wood.

Lessons Learned on Various In-Situ and Ex-Situ PFAS Treatment Technologies

Justin Gal, PE Associate Engineer

Great Lakes Environmental Remediation & Redevelopment Conference October 16-18, 2019

woodplc.com

Overview

- 1. Remediation State of the Practice
 - Soil
 - Water (surface water, groundwater, drinking water)
- 2. Developing Alternatives For Treatment and Wood Updates
 - Soil and water treatment
 - Destruction

Remediation State of the Practice

Commercially available soil remediation options

- Excavation and On or Offsite Encapsulation Proven
 - Effective but expensive, landfill disposal options limited by regulation
- Incineration Proven, but limited facilities
 - Very expensive, generally used on low volumes at high concentrations
- Stabilization Limited full-scale applications
 - RemBind™
 - Powdered reagent Activated carbon, organic matter, and aluminum hydroxide
 - Added at ratio of 1-10% by weight, has shown >98.5% reduction in leaching
 - MatCARETM
 - Modified clay adsorbent
 - pH, clay content and organic content influence PFOS release from soil

Commercially available groundwater remediation options

Most proven options require pump and treat

- Granular Activated Carbon (GAC)
 - Most ubiquitously used for water
- Ion Exchange
 - A potentially cost-effective alternative to GAC
- Reverse Osmosis
 - Effective for a wide variety of PFAS, up to 90% efficient
 - Reject water must be treated separately
- Nanofiltration less proven
 - Effective removal of PFOS when calcium is present
- Foam Fractionation

<text><text><text><text><text><list-item><list-item><text></text></list-item></list-item></text></text></text></text></text>	<text><text><text><text><text><text><text><text><text><text><text><list-item></list-item></text></text></text></text></text></text></text></text></text></text></text>	Individual Team Individual Internet and Plants Science 10 Internet Science of the Interne	100 National April 1 Annual (Mar) Annual Lan Annual Annual (Mar) Martin Charles (Mar)
The definition of the convergence of the convergen	<text><text><list-item><list-item><list-item><list-item><text><text><list-item><list-item></list-item></list-item></text></text></list-item></list-item></list-item></list-item></text></text>	All offset provides the providence of the section o	employee the status 2 to The Share
THE PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY.	WAKNIN	In decident from these for the processing in a proceeding of the influence of our discovery. The form the same for influence program of the out the same process in the form the same for influence program of the same of the same for exactions are same or the former of the same for exactions are same or the same form the same of the same for exactions are same or the former of the same for exactions are same or the same form the same of the same of the same or the same or the same form the same of the same of the same or the same of t	(2) An ang pan sa

Alternatives and Innovative Technologies

Developing treatment and destruction options

- Soil mobilization, recovery and destruction
 - In-situ or ex-situ thermal desorption coupled with VES
 - In-situ liquid carbon
- Groundwater
 - Treatment
 - Non-regenerable ion exchange resins
 - Ozone fractionation
 - In-situ carbon and biochar
 - Regenerable IX resin
 - Destruction
 - Sonification
 - Electrochemical
 - o Plasma

In-Situ Carbon

Case study

Alpena Hide and Leather Case Study –

BioChar Injection and Soil Mixing Pilots at a Former Tannery

- Site setting/history
- Conceptual site model
- Brief description of pilot tests
- Performance metrics

Conceptual site model

Not To Scale

Conceptual site model

• • •

BAM pilot tests

BAM-Ultra[™] Injections:

- Vacuum truck extraction to enhance injections
- Injection pressures of 40 100 psi
- Bottom up injection (2-ft. lifts, 2-10 ft. bgs)
- 100 gallons of 12.4% BAM-Ultra[™] solution injected at 46 intervals/locations (5,300 pounds)
- Variable loading rates based on ROIs
 A presentation by Wood. Great Lakes Environmental Remediation & Redevelopment Conference 2019

BAM-XTM Soil Mixing:

- Excavator bucket mixing
- Mixed from surface to 8 ft. bgs (included vadose zone application)
- 1,600 pounds of BAM-XTM
- 1.5% loading rate by mass
- Mixed in place no waste generated

Pilot test - soil results

PFOS in soil at 4 – 5 feet below ground surface

Test	Control	Injection Area	Soil Mixing	
SPLP	122 – 112	74.4 (39%)	36.3 (68%)	(100g)
TCLP	707	68.4 (90%)	35.7 (95%)	acity (meq

Leachate results in ng/L (percent reduction)

Comparison of Organic Carbon to CEC in Granular Soil

Soil mixing pilot test – groundwater results

PFAS	Percent Reduction
PFBA	-13.0
PFBS	77.5
PFHxA	84.2
PFHxS	94.2
6:2FTS	97.7
PFOA	94.7
PFOS	97.5
T-PFAS	88.6

 Hydraulic Conductivity Pre-Test = 11 ft./day Post Test = 0.9 ft./day

• • •

Injection pilot test - groundwater results

Ex-Situ Regenerable Ion Exchange Resin

Case study

Former Pease Air Force Base Case Study – Regenerable Ion Exchange Resin System

- Site setting
- Project development
- Full-scale implementation
- Start-up and operation
- Performance to date

Site setting

- PFOS and PFOA first identified in 2013
- Drinking water impacts confirmed in 2014
- Base-wide investigations started
- Interim actions initiated

presentation by wood.

Great Lakes Environmental Remediation & Redevelopment Conference 2019

Project development – 2015 bench/pilot testing

- Bench-scale testing identified an IX resin for PFAS removal that could be regenerated
- Wood contracted by the Air Force to perform pilot-scale testing of ECT2's regenerable IX resin and coal-based GAC
- After 6-months of testing and five loading cycles
 - IX resin substantially more effective at PFAS removal
 - IX successfully regenerated

Full-scale implementation - design

Full-scale implementation - construction

Great Lakes Environmental Remediation & Redevelopment Conference 2019

Full-scale implementation – treatment process

Pretreatment bag filters & GAC

Full-scale implementation – regeneration process

Regeneration skid

Still bottoms and superloader

Distiller

Start-up and operations

Start-up and operations - regeneration

Sample Location	PFOS (µg/L)	PFOA (µg/L)
P-7200 Effluent - Regenerant Recovery Pump (Distiller Influent)	25	16
Superloader 1 inlet (Still Bottoms)	540	220
Post Superloader 1	0.19	0.010 U
Post Superloader 2	0.12	0.010 U
Post Superloader 3	0.086	0.010 U
T-7420 Influent - Distallate Purifier	0.50	2.9
T-7420 Effluent - Distillate Purifier #1	0.015 U	1.1
T 7430 Effluent - Distillate Purifier #2	0.015 U	0.010 U

Destruction Technology

Wood - ongoing research and development

Strategic Environmental Research and Development Program (SERDP) U.S. DoD Basic and Applied Research Program

<u>Awarded:</u> "Combined In-Situ/Ex-Situ Treatment Train for Remediation of PFAS Contaminated Groundwater"

Environmental Security Technology Certification Program (ESTCP) U.S. DoD Technology Demonstration and Validation

<u>Awarded</u>: "Removal and Destruction of PFAS and Co-Contaminants from Groundwater"

Ongoing R&D – PFAS destruction via PLASMA

- Work presented by Clarkson University at Battelle Remediation Conference, May 2018.
- Enhanced contact, low energy plasma reactor for two applications
 - Treatment of investigation derived waste low C aqueous solutions
 - Treatment of still bottom waste from regenerable IX high C brine solution
- Technology demonstrated for IDW (discussed in the following slides)
- Technology under development for still bottoms two R&D projects starting now for SERDP and ESTCP

Prototype Plasma Reactor for high C PFAS Inventors: Mededovic and Holsen, Clarkson University

On-going R&D – PLASMA for PFAS destruction

- Plasma is an ionized gas consisting of a quasi-neutral mixture of neutral species, positive ions, negative ions, and electrons.
- Electrical discharge plasma formed *directly in* or *above* water makes use of OH radicals to oxidize and aqueous electrons to chemically reduce organic and inorganic compounds.
- Benefits of plasma-based water treatment:
 - Physical effects such as generation of ultraviolet-range radiation (UV), shockwaves capable of inducing cavitation, and high temperatures capable of thermally decomposing molecules.
 - No chemical additives are required.
 - Wide variety of reactive chemical species (OH, eaq-, e-, O, H, H2O2, O2, HO2).

Pictures: Plasma Research Laboratory, Clarkson University

Plasma formation

Plasma summary

- Emerging as a viable technology
 - Proven field demonstration (high C still bottom PFAS treated to ND)
 - Study results expected November 2019.
- Potentially applicable for:
 - Destruction of regenerant waste
 - IDW destruction
 - Not for continuous flow at this time
- More efficient and is relatively unaffected by the presence of co-contaminants.
- Mechanisms of PFAS destruction involves electrons and plasma (argon) ions.
- Market availability next step (mobile unit available)

Potential no-waste solution

Treatment of high C still bottom waste

Courtesy of: Plasma Research Laboratory, Clarkson University

Lessons Learned

Lessons Learned

- In-situ Carbon
 - Biochar effectively reduced PFAS in groundwater
 - Biochar has less sorption of short chain carboxylic acids
 - Soil ion exchange capacity may have as much or more effect on PFAS sorption than fraction of organic carbon
 - Soil mixing biochar had favorable results when evaluating with long term leaching test
- Ex-situ Regenerable IX Resin
 - Biggest challenge was iron fouling at front end of plant
 - GAC can be a workhorse
 - Fire protection can drive project costs and logistics for regeneration technology
- Plasma Destruction
 - No commercially available onsite destruction technologies
 - Developing treatment technologies show promise for greater removal capacity and potential onsite application.

wood.

Questions?

Thank you! For more information:

Justin Gal, PE Associate Engineer justin.gal@woodplc.com 248-926-3919

woodplc.com

Thank you to Collaborators: David Woodward - Wood Nathan Hagelin - Wood Rob Singer – Wood Len Mankowski - Wood

- 1. http://www.cdc.gov/healthcommunication/risks/index.html
- 2. <u>http://www.who.int/risk-communication/en/</u>
- 3. <u>http://www.npr.org/sections/thetwo-way/2016/08/09/489369852/federal-</u> <u>data-shows-firefighting-chemicals-in-u-s-drinking-water-sources</u>
- 4. <u>https://papers.ssrn.com/sol3/papers.cfm?abstract_id=988342</u>
- 5. <u>https://emergency.cdc.gov/cerc/resources/templates-tools.asp</u>

Injection pilot test - groundwater results

Injection pilot test - groundwater results

Case study

Camp Grayling Case Study -

Colloidal Activated Carbon in a Low Centration PCE Plume

- Site setting
- Conceptual site model (injection area)
- Brief description of pilot test
- Performance metrics/mechanisms

Conceptual site model

- Former fire training area
- Bulk fuel area
 - Pump and treat system in place
 - Previous hydrogen release compound (HRC) injections
- Compounds in groundwater
 - Historically SVOCs
 - Low level PCE (<10 ug/L)
- PFAS detected 2016
 - T-PFAS 228 ng/L
 - PFOS 110 ng/L
 - PFOA 6 ng/L

39

- Shallow groundwater
 - Shallow Groundwater
 - Aquifer primarily sand
 - Depth to water: 14-15 feet
- A presentation by Wood. Great Lakes Erviron mental Kemediation by Kedevelopment Conference 2019

2018 PlumeStop[™] injection pilot

- PlumeStop[™] injected October 2018
- Nine locations on 5-foot centers.
- 2400 lbs. ea. of PlumeStop[™] & PlumeStop Stout[™] (8-10,000 mg/L; ~ 750-1,000 gallons/pt)
- Bottom-up application (1-ft. to 3-ft. lifts; 14-26 ft. bgs)
- Injection pressures/flow rates up to 90 psi at 8 gpm

Camp Grayling Airfield – soil results

- Physical testing:
 - *f_{oc}* increased slightly
 - No significant change in CEC
 - No apparent correlation of CEC to *f*_{oc}
 - Pre-/post-injection slug test results relatively unchanged (Remains Fast!)

Time series results

- Baseline
 - PFOS = 70/40 ng/L
 - PFHxS = 60/50 ng/L
 - PFPeA = 10 ng/L (deep)
 - PCE = 8.28/3.12 ug/L
- October 2018 (4 weeks)
 - No PFAS detected (shallow and deep downgradient wells)
 - PCE = 1.22 ug/L (shallow)
 - PlumeStop[™] spreading
- March 2019 (~ 6 months)
 - PFOS = 9.6 ng/L in shallow downgradient well (~50 ft.)
 - PCE detected in shallow wells at 25 and 50 ft. downgradient
 - PlumeStop[™] no further downgradient expression

Start-up and operations

Relative PFAS Component in Influent

PFOS		PFHxS	6:2 FTS	PFOA	[PFH	PFHxA	P
43 A pre	sentation by Wood PFOS PFHxS 6:2 FTS PFOA PFHX	ntal Remediation & Redevelopmen A PFPeA CPFHpA PFH	t Conference 2019 IpS 8:2FTS PFBA PFBS PF	NA PFOSA]	•		

Start-up and operations

45 A presentation by Wood. Great Lakes Environmental Remediation & Redevelopment Conference 2019

Next steps

- Complete ongoing column studies
- Refine media selection criteria
- Operate/optimize non-regenerable IX system
- Continue site-specific evaluations
- Optimize plasma destruction on high C still bottoms
- Complete SERDP and ESTCP projects

Potential no-waste solution

Treatment of high C still bottom waste

