CHLORINATED SOLVENT REMEDIATION DESIGN USING A HIGH DENSITY SITE CHARACTERIZATION APPROACH

Agnes Taylor and Mark Quimby – SME Mary Miller – EGLE Duane Guilfoil – AST Environmental

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

LOCATION : ANN ARBOR, MICHIGAN

U.S. EPA Region 5 States

SITE HISTORY

- Developed since at least the late 1800s
- Two former dry cleaners, car wash, junkyard operations, and other commercial and residential uses
- Various environmental investigations on- and off-site
- Significant chlorinated solvent contamination to soil and groundwater
- Former pilot study failed due to environmental challenges

FORMER SITE USE

SOURCE – BROADWAY COIN LAUNDRY

- Operated from 1961 through early 2000s
- Vacant for years
- In 2002 and 2017, EGLE completed limited investigation
- Additional investigations were completed from 2004 to 2019 by private parties
- In 2017 through 2019, EGLE conducted an offsite groundwater investigation

CHLORINATED VOC PLUME

REDEVELOPMENT : THE CATALYST FOR TREATMENT

- New developer purchases site for mixed-use apartments and commercial space
- Tax incremental financing (TIF) approval required installation of PRB at downgradient (eastern) property boundary
- Goal of PRB was 80% reduction off-site migration of PCE

WHAT WE KNEW – PREVIOUS INVESTIGATIONS

- Soil profile: fill underlain by *variable* sand, silts, and clays
- Groundwater encountered 6-13.5 ft bgs and extended to at least 40 ft bgs
- Groundwater flow eastward
- Impact up to 33 ft bgs on west side of site and up to 16 feet on east side of site
- Location of source area
- Off-site migration occurring

PROJECT CHALLENGES

• Data gaps

- o Subsurface conditions
- Contaminant distribution and nature
- Variable soils (sands, silts, clays)
- o Hydrogeology
 - Aquifer characteristics
 - Conflicting hydraulic conductivities

• Project Constraints

- Construction limited window of opportunity
- Development footprint left minimal room at eastern boundary
- o Relatively limited budget
- Previous pilot study using sodium permanganate appeared to have little effect on reducing PCE concentrations in GW
 - Who doesn't love a challenge?

SOLUTION : DON'T GUESS, DEFINE.

...and then we had a plan

SELECTED TREATMENT MEDIA

- Evaluated various treatments
- Selected Trap & Treat® BOS 100®
 - Granular activated carbon impregnated with metallic iron
 - Rate of degradation and range of target compounds
 - PCE & daughter compounds
 - End products : Dissolved iron, chloride, ethylene, methane
 - Injected as a slurry and left in place (no trenching, special equipment applications)

- Reductive dechlorination
- Insensitive to pH, DO levels, native biota, nutrients

PRELIMINARY DESIGN #1

Base figure – Wood, PLC Modified by – AST Environmental, Inc. Hydraulic Conductivity_{Shallow} = 257 ft/day Hydraulic Conductivity_{Deep} = 21 ft/day

PRELIMINARY DESIGN #2

Base figure – Wood, PLC Modified by – AST Environmental, Inc. Hydraulic Conductivity_{Shallow} = 89 ft/day Hydraulic Conductivity_{Deep} = 112 ft/day

EGLE 🔿 SME

PRELIMINARY DESIGN #3

Base figure – Wood, PLC Modified by – AST Environmental, Inc. Hydraulic Conductivity_{Shallow} = 40 ft/day Hydraulic Conductivity_{Deep} = 40 ft/day

EGLE 🔿 SME

EXISITING DATA VS. FILL DATA GAPS

- Limited, fragmented data set for soil, groundwater, and contaminant conditions
 - Option 1 Rely on existing data and model potential contaminant flux through PRB over 30 year window
 - Fills in data gaps with algorithm's best guess
 - Likely lead to the need for more soil and groundwater data
 - Iterations of the above cycle not time effective
 - PRB design based on contaminant flux with limited site information
 - Option 2 Conduct extensive soil and groundwater study to fill in data gaps
 - Know where the cVOC mass is in soil and groundwater
 - Had a vacant site = access, access, access
 - PRB design based on known location and character of PCE mass

HIGH DENSITY SITE CHARACTERIZATION

- AST Environmental, recommended Option 2. Fill the data gaps with a high density soil and groundwater sampling event
 - o Budget friendly (analytical at no cost)
 - o Fit time frame
 - o Had the access
 - Design a more accurate treatment based on the location and nature of contamination

HIGH DENSITY SITE CHARACTERIZATION

- Advanced 79 soil borings to ~40 ft bgs
 - o Logged soils
 - o Sampled every 2 vertical feet
- Installed 46 nested GW well clusters
 - o 142 individual wells
 - o Gauged and sampled all wells
 - o Slug tests
- Analyzed 1,120 soil and 185 groundwater samples
 - o cVOCs
 - o Dissolved gases
 - o Anions
- Confirmed hydraulic conductivities, calculated seepage velocities, and gradients

SOIL BORINGS

NESTED GROUNDWATER WELLS

FINDINGS

- 4,125 lbs of PCE present in a 60 ft band
- Soil concentrations higher than previously measured

 4,640,000 ppb – source area
- Magnitude of GW concentrations on par with previous investigations but more pervasive
 - o 137,000 ppb in source
 - 14,000 27,000 ppb in axis of mid plume
- 99% of mass was PCE; *very* little natural degradation
 - o Groundwater = oxic
- Refined soil profile and hydrogeology

FINDINGS – ACROSS THE SITE

FINDINGS – ACROSS THE SITE

SOIL DATA

GROUNDWATER DATA

FINDINGS – SOURCE AREA

DOCC CECTION LOCATION MAD

FINDINGS – SOURCE AREA

SOIL DATA

GROUNDWATER DATA

FINDINGS – MID PLUME

CONTRACTOR CONTRACTOR STOR

FINDINGS – MID PLUME

SOIL DATA

GROUNDWATER DATA

FINDINGS – PRB AREA

FINDINGS – PRB AREA

SOIL DATA

GROUNDWATER DATA

IMPLICATIONS ON DESIGN

and then the plan changed...

BASED ON RDC FINDINGS

- Quantity of source and mid plume cVOC mass larger than previously estimated
 - Insufficient space for one, adequate PRB at the eastern boundary
 - Added a mid-plume PRB (PRB1) to knock down the cVOC concentrations prior to their arrival at the eastern boundary PRB (PRB2)
 - o Insufficient TIF funds to go after source
- Received \$1 million EGLE grant
 - o Added source area treatment
 - Decrease the concentrations = extend longevity of PRBs

MASS-DRIVEN TREATMENT DESIGN

APPROACH TO DESIGN – SOURCE & PRB1

 Designed remediation on spatial mass loading in saturated and unsaturated zones
 Surgical design; using data collected every two vertical feet

Source Area

- o CAT 100[™] BOS 100[®] with bacteria suite, starch, yeast
- Loading designed on cVOC mass within source area footprint

• PRB1

- o CAT 100™
- Loading designed on mass flux exiting source area <u>&</u> cVOC mass within PRB1 footprint
- 5 year lifetime using seepage velocities calculated from slug tests

APPROACH TO DESIGN – PRB2

- PRB2
 - o BOS 100™
 - o Loading designed on...
 - Mass migrating in footprint of proposed Building A
 - Mass present within footprint of PRB2
 - 30 year lifetime using seepage velocities calculated from slug tests
 - o Majority of mass in 55 foot area from 10-17 ft bgs
 - PRB2 design broken into components
 - o Central Section [Upper, Intermediate, Deep]
 - o North Section [Upper, Intermediate, Deep]
 - o South Section [Upper, Intermediate, Deep]

APPROACH TO DESIGN – PRB2

IMPLEMENTATION

- Approached allowed for a mass-driven design customized to the site with increased accuracy
- Conducted Pilot Study to field verify CAT 100[™] as source and PRB1 treatment media in Dec 2018 through Feb 2019
- Full scale injections occurred Spring-Summer 2019; concurrent with construction
- One round of post-injection GW sampling in July 2019
 One month following injections
 - Average PCE reduction in source and PRB1 of 68%
 - Average PCE reduction in PRB2 of 87%

