

About AFT

Saving the Land that Sustains Us.

ACCELERATE

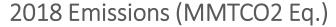
Regenerative Agriculture

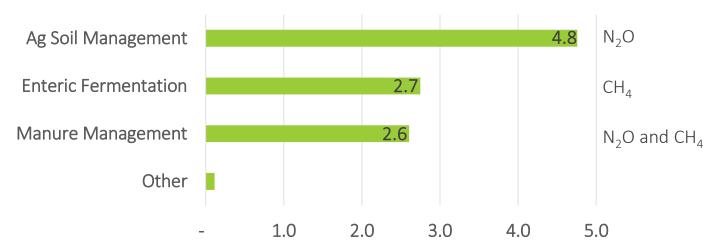
PROTECT

PROMOTE

Farmland

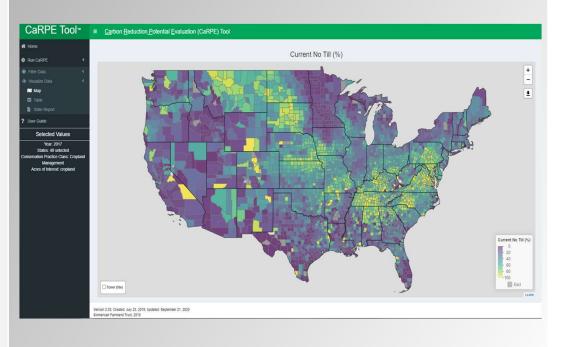
Compact growth




EXPAND

Smart Solar Siting

Overview of GHG Emissions from Michigan Agriculture



** Does not account for long-term declines in soil carbon stocks OR for the benefits of conservation practices already adopted. **

Total emissions of 11.7 MMTCO₂eq per year as of 2018 6.8% of total state emissions

Source: World Resources Institute, Climate Watch program https://www.wri.org/data/climate-watch-historical-emissions-data-countries-us-states-unfccc

Approach

CaRPE Tool

Carbon Reduction
Potential Evaluation

Couples COMET-Planner & AgCensus Data

Visualize & Quantify

Emission reduction potential from key conservation practices

Summary Reports

Custom tables and figures by state

Report Authors

Jennifer Moore, PhD

Daniel Manter, PhD

Tabitha Brown, PhD

Shelby C.
McClelland, PhD

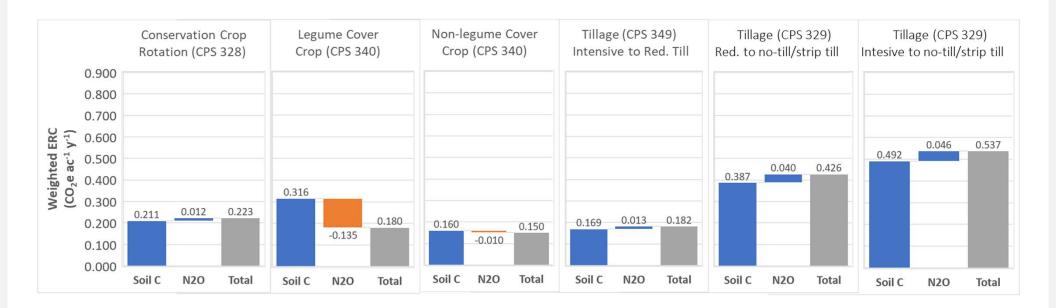
Mitch Hunter, PhD

Management Focus	:*5	NRCS Conservation Practice tandard (CPS) Number and Practice Name	Relative GHG Benefit	COMET Application
Soil Health	328	Conservation Crop Rotation		Decrease fallow or add perennial crops to rotation
	329	Residue and Tillage Management, No Till & Strip Till		Intensive or reduced tillage conversion to no-till or strip till
	340	Cover Crop		Add legume cover with 50% fertilizer N reduction
	340	Cover Crop		Add non-legume cover with 25% fertilizer N reduction
	345	Residue and Tillage Management, Reduced Till		Intensive tillage conversion to reduced till
	484	Mulching		Add high carbon organic matter to croplands (e.g., straw or crop residues)
	585	Strip cropping		Add perennial cover in strips
Nitrogen Management	590	Nutrient Management		Reduce synthetic N application rate by 15% over 5 years by adding organic N source (e.g., manure or compost)
Grazing and Pasture	381	Silvopasture		Add trees/shrubs on grazed grasslands
	528	Prescribed Grazing		Replace extensive pasture management (60% forage removal or more) with intensively managed grazing (40% forage removal)
	550	Range Planting		Seeding forages to improve rangeland condition

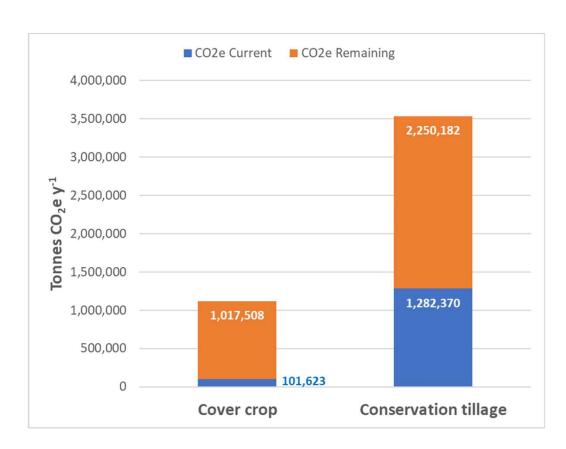
Practices Evaluated

Soil Health

Nitrogen Management

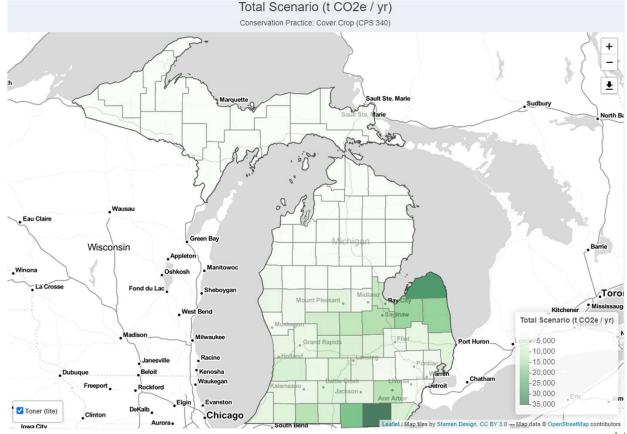


Grazing & Pasture


Average Weighted CO₂e Reduction Coefficients: Michigan

Theoretical Reduction Potential

CO₂e Reduction from Cover Crops and Tillage in Michigan.


Sum = 4.6 M tonnes CO_2 e reduction per year 39% of MI agriculture's total emissions

100% Cover Crop Rotation Adoption in Michigan

Note: Online CaRPE tool allows user to hover over counties, name and value is indicated for more detailed

exploration.

Scenario Example – Row Crops

3 practices implemented

- Roughly 5.5 M acres of row crops in 2017
- On these 5.5 M acres:
 - Cover crops were implemented on 25% of the acres (assumed 25% of these acres adopted a legume cover and 75% adopted a nonlegume cover);
 - Conservation crop rotation was implemented on 20% of the acres;
 - No-till was adopted on 50% of the acres (assumed half of the acres converted from intensive till and half from reduced till).

Scenario Example

Michigan <u>row crop acres</u> and percent adoption of 3 conservation practices with estimated CO_2 e reduction potential resulting from state-wide implementation.

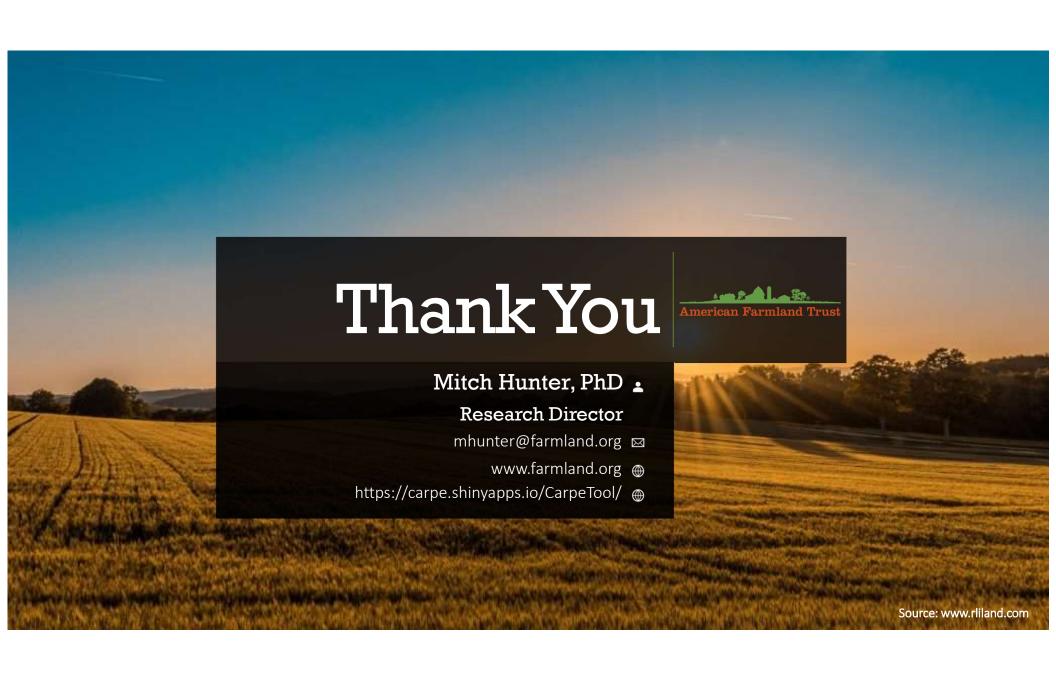
Practice	Scenario acres	% of Selected Acres	CO ₂ e (tonnes y ⁻¹)
Cover crop ¹	1,384,110	25	225,708
Conservation crop rotation	1,107,288	20	246,562
No-till	2,768,220	50	1,354,923
Top 3 Practices	5,259,617	N/A	1,827,193

¹25% legume/75% non-legume

Note: Reductions provided by current adoption are included in total.

Near-term practices on row crop acres alone can mitigate 15% of ag emissions.

Michigan can harness this GHG reduction potential **TODAY** by working with farmers to promote voluntary adoption of these practices.



Closing Thoughts

Conservation practices are a key tool in the climate toolbox and the CaRPE Tool can support state efforts to prioritize efforts.

It is also critical to address nutrient management, enteric fermentation, and manure management.

Most agricultural climate solutions provide numerous cobenefits for the environment and farming communities.

