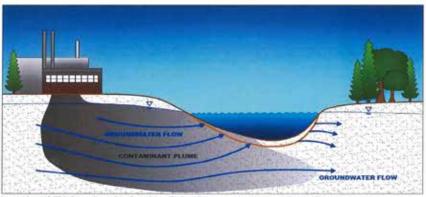


Review of Compliance Options for the Groundwater-Surface Water (GSI) Pathway on Contaminated Sites.

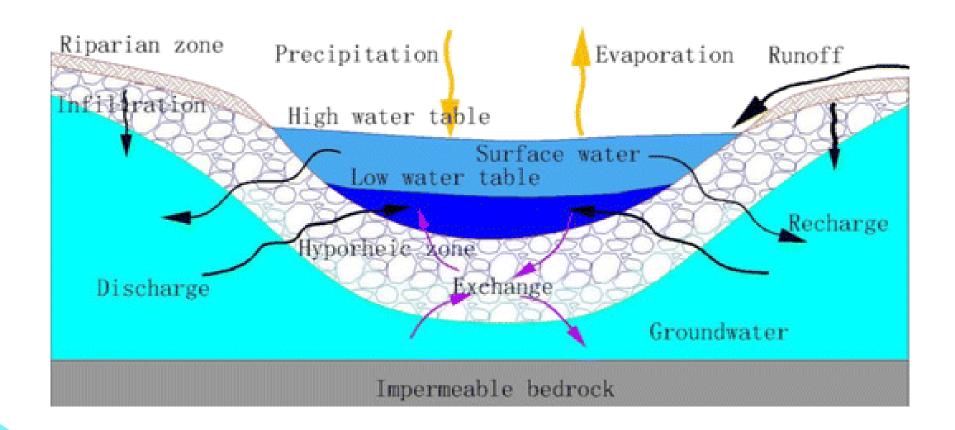

Elaine Pelc
DEQ/Remediation & Redevelopment Division
Gaylord Office

pelce@michigan.gov 989-705-3441

GROUNDWATER-SURFACE WATER INTERFACE PATHWAY COMPLIANCE OPTIONS

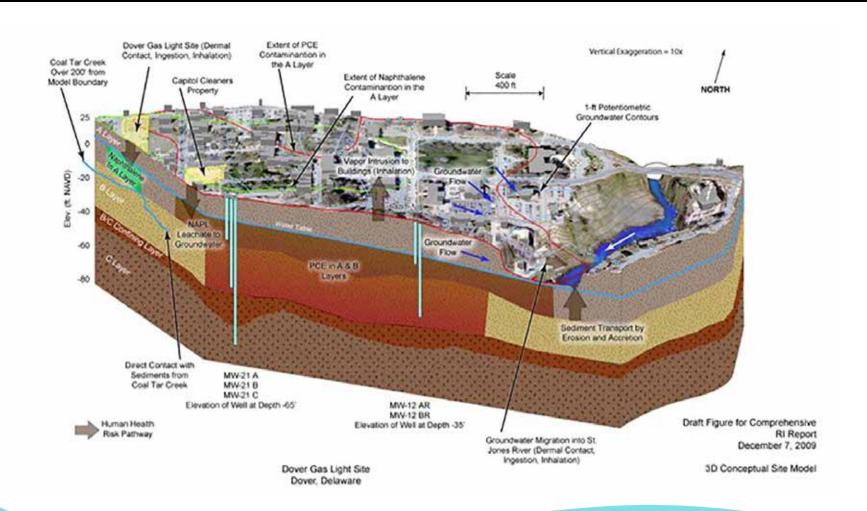
REMEDIATION AND REDEVELOPMENT DIVISION RESOURCE MATERIALS

Adapted from US EPA, Proceedings of the Groundwater/Surface-Water Interactions Workshop, EPA/542/R-00/007, July 2000


Prepared by:

Michigan Department of Environmental Quality Remediation and Redevelopment Division 525 West Allegan Street Lansing, Michigan 48933

RRD-RESOURCE MATERIALS March 2018



What is the Groundwater Surface Water Interface?

Relevancy

"Waters of the State"

The Water Resources Division of the DEQ determines whether a body of water meets criteria for being classified as waters of the State.

Intermittent or ephemeral streams, drains, creeks, brooks, ditches and wetlands including UNREGULATED wetlands.

Remember – It must be designated a "Water of the State" and have a hydraulic connection with groundwater for the GSI Pathway to be relevant and regulated.

MECC MICHIGAN ENVIRONMENTAL COMPLIANCE CONFERENCE

Water Quality Standards - or putting a toe in the weeds -

All chemical specific values are in ugll, and expressed as total unless otherwise indicated

EXP = exponent in log base e

H - hadness (in mg l.)

ID - monthment data to derive value

NLS - no breature select has been conducted

NA want applicable.

(§ = Bosoccumumianive Chemical of Concess

= csecunitytes

* = the lowest HNV, WV, HCV or FCV given for this cheesical will

adequately postert the most identified with an ID* or * CFs = acure convension factor for cadminut = 1 136672-[[fnH)(0.04:54)]

CFb = chrosic convenion factor for exdenium = 1.101672-[(lnH)/0.04184)].

CFc = acros and chronic conversion factor for lead = 1.46201.4(falfi)(0.14571))) D = value is expressed as dissolved

Medifications additions to this spreadsheet compared to the previous one dated 10/21/2016 are shaded.

Rule 57 Water Quality Values Surface Water Assessment Section	
Surface	Water Assessment Section
	Michigan DEO

8150016

		HNV		HNV				905		HCV							
	117-127-1-12-1-12-1-12-1-12-1-1-1-1-1-1-	Deak	100000	Non-dris	1	W.	V.	Dist	k	Nos-do		FCV	arrage a	AMV	00.2000	FAV	
AS #	PARAMETER NAME	Value	testif date	Value	wend date		verif date	Value	verif date	Value	rend date	Value	tent date	Value	vest date	Value	verif do
0000	Formeldehyde	3000	1200906	390000	1200906	NA.	waynes.	NA	Arrange	NA	(55,553)	189	2201305	790	2201305	1600	
0293	DDT # III	0.002	1199707	0.002	1199707	0.000011	1199797	0.50015	11997GT	0.00015	1399707	0.00);	2199708	0.029	2199708	0.057	
1928	Benzo(s)pyrenz #	NLS	10000	NLS	500	NA	100	NLS		NLS	777	ID ID	201003	D	201003	D	
1785	2,4-Dinitrophesol	. 55	1199707	2810	1199707	NA.		NA.		NA		19	2200301	150	2200301	270	
3703	Ditear(s.h)tentescroe #	NL5		10.5	- Salah	25A		10.5		36.5		ID.	199712	D	199712	D	
6235	Carbon tetrachloside R	18	1301709	140	1301709	NA.		4.7	1001709	38	1201709	.77	2201709	690	2201709	1400	230176
6782	Parthire	NLS		NLS		NA		NA.		NA.		0.013	1199707	3.065	1199707	0.13	109970
6353	Becco(s)apiloraceps	NLS		NLS		NA		NIS		NLS		ID.	201201	D	201301	D	30150
7125	Cymide, five	600	1109707	48000	1199707	NA:		NA:		NA		52	1199707	25	1199707	- 44	
7410	Phenyton #	790	1301004	:1000	1201004	NA.		61	1301004	89	1201004	120	2200696	1100	2200606	2200	220060
57156	Propylese glycol	580000	1200202	47000000	1200202	NA.		NA.	U	NA		299000	2200203	1000000	2000003	2100000	220030
57749	Chlordose # @	0.0014	1199707	0.0014	1199707	NES		0.00025	1399707	0.00025	1199707	0.029	2199765	0.27	2199705	0.53	
1200	Lindage # (B	0.47	1199707	0.5	1199707	0.028	1190500	0.025	2199500	0.027	2199300	0.07	2199706	0.65	1199707	19	109970
9902	2.3.4.6-Tetrachicophenol	120	2200301	150	2200501	NA		NA.		NA	110	1.2	2200301	11	2200301	22	220090
99507	4-Chloro-3-methylphenol	6900	1200103	39000	1200103	NA.		NA		NA		.74	2200103	67	2200103	130	220010
90297	Srbyt eiber	14000	1199707	1090000	1199707	NA.		264		NA.		ID ID	201310	D	202310	D	20131
90074	Dieldeia # (8)	0.00041	1199707	0.60041	1199757	0.000071	1199794	0.00000065	1099707	0.0000065	1199707	0.056	1199707	0.24	1199707	0.48	119970
62133	Anime#	190	1199000	13000	1100300	NA.		21	1299500	1500	1100800	1	2201412	10	2201412	21	220141
52737	Dichlores	NES		NLS	_	38A		NA		-NA		0.0040	2201708	3.038	1201708	0.076	130170
13252	Carbaryl	NEA		NES		NA.	9	NA		NA.		0.52	2201704	2.5	2201104	43	220170
4175	Ethanol	1500000	1199810	120000000	1199110	NA.		NA.		NA		NLS		NLS		NLS	
4186	Formit scal	38000	1199905	3100000	1199905	NA.		NA		NA		ID	199905	D	199905	D	19990
54197	Acetic scid (includes acetate)	16000	2199807	1300000	2199807	NA		NA		NA		EXP(0.2732*(pH) + 7.0362)	2200506	EXP(0.1732*(pH) + 9.1333)	2200306	EXP(0.2732*(gH) + 9.9265)	220050
57361	Mehand	14000	1199810	1100000	1199110	NA.		NA		NA		590000	2200307	1300000	2200307	2700000	
57630	2-Propositi	28000	1200202	2200000	1200002	NA.		NA.		NA		57008	2200203	500000	2200203	1000000	230020
57641	Acetous	5600	1199710	430000	1199710	NA.		NA.		NA		1700	2199711	15000	1199711	30000	119971
57663	Chlorodom #	350	1201509	11000	1201509	NA.		*	201709		201309	690	2201209	5700	1201309	11000	120100
57685	Dimently/houldomide	830000	1199807	67000000	1199107	NA.		NA.		NA		190000	2199709	6700000	2199709	3400000	219970
57125	Simuchice sethane #		1199707	7.6	1199707	NA:		53	1299107	4.7	1199707	11	2200512	110	2200512	210	220051
11363	p-Bataset	3500	1301107	250000	1201107	NA.		NA		NA		9800	2201108	18000	2201108	180000	
1432	Section 4	39	1199707	500	1199707	NA		12	1099707	310	1199707	LISTED CHITERIA IN PART 301 200	2201511	910	2201511	1900	220151
1001	Acetate (includes acetic acid)	16000	2199807	1300000	2199307	NA		NA		NA:		EXP(0.2732*(pH) + 7.0362)	2200407	EXP(0.2732*(pH) + 9.1933)	2200407	EXP(0.2732*(gH) + 9.9265)	220040
11256	1.1.1-Trichioroethage	62000	1301208	1340000	1201208			NA		NA		59	2201709	\$60	2201709	1600	

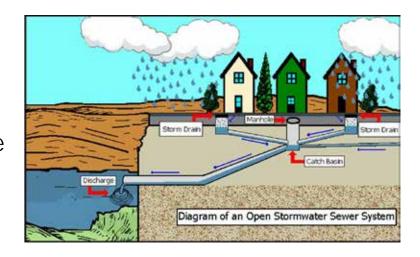
Water Quality Standards & Current Part 201 Criteria

37

TABLE 1. GROUNDWATER: RESIDENTIAL AND NONRESIDENTIAL PART 201 GENERIC CLEANUP CRITERIA AND SCREENING LEVELS:

All criteria, unless otherwise noted, are expressed in units of parts per billion (ppb). One ppb is equivalent to 1 microgram per liter (ug/L). Criteria with 6 or more digits are expressed in scientific notation. For example, 200,000 is presented as 2.0E+5. A footnote is designated by a letter in parentheses and is explained in the footnote pages that follow the criteria tables. When the risk-based criterion is less than the target detection limit (TDL), the TDL is listed as the criterion (§324,20120a(10)). In these cases, 2 numbers are present in the cell. The first number is the criterion (i.e., TDL), and the second number is the risk-based or solubility value, whichever is lower.

- [Residential	Nonresidential		
- 1		Chemical	Residential	Nonresidential	Groundwater	Groundwater	Groundwater		Flammability and
- 1		Abstract Service	Drinking Water	Drinking	Surface Water●	Volatilization to Indoor	Volatilization to Indoor	Water	Explosivity
ı	Hazardous Substance	Number	Criteria	Water Criteria	Interface Criteria	Air Inhalation Criteria	Air Inhalation Criteria	Solubility	Screening Level
	Benzene (I)	71432	5.0 (A)	5.0 (A)	200 (X)	5,600	35,000	1.75E+6	68,000
	Benzidine	92875	0.3 (M); 0.0037	0.3 (M); 0.015	0.3 (M); 0.073	NLV	NLV	5.20E+5	ID


PART 201 GENERIC GSI CRITERIA FOR BENZENE

Municipal Separate Storm Sewers (MS4)

- MS4's are <u>NOT</u> WWTP's or Combined Sewers ONLY for Storm Water.
- MS4's are cities with certain population thresholds and from certain urban areas that are regulated with a NPDES permit.
- All of MDOT's storm sewers are considered MS4's.
- The discharge of ANY groundwater contamination into an MS4 is considered an illicit discharge according to the Clean Water Act even if it may be entering the MS4 at or below GSI Criteria.

Options to address illicit discharges to an MS4 include:

- Line the sewer
- Lower the water table
- Move the sewer
- Obtain a NPDES Discharge Permit
- Treat the Groundwater
- Develop a plan with the municipality to eliminate the discharge.

MS4's Aside

- Contaminated groundwater vents into a storm sewer (not an MS4) that discharges to a surface water.
- Complying with the GSI Pathway in storm sewers:
 - The point of compliance is at the outfall prior to reaching the surface water.
 - MW's can be installed adjacent to the sewer.
 - Request Mixing Zone Based Criteria for the receiving water body.
 - Demonstrate natural attenuation in the sewer prior to the outfall.
 - Monitor the contaminant plume where it enters the sewer, downstream from where it enters but upstream of the outfall or at the outfall prior to discharge.

GSI Compliance Options

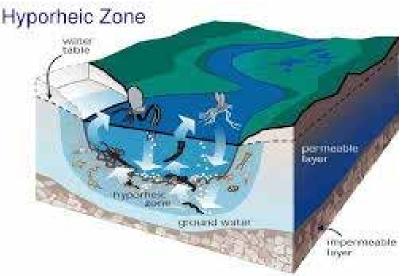
Approaches for Demonstrating GSI Compliance:

- Direct Measurement of Contamination in Venting Groundwater
- Indirect Methods that use the Line of Evidence Approach to demonstrate that venting groundwater does not require remediation.

Achieve GSI Criteria

 <u>Completing Response Actions</u> that achieve GSI Criteria in groundwater monitoring wells or alternate monitoring points prior to discharging to surface water is STILL an option under

the law!

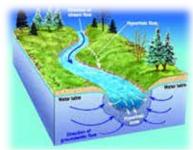


Alternate Monitoring Points

Collecting groundwater samples from and below the <u>Hyporheic Zone or Transition Zone</u> with Alternate Monitoring Points to demonstrate GSI Compliance.

 The primary function of the Hyporheic Zone include habitat for a number of species, spawning habitat, nutrient circulation, biogeochemical processes and riparian exchange.

Remember - Indigenous aquatic life is a protected designated use for all Waters of the State!


Fig. 2.55 - Hypothelic zone, fluoratory of the different common of magnifical endergoes by morthlors of the stream hardful community. In Stream Consider Eustreaston: Principles, Processors, and Principles (1979). International Stream Eustreation Workson Stream (13 Enland assummed PSER WIT).

Alternate Monitoring Points

- Samples collected from AMP's can be compared to criteria, mixing zone based criteria in combination with upland vertical wells.
- AMP's are expected to be designed to allow for the collection of samples representative of venting groundwater at the GSI and representative of the higher concentrations of the contaminants venting to surface water.
- Hydraulic head conditions, geochemical parameters such as DO, temperature and conductivity are necessary to document that the water being sampled is venting groundwater in the hyporheic zone

The Trifecta of Alternate Monitoring Points

Request Mixing Zone Based GSI Criteria

If compliance with generic GSI criteria cannot be achieved Mixing Zone Based GSI Criteria can be requested.

MZ Based Criterion are developed by WRD of the DEQ and considers:

- The surface water body where the discharge is occurring.
- Location, Nature and Chemical Characteristics of past and current sources.
- Concentrations of contaminants in the groundwater at the GSI & upgradient.
- The discharge rate in cubic feet per second of the groundwater that exceeds criteria.
- If the venting groundwater is a new or increased discharge to the waters of the State or an existing loading.
- MZ Based criteria can be requested early in the remedy evaluation of Part 201 & 213 sites to develop targeted goals and response actions to address groundwater contamination.
- The Procedure for requesting MZ Based Criteria is an attachment in the GSI Resource Materials Document.

Variance

If the conditions that have created the GSI exceedance cannot be remedied without creating more environmental damage and it can be demonstrated that criteria is not achievable a variance can be granted.

Variance -continued

Considerations for a Variance include:

- Must conform to the anti-degradation requirements.
- Characterize any increased risk to Human Health & Environment associated with the variance.
- Public Notice is required of the preliminary decision & all other Great Lake States are notified.
- Variances are re-issued every five years and it is expected that progress toward attaining water quality standards would be demonstrated.

Ecological Assessments (EA)

The GSI statutory provisions allow for the use of EA's to evaluate and determine compliance with the pathway using scientific valid methods.

EA's are used to understand why & how organisms behave, survive and reproduce.

EA's are most effective when information on trends over space & time provide the necessary background for an appropriate assessment.

An EA should only be conducted when the GSI criterion are based on aquatic life or wildlife value and DOES NOT exceed human health values.

For Example.....

Ecological Assessments (EA) back into the weeds

TABLE 1. GROUNDWATER: RESIDENTIAL AND NONRESIDENTIAL PART 201 GENERIC CLEANUP CRITERIA AND SCREENING LEVELS:

All criteria, unless otherwise noted, are expressed in units of parts per billion (ppb). One ppb is equivalent to 1 microgram per liter (ug/L). Criteria with 6 or more digits are expressed in scientific notation. For example, 200,000 is presented as 2.0E+5. A footnote is designated by a letter in parentheses and is explained in the footnote pages that follow the criteria tables. When the risk-based criterion is less than the target detection limit (TDL), the TDL is listed as the criterion (§324.20120a(10)). In these cases, 2 numbers are

present in the cell. The first number is the criterion (i.e., TDL), and the second number is the risk-based or solubility value, whichever is lower.

Hazardous Substance	Chemical Abstract Service Number	Residential Drinking Water Criteria	Nonresidential Drinking Water Criteria	Groundwater Surface Water Interface Criteria	Residential Groundwater Volatilization to Indoor Air Inhalation Criteria	Nonresidential Groundwater Volatilization to Indoor Air Inhalation Criteria	Water Solubility	Flammability and Explosivity Screening Level
1,1,2,2-Tetrachloroethane	79345	8.5	35	78 (X)	12,000	77,000	2.97E+6	ID
Tetrachloroethylene	127184	5.0 (A)	5.0 (A)	60 (X)	25,000	1.7E+5	2.00E+5	ID
Tetrahydrofuran	109999	95	270	11,000 (X)	6.9E+6	1.6E+7	1.00E+9	60,000
Tetranitromethane	509148	ID	D	NA	580	3,200	85,000	ID
Thallium (B)	7440280	2.0 (A)	2.0 (A)	3.7 (X)	NLV	NLV	NA	ID

Part 201 GSI Cleanup Criteria for PCE

Ecological Assessments (EA) back into the weeds

		HNV Drink		HNV Non-drink		7975	+1:	HCV Drink		HCV Non-dri		FCV		AMV	
CAS =	PARAMETER NAME	Value	verif date	Value Value	venf date	WV Value	verif date	Value	verif date	Value Value	venf date	Value	verif date	Value	venif date
108678	1.3.5-Trimethylbenzene	2000	1200101	4200	1200101	NA.	-	NA.		NA		45	and the second second second	410	2200102
108872	Methylcycloheume	ID	200910	D	200910	NA		NA.		NA.		D	200910	D	200910
108883	Toluene	5600	1199707	51000	1199707	NA		NA		NA		270	2201307	1300	1201307
108907	Chlorobenzeue	470	1199707	3200	1199707	NA		NA.		NA		25	2201511	220	2201511
108952	Pheuol	1100	2200310	1200	2200310	NA.		NA		NA		450	2200303	3400	1200303
109739	Burylamine	ID	199805	D	199805	NA		NA		NA.		57	2199805	510	2199805
109897	Diethylamine	310	1199712	24000	1199712	NA.		NA:		NA.		26	2199807	180	2199807
109999	Tetrahydrofaran	350	2199802	26000	2199802	NA		NA		NA		11006	2199806	74000	2199896
110816	Doethyl disulfide	D	199710	D	199710	NA.		NA.		NA		D	199710	D	199710
110827	Cyclobexane	ID	200607	D	200667	NA.		NA.		NA.		D	200607	D	200607
111444	Biv(2-chlocoethyl)ether#	D*	200012	D ⁴	200012	NA		0.79	2200012	15	2200012	ID ^a	200012	D	200012
111466	Diethylene glycol	170000	1199708	14000000	1199708	NA.		NA.		NA.		D	199801	D	199801
111922	Diburylacune	ID	199712	D	199712	NA.		NA.		NA		D	199802	D	199802
112265	1.2-Bis(2-chloroethoxy)ethane	ID	290012	D	200012	NA		NA		NA.		1500	2200012	13000	2200012
115297	Endosulfan	8.5	1200103	170	1200103	NA.		NA:		NA.		0.029	2200107	0.15	1200107
117817	Bis(2-ethythexyl phthalate#	120	1199711	160	1199711	NA.		14	1201402	18	1201402	IDs.	199809	285	2199869
117840	Di-ri-octyl phthalate	240	2199902	300	2199902	NA.	V. 1900	NA.		NA	100000000	D	199808	D	199808
118741	Hexachlorobenzene # @	0.046	1199707	0.046	1199707	0.0003	1199704	0.00045	1199707	0.00045	1199707	ID*	199801	D	199801
120127	Anthracene	1900	2199901	2400	2199901	NA:		NA.		NA	5300.000	D	201411	D	201411
120821	1.2.4-Trichlosobenzene	50	1201002	99	1201002	NA.		NA.		NA		130	2201006	420	1201006
120832	2,4-Dichloropheaol	220	1200609	1100	1200609	NA.		NA		NA		11	2200807	92	2203507
120956	2,4-Di-tert-penty/phenol	ID	199712	D	199712	NA.		NA.		NA.		NLS	2.200.1000.1	NLS	SALVEL FAL
121448	Triethylamine	4000	1199708	230000	1199768	NA.		NA.		NA.	100.00	260	2199710	1100	2199710
121824	RDX ≠	. 83	1199908	6100	1199908	NA.		5.8	1199908	420	1199908	85	2199908	400	2199908
122349	Sunazine	140	1200604	4000	1200604	NA.		NA:		NA			2200604	160	2200604
123911	1,4-Dictane #	890	1201611	72000	1201611	NA.		3.5	1201611	280	1201511	22000	2199806	200000	2199806
124174	Diethylene glycol butyl ether acetate	330	1200501	13000	1200501	NA		NA.		NA		260	2200501	2300	2200501
124481	Dibromochlosomethane #	570	1201408	12000	1201408	NA.		6.8	1201408	150	1291408	D	201408	D	201408
126727	Tris(2.3-dibromopropyl)phosphate #	D*	290908	ID4	200908	NA.		0.31	1200908	13	1200908	D	200908	D	200908
126863	2,4.7.9-Tetramethyl-5-decyne-4,7- diol	ID	206112	D	200112	NA		NA.		NA:	2.21.22.22	350	2200410	3100	2200410
127184	Tetrachloroethyleue =	320	1199705	1800	1199705	SA		43	1199705	00	1199705	190	2201510	1400	1201510
127195	N.N-dimethylacetamide	700	1199711	57000	1199711	NA:		NA:		NA		4100	2199769	37000	2199709

Rule 57 Values for PCE

Ecological Assessments (EA)

- EA's are based upon site specific physical, chemical and ecological data and will by their very nature be very complex, involved and costly!
- Reach out early to District Office staff if considering an EA to demonstrate compliance with the GSI pathway.
- Aquatic Biologists from WRD will need to be involved in the process.

De Minimus

The statute allows for a demonstration of "De Minimus Effect" on surface water in determining if a response action is necessary to address the pathway.

This term is not defined in statute or rules, but is a concept that refers to some discharges that may be so small or of such short duration as to have no or little effect on the surface water.

If a De Minimus determination is requested, the DEQ will rely on the CSM for the facility to determine:

- mass flow of contaminants
- maximum concentrations at the GSI
- expected duration of the discharge
- former source area contaminant contribution if any

De Minimus continued

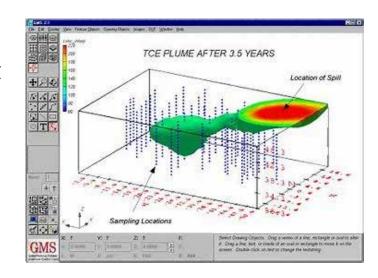
Important Reminders for De Minimus:

The EXISTING condition of an already degraded water body does not serve as a line-of-evidence for determining whether a contribution is de minimus.

Bioaccumulative Chemicals of Concern

De Minimus (Mercury Exception)

Final Acute Values Exceedances


De Minimus

OTHER COMPLIANCE OPTIONS

Other Compliance Options for the GSI Pathway that are in the Resource Materials Document include:

- Modeling
- Technical Impracticability Waivers Published Guidance by EPA
- Natural Attenuation
- Use Attainability Analysis
 for Wetlands Only –
 Requires EPA & MDEQ Approval

RESOURCES FOR YOU

First Line of Contact:

District Office Staff involved with your 201 or 213 facility. Lansing Staff in Superfund or RCRA Program.

GSI Technical Assistance & Program Support Team

- Representative from each RRD District Office and Lansing staff (Superfund, WRD, WMRPD).
- Review GSI Issues and offer compliance options for facilities at the request of District staff.
- Provides recommendations to District Staff.
- Outside parties and consultants are welcome to attend and present facility information.

