAND, little	Silt, moist.		SAND							
12 -																	
13 _	S-14	13-14				0.0	S-14: Light brown, fine to medium SAND, little	Silt, moist.									
-	1						,										
14 _	<u> </u>				<u> </u>	<u> </u>											
Granular Soils Cohesive So Blows/FT Density Blows/FT Co									MISSDIG Ticket Number								
0-		y Loose				Very So					B01621870						
10	-30 N	/ledium [Dense		4-8	M. Stif	1/8" SILT & CLAY				B91621870						
30-50 Dense 8-15 Stiff >50 Very Dense 15-30 V.							1/16" CLAY & SILT tiff 1/32" Silty CLAY										
						- Hard	1/64" CLAY										

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.0 ppmv.

Groundwater was not encountered during drilling or upon completion.
 Borehole was backfilled with Bentonite upon completion.

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

REMARKS

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4102 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/8/2019 E TBD N TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15: 14-14.2': Light brown, fine to medium SAND, little Silt, S-15 14-15 0.0 15 14.2-15': No recovery. 60 42 NR C-4 15-20 C-4: S-16 15-16 0.0 S-16: Light brown, fine to medium SAND, trace Silt, moist. 16 S-17 16-17 0.0 S-17: Light brown, fine to medium SAND, little Silt, Clay lenses from 16.3'-16.4', Rock fragments from 16.4'-16.5', 17 SAND S-18 17-18 0.0 S-18: Light brown, fine to medium SAND, trace Silt, moist. 18 S-19 18-19 0.0 S-19: 189-18.5': Light brown, fine to medium SAND, little Silt, Rock fragments, moist. 19 18.5-19': No recovery. S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4102

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4103 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/9/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 H. Datum: MI State Plane S Zone NAD83 **Gary Geerligs** Final Depth (ft.): Foreman: 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description C-1 0-5 60 53 NR C-1: 1 0, TOPSOIL S-1 0-1 1.0 S-1: 0-0.2': Black, TOPSOIL, Silt, moist. 0.2-1': Brown, Clayey SILT, little fine Sand, gray S-2 1-2 0.9 2 discoloration from 0.6'-0.7', moist, roots present. No Equipment Installed S-2: Brown, Clayey SILT, little fine Sand, moist. 2 S-3 2-3 0.7 S-3: Brown, Clayey SILT, little fine Sand, moist. 3 3 **CLAYEY SILT** S-4 3-4 0.7 S-4: Brown, Clayey SILT, little fine Sand, Sand lense from 3.9'-4.0, moist. S-5 4-5 0.5 S-5: 4-4.4': Brown, Clayey SILT, little fine Sand, moist. 4.4-5': No recovery. 5 58 C-2 5-10 60 NR C-2: 5 4 S-6 5-6 1.0 S-6: 5-5.4': Brown, Clayey SILT, little fine Sand, moist. SAND 5.8 5.4-5.8': Brown, fine to medium SAND, little Silt, moist. 6 S-7 6-7 1.9 5.8-6': Brown, SILT & CLAY, little fine Sand, moist. S-7: Brown, SILT & CLAY, little fine Sand, Sand lenses, S-8 7-8 0.8 S-8: Brown, SILT & CLAY, little fine Sand, moist. SILT & CLAY 8 S-9 8-9 0.7 S-9: Brown, SILT & CLAY, little fine Sand, moist. 9 9-10 0.8 S-10: 9-9.7': Brown, SILT & CLAY, little fine Sand, moist. S-10 9.7-10': Brown, fine to coarse SAND, some Silt, moist. 9.7 10 47 60 C-3 10-15 NR C-3:

14	<u> </u>					
	Granular Soils	Cohesive Soils		lasticity		MICODIO Tielest Nesselvess
	Blows/FT Density	Blows/FT Consistency	SM Thread	Diameter Rolled		MISSDIG Ticket Number:
	0-4 Very Loose	<2 Very Soft	None	SILT		
	4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
	10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
	30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
	>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
		>30 Hard	1/64"	CLÁY		

 Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.3 ppmv.

S-11: Brown, fine to medium SAND, little Silt, moist.

S-12: Light brown, fine to medium SAND, trace Silt, moist.

S-13: Light brown, fine to medium SAND, trace Silt, moist.

S-14: Light brown, fine to medium SAND, trace Silt, moist.

Groundwater was not encountered during drilling or upon completion.

0.6

1.1

1.0

12-13

REMARKS 3. Borehole was backfilled with Bentonite upon completion. Sean Stevenson

Logger:

Boring No.:

SAND

HS-SB-4103

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/201

S-11

S-12

S-13

S-14

12

10-11

11-12

12-13

13-14

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4103 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/9/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 15-16 60 42 NR C-4 15-20 C-4: S-16 15-16 8.0 S-16: Light brown, fine to medium SAND, trace Silt, moist. SAND 16 S-17 16-17 1.0 S-17: Light brown, fine to medium SAND, trace Silt, moist. 17 S-18 17-18 8.0 S-18: 17-17.4': Light brown, fine to medium SAND, trace 17.4 Silt. moist. 17.4-18': Brown, CLAY, little fine Sand, moist. 18 S-19 18-19 1.3 S-19: 18-18.5': Light brown, fine to medium SAND, trace Silt. moist. CLAY 19 18.5-19': No recovery. S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4103

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4104 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 **GZ**\ Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/9/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 H. Datum: MI State Plane S Zone NAD83 Foreman: **Gary Geerligs** Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description 42 C-1 0-5 60 NR C-1: 1 0, TOPSOIL S-1 0-1 2.8 S-1: 0-0.2': Black, TOPSOIL, Silt, moist. 0.2-1': Brown, Clayey SILT, little fine Sand, moist. S-2 2.6 2 1-2 S-2: Brown, Clayey SILT, little fine Sand, moist. No Equipment Installed **CLAYEY SILT** 2 S-3 2-3 3.5 S-3: Brown, Clayey SILT, little fine Sand, moist. Dark brown 3 discoloration at 2.8'. 3 3-4 3.2 S-4 S-4: 3-3.2': Dark gray, CLAY, trace fine Sand, moist. 1.8 CLAY 3.2-3.5': Brown, Clayey SILT, little fine Sand, moist. 3.5-4': No recovery. S-5 4-5 N/A S-5: No recovery **CLAYEY SILT** 5 45 C-2 5-10 60 NR C-2: 5.5 S-6 5-6 3.1 S-6: 5-5.5': Brown, Clayey SILT, little fine Sand, Sand lens 6 from 5.2'-5.3', moist SAND S-7 6-7 4.2 5.5-6': Light brown, fine to medium SAND, trace Silt, moist. 6.5 S-7: 6-6.5': Light brown, fine to medium SAND, trace Silt, S-8 7-8 3.0 **CLAYEY SILT** 6.5-7': Brown, Clayey SILT, little fine Sand, moist. S-8: 7-7.8': Brown, Clayey SILT, little fine Sand, Sand lens 7.8 8 from 6.4'-6.5', moist. S-9 8-9 2.9 7.8-8': Light Brown, fine to medium SAND, trace Silt, moist. S-9: 8-8.8': Light Brown, fine to medium SAND, trace Silt, 9 moist. N/A S-10 9-10 8.8-9': No recovery. S-10: No recovery. 10 60 44 C-3 10-15 NR S-11 10-11 3.9 S-11: Light Brown, fine to medium SAND, trace Silt, rock fragments from 10.9'-11.0', moist 11 SAND S-12 11-12 3.3 S-12: Light Brown, fine to medium SAND, trace Silt, moist. 12 S-13 12-13 4.8 S-13: Light Brown, fine to medium SAND, trace Silt, moist. 13 S-14 13-14 24 S-14: 13-13.7': Light Brown, fine to medium SAND, trace Silt, moist. 13.7-14': No recovery. 14 Cohesive Soils Blows/FT Consistency **Plasticity** <u>Granular Soils</u> SM Thread Diameter Rolled **MISSDIG Ticket Number:** Blows/FT Density <2 -- Very Soft 0-4 -- Very Loose None SILT 4-10 -- Loose 2-4 -- Soft 1/4" Clayey SILT B91621870 10-30 -- Medium Dense 4-8 -- M. Stiff 1/8" SILT & CLAY 30-50 -- Dense 8-15 -- Stiff **CLAY & SILT** 1/16" >50 -- Very Dense 15-30 -- V. Stiff 1/32' Silty CLAY 1/64" >30 -- Hard 1. Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 Logger: eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.0 ppmv. Groundwater was not encountered during drilling or upon completion. Sean Stevenson 3. Borehole was backfilled with Bentonite upon completion.

Boring No.:

HS-SB-4104

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/20

REMARKS

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4104 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/9/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 44 NR C-4 15-20 C-4: S-16 15-16 S-16: Light Brown, fine to coarse SAND, trace Silt, moist. 1.8 SAND 16 S-17 16-17 2.9 S-17: Light Brown, fine to coarse SAND, trace Silt, moist. 17 S-18 17-18 4.2 S-18: 17-17.6': Light Brown, fine to coarse SAND, trace Silt, 17.6 moist. 17.6-18': Brown, CLAY, little fine Sand, moist. 18 CLAY 18.2 S-19 18-19 2.4 S-19: 18-18.2': Brown, CLAY, little fine Sand, moist. 18.2-18.6': Light brown, fine to medium SAND, trace Silt, 19 Clay lense from 18.6'-18.7', moist. S-20 19-20 N/A SAND 18.6-19': No recovery. S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4104

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4105 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 GZN Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/8/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 H. Datum: MI State Plane S Zone NAD83 **Gary Geerligs** Final Depth (ft.): Foreman: 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Dept (ft.) Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description C-1 0-5 60 51 NR C-1: 1 **TOPSOIL** 0.5 S-1 0-1 4.0 S-1: 0-0.5': Black, TOPSOIL, moist. 0.5-1': Brown, Clayey SILT, some fine to medium Sand, S-2 5.4 2 1-2 No Equipment Installed S-2: Brown, Clayey SILT, some fine to medium Sand, moist. **CLAYEY SILT** 2 S-3 2-3 2.6 S-3: 2-2.7': Brown, Clayey SILT, little fine to medium Sand, 3 2.7-3': Light brown, fine to medium SAND, little Silt, moist. 3 CLAY S-4 3-4 3.3 4 S-4: Brown, SILT & CLAY, little fine Sand, moist, roots present. SILT & CLAY S-5 4-5 2.9 S-5: 4-4.2': Brown, SILT & CLAY, little fine Sand, moist. 4.2-5': No Recovery. 5 50 C-2 5-10 60 NR C-2: SILTY CLAY 3.8 S-6 5-6 S-6: Dark brown, Silty CLAY, little fine Sand, moist. 6 S-7 6-7 5.7 S-7: Brown, SILT & CLAY, little fine Sand, moist, Clay lens SILT & CLAY from 6.3'-6.4'. S-8 7-8 S-8: 7-7.1': Brown, fine to medium SAND, little Silt, moist. 6.5 SAND 7.1-8': Brown, SILT & CLAY, little fine Sand, moist. 8 SILT & CLAY S-9 8-9 1.8 S-9: 8-8.5': Brown, SILT & CLAY, little fine Sand, rock 8.5 fragments, moist. 9 8.5-8.7': Brown, fine to coarse SAND, little Silt, moist. 3.4 S-10 9-10 8.7-9': Light gray, fine SAND, trace Silt, moist. S-10: 9-9.2': Light brown, fine to medium SAND, trace Silt, 10 moist 47 60 C-3 10-15 NR 9.2-10': No recovery. S-11 10-11 2.3 C-3: 11 S-11: Light brown, fine to medium SAND, little Silt, moist. S-12 11-12 7.8 S-12: Light brown, fine to medium SAND, trace Silt, moist. SAND 12 12-13 6.5 S-13 12-13 S-13: Light brown, fine to medium SAND, trace Silt, moist. 13 S-14 13-14 28 S-14: 13-13.9': Light brown, fine to medium SAND, trace Silt, moist. 13.9-14': No recovery. 14 Cohesive Soils Blows/FT Consistency **Plasticity** <u>Granular Soils</u> SM Thread Diameter Rolled **MISSDIG Ticket Number:** Blows/FT Density <2 -- Very Soft 0-4 -- Very Loose None SILT 4-10 -- Loose 2-4 -- Soft 1/4" Clayey SILT B91621870 10-30 -- Medium Dense 4-8 -- M. Stiff 1/8" SILT & CLAY 30-50 -- Dense 8-15 -- Stiff **CLAY & SILT** 1/16" 15-30 -- V. Stiff >50 -- Very Dense 1/32' Silty CLAY 1/64" >30 -- Hard 1. Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 Logger: eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.0 ppmv. REMARKS Groundwater was not encountered during drilling or upon completion. Sean Stevenson Borehole was backfilled with Bentonite upon completion. 4. Waste odor noted in sample. **Boring No.:**

HS-SB-4105

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4105 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/8/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 15-16 60 41 NR C-4 15-20 C-4: S-16 15-16 5.5 S-16: Light brown, fine to medium SAND, trace Silt, moist. SAND 16 S-17 16-17 6.1 S-17: Light brown, fine to medium SAND, trace Silt, moist. 17 S-18 17-18 2.7 S-18: 17-17.5': Light brown, fine to medium SAND, little Silt, 17.5 moist. 17.5-18': Brown, CLAY, little fine Sand, moist. 18 7.7 S-19 18-19 S-19: 18-18.4': Brown, CLAY, little fine Sand, moist. 18.4-19': No recovery. CLAY 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4105

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4106 SHEET: 1 of 2 PROJECT NO: 16.0062335.52 **House Street** GeoEnvironmental, Inc. Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/9/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: Gary Geerligs Final Depth (ft.): H. Datum: MI State Plane S Zone NAD83 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample | | | | | | |

Donth	epth Sample							논	ig tag	
(ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Submitted To Lab	PID (ppm)	Sample Description & Configuration Modified Burmister	Remark	Stratum Description	Equipment Installed
-	C-1	0-5	60	55		NR	C-1:	1	TOPSOIL 0.3	
_	S-1	0-1				1.3	S-1: 0-0.3': Black, TOPSOIL, Silt, moist.			
1 -							0.3-1': Brown, Clayey SILT, little fine Sand, moist.			
_	S-2	1-2				1.3	S-2: Brown, Clayey SILT, little fine Sand, moist.	2		No Equipment Installed
_										140 Equipment installed
2 _										
_	S-3	2-3				1.8	S-3: Brown, Clayey SILT, little fine Sand, moist.	3		
_										
3 _		l								
_	S-4	3-4				1.5	S-4: Brown, Clayey SILT, little fine Sand, moist.			
-										
4 _	0.5	4.5					0.5.4.4.0. D			
_	S-5	4-5				1.4	S-5: 4-4.6': Brown, Clayey SILT, little fine Sand, moist.			
_ =							4.6-5': No recovery.		CLAYEY SILT	
5 _	C-2	5-10	60	58		NR	C-2:			
_	l		00	30						
-	S-6	5-6				4.9	S-6: Brown, Clayey SILT, little fine Sand, moist.			
6 _	S-7	6-7				3.3	S-7: Brown, Clayey SILT, little fine Sand, moist.			
_	0-7	0-7				0.0	0-7. Brown, Glayey GILT, little line Gand, moist.			
7 -										
' -	S-8	7-8				3.3	S-8: Brown, Clayey SILT, little fine Sand, rock fragments,			
_		' "				0.0	moist.			
8 -							moist.			
	S-9	8-9				5.4	S-9: 8-8.6': Brown, Clayey SILT, little fine Sand, moist.			
-							8.6-9': Light brown, fine to coarse SAND, little fine Gravel,		8.6	
9 -							trace Silt, Clay lenses from 8.7'-8.8', moist.			
_	S-10	9-10				3.5	S-10: Light brown, fine to medium SAND, trace Silt, moist.			
_							o to eight brown, and to modular of the, that one, motor.			
10 -										
_	C-3	10-15	60	51		NR	C-3:			
_	S-11	10-11				3.1	S-11: Light brown, fine to medium SAND, trace Silt, Clay			
11 _							lenses from 10.8'-10.9', moist.			
-	S-12	11-12				3.3	S-12: Light brown, fine to medium SAND, trace Silt, moist.		CANID	
_							_		SAND	
12 _					12-13					
-	S-13	12-13			5	3.4	S-13: Light brown, fine to medium SAND, trace Silt, moist.			
-										
13 _										
_	S-14	13-14				4.0	S-14: Light brown, fine to medium SAND, trace Silt, moist.			
14 _]	<u> </u>	<u> </u>		1		<u> </u>		<u> </u>	
	ranular	Soils Density				ive Soils				MISSDIG Ticket Number:

14	· _				l	1
	Granular Soils	Cohesive Soils		lasticity		
	Blows/FT Density	Blows/FT Consistency	SM Thread	Diameter Rolled		MISSDIG Ticket Number:
	0-4 Very Loose	<2 Very Soft	None	SILT		
	4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
	10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
	30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
	>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
		>30 Hard	1/64"	CLAY		

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 1.1 ppmv.

2. Groundwater was not encountered during uning or apol.
3. Borehole was backfilled with Bentonite upon completion. Groundwater was not encountered during drilling or upon completion.

REMARKS

Sean Stevenson

Logger:

Boring No.:

HS-SB-4106

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4106 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/9/2019 E TBD N TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description S-15 14-15 7.0 S-15: 14-14.2': Light brown, fine to medium SAND, trace Silt, moist. 15 14.2-15': No recovery. 15-16 60 48 NR C-4 15-20 C-4: S-16 15-16 7.6 S-16: Light brown, fine to medium SAND, trace Silt, 16 fractured rock and black discoloration from 12.4'-12.5', SAND S-17 16-17 3.6 moist. S-17: Light brown, fine to medium SAND, trace Silt, moist. 17 S-18 17-18 3.8 S-18: 17-17.8': Light brown, fine to medium SAND, trace Silt. moist. 17.8 17.8-18': Brown, CLAY, little fine Sand, moist. 18 S-19 18-19 3.9 S-19: 19-19.8': Brown, CLAY, little fine Sand, Sand lenses from 19.1'-19.3', moist, 19 19.8-20.0': No recovery. CLAY S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 4-8 -- M. Stiff 1/8" SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4106

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4107 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 GZ Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/9/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 H. Datum: MI State Plane S Zone NAD83 **Gary Geerligs** Final Depth (ft.): Foreman: 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Dept (ft.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) To Lab (ppm) Description 55 C-1 0-5 60 NR C-1: 1 0. TOPSOIL S-1 0-1 0.7 S-1: 0-0.2': Black, TOPSOIL, Silt, moist. SAND 0.2-1': Brown, fine to medium SAND, little Silt, moist. 1.2 S-2 2 1-2 1.0 S-2: 1-1.2': Brown, fine to medium SAND, little Silt, moist. No Equipment Installed 1.2-2': Brown, Clayey SILT, some fine Sand, moist. 2 S-3 2-3 1.2 S-3: Brown, Clayey SILT, some fine Sand, rock fragments 3 from 2.4'-2.6', moist. 3 3-4 S-4 3-4 8.0 S-4: Brown, Clayey SILT, some fine Sand, moist. **CLAYEY SILT** S-5 4-5 1.6 S-5: 4-4.6': Brown, Clayey SILT, some fine Sand, moist. 4.6-5': No recovery. 5 5-6 55 C-2 5-10 60 NR C-2: S-6 5-6 1.3 S-6: Brown, SILT & CLAY, little fine Sand, moist, SILT & CLAY 6 S-7 6-7 1.2 S-7: 6-6.3': Brown, fine to medium SAND, somt Silt, moist. 6.3 SAND 6.3-7': Brown, SILT & CLAY, little fine Sand, moist. S-8 7-8 S-8: 7-7.8': Brown, SILT & CLAY, little fine Sand, Sand lens SILT & CLAY 1.0 at 7.4', moist. 8 7.8-8': Brown, fine to medium SAND, some Silt, moist, 8.2 SAND S-9 8-9 0.9 S-9: 8-8.2': Brown, fine to medium SAND, some Silt, moist. 8.2-9': Brown, Silty CLAY, little fine Sand, moist. SILT & CLAY 9 S-10: 9-9.3': Brown, fine to medium SAND, little Silt, moist. S-10 9-10 1.2 9.3-10': No recovery. 10 SAND 50 60 C-3 10-15 NR C-3: S-11 10-11 1.1 S-11: 10-10.8': Light brown, fine to medium SAND, trace 10.8 Silt, Clay lens from 10.7'-10.9', moist. WHITE SAND S-12 11-12 0.9 10.8-11': White, coarse SAND, trace Silt, moist.

Cohesive Soils	<u>Plas</u>	sticity			
Blows/FT Consistency	SM Thread D	<u>iameter Rolled</u>			MISSDIG Ticket Number:
<2 Very Soft	None	SILT			
2-4 Soft	1/4"	Clayey SILT			B91621870
4-8 M. Stiff	1/8"	SILT & CLAY			
8-15 Stiff		CLAY & SILT			
		Silty CLAY			
>30 Hard	1/64"	CLAY			
					Logger:
	Blows/FT Consistency <2 Very Soft 2-4 Soft 4-8 M. Stiff 8-15 Stiff 15-30 V. Stiff >30 Hard or organic vapors was perform	SM Thread D	Blows/FT Consistency SM Thread Diameter Rolled <2 Very Soft	Blows/FT Consistency SM Thread Diameter Rolled <2 Very Soft	Blows/FT Consistency SM Thread Diameter Rolled <2 Very Soft

S-12: Light brown, fine to medium SAND, trace Silt, moist

S-13: Light brown, fine to medium SAND, trace Silt, moist

S-14: Light brown, fine to medium SAND, trace Silt, moist

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.5 ppmv.

Groundwater was not encountered during drilling or upon completion.

0.9

0.8

REMARKS 3. Borehole was backfilled with Bentonite upon completion. Sean Stevenson

Boring No.:

SAND

HS-SB-4107

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/20

12

S-13

S-14

12-13

13-14

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4107 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/9/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15: 14-14.2': Light brown, fine to medium SAND, trace S-15 14-15 1.1 Silt, moist 15 14.2-15': No recovery. 60 48 NR C-4 15-20 C-4: S-16 15-16 1.0 S-16: Light brown, fine to medium SAND, trace Silt, moist. 16 SAND S-17 16-17 1.2 S-17: Light brown, fine to medium SAND, trace Silt, discoloration from 16.6'-16.7', moist. 17 S-18 17-18 S-18: 17-17.8': Light brown, fine to medium SAND, trace 1.1 Silt. moist. 17.8 17.8-18': Brown, CLAY, little fine Sand, moist. 18 S-19 18-19 0.7 CLAY S-19: 18-18.5': Brown, CLAY, little fine Sand, moist. 18.5 18.5-18.8': Light brown, fine to medium SAND, trace Silt, 18.8 SAND 19 S-20 19-20 N/A 18.8-19': Brown, CLAY, little fine Sand, moist. CLAY S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4107

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4132 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW** BORING COORDINATES (International Feet): Logged By: Makayla Myers Start Date: 7/9/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) (ppm) Description 55 C-1 0-5 60 NR C-1: 1 **TOPSOIL** 0.5 S-1 0-1 0.3 S-1: 0-0.5': Brown, TOPSOIL, moist. 0.5-1': Brown, Silty CLAY, moist. S-2 0.5 2 1-2 S-2: 1-1.8': Brown, Silty CLAY, moist. CLAY No Equipment Installed 1.8-2': Brown, fine SAND, some Clay, moist. 2 SAND S-3 2-3 0.5 S-3: Brown, CLAY, some Sand, moist 3 SANDY CLAY 3 S-4 3-4 0.9 S-4: Brown CLAY, little Sand, moist. 4 3.3 CLAY S-5 4-5 3.0 S-5: Brown CLAY, some Sand, moist. 5 36 C-2 5-10 60 NR C-2: S-6 5-6 1.5 S-6: Brown CLAY, some Sand, moist, 6 S-7 6-7 2 1 S-7: Brown CLAY, some Sand, moist. SANDY CLAY S-8 7-8 S-8: Brown CLAY, some Sand, lens of black, sandy waste, 5.0 moist. 8 S-9 8-9 N/A S-9: No recovery. 9 N/A S-10 9-10 S-10: No recovery. 9.6 10 CLAY 10.1 45 60 C-3 10-15 NR C-3: S-11 10-11 4.4 S-11: 10-10.5': Gray, CLAY, some Sand, moist. 10.5-11': Gray, CLAY Waste, moist. S-12 11-12 17.2 **CLAY WASTE** S-12: 11-11.4': Gray-brown, CLAY Waste, wet. 11.4-12': Dark gray, CLAY Waste, moist. 12 12.1 S-13 12-13 94.3 S-13: 12-12.5': Dark gray, CLAY Waste, moist. SAND WASTE 12.7

14					
Granular Soils Blows/FT Density	Cohesive Soils Blows/FT Consistency		<u>Plasticity</u> I Diameter Rolled		MISSDIG Ticket Number:
0-4 Very Loose	<2 Very Soft	None	SILT		
4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
	>30 Hard	1/64"	CLAY		

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.9 ppmv.

12.5-13': Black, fine SAND Waste, moist.

13.1'-14': Light brown, CLAY, moist.

S-14: 13-13.1': Black, fine SAND Waste, moist.

Groundwater was not encountered during drilling or upon completion.

5 1

Borehole was backfilled with Bentonite upon completion.

4. Waste odor noted in sample.

Makayla Myers

Logger:

Boring No.:

CLAY

HS-SB-4132

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/20

REMARKS

S-14

13-14

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4132 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/9/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec PID Depth Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description S-15 14-15 N/A S-15: No recovery. 15 CI AY 60 36 NR C-4 15-20 C-4: S-16 15-16 0.7 S-16: Gray-brown, CLAY, moist. 15.7 16 S-17 16-17 1.1 S-17: 16-16.4': Gray-brown, CLAY, moist. 16.4-16.8': Gray, coarse SAND, some Clay, moist. 17 16.8-17': Gray, coarse SAND, moist. S-18 17-18 0.9 S-18: 17-17.6': Gray, coarse SAND, moist. 17.6-18': Tan, fine to medium SAND, moist. 18 SAND S-19 18-19 N/A S-19: No recovery. 19 S-20 19-20 N/A S-20: No recovery 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 2-4 -- Soft 1/4" B91621870 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff Silty CLAY >30 -- Hard 1/64' Logger: REMARKS

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

Makayla Myers **Boring No.:** HS-SB-4132

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4133 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 **GZ**\ Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/8/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 H. Datum: MI State Plane S Zone NAD83 **Gary Geerligs** Final Depth (ft.): Foreman: 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description 50 C-1 0-5 60 NR C-1: 1 0, TOPSOIL S-1 0-1 0.1 S-1: 0-0.2': Black, TOPSOIL, Silt, moist. 0.2-1': Brown, Clayey SILT, little fine Sand, moist. S-2 0.3 2 1-2 S-2: Brown, Clayey SILT, little fine Sand, Sand lens from No Equipment Installed 1.6'-1.8', moist. **CLAYEY SILT** 2 3 S-3 2-3 0.2 S-3: Brown, Clayey SILT, little fine Sand, Sand lenses from 2.1'-2.2', moist. 3 S-4 3-4 0.0 S-4: 3-3.9': Brown, Clayey SILT, little fine Sand, Sand 4 3.4 lenses, moist, 3.9-4': Brown, Silty CLAY, little fine Sand, moist. S-5 4-5 0.2 S-5: 4-4.2': Brown, Silty CLAY, little fine Sand, moist. 4.2-5': No recovery. 5 47 C-2 5-10 60 NR C-2: 0.4 S-6 5-6 S-6: Brown, Silty CLAY, some fine Sand, moist. SILTY CLAY 6 S-7 6-7 0.6 S-7: Brown, Silty CLAY, little fine Sand, moist. S-8 7-8 S-8: Brown, Silty CLAY, little fine Sand, moist. 1.1 8 S-9 8-9 17.9 S-9: 8-8.6': Black-gray, SILT & CLAY, trace fine Sand WASTE Waste, moist, 8. SAND 9 8.6-9': Brown, fine to medium SAND, little Silt, Clay lens, N/A S-10 9-10 S-10: No recovery. 10 55 SILTY CLAY 60 C-3 10-15 NR C-3: S-11 10-11 5.0 S-11: Brown, Silty CLAY, little fine Sand, moist. S-12 11-12 24.3 S-12: 11-11.3': Brown, Silty CLAY, little fine Sand, moist. 11.3 11.3-12': Gray, CLAY, trace fine Sand Waste, moist. WASTE 12 S-13 12-13 2.2 S-13: Brown, Silty CLAY, little fine Sand, moist. SILTY CLAY

Granular Soils	Cohesive Soils	Pl	asticity	
Blows/FT Density	Blows/FT Consistency	SM Thread	Diameter Rolled	MISSDIG Ticket Number:
0-4 Very Loose	<2 Very Soft	None	SILT	
4-10 Loose	2-4 Soft	1/4"	Clayey SILT	B91621870
10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY	
30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT	
>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY	
	>30 Hard	1/64"	CLAY	
			liniRAE 3000 photoionization detector equipped with a 10.6	Logger:
I al/lama Dandings shows		a ia aarta aar w	::::	33

S-14: 13-13.3': Light gray, fine to medium SAND, little Silt,

13.3-14': Brown, Clayey SILT, little fine Sand, moist.

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.0 ppmv. REMARKS

Groundwater was not encountered during drilling or upon completion.

1 1

moist.

Borehole was backfilled with Bentonite upon completion.

4. Waste odor noted in sample.

Sean Stevenson

Boring No.:

13.3

SAND

CLAYEY SILT

HS-SB-4133

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/20

13

14

S-14

13-14

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4133 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/8/2019 E TBD N TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description S-15: 14-14.6': Brown, Clayey SILT, little fine Sand, moist. S-15 14-15 0.4 14.6-15': No recovery. **CLAYEY SILT** 15 60 35 C-4 15-20 NR C-4: SAND 15.5 S-16 15-16 0.5 S-16: 15-15.5': Brown, fine to medium SAND, little Silt, SILTY CLAY moist. 16 S-17 16-17 0.3 15.5-16': Brown, Silty CLAY, little fine Sand, moist. S-17: Light brown, fine to medium SAND, little Silt, rock 17 fragments, Clay lenses from 16.1'-16.2', moist. S-18 17-18 0.4 S-18: 17-17.9': Light brown, fine to medium SAND, little Silt, Clay lenses from 17.4'-17.5', moist. 18 17.9-18': No recovery. SAND S-19 18-19 N/A S-19: No recovery. 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4133

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4134 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 **GZ**\ Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/8/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: H. Datum: MI State Plane S Zone NAD83 Roger Christenson Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) To Lab (ppm) Description C-1 0-5 60 48 NR C-1: 0.3 1 TOPSOIL S-1 0-1 S-1: 0-0.3': Brown, TOPSOIL, moist. 1.0 **CLAYEY SILT** 0.3-1': Brown, Clayey SILT, moist. S-2 2 1-2 2.6 S-2: 1-1.5': Light brown, fine to medium SAND, moist. No Equipment Installed SAND 1.5=2': Brown, CLAY with Sand lenses, moist. SANDY CLAY 2 S-3 2-3 1.4 S-3: 2-2.4': Brown, CLAY with Sand lenses, moist. 3 2.4-3': Orange-brown, Silty CLAY, moist. 3 S-4 3-4 0.6 S-4: Orange-brown, Silty CLAY, moist. 4 SILTY CLAY S-5 4-5 N/A S-5: No recovery. 5 56 C-2 5-10 60 NR C-2: SAND 5.6 S-6 5-6 2.2 S-6: 5-5.2': Brown, Silty CLAY, Sand lenses, moist, 6 5.2-6': Gray, fine Sandy CLAY, waste, moist. S-7 6-7 2.1 S-7: 6-6.2': Grey, CLAY, waste, moist. 6.2-7': Grey, CLAY, some Sand, waste, moist. S-8 7-8 5.1 S-8: Grey, CLAY, some Sand, waste, moist. WASTE 8 S-9 8-9 122.0 S-9: 8-8.7': Black, CLAY, light gray Clay lenses, waste, moist. 8.7 9 8.7-9': Dark brown, Silty SAND, waste, moist. SAND S-10 9-10 2.7 9.3 S-10: 9-9.3': Dark brown, Silty SAND, waste, moist. 9.3-10': Gray, CLAY with fine Gravel, waste, moist. 10 52 60 C-3 10-15 NR

14						
	Granular Soils	Cohesive Soils	P	Plasticity		
	Blows/FT Density	Blows/FT Consistency	SM Thread	<u>d Diameter Rolled</u>		MISSDIG Ticket Number:
	0-4 Very Loose	<2 Very Soft	None	SILT		
	4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
	10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
	30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
	>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
		>30 Hard	1/64"	CLAY		

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.3 ppmv.

S-11: Gray, Silty CLAY, waste, moist.

S-12: Black and gray, CLAY, little coarse Sand, moist.

S-13: Black and gray, CLAY, little coarse Sand, waste,

S-14: 13-13.1': Black, CLAY, waste, moist.

13.1-14': Brown, CLAY, moist.

2. Groundwater was not encountered during drilling or upon completion.

2.4

200.1

270

65.7

3. Borehole was backfilled with Bentonite upon completion.

4. Waste odor noted in sample.

Makayla Myers
Boring No.:

Logger:

WASTE

CL AY

13.1

HS-SB-4134

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/3/2019

REMARKS

S-11

S-12

S-13

S-14

12

10-11

11-12

12-13

13-14

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4134 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/8/2019 E TBD N TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (#.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description S-15 14-15 3.6 S-15: Brown, CLAY, moist. CLAY 15 60 43 C-4 15-20 NR C-4: WASTE 15.6 S-16 15-16 19.2 S-16: 15-15.4': Black, CLAY, waste, moist. 15.4-16': Red-brown, CLAY, moist. 16 CLAY S-17 16-17 15.3 S-17: 16-16.5': Red-brown, CLAY, moist. 16.5 16.5-16.8': Gray, coarse SAND and GRAVEL, moist. 16.8 **GRAVEL** 17 16.8-17': Brown, CLAY, moist. CLAY S-18 17-18 1.2 S-18: 17-17.2': Gray, coarse SAND and GRAVEL, moist. GRAVEL 17.2-19': Light brown, medium SAND, moist. 18 S-19 18-19 0.0 S-19: 18-18.6': Light brown, medium SAND, moist. 18.6-19': No recovery. SAND 19 S-20 19-20 N/A S-20: No recovery 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:** HS-SB-4134

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4135 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/8/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: H. Datum: MI State Plane S Zone NAD83 Roger Christenson Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) To Lab (ppm) Description C-1 0-5 60 51 NR C-1: 1 TOPSOIL 0.4 S-1 0-1 0.0 S-1: 0-0.4': Brown, TOPSOIL, moist. 0.4-1': Brown, Silty CLAY, moist. S-2 0.9 2 1-2 S-2: Brown, Silty CLAY, moist. No Equipment Installed 2 S-3 2-3 0.2 S-3: 2-2.8': Brown, medium Sandy CLAY, moist. 3 2.8-3': Brown, Silty CLAY, moist. 3 S-4 3-4 0.0 S-4: Brown, Silty CLAY with Clay lens, moist. 4 SILTY CLAY S-5 4-5 0.4 S-5: 4-4.2': Brown, Silty CLAY with Clay lens, moist. 4.2-5': No recovery. 5 44 C-2 5-10 60 NR C-2: S-6 5-6 1.2 S-6: 5-5.9': Brown, Silty CLAY with Clay lens, moist, 6 5.9-6': Gray, fine SAND, waste, moist. SAND & WASTE 6.2 S-7 6-7 4.8 S-7: 6-6.2': Gray, fine SAND, waste, moist. 6.2-7': Gray, Silty CLAY with Sand lenses, waste, moist. SILTY CLAY & WASTE S-8 7-8 15.6 S-8: 7-7.3': Gray, Silty CLAY with Clay lenses, waste, moist. 7: 7.3-8': Black/dark gray, fine SAND, waste, moist. 8 SAND S-9 8-9 7.3 S-9: 8-8.3': Black/dark gray, fine SAND, waste, moist. 8.3-8.7': Black/dark gray, fine SAND, moist. 8.7 9 8.7-9': Gray-brown, CLAY, moist. CLAY N/A S-10 9-10 S-10: No recovery.

14 _	13.5-14': 0	Gray, medium	SAND, moist.	SAND	2
Granular Soils Blows/FT Density	<u>Cohesive Soils</u> <u>Blows/FT Consistency</u>		<u>lasticity</u> l Diameter Rolled		MISSDIG Ticket Number:
0-4 Very Loose	<2 Very Soft	None	SILT		
4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
	>30 Hard	1/64"	CLÂY		

1. Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.3 ppmv.

S-11: Gray-brown, Silty CLAY, moist.

S-13: 12-12.3': Gray, CLAY, moist.

S-14: 13-13.5': Gray, CLAY, moist.

12.8-13': Gray, CLAY, moist.

12.3-12.8': Brown, medium SAND, moist.

S-12: 11-11.6': Gray-brown, Silty CLAY, moist. 11.6-12': Brown, medium SAND, moist.

2. Groundwater was not encountered during drilling or upon completion.

3. Borehole was backfilled with Bentonite upon completion.

60 46

NR

0.0

0.0

0.3

12-13

C-3:

4. Waste odor noted in sample.

Makayla Myers

Logger:

SILTY CLAY

SAND

CLAY

SAND

CLAY

11.6

12.3

12.8

13.5

HS-SB-4135

Boring No.:

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/20

REMARKS

10

12

C-3

S-11

S-12

S-13

S-14

10-15

10-11

11-12

12-13

13-14

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4135 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/8/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (#.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description S-15 14-15 N/A S-15: No recovery. SAND 15 15-16 60 42 NR C-4 15-20 C-4: S-16 15-16 0.0 S-16: Gray, CLAY, moist. 16 CLAY S-17 16-17 0.6 S-17: Gray, CLAY, moist. 17 S-18 17-18 0.5 S-18: 17-17.6': Gray, coarse SAND with Clay lenses, moist. 17.6'-18': Gray, medium SAND, moist. 18 S-19 18-19 0.4 S-19: 18-18.5': Gray, medium SAND, moist. 18.5-19': No recovery. SAND 19 S-20: No recovery. S-20 19-20 N/A 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:**

HS-SB-4135

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4136 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 **GZ**\ Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/8/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: H. Datum: MI State Plane S Zone NAD83 Roger Christenson Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) To Lab (ppm) Description C-1 0-5 60 46 NR C-1: 1 **TOPSOIL** 0.5 S-1 0-1 0.0 S-1: 0-0.5': Brown, TOPSOIL, moist. 0.5-1': Brown, CLAY, some Sand, moist, roots present. S-2 0.0 2 1-2 S-2: Brown, CLAY, some Sand, moist. No Equipment Installed CLAY 2 S-3 2-3 0.0 S-3: 2-2.5': Tan, fine SAND, moist. 3 SAND 2.5-3': Brown, CLAY, moist. 3 CL AY S-4 3-4 13.2 S-4: 3-3.2': Gray, CLAY, moist. 4 SAND WASTE 3.5 3.2-3.5': Dark gray, fine SAND waste, moist. 3.5-3.8': Black, Sandy CLAY, waste, moist. S-5 4-5 N/A 3.8-4': No recovery. S-5: No recovery **CLAY WASTE** 5 46 C-2 5-10 60 NR C-2: 85.5 S-6 5-6 S-6: Dark gray, CLAY Waste, moist. 6 S-7 6-7 27.0 S-7: 6-6.3': Dark gray, CLAY Waste, moist. SAND WASTE 6.3 6.3-6.8': Black, fine SAND, moist. CLAY 6.8-7': Gray, CLAY, moist S-8 7-8 26.5 S-8: 7-7.4': Gray, CLAY, moist. 7.4 SAND 7.4-7.6': Black, fine SAND, moist. CLAY 8 7.6-7.9': Dark gray, CLAY, moist. SAND S-9 8-9 1.6 7.9-8': Black, fine SAND, moist, S-9: 8-8.5': Gray, Sandy CLAY, moist. 9 8.5-9': Gray-brown, fine Sandy CLAY, moist. N/A S-10 9-10 CL AY S-10: No recovery. 10 56 60 C-3: C-3 10-15 NR S-11 10-11 3.3 S-11: 10-10.5': Brown, Silty CLAY, trace fine Sand, moist. 10. SAND 10.5-10.7': Green/black, fine to medium SAND, moist. S-12 11-12 2.3 10.7-11': Brown, Sandy CLAY, some Gravel, moist. S-12: Brown, Silty CLAY, some Gravel, moist. 12 S-13 12-13 1.9 S-13: Brown, Silty CLAY, some Gravel, moist. CLAY

14 _	13.7-13.9	: Gray, Silty Cl	LAY waste, moist.	13.9	
Granular Soils Blows/FT Density	Cohesive Soils Blows/FT Consistency		<u>Plasticity</u> d Diameter Rolled		MISSDIG Ticket Number:
0-4 Very Loose 4-10 Loose 10-30 Medium Dense 30-50 Dense >50 Very Dense	<2 Very Soft 2-4 Soft 4-8 M. Stiff 8-15 Stiff 15-30 V. Stiff >30 Hard	None 1/4" 1/8" 1/16" 1/32" 1/64"	SILT Clayey SILT SILT & CLAY CLAY & SILT Silty CLAY CLAY		B91621870

S-14: 13-13.2': Brown, Silty CLAY with Gravel, moist. 13.2-13.7': Light brown, Sandy CLAY, moist.

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.3 ppmv.

Groundwater was not encountered during drilling or upon completion.

2.5

Borehole was backfilled with Bentonite upon completion.

4. Waste odor noted in sample.

Makayla Myers

Logger:

13.9

HS-SB-4136

Boring No.:

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/20

REMARKS

13

S-14

13-14

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4136 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/8/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/8/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description S-15 14-15 1.2 13.9-14': Tan-brown, coarse SAND. S-15: Tan-brown, coarse SAND. 15 SAND 60 56 NR C-4 15-20 C-4: S-16 15-16 3.4 S-16: 15-15.6': Dark gray, coarse SAND, Clay lenses, moist. 15.8 CLAY 15.6-15.8': Dark gray, Sandy CLAY, moist. 16 S-17 16-17 2.2 15.8-16': Light gray, coarse SAND and GRAVEL, moist. SAND & GRAVEL S-17: Light brown, fine to medium SAND, moist. 17 S-18 17-18 S-18: Light brown, fine to medium SAND, moist. 1.5 18 SAND S-19 18-19 N/A S-19: No recovery. 19 S-20 19-20 N/A S-20: No recovery 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:** HS-SB-4136

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4137 1 of 2 **House Street** SHEET: GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/9/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: Roger Christenson Final Depth (ft.): H. Datum: MI State Plane S Zone NAD83 20 Type of Rig: Geoprobe Rig Model: 7822 DT Sampler Type: Macro Core Offset of Boring From Original Location: Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey

DI 11111	ing ivic	tilou.			'! !		Sampler Length (In.):5.0	round Elevation	: See Survey V. D	Datum: See Survey
Depth			Sam	ıple				논	¥:::	<u> </u>
(ft)		Depth	Pen. (in)	Rec. (in)	Submitted	PID	Sample Description & Configuration Modified Burmister	Remark	Stratum Dept	Equipment Installed
	No. C-1	(ft.) 0-5	60	54	To Lab	(ppm) NR	C-1:	1	Description	
_			00	34				'	TOPSOIL	0.6
	S-1	0-1				2.5	S-1: 0-0.6': Brown, TOPSOIL, moist.			0.0
1 _	S-2	1-2				1.4	0.6-1': Brown, medium SAND, moist, roots prese	ent. 2		
-	3-2	1-2				1.4	S-2: Brown, fine SAND, some Silt, moist.	2	SAND	No Equipment Installed
2 _	S-3	2-3				1.3	S-3: Brown, Silty CLAY, moist.	3		2
		2-0				1.0	C-o. Brown, City CEAT, Moist.		CLAY	
3 _	S-4	3-4				1.2	S-4: Dark brown, SAND & SILT, moist.			3
-										
4 _	S-5	4-5				1.5	S-5: 4-4.5': Dark brown, SAND & SILT, moist.			
-							4.5-5': No recovery.		SILT	
5 _	C-2	5-10	60	53		NR	C-2:			
- 3 -	S-6	5-6				3.3	S-6: Brown, SAND & SILT, moist.			
' – -	S-7	6-7				1.7	S-7: 6-6.3': Brown, SAND & SILT, moist.			6.3
							6.3-7': Brown, Silty CLAY, moist.			
-	S-8	7-8				1.6	S-8: Brown, Silty CLAY, moist.			
3 <u>-</u> -	S-9	8-9				1.8	S-9: Brown, Silty CLAY, moist.		CLAY	
- -	S-10	9-10				1.6	S-10: 9-9.4': Brown, Silty CLAY, moist.			
-		0 10				1.0	9.4-10': No recovery.			
-	C-3	10-15	60	45		NR	C-3:		SAND 1	<u>10</u> 0.5
-	S-11	10-11				1.4	S-11: 10-10.5': Dark tan, fine SAND, moist.		5,415	0.5
_							10.5-11': Brown, CLAY, moist.			
-	S-12	11-12				1.4	S-12: Brown, CLAY, moist.			
: _	S-13	12-13			12-13	1.4	S-13: Brown, CLAY, moist.			
-	3-13	12-13				1.4	0-10. DIOWII, OLAT, HUIST.		CLAY	
3 _	S-14	13-14				1.3	S-14: 13-13.8': Brown, CLAY, moist.			
-	-						13.8-14': No recovery.			
1 _ G] ranular	Soils		1	Cohesi	ive Soil	s Plasticity			<u> </u>
В	lows/FT	Density			Blows/	FT Con	sistency SM Thread Diameter Rolled			MISSDIG Ticket Numl
										R91621870
0- 4-	4 Vei 10 Lo	ry Loose	_	·	<2 \ 2-4	√ery Sc	ft None SILT 1/4" Clayey SILT			B91621870

14						
	Granular Soils	Cohesive Soils	<u>P</u>	lasticity		
	Blows/FT Density	Blows/FT Consistency	SM Thread	Diameter Rolled		MISSDIG Ticket Number:
	0-4 Very Loose	<2 Very Soft	None	SILT		
	4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
	10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
	30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
	>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
		>30 Hard	1/64"	CLAY		

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.9 ppmv.

Groundwater was not encountered during drilling or upon completion.

REMARKS 2. Groundwater was not encountered during uning or apol.
3. Borehole was backfilled with Bentonite upon completion.

Makayla Myers

Logger:

Boring No.:

HS-SB-4137

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4137 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/9/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 15-16 60 44 NR C-4 15-20 C-4: CLAY S-16 15-16 S-16: Brown, CLAY, moist. 1.0 16 S-17 S-17: 16-16.7': Brown, CLAY, moist. 16-17 1.0 16.7-17': Gray, medium to coarse SAND, moist. 16.7 17 S-18 17-18 S-18: 17-17.2': Gray, medium to coarse SAND, moist. 1.2 17.2-18': Tan, fine SAND, moist. 18 S-19 18-19 1.1 S-19: 18-18.7': Tan, fine SAND, moist. SAND 18.7-19': No recovery. 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 2-4 -- Soft 1/4" B91621870 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:**

HS-SB-4137

GEOPROBE LOG

Wolverine World Wide House Street Rockford, Michigan

EXPLORATION NO.: HS-SB-4138 SHEET: 1 of 2

PROJECT NO: 16.0062335.52

REVIEWED BY: BLW

BORING COORDINATES (International Feet): Logged By: Makayla Myers Start Date: 7/9/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019

Foreman: H. Datum: MI State Plane S Zone NAD83 Roger Christenson Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT

Sampler O.D. (in.): 2.25"

GZA

GeoEnvironmental, Inc.

Engineers and Scientists

Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey

	Sample					Ground Ele	valioi	i. See Survey V. Da	LUTT: See Survey		
Depth			Sam	ple				논	≱;;;		
(ft)		Depth	Pen.	Rec.	Submitted	PID	Sample Description & Configuration	Remark	Stratum (#)	Equipment Installed	
(11)	No.	(ft.)	(in)	(in)	To Lab	(ppm)	Modified Burmister	Se	Description		
_	C-1	0-5	60	56		NR	C-1:	1	TOPSOIL 0.	3	
-	S-1	0-1				2.3	S-1: 0-0.3': Dark brown, TOPSOIL, moist.		TOFSOIL		
] '	0-1				2.0					
1_		1,0				47	0.3-1': Brown, Silty CLAY, moist.				
-	S-2	1-2				1.7	S-2: Brown, Silty CLAY, moist.	2	CLAY	No Equipment Installed	
-	ļ								0211		
2_											
-	S-3	2-3				3.1	S-3: 2-2.3': Brown, Sandy CLAY, with Clay lenses, moist.	3	2.3	3	
_	İ						2.3-3': Dark brown, SILT, moist.				
3 -							, ,		SILT	3	
	S-4	3-4				1.4	S-4: 3-3.7': Light brown, fine SAND, moist.		'	1	
_	0-4	3-4				1			SAND		
-	-						3.7-4': Brown-gray, Silty CLAY, moist.		3.	7	
4 _	1										
-	S-5	4-5				1.0	S-5: Brown-gray, Silty CLAY, moist.				
_	1										
5 -											
_	C-2	5-10	60	50		NR	C-2:		CLAY		
-	S-6	5-6				1.5					
	3-0	3-0				1.5	S-6: Brown-gray, Silty CLAY, moist.				
6_									6.:		
-	S-7	6-7				1.1	S-7: 6-6.2': Brown-gray, Silty CLAY, moist.		0		
_]						6.2-7': Brown, medium SAND, some Clay, moist.		SAND		
7 -	ł								SAND	7	
_	S-8	7-8				1.0	S-8: 7-7.5': Brown, Silty CLAY, moist.				
-	-						7.5-8': Brown, CLAY, moist.				
8 -	1						7.0 0. Brown, OB (1, molec.				
° –	S-9	8-9				1.1	S. O. Brown, CLAV moint				
_	3-9	0-9				1.1	S-9: Brown, CLAY, moist.				
-	1								CLAY		
9 _	1										
-	S-10	9-10				1.0	S-10: 9-9.1': Brown, CLAY, moist.				
_	1						9.1-10': No recovery.				
10 -	-						-		1		
-	C-3	10-15	60	35		NR	C-3:			2	
-	S-11	10-11				1.5	S-11: Brown, fine to medium SAND, with Clay lenses, moist.				
	3-11	10-11				1.5	3-11. Blown, fille to friedlum SAND, with Glay lenses, filost.				
11 _	0.40	44.40			11-12		0.40 B				
_	S-12	11-12				1.4	S-12: Brown, fine to medium SAND, with Clay lenses, moist.		SAND		
-											
12 _	İ										
-	S-13	12-13				1.2	S-13: 12-12.2': Brown, fine to medium SAND, with Clay		12.:	4	
_							lenses, moist.				
13							12.2-13': Brown, CLAY, moist.				
'0 -	S-14	13-14			13-14	N/A			CLAY		
-	-	.5=1-				. 4// (S-14: No recovery.		الماد		
-											
14 _		I									
	ranular					ive Soils				MICCOLO Tiplest Normalia	
	Blows/FT Density Blows/FT Consistency SM Thread Diameter Rolled MISSDIG Ticket Number:										
0-4	4 Ver	y Loose			<2 \	lery So	ft None SILT				

SILT Clayey SILT SILT & CLAY <2 -- Very Soft 2-4 -- Soft 0-4 -- Very Loose 4-10 -- Loose 1/4" B91621870 10-30 -- Medium Dense 4-8 -- M. Stiff 1/8" 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64"

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.9 ppmv.

2. Groundwater was not encountered during drilling or upon completion.

REMARKS 3. Borehole was backfilled with Bentonite upon completion.

Logger: Makayla Myers

Boring No.:

HS-SB-4138

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4138 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/9/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec PID Depth Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 36 NR C-4 15-20 C-4: CLAY S-16 15-16 S-16: Brown, CLAY, moist. 1.3 16 S-17 16-17 1.4 S-17: 16-16.3': Brown, CLAY, moist. 16.3 16.3-17': Brown, medium to coarse SAND, moist. 17 S-18 17-18 S-18: 17-17.4': Brown, medium to coarse SAND, moist. 1.4 17.4-18': Dark brown, fine to medium SAND, moist. 18 S-19 18-19 N/A S-19: No recovery. SAND 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28

Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 2-4 -- Soft 1/4" B91621870 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff Silty CLAY >30 -- Hard 1/64'

Logger:

Makayla Myers

Boring No.:

HS-SB-4138

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4139 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 **GZ**\ Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/9/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: H. Datum: MI State Plane S Zone NAD83 Roger Christenson Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) To Lab No (ft.) (ppm) Description 55 C-1 0-5 60 NR C-1: 1 TOPSOIL 0.4 S-1 0-1 S-1: 0-0.4': Black, TOPSOIL, Silt, moist. 1.3 0.4-1': Brown, Clayey SILT, little fine Sand, moist. S-2 2 1-2 1.1 S-2: Brown, Clayey SILT, little fine Sand, sand seam from No Equipment Installed 1.2'-1.3', moist. 2 **CLAYEY SILT** 3 S-3 2-3 1.7 S-3: Brown, Clayey SILT, little fine Sand, sand seam from 2.5'-2.6', moist. 3 S-4 3-4 S-4: 3-3.5': Brown, Clayey SILT, little fine Sand, sand seam 4 1.1 from 1.2'-1.3', moist. SILTY CLAY 3.5-4': Brown, Silty CLAY, little fine Sand, moist. S-5 4-5 1.1 CLAYEY SILT 45 S-5: 4-4.3': Brown, Clayey SILT, little fine Sand, Sand lens 4.2'-4.3', moist 5 4.3-5': No recovery. 48 C-2 5-10 60 NR C-2: SAND S-6 5-6 1.4 S-6: Light brown, fine to medium SAND, trace Silt, Clay 6 lense from 5.2'-5.3', moist, 6.2 S-7 6-7 1.3 S-7: 6-6.2': Light brown, fine to medium SAND, trace Silt, **CLAYEY SILT** 7-8 6.2-7': Brown, Clayey SILT, little fine Sand, moist. S-8 7-8 1.1 S-8: Brown, Silty CLAY, little fine Sand, moist. 8 SILTY CLAY 1.2 S-9 8-9 S-9: Brown, Silty CLAY, little fine Sand, moist. 9 N/A S-10 9-10 S-10: No recovery. NO RECOVERY 10 10-11 48 10 60 C-3 10-15 NR C-3: SAND S-11 10-11 1.2 S-11: 10-10.2': Light brown, fine to medium SAND, trace **CLAYEY SILT** 11 S-12 11-12 1.3 10.2-11': Brown, Clayey SILT, little fine Sand, moist. CLAY S-12: 11-11.2': Brown, Clayey SILT, little fine Sand, moist. SAND 12 11.2-11.3': Brown, CLAY, little fine Sand, moist. S-13 12-13 1.6 CLAY 11.3-11.5': Brown, fine to medium SAND, some Silt, rock fragments, moist, 13 SAND 11.5-11.7': Brown, CLAY, little fine Sand, moist. S-14 13-14 15 11.7-12': Brown, fine to medium SAND, some Silt, trace fine Gravel, moist, 14 <u>Cohesive Soils</u> <u>Blows/FT Consistency</u> <u>Granular Soils</u> **Plasticity** SM Thread Diameter Rolled **MISSDIG Ticket Number:** Blows/FT Density <2 -- Very Soft 0-4 -- Very Loose None SILT 4-10 -- Loose 2-4 -- Soft 1/4" Clayey SILT B91621870 10-30 -- Medium Dense 4-8 -- M. Stiff 1/8" SILT & CLAY 30-50 -- Dense 8-15 -- Stiff **CLAY & SILT** 1/16" 15-30 -- V. Stiff >50 -- Very Dense 1/32' Silty CLAY 1/64" >30 -- Hard 1. Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 Logger: eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.9 ppmv. REMARKS Groundwater was not encountered during drilling or upon completion. Makayla Myers Borehole was backfilled with Bentonite upon completion. 4. Waste odor noted in sample. **Boring No.:**

HS-SB-4139

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4139 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/9/2019 E TBD N TBD Drilling Co.: Stearns Drilling Finish Date: 7/9/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-13: Brown, fine to medium SAND, little Silt, moist. S-15 14-15 N/A S-14: 13-13.7': Brown, fine to medium SAND, little Silt, 15 60 47 C-4 15-20 NR 13.7-14': No recovery. S-16 15-16 1.6 S-15: No recovery. 16 C-4: SAND S-17 16-17 1.6 S-16: Light brown, fine to medium SAND, trace Silt, moist. S-17: Light brown, fine to medium SAND, trace Silt, black 17 discoloration from 16'-16.1', moist. S-18 17-18 1.3 S-18: 17-17.9': Light brown, fine to medium SAND, trace Silt. moist. 17.9 18 17.9-18': Brown, CLAY, little fine Sand, moist. CLAY S-19 18-19 2.8 S-19: 18-18.7': Light brown, fine to medium SAND, little Silt, 19 SAND 18.7-19': No recovery. S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 4-8 -- M. Stiff 1/8" SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:** HS-SB-4139

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4200 GZA SHEET: **House Street** 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/11/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Gary Geerligs H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample (ft.) ept fr.) Depth Sample Description & Configuration Equipment Installed

(ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Submitted To Lab	PID (ppm)	Sample Description & Configuration Modified Burmister	Rema	Stratum Description	Equipment Installed
_	C-1	0-5	60	54	10 Lab	NR	C-1:	1	Description	
_	S-1	0-1				0.5	S-1: Brown, Clayey SILT, little fine Sand, Sand lens, rock			
1_							fragments, moist, roots present.			
_	S-2	1-2				0.4	S-2: Brown, Clayey SILT, little fine Sand, Sand lens, moist.	2	CLAYEY SILT	No Equipment Installed
_										Tto Equipment metalled
2 _									2.2	
_	S-3	2-3				0.4	S-3: 2-2.2': Brown, Clayey SILT, little fine Sand, Sand lens,	3	2.2	
_							rock fragments, moist.			
3 _	S-4	3-4				0.4	2.2-3': Brown, CLAY & SILT, little fine Sand, moist.			
_	3-4	3-4				0.4	S-4: Brown, CLAY & SILT, little fine Sand, Sand lenses,		CLAY & SILT	
							moist.			
4 _	S-5	4-5				0.5	S-5: 4-4.2': Brown, CLAY & SILT, little fine Sand, moist.		4.2	
-						0.0	4.2-5': Gray, CLAY, trace fine Sand, waste, moist.			
5 -							nie o : oraj, o i i i, i acco into cana, nacio, molei.		WASTE	
_	C-2	5-10	60	36		NR	C-2:		5.3	
_	S-6	5-6				0.3	S-6: 5-5.3': Brown-gray, CLAY, trace fine Sand, waste,			
6 -							moist.			
_	S-7	6-7				0.4	5.3-6': Light brown, fine to medium SAND, trace Silt, rock			
_							fragments, moist.			
7 _							S-7: Light brown, fine to medium SAND, trace Silt, Clay			
_	S-8	7-8				0.4	lens, moist.			
_							S-8: Light brown, fine to medium SAND, trace Silt, Clay			
8 _							lenses, moist.			
_	S-9	8-9				N/A	S-9: No recovery.			
							-			
9 _	S-10	9-10				N/A	S-10: No recovery.			
_	0-10	3-10				13//	0-10. No recovery.			
10									SAND	
-	C-3	10-15	60	44		NR	C-3:			
_	S-11	10-11				0.4	S-11: Light brown, fine to medium SAND, trace Silt, trace			
11 -							fine Gravel, moist.			
_	S-12	11-12				0.4	S-12: Light brown, fine to medium SAND, trace Silt, trace			
_							fine Gravel, moist.			
12 _					12-13					
_	S-13	12-13				0.3	S-13: Light brown, fine to medium SAND, trace Silt, trace			
_							fine Gravel, moist.			
13 _	6.14	10 14				0.2	C 14. Light hyguns fing to madicum CAND trop - Cit to			
	S-14	13-14				0.3	S-14: Light brown, fine to medium SAND, trace Silt, trace			
14							fine Gravel, moist.			
_	ranular	Soile.	<u> </u>	<u> </u>	Cohos	ive Soils	Plasticity		l	

14						
	Granular Soils	Cohesive Soils		lasticity		
	Blows/FT Density	Blows/FT Consistency	SM Thread	Diameter Rolled		MISSDIG Ticket Number:
	0-4 Very Loose	<2 Very Soft	None	SILT		
	4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
	10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
	30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
	>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
		>30 Hard	1/64"	CLÁY		

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.3 ppmv.

2. Groundwater was not encountered during drilling or upon completion.

REMARKS 3. Borehole was backfilled with Bentonite upon completion.

Sean Stevenson

Logger:

Boring No.:

HS-SB-4200

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4200 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/11/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Gary Geerligs H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) Description No To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 15-16 15-20 60 46 NR C-4 C-4: S-16 15-16 0.4 S-16: Light brown, fine to medium SAND, trace Silt, trace SAND 16 fine Gravel, moist S-17 16-17 0.3 S-17: Light brown, fine to medium SAND, trace Silt, trace fine Gravel, Clay lens, moist. 17 17.2 S-18 17-18 0.3 S-18: Brown, CLAY, little fine Sand, moist. 18 S-19 18-19 0.4 S-19: Brown, CLAY, little fine Sand, moist. CLAY 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 2-4 -- Soft 1/4" B91621870 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:** HS-SB-4200

GEOPROBE LOG Wolverine World Wide GZA **House Street** GeoEnvironmental, Inc. Rockford, Michigan Engineers and Scientists **BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/10/2019 N TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: Gary Geerligs

Final Depth (ft.):

Sampler Type: Macro Core

Sampler O.D. (in.): 2.25"

Type of Rig: Geoprobe

Rig Model: 6620 DT

20

EXPLORATION NO.: HS-SB-4206 SHEET: 1 of 2 PROJECT NO: 16.0062335.52

REVIEWED BY: BLW

E TBD H. Datum: MI State Plane S Zone NAD83

Offset of Boring From Original Location:

Drilling Method: Direct Push					h		Sampler U.D. (in.): 2.25 Sampler Length (in.):5.0'	Ground Elevation: See Survey V. Datum: See Survey			
Sample									- E	_	
epth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Submitted To Lab	PID (ppm)	Sample Description & Configurati Modified Burmister	Nemark uo	Description	Equipment Installed	
	C-1	0-5	60	50		NR	C-1:	1	TOPSOIL 0.		
3 5	S-1	0-1				1.5	S-1: 0-0.5': Black, TOPSOIL, Silt, moist.			1	
1 إ ر		4.0					0.5-1': Brown, Clayey SILT, little fine Sand, mo	١ ،	CLAYEY SILT		
13	S-2	1-2				1.1	S-2: 1-1.4': Brown, Clayey SILT, little fine San	d, moist. 2	1.4	No Equipment Installe	
2							1.4-2': Brown, fine SAND, little Silt, moist.				
	S-3	2-3				1.1	S-3: Light brown, fine to medium SAND, trace	Silt, moist. 3			
3 = 5	S-4	3-4				2.5	S-4: 3-3.8': Light brown, fine to medium SANI), trace Silt,			
=							moist.		SAND		
4 🚽							3.8-4': Brown, CLAY & SILT, little fine Sand, n	noist.			
- 5	S-5	4-5				1.3	S-5: 4-4.2': Brown, CLAY & SILT, little fine Sa	nd, moist.			
; =							4.2-5': No recovery.				
_	C-2	5-10	60	58		NR	C-2:		5.2	2	
5	S-6	5-6				1.1	S-6: 5-5.2': Light brown, fine to medium SANE), trace Silt,			
₫.							moist.				
- 5	S-7	6-7				1.5	5.2-6': Brown, Silty CLAY, little fine Sand, moi	st.			
1							S-7: Brown, Silty CLAY, little fine Sand, moist.				
_	S-8	7-8			7-8	1.1	S-8: Brown, CLAY & SILT, little fine Sand, mo	ist.			
=									SILTY CLAY		
₫.											
18	S-9	8-9				1.2	S-9: Brown, CLAY & SILT, some fine to mediu	ım Sand,			
=							moist.				
_	S-10	9-10				1.1	S-10: 9-9.5': Brown, CLAY & SILT, some fine	to medium			
1							Sand, moist.		9.8	5	
					10-11		9.5-10': Brown, fine to coarse SAND, some Si	It, moist,			
	C-3	10-15	60	46		NR	tan/gray discoloration at 9.6'-9.8'.				
	S-11	10-11				1.1	C-3:				
-] ,	3-12	11-12				1.2	S-11: Light brown, fine to medium SAND, trac				
-							S-12: Light brown, fine to medium SAND, trac	e Siit, Clay			
: 🗄							lens from 11.3'-11.4', moist.		SAND		
- 5	S-13	12-13				1.4	S-13: Light brown, fine to medium SAND, trace	e Silt, moist.			
:∃.											
- 3	S-14	13-14				1.1	S-14: 13-13.8': Light brown, fine to medium S.	AND, trace			
=							Silt, moist.				
Gra	nular	Soils	<u> </u>	<u> </u>	Cohes	l sive Soi	13.8-14': No recovery.		1	I	
Blov	vs/FT	Density			Blows	/FT Cor	nsistency SM Thread Diameter Rolled			MISSDIG Ticket Numl	
	Ver	y Loose ose			<2 2-4	Very Soft	oft None SILT 1/4" Clayey SILT			B91621870	
10-3	0 N	1edium [Dense		4-8	M. Stif	f 1/8" SILŤ & CLAY			, . 	
	0 D Ver	ense y Dense	e		15-30	Stiff) V. S					
						- Hard	1/64" CLÁY	<u> </u>		_	
1. F	Field s	screenin	g of sa	amples	s for orga	anic vap	ors was performed with a MiniRAE 3000 photoic	nization detector equi	pped with a 10.6	Loager:	

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.9 ppmv.
 Groundwater was not encountered during drilling or upon completion.
 Borehole was backfilled with Bentonite upon completion.

REMARKS

Logger:

Sean Stevenson

Boring No.:

HS-SB-4206

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4206 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/10/2019 E TBD N TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 51 NR C-4 15-20 C-4: S-16 15-16 S-16: Light brown, fine to medium SAND, trace Silt, moist. 1.5 16 S-17 16-17 1.2 S-17: Light brown, fine to medium SAND, trace Silt, moist. SAND 17 S-18 17-18 S-18: Light brown, fine to medium SAND, trace Silt, Clay 1.3 lens from 17.2'-17.3', moist. 18 S-19 18-19 1.3 S-19: 18-18.6': Light brown, fine to medium SAND, trace Silt, moist. 19 18.6-19': Light brown, fine to coarse SAND, little Silt, moist. S-20 19-20 1.2 19.3 S-20: 19-19.2': Brown, CLAY, little fine Sand, moist. 19.2-20': No recovery. CLAY 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28

Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64'

Sean Stevenson
Boring No.:
HS-SB-4206

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4208 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 GZ Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/10/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 H. Datum: MI State Plane S Zone NAD83 Foreman: **Gary Geerligs** Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) To Lab (ppm) Description 52 C-1 0-5 60 NR C-1: 1 TOPSOIL 0.4 S-1 0-1 3.4 S-1: 0-0.4': Black, TOPSOIL, Silt, moist. 0.4-1': Brown, Clayey SILT, little fine Sand, moist. S-2 2.5 2 1-2 S-2: Brown, Clayey SILT, little fine Sand, rock fragments No Equipment Installed from 1.3'-1.4', moist, roots present. 2 S-3 2-3 2.2 S-3: Brown, Clayey SILT, little fine Sand, Sand lens from 3 2.4'-2.5' and from 2.8'-3', moist. 3 SILTY CLAY S-4 3-4 2.9 S-4: Brown, Clayey SILT, little fine Sand, dark gray 4 discoloration from 3'-3.1', moist. S-5 4-5 2.9 S-5: 4-4.3': Brown, Clayey SILT, little fine Sand, Clay lens at 4.4 moist. 4.3-5': No recovery. 5 42 C-2 5-10 60 NR C-2: S-6 5-6 3.2 5.7 S-6: 5-5.7': Brown, Silty CLAY, little fine Sand, Sand lens 6 from 5.5'-5.6', moist. S-7 6-7 13.2 CLAY 5.7-6': Grav. CLAY, trace fine Sand, moist. 6.5 S-7: 6-6.5': Gray, CLAY, trace fine Sand, moist. 6.5-7' Black CLAY trace fine Sand waste moist S-8 7-8 81.7

14 _			 No recovery.			13.8	
Granular Soils Blows/FT Dens 0-4 Very Loos 4-10 Loose 10-30 Mediun 30-50 Dense >50 Very Der	n Dense	Cohesive Soils Blows/FT Consistency <2 Very Soft 2-4 Soft 4-8 M. Stiff 8-15 Stiff 15-30 V. Stiff		lasticity I Diameter Rolled SILT Clayey SILT SILT & CLAY CLAY & SILT SILT & CLAY	·		MISSDIG Ticket Number: B91621870
230 Very Der		>30 Hard	1/64"	CLAY			

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.9 ppmv.

S-8: Black, CLAY, trace fine Sand, waste, moist.

S-9: 8-8.5': Black, CLAY, trace fine Sand, waste, moist.

S-11: Light brown, fine to medium SAND, trace Silt, black

S-12: Light brown, fine to medium SAND, trace Silt, moist.

S-13: Light brown, fine to medium SAND, trace Silt, moist.

S-14: 13-13.8': Light brown, fine to medium SAND, trace

Sand seam from 10.3'-10.4', moist.

2. Groundwater was not encountered during drilling or upon completion.

30.3

N/A

NR

2.1

5.9

1.8

1.8

8.5-9': No recovery.

S-10: No recovery.

C-3:

3. Borehole was backfilled with Bentonite upon completion.

4. Waste odor noted in sample.

Sean Stevenson
Boring No.:

Logger:

WASTE

SAND

8.4

HS-SB-4208

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/3/2019

REMARKS

8

9

10

12

S-9

S-10

C-3

S-11

S-12

S-13

8-9

9-10

10-15

10-11

11-12

12-13

13-14

60 45

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4208 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/10/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description NO RECOVERY No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. NO RECOVERY 15 60 38 C-4 15-20 NR C-4: S-16 15-16 2.5 S-16: Light brown, fine to medium SAND, trace Silt, Clay 16 lens from 15.5'-15.7', moist. SAND S-17 16-17 1.4 S-17: 16-16.8': Light brown, fine to medium SAND, trace Silt. moist. 16.8 17 16.8-17': Brown, CLAY, little fine Sand, moist. S-18 17-18 1.3 S-18: 17-17.9': Brown, CLAY, little fine Sand, moist. CLAY 17.9-18': Light brown, fine to medium SAND, trace Silt, 17.9 18 S-19 18-19 1.1 S-19: 18-18.2': Light brown, fine to medium SAND, trace 19 SAND 18.2-19': No recovery. S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64'

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/3/2019

Logger:
Sean Stevenson
Boring No.:
HS-SB-4208

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4210 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 GZ Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/10/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 H. Datum: MI State Plane S Zone NAD83 **Gary Geerligs** Final Depth (ft.): Foreman: 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) To Lab (ppm) Description C-1 0-5 60 53 NR C-1: 1 TOPSOIL 0.4 S-1 0-1 4.7 S-1: 0-0.4': Black, TOPSOIL, Silt, moist. 0.4-1': Brown, Clayey SILT, little fine Sand, Sand lens from S-2 4.2 2 1-2 No Equipment Installed S-2: Brown, Clayey SILT, little fine Sand, Sand lens from **CLAYEY SILT** 2 1.2'-1.3' and 1.7'-1.8', moist. S-3 2-3 5.0 3 S-3: 2-2.7': Brown, Clayey SILT, little fine Sand, Sand lens from 2.5'-2.6' moist 3 SAND 2.7'-4': Brown, fine to medium SAND, little Silt, moist. S-4 3-4 2.8 S-4: Brown, Clayey SILT, little fine Sand, brown Sand seam from 3.3'-3.4', moist **CLAYEY SILT** S-5 4-5 5.2 S-5: 4-4.4': Brown, Clayey SILT, little fine Sand, moist. 4.4-5': No recovery. 5 43 C-2 5-10 60 NR C-2: SAND S-6 5-6 3.1 S-6: 5-5.8': Light brown, fine to medium SAND, some Silt, 5.8 6 Clay lens from 5.2'-5.3', moist, S-7 6-7 4.6 5.8-6': Brown, CLAY & SILT, little fine Sand, moist. S-7: Brown, CLAY & SILT, little fine Sand, moist. CLAY & SILT 7-8 S-8 7-8 S-8: 7-7.9': Brown, CLAY & SILT, little fine Sand, moist. 1.9 7.9-8': Light brown, fine SAND, some Silt, rock fragments, 7.9 8 moist. S-9 8-9 2.0 S-9: 8-8.6': Light brown, fine to medium SAND, trace Silt, moist. 9 8.6-9': No recovery. N/A S-10 9-10 S-10: No recovery. 10 10-11

14	<u>.</u>	13.8-14': 1	No recovery.			
	Granular Soils Blows/FT Density	Cohesive Soils Blows/FT Consistency		lasticity Diameter Rolled		MISSDIG Ticket Number:
	0-4 Very Loose 4-10 Loose 10-30 Medium Dense	<2 Very Soft 2-4 Soft 4-8 M. Stiff	None 1/4" 1/8"	SILT Clayey SILT SILT & CLAY		B91621870
	30-50 Dense >50 Very Dense	8-15 Stiff 15-30 V. Stiff >30 Hard	1/16" 1/32" 1/64"	CLAY & SILT Silty CLAY CLAY		
				-		

S-11: Light brown, fine to medium SAND, trace Silt, moist.

S-12: Light brown, fine to medium SAND, trace Silt, moist.

S-13: Light brown, fine to medium SAND, trace Silt, moist.

S-14: 13-13.8': Light brown, fine to medium SAND, trace

 Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.5 ppmv.

Groundwater was not encountered during drilling or upon completion.

REMARKS 3. Borehole was backfilled with Bentonite upon completion.

45 60

NR

3.1

3.5

2.4

C-3:

Silt, moist.

C-3

S-11

S-12

S-13

S-14

12

10-15

10-11

11-12

12-13

13-14

Sean Stevenson

Logger:

Boring No.:

SAND

HS-SB-4210

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4210 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/10/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 6620 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 43 NR C-4 15-20 C-4: S-16 15-16 3.0 S-16: Light brown, fine to medium SAND, trace Silt, moist. 16 SAND S-17 16-17 2.6 S-17: Light brown, fine to medium SAND, trace Silt, moist. 17 S-18 17-18 2.3 S-18: 17-17.8': Light brown, fine to medium SAND, little Gravel, trace Silt, moist. 17.9 17.8-18': Brown, CLAY, little fine Sand, moist. 18 S-19 18-19 2.9 CLAY S-19: 18-18.3': Brown, CLAY, little fine Sand, moist. 18.4 18.3-18.6': Light brown, fine to medium SAND, some Silt, 19 moist. S-20 19-20 N/A SAND 18.6-19': No recovery. S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28

Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff Silty CLAY >30 -- Hard 1/64'

Logger:
Sean Stevenson
Boring No.:
HS-SB-4210

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

REMARKS

GEOPROBE LOG

GZA GeoEnvironmental, Inc. Engineers and Scientists

Wolverine World Wide House Street Rockford, Michigan

EXPLORATION NO.: HS-SB-4266 SHEET: 1 of 2

PROJECT NO: 16.0062335.52 **REVIEWED BY: BLW**

Logged By: Makayla Myers Drilling Co.: Stearns Drilling Foreman: Roger Christenson Type of Rig: Geoprobe

Rig Model: 7822 DT

Start Date: 7/10/2019 Finish Date: 7/10/2019 Final Depth (ft.): 20 Sampler Type: Macro Core

BORING COORDINATES (International Feet): N TBD **E** TBD H. Datum: MI State Plane S Zone NAD83

Offset of Boring From Original Location:

Sampler O.D. (in.): 2.25"

Drilling Method: Direct Push					sh		Sampler C.D. (III.). 2.25 Sampler Length (in.):5.0' Ground			Ground Elevation: See Survey V. Datum: See Survey				
Sample														
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Submitted To Lab	PID (ppm)	Sample Description & Configuration Modified Burmister	า	Remark	Stratum O Description	Equipment Installed			
-	C-1	0-5	60	51		NR	C-1:		1	TOPSOIL 0	E			
_	S-1	0-1				2.8	S-1: 0-0.5': Brown, TOPSOIL, moist.		TOI SOIL ()	.5				
1_							0.5-1': Reddish-brown, SAND & CLAY, moist.							
-	S-2	1-2				3.0	S-2: Reddish-brown, SAND & CLAY, rock fragn	nents, moist.	2		No Equipment Installed			
2 _						,,	C 2. 2. 2. El. Daddiah braum CAND 9 CLAV ma	int	•					
_	S-3	2-3				3.3	S-3: 2-2.5': Reddish-brown, SAND & CLAY, mo	ISI.	3					
3 -	1						2.5-3': Reddish-brown, Clayey SAND, moist.			SAND				
-	S-4	3-4				3.6	S-4: Reddish-brown, Clayey SAND, moist.							
4 _	0.5	4.5				20	C. F. A. A. Ol. Da ddiah harry a Classey CAND and							
-	S-5	4-5				3.2	S-5: 4-4.2': Reddish-brown, Clayey SAND, mois	St.						
- ; -	-						4.2-5': No recovery.			4	.7			
´ -	C-2	5-10	60	51		NR	C-2:							
-	S-6	5-6				1.7	S-6: 5-5.4': Reddish-brown, Clayey SAND, mois	st.						
-							5.4-6': Brown, Sandy CLAY, moist.							
_	S-7	6-7				1.5	S-7: 6-6.2': Brown, Sandy CLAY, moist.							
-							6.2-6.8': Red-brown, Silty CLAY, moist.			CLAY				
_							6.8-7': Brown, CLAY, moist.							
-	S-8	7-8				2.5	S-8: Brown, CLAY, moist.							
-	1						G-G. Brown, GEAT, Moist.							
_						4.0				8	.1			
_	S-9	8-9				1.8	S-9: 8-8.8': Brown, CLAY, moist.			SAND 8	.5			
-	1						8.8-9': Light brown, fine SAND, moist.							
_	S-10	9-10				2.6	S-10: 9-9.2': Light brown, fine SAND, moist.							
-	3-10	9-10				2.0	9.2-10': No recovery.							
-	1						3.2-10. No recovery.							
_	C-3	10-15	60	57		NR	C-3:							
-	S-11	10-11				2.0	S-11: Gray-brown, Silty CLAY, moist.							
-					44.40									
_	S-12	11-12			11-12	3.0	S-12: Gray-brown, Silty CLAY, rock fragments,	moist.		CL AV				
-										CLAY				
-	1													
-	S-13	12-13				2.5	S-13: Gray-brown, Silty CLAY, moist.							
-]													
3 _	1_													
-	S-14	13-14				2.7	S-14: Red-brown, CLAY, moist.							
	1													
-											1			
	Granular Soils Blows/FT Density Cohesive So Blows/FT Co					/FT Cor	l <u>s Plasticity</u> nsistency <u>SM Thread Diameter Rolled</u>				MISSDIG Ticket Numb			
0-4	4 Ver	y Loose			<2	Very So	oft None SILT							
	10 Lo	oose Medium I	Danca		2-4 4-8	· Soft · M. Stif	1/4" Clayey SILT f 1/8" SILT & CLAY				B91621870			
)-50 [)-50 [Delige	•		- Wi. Sui Stiff	1/16" SILT & CLAY 1/16" CLAY & SILT							
		ry Dene	_) \/ 9								

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

>50 -- Very Dense

1/64" Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.7 ppmv.

1/32"

Silty CLAY

2. Groundwater was not encountered during drilling or upon completion.

15-30 -- V. Stiff

>30 -- Hard

REMARKS 3. Borehole was backfilled with Bentonite upon completion. Logger:

Makayla Myers

Boring No.:

HS-SB-4266

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4266 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/10/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Modified Burmister Pen. Rec. PID Depth Stratum (ft) Submitted (in) (in) (ft.) Description No To Lab (ppm) S-15: 14-14.8': Gray-brown, Silty CLAY, moist. S-15 14-15 2.3 14-15 14.8-15': No recovery. 15 CLAY 60 60 NR C-4 15-20 C-4: S-16 15-16 2.8 S-16: Gray-brown, Silty CLAY, moist. 16 S-17 S-17: Gray, coarse SAND & GRAVEL, moist. 16-17 2.1 17 S-18 17-18 2.1 S-18: Gray, coarse SAND & GRAVEL, moist. 18 SAND S-19 18-19 2.0 S-19: Light brown, fine SAND, moist. 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 2-4 -- Soft 1/4" B91621870 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:**

HS-SB-4266

GEOPROBE LOG Wolverine World Wide House Street Rockford, Michigan

EXPLORATION NO.: HS-SB-4267

SHEET: 1 of 2 PROJECT NO: 16.0062335.52

REVIEWED BY: BLW

Logged By: Makayla Myers Drilling Co.: Stearns Drilling Foreman: Roger Christenson Type of Rig: Geoprobe

GeoEnvironmental, Inc.

Engineers and Scientists

GZA

Rig Model: 7822 DT

Start Date: 7/10/2019 Finish Date: 7/10/2019 Final Depth (ft.): 20 Sampler Type: Macro Core

Sampler O.D. (in.): 2.25"

N TBD **E** TBD H. Datum: MI State Plane S Zone NAD83 Offset of Boring From Original Location:

BORING COORDINATES (International Feet):

NA

Drilling Method: Direct Push					h		Sampler O.D. (in.): 2.25" Sampler Length (in.):5.0'	Ground Elevation: See Survey V. Datum: See Survey			
Sam				ple							
epth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Submitted To Lab	PID (ppm)	Sample Description & Configuration Modified Burmister	on g	кетатк	Stratum O Description	Equipment Installed
-	C-1	0-5	60	54		NR	C-1:		1	TOPSOIL 0.5	
-	S-1	0-1				2.9	S-1: 0-0.5': Dark brown, TOPSOIL, moist.			1010012 0.5	
1 _							0.5-1': Reddish-brown, Sandy CLAY, moist.			0.44/5// 0/ 4//	
-	S-2	1-2				2.5	S-2: 1-1.5': Reddish-brown, Sandy CLAY, moi	st. 2	2	SANDY CLAY 1.5	No Equipment Installe
=	1						1.5-2': Brown, Silty CLAY, moist.			1.3	-1
? -	S-3	2-3				1.8	S-3: Brown, Silty CLAY, moist.	3	3		
- -											
-	S-4	3-4				3.1	S-4: Brown, Silty CLAY, Sand lenses, moist.				
_	S-5	4-5				2.0	S-5: 4-4.5': Brown, Silty CLAY, Sand lenses, n	noist		SILTY CLAY	
=]					2.0	4.5-5': No recovery.	loist.			
-	1						4.5-5 . No recovery.				
_	C-2	5-10	60	58		NR	C-2:				
-	S-6	5-6				2.5	S-6: 5-5.3': Brown, Silty CLAY, moist.				
-	3-0	3-0				2.0	5.3-6': Gray-brown, Silty CLAY, moist.				
_	S-7	6-7				2.9	S-7: 6-6.8': Gray-brown, Silty CLAY, moist.			6.3	
-		•								0.0	
-	1						6.8-7': Brown, CLAY, moist.				
-	S-8	7-8					S-8: Brown, CLAY, moist.				
-	S-9	8-9				2.5	S-9: Brown, CLAY, moist.			CLAY	
Ξ	}										
-	S-10	9-10				2.2	S-10: 9-9.4': Brown, CLAY, moist.				
-	1						9.4-10': Brown, CLAY, some fine Sand, moist.				
-	C-3	10-15	60	51		NR	C-3:			10	
-	S-11	10-11		•		4.4	S-11: 10-10.8': Brown, Clayey SAND, moist.			SAND	
-]	10-11				7.7	10.8-11': Brown, CLAY, moist.			10.8	
_	S-12	11-12				3.8	S-12: Brown, CLAY, moist.				
-	1						3-12. BIOWII, CLAT, IIIOISt.				
-	1										
_	S-13	12-13			12-13	3.3	S-13: Brown, CLAY, moist.				
-	1									CLAY	
-	1										
-	S-14	13-14				4.4	S-14: Brown, CLAY, moist.				
-	1										
<u> </u>	1										
	ranular					ive Soi	ls <u>Plasticity</u>				MICCOLO Tialest Normal
		Density y Loose				<u>'FT Cor</u> Very S	nsistency SM Thread Diameter Rolled oft None SILT				MISSDIG Ticket Num
	4 vei 10 Lo				2-4		1/4" Clayey SILT				B91621870
10)-30 N	∕ledium l	Dense		4-8	M. Stif	f 1/8" SILT & CLAY				
n) <u>-</u> 50 [)ense			8-15 -	Stiff	1/16" CLΔY & SILT				

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019 REMARKS

10-30 -- Medium Dense 30-50 -- Dense

>50 Very Dense 15-30 V. Stiff 1/32" Silty CLAY Silty CLAY Silty CLAY 1. Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped eV lamp. Readings above background levels are shown in parts per million by volume (ppmy) of isobutylene. ND representations are shown in parts per million by volume (ppmy) of isobutylene.	30-30 Delise	1/10 CLAT & SILT	0-10 Olli	30	30-30 Delise	50-
Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped	>50 Very Dens	1/32" Silty CLAY	15-30 V. Stiff)ense	>50 Very Dens	>50
		1/64" CLÁY	>30 Hard			
ppmy Background was measured at 1.0 ppmy	eV lamp. Rea		bove background levels are sho	Readings above ba	eV lamp. Rea	1.

1/16"

CLAY & SILT

Groundwater was not encountered during drilling or upon completion.

8-15 -- Stiff

3. Borehole was backfilled with Bentonite upon completion.

Logger:

Makayla Myers

Boring No.:

HS-SB-4267

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4267 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/10/2019 E TBD N TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (#.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description S-15 14-15 4.2 S-15: 14-14.2': Brown, CLAY, moist. 14.2-15': No recovery. CLAY 15 15-16 60 53 C-4 15-20 NR C-4: SAND 15.5 S-16 15-16 3.6 S-16: 15-15.5': Brown, fine SAND, moist. 16 15.5-16': Brown, CLAY, moist. CLAY 16.2 S-17 16-17 3.5 S-17: 16-16.2': Brown, CLAY, moist. SAND & 16.2-17': Gray-tan, coarse SAND and Gravel, moist. 17 **GRAVEL** S-18 17-18 2.6 S-18: 17-17.7': Gray-tan, coarse SAND and Gravel, moist. 17.7-18': Light brown, fine SAND, moist. 18 S-19 18-19 3.2 S-19: Light brown, fine SAND, moist. SAND 19 S-20 19-20 2.4 S-20: 19-19.4': Light brown, fine SAND, moist. 19.4-20': No recovery. 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:**

HS-SB-4267

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4270 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/10/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" Drilling Method: Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Depth Sample Description & Configuration **Equipment Installed** Pen. Rec. Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description To Lab (ppm)

	C-1	0-5	60	50	NR	C-1:	1	TOPSOIL	0.4	
	S-1	0-1			2.6	S-1: 0-0.4': Dark brown, TOPSOIL, moist				
1_	1					0.4-1': Brown, Silty CLAY, moist.				
	S-2	1-2			2.9	S-2: Brown, Silty CLAY, fine Sand seams, moist.	2			No Equipment Installed
	1									=
2 _	1						_	SILTY CLAY		
	S-3	2-3			2.7	S-3: Brown, Silty CLAY, fine Sand seams, moist.	3			
	1									
3 _	S-4	3-4			3.3	S-4: 3-3.5': Brown, Silty CLAY, fine Sand seams, moist.	4			
	7 5-4	3-4			3.5	3.5-4': Brown, CLAY, moist.	"		3.5	
4	1					5.5-4. BIOWII, OLAT, Moist.				
	S-5	4-5			2.6	S-5: 4-4.1': Brown, CLAY, moist.				
						4.1-5': No Recovery.		CLAY		
5						-			5	
-	C-2	5-10	60	60	NR	C-2:		SAND	5.5	
	S-6	5-6			3.3	S-6: 5-5.5': Tan, Clayey fine SAND, moist.		SAND	5.5	
6	1					5.5-5.7': Dark brown, SILT, moist.		CLAY		
	S-7	6-7			5.1	5.7-6': Brown, CLAY, moist.		CLAI	6.5	
_	1					S-7: 6-6.5': Brown, CLAY, moist.				
7 _	S-8	7-8			9.8	6.5-7': Gray, Sandy CLAY, waste, moist.		WASTE		
	3-0	7-0			9.0	S-8: 7-7.5': Gray, Sandy CLAY, waste, moist.		WASIE		
8	1					7.5-7.7': Black, SAND, waste, moist.			7.7	
-	S-9	8-9			8.9	7.7-8': Gray/brown/black, CLAY, streaks of waste, moist.				
	1					S-9: 8-8.2': Gray/brown/black, CLAY, streaks of waste,		CLAY		
9	+					moist.			8.8	
-	S-10	9-10			11.7	8.2-8.4': Brown, CLAY, moist.				
	1					8.4-9': Black, Sandy Waste, moist.		SANDY CLAY		
10 _	1					S-10: 9-9.1': Black, Sandy Waste, moist.			10	
	C-3	10-15	60	52	NR	9.1-10': No recovery.		CLAY	10.3	
2	S-11	10-11			65.3	C-3:				
[11]	S-12	11-12			321.2	S-11: 10-10.3': Brown, CLAY, moist.				
Š	3-12	11-12			321.2	10.3-10.8': Black, SAND, waste, moist.				
12	1					10.8-10.9': Brown, CLAY, moist.		WASTE		
- "	S-13	12-13			157.0	10.9-11': Dark gray, CLAY, waste, moist.				
	1					S-12: 11-11.2': Dark gray, CLAY, waste, moist.			40.0	
13	+					11.2-11.4': White/gray, fine SAND, waste, moist. 11.4-12': Gray, CLAY, waste, moist.			12.8	
ž –	S-14	13-14			3.1	S-13: 12-12.5': Gray, CLAY, waste, moist. S-13: 12-12.5': Gray, CLAY, seams of black sandy waste,				
	1					moist.		CLAY	40.5	
14	1					moist.			13.9	

Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled <u>Granular Soils</u> **MISSDIG Ticket Number:** Blows/FT Density <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 30-50 -- Dense 1/8" 4-8 -- M. Stiff 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64"

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.9 ppmv.

Groundwater was not encountered during drilling or upon completion.

Borehole was backfilled with Bentonite upon completion.
 Waste odor noted in sample.

Makayla Myers **Boring No.:**

HS-SB-4270

Logger:

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

REMARKS

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4270 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Start Date: Logged By: Makayla Myers 7/10/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: H. Datum: MI State Plane S Zone NAD83 Roger Christenson Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Stratum O Depth Sample Description & Configuration Pen. Rec. Depth PID (ft) Submitted Modified Burmister (in) (in) Description (ft.) To Lab (ppm) 12.5-12.8': Black, SAND, waste, moist. S-15 14-15 1.7 12.8-13': Brown, CLAY, moist. 15 S-14: 13-13.9': Brown, CLAY, moist. 60 36 C-4 15-20 NR 13.9-14': Light brown, fine SAND, moist. S-16 15-16 3.3 S-15: Light brown, fine SAND, moist. 16 C-4: S-17 2.1 16-17 S-16: Light brown, fine to medium SAND, streaks of waste, moist 17 S-17: Light brown, fine to medium SAND, streaks of waste, SAND S-18 17-18 2.0 moist. S-18: Light brown, fine to medium SAND, streaks of waste, 18 moist. S-19 18-19 N/A S-19: No recovery. 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27

I						1
ı		>30 Hard	1/64"	CLÁY		
ı	>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
ı	30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
ı	10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
ı	4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
ı	0-4 Very Loose	<2 Very Soft	None	SILT		
ı	Blows/FT Density	Blows/FT Consistency	SM Thread	<u>d Diameter Rolled</u>		MISSDIG Ticket Number:
ı	Granular Soils	Cohesive Soils		Plasticity		
l	28 _					

S30 -- Hard 1/64" CLAY

Logger:

Makayla Myers

Boring No.:

HS-SB-4270

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4272 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 GZN Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/10/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description 50 C-1 0-5 60 NR C-1: 1 TOPSOIL 0.4 S-1 0-1 S-1: 0-0.4': Dark brown, TOPSOIL, moist. 1.5 0.4-1': Brown, Clayey SAND, moist. S-2 2 1-2 1.3 S-2: Brown, Clayey SAND, moist. SAND No Equipment Installed 2 S-3 2-3 1.3 S-3: 2-2.7': Brown, Silty CLAY, moist. 3 CLAY 2.7-3': Gray-brown, SILT, moist. 3 S-4 3-4 S-4: Gray-brown, SILT, moist. 4 1.4 SILT S-5 4-5 8.0 S-5: 4-4.2': Black, fine SAND, waste, moist. WASTE SAND 4.2-5': No recovery. 5 52 C-2 5-10 60 NR C-2: WASTE - SILTY CLAY S-6 5-6 44.0 S-6: 5-5.4': Grav-brown, SILT, waste, moist, 6 5.4-6': Dark gray, CLAY, waste, moist. S-7 6-7 66.7 S-7: Black and gray, fine to coarse SAND, waste, moist. SAND S-8 7-8 3.7 S-8: 7-7.9': Black and gray, fine to coarse SAND, waste, CL AY 7.9 7.9-8': Brown, fine SAND, moist. 8 S-9 8-9 2.2 SAND 8.3 S-9: 8-8.3': Brown, fine SAND, moist. 8.3-9': Brown, CLAY, moist. CLAY 9 9.1 S-10: 9-9.3': Brown, CLAY, moist. S-10 9-10 1.6 9.3-10': No recovery. 10 40 SILTY CLAY 60 C-3 10-15 NR S-11 10-11 1.8 S-11: Brown, Silty CLAY, little fine Sand, moist. S-12 11-12 3.7 S-12: 11-11.5': Brown, fine to coarse SAND, some Silty Clay, moist. 11.5-12': Light brown, fine to medium SAND, trace Silt, 12 S-13 12-13 2.4 moist S-13: Light brown, fine to medium SAND, trace Silt, moist. SAND 13 S-14 13-14 14 S-14: 13-13.3': Light brown, fine to medium SAND, trace Silt, moist. 13.3-14': No recovery. 14 Cohesive Soils Blows/FT Consistency Plasticity <u>Granular Soils</u> SM Thread Diameter Rolled **MISSDIG Ticket Number:** Blows/FT Density <2 -- Very Soft 0-4 -- Very Loose None SILT 4-10 -- Loose B91621870 2-4 -- Soft 1/4" Clayey SILT 10-30 -- Medium Dense 4-8 -- M. Stiff 1/8" SILT & CLAY 30-50 -- Dense 8-15 -- Stiff **CLAY & SILT** 1/16" >50 -- Very Dense 15-30 -- V. Stiff 1/32' Silty CLAY 1/64" >30 -- Hard 1. Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 Logger: eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 1.0 ppmv. REMARKS Groundwater was not encountered during drilling or upon completion. Makayla Myers Borehole was backfilled with Bentonite upon completion. 4. Waste odor noted in sample. **Boring No.:**

HS-SB-4272

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4272 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Start Date: Logged By: Makayla Myers 7/10/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Stratum C (#) Depth Sample Description & Configuration Pen. Rec. Depth PID (ft) Submitted Modified Burmister (in) (in) Description (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 40 NR C-4 15-20 C-4: S-16 15-16 2.0 S-16: Light brown, fine to medium SAND, trace Silt, moist. 16 S-17 16-17 1.4 S-17: Light brown, fine to medium SAND, trace Silt, moist. 17 SAND S-18 17-18 S-18: 17-17.2': Light brown, fine to medium SAND, trace 1.3 Silt. moist. 17.2-17.6': Brown, fine to medium SAND, some Silt, moist. 18 S-19 18-19 1.3 17.6-18': Light brown, fine to medium SAND, trace Silt, 19 S-19: 18-18.3': Light brown, fine to medium SAND, trace S-20 19-20 N/A Silt, moist. 18.3-19': No recovery. 20 20 S-20: No recovery. End of exploration at 20 feet. 21 22 23 24 25

GEOPROBE WITH EQUIP W	27 = 28 = 28 = 28			
ROBI	Granular Soils	Cohesive Soils Blows/FT Consistency	<u>Plasticity</u> SM Thread Diameter Rolled	MISSDIG Ticket Number:
OPF	Blows/FT Density 0-4 Very Loose	<2 Very Soft	None SILT	WISSDIG TICKET NUMBER.
	4-10 Loose	2-4 Soft	1/4" Clayey SILT	B91621870
GZA	10-30 Medium Dense	4-8 M. Stiff	1/8" SILT & CLAY	
	30-50 Dense	8-15 Stiff	1/16" CLAY & SILT	
PJ.	>50 Very Dense	15-30 V. Stiff	1/32" Silty CLAY	

| Sand | 1/64" | CLÁY | Logger: | Makayla Myers | Boring No.: | HS-SB-4272

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 8/30/2019

26

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4264 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 GZ Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/11/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) (ppm) Description C-1 0-5 60 54 NR C-1: **TOPSOIL** 0.6 S-1 0-1 0.5 S-1: 0-0.6': Dark brown, TOPSOIL, moist. 0.6-1': Brown, CLAY & SILT, some fine Sand, moist. S-2 0.6 2 1-2 S-2: Brown, CLAY & SILT, some fine Sand, moist. No Equipment Installed 2 S-3 2-3 0.6 S-3: Brown, CLAY & SILT, Sand seams at 2.5' and 2.9', 3 **CLAY & SILT** moist. 3 S-4 3-4 0.6 S-4: Brown, CLAY & SILT, Sand seams at 3.6' and 3.9', moist. S-5 4-5 0.5 S-5: 4-4.3': Yellow-brown, fine SAND, some Silt, moist. 4.3 SAND 4.3-5': Brown, Silty CLAY, moist. 5 57 C-2 5-10 60 NR C-2: 0.7 S-6 5-6 S-6: Brown, Silty CLAY, moist. 6 S-7 6-7 0.7 S-7: Brown, Silty CLAY, moist. SILTY CLAY S-8 7-8 0.3 S-8: Brown, Silty CLAY, moist. 8 S-9 8-9 0.5 S-9: 8-8.6': Brown, Silty CLAY, moist. 8.6 8.6-9': Brown, CLAY, gravel/rock fragments, moist. 9 CLAY S-10: Brown, Silty CLAY, moist. 9-10 0.5 S-10 SILTY CLAY

14					13.0	
	Granular Soils	Cohesive Soils		lasticity		MICCOLC Tielset Number
	Blows/FT Density	Blows/FT Consistency	SM Thread	Diameter Rolled		MISSDIG Ticket Number:
	0-4 Very Loose	<2 Very Soft	None	SILT		
	4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
	10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
	30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
	>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
		>30 Hard	1/64"	CLÁY		

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.3 ppmv.

S-11: 10-10.8': Brown, CLAY, little Silt, moist.

S-13: 12-12.5': Brown, Silty CLAY, moist.

S-14: Gray-brown, SILT & CLAY, moist.

S-12: Brown, Silty CLAY, moist.

10.8-11': Brown, coarse SAND, some Silt, rock fragments,

12.5-13': Gray-brown, medium coarse SAND & CLAY, little

Groundwater was not encountered during drilling or upon completion.

REMARKS 3. Borehole was backfilled with Bentonite upon completion.

60 60

C-3:

Silt, moist.

NR

0.7

0.4

0.4

12-13

Makayla Myers

Logger:

CLAY

SAND

SILTY SAND

SAND & CLAY

CLAY

10.8

Boring No.:

HS-SB-4264

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019

10

12

C-3

S-11

S-12

S-13

S-14

10-15

10-11

11-12

12-13

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4264 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/11/2019 E TBD N TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description SILT & CLAY No (ft.) To Lab (ppm) S-15: Gray-brown, SILT & CLAY, rock fragments, moist. S-15 14-15 0.5 15 15-16 SILT & CLAY 60 43 NR C-4 15-20 C-4: S-16 15-16 0.4 S-16: Brown, SILT & CLAY, rock fragments, moist. 16 S-17: 16-16.8': Yellow-brown, GRAVEL and coarse SAND, S-17 16-17 9.3 some Silt, some fine Sand, moist. SAND & GRAVEL 17 16.8-17': Light brown, fill SAND, some Gravel, moist. S-18 17-18 0.4 S-18: 17-17.5': Light brown, fine to medium SAND, some Gravel, moist. 18 17.5-18': Light brown, fine to medium SAND, little Silt, moist. S-19 18-19 0.4 S-19: 18-18.4': Light brown, fine to medium SAND, little Silt, SAND moist 19 18-19': No recovery. S-20 19-20 N/A S-20: No recovery. 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:** HS-SB-4264

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4265 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 **GZ**\ Engineers and Scientists **REVIEWED BY: BLW** BORING COORDINATES (International Feet): Logged By: Makayla Myers Start Date: 7/11/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample ?emark Elev (#.) Depth Dept (ft.) Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description C-1 0-5 60 54 NR C-1: 1 **TOPSOIL** 0.4 S-1 0-1 1.2 S-1: 0-0.4': Dark brown to brown, TOPSOIL, moist. SILT 0.4-1': Brown, Clayey SILT, little Gravel, moist. S-2 2 1-2 1.4 S-2: Brown, CLAY & SILT, moist, roots present. No Equipment Installed **CLAY & SILT** 2 S-3 2-3 1.2 S-3: 2-2.4': Brown, CLAY & SILT, moist. 3 CLAY 2.4 2.4-3': Brown, Silty CLAY, moist. **CLAY & SILT** 3 S-4 3-4 S-4: Brown, CLAY & SILT, little fine Sand, rock fragments, 1.1 moist. CLAY & SAND S-5 4-5 1.1 S-5: 4-4.5': Brown-gray, CLAY and fine Sand, some Silt, 4.5-5': No recovery. 5 55 C-2 5-10 60 NR C-2: S-6 5-6 0.8 S-6: Brown, CLAY, some Silt, moist. 6 CLAY S-7 6-7 0.8 S-7: Brown, CLAY, some Silt, rock fragments, moist. S-8 7-8 8.0 S-8: 7-7.9': Gray-brown, CLAY, little Silt, moist. 7.9-8': Gray, fine to medium SAND, some Silt, moist. 7.9 8 S-9 8-9 0.7 S-9: 8-8.5': Gray, fine to medium SAND, some Silt, moist. SAND 8.5 8.5-9': Gray-brown, CLAY, little Silt, moist. CI AY 9 9-10 0.8 S-10: 9-9.6': Brown, CLAY & SILT, moist.

14 _				SILT & CLAY	
Granular Soils Blows/FT Density 0-4 Very Loose 4-10 Loose 10-30 Medium Dense 30-50 Dense >50 Very Dense	Cohesive Soils Blows/FT Consistency <2 Very Soft 2-4 Soft 4-8 M. Stiff 8-15 Stiff 15-30 V. Stiff >30 Hard		asticity Diameter Rolled SILT Clayey SILT SILT & CLAY CLAY & SILT Silty CLAY CLAY		MISSDIG Ticket Number: B91621870
	· oo mara	1701	ODII		

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.6 ppmv.

9.6-10': No recovery.

S-11: 10-10.6': Gray-brown, CLAY, some Silt, moist.

10.6-11': Brown, medium to coarse SAND, some Clay,

S-12: Gray-brown, CLAY, some Silt, little fine to medium

S-13: 12-12.5': Gray-brown, CLAY, some Silt, moist.

12.5-13': Brown, SILT & CLAY, moist. S-14: Brown, SILT & CLAY, moist.

C-3:

Sand, moist.

NR

1.1

0.8

0.9

8.0

12-13

Groundwater was not encountered during drilling or upon completion.

REMARKS 3. Borehole was backfilled with Bentonite upon completion.

50 60

Makayla Myers

Logger:

CLAY & SILT

CLAY

SAND

10.6

12.5

Boring No.:

HS-SB-4265

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019

S-10

C-3

S-11

S-12

S-13

S-14

10-15

10-11

11-12

12-13

13-14

10

12

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4265 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/11/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (#.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description S-15: 14-14.2': Brown, SILT & CLAY, moist. S-15 14-15 0.9 SILT & CLAY 14.5 14.2-15': No recovery. 15 15-16 **GRAVEL & SAND** 50 60 NR C-4 15-20 C-4: 15.5 S-16 15-16 0.7 S-16: Gray-brown, GRAVEL & medium to coarse Sand, little 16 S-17 16-17 0.6 S-17: Light brown, medium to coarse SAND, little Silt, rock fragments, moist. 17 S-18 17-18 0.7 S-18: Light brown, fine to medium SAND, some Silt, moist. SAND 18 S-19 18-19 0.7 S-19: Light brown, fine to medium SAND, some Silt, moist. 19 S-20: 19-19.1': Light brown, fine to medium SAND, some S-20 19-20 N/A Silt. moist. 19.1-20': No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:** HS-SB-4265

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4268 1 of 2 SHEET: **House Street** GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/10/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Rig Model: 7822 DT Sampler Type: Macro Core Offset of Boring From Original Location: Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey

			Sam	ple				×	>	
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Submitted To Lab	PID (ppm)	Sample Description & Configuration Modified Burmister	Remark	Description (#)	Equipment Installed
-	C-1	0-5	60	53		NR	C-1:	1	TOPSOIL 0.4	
-	S-1	0-1				1.3	S-1: 0-0.4': Black, TOPSOIL, moist.		GRAVEL 0.6	
1 -							0.4-0.6': Brown, fine GRAVEL, trace Sand, moist.		GIVAVLL	
_	S-2	1-2				1.1	0.6-1': Brown, Clayey SILT, little fine Sand, moist.	2		No Equipment Installed
-							S-2: Brown, Clayey SILT, little fine Sand, moist.			No Equipment installed
2 -										
_	S-3	2-3				1.1	S-3: Brown, Clayey SILT, little fine Sand, Sand lenses from	3		
_							2.5'-2.6' and 2.8'-2.9', moist.			
3 _										
-	S-4	3-4				1.1	S-4: Brown, Clayey SILT, some fine Sand, moist.		SILT	
_										
4 _										
-	S-5	4-5				1.0	S-5: 4-4.4': Brown, Clayey SILT, some fine Sand, moist.			
-							4.4-5': No recovery.			
5_										
-	C-2	5-10	60	38		NR	C-2:			
-	S-6	5-6				1.0	S-6: 5-5.7': Brown, Clayey SILT, moist.		5.7	
6 _							5.7-6': Black, SILT, trace Sand, trace Gravel, moist.			
-	S-7	6-7				1.1	S-7: Light brown, fine to medium SAND, trace Silt, moist.			
-										
7 _										
-	S-8	7-8				1.0	S-8: Light brown, fine to medium SAND, trace Silt, moist.			
-										
8 _										
_	S-9	8-9				1.0	S-9: 8-8.2': Light brown, fine to medium SAND, trace Silt,			
-							moist.			
9 _							8.2-9': No recovery.			
_	S-10	9-10				N/A	S-10: No recovery.		SAND	
-										
10 _		40.45		50						
-	C-3	10-15	60	50		NR	C-3:			
: l	S-11	10-11				1.3	S-11: Light brown, fine to medium SAND, trace Silt, moist.			
11 _	C 12	11-12				1.6	C 10. Light brown fine to madism CAND trace Cit Class			
_	S-12	11-12				1.0	S-12: Light brown, fine to medium SAND, trace Silt, Clay			
							lenses from 11.2'-11.4', moist.			
12 _	C 12	10 10			12-13	1.2	C 12, 12 12 71 Light brown fine to madium CAND trace			
: -	S-13	12-13				1.2	S-13: 12-12.7': Light brown, fine to medium SAND, trace			
-							Silt, moist.		12.7	
13 _	S-14	13-14				0.9	12.7-13': Brown, CLAY & SILT, little fine Sand, moist.			
!	J- 1 -	10-14				0.0	S-14: Brown, CLAY & SILT, little fine Sand, moist.		CLAY & SILT	
14									1.4	
_	ranular	0-:1-	l	l	Coboo	ive Soils	Plasticity	I	<u> </u>	

1-+					 	
	Granular Soils	Cohesive Soils		lasticity		
	Blows/FT Density	Blows/FT Consistency	SM Thread	<u>l Diameter Rolled</u>		MISSDIG Ticket Number:
	0-4 Very Loose	<2 Very Soft	None	SILT		
	4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
	10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
	30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
	>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
		>30 Hard	1/64"	CLÁY		

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.9 ppmv.

2. Groundwater was not encountered during uning or apol.
3. Borehole was backfilled with Bentonite upon completion. Groundwater was not encountered during drilling or upon completion.

Makayla Myers

Logger:

Boring No.:

HS-SB-4268

WOLVERINE WORLD WIDE. GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019

REMARKS

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4268 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/10/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15: 14-14.2': Brown, CLAY & SILT, little fine Sand, moist. S-15 14-15 1.0 14.2-15': No recovery. 15 15-16 60 37 NR C-4 15-20 C-4: S-16 15-16 1.1 S-16: Light brown, fine to medium SAND, moist. 16 S-17 16-17 1.3 S-17: Light brown, fine to medium SAND, moist. 17 SAND S-18 17-18 S-18: Light brown, fine to medium SAND, moist. 1.2 18 S-19 18-19 1.1 S-19: 18-18.1': Light brown, fine to medium SAND, moist. 18.1-19': No recovery. 19 S-20: No recovery. S-20 19-20 N/A 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 2-4 -- Soft 1/4" B91621870 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:**

HS-SB-4268

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4269 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/11/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Sampler Type: Macro Core Type of Rig: Geoprobe Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample ¥ > ~

Donth	Sample								≩ <u> </u>	
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Submitted To Lab	PID (ppm)	Sample Description & Configuration Modified Burmister	Remark	Stratum Description	Equipment Installed
-	C-1	0-5	60	55		NR	C-1:	1	TOPSOIL 0.5	
_	S-1	0-1				0.6	S-1: 0-0.5': Dark brown, TOPSOIL, moist.		TOPSOIL 0.5	
1 -							0.5-1': Brown, SILT & CLAY, some fine Sand, Sand seam,			
_	S-2	1-2				0.3	moist.	2		No Eminorant Installed
_	1						S-2: Brown, SILT & CLAY, some fine Sand, rock fragments,			No Equipment Installed
2 -							moist.			
_	S-3	2-3				0.3		3		
_							S-3: Brown, SILT & CLAY, some fine Sand, sand seam at			
3 -							2.7', moist.			
_	S-4	3-4				0.2	S-4: Brown, SILT & CLAY, some fine Sand, Sand seam			
-							from 3.2'-3.5', moist.		SILT & CLAY	
4 -	1								OILT & OLAT	
· -	S-5	4-5				0.2	S-5: Brown, SILT & CLAY, some fine Sand, moist.			
-										
5 -										
_	C-2	5-10	60	47		NR	C-2:			
_	S-6	5-6				0.5	S-6: Brown, SILT & CLAY, some fine Sand, moist.			
6 -	1									
_	S-7	6-7				0.5	S-7: 6-6.5': Brown, SILT & CLAY, some fine Sand, moist.			
_							6.5-6.8': Brown, fine to medium SAND, moist.		6.5	
7 -	1						6.8-7': Brown, Silty CLAY, moist.		SAND 6.8	
_	S-8	7-8				0.4	S-8: 7-7.4': Brown, Silty CLAY, Sand seam, moist.		SILTY CLAY 7.4	
_							7.4-8': Brown, SILT & CLAY, some fine Sand, moist.		1,1	
8 -					8-9		, , , , , , , , , , , , , , , , , , , ,		SILT & CLAY 8	
-	S-9	8-9			0-3	4.8	S-9: 8-8.8': Gray, CLAY and fine Sand, some Silt, moist.			
_	1						8.8-8.9': Dark gray, CLAY, waste, moist.		CLAY & SAND 8.8	
9 -							8.9-9': No recovery.		0.0	
-	S-10	9-10				N/A	S-10: No recovery.			
_	1								CLAY	
10 _									10	
-	C-3	10-15	60	35		NR	C-3:			
_	S-11	10-11				0.6	S-11: Gray-brown, CLAY & SILT, some fine Sand, moist.			
11 _					11-12				CLAY & SILT	
-	S-12	11-12			=	0.4	S-12: 11-11.8': Gray-brown, CLAY & SILT, some fine Sand,			
_]						moist.		11.8	
12 _	1						11.8-12': Brown, Silty CLAY, moist.		11.0	
_	S-13	12-13				0.3	S-13: Brown, Silty CLAY, moist.			
-	1									
13 _						l	<u></u>		SILTY CLAY	
_	S-14	13-14				N/A	S-14: No recovery.			
l	1									
14 _]									

Granular Soils Blows/FT Density Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled **MISSDIG Ticket Number:** <2 -- Very Soft None 0-4 -- Very Loose SILT Clayey SILT SILT & CLAY 4-10 -- Loose 2-4 -- Soft 1/4" B91621870 10-30 -- Medium Dense 30-50 -- Dense 4-8 -- M. Stiff 1/8" 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64"

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.3-0.2 ppmv.

Groundwater was not encountered during drilling or upon completion.

REMARKS 3. Borehole was backfilled with Bentonite upon completion.

Makayla Myers

Logger:

Boring No.:

HS-SB-4269

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4269 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/11/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Stratum O Depth Sample Description & Configuration Pen. Rec Depth PID (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 45 NR C-4 15-20 C-4: S-16 15-16 0.5 S-16: Gray-brown, fine SAND & CLAY, little Silt, moist. SILTY CLAY 16 S-17 16-17 0.3 S-17: 16-16.4': Gray-brown, fine SAND & CLAY, little Silt, 17 16.4-17': Brown, medium to coarse SAND & CLAY, some 17.2 S-18 17-18 0.4 Gravel, moist. S-18: 17-17.2': Brown, medium to coarse SAND & CLAY, 18 some Gravel, moist. S-19 18-19 0.4 17.2-18': Brown, fine to medium SAND, some Gravel, little Silt moist SAND 19 S-19: Light Brown, fine to medium SAND, some Silt, moist. S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:**

HS-SB-4269

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4271 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 GZ Engineers and Scientists **REVIEWED BY: BLW** BORING COORDINATES (International Feet): Logged By: Makayla Myers Start Date: 7/11/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description 53 C-1 0-5 60 NR C-1: S-1 0-1 0.5 S-1: Dark brown, SILT & CLAY, little fine Sand, rock fragments, moist, SILT & CLAY S-2 0.6 2 1-2 S-2: 1-1.7': Dark brown, SILT & CLAY, little fine Sand, rock No Equipment Installed fragments, moist. 1.7 2 1.7-2': Brown, fine to medium SAND & CLAY, some Silt, 3 S-3 2-3 0.6 Sand seam, moist, SAND & CLAY S-3: Brown, fine to medium SAND & CLAY, some Silt, Sand 3 seam, moist S-4 3-4 0.5 S-4: Brown, CLAY, some Silt, Sand seams, moist. CLAY S-5 4-5 0.6 S-5: Brown, CLAY, some Silt, moist. 5 5-6 60 46 C-2 5-10 NR C-2: 0.6 S-6 5-6 S-6: Brown, fine SAND & CLAY, little Silt, moist, SAND & CLAY 6 S-7 6-7 0.7 S-7: Dark gray, Silty CLAY, little Sand, waste, moist. S-8 7-8 0.5 S-8: Dark gray, Silty CLAY, little Sand, waste, moist. SILTY CLAY 8 8-9 S-9 8-9 0.8 S-9: Dark gray, Silty CLAY, little Sand, waste, moist. 9 9-10 N/A S-10 S-10: No recovery.

S-14 13-14 14 14 15 16 16 16 16 16 16 16		,	Ity CLAY, little Sand, moist. ome fine Sand, moist.	SILTY CLAY	2
Granular Soils Blows/FT Density 0-4 Very Loose 4-10 Loose 10-30 Medium Dense 30-50 Dense >50 Very Dense	Cohesive Soils Blows/FT Consistency <2 Very Soft 2-4 Soft 4-8 M. Stiff 8-15 Stiff 15-30 V. Stiff >30 Hard	1/8" SII 1/16" CL 1/32" SiI	eter Rolled		MISSDIG Ticket Number: B91621870

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.4 ppmv.

S-11: Gray-brown, Silty CLAY, little Sand, moist.

S-12: 11-11.4': Gray-brown, Silty CLAY, little Sand, moist. 11.4-12': Gray brown, fine to medium SAND, some Clay,

S-13: Gray-brown, SILT & CLAY, little fine Sand, moist.

Groundwater was not encountered during drilling or upon completion.

REMARKS 3. Borehole was backfilled with Bentonite upon completion.

56 60

NR

0.3

0.4

0.3

C-3:

little Silt. moist.

Makayla Myers

Logger:

NO RECOVERY

SILTY CLAY

SAND

SILT & CLAY

11.4

12

13.2

Boring No.:

HS-SB-4271

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019

10

12

C-3

S-11

S-12

S-13

10-15

10-11

11-12

12-13

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4271 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/11/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description S-15: 14-14.3': Brown, Silty CLAY, some fine Sand, moist. S-15 14-15 0.2 14.3-15': No recovery. SILTY CLAY 15 60 43 NR C-4 15-20 C-4: S-16 15-16 0.6 S-16: Brown, Sandy CLAY, some Silt, moist. SANDY CLAY 16 S-17 16-17 0.5 S-17: Gray-brown, coarse SAND & GRAVEL, moist. SAND & GRAVEL 17 S-18 17-18 0.5 S-18: Light brown, fine to medium SAND, some Gravel, rock fragments, moist. 18 S-19 18-19 0.6 S-19: Light brown, fine to medium SAND, some Silt, moist. SAND 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:**

HS-SB-4271

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4300 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 **GZ**\ Engineers and Scientists **REVIEWED BY: BLW** BORING COORDINATES (International Feet): Logged By: Sean Stevenson Start Date: 7/11/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Foreman: Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description 39 C-1 0-5 60 NR C-1: 1 0.3 TOPSOIL S-1 0-1 0.2 S-1: 0-0.3': Black, SILT, trace fine Sand. 0.3-1': Brown, Clayey SILT, little fine Sand, moist. S-2 0.7 2 1-2 S-2: Brown, Clayey SILT, little fine Sand, Sand lenses, No Equipment Installed moist, roots present. **CLAYEY SILT** 2 S-3 2-3 0.1 S-3: 2-2.8': Brown, Clayey SILT, little fine Sand, rock 3 fragments, moist. 3 2.8-3': Light brown/brown, fine to medium SAND, little Silt, S-4 3-4 0.1 rock fragments, moist. S-4: 3-3.2': Light brown/brown, fine to medium SAND, little Silt, rock fragments, moist. SAND S-5 4-5 N/A 3.2-4': No recovery. S-5: No recovery. 5 58 C-2 5-10 60 NR C-2: S-6 5-6 0.1 S-6: Brown, Clayey SILT, little fine Sand, rock fragments, 6 6-7 S-7 6-7 0.1 S-7: Brown, Clayey SILT, little fine Sand, rock fragments, Sand lens, moist. **CLAYEY SILT** S-8 7-8 0.2 S-8: Brown, Clayey SILT, little fine Sand, moist. 8 8-9 S-9 8-9 0.2 S-9: Brown, Clayey SILT, little fine Sand, moist.

S-14 13-14 14 14 14 14 15 16 16 16 16 16 16 16	0.4 S-14: Lig	ht brown, fine to	medium SAND, trace Silt, moist.		
Granular Soils Blows/FT Density	Cohesive Soils Blows/FT Consistency		asticity Diameter Rolled		MISSDIG Ticket Number:
0-4 Very Loose	<2 Very Soft	None	SILT		
4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
· ·	>30 Hard	1/64"	CLÁY		

S-10: Light brown, fine to medium SAND, trace Silt, trace

S-11: Light brown, fine to medium SAND, trace Silt, moist.

S-12: Light brown, fine to medium SAND, trace Silt, moist.

S-13: Light brown, fine to medium SAND, trace Silt, moist.

fine Gravel, Clay lens, moist.

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.1 ppmv.

2. Groundwater was not encountered during drilling or upon completion.

0.1

NR

0.1

0.1

0.1

C-3:

3. Borehole was backfilled with Bentonite upon completion.

Sean Stevenson

Logger:

SAND

Boring No.:

HS-SB-4300

REMARKS

9

10

12

S-10

C-3

S-11

S-12

S-13

9-10

10-15

10-11

11-12

12-13

60 42

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4300 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/11/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Gary Geerligs H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec PID Depth Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 44 NR C-4 15-20 C-4: S-16 15-16 0.3 S-16: Light brown, fine to medium SAND, trace Silt, moist. 16 SAND S-17 16-17 0.3 S-17: Light brown, fine to medium SAND, trace Silt, trace fine Gravel, Clay lens, moist. 17 S-18 17-18 0.3 S-18: Brown, fine to medium SAND, trace Silt, trace fine Gravel, moist, gray discoloration. 18 S-19 18-19 0.3 S-19: Brown, CLAY, little fine Sand, moist. 19 CLAY S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 2-4 -- Soft 1/4" B91621870 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:** HS-SB-4300

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4301 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/11/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 H. Datum: MI State Plane S Zone NAD83 Foreman: **Gary Geerligs** Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) To Lab (ppm) Description C-1 0-5 60 47 NR C-1: 1 0. TOPSOIL S-1 0-1 1.3 S-1: 0-0.2': Black, SILT, trace fine Sand, moist, roots S-2 2 1-2 1.0 0.2-1': Brown, Clayey SILT, little fine Sand, moist. No Equipment Installed S-2: Brown, Clayey SILT, little fine Sand, moist. **CLAYEY SILT** 2 S-3 2-3 1.0 S-3: 2-2.8': Brown, Clayey SILT, little fine Sand, rock 3 fragments, moist. 3 2.8-3': Brown, CLAY & SILT, little fine Sand, moist. S-4 3-4 4 1.3 S-4: 3-3.9': Brown, CLAY & SILT, little fine Sand, rock fragments, moist. 3.9-4': No recovery. **CLAY & SILT** S-5 4-5 N/A S-5: No recovery 5 5.2 31 C-2 5-10 60 NR C-2: S-6 5-6 1.3 S-6: 5-5.2': Dark brown, CLAY & SILT, little fine Sand. CLAY 6 moist 6.2 S-7 6-7 6.2 5.2-6': Brown, CLAY, little fine Sand, Sand lens, rock WASTE fragments, moist. 6.8 S-7: 6-6.2': Brown, CLAY, little fine Sand, moist. S-8 7-8 0.9 6.2-6.8': Black, CLAY, trace fine Sand, waste, moist. 6.8-7': Light brown, fine to medium SAND, trace Silt, moist. 8 S-8: 7-7.6': Light brown, fine to medium SAND, trace Silt, S-9 8-9 N/A moist. 7.6-8': No recovery. 9 S-9: No recovery. 9-10 N/A S-10 S-10: No recovery.

14	<u> </u>					
	Granular Soils	Cohesive Soils		lasticity		MICORIO Tielest Nesselvess
	Blows/FT Density	Blows/FT Consistency	SM Thread	Diameter Rolled		MISSDIG Ticket Number:
	0-4 Very Loose	<2 Very Soft	None	SILT		
	4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
	10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
	30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
	>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
		>30 Hard	1/64"	CLÁY		

S-11: Light brown, fine to medium SAND, trace Silt, trace

S-12: Light brown, fine to medium SAND, trace Silt, trace

S-13: Light brown, fine to medium SAND, trace Silt, trace

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.8 ppmv.

Groundwater was not encountered during drilling or upon completion.

Borehole was backfilled with Bentonite upon completion. 4. Waste odor noted in sample.

36 60

C-3:

fine Gravel, moist.

fine Gravel, moist.

fine Gravel, moist.

S-14: No recovery.

NR

1.3

1.9

0.9

N/A

Sean Stevenson

Logger:

SAND

Boring No.:

HS-SB-4301

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019 REMARKS

10

12

C-3

S-11

S-12

S-13

S-14

10-15

10-11

11-12

12-13

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4301 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/11/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Gary Geerligs H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 SAND 60 51 NR C-4 15-20 C-4: S-16 15-16 S-16: Light brown, fine to medium SAND, trace Silt, trace 1.1 fine Gravel, moist. 16 S-17 16-17 1.2 S-17: Brown, CLAY, little fine Sand, moist. 17 S-18 17-18 8.0 S-18: Brown, CLAY, little fine Sand, moist. CLAY 18 18.2 S-19 18-19 1.0 S-19: 18-18.2': Brown, CLAY, little fine Sand, moist. 18.2-19': Light brown, fine to medium SAND, trace Silt, SAND 19 trace fine Gravel, Clay lens, moist. 19 S-20 19-20 1.8 S-20: 19-19.2': Brown, CLAY, little fine Sand, Sand lens, CLAY 20 20 19.2-20': No recovery. End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4301

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4302 GZA SHEET: **House Street** 1 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/10/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: Gary Geerligs H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey

Donth	Sample								# ÷;				
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Submitted To Lab	PID (ppm)	Sample Description & Configuration Modified Burmister	Remark	Stratum Description (;j)	Equipment Installed			
-	C-1	0-5	60	58		NR	C-1:	1	TOPSOIL 0.4				
_	S-1	0-1				1.3	S-1: 0-0.4': Dark brown, TOPSOIL, moist.						
1_		4.0				4.0	0.4-1': Brown, Clayey SILT, trace fine Sand, moist.		CLAY & SILT				
_	S-2	1-2				1.3	S-2: 1-1.4': Brown, Clayey SILT, some fine Sand, moist.	2	1.4	No Equipment Installed			
-							1.4-1.8': Light brown, fine to medium SAND, little Silt, moist.		SAND 1.8				
2_	S-3	2-3				1.5	1.8-2': Brown, fine to medium SAND, some Silt, moist.	3					
-	0-0	2-0				1.0	S-3: Brown, Clayey SILT, little Sand, Sand lenses from						
3 -							2.1'-2.3', moist.						
_	S-4	3-4				1.4	S-4: 3-3.4': Brown, Clayey SILT, little Sand,						
_										3.4-4': Brown, Silty CLAY, little fine Sand, moist.		SILT & CLAY	
4 -													
_	S-5	4-5				1.4	S-5: 4-4.8': Brown, Silty CLAY, little fine Sand, moist.						
							4.8-5': No recovery.						
5_									L5				
-	C-2	5-10	60	40		NR	C-2:		SILTY CLAY 5 6				
_	S-6	5-6				2.0	S-6: 5-5.6': Brown, Silty CLAY, little fine Sand, Sand seam		SILTY CLAY 5.6				
6 _					6-7		from 5.1'-5.2' and 5.4'-5.6', moist.						
_	S-7	6-7				1.5	5.6-6': Brown, CLAY, little fine Sand, moist.						
							S-7: Brown, CLAY, little fine Sand, Sand seam from						
7 _	S-8	7-8				1.5	6.6'-6.8', moist.						
_	3-0	7-0				1.5	S-8: Brown, CLAY, little fine Sand, moist.		CLAY				
8 -													
_	S-9	8-9			8-9	1.1	S-9: 8-8.8': Brown, CLAY, little fine Sand, moist.						
_							8.8-9': No recovery.						
9 -									8.8				
-	S-10	9-10				N/A	S-10: No recovery.						
_													
10 _			l										
_	C-3	10-15	60	48		NR	C-3:						
	S-11	10-11				1.2	S-11: Light brown, fine to medium SAND, trace Silt, moist.						
11 _	S-12	11-12				1.1	S-12: Light brown, fine to medium SAND, trace Silt, moist.						
-	0-12	11-12					0-12. Light brown, fine to mediam cravb, trace on, most.		SAND				
12													
'-	S-13	12-13				1.3	S-13: Light brown, fine to medium SAND, trace Silt, moist.						
_													
13 _													
-	S-14	13-14				1.8	S-14: Light brown, fine to medium SAND, trace Silt, moist.						
-													
	ranular ows/FT	Soils Density				ive Soils FT Cons				MISSDIG Ticket Number:			
0-4	4 Ver	y Loose			<2	Very Sof	t None SILT						
4-	10 Lc	ose			2-4	Soft	1/4" Clavey SILT			B91621870			

Clayey SILT SILT & CLAY 4-10 -- Loose 2-4 -- Soft 1/4" B91621870 10-30 -- Medium Dense 30-50 -- Dense 4-8 -- M. Stiff 1/8" 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64" Logger:

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 1.1 ppmv.

2. Groundwater was not encountered during drilling or upon completion.

REMARKS 3. Borehole was backfilled with Bentonite upon completion. Sean Stevenson

Boring No.:

HS-SB-4302

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4302 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/10/2019 N TBD **E** TBD Drilling Co.: Stearns Drilling Finish Date: 7/10/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 50 NR C-4 15-20 C-4: S-16 15-16 S-16: Light brown, fine to medium SAND, trace Silt, moist. 1.7 16 S-17 16-17 1.1 S-17: Light brown, fine to medium SAND, trace Silt, moist. SAND 17 S-18 17-18 S-18: Light brown, fine to medium SAND, trace Silt, Clay 1.1 lens from 17.6'-17.8', moist. 18 S-19 18-19 1.4 S-19: Light brown, fine to medium SAND, trace Silt, moist. 19 19.2 S-20 19-20 1.4 S-20: 19-19.1': Brown, CLAY, little fine Sand, moist. 19.1-20': No recovery. CLAY 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 2-4 -- Soft 1/4" B91621870 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4302

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4303 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/12/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/12/2019 H. Datum: MI State Plane S Zone NAD83 **Gary Geerligs** Final Depth (ft.): Foreman: 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description C-1 0-5 60 53 NR C-1: **TOPSOIL** 0.4 S-1 0-1 1.2 S-1: 0-0.4': Black, SILT, trace fine Sand, moist, roots CLAYEY SILT 0.8 SAND S-2 2 1-2 2.2 0.4-0.8': Brown, Clayey SILT, little fine Sand, moist. No Equipment Installed 0.8-1': Brown, fine to medium SAND, trace Silt, moist. 2 S-2: 1-1.2': Brown, fine to medium SAND, trace Silt, moist. S-3 2-3 1.0 3 1.2-2': Brown, Clayey SILT, little fine Sand, Sand lens, rock **CLAYEY SILT** fragments moist 3 S-3: Brown, Clayey SILT, little fine Sand, Sand lens, rock S-4 3-4 8.0 fragments, moist 3.7 S-4: 3-3.7': Brown, Clayey SILT, little fine Sand, moist. 3.7-4': Light brown, fine to medium SAND, little Silt, moist. SAND S-5 4-5 0.8 S-5: Light brown, fine to medium SAND, little Silt, Clay lens, moist NO RECOVERY 5 5-6 60 53 C-2 5-10 NR C-2: 0.7 S-6 5-6 S-6: Brown, Clayey SILT, little fine Sand, moist. 6 S-7 6-7 0.8 S-7: Brown, Clayey SILT, little fine Sand, moist. 7-8 S-8 7-8 0.8 S-8: Brown, Clayey SILT, little fine Sand, moist. **CLAYEY SILT** 8 S-9 8-9 0.8 S-9: Brown, Clayey SILT, little fine Sand, moist. 9 0.7 S-10: Brown, Clayey SILT, little fine Sand, moist. S-10 9-10 10 10 45 60 C-3: C-3 10-15 NR

14 _				
Granular Soils	Cohesive Soils	<u>P</u>	lasticity	
Blows/FT Density	Blows/FT Consistency	SM Thread	Diameter Rolled	MISSDIG Ticket Number:
0-4 Very Loose	<2 Very Soft	None	SILT	
4-10 Loose	2-4 Soft	1/4"	Clayey SILT	B91621870
10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY	
30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT	
>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY	
	>30 Hard	1/64"	CLAY	
I				

S-11: Light brown, fine to medium SAND, trace Silt, rock

S-12: Light brown, fine to medium SAND, trace Silt, moist.

S-13: Light brown, fine to medium SAND, trace Silt, moist.

S-14: Light brown, fine to medium SAND, trace Silt, moist.

 Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.6 ppmv.

Groundwater was not encountered during drilling or upon completion.

1.1

1.0

0.7

0.8

REMARKS 3. Borehole was backfilled with Bentonite upon completion.

Sean Stevenson

Logger:

SAND

Boring No.:

HS-SB-4303

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019

S-11

S-12

S-13

S-14

12

10-11

11-12

12-13

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4303 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/12/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/12/2019 Foreman: Gary Geerligs H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 40 NR C-4 15-20 C-4: S-16 15-16 S-16: Light brown, fine to medium SAND, trace Silt, Clay 1.1 16 lens, moist SAND S-17 16-17 0.8 S-17: Light brown, fine to medium SAND, trace Silt, moist. 17 S-18 17-18 S-18: 17-17.8': Light brown, fine to medium SAND, little Silt, 1.1 trace fine Gravel, moist, 17.8 17.8-18': Brown, CLAY, little fine Sand, moist. 18 S-19 18-19 2.0 S-19: 18-18.3': Brown, CLAY, little fine Sand, moist. 18.3-19': No recovery. 19 CLAY S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4303

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4304 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/11/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 H. Datum: MI State Plane S Zone NAD83 **Gary Geerligs** Final Depth (ft.): Foreman: 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description 50 C-1 0-5 60 NR C-1: 1 0, TOPSOIL S-1 0-1 0.5 S-1: 0-0.2': Black, SILT, trace fine Sand, moist. 0.2-1': Brown, Clayey SILT, little fine Sand, moist. S-2 1-2 0.5 2 **CLAYEY SILT** S-2: Brown, Clayey SILT, little fine Sand, moist. No Equipment Installed 2 S-3 2-3 0.5 S-3: Brown, CLAY & SILT, little fine Sand, moist. 3 **CLAY & SILT** 3 S-4 3-4 0.5 S-4: 3-3.3': Brown, CLAY & SILT, little fine Sand, moist. 3.3-3.7': Gray, CLAY, trace fine Sand, waste, moist, roots WASTE 3.7 present. S-5 4-5 0.4 3.7-4': Brown, Silty CLAY, Ittle fine Sand, moist. CLAY S-5: Brown, Silty CLAY, little fine Sand, moist. 5 39 C-2 5-10 60 NR C-2: 0.6 S-6 5-6 S-6: Gray, CLAY, trace fine Sand, moist. 6 S-7 6-7 0.4 S-7: Light brown, fine to medium SAND, trace Silt, moist. S-8 7-8 0.5 S-8: 7-7.8': Light brown/brown, fine to medium SAND, little Silt. moist. 8 7.8-8': Grav. fine to medium SAND, trace Silt, moist, S-9 8-9 0.5 S-9: Gray, fine to medium SAND, trace Silt, moist. 9 9-10 N/A S-10 S-10: No recovery. SAND 10 45 60 C-3 10-15 NR C-3:

14 _					
Granular Soils	Cohesive Soils	<u>P</u>	Plasticity		
Blows/FT Density	Blows/FT Consistency	SM Thread	<u>d Diameter Rolled</u>		MISSDIG Ticket Number:
0-4 Very Loose	<2 Very Soft	None	SILT		
4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
	>30 Hard	1/64"	CLAY		

S-11: Light brown, fine to medium SAND, trace Silt, moist.

S-12: Light brown, fine to medium SAND, trace Silt, moist.

S-13: Light brown, fine to medium SAND, trace Silt, moist.

S-14: Light brown, fine to medium SAND, trace Silt, moist.

 Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.4 ppmv.

Groundwater was not encountered during drilling or upon completion.

0.4

0.5

0.4

0.6

3. Borehole was backfilled with Bentonite upon completion.

Sean Stevenson

Logger:

Boring No.:

HS-SB-4304

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019

S-11

S-12

S-13

S-14

12

10-11

11-12

12-13

13-14

REMARKS

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4304 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/11/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/11/2019 Foreman: Gary Geerligs H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 44 NR C-4 15-20 C-4: S-16 15-16 0.6 S-16: Light brown, fine to medium SAND, trace Silt, moist. SAND 16 S-17 16-17 0.6 S-17: Light brown, fine to medium SAND, trace Silt, trace fine Gravel, Clay lens, moist. 17 S-18 17-18 0.7 S-18: 17-17.4': Light brown, fine to medium SAND, trace 17.4 Silt. moist. 17.4-18': Brown, CLAY, little fine Sand, moist. 18 S-19 18-19 0.8 S-19: Brown, CLAY, little fine Sand, moist. CLAY 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4304

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4306 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/12/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/12/2019 H. Datum: MI State Plane S Zone NAD83 **Gary Geerligs** Final Depth (ft.): Foreman: 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) To Lab (ppm) Description 53 C-1 0-5 60 NR C-1: 1 TOPSOIL 0.4 S-1 0-1 1.2 S-1: 0-0.4': Dark brown, SILT, trace fine Sand, moist, roots S-2 2 1-2 1.5 0.4-1': Brown, Clayey SILT, little fine Sand, moist, roots No Equipment Installed present **CLAYEY SILT** 2 S-2: Brown, Clayey SILT, little fine Sand, rock fragments, 3 S-3 2-3 1.6 moist 2.6 S-3: 2-2.6': Brown, Clayey Silt, little fine Sand, moist. 3 2.6-3': Brown, CLAY & SILT, little fine Sand, moist. S-4 3-4 1.3 4 S-4: Brown, CLAY & SILT, little fine Sand, Sand seam, rock fragments, moist, S-5 4-5 1.2 S-5: Brown, CLAY & SILT, little fine Sand, moist. **CLAY & SILT** 5 44 C-2 5-10 60 NR C-2: S-6: 5-5.8': Brown, CLAY & SILT, little fine Sand, moist, S-6 5-6 2.7 5.8 5.8-6': Black, CLAY, trace fine Sand, waste, moist. 6 S-7 6-7 20.2 S-7: Black, CLAY, trace fine Sand, waste, moist. WASTE S-8 7-8 S-8: 7-7.7': Black, CLAY, trace fine Sand, waste, moist. 6.2 7.7-8': Brown, fine to medium SAND, little Silt, moist, 7.7 8 S-9 8-9 1.5 S-9: Brown, fine to medium SAND, little Silt, moist. 9 N/A S-10 9-10 S-10: No recovery. 10 42 60 C-3: C-3 10-15 NR

14 _					
Granular Soils	Cohesive Soils	<u>P</u>	<u>Plasticity</u>		
Blows/FT Density	Blows/FT Consistency	SM Thread	l Diameter Rolled		MISSDIG Ticket Number:
0-4 Very Loose	<2 Very Soft	None	SILT		
4-10 Loose	2-4 Soft	1/4"	Clayey SILT		B91621870
10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY		
30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT		
>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY		
	>30 Hard	1/64"	CLAY		

S-11: Light brown, fine to medium SAND, trace Silt, trace

S-12: Light brown, fine to medium SAND, trace Silt, trace

S-13: Light brown, fine to medium SAND, trace Silt, trace

S-14: Light brown, fine to medium SAND, trace Silt, trace

1. Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 1.0 ppmv.

2. Groundwater was not encountered during drilling or upon completion.

2.6

1.8

2.0

fine Gravel, moist.

fine Gravel, moist.

fine Gravel, moist.

fine Gravel, moist.

3. Borehole was backfilled with Bentonite upon completion.

4. Waste odor noted in sample.

Sean Stevenson

Logger:

SAND

Boring No.:

HS-SB-4306

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019

S-11

S-12

S-13

S-14

12

1

REMARKS

10-11

11-12

12-13

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4306 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Sean Stevenson Start Date: 7/12/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/12/2019 Foreman: **Gary Geerligs** H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 6620 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 38 NR C-4 15-20 C-4: SAND S-16 15-16 2.2 S-16: Light brown, fine to medium SAND, trace Silt, trace fine Gravel, moist. 16 S-17 16-17 2.0 S-17: 16-16.8': Light brown, fine to medium SAND, trace Silt, trace fine Gravel, moist. 16.8 17 16.8-17': Brown, CLAY, little fine Sand, moist. S-18 17-18 1.5 S-18: 17-17.8': Brown, CLAY, little fine Sand, moist. CL AY 17.8-18': Brown, fine to medium SAND, trace Silt, trace fine 17.8 18 Gravel, Clay lens, moist. S-19 18-19 1.5 S-19: Brown, fine to medium SAND, trace Silt, trace fine Gravel, Clay lens, moist. 19 SAND S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Sean Stevenson **Boring No.:**

HS-SB-4306

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4400 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW** BORING COORDINATES (International Feet): Logged By: Makayla Myers Start Date: 7/12/2019 E TBD N TBD Drilling Co.: Stearns Drilling Finish Date: 7/12/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Stratum C Remark Elev (ft.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID (ft) Submitted Modified Burmister (in) (in) No (ft.) To Lab (ppm) Description 60 54 C-1 0-5 NR C-1: 1 **TOPSOIL** 0.5 S-1 0-1 3.7 S-1: 0-0.5': Dark brown, TOPSOIL, some Clay, moist. 0.5-1': Brown, SILT, some Sand, moist. S-2 2 1-2 1.6 S-2: Brown, SILT, some Sand, rock fragments, moist. No Equipment Installed SILT 2 3 S-3 2-3 1.0 S-3: Brown, SILT & SAND, some Clay, moist. SILT & SAND 3 S-4 3-4 S-4: Brown, SILT & SAND, some Clay, moist. 1.3 S-5 4-5 1.3 S-5: Brown, Silty CLAY, moist. SILT & CLAY 5 48 C-2 5-10 60 NR C-2: 2.1 S-6 5-6 S-6: 5-5.5': Brown, SILT & CLAY, moist, CLAY 6 5.5-6': Brown, CLAY, some Silt, moist, S-7 6-7 2.8 6.3 S-7: 6-6.3': Dark brown, SILT, moist. SILT 6.3-7': Light brown, medium to fine SAND, some Silt, moist. S-8 7-8 S-8: Light brown, medium to fine SAND, some Silt, moist. 1.5 SAND 8 S-9 8-9 2.1 S-9: 8-8.5': Light brown, medium to fine SAND, some Silt, 8.5 9 8.5-9': Light brown, CLAY, some Silt, moist.

6				1-12		1.4	S-12: Brown, CLAY, some Slit, rock fragments, moist.			CLAY	
EQUIP WOLVERINE;	12 <u> </u>	S-13	12-13			1.7	S-13: 12-12.8': Brown, (moist.	CLAY, some Silt, rock fraç	gments,	40.6	
WITH	13 - - 14	S-14	13-14		13-14	2.2	1	SAND, some Clay, little Sillown, SAND, some Clay, lit		SAND	9
.GPJ; GZA GEOPROBE	<u>B</u> 0- 4- 10 30	4 Ver 10 Lo)-30 N)-50 C	Density y Loose ose /ledium [Dense	Blows/ <2 \(^2 -4 \) 4-8 8-15 - 15-30	Very So Soft M. Stiff	sistency SM Threa ft None 1/4" 1/8" 1/16"	Plasticity ad Diameter Rolled SILT Clayey SILT SILT & CLAY CLAY & SILT Silty CLAY CI AY	·		MISSDIG Ticket Number: B91621870

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.7 ppmv.

Groundwater was not encountered during drilling or upon completion.

N/A

NR

1.2

S-10: No recovery.

S-11: 10-10.5': Brown, SILT & CLAY, moist.

10.5-11': Brown, CLAY, some Silt, rock fragments, moist.

REMARKS 3. Borehole was backfilled with Bentonite upon completion. Makayla Myers

Logger:

CLAY

SILT & CLAY 10.5

Boring No.:

HS-SB-4400

WOLVERINE WORLD WIDE

S-10

C-3

S-11

10

1/201

9-10

10-15

10-11

50

11-12

60

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4400 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/12/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/12/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) 13.5-14': Light brown, fine to medium SAND, some Silt, S-15 14-15 1.4 15 S-15: Light brown, fine to medium SAND, some Silt, moist. 60 39 NR C-4 15-20 C-4: S-16 15-16 2.1 S-16: Light brown, fine to medium SAND, some Silt, moist. 16 S-17 16-17 1.9 S-17: Light brown, fine to medium SAND, some Silt, moist. 17 SAND S-18 17-18 S-18: Light brown, fine to medium SAND, some Silt, moist. 1.7 18 S-19 18-19 1.2 S-19: Light brown, fine to medium SAND, some Silt, moist. 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft None SILT 0-4 -- Very Loose Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers

Boring No.:

HS-SB-4400

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4401 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/12/2019 N TRD Drilling Co.: Stearns Drilling E TBD Finish Date: 7/12/2019 Foreman: H. Datum: MI State Plane S Zone NAD83 Roger Christenson Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) To Lab (ppm) Description 48 C-1 0-5 60 NR C-1: **TOPSOIL** 06 S-1 0-1 5.0 S-1: 0-0.6': Dark brown, TOPSOIL, moist. 0.6-1': Brown, SILT, some fine Sand, little Clay, moist. SILT S-2 2.4 2 1-2 S-2: 1-1.4': Brown, fine to medium SAND, some Silt, moist. SAND 1 4 No Equipment Installed 1.4-2': Brown, CLAY & SILT, little Sand, moist. 2 **CLAY & SILT** S-3 2-3 0.9 S-3: 2-2.5': Brown, CLAY & SILT, little Sand, moist. 3 2.5-3': Red-brown, Silty CLAY, rock fragments, moist. SILT & CLAY 3 S-4 3-4 S-4: Brown, fine to medium SAND & CLAY, some Silt, rock 4 1.4 fragments, moist, S-5 4-5 N/A S-5: No recovery. SAND & CLAY 5 42 C-2 5-10 60 NR C-2: 5.5 S-6 5-6 2.3 S-6: 5-5.5': Brown, fine to medium SAND & CLAY, some 6 Silt. rock fragments, moist, S-7 6-7 2.9 5.5-6': Gray-brown, CLAY, little Silt, waste, moist. S-7: Gray-brown, CLAY, little Silt, waste, moist. S-8 7-8 3.7 S-8: 7-7.5': Gray, CLAY, little Silt, waste, moist. 7.5-8': Black, CLAY, waste, moist. 8 S-9 8-9 45.5 S-9: 8-8.3': Brown, CLAY, little Silt, waste, moist. 8.3-9': Gray, CLAY, some Silt, waste, moist.

14 _		0 ,,	fine to medium SAND, some Silt,	,	SAND	
Granular Soils Blows/FT Density 0-4 Very Loose 4-10 Loose 10-30 Medium Dense 30-50 Dense >50 Very Dense	Cohesive Soils Blows/FT Consistency <2 Very Soft 2-4 Soft 4-8 M. Stiff 8-15 Stiff 15-30 V. Stiff >30 Hard		asticity Diameter Rolled SILT Clayey SILT SILT & CLAY CLAY & SILT SIIT OLAY SILT SILY CLAY			MISSDIG Ticket Number: B91621870

S-11: 10-10.4': Gray, CLAY, some Silt, waste, moist.

S-12: 11-11.3': Brown, CLAY, little Silt, waste, moist.

11.3-12': Gray, Silty CLAY, waste, rock fragments, moist. S-13: 12-12.5': Gray, Silty CLAY, waste, rock fragments,

10.8-11': Brown, CLAY, little Silt, waste, moist.

10.4-10.8': Black, CLAY, some Sand, some Silt, waste,

1. Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.4 ppmv.

2. Groundwater was not encountered during drilling or upon completion.

N/A

NR

48.6

94.7

55.4

4.5

moist

S-10: No recovery.

Borehole was backfilled with Bentonite upon completion.
 Waste odor noted in sample.

Makayla Myers

Logger:

WASTE

12.8

Boring No.:

HS-SB-4401

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019

REMARKS

9

10

12

S-10

C-3

S-11

S-12

S-13

S-14

9-10

10-15

10-11

11-12

12-13

13-14

60 38

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4401 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/12/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/12/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A waste, moist. S-14: Tan and black, fine to medium SAND, some Silt, 15 waste, moist. 60 30 C-4 15-20 NR S-15: No recovery. S-16 15-16 7.3 C-4: SAND 16 S-16: Tan and brown, fine to medium SAND, some Silt, 5.2 S-17 16-17 moist S-17: Light brown, fine to medium SAND, some Silt, Clay 17 lens at 16.8', moist S-18 17-18 1.1 S-18: Light brown, fine to medium SAND, some Silt, Clay 17.5 lens at 17.4', moist 18 S-19 18-19 N/A S-19: No recovery. NO RECOVERY 19 S-20 19-20 N/A S-20: No recovery 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT SILT & CLAY 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger:

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019

REMARKS

Makayla Myers

Boring No.:

HS-SB-4401

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4402 GZA **House Street** SHEET: 1 of 2 GeoEnvironmental, Inc. Rockford, Michigan PROJECT NO: 16.0062335.52 Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/12/2019 N TRD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/12/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Offset of Boring From Original Location: Sampler Type: Macro Core Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Remark Elev (#.) Depth Sample Description & Configuration Equipment Installed Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) (ft.) To Lab (ppm) Description 52 C-1 0-5 60 NR C-1: 1 **TOPSOIL** 0.5 S-1 0-1 0.9 S-1: 0-0.5': Dark brown, TOPSOIL, moist. 0.5-1': Brown, SILT & CLAY, little fine Sand, moist. S-2 0.9 2 1-2 S-2: Brown, SILT & CLAY, little fine Sand, moist. No Equipment Installed SIILT & CLAY 2 S-3 2-3 0.9 S-3: 2-2.5': Brown, SILT & CLAY, little fine Sand, moist. 3 2.5-3': Dark brown, Silty SAND, some Clay, moist. 3 S-4 3-4 S-4: Dark brown, Silty SAND, some Clay, moist. 4 1.0 SILTY CLAY S-5 4-5 1.1 S-5: Dark brown, Silty SAND, some Clay, moist. 5 47 C-2 5-10 60 NR C-2: 5.6 S-6 5-6 12.6 S-6: 5-5.6': Dark brown, Silty SAND, some Clay, moist, 5.6-6': Gray-black, CLAY, little Sand, waste, moist. 6 WASTE S-7 6-7 21.6 S-7: 6-6.5': Gray-black, CLAY, little Sand, waste, moist. 6.5 6.5-7': Brown, Silty CLAY, some Silt, moist. SILTY CLAY S-8 7-8 2.2 S-8: Brown, CLAY, some Silt, moist. 8 S-9 8-9 2.5 S-9: 8-8.3': Brown, CLAY, some Silt, moist. 8.3-9': Gray-brown, CLAY, some fine Sand, some Silt, CLAY 9 N/A S-10 9-10 S-10: No recovery. 10 42 60 C-3: C-3 10-15 NR

14				
Granular Soils	Cohesive Soils	P	Plasticity	
Blows/FT Density	Blows/FT Consistency	SM Thread	Diameter Rolled	MISSDIG Ticket Number:
0-4 Very Loose	<2 Very Soft	None	SILT	
4-10 Loose	2-4 Soft	1/4"	Clayey SILT	B91621870
10-30 Medium Dense	4-8 M. Stiff	1/8"	SILT & CLAY	
30-50 Dense	8-15 Stiff	1/16"	CLAY & SILT	
>50 Very Dense	15-30 V. Stiff	1/32"	Silty CLAY	
	>30 Hard	1/64"	CLAY	

S-11: Gray-brown, SILT & CLAY, little fine Sand, moist.

S-12: 11-11.5': Gray-brown, SILT & CLAY, little fine Sand,

11.5-12': Gray-brown, fine to coarse SAND, some Silt &

S-13: Gray-brown, fine to coarse SAND, some Silt & Clay,

S-14: Gray-brown, fine to coarse SAND, some Silt & Clay,

Field screening of samples for organic vapors was performed with a MiniRAE 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND represents <0.1 ppmv. Background was measured at 0.4 ppmv.

Clay, rock fragments, moist.

rock fragments, moist.

rock fragments, moist.

Groundwater was not encountered during drilling or upon completion.

0.9

1.1

1.4

1.0

4. Waste odor noted in sample.

Borehole was backfilled with Bentonite upon completion.

Makayla Myers

Logger:

SILT & CLAY

SAND

11.

Boring No.:

HS-SB-4402

WOLVERINE WORLD WIDE.GPJ; GZA GEOPROBE WITH EQUIP WOLVERINE; 9/4/2019

REMARKS

S-11

S-12

S-13

S-14

12

10-11

11-12

12-13

GEOPROBE LOG Wolverine World Wide EXPLORATION NO.: HS-SB-4402 GZA **House Street** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 16.0062335.52 Rockford, Michigan Engineers and Scientists **REVIEWED BY: BLW BORING COORDINATES (International Feet):** Logged By: Makayla Myers Start Date: 7/12/2019 N TBD E TBD Drilling Co.: Stearns Drilling Finish Date: 7/12/2019 Foreman: Roger Christenson H. Datum: MI State Plane S Zone NAD83 Final Depth (ft.): 20 Type of Rig: Geoprobe Sampler Type: Macro Core Offset of Boring From Original Location: Rig Model: 7822 DT Sampler O.D. (in.): 2.25" **Drilling Method:** Direct Push Sampler Length (in.):5.0' Ground Elevation: See Survey V. Datum: See Survey Sample Elev (ft.) Depth Sample Description & Configuration Pen. Rec Depth PID Stratum (ft) Submitted Modified Burmister (in) (in) Description No (ft.) To Lab (ppm) S-15 14-15 N/A S-15: No recovery. 15 60 39 NR C-4 15-20 C-4: S-16 15-16 0.9 S-16: Gray-brown, fine to coarse SAND, some Silt & Clay, SAND 16 rock fragments, moist. S-17 16-17 0.8 S-17: Gray-brown, fine to coarse SAND, some Silt & Clay, rock fragments, moist. 17 S-18 17-18 8.0 S-18: 17-17.3': Gray-brown, fine to coarse SAND, some Silt SAND & CLAY 17 & Clay, rock fragments, moist, 17.3-17.5': Dark brown, fine SAND & CLAY, moist. 18 S-19 18-19 0.7 17.5-18': Brown, fine to medium SAND, some Silt, moist. S-19: Gray-brown, fine to medium SAND, some Silt, moist. SAND 19 S-20 19-20 N/A S-20: No recovery. 20 20 End of exploration at 20 feet. 21 22 23 24 25 26 27 28 Cohesive Soils Blows/FT Consistency <u>Plasticity</u> SM Thread Diameter Rolled Granular Soils Blows/FT Density **MISSDIG Ticket Number:** <2 -- Very Soft 0-4 -- Very Loose None SILT Clayey SILT 4-10 -- Loose 1/4" B91621870 2-4 -- Soft 10-30 -- Medium Dense 1/8" 4-8 -- M. Stiff SILT & CLAY 30-50 -- Dense 8-15 -- Stiff 1/16" **CLAY & SILT** >50 -- Very Dense 15-30 -- V. Stiff 1/32" Silty CLAY >30 -- Hard 1/64' Logger: REMARKS Makayla Myers **Boring No.:** HS-SB-4402